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Many dynamo studies extrapolate numerical model results to planetary conditions by empirically 
constructing scaling laws. The seminal work of Christensen and Aubert (2006) proposed a set of 
scaling laws that have been used throughout the geoscience community. These scalings make use of 
specially-constructed parameters that are independent of fluid diffusivities, anticipating that large-scale 
turbulent processes will dominate the physics in planetary dynamo settings. With these ‘diffusion-free’ 
parameterizations, the results of current numerical dynamo models extrapolate directly to fully-turbulent 
planetary core systems; the effects of realistic fluid properties merit no further investigation. In this 
study, we test the validity of diffusion-free heat transfer scaling arguments and their applicability to 
planetary conditions. We do so by constructing synthetic heat transfer datasets and examining their 
scaling properties alongside those proposed by Christensen and Aubert (2006). We find that the diffusion-
free parameters compress and stretch the heat transfer data, eliminating information and creating an 
artificial alignment of the data. Most significantly, diffusion-free heat transfer scalings are found to be 
unrelated to bulk turbulence and are instead controlled by the onset of non-magnetic rotating convection, 
itself determined by the viscous diffusivity of the working fluid. Ultimately, our results, in conjunction 
with those of Stelzer and Jackson (2013) and King and Buffett (2013), show that diffusion-free scalings 
are not validated by current-day numerical dynamo datasets and cannot yet be extrapolated to planetary 
conditions.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The Earth’s magnetic field is generated by dynamo action in 
the liquid metal outer core. Much of our understanding of the geo-
dynamo comes from direct numerical simulations that solve the 
governing equations of magnetohydrodynamic flow in a rotating 
spherical shell of conducting fluid (e.g., Glatzmaier, 2013). Numeri-
cal models attempt to reproduce key features of the observed field, 
such as the dipolar morphology and polarity reversals, and link 
these features to flow behaviors (e.g., Glatzmaier and Coe, 2007;
Aubert et al., 2008; Olson et al., 2011). However, limitations in 
computational power preclude these models from being run with 
parameter values similar to those that exist in the core. Applying 
the results of models to the core therefore requires massive extrap-
olation through parameter space. A prevalent method to achieve 
this extrapolation is to empirically determine power law scaling re-
lations between the governing parameters. These scaling laws are 
constructed by conducting large surveys of dynamo models within 
achievable parameter ranges. These scalings are then extrapolated 
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from presently-accessible parameter values to planetary-scale esti-
mates.

In the fluid physics community, the so-called ultimate regime 
of convective turbulence has been theorized and searched for ex-
tensively (e.g., Kraichnan, 1962; Spiegel, 1971; Ahlers et al., 2009;
Roche et al., 2010; Grossmann and Lohse, 2011; Julien et al., 
2012b; He et al., 2014). In this ultimate regime, it is hypoth-
esized that the fluid’s molecular diffusivities do not contribute 
meaningfully to the physics, and instead only macro-scale turbu-
lent phenomena dictate the flow behaviors. In order to extrapolate 
dynamo results to the core, Christensen and Aubert (2006) aimed 
to produce analogous asymptotic scalings for dynamo physics. 
These scaling laws have been widely used in the recent geo-
science literature (e.g., Aubert et al., 2009, 2010; Tarduno et al., 
2012; Driscoll and Bercovici, 2013), the planetary science litera-
ture (e.g., Christensen, 2002; Hauck et al., 2006; Olson and Chris-
tensen, 2006; Aurnou, 2007; Takahashi et al., 2008; Christensen 
et al., 2009, 2010; Schmitz and Tilgner, 2010; Weiss et al., 2010;
Aurnou and Aubert, 2011; Christensen, 2011; Showman et al., 
2011; Davidson, 2013; Yadav et al., 2013a, 2013b; Davidson, 2014;
Dharmaraj et al., 2014; Garcia et al., 2014; Laneuville et al., 
2014; Schrinner et al., 2014; Tilgner, 2014; Christensen, 2015), 
and the exoplanetary science literature (e.g., Gaidos et al., 2010;
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Driscoll and Olson, 2011; Summeren et al., 2013; Zuluaga et al., 
2013).

However, in contrast to the extreme parameters which must be 
reached to observe the asymptotic behavior in other convection 
systems, dynamo models are presently restricted to rather mod-
erate parameter ranges. It may be the case that the addition of 
rotational forces and magnetic fields allow asymptotic behaviors 
to be reached at less extreme parameters. However, these pre-
dictions must be verified before claims of achieving an ultimate 
dynamo physics regime can be made (e.g., Julien et al., 2012b;
King and Buffett, 2013).

