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ABSTRACT OF THE DISSERTATION 

 

Transcriptional Regulation of Early Adenovirus Genes  

by Adenovirus Large E1A via Interactions with p300 

 

by 

 

Emily Hsu 

Doctor of Philosophy in Molecular Biology 

University of California, Los Angeles, 2020 

Professor Arnold J. Berk, Chair 

 

 The human adenovirus early region 1A (E1A) has been extensively studied as a model 

transcriptional regulator to uncover the molecular mechanisms that regulate viral and cellular 

gene expression. While it was initially thought that early viral gene activation by E1A was 

primarily due to association of CR3 with Mediator, it was recently demonstrated by Pelka et al. 

that an interaction between HATs p300/CBP and a region of E1A including CR3 also stimulates 

transcription (1). To further analyze this mechanism, we assayed the association of YFP labeled 

p300 with truncated E1A proteins fused to mCherry labeled LacI bound to a LacO array in 

nuclei. Either of two highly acidic regions flanking CR3 were identified as being required for 

E1A association with p300 in vivo. Infection of primary human airway epithelial cells with Ad 

recombinants expressing alanine substitutions in both acidic regions resulted in greatly decreased 

expression of E2 and E4 RNAs. ChIP-seq for H3K18/27ac and Pol2 pre-initiation complex (PIC) 
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components revealed decreased levels of H3 acetylation at the E2early, E3, and E4 promoters 

and defective TBP and Pol2 assembly at the E2early promoter after infection with the Ad 

mutant. GRO-seq in infected cells demonstrated decreased release of promoter-proximal paused 

Pol2 at E4 by p300 binding mutant E1A. Our results demonstrate that transcription of E2early is 

regulated during Pol2 PIC assembly mediated by H3 acetylation and E4 is regulated during the 

transition to productive transcriptional elongation, both of which are dependent on the presence 

of these acidic regions of E1A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv 

The dissertation of Emily Hsu is approved. 

 

Douglas L. Black 

Michael F. Carey 

Siavash K. Kurdistani 

Stephen Smale 

Arnold J. Berk, Committee Chair 

 

 

 

 

University of California, Los Angeles 

2020 

 

 

 

 

 

 

 

 

 

 



 v 

DEDICATION 

 

This dissertation is dedicated to my family- Mom, Dad, Justin, and Esther, for their 

unwavering love and support; to my mentor Dr. Arnold Berk, for his guidance, encouragement, 

and for imparting his excitement for scientific discovery; to my committee members for their 

helpful advice and discussions; to Berk lab members for creating a lab space that I truly enjoyed 

and will sincerely miss; and to my friends, for all the fun times.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi 

TABLE OF CONTENTS 

 

CHAPTER 1: INTRODUCTION                             1 

 

CHAPTER 2: ADENOVIRUS E1A ACTIVATION DOMAIN REGULATES H3 

ACETYLATION AFFECTING VARIED STEPS IN TRANSCRIPTION AT DIFFERENT 

VIRAL PROMOTERS                   6 

INTRODUCTION                                  7 

RESULTS                                7 

DISCUSSION                             31 

 

CHAPTER 3: ADENOVIRUS EARLY PROMOTER E4 IS REGULATED DURING 

TRANSCRIPTIONAL ELONGATION BY H3K18/27AC DEPENDENT SEC 

RECRUITMENT                  41 

INTRODUCTION                              42 

RESULTS                              44 

DISCUSSION                              60 

 

CHAPTER 4: MATERIALS AND METHODS                         63 

CONCLUDING REMARKS                67 

REFERENCES                  69 

 



 vii 

LIST OF FIGURES 

 

Figure 1-1: Small and large E1A protein interactions              5 

Figure 2-1: In vivo colocalization assays for association of fragments of  

large E1A with p300 and MED6                10 

Figure 2-2: Summary of E1A deletion constructs and Ad5 mutant sequences __________12 

Figure 2-3: Activation of early viral promoters and MLP by wt and DM E1A         18 

Figure 2-4: Activation of early viral promoters and MLP by wt and single acidic region 

mutant E1As                  20 

Figure 2-5: Activation of early viral promoters and MLP by wt and 183–188A 

 mutant E1A                  24 

Figure 2-6: H3K9ac, H3K18ac, H3K27ac, TBP, and Pol II associated with the  

Ad5 genome                   27 

Figure 2-7: Defective H3 acetylation and PIC assembly by DM E1A at early viral

 promoters                   30 

Figure 3-1: H3K18/27ac by p300-E1A stimulates paused Pol2 release at E4          46 

Figure 3-2: Ser5-P, Ser2-P, CDK9, NELF, and SEC subunit association on the  

Ad5 genome                       49 

Figure 3-3: p300 HAT inhibitor A485 causes H3 hypoacetylation and decreased early viral 

gene expression   ______________________________________________________      52 

Figure 3-4: p300 HAT inhibition by A485 results in defective Pol2 pause release and 

decreased SEC and BRD4 binding at E4 __________________________          53 



 viii 

Figure 3-5: Treatment with A485 causes different effects on acetylation at promoters vs. 

enhancers and effects both initiation and elongation _______________________________57 

Figure 3-6: Paused genes affected by A485 are hypoacetylated at TSSs and have greatly 

increased SEC subunit binding  ________________________________________________58  

Figure 3-7: BRD4 enhancer binding stimulates pause release at nearby genes _________ 59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

‘ 

 



 ix 

LIST OF TABLES 

Table 2-1: Colocalization score of LacI-mCherry or LacI-mCherry-E1A fragment with 

YFP-MED6, YFP-MED23, or YFP-p300               11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 x 

ACKNOWLEDGEMENTS 

 

Chapters 1 and 2 contain material from an open access published article:  

Hsu, E., Pennella, M.A., Zemke, N.R., Eng, C., and Berk, A.J. (2018). Adenovirus E1A 

Activation Domain Regulates H3 Acetylation Affecting Varied Steps in Transcription at 

Different Viral Promoters. J. Virol. 92, 1–18. 

 

M.A. Pennella and N.R. Zemke performed and analyzed the co-localization and luciferase 

reporter assays. N.R. Zemke performed GRO-seq and ChIP-seq analyses on the human genome. 

C. Eng performed the Ad5 mutant vector construction. 

 

This work was supported by USPHS grant CA025235, the Professor June Lascelles Scholarship, 

the T32 Virology and Gene Therapy Training Grant at UCLA, and the Philip Whitcome Pre-

Doctoral Fellowship at UCLA. 

 

 

 

 

 

 

 

 

 



 xi 

VITA 

 

EDUCATION 

New York University        New York, NY 

B.A.          2012 

 

PUBLICATIONS 

Hsu E, Pennella MA, Zemke NR, Eng C, Berk AJ. 2018. Adenovirus E1A activation domain regulates 

H3 acetylation affecting varied steps in transcription at different viral promoters. Journal of Virology 

92:e00805-18. https://doi.org/10.1128/JVI.00805-18. 

 

Yotova I, Hsu E, Do C, Gaba A, Sczabolcs M, Dekan S, Kenner L, Wenzl R, Tycko B. 2017. Epigenetic 

Alterations Affecting Transcription Factors and Signaling Pathways in Stromal Cells of Endometriosis.  

PLoS ONE 12(1): e0170859. doi: 10.1371/journal.pone.0170859. 

 

PRESENTATIONS 

Hsu E, Pennella MA, Zemke NR, Eng C, Berk AJ. Transcriptional Regulation of Early Adenovirus 

Promoters by Large E1A via Interactions with p300. Cold Spring Harbor Laboratory Mechanisms of 

Eukaryotic Transcription Meeting. Cold Spring Harbor, NY, August 2019. (Poster presentation) 

 

Hsu E, Pennella MA, Zemke NR, Eng C, Berk AJ.  Transcriptional Activation of Early Viral Promoters 

by Adenovirus Large E1A via Interactions with p300. DNA Tumor Virus Meeting. Birmingham, UK, 

July 2017. (Oral presentation) 

 



 xii 

Hsu E, Pennella MA, Zemke NR, Eng C, Berk AJ. Transcriptional Activation of Early Viral Promoters 

by Adenovirus Large E1A via Interactions with p300. UCLA Jonsson Comprehensive Cancer Center 

Gene Regulation Intramural Group Meeting. June 2017. (Oral presentation) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1 

 
 
 
 

 

 

Chapter 1: INTRODUCTION 
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Proteins encoded in early region 1A (E1A) of human adenoviruses (Ad) have been 

studied extensively as model transcriptional regulators to uncover molecular mechanisms that 

control viral and cellular gene expression. Upon infection, E1A is the first viral region 

transcribed, and E1A pre-mRNA is alternatively spliced into mRNAs, designated 13S, 12S, and 

9S mRNAs, as well as the less abundant 10S and 11S mRNAs (2). The 13S and 12S transcripts 

are generated from two 5′ splice sites, separated by 138 bp and a common 3′ splice site, and are 

most abundant early after infection and in transformed cells. They encode the 289-amino-acid 

(aa) large E1A and the 243-aa small e1a proteins, respectively (3). E1A proteins do not bind 

directly to DNA and exert their considerable effects on gene expression by interacting with 

cellular proteins through sequences conserved throughout primate adenovirus species and 

serotypes, designated conserved regions 1 to 4 (CR1-CR4) (4, 5) (Figure 1-1). 

Large and small E1A both contain the N-terminal CR1 and CR2, which interact with the 

closely related nuclear lysine acetyltransferases CBP/p300 and RB family proteins (RB1, p107, 

and p130) to reprogram host cell gene expression and induce S phase in quiescent host cells (6, 

7) (Figure 1-1) The small e1a N-terminal ∼12 aa and aa 54 to 82 of CR1 bind the TAZ2 domain 

of CBP/p300 (8). p300/CBP is primarily responsible for mediating the acetylation of histone H3 

at lysines 18 (H3K18) and 27 (H3K27), which are generally associated with promoters of 

actively transcribed regions (9, 10). The association of p300/CBP with small e1a inhibits 

H3K18/27 acetylation to about 30% the level in uninfected cells (6). This is thought to be the 

primary mechanism by which adenovirus represses host cell genes that would otherwise interfere 

with productive viral infection (6, 9). 

While small e1a has been well characterized in the context described above, large E1A is 

known to modulate viral infection additionally by activating transcription from early adenovirus 
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promoters E1A and E1B and, to a greater extent, E2early, E3, and E4 (11–14). Large E1A is 

primarily responsible for transcriptional activation from these promoters. Although small e1a is a 

much weaker activator of these promoters than large E1A, small e1a does activate transcription 

significantly compared to that of the E1A deletion mutant dl312 (14). The E1A activation 

domain includes CR3 [E1A(aa 140–185)], a region that is unique to large E1A. When fused to 

the GAL4 DNA-binding domain (DBD), E1A(aa 121–223), including CR3, functions as a strong 

activation domain (15). Further studies using Gal4-DBD fusions to progressive N- and C-

terminal deletions of E1A(aa 121–223) suggested that the minimal region required for activation 

is aa 141 to 178, closely overlapping CR3 (16). Six tandem glutamic acid-proline repeats (EP6) 

just C terminal to CR3 (aa 189 to 200; designated AR1) were later shown to be essential for 

activation of early viral promoters by native E1A (not fused to the Gal4-DBD) in transient-

transfection assays (17, 18). 

