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Inferring Intentional Agents From Violation of Randomness
Yuan Meng (yuan_meng@berkeley.edu)

Thomas L. Griffiths (tom_griffiths@berkeley.edu)
Fei Xu (fei_xu@berkeley.edu)

Department of Psychology, University of California, Berkeley
Berkeley, CA 94720 USA

Abstract

Humans have a strong “cognitive compulsion” to infer in-
tentional agents from violation of randomness and such an
agency–nonrandomness link emerges early in development.
In two studies, we directly quantified, formalized, and com-
pared both ends of this link for the first time. In Experiment
1, two groups of participants viewed the same 256 binary se-
quences (e.g., AABAAABA) and classified each as generated
by agents/non-agents or by nonrandom/random processes. We
found a strong correlation between two judgments: sequences
viewed as more agentive also tended to be judged as less ran-
dom. In Experiment 2, another two groups were asked to
produce sequences that others might appreciate as agentive or
nonrandom. Participant-generated sequences in the two con-
ditions had a substantial overlap, indicating common guiding
principles of agency and nonrandomness generation. Taken to-
gether, the present studies provide evidence for a shared cog-
nitive basis of agency detection and subjective randomness.
Keywords: agency; subjective randomness; agency–
nonrandomness link; animate-inanimate distinction

Introduction
We can accept a certain amount of luck in our explanations,
but not too much. The question is, how much?

– Richard Dawkins, The Blind Watchmaker (1996)

When we look at something as delicate and orderly as the
eye, it is only natural to believe that such a work of art must
be designed by someone, an intentional agent with a purpose
in mind. In contrast, it takes “a very large leap of the imagi-
nation to think the other way around” (Dawkins, 1996, p.7).

This cognitive compulsion to infer agents from order may
have given birth to thousands of religions shared by the vast
majority of people on Earth (Barrett, 2000; Keil & Newman,
2015) and it dates back to early childhood (Friedman, 2001)
and infancy (Ma & Xu, 2013; Ma, Berthiaume, Hoch, & Xu,
under revision; Newman, Keil, Kuhlmeier, & Wynn, 2010).
By 10 and 12.5 months of age respectively, infants appreciate
that only agents can create regular visual (e.g., YYRYYRYYR,
Y and R stand for yellow and red balls; Ma & Xu, 2013)
and auditory (e.g., TTTCTTTCTTTCTTTC, T and C stand for
tambourine and cowbell sounds; Ma et al., under revision)
sequences. Similar appreciation has been found in differ-
ent tasks. For instance, 12-month-olds expect agents (e.g.,
a ball) but not inanimate objects (e.g., a perceptually similar
ball with eyes) to bring order to a disorderly pile of blocks.

Keil and Newman (2015) used these findings to argue that
during the first few months of life, infants observe a bulk
of ordering and disordering events together with their causes
and come to “associate only agents but not non-agents with
many kinds of ordered and nonrandom sequences” (p.132).

Notwithstanding counterexamples such as molecular self-
assembly or evolution, this association is often true in our uni-
verse where entropy tends to increase over time; in contrast,
it takes energy, information, and goal-direction to go against
the force of nature, all of which strongly indicate agentive
causes even to the youngest humans (see Baillargeon, Scott,
& Bian, 2016, for a review). Based on these experiences
and intuitive theories, deviation from randomness often in-
dicates nonrandom generation processes behind the scenes
(Griffiths & Tenenbaum, 2001, 2003, 2004, 2007; Sim & Xu,
2013; Williams & Griffiths, 2013). When the specifics are
unknown, people often default to agents as the “causal place-
holders”, thinking that they did it somehow (Saxe, Tenen-
baum, & Carey, 2005; Wu, Muentener, & Schulz, 2015).