Stelzer and Jackson (2013) demonstrate that a statistically-
significant improvement can be made to Christensen and Aubert
(2006)’s scaling laws for flow velocity and magnetic field strength 
by reintroducing a dependence on viscous and magnetic diffusivi-
ties. Thus, they show that diffusion-free empirical fits do not op-
timally describe flow and magnetic field outputs from present-day 
dynamo models. Stelzer and Jackson show this via a leave-one-
out cross-validation (LOOCV) method, applied to 116 dynamo cases 
from Christensen and Aubert (2006)’s and following papers. In the 
LOOCV method, a single case is isolated at a time and a scaling law 
is constructed from the remaining cases, assuming a power-law re-
lationship between relevant governing parameters. The scaling law 
is evaluated for its ability to predict the isolated case, and the 
process is repeated for each case. Using this statistical method, 
Stelzer and Jackson (2013)’s results make clear that flow and mag-
netic fields in present-day dynamo models are not yet following a 
diffusion-free physics, as may be the case in extreme geophysical 
and astrophysical turbulent flows.

Unlike all other tested quantities, Stelzer and Jackson (2013)
find that the heat transfer data are indeed best fit by a diffusion-
free scaling relation. Since heat transfer is a globally integrated 
descriptor of the convection dynamics (e.g., Glazier, 1999), it can 
be argued that the heat transfer in dynamo models is the first 
quantity to develop a diffusion-free behavior. It could then be ar-
gued that since the heat transfer is following diffusion-free physics, 
the other quantities will eventually do so as well.

In this paper, however, we show that the goodness of fit of heat 
transfer data to the scaling proposed in Christensen and Aubert
(2006) is determined a priori by the way the diffusion-free param-
eters are defined, rather than by the underlying dynamo physics. 
In particular, we show that the heat transfer scaling is deter-
mined by the onset of convection, which is, in turn, determined 
by the viscous diffusivity of the fluid. We therefore demonstrate 
that the scaling is not diffusion-free, contrary to the preconditions 
for diffusion-free parameters to be applicable.

In Section 2, we define the diffusive and diffusion-free non-
dimensional parameters relevant to heat transfer. In Section 3, 
we introduce the concepts of flattening and shingling that cause 
the heat transfer data to conform to the onset scaling. We illus-
trate these concepts using synthetic heat transfer datasets that 
resemble real dynamo model data. In Section 4, we demonstrate 
that these concepts lead to a loss of scaling information when 
real dynamo model data are plotted in diffusion-free parameter 
space. Regardless of variations in the scaling data, the best-fit scal-
ing that emerges in diffusion-free parameter space is the same. 
Our results show that data from present-day dynamo models do 
not provide support for asymptotically-accurate diffusion-free heat 
transfer physics. Instead, the best fit trend is controlled by the on-
set of convection in these experiments and has little to do with the 
bulk turbulent dynamics expected to underly diffusion-free sys-
tems (e.g., Julien et al., 2012a).
2. Heat transfer parametrization

2.1. Diffusive parameters

In core dynamics, flows are traditionally described by the 
magnetohydrodynamic equations that are non-dimensionalized 
by the relevant time-scales in the problem (e.g., the diffusion 
times, convection time scale, rotation time, and magnetic induc-
tion time scale). This operation generates a (non-unique) set of 
non-dimensional numbers that are ratios of these various char-
acteristic time scales. Scaling laws associated with heat trans-
fer depend on the Rayleigh number Ra, the Nusselt number 
Nu, the Prandtl and magnetic Prandtl numbers Pr and Pm, as 
well as the Ekman number E (e.g., Incropera and DeWitt, 1985;
Gubbins and Roberts, 1987; Bergman et al., 2011).

The definitions of Ra, Pr, Pm and E depend on diffusive time 
scales. Viscous and thermal diffusion time scales are defined re-
spectively as:

τν = L2/ν , τκ = L2/κ , (1)

where L is a characteristic length, ν is the viscous diffusivity, and 
κ is the thermal diffusivity. The time scale for buoyancy forcing τff
is associated with the convective free-fall velocity of a fluid parcel 
Uff . This is derived by balancing the inertial term with thermal 
buoyancy force:

�u · �∇�u ∼ αT �T �g → Uff (Uff /L) ∼ αT �T g

→ Uff = (αT g�T L)1/2 .

Thus,

τff = L

Uff
=

(
L

αT g�T

)1/2

, (2)

where αT is the thermal expansivity coefficient, g is gravitational 
acceleration and �T is the adverse temperature gradient in the 
fluid.

The Rayleigh number compares the time scales of viscous and 
thermal diffusivities to that of the free-fall buoyancy time scale:

Ra = τν

τff

τκ

τff
= αT g�T L3

νκ
. (3)

Rayleigh–Bénard convection (non-rotating, non-magnetic) onsets 
after a critical value of Ra ∼ 103 (Chandrasekhar, 1961).