In an early model of the mechanism of E1A activation of early viral promoters, the E1A 

activation domain was functionally divided into two distinct subdomains: a C4 Zn-finger region 

that makes contact with the basal transcriptional machinery and a C-terminal region (aa 183 to 

188) implicated in promoter binding via association with host cell sequence-specific 

transcription factors (15, 16, 19, 20). Importantly, the large E1A activation domain, E1A(aa 121–

123), binds human multisubunit mediator complexes, key coactivators required for regulating 

transcription by RNA polymerase II (Pol II) (21, 22). Affinity columns of E1A(aa 121–223) and 

amino acid substitution mutants that activate transcription were found to bind directly to the 

human homolog of Caenorhabditis elegans Sur2, now designated MED23, a mediator subunit 

located in the tail domain of the human mediator complex (23). Mutant E1As with amino acid 

substitutions in the C4 Zn-finger region (Figure 1-1) that are defective for activation (19) did not 
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bind MED23, demonstrating that MED23 associates with the Zn-finger subdomain of CR3 (21). 

Further work confirmed this CR3-MED23 interaction in vivo (24) and demonstrated its ability to 

stimulate Pol II preinitiation complex (PIC) assembly on promoter DNA in vitro (25). 

While it was initially thought that activation by E1A was primarily due to its association 

with the mediator complex, Pelka et al. proposed that an additional E1A interaction with 

p300/CBP also contributes to E1A activation (1). This group reported that transcriptional 

activation by E1A(aa 139–204) was inhibited by overexpression of small e1a, dependent on the 

interaction of small e1a with p300/CBP. This result was interpreted to indicate that small e1a 

antagonizes transcriptional activation by large E1A through its well-characterized binding to the 

CBP/p300 TAZ2 domain via the E1A N terminus and CR1 (8). Further, p300/CBP also was 

observed to bind E1A(aa 139–204), although it did so more weakly than the well-characterized 

sites of E1A interaction at the N terminus and CR1 (1). 

In this work, we confirm the second interaction between p300 and E1A proposed by 

Pelka et al., and map it to two highly acidic peptide regions flanking CR3. We also present a 

model where H3 acetylation mediated by this interaction affects early viral promoters at different 

steps in transcription.  
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Figure 1-1: Small and large E1A protein interactions 

Small and large E1A protein interactions. E1A interaction maps for large E1A (289 aa) and small 

e1a (243 aa). Colored portions and horizontal black bars above them represent regions of E1A 

that interact with the cellular protein indicated by the associated arrowhead pointing to a box 

containing the name of the cellular protein. Dashed lines connect conserved regions of E1A that 

bind the indicated targets together. Conserved regions (CR) 1 to 4 are indicated in brackets. 

Results presented below indicate that the red regions interact with p300 and that the green region 

at the C-terminal end of CR3 is required for binding multisubunit mediator complexes. 
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Chapter 2: ADENOVIRUS E1A ACTIVATION DOMAIN REGULATES H3 
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Introduction 

To corroborate the conclusions of Pelka et al. by an independent method, we analyzed 

p300 interaction with E1A(aa 121–223) in vivo by confocal microscopy of green fluorescent 

protein (GFP)-derivative tagged proteins. We constructed Ad mutants with multialanine 

substitutions in E1A regions observed to be required for the interaction with p300 in this in 

vivo protein-protein interaction assay and analyzed transcription from early viral promoters after 

infection of human primary airway epithelial cells. Additionally, we used these same methods to 

further characterize the association of multisubunit mediator complexes with the E1A activation 

domain and propose a new explanation for the requirement of the CR3 C-terminal invariant 

region (aa 183 to 188) for activation. Using chromatin immunoprecipitation sequencing (ChIP-

seq), we analyzed the association of modified histones, TBP, and Pol II with the early viral 

promoters after infection with wild-type (wt) and Ad5 mutants. We found that eliminating the 

interaction between the large E1A activation domain and p300 prevented H3K18/27ac at the 

adenovirus E2early, E3, and E4 promoters during the early phase of infection. The consequences 

of this failure to acetylate H3K18/27 in these promoter regions for PIC assembly and 

transcription were different at each of these viral promoters. 

 

Results 

Acidic regions flanking E1A CR3 are required for p300 binding to the E1A activation domain, 

and amino acids 179 to 189 are required for E1A binding to multisubunit mediator complexes in 

vivo. 

Pelka et al. reported that p300 interacts with large E1A(aa 139–204), a region lacking the 

well-characterized large and small E1A p300/CBP binding site formed from the E1A N-terminal 
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∼12 aa plus E1A(aa 54–82) in CR1 (1, 8). To confirm and extend this conclusion, we analyzed 

protein-protein interactions in vivo by confocal fluorescence microscopy of proteins fused to 

differently colored GFP derivatives. Expression vectors for YFP-p300 and LacI-mCherry alone 

or LacI-mCherry fused to an E1A fragment consisting of aa 121 to 223, E1A(aa 121–223), were 

transfected into CHO-A03.1 cells. These cells contain an amplified region of DNA with 

∼10,000 lac operator sites (lacO) integrated into a single region of one chromosome (26). 

Expression of mCherry-tagged Lac repressor (LacI-mCherry) resulted in clear association of this 

fusion protein with the lacO array, as observed by a localized nuclear mCherry signal (Figures 2-

1b, 2-1c). Coexpressed YFP-p300 did not colocalize with LacI-mCherry at the lacO array 

(Figures 2-1a – 2-1c) However, when coexpressed with LacI-mCherry-E1A(121–223), YFP-

p300 did colocalize with the lacO array (Figures 2-1d – 2-1f), confirming the interaction of 

E1A(aa 121–223) with p300 in vivo (1). 

To identify the amino acids of large E1A required for this specific association with p300, 

we assayed colocalization of YFP-p300 with LacI-mCherry fused to deletions of E1A(aa 121–

223) (Figure 2-2a). Fusion proteins that retained either one of two highly acidic peptides flanking 

CR3, aa 133 to 138 (DDEDEE) or aa 189 to 200 (EPEPEPEPEPEP) (red in Figures 2-2a and 2-

2f), continued to colocalize with YFP-p300, but E1A(aa 140–189) and E1A(aa 140–178), which 

have both acidic peptides deleted, did not (Figure 2-2e) and Table 2-1). These results suggest 

that both acidic regions flanking CR3 contribute to p300 binding and that at least one of these 

acidic regions is required for p300 binding to the E1A activation domain, as detected in this in 

vivo colocalization assay. 

We further characterized the known association of E1A and mediator complexes. In 

vivo colocalization, assayed as described above, was again used to observe the association of 
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E1A deletion constructs with mediator subunit MED23, located in the tail of the mediator (23) 

and bound directly by large E1A (21), and MED6, located in the head domain of the mediator 

(23) (Figure 2-1g – 2-1i). We interpreted colocalization of an E1A fragment with YFP-MED6 to 

indicate that multisubunit mediator complexes associate with the fragment. Consistent with 

previous results, E1A(aa 121–223) associated with MED23 (21, 27). However, in contrast to 

E1A(aa 121–223), the E1A C4 Zn-finger region alone (aa 140 to 178) (28) associated with 

MED23 but was greatly reduced in its association with MED6, as was E1A(aa 133–178) (Figure 

2-2c, 2-2d and Table 2-1). Interestingly, binding of both MED23 and MED6 required aa 140 to 

189 (Figure 2-2c, 2-2d and Table 2-1). These results indicate that E1A(aa 140–178) interacts 

with MED23, while the additional residues 179 to 189 (green in Figure 1-1 and Figure 2-2a) are 

required to bind multisubunit mediator complexes containing the assayed MED6 head subunit. 
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Figure 2-1: In vivo colocalization assays for association of fragments of large E1A with p300 

and MED6.  

(Upper) Confocal micrographs of YFP and mCherry fluorescence in CHO-A03.1 cells 

cotransfected with expression vectors for YFP-p300 and LacI-mCherry (a to c) or YFP-p300 and 

LacI-mCherry-E1A(121–223) (d to f).  

(Lower) As described for upper images but with expression vectors for YFP-MED6 and LacI-

CFP (g to i) or YFP-MED6 and LacI-CFP-E1A(121–223) (j to l). 
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Table 2-1: Colocalization score of LacI-mCherry or LacI-mCherry-E1A fragment with YFP-

MED6, YFP-MED23, or YFP-p300. 
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Figure 2-2: Summary of E1A deletion constructs and Ad5 mutant sequences.  

 (a) Diagram of E1A regions fused to LacI used for colocalization and transient-transfection 

activation assays. E1A(aa 133–139) and E1A(aa 190–205) containing acidic peptides are shown 

in red. E1A(aa 179–189) is shown in green. The C4 Zn-finger region (aa 140 to 178) is shown in 

light blue, with cysteines shown in red.  

(b) Activation by LacI-mCherry fusions to E1A fragments in a transient-transfection luciferase 

reporter assay in CHO cells. The luciferase reporter had eight lacO sites upstream of the E1B 

promoter. Values are relative (rel.) to activity of LacI-mCherry-E1A(121–223).  
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(c) Colocalization of LacI-CFP-E1A fragments with YFP-MED23. ND (not done) indicates E1A 

fragments that were not assayed for colocalization.  

(d) Colocalization of LacI-CFP-E1A fragments with YFP-MED6.  

(e) Colocalization of LacI-mCherry-E1A fragments with YFP-p300.  

(f) The amino acid sequence of wt Ad5 E1A(121–223). The LxCxE motif of CR2 (aa 122 to 

126) is in boldface. Acidic peptide sequences (aa 133 to 138, DDEDEE, and aa 189 to 200, 

EPEPEPEPEPEP) are shown in red. The invariant sequence in the interval E1A(aa 183–188) is 

in green. The C4 Zn-finger region (aa 140 to 178) is in boldface, with cysteines in red.  

(g) Sequences of Ad5 mutants from E1A(aa 121–223), with alanine substitutions in red or green. 
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Both p300 and multisubunit mediator binding by E1A are necessary for high levels of activation 

in a transient-transfection assay. 

Several groups previously have defined the boundaries of the CR3 activation domain 

using transient-transfection reporter assays. E1A(aa 140–178), including a C4-type zinc finger, is 

essential for activation (15, 16, 19). In addition, peptide regions that closely overlap those that 

we propose to contribute to p300 and multisubunit mediator binding (aa 190 to 205 and aa 179 to 

189, respectively) are required for high levels of activation (17–19). To determine if activation 

by the LacI-mCherry-truncated E1A fragments analyzed here is consistent with previously 

demonstrated activation by E1A fragments in transient-transfection assays, we assayed activation 

by these LacI fusions using a luciferase reporter with eight lacO sites upstream of the E1B 

promoter (Figure 2-2b)(29). These assays were done in CHO-K1 cells, the parental cells for the 

A03.1 cells used in the colocalization assays. 