If the above line of reasoning holds true, people’s
judgment of agency should align with their judgment of
nonrandomness—the less random something looks, the more
agentive it strikes us as. This prediction might be hinted by
Kushnir, Xu, and Wellman’s (2010) finding that 20-month-
olds use violation of random sampling to infer the preference
of an agent (“She always picked this toy despite its rarity, so
she must really like it.”). It is possible that nonrandomness not
only indicates the psychological states of an already known
agent, but also cues its very existence. Imagine if you see a
haystack in the middle of a desert (which apparently violates
the surrounding vegetation distribution)—you may well con-
clude that someone must have been there apart from that she
is very fond of hay. Alternatively, as Feldman and Tremoulet
(2008)1 suggested, the intermediate level of nonrandomness
is the strongest cue of agency: “Too simple—a simple peri-
odic noise burst, say—and it’s an inanimate source, say, a ro-
tating pulsar. Too complex—a totally patternless sequence—
and it’s just random electromagnetic interference. To seem
intelligent it has to be somewhere in between: patterned, but
neither perfectly periodic nor completely chaotic” (p.22).

Empirical evidence is needed to test the two possibilities.
To the best of our knowledge, there is no research directly
examining the relationship between human intuitions about
agency and randomness. The closest work to date (Ma &
Xu, 2013; Ma et al., under revision), for instance, lacks a
measure of the regularity of the stimuli. Without quantifying

1Feldman and Tremoulet (2008) only briefly mentioned this hy-
pothesis at the end of their paper, the bulk of which focused on
detecting agency from observed motion patterns. The idea of us-
ing computational models (e.g., finite state automaton) to formalize
agent detection is shared by our paper, but we dived into a very dif-
ferent domain—static visual sequences, where there is a substantial
literature on the formalism of subjective randomness to draw on.
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subjective agency and subjective nonrandomness, however, it
is hard to tell whether or not they go hand in hand. In addi-
tion, without an independent measure of regularity, one may
find herself trapped in circular reasoning—“What is regular-
ity?” “It’s the evidence from which people infer intentional
agents.” “How do people infer intentional agents?” “From
regularity.” Also, past studies only looked at a small subset of
all possible binary sequences of equal length (9 digits in Ma
& Xu, 2013; 12 digits in Ma et al., under revision). Chances
are that regular sequences in those studies happened to look
both regular to the researchers (which is most likely why they
were chosen in the first place) and agentive to the infants. We
cannot rule out the possibility that there exist a considerable
amount of “irregular” sequences that look like the work of
an agent, or reversely, “regular” sequences that only call for
an inanimate cause. Therefore, to systematically investigate
the agency–nonrandomness link, we need to include a wide
range of sequences rather than a selected few.

Linking agency and randomness
To shed light upon the agency-nonrandomness link, we con-
ducted two experiments. In Experiment 1, one group of
participants viewed 256 binary sequences of length 8 (e.g.,
ΛΛΓΛΓΛΛΛ) and classified the source of each sequence into
agentive or non-agentive entities while another group classi-
fied the source of each as random or nonrandom processes2.
Should agency detection be tightly related to subjective ran-
domness, we would expect a high correlation between ratings
from the two groups. Sometimes, we not only need to de-
tect other agents, but also wish to be detected by others. For
instance, if we are abducted and locked in a truck, flashing
the taillight in a “meaningful” way may attract the police and
save our lives. Do we actually have such a good intuition
about what kind of sequences others may appreciate as agen-
tive? Is it related to our intuition of what others will view as
nonrandom? We looked into these questions in Experiment
2 by asking another two groups of participants to generate
an 8-digit binary sequence that they thought might receive
the highest agency or nonrandomness score. We examined
whether the mean scores of participant-generated sequences
were higher than that of all 256 in Experiment 1, as well as
the overlap between sequences generated by the two groups.