The Prandtl number is defined by the ratio between thermal 
diffusion and viscous diffusion time scales, and is given by:

Pr = τκ

τν
= ν

κ
. (4)

While core dynamo regions are estimated to have Pr values be-
tween 10−1 and 10−2 (Pozzo et al., 2012; Davies et al., 2015;
Zhang et al., 2015), the majority of dynamo models are carried 
out at Pr = 1 due to computational constraints.

The magnetic Prandtl number is defined by the ratio between 
magnetic diffusion and viscous diffusion time scales, and is given 
by:

Pm = τη

τν
= ν

η
= μ0νσ , (5)

where τη = L2/η; η = (μ0σ)−1 is the magnetic diffusivity, σ is 
the fluid’s electrical conductivity and μ0 is the permeability of free 
space. Planetary dynamo generating regions are estimated to have 
Pm values of order 10−6 to 10−8 (Schubert and Soderlund, 2011). 
In contrast, for the fluid to be sufficiently inductive to produce dy-
namo action, the majority of present-day dynamo models must be 
carried out at Pm � 1 (Aurnou et al., 2015).
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The Nusselt number, Nu, represents the efficiency of heat trans-
fer in a system. It is given by the ratio of the conductive heat 
transfer time scale and the total heat transfer time scale. The con-
ductive heat transfer time scale is equivalent to thermal diffusion 
time scale, τκ , and is equivalent to the time it takes a given ther-
mal energy anomaly to be diffusively transferred across a fluid 
layer of length L. The total heat transfer time scale is:

τq = ρC p�T ·
(q

L

)−1 = ρC p�T L

q
, (6)

where q is the total (diffusive + advective) heat flux per unit area, 
ρ is the density and C p is the heat capacity. This is the time it 
takes for a given thermal energy anomaly ρC p�T to be transferred 
across a system of length L by both advection and diffusion. The 
Nusselt number is then written as:

Nu = τκ

τq
= qL

κρC p�T
. (7)

The onset of convection is associated with a Nu value of 1, since, 
prior to onset, all of the heat is transported via conduction. In 
contrast, for most solar system planets with dynamos, the (supera-
diabatic) Nusselt number can be roughly estimated at O (105) or 
greater (Cheng et al., 2015).

In rotating systems, the characteristic rotational time scale is 
τ
 = 1/
, where 
 is the system angular rotation rate. The Ekman 
number is the ratio of the rotational and viscous time scales:

E = τ


τν
= ν


L2
. (8)

In planetary bodies, E is extremely small, around O (10−15) (Ta-
ble 2). For presently achievable parameters in dynamo modeling, 
the minimum E is approximately 10 orders of magnitude larger 
than estimates for planets.

Convection in rotating systems first onsets at a critical value of 
the Rayleigh number that varies as a function of both the rotation 
rate 
 of the system, and, importantly, the viscosity of the fluid. 
The critical Rayleigh number for the onset of steady rotating con-
vection is given by:

Nu = 1 , Racrit = c1 E−4/3 (9)

where c1 = 8.7 in a plane layer as E → 0 (Chandrasekhar, 1961).
In dynamo models carried out at the same E value, convection 

first onsets at values close to Racrit as defined in (9) (e.g., King et 
al., 2010; Soderlund et al., 2012). As Ra/Racrit is increased while 
holding E constant, the Nu and Ra data are often found to follow 
an approximate power law scaling of the form:

Nu =
(

Ra

Racrit

)α

, (10)

where the scaling exponent α is a non-negative constant (King et 
al., 2010; Julien et al., 2012a; Cheng et al., 2015). We refer to all 
data sharing the same Ekman number value as a single E-dataset.

The relations (9) and (10) are based on predictions for non-
magnetic, plane-layer rotating convection. In current day dynamo 
models, the heat transfer behaviors are rather similar to non-
magnetic rotating systems. Extending the best fit trends for each 
E-dataset to Nu = 1 in Christensen and Aubert (2006)’s data gives 
that the critical Rayleigh number values roughly follow a scaling of 
Racrit = 6.5E−4/3, where we have not considered a small “tail” in 
the data near convective onset (e.g., see Yadav et al., 2015). This is 
consistent with the form given by (9). In our synthetic data, we use 
a prefactor of c1 = 8.7 for simpler comparison with theory (e.g., 
Chandrasekhar, 1961).