Although deletion of either the N- or C-terminal acidic region of E1A(aa 133–205) did 

not affect p300 binding in our in vivo colocalization assay, E1A(aa 133–189) and E1A(aa 140–

205), each lacking one of the two acidic peptides flanking CR3, displayed partial defects in 

activation, with ∼50% of the activity of E1A(aa 121–223) (Figure 2-2b). Deletion of both acidic 

regions and the consequential complete loss of p300 binding by this region of E1A(aa 140–189) 

(Figure 2-2e and Table 1)resulted in a much greater defect in activation, with only ∼10% the 

activity of E1A(aa 121–223) (Figure 2-2b). The greatest defect in activation resulted from loss of 

association with multisubunit mediator complexes. E1A(aa 133–178) and E1A(aa 140–178), 

both lacking aa 179 to 189, had <3% the activity of E1A(aa 121–223), regardless of their ability 

to associate with p300 (Figure 2-2b – 2-2e). These results indicate that E1A binding to a 

multisubunit mediator complex is essential for activation by E1A(aa 121–223), and that the 
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additional interaction with p300 further stimulates transcription ∼10-fold in this transient-

transfection assay. 

 

During adenovirus infection, transcription from each of the viral early promoters responds 

differently to multialanine substitutions in subdomains of the E1A activation domain. 

To determine whether the decreased activation by LacI-E1A deletions in transient-

transfection assays is recapitulated by comparable E1A mutants during adenovirus infection, we 

constructed Ad5 mutants with multialanine substitutions in E1A regions necessary for maximal 

activation in the transient-transfection assay (Figure 2-2g). These included the 133–138A and 

6EP–12A mutants, with alanine substitutions in the N- and C-terminal acidic regions (Figures 2-

2a and 2-2g, red regions), respectively, the double mutant (DM), with alanine substitutions in 

both acidic regions, and the 183 to 188A mutant, with alanine substitutions in the invariant 

region required for binding multisubunit mediator complexes (Figures 2-2a and 2-2g, green 

regions). Alanine substitutions in both acidic regions or the invariant region (183–188A mutant) 

did not interfere with E1A pre-mRNA splicing (Figure 2-3a). Note that as a result of their 

construction by in vivo Cre-mediated site-specific recombination with the Ψ5 vector (30), all of 

these E1A mutants and control wild-type (wt) E1A were expressed from viral genomes that also 

contain an inactivating insertion of a loxP site in the C-terminal region of the E1B-55K coding 

region and a deletion of most of E3. 

Viral promoter activation was assayed during infection of primary human 

bronchial/tracheal epithelial cells (HBTECs), derived from the natural Ad5 host tissue. We first 

analyzed the consequences of mutations in the DM, since deletion of both of the mutated regions 

in the DM was required to eliminate the interaction of E1A with p300 in the in 
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vivo colocalization assay. HBTECs grown to confluence and arrested in G1 were infected with 

Ad5 mutants expressing either wt or mutant E1As. When infected at equal multiplicities of 

infection (MOIs) of 20, we observed that HBTECs expressed considerably more wt than DM 

E1A protein (data not shown), possibly due to differences in protein stability caused by the 

introduced mutations. Therefore, in order to achieve equal levels of wt and DM E1A protein, 

cells were infected with the wt virus at an MOI of 5 and diluted with the E1A deletion 

mutant dl312 at an MOI of 95. Alternatively, cells were infected with the DM virus alone at an 

MOI of 100. Under these conditions, the levels of wt and mutant E1A proteins were similar at 12 

and 18 h postinfection (p.i.) (Figure 2-3b). Further, dilution of the wt virus with dl312 gives the 

same concentration of adenovirus DNA template for all viral genes other than E1A compared to 

infections with the DM virus alone. Total RNA was isolated during the early phase of infection 

at 6, 12, and 18 h p.i. The late phase, determined by the onset of viral DNA replication, begins 

∼24 h p.i. in these cells (data not shown). Viral RNAs transcribed from the early promoters 

E2early, E3, and E4, as well as late region L3 RNA, including hexon mRNA, were quantified by 

qRT-PCR (Figure 2-3c). An unanticipated and remarkable result from these assays is that 

transcription from the different viral early promoters responded differently to the DM E1A 

multialanine substitutions. 

Dramatic decreases in expression by the E1A DM were observed for RNAs transcribed 

from the E2 and E4 promoters, especially at 12 h p.i. (Figure 2-3c). In contrast, no significant 

decrease in E3 RNA expression was observed at 12 h p.i., and only a modest (∼50%) decrease 

was observed at 18 h p.i. (Figure 2-3c). The very low level of L3 RNA in the DM-expressing 

cells was similar in the coinfection of wt E1A and dl312 viruses at 12 h p.i. and was only very 

modestly decreased at 18 h p.i. While E2, E3, and L3 RNA increased between 12 h and 18 h p.i. 
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in response to wt E1A, E4 RNA nearly reached a plateau at 12 h (Figure 2-3c). This may be due 

to a decrease in the rate of E4 transcription between 12 and 18 h p.i., to changes in the stability 

of E4 RNA, or both. 

Interpretation of expression levels for E1A and E1B are complicated by the 20-fold 

higher E1A template concentration in the DM-infected cells than the coinfection. dl312 is 

deleted for sequences from −50 relative to the major E1A transcription start site, including the 

TATA box, to −281 relative to the E1A poly(A) site, including all of the major E1A splice sites 

(2, 31). Any transcripts detected from the dl312 template with primers near the 3′ end of E1A are 

likely to have a different stability than full-length E1A mRNAs transcribed from the wt and DM 

templates. This would make a comparison of the steady-state level of the E1A RNAs difficult to 

interpret in terms of the activity of the E1A promoter. Similarly, deletion of E1B control 

elements far upstream of the E1A poly(A) site within the E1A 3′ exon (32), as well as 

stimulation of E1B transcription by read-through transcription from E1A (33), also complicate 

interpretation of results for E1B. 

We also analyzed the effects of alanine substitutions in the individual acidic regions N 

terminal and C terminal to CR3 [aa 133 to 138, as well as the (EP)6 repeat, aa 189 to 200] 

(Figures 2-4a – 2-4d). Deletions of each of these regions individually decreased luciferase 

activation ∼50% in the transient-transfection assay (Figure 2-3b, compare 133-205, 133-189, 

140-205, and 140-189). However, in infected HBTECs expressing equal wt and mutant E1A 

protein at 12 h p.i., multialanine substitutions in the 6EP region just C terminal to CR3 (6EP-

12A) had a much greater effect on E2, E3, and E4 transcription than mutation of the acidic 

region aa 133 to 138 (DDEDEE) just N terminal to CR3(133–138A) (Figures 2-4a – 2-4d). 
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Figure 2-3: Activation of early viral promoters and MLP by wt and DM E1A. 
 
(a) RT-PCR using primers spanning the major E1A splice sites with total cell RNA from 

HBTECs coinfected with the wt E1A-expressing virus at an MOI of 5 and dl312 at an MOI of 95 

or infected with the DM or 183-188A vectors alone at an MOI of 100. The lengths of the pre-

mRNA, 12S, and 13S transcripts are indicated. Only the region of the gel with visible bands is 

shown.  

(b) Western blot showing wt and DM large E1A protein levels at 12 and 18 h p.i. HBTEC cells 

were coinfected with the wt E1A-expressing virus at an MOI of 5 and dl312 at an MOI of 95 or 

infected with the DM virus alone at an MOI of 100. Ku-86 protein levels were used as loading 

controls.  
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(c) Relative E2, E3, E4, and L3 RNA in infected HBTECs at the indicated times p.i., as assayed 

by qRT-PCR. HBTECs were infected with the dl312, wt and dl312, and DM viruses at the same 

MOIs as those described for panel a. Values are plotted relative to those of wt and dl312 at 18 h 

p.i. Data are represented as averages ± standard deviations (SD) from three independent 

experiments. 
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Figure 2-4: Activation of early viral promoters and MLP by wt and single acidic region 

mutant E1As 

(a) Western blot showing wt and 133–138A mutant large E1A protein levels at 12 h p.i. HBTECs 

were infected with wt or 133–138A E1A-expressing virus at MOIs of 20. Ku-86 is a loading 

control.  

(b) Relative E2, E3, E4, and L3 RNA levels in infected HBTECs at 12 h p.i., as assayed by qRT-

PCR. Cells were infected with the wt and 133–138A E1A-expressing virus at the same MOIs as 

those described for panel a. Values are plotted relative to those of the wt at 12 h p.i. Data are 

represented as averages ± SD from three independent experiments.  
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(c and d) As described for panels a and b, except the 6EP-12A mutant was used. For experiments 

using this mutant, HBTECs were coinfected with the wt E1A-expressing virus at an MOI of 5 

and dl312 at an MOI of 95 or infected with the 6EP-12A mutant E1A-expressing virus alone at 

an MOI of 100. 
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E1A amino acids 183 to 188 contribute to activation of early promoters E2, E3, E4, and MLP by 

binding multisubunit mediator complexes. 

An additional Ad5 E1A mutant was constructed with alanine substitutions in the aa 183 

to 188 region (VYSPVS), corresponding to a sequence found just C terminal to the Zn-finger 

region in large E1A proteins that is precisely conserved in all primate adenoviruses (4). This 

invariable E1A sequence is in the region required for binding multisubunit mediator complexes, 

as assayed by colocalization with both YFP-MED23 and YFP-MED6 at the lacO array in CHO-

A03.1 cells (Figures 2-2c and 2-2c and Table 2-1). A serine residue in this region (aa 185) was 

left unsubstituted to avoid mutation of bases required for RNA splicing at the E1A 3′ splice site. 

In fact, the 183–188A E1A mutation had little effect on the ratio of unspliced E1A pre-mRNA to 

the spliced E1A mRNAs or the relative ratio of the 12S to 13S E1A mRNAs (Figure 2-3a). Early 

viral gene expression in infected HBTECs expressing equal wt and 183-188A mutant E1A 

protein levels was assayed by qRT-PCR at 18 h p.i. (Figure 2-5a). As expected, the E1A 183–

188 region was required for most E1A activation of E2, E3, E4, and, to a lesser extent, the MLP 

(Figure 2-5b). This is consistent with the requirement of this region for binding multisubunit 

mediator complexes (Figure 2-2d and Table 2-1) and its crucial function in the transient-

transfection assay (Figure 2-2b compare 133-189 to 133-178). 

Taken together, these experiments indicate that the acidic region C terminal to CR3, the 

(EP)6 repeat, named AR1, for auxiliary region 1, by Ström et al. (18), contributes to E1A 

activation of early promoters E2, E3, and E4 during viral infection of human respiratory 

epithelial cells through an interaction with p300 and most likely the closely related host protein 

CBP. Further, E1A(aa 183–188) is essential for E1A activation of the early viral promoters E2, 
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E3, and E4 and additionally the low MLP activity early in infection, probably because they are 

required for E1A to interact with multisubunit mediator complexes. 
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Figure 2-5: Activation of early viral promoters and MLP by wt and 183–188A mutant E1A. 

(a) Western blot showing wt and 183–188A large E1A protein levels at 18 h p.i. HBTECs were 

infected with the wt E1A-expressing virus at an MOI of 10 or with the 183–188A mutant-

expressing virus at an MOI of 100. Ku-86 protein is a loading control.  