If people indeed make similar judgments about agency and
nonrandomness, then the question is whether they solve the
two problems in a similar way. In the last decade, Grif-
fiths and Tenenbaum (2001, 2003, 2004, 2007) formalized
the problem of randomness detection as a statistical inference
of the data generation process given the data: that is, when
judging if a given sequence X is random, people are compar-
ing the probability that X was generated by a random process
(P(random|X)) against the probability that X was generated
by a regular process (P(regular|X)). The ratio of these two

2Griffiths and Tenenbaum (2003) only showed each participant
half (128) of the stimuli—that is, one either saw a sequence (e.g.,
HTHHTHTT) or its complement (e.g., THTTHTHH).

probabilities, or “posterior odds”, is given by Bayes’ theorem
(below is the log-odds form):

log
P(random|X)

P(regular|X)
= log

P(X |random)

P(X |regular)
+ log

P(random)

P(regular)
,

(1)
The subjective randomness of sequence X is defined as the

only part that depends on X—the log-likelihood ratio:

randomness(X) = log
P(X |random)

P(X |regular)
. (2)

If X results from flipping a fair coin or the equivalent, then
P(X |random) is simply 1

2
l(X)

(l(X) is the length of X)—the
heart of the problem thus becomes evaluating P(X |regular).
Griffiths and Tenenbaum (2003, 2004) specified P(X |regular)
using a hidden Markov model (HMM) that associates each
symbol xi (e.g., H) in X with a hidden state zi (e.g., repeating
H). The probability that X is generated by a certain HHM is
obtained by summing over the probability that X is generated
by each of all possible states Z under this model:

P(X) = ∑
Z

P(X ,Z), (3)

Knowing that each xi solely depends on zi and each zi is
determined by zi−1, we can rewrite Equation 3 as below:

P(X ,Z) = P(z0)
n

∏
i=2

P(zi|zi−1)
n

∏
i=1

P(xi|zi). (4)

In this study, the regular generation process is defined by
22 repeating “motifs” of length 1 (repeating H or T) to 4 (e.g.,
repeating HTHH, TTHH, etc.). Each symbol in the 22 motifs
corresponds to a hidden state, which amounts to 72. The prior
of each motif is αk (k is the length of a motif) and the prob-
ability of continuing with a motif is δ. Using this HMM, we
can estimate the subjective randomness of all 256 sequences.

Experiment 1: Judging sequences
Method
Participants Seventy-four participants with a United States
IP address took part in Experiment 1 on Amazon Mechani-
cal Turk (http://www.mturk.com/, “MTurk”) for a payment of
$3.5. A past acceptance rate equal to or greater than 93%
was required for participation. 40 participants (20 women;
mean age = 37.15, SD = 12.63, range: 19–70 years) were
randomly assigned to the agency judgment task and 34 (17
women; mean age = 33.98, SD = 10.45, range: 23–67 years)
to the nonrandomness judgment task. Another 36 were ex-
cluded for failing one or both instruction check questions.

Stimuli and procedure To begin, participants read a cover
story corresponding to their task:

Agency condition. “Welcome to year 3017! Imagine you
are a space rescuer whose job is to search for astronauts lost
in deep space. These days spaceships are all equipped with
a radio transmitter. To call for help, astronauts can use it
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to send out sequences made of two types of radio waves—
Lambda (Λ) and Gamma (Γ). However, both types of waves
may also be produced by natural phenomena such as celes-
tial body activities—in this case, Λ and Γ are equally likely
to appear. Everyone in space knows that by current technical
standard, radio receivers can only pick up 8 waves in a row—
that is, you can only detect sequences that have 8 waves (as
mentioned before, each wave is either Λ or Γ). If you receive
a sequence and think it was produced by natural phenomena,
you will ignore it and stay on course. If you think it came
from humans, then you will go to them. In this study, you
will see about 250 sequences. Your task is to decide whether
each sequence was generated by a natural phenomenon or by
a human astronaut. Please answer as quickly and accurately
as possible!”

Nonrandomness condition. “You’re about to see some se-
quences made of 8 symbols. Each symbol is either Lambda
(Λ) or Gamma (Γ)—which may represent heads or tails,
even or odd digits, successes or failures, or other event out-
comes. For instance, the sequence ΛΓΓΛ could stand for
“tails, heads, heads, tails”, “even, odd, odd, even”, etc. Some
of these sequences were created by tossing an actual fair coin,
which means they are random series—in this case, Λ and Γ

are equally likely to appear. However, other sequences may
be generated by nonrandom processes, such as computer pro-
grams, successes and losses of a basketball team, and so on.
In this study, you will see about 250 sequences. Your task is
to decide whether each sequence was generated by a random
process or by a nonrandom process. Please answer as quickly
and accurately as possible!”