Fig. 1a is a schematic showing the Nusselt and Rayleigh number 
ranges covered by synthetic hypothetical E-datasets. The synthetic 
Fig. 1. a) Synthetic heat transfer (Nu) versus buoyancy forcing (Ra) datasets for ro-
tating convection problems with non-dimensional rotation periods of E = 3 × 10−4

to E = 10−6. Using (10), α = 3.5 is given for the synthetic data. Convection onsets 
at critical Rayleigh number Racrit � 8.7E−4/3 and constant Nusselt number Nu = 1. 
The ‘composite fit’ is given by β = 0.01 (coefficient of determination R2 = 0.004). 
b) Schematic showing the diffusion-free heat transfer (Nu∗) versus diffusion-free 
buoyancy forcing (Ra∗

Q ) corresponding to the same data as in panel a. The diffusion-
free analogue to α is given by α∗ . Following (16), the convective onset slope is 
given by Nu∗ ∼ Ra∗3/5

Q . The diffusion-free ‘composite fit’ is given by β∗ = 0.63 (co-

efficient of determination R2 = 0.98). The color images in Fig. 1a show examples 
of outer boundary radial magnetic fields in dynamo models (e.g., Soderlund et al., 
2012). (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

data overlap with the parameter ranges achievable by present-day 
models, ranging from Ekman numbers of 3 × 10−4 to 3 × 10−6. 
At each Ekman number, we plot an E-dataset containing ten data 
points, spaced evenly in log space, following a power law trend 
α = 3.5 for approximately one decade in Nu. The lower bound of 
each E-dataset is set by the onset of convection, Nucrit = 1, de-
noted by the solid horizontal line.

The color images in Fig. 1a show characteristic magnetic field 
morphologies in E = 10−4 dynamo cases from Soderlund et al.
(2012). At low Ra/Racrit , current day dynamo models typically 
produce dipolar fields. At Ra/Racrit � 10, buoyancy-driven iner-
tial forces overcome Coriolis forces and the magnetic field sig-
nal becomes broadband, typically with multipolar field morpholo-
gies (Kutzner and Christensen, 2002; Sreenivasan and Jones, 2011;
Soderlund et al., 2012; Dharmaraj et al., 2014). Furthermore, when 
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Table 1
Material and dynamical property estimates for solar system planets used in Section 2. The material property estimates are all given for the top of the dynamo generating 
region, denoted by R D . Below, R P is the planetary radius, L is the thickness of the dynamo generating region and qsa is the superadiabatic heat flux estimated at r = R D . 
Sources are: [1] Redmond and King (2007); [2] Schubert and Soderlund (2011); [3] Stacey (2007); [4] French et al. (2012); [5] Hauck et al. (2006); [6] Hanel et al. (1983); 
[7] Hubbard et al. (1995); [8] Mulford et al. (2014). Unlabeled values are original estimates.

Planet αT

(K−1)
ρ [2]

(kg m−3)
ν [2]

(m2 s−1)
κ [2]

(m2 s−1)
C p

(J kg−1 K−1)

 [2]

(s−1)
g0

(m s−2)
R P

[2]

(km)
R D

[2]

(R P )
L [2]

(km)
qsa

(W m−2)
|Br=R D | [2]

(μT)

Mercury 3 × 10−5 [1] 8000 10−6 10−5 800 1.2 × 10−6 4 [1] 2440 0.75 610 0.01 [1] 0.6
Earth 1.8 × 10−5 [3] 11 000 10−6 10−5 800 [3] 7.3 × 10−5 11 6371 0.55 2300 0.065 [3] 270
Jupiter 10−4 [4] 2000 10−7 10−6 15 000 [4] 1.8 × 10−4 25 [4] 69 911 0.95 52 000 5.4 [4] 625
Ganymede 10−4 [5] 6000 10−6 10−5 10 000 1.0 × 10−5 1.3 2634 0.3 530 0.003 [5] 32
Saturn 10−4 2000 10−7 10−7 15 000 1.6 × 10−4 15 58 232 0.5 15 000 2 [6] 45
Uranus 10−4 2000 10−6 10−7 10 000 [8] 10−4 9 25 362 0.8 5100 0.43 [7] 75
Neptune 10−4 [7] 2000 10−6 10−7 10 000 [8] 1.1 × 10−4 11 24 624 0.8 12 000 0.042 [7] 73

Table 2
Non-dimensional parameter estimates for solar system planets used in Section 2. The flux Rayleigh number, RaF = NuRa, is estimated using the parameters given in Table 1. 
The estimates for Nu and Ra are performed by calculating the intersection between Nu = RaF /Ra and a Nu–Ra scaling law, following the method in Section 6 of Cheng et al.
(2015). Two different Nu–Ra scaling laws are used: The ‘diffusion-free’ estimate, denoted by |df , corresponds to Christensen and Aubert (2006)’s β∗ = 0.53 scaling converted 
to Nu–Ra coordinates. The ‘rotating convection’ estimate, denoted by |rc , corresponds to α = 3.5, the steepest rotating convection scaling law observed in Cheng et al. (2015). 
The critical Rayleigh number is given by (9) with c1 = 3.5, corresponding to the predicted prefactor for a spherical shell geometry from King et al. (2010). The Elsasser 
number, �, is the ratio between Lorentz and Coriolis forces, defined here as � = σ B2

D/(ρ
) where σ is the magnetic conductivity.