(b) Relative E2, E3, E4, and L3 RNA levels in infected HBTECs at 18 h p.i., as assayed by qRT-

PCR. HBTECs were infected with the wt and 183–188A E1A-expressing virus at the same MOIs 

as those for panel a. Values are plotted relative to those of the wt at 18 h p.i. Data are represented 

as averages ± SD from three independent experiments. 
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Differences in E1A mutant-induced histone H3 acetylation at the early adenovirus promoters 

and their influence on RNA polymerase II preinitiation complex assembly and transcription. 

Because p300/CBP is primarily responsible for mediating the acetylation of histone H3 at 

lysines 18 (H3K18) and 27 (H3K27) (6, 10, 34), we performed ChIP-seq for these modified 

histones and aligned reads to the Ad genome in HBTECs infected with virus expressing wt E1A 

at an MOI of 20 at 12 and 18 h p.i. Clear H3K18ac and H3K27ac peaks at the E1A, E2early, and 

E3 promoters and smaller peaks at the E4 promoter were observed, primarily downstream of the 

transcription start sites (TSSs) (0 to +1 kb) (Figure 2-6). These peaks coincided with 

GCN5/PCAF-mediated H3K9ac, which is also generally enriched around TSSs of active genes 

(35)(Figure 2-6). Peaks for H3K9ac were also observed at the E1B promoter, and smaller peaks 

for H3K18/27ac were observed within the gene body of E1B. The time course of H3K9ac at 

some genes was slower than that of H3K18/27ac. At E1A, E1B, E2early, and E3, H3K9ac 

increased from 12 to 18 h p.i., whereas H3K18/27ac was maximal at 12 h p.i. The E2early and 

E3 TSSs demonstrated a clear absence of acetylated H3, indicating nucleosome-depleted regions 

upstream of the highly transcribed E2early and E3 TSSs (36), where preinitiation complexes 

have assembled, displacing nucleosomes. A single, high peak of H3K18/27ac was observed 

between the E2early and E3 TSSs (Figure 2-6), probably representing a single acetylated 

nucleosome between them. 

To assay Pol II preinitiation complex (PIC) assembly, we also did ChIP-seq for TBP and 

Pol II. The TBP subunit of TFIID is the first protein to interact with a TATA box promoter 

during PIC assembly, while Pol II is one of the last (37). We clearly detected peaks for TBP and 

Pol II at the active early promoters E1A, E1B, E2early, E3, and E4. At the MLP, TBP 

association was detectable at 12 h p.i., with a larger peak at 18 h p.i. A Pol II peak at the MLP 
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became visible at 18 h p.i. The ChIP-seq signal for TBP at the two adenovirus genes transcribed 

by RNA polymerase III, VAI and VAII, was approximately five times higher than the signal for 

TBP at the early promoters transcribed by RNA polymerase II (Figure 2-6, TBP track with 

expanded y axis at the bottom in gray). 
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Figure 2-6: H3K9ac, H3K18ac, H3K27ac, TBP, and Pol II associated with the Ad5 genome.  

Genome browser plots of ChIP-seq normalized sequence tags in HBTECs infected with the wt 

E1A-expressing virus at an MOI of 20. Dotted lines indicate TSSs for early regions (E1A, E1B, 

E2early, E3, and E4), MLP, and VA I and II. ChIP-seq data for TBP are also shown at the 

bottom plotted on an expanded y axis (gray). 
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To determine if the interaction of p300 with the E1A activation domain influences E2, 

E3, and E4 transcription via acetylation of histone H3 during infection, we also performed ChIP-

seq for H3K18ac, H3K27ac, and H3K9ac in virus-infected HBTECs expressing equal 

concentrations of wt and DM E1A protein at 12 and 18 h p.i. We observed dramatic decreases in 

H3K18/27ac peaks at the E2early, E3, and E4 promoters in cells expressing DM E1A compared 

to wt E1A (Figure 2-7). ChIP-seq for H3K9ac revealed no decrease in H3K9 peaks at the E3 and 

E4 promoters and a decrease at the E2early promoter to about 50% of the control level. 

Pol II and TBP ChIP-seq experiments were subsequently performed to determine if these 

differences in H3 acetylation were associated with differences in PIC assembly on the early viral 

promoters. Striking decreases in TBP and Pol II association induced by DM E1A compared to wt 

E1A correlated well with the observed decreases in H3K18/27ac at the E2early promoter. 

Apparently, the failure of the E1A DM to induce H3K18/27 acetylation at the E2early promoter 

completely blocked RNA polymerase II PIC assembly on the E2early promoter. In the same cells 

infected with the E1A DM and as discussed above in relation to the E2early promoter, 

H3K18/27ac also was virtually eliminated at the E3 promoter, with a TSS only 418 bp to the 

right of the E2early TSS. However, in contrast to the nearby E2early promoter, at the E3 

promoter TBP association was only slightly reduced compared to that of cells expressing the 

same concentration of wt E1A, and there was no apparent decrease in RNA polymerase II 

association. These ChIP-seq data correlated well with the much greater effect of the E1A DM 

mutations on expression of E2early RNA compared to that of E3 RNA Figure 2-3c). 

Surprisingly, and of considerable interest, TBP and Pol II association with the E4 

promoter were only minimally decreased by the DM mutations (Figure 2-7), even though E4 

RNA expression by the DM was nearly eliminated (Figure 2-3c). These results suggest that the 
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DM mutations block E4 transcription at a step subsequent to PIC assembly. Together these 

results demonstrate that the E2early promoter is regulated in part by p300/CBP-mediated 

acetylation of H3K18/27, which are required for a high level of Pol II PIC assembly, while 

H3K9ac appears to be sufficient for PIC assembly and moderate transcription at the E3 

promoter. Interestingly, H3K18/27ac at the E4 promoter mediated by the p300 interaction with 

the E1A activation domain appeared to stimulate a step in transcription subsequent to TBP and 

Pol II association. 
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Figure 2-7: Defective H3 acetylation and PIC assembly by DM E1A at early viral promoters. 

Genome browser plots of H3K9ac, H3K8ac, H3K27ac, TBP, and Pol II ChIP-seq normalized 

sequence tags in HBTECs coinfected with the wt E1A-expressing virus at an MOI of 5 and dl312 

at an MOI of 95 or infected with the DM vector alone at an MOI of 100. Dotted lines indicate 

TSSs for early regions E2early, E3, and E4. 
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Discussion: 

Although there is a well-established correlation between promoter and enhancer region 

histone N-terminal tail lysine acetylation and transcriptional activity (35), the mechanism(s) by 

which acetylation of histone lysines stimulates transcription is not well understood in most cases 

(38). The results presented here on regulation of adenovirus transcription by large E1A 

demonstrate that promoter region H3K18/27ac is required for different steps in gene activation at 

different adenovirus promoters. 

Using colocalization of fluorescently labeled proteins in nuclei in vivo, we confirm an 

interaction between the strong E1A activation domain included in E1A(aa 133–205) and the 

acetyltransferase p300, as reported by Pelka et al. (1), on the basis of coimmunoprecipitation 

from transiently transfected cell extracts. We further mapped the partially redundant regions of 

E1A that bind p300 in vivo and show that this interaction with p300 contributes to H3K18/27ac, 

Pol II PIC assembly, and transcriptional activity of early viral promoters during viral infection of 

primary airway epithelial cells but to significantly different extents at each early promoter. 

The regions of E1A required for the association of E1A(aa 121–223) with p300 were 

mapped to two acidic peptides flanking CR3, aa 133 to 138 (DDEDEE) and aa 189 to 200 

(EPEPEPEPEPEP). This EP repeat was previously shown to contribute to maximal E1A 

activation of the early adenovirus promoters in transient-transfection assays with native E1A as 

opposed to Gal4DBD-E1A fusions and was named auxiliary region 1 (17, 18). The negative 

charge of the (EP)6 region is primarily responsible for its activity in this assay (18). Reducing 

the number of EP repeats reduced activation, a (DP)6 repeat and alanine substitutions of the 

prolines had activity similar to that of (EP)6, and an (AP)6 substitution was inactive (18). 

Deletion of both acidic regions resulted in the loss of p300 binding in our in vivo colocalization 
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assay and ∼10-fold decreased activity in our transient-transfection reporter assays 

using lacI fusions and a lacO reporter (Figure 2-2a) compare 140-189 to 121-223). Individually, 

either of the two acidic regions was sufficient for p300 association in our in vivo colocalization 

assay. However, the transient-transfection assay revealed that deletion of either region caused an 

∼2-fold decrease in activation function (Figures 2-2b and 2-2e). In contrast, infection of cells 

with viruses containing multialanine substitutions in either or both of the two acidic regions 

(133–138A and 6EP-12A mutants) showed that during infection, mutation of the 189–200 EP 

repeat, equivalent to auxiliary region 1 (17, 18), was primarily responsible for the decrease in 

transcriptional activation of E2, E3, and E4 by DM E1A (Figure 2-3). The greater effect of the 

EP repeat on activation may also extend to E1A proteins from human adenoviruses other than 

the respiratory adenoviruses in species C, since they contain a considerably longer peptide linker 

between the N-terminal acidic region and the beginning of CR3 (39). It is also interesting that 

these two acidic regions are also present in small e1a, although they are likely positioned 

differently relative to each other in the absence of the intervening CR3. Despite the presence of 

these two acidic regions in small e1a (Figure 2-2), in coimmunoprecipitation assays, small e1a 

binds p300 only through the well-characterized interaction between the e1a N terminus and CR1 

and the p300 equivalent of the CBP TAZ2 domain (1, 6, 8).  

 

A revised model for functions of E1A activation subdomains. 

Earlier, we found that the C4-Zn-finger region of large E1A(aa 140–178) (28)is required 

for E1A binding to multisubunit mediator complexes required for in vitro transcriptional 

activation by Gal4 fusions to E1A and other activation domains (21). The same E1A Zn-finger 

region amino acids required for binding to multisubunit mediator complexes also were required 
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to bind free MED23 mediator subunits in excess over multisubunit mediator complexes in HeLa 

nuclear extracts (21). These results, plus the observation that overexpression of MED23 inhibits, 

or squelches, E1A activation and not activation by Gal4-VP16 led to the conclusion that E1A 

binds multisubunit mediator complexes by binding the MED23 mediator subunit. This 

conclusion was further supported by knockout of the mouse Med23 gene, which generated cells 

that supported activation by the VP16 activation domain but not the E1A activation domain (40). 

Further, Med23−/− murine embryonic fibroblasts (MEFs) infected at low MOI with wt mouse 

adenovirus I (MAVI) failed to express the MAV early mRNAs, similar to the phenotype 

observed for E1A-minus MAVI in wt MEFs (41). 

Here, we report that the C-terminal six amino acids of CR3 (aa 183 to 188) that are 

invariable in all primate adenoviruses (5) are necessary, in addition to the MED23-binding Zn-

finger, for E1A binding to multisubunit mediator complexes, as opposed to monomeric MED23. 