Two quizzes immediately followed to test participants on
the sources of sequences as well as the chance of two symbols
appearing in the natural phenomenon or the random processs
scenario. Images (pixel resolution: 700×525) of 256 binary
sequences of length 8 were then displayed on the screen. In
the agency judgment task, participants were asked to classify
the source of each sequence into “human astronaut” or “nat-
ural phenomenon”, and in the nonrandomness judgment task,
into “nonrandom process” or “random process”. The display
order was randomized and the relative location of choices
counterbalanced between participants. The whole process
was self-paced and took an average of 20 minutes.

Results
An alpha level of .05 was used for all statistical analyses.
Each sequence received an agency score (the proportion of
participants classifying its source as “human astronaut”) as
well as a nonrandomness score (the proportion of participants
classifying its source as “nonrandom process”).

To examine the stability of participants’ judgments, we
looked at the scores of 128 sequences (e.g., ΛΛΓΓΛΛΓΛ)
and their complements (e.g., ΓΓΛΛΓΓΛΓ)—in theory, they
should be the same. Indeed, the sequence-complement corre-
lation was high in the agency condition, r(126) = .84, 95% CI
[.78, .89], p < .001, adjusted R2 = .71, and even higher in the
nonrandomness condition, r(126) = .93, 95% CI [.91, .95], p
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Figure 1: The agency-nonrandomness link in Experiment 1.

< .001, adjusted R2 = .87, suggesting that participants were
making reliable judgments during the task.

Of central interest to Experiment 1 was the correlation be-
tween agency and nonrandomness scores. We found a strong
positive correlation between the two, r(254) = .84, 95% CI
[.81, .88], p < .001, adjusted R2 = .72 (see Figure 1a).

To see whether detecting agents was a similar problem to
detecting deviation from randomness, we tested if the same
model (as specified earlier) fit data from both tasks reason-
ably well. Since our models predicted subjective randomness,
we recoded agency scores into non-agency scores (1 - agency
score) and nonrandomness scores into randomness scores (1
- nonrandomness score). Fitting the non-agency data gave δ

= .44 and α = .11, with correlation r(254) = .72, p < .001,
and fitting the randomness data gave δ = .45, α = .12, with
correlation r(254) = .75, p < .001. Model predictions in the
two conditions were strongly correlated, r(254) = .96, 95%
CI [.95, .97], p < .001, adjusted R2 = .92 (see Figure 1b).
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Discussion
In Experiment 1, we found a strong correlation between par-
ticipants’ agency and nonrandomness judgments—that is, se-
quences viewed as less random were rated as more agen-
tive. A hidden Markov model fit human data in both tasks
reasonably well and produced highly overlapping predic-
tions for subjective non-agency and subjective randomness,
which suggests that people are solving highly similar prob-
lems when detecting agents and violation of randomness.

At the beginning of this paper, we discussed two possi-
ble forms the agency–nonrandomness link. Feldman and
Tremoulet (2008) suggested that mid-level randomness is
most agentive, according to which we should find a reverse U-
shaped/U-shaped relation between the degree of agency/non-
agency and the degree of randomness. However, this was
neither the case in human judgments (Figure 1a) nor model
predictions (Figure 1b). Instead, the findings in Experiment 1
provided evidence for a linear agency–nonrandomness link.

Experiment 2: Generating sequences
Participants A total of 212 participants with a United
States IP address who did not participate before took part in
Experiment 2 on MTurk for a payment of $0.5. A past ac-
ceptance rate equal to or greater than 93% was required for
participation. 105 participants (38 women; mean age = 35.59,
SD = 10.54, range: 18–67 years) were randomly assigned to
the agency generation task and 107 (34 women, 1 other; mean
age = 36.36, SD = 11.63, range: 19–65 years) to the non-
randomness generation task. Another 78 were excluded for
failing one or both instruction check questions or generating
sequences that were not binary or of length 8.