Planet E [2] Pr [2] RaF Ra∗
Q

Diffusion-free Rotating convection

�Ra|df Ra|df /Racrit Nu|df Ra|rc Ra|rc/Racrit Nu|rc

Mercury 10−12 0.1 1.6 × 1026 1.6 × 10−8 2.8 × 1020 8.1 × 103 5.6 × 105 4.9 × 1018 140 3.3 × 107 3.0 × 10−5

Earth 10−15 0.1 4.0 × 1029 4.0 × 10−14 6.6 × 1023 1.9 × 103 6.0 × 105 3.6 × 1022 100 1.1 × 107 0.072
Jupiter 10−19 0.1 3.4 × 1040 3.4 × 10−15 2.1 × 1031 2.8 × 105 1.6 × 109 1.4 × 1029 1.8 × 103 2.5 × 1011 0.86
Ganymede 10−13 0.1 3.8 × 1025 1.7 × 10−12 5.7 × 1020 510 6.8 × 104 3.9 × 1019 43 9.8 × 105 0.014
Saturn 10−18 0.1 3.0 × 1036 4.5 × 10−15 6.7 × 1028 6.8 × 104 4.5 × 107 1.6 × 1027 820 1.9 × 109 5 × 10−3

Uranus 10−16 10 8.5 × 1034 1.3 × 10−14 1.1 × 1027 5.2 × 105 7.8 × 107 6.0 × 1024 1.5 × 103 1.4 × 1010 2.2 × 10−4

Neptune 10−16 10 3.5 × 1035 5.3 × 10−14 2.1 × 1027 1.0 × 106 1.6 × 108 8.2 × 1024 2.0 × 103 4.3 × 1010 1.9 × 10−4
the inertial forces are overly large, the heat transfer scaling de-
viates to a shallower trend associated with nonrotating convec-
tion (Soderlund et al., 2012). Arguably, this transition occurs at 
RaT � E−3/2 (e.g., King et al., 2012; Ecke and Niemela, 2014;
Cheng et al., 2015). All dynamo data considered for the scaling 
arguments in Christensen and Aubert (2006) occur prior to the 
transition in heat transfer behavior (i.e., Ra < RaT ). The shallower 
nonrotating trend is therefore not shown in Fig. 1a.

In the vast majority of rotating convection studies, the goal 
is to collapse different E-datasets via a physically-based set of 
arguments (e.g., Aubert et al., 2001; Schmitz and Tilgner, 2009;
King et al., 2012; Julien et al., 2012b; Stellmach et al., 2014). If, 
instead, one were to perform a single fit to all the data from the 
compilation of the different E-datasets, this would yield a ‘com-
posite’ best fit trend with a power law exponent that we refer 
to as β . In Fig. 1a, the composite fit trend is represented by the 
wide dashed line. This β = 0.01 trend gives a notably poor fit, 
having a coefficient of determination, R2, of 0.004. This implies 
that β has no inherent physical meaning in describing the heat 
transfer. Instead, it is α that contains the physical information rel-
evant to the systems convection dynamics (e.g., King et al., 2012;
Cheng et al., 2015).

2.2. Diffusion-free parameters

At planetary scales, it is hypothesized that the physics becomes 
independent of the viscous, thermal and magnetic diffusive time 
scales. In Tables 1 and 2, we estimate the heat transfer parame-
ters for dynamo-generating bodies in the solar system. These rough 
estimates give Nu > 105, Ra > 1018 and E ≤ 10−12 for all of the 
bodies, indicating that the diffusive time scales are always ex-
tremely long compared to buoyant and rotational time scales. Thus, 
comparing buoyant and rotational time scales may better charac-
terize the fluid physics in such systems (e.g., Fernando et al., 1991;
Stevens et al., 2013). Towards this end, Christensen and Aubert
(2006) define analogous diffusivity-free control parameters to the 
Nusselt and Rayleigh numbers by replacing the diffusive time 
scales with the rotational time scale τ
 = 
−1.