To assay association of E1A deletions with multisubunit mediator complexes in vivo, we 

analyzed nuclear colocalization of LacI-CFP-E1A fragment fusions with YFP-MED6 at 

the lacO array in CHO-A03.1 cells (Figure 2-1g – 2-1l). MED6 is located in the mediator head 

domain, distant from MED23 in the tail domain (23). Consequently, association of an E1A 

deletion with both YFP-MED6 and YFP-MED23 (Figure 2-2c and 2-2d and Table 2-1) and 

implies that the retained region of E1A binds multisubunit mediator complexes, as shown for 

E1A(aa 121–223) by direct biochemical analysis (21). The requirement for aa 183 to 188 for the 

E1A interaction with multisubunit mediator complexes explains the requirement of this region of 

CR3 for transcriptional activation without invoking a promoter targeting function for this region 

(15). During viral infection, E1A(aa 183–188) is required for activation of early promoters E2, 
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E3, and E4 (Figure 2-5). Our results described above suggest that this is because this invariant 

region of E1A is required for E1A interaction with multisubunit mediator complexes. 

Amino acid substitutions in the completely conserved C-terminal region of CR3 are 

defective for activation of the viral E3 promoter in a transient-transfection assay (19). They are 

also dominant negative over wt E1A for activation. In contrast, while mutants in the Zn-finger 

region are also defective for E3 activation, they are not transdominant (19). These observations 

supported the model that the Zn-finger region of CR3 binds a limiting factor required for 

activation of the early viral promoters, while the C-terminal ∼10 amino acids of CR3 target the 

resulting complex to the early viral promoters (15, 19). However, our results provide an 

alternative explanation for the dominant-negative phenotype of the C-terminal CR3 mutants. We 

observed that the E1A Zn-finger region alone binds MED23 (Figure 2-2c and Table 2-1, 

fragment 140-178), and that the invariant region of E1A immediately C terminal to the Zn-finger 

is additionally required to bind multisubunit mediator complexes (Figure 2-2c and 2-2d and 

Table 2-1). Based on these results, we propose that mutants in the invariant region compete with 

wt E1A for binding MED23 in multisubunit mediator complexes, because they have an intact 

Zn-finger region that binds MED23 (Figure 2-2a, blue, 140-178). However, they are defective 

for interactions with other mediator subunits required for activation and are therefore dominant 

negative over wt E1A. In contrast, mutations in the Zn-finger subdomain are recessive (17) 

because they do not compete with wt E1A for binding multisubunit mediator complexes via their 

MED23 subunit. 
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The large E1A activation domain. 

The original model that divided the CR3 region into an activation domain and a 

promoter-binding domain came from studies of Gal4 fusions to E1A fragments in transient-

transfection assays (15, 16). Those studies reported, for the first time, that E1A(aa 121–223) has 

high activation domain activity when fused to the Gal4 DNA-binding domain. N-terminal 

deletions of E1A(aa 121–223) fused to the Gal4 DNA-binding domain from E1A(aa 121–140) 

retained activation domain activity in the transient-transfection assays, as did C-terminal 

deletions to aa 178. Consequently, the activation domain was presumed to map to the Zn-finger 

region between aa 140 and 178 (Figure 2-2a, blue). However, we found that a LacI fusion to 

E1A(aa 140–178) did not activate a lacI reporter in a transient-transfection assay (Figure 2-2b). 

Similar results were observed for a Gal4-DBD fusion to E1A(aa 140–178) versus a fusion to 

E1A(aa 121–223) and a reporter with five Gal4 binding sites upstream of the E1B promoter (A. 

J. Berk, unpublished results). This apparent discrepancy is explained by the two acidic regions 

flanking CR3, one from aa 133 to 138 and another from aa 189 to 200, that are functionally 

redundant in the transient-transfection assay (Figure 2-2b). As a consequence, the E1A N-

terminal deletion to 140 retains the C-terminal acidic region from aa 189 to 200, while the C-

terminal deletion to 189 retains the functionally compensating N-terminal acidic region from aa 

133 to 138. 

The earlier model of an N-terminal activation and a short C-terminal promoter binding 

domain in CR3 was further supported by experiments involving fusions of known functional 

domains of the yeast Gal4 activator and the HSVI VP16 immediate-early activator to inactive 

deletions of E1A (15, 16). These experiments showed that E1A(aa 121–223) activated the Ad5 

E4 promoter, that mutations in the Zn-finger region of this part of E1A prevent activation of the 
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E4 promoter, and that these Zn-finger region mutations can be compensated for by fusion of the 

VP16 activation domain. These results suggested that the Zn-finger region alone functions as an 

activation domain whose function could be replaced by the VP16 activation domain (15, 16). 

However, our observation that LacI-E1A(140–178) does not activate transcription indicates that 

the E1A Zn-finger region alone does not function as an activation domain. Rather, E1A(aa 179–

189) is additionally required for activation domain activity because it is required for E1A binding 

to multisubunit mediator complexes. The defect in binding to multisubunit mediator complexes 

of E1A mutants in the aa 140 to 178 region can be compensated for by fusion of the VP16-AD, 

since it also interacts with multisubunit mediator complexes (42, 43). 

As a Gal4 fusion, E1A(aa 121–223) stimulates the assembly of a PIC on a template with 

Gal4-binding sites (25). Presently, however, the mechanism by which the mediator interaction 

with native E1A (i.e., not fused to a DNA-binding domain) stimulates transcription remains 

unclear. We propose that wt E1A and an associated multisubunit mediator complex are targeted 

to early adenovirus promoters through interactions between activation domains of the cellular 

activators bound to early viral promoters and multisubunit mediator complexes. The interactions 

of TFIID and the Pol II general transcription factors with both viral promoters and the mediator 

probably also contribute to association of mediator complexes with associated E1A to early viral 

promoters. The low level of transcription from the early viral promoters in the absence of E1A is 

greatly stimulated by the high-affinity interaction of the E1A Zn-finger region with MED23 as 

well as additional interactions of E1A(aa 183–188) that result in binding to multisubunit 

mediator complexes. One possibility is that these E1A-mediator interactions induce a 

conformational change in the mediator that favors its association with Pol II, as has been 

proposed for other activation domains (23, 44, 45) 
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The E1A interactions with p300 do not greatly stimulate early transcription from the MLP. 

At 18 h p.i., L3 is expressed at very low levels compared to the late phase of infection, 

when virus-encoded transcriptional activators bind in the first intron to stimulate transcription 

from the MLP several hundredfold (46). However, we observed ∼20-fold activation by wt E1A 

of the low level of L3 RNA expression at 18 h p.i., presumably from the MLP. This can be seen 

by comparing L3 RNA in cells infected with a mixture of the wt E1A-expressing virus and dl312 

virus and cells infected with dl312 alone (Figure 2-3c, MLP). However, this activation was not 

greatly dependent on the interaction of the E1A AD with p300, because it was not decreased by 

the E1A DM mutations at 12 h p.i. and was reduced only ∼50% at 18 h p.i. (Figure 2-3c). 

Consistent with this, H3 acetylation was not observed at the MLP at 12 and 18 h p.i. with Ad 

expressing wt E1A (Figure 2-6). 

 

TBP association at Pol II and Pol III promoters on the adenoviral genome. 

It is remarkable that the ChIP-seq signal for TBP at the two adenovirus genes transcribed 

by RNA polymerase III, VAI and VAII, was approximately five times higher than the signal for 

TBP at the early promoters transcribed by RNA polymerase II (Figure 2-6, bottom, gray). This 

indicates that at the time of cross-linking, more viral DNA molecules are bound by the RNA 

polymerase III TBP-containing initiation factor TFIIIB than are bound by TFIID at the 

promoters of viral genes transcribed by Pol II. However, another likely possibility is that TBP is 

much more readily indirectly cross-linked to promoter DNA as a subunit of TFIIIB than as a 

subunit of TFIID. The complexes of TFIIIB with tRNA and 5S rRNA promoter DNA are stable 

to high salt and high concentrations of heparin (47). In contrast, RNA polymerase II preinitiation 
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complexes are disrupted by 0.5 M KCl (48). This implies that much more of the TFIIIB protein, 

comprised of TBP, BRF, and BDP subunits, contacts DNA in the Pol III preinitiation complex 

than does TFIID and other Pol II general transcription factors in a Pol II PIC. Further, in the 

crystal structure of a TBP-BRF-DNA complex (49), BRF interacts extensively with the convex 

top of TBP, and BRF helix 25 (absent in TFIID) extends along the downstream promoter DNA 

for six base pairs. This may increase the opportunity for cross-linking TBP to DNA indirectly 

through cross-links to BRF that is cross-linked to DNA. 

Histone H3 acetylation at viral early promoters 

Histone lysines H3K18 and H3K27 are acetylated primarily by p300 and its closely 

related paralog, CBP (9, 10). We analyzed acetylation at these sites on histones associated with 

the viral genome early during infection by performing ChIP-seq in HBTECs infected with Ad5 

mutants expressing wt E1A proteins and mapping the immunoprecipitated DNA sequences to the 

viral genome (Figure 2-6). We observed significant peaks of H3K18/27ac at the E1A, E2early, 

E3, and E4 promoters at 12 and/or 18 h p.i. but not at the E1B or MLP promoters (Figure 2-6). 

H3K18/27ac at the E2early, E3, and E4 promoters was greatly decreased following infection 

with the E1A DM defective for the E1A activation domain-p300 interaction. These results 

indicate that H3K18/27 acetylation at these promoters requires targeting p300/CBP to the 

promoters through their interaction with the acidic regions flanking CR3 [E1A(aa 133–138) and 

(EP)6 repeat, aa 189 to 200]. The virtual absence of H3K18/27ac at the E2early promoter 

following infection with the DM correlated with an absence of TBP and Pol II association, 

suggesting that H3K18/27ac by p300/CBP is required for E1A stimulation of Pol II preinitiation 

complex assembly in vivo at this promoter (Figure 2-7). Residual H3K9ac at the E2early 

promoter in cells expressing DM E1A was not sufficient for high levels of Pol II PIC assembly. 
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These observations are consistent with the model that hypoacetylated nucleosomes inhibit the 

association of TFIID and other Pol II general transcription factors with promoter DNA, and that 

histone acetylation makes the promoter elements more accessible to the GTFs. Histone tail 

acetylation at these early viral promoters also may generate binding sites for proteins that 

stimulate transcription, including proteins with bromodomains that bind acetylated lysines (50). 

In contrast to the E2early promoter, H3K18/27ac is not required for significant levels of 

PIC assembly or transcription from the nearby E3 promoter. (The E2early and E3 TSSs are 

separated by only 418 bp.) H3K9ac in the absence of H3K18/27ac may be sufficient for PIC 

assembly at the E3 promoter. 