Method
Stimuli and procedure To begin, participants read a cover
story corresponding to their task:

Agency condition. “Welcome to year 3017! Imagine you
are an astronaut who is lost in deep space after an accident.
These days spaceships are all equipped with a radio transmit-
ter. To call for help, you can use it to send out sequences
made of two types of radio waves—Lambda (Λ) and Gamma
(Γ). However, both types of waves may also be produced by
natural phenomena such as celestial body activities—in this
case, Λ and Γ are equally likely to appear. Everyone in space
knows that by current technical standard, radio receivers can
only pick up 8 waves in a row—that is, you should only send
sequences that have 8 waves (as mentioned before, each wave
is either Λ or Γ). If space rescuers receive your sequence and
thinks it was produced by natural phenomena, they will ig-
nore it and stay on course. If they think it came from humans,
then they will come to you.I n order to save yourself, what
sequence will you send to space?”

Nonrandomness condition. “You’re about to write down a
sequence made of 8 symbols. Each symbol is either Lambda
(Λ) or Gamma (Γ)—which may represent heads or tails, even
or odd digits, successes or failures, or other event outcomes.

For instance, the sequence ΛΓΓΛ could stand for ‘tails, heads,
heads, tails’, ‘even, odd, odd, even’, etc. Sequences like this
could be created by tossing an actual fair coin, which means
they are random series. However, they could also be gener-
ated by nonrandom processes, such as computer programs,
successes and losses of a basketball team, and so on. In this
study, you will come up with one sequence. Your task is to
make it look least random—that is, this sequence should NOT
look like the product of a random process; instead, it should
look like it’s generated by a nonrandom process. In order to
fulfill your task, what sequence will you write down?”

Two quizzes immediately followed to test participants on
what kind of sequence they should generate and the chance
of two symbols appearing in the natural phenomenon or the
random processs scenario. Then they entered a sequence in 8
text entry cells (the task requirement was visible). The whole
process was self-paced and took about 2–3 minutes.

Results
Since symbols have no inherent meanings, sequences (e.g.,
ΛΓΛΛΓΓΛΓ) and their complements (e.g., ΓΛΓΓΛΛΓΛ)
were coded as the same form (e.g., ABAABBAB). Participants
in the agency condition generated 31 unique sequences while
those in the nonrandomness condition generated a total of 35.
Table 1 summarized unique sequences generated in both con-
ditions (16 overlapping sequences are marked in yellow).

To begin, we looked at whether participants were able to
generate good sequences with respect to the task requirement.
To do so, we assigned agency and nonrandomness scores in
Experiment 1 to participant-generated sequences in Experi-
ment 2 (e.g., the score of ABAABBAB would be the mean
score of ΛΓΛΛΓΓΛΓ and ΓΛΓΓΛΛΓΛ). In the agency con-
dition, participant-generated sequences had higher scores (M
= .56, SD = .19) compared to all 256 sequences (M = .43, SD
= .14), mean difference = .13, 95% CI [.08, .16], t(154.56) =
6.58, p < .001, d = .86. Participant-generated sequences (M
= .62, SD = .22) also received higher nonrandomness scores
than that of the whole set (M = .50, SD = .23), mean differ-
ence = .12, 95% CI [.09, .17], t(286.11) = 5.87, p < .001, d =
.58. In both the agency and the nonrandomness condition, the
frequency of sequences being generated was positively corre-
lated with their scores, r(103) = .75, 95% CI [.66, .83], p <
.001, adjusted R2 = .56, r(105) = .53, 95% CI [.38, .65], p <
.001, adjusted R2 = .27, respectively.