The modified Rayleigh number, Ra∗ , is defined in Christensen 
and Aubert (2006) by replacing both thermal and diffusive time 
scales with the rotational time scale in the definition of Ra:

Ra∗ = Ra
τ


τν

τ


τκ
=

(
τ


τff

)2

= αT g�T


2L
= RaE2

Pr
. (11)

This parameter is the square of the convective Rossby number, 
RoC = τ
/τff , a control parameter used in a broad array of ro-
tating convection studies (e.g., Gilman, 1977; Gastine et al., 2013;
King and Aurnou, 2013; Stevens et al., 2013; Ribeiro et al., 2015).

The diffusion-free modified Nusselt number is defined as the 
ratio between the rotational time scale and the convective heat 
flux time scale. As defined in (7), Nu is the ratio between the con-
ductive heat flux time scale and the total heat flux time scale. 
Christensen and Aubert (2006) arrive at their modified Nusselt 
definition by first substituting Nu − 1 for Nu to compare the con-
ductive heat flux time scale to the convective heat flux time scale. 
They then multiply this by the ratio of the rotational time scale to 
the conductive heat flux time scale:

Nu∗ = (Nu − 1)
τ


τκ
= (Nu − 1)E

Pr
= qconv

ρC p�T 
L
(12)

where qconv is the convective component of the total heat flux. 
This represents the ratio of the rotational time scale to the time 
for fluid to convectively transfer heat across the fluid layer.

Christensen and Aubert (2006), in turn, plot their data in terms 
of a modified flux Rayleigh number, Ra∗

Q which is defined as:

Ra∗
Q = Ra∗Nu∗ = (Nu − 1)RaE3

Pr2
= αT gqconv

ρC p
3L2
. (13)

As the modified Rayleigh number Ra∗ is a convective Rossby 
number relating the rotation to buoyancy time scales, the flux 
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modified Rayleigh number Ra∗
Q is effectively a flux convective 

Rossby number. Other studies have also used this quantity as a 
control parameter for characterizing rotating convection regimes 
(e.g., Maxworthy and Narimousa, 1994; Jacobs and Ivey, 1999;
Aurnou et al., 2003).

In Fig. 1b, we plot the same data shown in Fig. 1a, but now 
in the diffusion-free Nu∗–Ra∗

Q parameter space. Similar to Fig. 1a, 
data at a given Ekman number follow a power law scaling of:

Nu∗ = c2Ra∗α∗
Q (single E scaling) . (14)

This α∗ slope is a diffusion-free analogue to the α-slope in Fig. 1a. 
The composite fit over multiple Ekman numbers here is described 
by:

Nu∗ = c3Ra∗β∗
Q (multiple E, composite scaling) . (15)

This is denoted by the wide dashed line, analogous to the β-fit in 
Fig. 1a. In contrast to Fig. 1a, the data appear to collapse to a single 
trend in Nu∗–Ra∗

Q space and are well-described by β∗ = 0.63, with 
an R2 value of 0.98.

Fig. 1a shows that, in Nu–Ra space, the onset of convection 
occurs at a fixed Nu = 1 value regardless of the Racrit value. In 
contrast, the onset value of the modified Nusselt number varies as 
a function of E and Pr. Since Nu − 1 = 0 at onset, the onset of con-
vection cannot be directly plotted in Nu∗–Ra∗

Q space. However, the 
onset scaling properties can be expressed as:

Nu|∗crit ∼ EPr−1 ,

RaQ |∗crit ∼ Racrit E3Pr−2 ∼ E5/3Pr−2 .

The majority of dynamo models included for this study are carried 
out at a fixed Pr = 1, giving:

Nu|∗crit ∼ E , RaQ |∗crit ∼ E5/3

→ Nu|∗crit ∼ (RaQ |∗crit)
3/5 . (16)

We see in this Nu∗–Ra∗
Q relationship that this corresponds to 

β∗
crit = 3/5 = 0.6 (Aurnou, 2007). Therefore, we predict that a vis-

cous onset scaling, following this β∗
crit trend, will be apparent in 

all heat transfer plots using diffusion-free parameters. The viscous 
onset trend (16) is represented by the solid line in Fig. 1b.

3. Geometric scaling effects in diffusion-free parameter space

The composite best-fit slope in Nu–Ra space, β , appears effec-
tively meaningless for describing the data, while the composite 
best-fit slope in Nu∗–Ra∗β∗

Q appears to describe an overall trend in 
the data. The distinction between these two slopes is troubling be-
cause both are arrived at through the same argument and should 
therefore explain the same physical phenomena. We demonstrate 
here that, rather than conveying a physic argument, the goodness 
of fit of the composite scaling, β∗ , is a geometric effect introduced 
by the usage of diffusion-free parameters. In particular, converting 
data to diffusion-free parameter space causes them to be flattened 
and stretched along the onset scaling slope, β∗

crit = 0.6, causing the 
onset scaling itself to appear as a good fit for all of the data.