While hypoacetylated H3K18/27ac was observed at the E4 promoter in cells expressing 

DM E1A, high levels of H3K9ac as well as TBP and Pol II association were observed. This 

suggests that H3K18/27ac is not required for PIC assembly at the E4 promoter. However, 

H3K9ac at the E4 promoter, which continues to occur in cells expressing the E1A DM, may be 

sufficient for Pol II PIC assembly. Surprisingly, in cells infected with the E1A DM, we noted a 

clear discrepancy between the TBP and Pol II ChIP-seq signals at the E4 promoter and the qRT-

PCR data for E4 mRNA. Pol II and TBP peaks were not reduced at the E4 promoter in DM-

infected cells (Figure 2-7), yet H3K18/27ac and E4 mRNA expression by the DM were greatly 

decreased (Figure 2-3c) These results lead us to speculate that H3K18/27ac mediated by the 

E1A-p300/CBP interaction at the E4 promoter regulates elongation of the polymerase, rather 

than Pol II PIC assembly, as occurs at the E2early promoter. This model of E1A stimulation of 

Pol II elongation from the E4 promoter may explain why H3 acetylation occurs primarily 

downstream from the TSS (Figure 2-6). E1A has been previously shown to promote 

transcriptional elongation at early viral genes by recruiting the hPaf1 complex (51). Perhaps 
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promoter region H3K18/27ac is required for E1A to stimulate hPaf1-dependent elongation at the 

E4 promoter. 

H3K9ac peaks were present at the E2early, E3, and E4 promoters in addition to 

H3K18/27ac and were decreased after infection with the DM at the E2early promoter (Figure 2-

7) This indicates that p300 recruitment by E1A and/or H3K18/27 acetylation regulate H3K9 

acetylation at the E2early promoter. This decrease in H3K9ac may be because H3K9 is less 

accessible to acetyl transferases in the absence of H3K18/27ac or because PCAF/hGCN5, the 

acetyl transferases primarily responsible for H3K9 acetylation (10), are normally recruited to the 

E2early promoter through interactions with H3K18/27ac. 

These patterns of H3 acetylation at early viral promoters in response to multialanine 

substitutions of subdomains of the E1A activation domain indicate that H3K18/27ac by 

p300/CBP is required for maximal H3K9 acetylation and the assembly of Pol II PICs at the 

E2early promoter. In contrast, Pol II PIC assembly on the E3 and E4 promoters is associated 

with H3K9ac but not H3K18/27ac. In the case of E3, this is sufficient for PIC assembly and 

moderate transcription. At the E4 promoter, the E1A activation domain-p300/CBP interaction is 

not required for TBP and Pol II association but is required for H3K18/27ac and transcription. 

This may be because elongation of paused Pol II at the E4 promoter is dependent on 

H3K18/27ac. By eliminating the association of the E1A activation domain with p300, we have 

revealed striking diversity in transcriptional regulation of the viral genome early in infection, 

including nuanced roles for p300/CBP at each early viral promoter. 
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Introduction 

 In addition to PIC assembly and initiation, the transition from promoter-proximal paused 

to productively elongating Pol2 serves as a key step in transcriptional regulation. After the 

recruitment of Pol2 by the GTFs and the formation of the PIC, transcription initiation occurs 

concurrently with the phosphorylation of Ser5 on the Pol2 heptapeptide repeat C-terminal 

domain (CTD). Pol2 then transcribes approximately 30-60 bases downstream of the transcription 

start site (TSS) and pauses, where it is stabilized by negative elongation factor (NELF) and 

DRB-sensitivity inducing factor (DSIF) (52, 53). Recruitment of the super elongation complex 

(SEC) including P-TEFb and its enzymatic subunit CDK9 results in the phosphorylation of 

NELF, DSIF, and Ser2 on the Pol2 CTD, whereupon NELF dissociates and Pol2 is released and 

proceeds to productive elongation (52, 53).  

Histone acetylation is well known to contribute to a permissive chromatin state for Pol2 

PIC assembly at active promoters, and there is recently published work concerning its role in 

facilitating transcriptional elongation as well. For example, the chromatin reader protein BRD4 is 

thought to recruit pTEF-b to transcription start sites and serves as a Pol2 elongation factor 

dependent on its interactions with acetylated histones through its bromodomains (54). In 

addition, H3 acetylation mediated by the Drosophila CBP homolog stimulates productive 

elongation past the +1 nucleosome (55). Recruitment of the yeast histone chaperone FACT by 

acetylated H3 has also been shown to stimulate elongation (56).  

 The SEC is a multi-subunit complex comprised of P-TEFb along with AF4/FMR2 (AFF) 

proteins AFF1/4, ELL protein family members ELL1/2/3, ELL-associated factors EAF1/2, and 

the highly homologous YEATS domain-containing proteins AF9 or ENL. There are various 

forms of the SEC including SEC-like complexes, which contain different combinations of 
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elongation factors suggesting diversity in their regulatory mechanisms (57). P-TEFb, a central 

AFF scaffold protein, and ENL or AF9 are consistent components of SEC complexes. AF9 and 

ENL been functionally linked to SEC recruitment to chromatin and positive regulation of 

elongation through interactions with the PAF1c complex (58) and DOT1L which deposits the 

active chromatin modification H3K79me (59). Importantly, AF9 and ENL YEATS domains 

have been demonstrated to recognize active chromatin marks H3K9ac and H4K15ac (60), and to 

a lesser extent, H3K18/27ac (59), and are essential for SEC-dependent activation of a luciferase 

reporter driven by the HIV-1 LTR (58). Despite these conclusions, the functional role of histone 

acetylation during this critical regulatory step remains poorly understood. 

We have previously identified regulation of the early adenovirus promoter E2early by 

H3K18/27ac via an interaction between p300 and the E1A AD at the stage of transcriptional 

initiation (61). However, at the E4 promoter, PIC assembly was not affected by loss of p300 

binding by E1A, despite significantly decreased H3K18/27ac and E4 RNA by the p300-binding 

mutant E1A protein (termed the “double mutant”, or DM). This result was particularly striking as 

it suggested that the E4 promoter is regulated by H3 acetylation at a step in transcription 

subsequent to TBP and Pol2 association, possibly during release of promoter-proximal paused 

Pol2. 

In order to investigate the role of H3K18/27ac on transcriptional elongation at E4, we 

mapped the association of transcriptionally active Pol2 on the Ad5 genome using GRO-seq 

(Global Run-On sequencing) (62). We found defective paused Pol2 release at E4 in cells 

expressing DM E1A, consistent with the previously shown decreases in H3K18/27ac and E4 

RNA. ChIP-seq for SEC components CDK9, BRD4, AF9, and ENL demonstrated decreased 

SEC recruitment to E4 by DM E1A. Using the specific p300 HAT inhibitor A485, we 



 44 

determined that p300 HAT activity was essential for efficient paused Pol2 release and SEC 

recruitment at E4. We also extended our studies to the human genome, where we found that 

A485 treatment causes defective pause release at a subset of genes, where H3K18ac is greatly 

decreased at TSSs. These differences correlate with decreased SEC component binding at these 

genes, similar to what we observed at E4. Together, our results propose a mechanism of SEC 

recruitment by H3 acetylation during the transition to productively elongating Pol2. 

 

Results 

H3K18/27ac by p300 stimulates paused Pol2 release at E4 

Previous work from our lab has shown that transcriptional regulation of E4 by 

H3K18/27ac resulting from recruitment of CBP/p300 by the E1A activation domain occurs 

subsequent to PIC assembly (15). To analyze the effect of H3K18/27ac on Pol2 elongation 

through E4, we applied the GRO-seq method (1).To avoid possible effects of cellular mutations 

in stable cell lines, we performed these studies in primary human bronchial-tracheal epithelial 

cells (HBTECs). HBTECs were infected with Ad5 mutant vectors expressing wt E1A or a 

mutant E1A designated “DM” containing poly-alanine substitutions in two previously identified, 

highly acidic regions of E1A flanking CR3 that interact with p300 in vivo (15). Multiplicities of 

infections were carefully adjusted to yield equal steady-state amounts of wt E1A and the less 

stable DM (15). Infections were performed with an moi of 100 for the DM, or an moi of 5 the for 

the mutant expressing wt E1A plus an moi of 95 with the E1A deletion mutant dl312 to maintain 

equal copies of viral DNA with the early transcription units in cells expressing equal amounts of 

the wt and DM E1A proteins. GRO-seq data at 12 hours post infection (hpi) revealed peaks of 

paused Pol2 at the expected location 40-60 bp downstream from the E3 and E4 TSSs (Figure 3-
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1a). To determine the degree of pausing, we calculated the pausing index (PI, (1)), or the number 

of reads in the promoter-proximal region (TSS to +200bp) relative to the reads in the gene body 

(+201 to TTS) in cells expressing wt E1A. We compared the PIs in cells expressing wt and DM 

E1A. With the DM, the PI at E4 increased almost 2-fold (wt PI=1.37 vs. DM PI= 2.33) while 

there was less of a decrease at E3 (wt PI=1.41 vs. DM PI=1.65) (Figure 3-1b). For E3, we 

divided the counts in the promotor proximal region by a region of the gene body that extended 

from +201 to the beginning of the E3 deletion, to avoid discrepancies in gene body lengths due 

to different deletions in the dl312 and DM mutant vectors (diagrammed in the browser track 

annotations in Figure 3-1a). Therefore, loss of H3K18/27ac at E4 causes a defect in proximal 

paused Pol2 release, with less of an effect at E3. This result compliments our previous data 

which showed regulation of E3 is minimally effected by H3K18/27ac (15). 
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Figure 3-1: H3K18/27ac by p300-E1A AD stimulates paused Pol2 release at E4 

(a) GRO-seq in cells infected with wt+dl312 or DM, plotted with H3K18ac, H3K27ac and 

H3K9ac ChIP-seq (61) on the Ad5 genome. GRO-seq tracks are shown with two different y-axis.  

(b) Pause indexes for E3 and E4 in cells expressing wt E1A or DM. Pause index is defined as the 

ratio of: reads in the promoter region to reads in the gene body. 
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Defective Pol2 pausing at E4 correlates with decreased binding of SEC subunits CDK9, AF9, 

and ENL  

Phosphorylation of Ser5 on the Pol2 CTD by the CDK7 subunit of TFIIH occurs during 

transcriptional initiation, and Ser2, NELF, and DSIF phosphorylation by the CDK9 subunit of P-

TEFb allows for paused Pol2 release and the transition to productive elongation. In order to 

characterize these mechanisms on the Ad5 genome, we performed ChIP-seq for Ser5-P, Ser2-P, 

NELF, and CDK9 in cells expressing wt E1A. At E2early, Ser 5-P peaked at the TSS and 

decreased throughout the gene body. We observed two Ser2-P peaks in the E2early gene body- 

one just downstream of the TSS, likely indicating paused Pol2, and another peak just upstream of 

the E2early second exon. A small Ser5-P peak is also observed at this position (Figure 3-2a). 

This can be explained by the known reduction in elongation rate at spliced exons which mediates 

splice site recognition and spliceosome assembly (63, 64). Both CDK9 and NELF peaks 

occurred at the expected E2early pause site (Figure 3-2a). At E3, Ser5-P also peaked at the TSS 

and decreased throughout the gene body, and Ser2 onset began at the TSS and increased 

throughout the gene body. CDK9 and NELF peaks also occurred at the expected E3 pause site 

(Figure 3-2a). At E4, Ser5-P peaked at the TSS and decreased through the gene body, similar to 

what was observed at E2early and E3. Ser2-P  peaked just downstream of the TSS, likely 

indicating paused Pol2, decreased elongation rate prior to the 3’ splice site in the E4orf3 

transcript, or both. CDK9 and NELF peaks at E4 again occurred at the expected pause site.  