To see if the agency–nonrandomness link exists in se-
quence generation, we examined the overlap of participant-
generated sequences in the two conditions. First, 87 out of
105 “agentive” sequences were also generated in the non-
randomness condition and a similarly large proprotion of
“nonrandom” sequences—83 out of 107—were found in the
agency condition as well. Among the 31 unique agentive se-
quences and 35 unique nonrandom sequences, 16 were shared
by both. The question is whether this overlap was due to
chance, a problem that is often faced by bioinformatics sci-
entists when deciding given a genome with N genes, whether
one gene list with a genes overlaps with another with b genes
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Table 1: Participant-generated sequences in Experiment 2.

nonrandom freq. score agentive freq. score
ABABABAB 21 0.60 AAAAAAAA 40 0.76
AAAAAAAA 17 0.90 ABABABAB 20 0.40
AAAABBBB 15 0.85 AAAAAAAB 3 0.65
AABBAABB 14 0.56 AAABBBAA 3 0.50
AAAAAAAB 3 0.85 AABABBAB 3 0.29
AAABAAAB 2 0.73 ABBAABBA 3 0.37
AAABAABA 2 0.53 AAAABBBB 2 0.56
AAABBBAA 2 0.73 AAABAAAB 2 0.65
AABBABAB 2 0.25 AAABAABA 2 0.54
AABBBAAB 2 0.40 AAABBAAA 2 0.65
ABABAABB 2 0.26 AAABBBAB 2 0.35
ABBABBAB 2 0.49 AABBAABB 2 0.47
AAAABAAB 1 0.60 ABAABBAA 2 0.34
AAABABBA 1 0.21 ABABBABA 2 0.25
AAABBAAA 1 0.73 AAAAAABB 1 0.60
AAABBABA 1 0.33 AAAAABAA 1 0.63
AAABBBAB 1 0.48 AAAABBAA 1 0.57
AABAAABA 1 0.51 AAABABAB 1 0.32
AABAABAA 1 0.75 AABAABAA 1 0.56
AABAABBB 1 0.30 AABBBAAA 1 0.51
AABABBAB 1 0.23 AABBBABA 1 0.34
AABABBBA 1 0.23 AABBBBBB 1 0.57
AABBAAAB 1 0.39 ABAABAAA 1 0.41
AABBABBA 1 0.33 ABAABAAB 1 0.43
AABBBAAA 1 0.69 ABAABABB 1 0.28
ABAAABAB 1 0.33 ABAABBAB 1 0.24
ABAABBAA 1 0.39 ABABBBAA 1 0.28
ABAABBBA 1 0.24 ABBAAABA 1 0.29
ABBABAAB 1 0.19 ABBAAABB 1 0.34
ABBABBAA 1 0.30 ABBBAABB 1 0.31
ABBABBBA 1 0.40 ABBBBBBA 1 0.66
ABBBAABA 1 0.20
ABBBAABB 1 0.35
ABBBABAA 1 0.24
ABBBBBBA 1 0.90

if they have an intersection of t genes. In our study, the
“genome” was all 128 unique sequences while participant-
generated agentive and nonrandom sequences were the two
“gene lists”. Using Fisher’s exact test implemented by the
GeneOverlap R package (Version 1.12.0; Shen & Sinai,
2013), we found that the 16-sequence overlap between two
conditions was unlikely to arise by mere chance, p < .001.

Discussion
Participants in Experiment 2 showed a good sense of what se-
quences may strike others as agentive or nonrandom: in both
the agency and the nonrandomness condition, they generated
sequences with higher scores than all 256 sequences. Cru-
cially, we found a statistically meaningful overlap between
agentive and nonrandom sequences, indicating that people
not only make similar judgments about agency and nonran-

domness, but may also be guide by similar intuitions when
generating stimuli that are agentive or nonrandom.

General Discussion
The present studies provide evidence for a shared cogni-
tive basis of agency detection and subjective randomness.
In Experiment 1, participants made similar judgments about
agency and nonrandomness: sequences viewed as more agen-
tive also tended to be judged as less random. A hidden
Markov model with 72 states and 22 motifs fitted human per-
formance in both tasks equally well and produced identical
predictions regarding the degree to which people should view
each sequence as agentive or nonrandom. In Experiment 2,
participants did a good job generating sequences that oth-
ers might see as agentive or nonrandom. Sequences in these
two conditions had a substantial overlap, indicating common
guiding principles of agency and nonrandomness generation.

Our work contributes to a growing body of literature on the
perceived link between order and agency (e.g., Barrett, 2000;
Friedman, 2001; Ma & Xu, 2013; Ma et al., under revision;
Newman et al., 2010) by directly quantifying, formalizing,
and comparing both ends of this link for the first time.