In Fig. 2, we show composite fit values, β∗ , to synthetic datasets
that include differing numbers of E-datasets. The filled squares 
denote E-datasets with slope values fixed at α = 3.5 and the hol-
low diamonds denote E-datasets with rather disparate slope val-
ues fixed at α = 0.5. Each E-dataset contains ten equidistant data 
points between Nu = 1 and Nu = 10. As the number of E-datasets 
increases, the value of the composite scaling trend β∗ quickly ap-
proaches the onset slope of 3/5, regardless of the α∗ value. The β∗
values collapse to within 10% of the onset scaling exponent once 
Fig. 2. Composite fit scaling exponent in diffusion-free parameter space, β∗ , plotted 
versus the number of Ekman number datasets (a.k.a. “shingles”) included in the 
fit. ‘Number of E-datasets = 1’ is associated with a single dataset at E = 3 × 10−4. 
Each dataset contains ten evenly-spaced data points in the range 1 < Nu < 10 and 
each additional dataset decreases in Ekman value, down to E = 10−8 for the tenth 
dataset. The colors of the bullet points correspond to the minimum E value included 
in the fit. The filled squares represent a Nu–Ra scaling exponent of α = 3.5 while 
the hollow diamonds represent a Nu–Ra scaling exponent of α = 0.5 (corresponding 
to fixed α∗ values of 0.86 and 0.47, respectively). As more Ekman numbers are 
considered in the fit, the associated β∗ values approach the onset value of 0.6. The 
inset shows the same data in diffusive parameter space, plotted as composite fit 
scaling β versus number of E-datasets included in the fit. Just like in diffusion-free 
space, the β values approach the onset value, 0 in this case, as more E-datasets 
are included. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

five or more E-datasets are included in the fit. The inset demon-
strates that exactly the same behavior is true for β in Nu–Ra space: 
just as in the diffusion-free case, the composite fit quickly ap-
proaches the onset scaling exponent of 0, regardless of the α value. 
This demonstrates that the diffusion-free heat transfer trend β∗ is 
just a stretched, rotated version of the diffusive composite trend β . 
Neither β or β∗ , though, are meaningful; the physically relevant 
heat transfer information resides in the scaling exponents α.

Now let us compare the behaviors of α versus α∗ . In Fig. 1a, 
the synthetic data span a total of � 3 orders of magnitude in Ra
and � 1 order of magnitude in Nu. In Fig. 1b, the same data span 
� 5 orders of magnitude in Ra∗

Q and � 3 orders of magnitude in 
Nu∗ . This difference is primarily explained by the strong viscous 
onset trend. However, there is an important secondary “flattening” 
effect due to the relationship between α and α∗ . While the two 
α values in Fig. 2 differ by a factor of 7, the associated α∗ values 
only differ by a factor of 1.8. For sufficiently high Nu, such that 
Nu − 1 ≈ Nu, the value of α∗ is directly related to α:

Nu∗ ∼ Nu ∼ Raα , Ra∗α∗
Q ∼ (NuRa)α

∗ ∼ Ra(α+1)α∗ ;
Nu∗ ∼ Ra∗α∗

Q → α = α∗ (α + 1)

→ α∗ = α

α + 1
. (17)

Fig. 3 plots the relationship given in (17) over the range α =
(0 to 10). The plot demonstrates that for any value of α, the asso-
ciated value of α∗ will necessarily exist in the range [0; 1]. The red 
dashed lines indicate α∗ = β∗

crit = 3/5 and the corresponding value 
of α = 3/2. For all α < 3/2, α∗ is smaller than β∗

crit leading to shin-
gles with shallower slopes than the onset scaling. For all α > 3/2, 
α∗ is greater than β∗

crit leading to shingles with steeper slopes than 
the onset scaling. Thus, for steep slopes such as α = 3.5 observed 
in rotating convection experiments (Cheng et al., 2015), differences 
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Fig. 3. Plot of the slope of an E-dataset in Nu∗–Ra∗
Q space (α∗) versus the slope of an E-dataset in Nu–Ra space (α). These slopes are related by α∗ = α/(α + 1). The red 

dashed lines demarcate the slope of the onset scaling, α∗ = β∗
crit = 3/5, and the corresponding scaling in diffusive parameters, α = 1.5.
Fig. 4. Schematic showing the ‘shingling’ effect that occurs when heat transfer data 
are plotted in diffusion-free parameter space. The roof slope is analogous to the 
viscously controlled onset scaling given in (16). The shingles each represent a dif-
ferent E-dataset. The slope of an individual shingle is analogous to α∗ . The best-fit 
slope through a number of shingles is analogous to the composite fit β∗ . When 
enough shingles are included in the fit, the slope of each shingle has no effect on 
the overall composite slope. The composite fit therefore approaches the slope of 
the roof. This is analogous to the way in which the diffusion-free data must ap-
proach the viscously-controlled onset scaling (16) given a sufficiently large number 
of E-datasets.

in α are significantly less pronounced when converted to α∗ . We 
refer to this as the “flattening” effect on heat transfer data when 
converting from diffusive to diffusion-free parameter space.