 We next asked if defective paused Pol2 release by DM E1A is due to decreased 

recruitment of P-TEFb containing complexes. A large percentage of P-TEFb exists in complex 

with the 7SK snRNP, where CDK9 activity is inhibited and it is sequestered from chromatin 

(65–67). Eviction of PTEF-b from 7SK snRNP enables its integration into complexes with 
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activated CDK9 kinase activity, including a complex with BRD4 (BRD4-PTEFb) and the super 

elongation complex (SEC) (68). Integration into both these complexes allows CDK9 to be 

targeted to promoters and enhancers where it phosphorylates its targets and stimulates paused 

Pol2 release (54). In order to determine the effects of H3K18/27ac on active P-TEFb complex 

recruitment, we performed ChIP-seq for CDK9, and AF9, ENL, and BRD4 on the Ad5 genome. 

In response to H3K18/27 hypoacetylation by DM E1A, there is significantly decreased CDK9, 

AF9, and ENL binding at the E2early, E3, and E4 promoters and gene bodies (Figure 3-2b). 

Importantly, we did not see decreases in AF9 and ENL at the TSSs of human genes, 

demonstrating the specificity of this effect at these viral genes (Figure 3-2c). BRD4 association 

at TSSs did not change at E4 and was only moderately decreased at E3, with the only marked 

decrease occurring at the E2 TSS. These data demonstrate that H3K18/27ac facilitates paused 

Pol2 release at E4 mainly through the recruitment of the SEC.  
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Figure 3-2: Ser5-P, Ser2-P, CDK9, NELF, and SEC subunit association on the Ad5 genome 

(a) Ser5-P, Ser2-P, CDK9, and NELF ChIP-seq plotted with GRO-seq in cells expressing wt 

E1A.  

(b) CDK9, AF9, ENL, and BRD4 ChIP-seq in cells expressing wt or DM E1A.  

(c) Average plots of AF9 and ENL binding near TSSs on the human genome.  
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P300 histone acetyl-transferase activity is required for Pol2 pause release and recruitment of 

AF9, ENL, and BRD4 at E4 

A485 is a potent and specific small molecule inhibitor of p300/CBP’s acetyl transferase 

activity (69). Decreased H3K18ac after A485 treatment in HBTECs was confirmed by western 

blot (Figure 3-3a). H3K9/18/27ac ChIP-seq on the Ad5 genome in wt E1A infected cells treated 

with A485 demonstrated greatly inhibited H3K18/27ac, and some inhibition of H3K9ac at early 

viral promoters (Figure 3-3a). In order to distinguish the effects of p300 HAT activity vs. 

possible recruitment of other co-activator proteins by p300 on the transcription of early viral 

genes, we assayed pre-mRNA levels using qRT-PCR with RNA isolated from HBTECs 

expressing wt E1A treated with A485 or DMSO. We saw decreases in E2early and E4 pre-

mRNA, while E3 pre-mRNA was decreased only moderately with A485 treatment (Figure 3-3b).  

Decreases in early RNAs with A485 treatment were not as dramatic as what we observed with 

loss of p300 binding by DM E1A (61). This was expected, considering A485 does not decrease 

H3K18/27ac to the same extent. However, in both cases, we saw the greatest decreases at E4 and 

E2early. 

 We next asked if p300 HAT activity is required for release of paused Pol2 at E4. To 

answer this question, we performed GRO-seq in wt E1A infected HBTECs treated with DMSO 

or A485 and calculated the corresponding pausing indexes (Figure 3-4a,b). There was no 

difference in PI at E2early (DMSO PI=0.13, A485 PI=0.12) or E3 (DMSO PI=1.2, A485 

PI=1.89), and an increase in PI at E4 with A485 treatment (DMSO PI=0.79, A485 PI=1.13) 

(Figure 3-4b). These results are consistent with our GRO-seq data with DM E1A infection, and 

demonstrate that p300 HAT activity, and not solely the possible recruitment of other co-

activators by p300, is necessary for paused Pol2 release at E4.  
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 To see if inhibition of p300 HAT activity resulted in defective SEC recruitment at E4, we 

performed AF9, ENL, and BRD4 ChIP-seq in wt E1A infected cells after DMSO or A485 

treatment. Similar to cells expressing DM E1A, we saw decreases in AF9 and ENL association at 

E2early, E3, and E4 in cells treated with A485. We also saw decreases in BRD4 at these 

promoters, which may be explained by the slight decrease in H3K9ac observed after treatment 

with A485 (Figure 3-3a). These data suggest a model where E4 is regulated during 

transcriptional elongation by SEC and BRD4 recruitment, dependent on H3 acetylation  

mediated by the interaction between p300 and E1A AD (Figure 3-4d). 
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Figure 3-3: p300 HAT inhibitor A485 causes H3 hypoacetylation and decreased early viral 

gene expression 

(a) (Left) Western blot showing H3K18ac and total H3 in HBTECs treated with 10uM A485 

after 2, 3, or 4 hours. (Right) H3K18ac, H3K27ac, and H3K9ac ChIP-Seq at early viral 

promoters in cells treated with 10uM A485 for 2 hours.  

(b) qRT-PCR for E2early, E3, and E4 pre-mRNA transcripts in cells treated with 10uM A485 for 

2 hours. 
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Figure 3-4: p300 HAT inhibition by A485 results in defective Pol2 pause release and 

decreased SEC and BRD4 binding at E4.  

(a) GRO-seq in cells expressing wt E1A treated with DMSO or A485. Only the minus (-) strands 

are shown, which include the E2early and E4 transcripts. The data is shown twice, on two 

different y-axes.  

(b) Pause indexes for E3 and E4 in cells treated with DMSO vs. A485. 

(c) ChIP-seq for AF9, ENL, and BRD4 in cells treated with DMSO vs. A485. 

(d) Model for regulation of E4 elongation by SEC binding to p300-E1A mediated H3K18/27ac . 
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P300 HAT inhibition by A485 differentially affects H3 acetylation at promoters and enhancers 

In order to see if the effects of H3K18/27ac on Pol2 pause release at E4 is a general 

mechanism, we shifted our study to the human genome. First, we characterized the changes in 

H3K18/27ac in HBTECs after 2h treatment with 10uM A485. Western blotting with histones 

extracted from cells treated with A485 demonstrated a global decrease in H3K18ac (Figure 3-

3a). Although H3K27ac is commonly used as a mark for active enhancers, it is also present at 

active promoters. Therefore, we used ChIP-seq for H3K18ac and H3K27ac to plot the average 

signals for these marks near all TSSs and at enhancer peaks (Figure 3-5a). We observed the 

expected decreases in H3K18ac and H3K27ac by A485 at enhancer peaks. However, we saw a 

surprising increase in H3K18ac and H3K27ac at TSSs in cells treated with A485.  

We were also curious whether A485 treatment affected human genes during both 

initiation and elongation, similar to what occurs the ad5 genome. GRO-seq after A485 treatment 

was aligned to the human genome to determine what fraction of genes was affected by A485 at 

each stage in transcription. We limited ourselves to protein coding transcription units with at 

least 20 counts in the promoter region (TSS to +200) and a significant H3K9ac TSS peak, q-

value <0.05. We found 1302 transcripts with defective initiation by A485 (>2-fold decrease in 

counts in the promoter region) and 993 transcripts with defective pause release by A485 (>2-fold 

increase in PI). There were 238 transcripts which passed the criteria for both groups (Figure 3-

5b). 

 

Hypoacetylation at TSSs and decreased SEC recruitment at genes with defective pol2 pause 

release with A485 
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Using the subset of transcripts with 2-fold increased PIs (referred to as “2XPI genes”), 

we plotted the average H3K18ac, H3K27ac, H3K9ac near TSSs in cells treated with DMSO or 

A485 (Figure 3-6a). In contrast to the increase in H3K18/27ac across all genes, H3K18/27ac at 

TSSs was decreased with A485 in 2XPI genes. H3K9ac, which didn’t change at TSSs across all 

genes, also decreased at TSSs at 2XPI genes with A485 treatment. To determine if these 

decreases in H3 acetylation at 2XPI genes are correlated with decreased SEC component 

binding, we plotted AF9 and ENL in all genes and in 2XPI genes after A485 treatment (Figure 3-

6b). Interestingly, AF9 and ENL were significantly higher at TSSs and in gene bodies of 2XPI 

genes, and decreased to the level of all genes after A485 treatment. BRD4, which was enriched 

at TSSs, was increased across all genes and slightly decreased in 2XPI genes after A485 

treatment.  

H3K9ac is sufficient for BRD4 enhancer binding which stimulates pausing at nearby genes 

It was evident that BRD4 peaks were enriched at enhancers. Out of 26,534 BRD4 peaks, 

14,877 (or 56%) were >2.5kb from the nearest TSS in cells treated with DMSO. Of these distal 

peaks, 84% overlapped with H3K27ac peaks, indicating enhancer binding. We clustered 

enhancer peaks based on whether BRD4 binding decreased with A485 treatment. There were 

7554 peaks where BRD4 decreased >2-fold with A485 (“A485 sensitive”; Figure 3-7a, bottom) 

and 6324 peaks which did not (“A485 resistant”; Figure 3-7a, top). While A485 resistant peaks 

only correlated with decreased H3K18ac and H3K27ac, A485 sensitive peaks correlated with 

decreased H3K18ac, H3K27ac, and H3K9ac. This demonstrates that H3K9ac is sufficient for 

BRD4 enhancer binding.  

We next asked if BRD4 enhancer binding affected pause release at nearby genes. We 

compared the difference in PI after A485 treatment at all genes to the difference in PI after A485 
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treatment at genes near decreased BRD4 peaks. There was a significant increase in PIs at genes 

near decreased BRD4 peaks compared to all genes. These results indicate that H3K9ac is 

sufficient for BRD4 enhancer binding, which stimulates pause release at nearby genes.  
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Figure 3- 5: Treatment with A485 causes different effects on acetylation at promoters vs. 

enhancers and effects both initiation and elongation 

(a) Plots of average H3K18ac and H3K27ac signal at all TSSs and at enhancer peaks. 

(b) Number of protein coding transcripts affected by A485 during initiation (>2-fold decrease in 

counts in the promoter region) and elongation (>2-fold increase in PI). 
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Figure 3-6: Paused genes affected by A485 are hypoacetylated at TSSs and have greatly 

increased SEC subunit binding   

(a) Average H3K18ac, H3K27ac, and H3K9ac near TSSs in all genes and 2XPI genes after 

DMSO or A485 treatment. 

(b) Average AF9 and ENL at all genes and 2XPI genes after DMSO or A485 treatment. 

(c) Average BRD4 near TSSs in all genes and 2XPI genes after DMSO or A485 treatment.  
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Figure 3-7: BRD4 enhancer binding stimulates pause release at nearby genes 

(a) Heatmaps with BRD4, H3K9ac, H3K18ac, and H3K27ac ChIP-seq. BRD4 enhancer peaks 

which are A485 resistant (top cluster) and A485 sensitive (bottom cluster) are shown. 

(b) Individual genes with A485 resistant (top) and A485 sensitive (bottom) BRD4 enhancer 

peaks plotted with H3K9ac, H3K18ac, and H3K27ac ChIP-seq, and GRO-seq. 