As Williams and Griffiths (2013) pointed out, randomness
judgments often boil down to relative frequency (Are two
equally likely events equally frequent?) and sequential de-
pendence (Do earlier events influence subsequent events?).
However, past researchers studied the link between these two
apsects of randomness (or lack thereof) and agency sepa-
rately—for instance, Kushnir et al. (2010) focused on the
former while Ma and Xu (2013) the latter. In our study,
both biased frequency (e.g., AAAAAAAB) and high sequential
dependence (e.g., AAABBAAA) lead to high agency ratings,
which may help unify past findings. Future work will look
at how differently or similarly frequency and dependence are
weighted in our nonrandomness and agency judgments.

Although violation of randomness plays an important role
in agency detection, we do not claim that it is the only
cue to agency or always linked to the latter. Given certain
background knowledge or context3, “irregular” stimuli may
look agentive—a seemingly chaotic drip painting still looks
like the work of a human, and “regular” stimuli can appear
non-agentive—we would not necessarily think a mechani-
cal watch is alive because it tick-tocks every second. With-
out such information, however, intentional agents are perhaps
the best guess for a nonrandom outcome. Follow-up studies
should take a closer look at how rich knowledge may be inte-
grated into the way we reason about agents and randomness.

Another question is whether the current findings generalize
to other types of stimuli, such as matrices, numbers, geomet-
ric shapes, etc. Answering this question requires us to under-
stand and formalize randomness in these domains, on which
there are increasingly more studies in recent years (e.g., Grif-
fiths & Tenenbaum, 2007; Hsu, Griffiths, & Schreiber, 2010).
We plan to investigate the agency–nonrandomness link us-

3This was suggested by two anonymous reviewers.
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ing new types of stimuli. Even for binary sequences, it is
worth looking at if what we found applies to longer sequences
where more interesting regularities may emerge, such as the
repeating triads in Ma and Xu’s (2013) study. Also, as the
length extends, it may become difficult to find a global pat-
tern and one may have to focus on local patterns. How will
these factor into our agency and nonrandomness judgments?

On the computational level, our study is the first step to-
wards formalizing how people perceive agency. A more pre-
cise account requires us to directly estimate the probability
distribution of a certain stimulus being generated by an agent,
P(X |agent), which can be achieved by using a much larger
sample size (e.g., the Big Bell Test invited more than 100,000
people from all over the world to generate random responses;
see http://thebigbelltest.org/ for details) as well as applying
sampling methods such as Markov chain Monte Carlo with
People (“MCMCP”, Sanborn, Griffiths, & Shiffrin, 2010).

MCMCP is also able to capture each person’s judgment.
What looks agentive to some may look inanimate to others;
understanding individual differences may allow us to appre-
ciate the complexity of human agency perception and on top
of that, explain far-reaching psychological and societal con-
sequences, such as the endorsement of Intelligent Design, the
denial of natural selection in favor of creationism, and so on.
In regards to other social phenomena, past studies explored
the relationship between randomness and perceived efficacy
of rituals (Legare & Souza, 2014), belief in conspiracy the-
ories (Dieguez, Wagner-Egger, & Gauvrit, 2015), etc.. We
wonder whether people’s agency intuition plays a similar or
a different role in these situations, especially using the more
intricate characterization of agency that MCMCP provides.

In his book Scienceblind, Shtulman (2017) argued that
many misconceptions of science stick not just because of ide-
ology or the media, but also because they have deep roots
in our intuitive theories. As mentioned before, our agency–
nonrandomness link may be one such root. For science edu-
cators, the question at hand is, how malleable is it? Given the
right kind and amount of evidence, will we update our belief?
For instance, by understanding causal mechanisms by which
nonrandomness could arise from non-agentive sources (e.g., a
ball rolling down a xylophone produces orderly sounds, but it
is not viewed as an agent by adults or even infants, Schachner,
Carey, & Kelemen, 2013), can we weaken or break this link?
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