(c) Boxplots comparing the change in PI after A485 treatment (log2 (A485 PI/DMSO PI)) in all 

genes vs. genes near decreased BRD4 peaks 
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  Discussion 

There is now a substantial base of knowledge which establishes correlation between 

histone N-terminal tail lysine acetylation and transcriptional activity. However, the mechanisms 

by which histone acetylation affects each step of transcription remains unclear. Our results 

present a mechanism which establishes causality between H3 acetylation and regulation during 

transcriptional elongation. 

 We propose a model in which SEC recruitment through the recognition of H3K18/27ac 

stimulates paused Pol2 release at E4. To do this, we used a previously described a large E1A 

p300-binding mutant (DM E1A) which causes decreased H3K18/27ac at the early adenoviral 

promoters E2early, E3, and E4. GRO-seq was performed in cells expressing wt E1A vs. DM 

E1A in order to determine the effects of p300 recruitment by E1A and resultant H3K18/27ac on 

Pol2 pause release on the Ad5 genome. With DM E1A, the pausing index at E4 increased almost 

2-fold, demonstrating that H3K18/27ac contributes to paused Pol2 release at E4.  

We found a correlation between defective paused Pol2 release and decreased binding of 

SEC components CDK9, AF9, and ENL, indicating that H3K18/27ac is necessary for maximal 

SEC recruitment and efficient pause release. This is similar to a role of H3K9ac, which acts as a 

substrate for AF9 and ENL and promotes paused Pol2 release by directly recruiting the SEC 

(60). While SEC recruitment by H3K18/27ac may be due to recruitment of YEATS domains 

present in AF9 and ENL, other components may also be responsible. For example, the SEC has 

been shown to be recruited to H3K27ac through the C-terminus of the central scaffold protein 

AFF4 at the TSS of the ESR1 gene in breast cancer cells (70).  

The inhibitory effects of H3K18/27 hypoacetylation on pause release and SEC 

recruitment at E4 were recapitulated in cells treated with the p300 HAT inhibitor A485. While 
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this does not rule out the possibility of interactions between p300 and other co-activators, such as 

the demonstrated recruitment of other chromatin modifying proteins (71, 72), it does demonstrate 

that the HAT activity itself is essential for maximal pause release at E4. Analysis of these data 

sets on the human genome establish this as a general mechanism. We observed the expected 

decrease in H3K18/27ac at enhancers, along with an intriguing increase at TSSs of all genes, 

which hints towards differential dynamics of HAT and HDAC activities at promoters vs. 

enhancers, a general phenomenon which has been shown on a subset of genes (73). A485 results 

in defects in pause release in a large number of human genes (2XPI genes) which also share 

distinct signatures of H3 acetylation at TSSs and SEC subunit binding. These genes are unique in 

that acetylation was decreased at TSSs with A485 treatment, with the greatest decrease occurring 

in H3K18ac, suggesting the importance of this mark in SEC recognition.  

 BRD4 contains two bromodomains, which interact with acetylated histones (74, 75). 

Through its C-terminal tail, it interacts with P-TEFb and is thought to recruit it to 

hyperacetylated genomic regions (76). It has been shown to bind to promoters and enhancers, 

and to act as a histone chaperone by facilitating elongation of both protein coding and enhancer 

RNAs (54). We found a subset of BRD4 enhancer peaks which were decreased after treatment 

with the CBP/p300 HAT inhibitor A485, in contrast to the average increased BRD4 signal at 

TSSs with A485. This presented an opportunity to study the effects of BRD4 enhancer binding 

on elongation. Interestingly, we found that H3K9ac is sufficient for BRD4 recruitment at 

enhancers. Additionally, GRO-seq in cells treated with A485 revealed a correlation between 

decreased BRD4 peaks and defective release of paused pol2. The mechanism by which this 

occurs is likely by recruitment of BRD4 to enhancers, which make contact with promoters 

through Mediator binding (77). Another possibility is that transcription of enhancer RNAs 



 62 

stimulated by BRD4 affect stimulates paused Pol2 release elongation by promoting NELF 

release (78). 

Taken together, our results present an interesting causal link between H3 acetylation and 

paused Pol2 release by SEC and BRD4 recruitment. Regulation of elongation by the SEC has 

several interesting implications for disease. SEC proteins are common translocation partners of 

mixed lineage leukemia (MLL), which contribute to myeloid and lymphoblastic leukemia 

pathogenesis. Important roles for regulation of SEC assembly have also been shown for HIV and 

MYC-dependent cancer.  
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Chapter 4: MATERIALS AND METHODS 

Plasmids 

The plasmids used for in vivo colocalization assays and luciferase reporter transient-transfection 

assays were constructed from plasmid NYE127 (29) containing the F9-polyomavirus early 

promoter driving expression of the SV40 T-antigen nuclear localization sequence (NLS)-EYFP-

lac repressor fusion fused to fragments of large E1A [e.g., NLS-EYFP-LacI-E1A(aa 121–223)] 

(27). The five C-terminal amino acids of LacI are deleted in these expression vectors so that the 

fusion proteins form LacI dimers, not tetramers (26). PCR amplification of regions encoding the 

indicated large E1A amino acids were cloned into the NYE127 derivatives via a SacI restriction 

site and verified by sequencing. For cyan fluorescent protein (CFP) or mCherry-labeled proteins, 

enhanced yellow fluorescent protein (EYFP) was replaced by ECFP or mCherry generated by 

PCR and confirmed by sequencing. 

Confocal microscopy of transfected CHO-A03.1 cells 

CHO-A03.1 cells (26)were plated on fibronectin-coated 6-well plates and transfected using 

Lipofectamine 2000 (Invitrogen) with 2 µg of expression vector for LacI-CFP-E1A or LacI-

mCherry-E1A and 2 µg of expression vector for YFP-MED6, YFP-MED23, or YFP-p300 (6, 

27). After 48 h, cells were fixed in 2% paraformaldehyde, washed in 1× phosphate-buffered 

saline (PBS), and stained with 4′,6-diamidino-2-phenylindole (DAPI) in 0.05% Triton X-100 in 

PBS for 20 min. Cells were mounted onto slides and imaged for colocalization of CFP or 

mCherry and YFP using a Leica TCS SP2 AOBS single-photon confocal microscope using a 

63×, 1.4-numerical-aperture oil immersion objective. 
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Transient-transfection reporter assays 

Transfection was done into CHO-K1 cells, the parental cell for A03.1 cells used in the 

fluorescence microscopy colocalization assay (26). Seventy percent confluent 12-well culture 

plates were transfected with 100 ng expression vectors for NLS-mCherry-LacI fused to the 

indicated fragments of large E1A (Figure 2-2a), 300 ng NYE107b luciferase reporter plasmid 

with eight lacO sites upstream of the Ad2 E1B promoter driving firefly luciferase expression 

(29), and 300 ng pRL-TK (Promega) per well. Cells were cultured for 24 h, extracts were 

prepared and assayed for firefly and Renilla luciferase activity using the Promega Dual-

Luciferase assay kit, and firefly luciferase activity was normalized to Renilla luciferase activity. 

Construction of Ad5 mutants 

The wt Ad2 sequence from aa 1 to 3153 was cloned between the SfII site next to Ad5 nucleotide 

1 and the StuI site at Ad5 nucleotide 3153 in plasmid pAdlox (30). Oligonucleotide-directed 

mutagenesis was used to substitute alanine codons for wt Ad2 E1A codons, as shown in Figure 

2-2g. The resulting plasmids were cut with SfiI and cotransfected into 293-CRE cells with Ψ5 

DNA (30). Cre-mediated recombination between the loxP site in Ψ5 at base pair 3201 and 

the loxP site in the plasmids derived from pAdlox with the engineered E1A mutations generates 

genomes with inverted terminal repeats and the left end packaging sequences capable of 

replicating and being packaged into virions in 293 cells (30). In addition to the engineered E1A 

mutations, all of these mutants have a substitution in E3 (30) and an out-of-frame insertion of 

a loxP site near the C-terminal end of the E1B-55K coding region that probably inactivates E1B-

55K function (79). The virus expressing wt E1A in these studies was constructed in the same 

way using a pAdlox plasmid with wt Ad2 E1A sequence. 



 65 

Cell culture 

Human bronchial/tracheal epithelial cells (HBTEC; catalog number FC-0035, lot number 02196; 

Lifeline Cell Technology) were grown at 37°C in a BronchiaLife medium complete kit (LL-

0023; Lifeline Cell Technology) in a 5% CO2 incubator until they reached confluence. Cells 

were then incubated 3 days more without addition of fresh medium and were infected with the 

indicated Ad mutants under the conditioned medium. 

qRT-PCR 

Total RNA extracted from HTBECs using a PureLink RNA minikit (Ambion) was reverse 

transcribed with random hexamer priming using Superscript III (Invitrogen). RNA was treated 

with DNase I with a DNA-free kit (Ambion). Quantitative reverse transcription-PCRs (qRT-

PCRs) were carried out with the Applied Biosystems 7500 real-time PCR system with FastStart 

universal SYBR green master mix (Roche). All values were normalized to 18S RNA levels. 

ChIP-seq 

Preparation of cross-linked HBTEC chromatin, sonication, and immunoprecipitation was as 

described in Ferrari et al., 2014 (6). Sequencing libraries were constructed from 1 ng of 

immunoprecipitated and input DNA using the KAPA Hyper Prep kit (KAPA Biosystems) and 

NEXTflex ChIP-seq barcodes (Bio Scientific). Sequence tags were aligned to the Ad5 genome 

and normalized to the following formula: (number of Ad5-aligned reads in the input 

sample/number of human-aligned reads in the input sample) × (number of Ad5-aligned reads in 

the ChIP sample). 

GRO-seq 

GRO-seq experiments were performed as described by Core et al. (62). 
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Antibodies 

Antibodies included H3K9ac (07-352; Millipore) and H3K18ac (814), prepared and validated as 

described previously (80), as well as H3K27ac (39133; Active Motif), Pol2 8WG16 (sc-56767; 

Santa Cruz), TBP (C15200002; Diagenode), anti-e1a MAb M73 (81),  Ku-86 H-300 (sc-9034; 

Santa Cruz), ENL (14893S, Cell Signaling), AF9 (GTX102835, Genetex), BRD4 (A301-

985A50), NELF TH1L D5G6W (12265S Cell Signaling), Pol2 Ser2-P 31Z3G (13499, Cell 

Signaling), Pol2 Ser5-P D9N5I (13523, Cell Signaling) , and CDK9 C12F7 (2316, Cell 

Signaling). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 67 

 

 

 

 

Chapter 5: CONCLUDING REMARKS 
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Despite a wealth of data associating promoter and enhancer region histone N-terminal tail 

lysine acetylation with transcriptional activity, there are relatively few examples of studies that 

establish causation between these histone posttranslational modifications and transcription. 

While hypoacetylation of histone H3K18/27 is associated with repression, the step(s) in the 

overall process of transcription that is blocked at a hypoacetylated promoter is not clearly 

established in most instances. Studies presented here provide detailed models of how 

H3K18/27ac is linked to transcriptional initiation and elongation.  
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