Fig. 4 schematically illustrates the essential diffusion-free be-
haviors that arise in Figs. 1b and 2. Plotting heat transfer data in 
diffusion-free parameter space results in an effect we call “shin-
gling.” The roof of a house is used as an analogy to demonstrate 
this effect. The slope of the roof corresponds to the onset scal-
ing Nu|∗crit ∼ (RaQ |∗crit)

β∗
crit . The slopes of the shingles on the roof, 

analogous to α∗ , differ from the roof slope. Importantly, the length 
of each shingle is significantly shorter than the total roof length. 
We describe the roof length using the maximum Ra value over the 
minimum Ra value over all E values, and the shingle length using 
the maximum Ra value over the minimum Ra value for a single 
E value. For the full range of data in Fig. 1, Ramax/Ramin = 380. In 
contrast, for each individual E-dataset shingle, Ramax/Ramin < 10. 
In addition, the flattening effect described in (17) causes each shin-
gle to lie flat against the roof. With a large number of flat, short 
shingles lining the roof, the overall observed slope corresponds 
to only the slope of the roof, even though the physically signifi-
cant quantity is the slope of each shingle. Thus, the shingling and 
flattening effects, which are inherent to the diffusion-free repre-
sentation, obscure the physically relevant scalings in favor of the 
onset scaling.

It is important to note, following Julien et al. (2012a), that the 
heat transfer can indeed be argued to be free of the effects of fluid 
diffusivities should the α value asymptote to 3/2 as the data ap-
proach extreme parameter values (e.g., E → 0 and Ra 
 Racrit). 
However, this behavior is not yet found in present day dynamo 
data (see Fig. 5b below) or rotating convection data (e.g., Stellmach 
et al., 2014; Aurnou et al., 2015; Cheng et al., 2015).

Summarizing Fig. 4, our shingling arguments imply that the 
viscous onset scaling controls the composite trend of the data in 
diffusion-free parameter space. Further, the flattening effect makes 
each E-dataset’s “shingle” appear to have roughly the same slope, 
homogenizing almost any data to appear nearly identical when 
represented in this way.

4. Dynamo data

In Fig. 5, we demonstrate that the flattening and shingling 
effects are responsible for the goodness of the composite fit of 
dynamo data in diffusion-free parameter space by plotting numer-
ical dynamo data from Christensen et al. (1999) and Christensen 
and Aubert (2006) using both diffusive parameters (Fig. 5a) and 
diffusion-free parameters (Fig. 5c).

The individual slopes, α, of the E-datasets vary significantly in 
diffusive parameter space (Fig. 5a). This is quantified in Fig. 5b: the 
slope α increases monotonically from 0.44 to 1.08 as the value of 
the Ekman number changes from 10−3 to 3 × 10−6. Comparable 
trends in α values are found in rotating convection data between 
E = 10−5 and 10−7 in water (Cheng et al., 2015).

In diffusion-free parameter space, these data conform closely 
to a single value of α∗ . In Fig. 5d the mean α∗ value is shown 
to be 0.53 with variance of <0.05. A composite fit of β∗ = 0.53
(R2 = 0.998) therefore appears appropriate for describing all the 
dynamo data. However, unlike the steepening scaling in Nu–Ra
space, the slopes in Nu∗–Ra∗

Q are all within 5% of 0.53. This 
demonstrates that essential scaling information, which is present 
in the diffusive representation, has been lost in the transition to 
diffusion-free parameter space due to the flattening and shingling 
phenomena described above. Because datasets that follow different 
scaling exponents are flattened to very similar values in diffusion-
free space, plotting these datasets together gives the impression of 
a single slope. Taking a composite fit to all these flattened datasets 
gives a β∗ value that is comparable to the onset scaling β∗

crit = 0.6
from (16).

The 12% difference between β∗ = 0.53 and β∗
crit = 0.6 exists be-

cause of the increasing minimum Nu value as E is decreased in 
Fig. 5a; each of Christensen and Aubert (2006)’s E-datasets begins 
at a higher value of Ra/Racrit . This is done in order to omit the 
shallow “tail” that occurs in spherical shell geometries near on-
set due to the convection not being space-filling (e.g., Gillet and 
Jones, 2006; Yadav et al., 2015). In Nu–Ra space, the total envelope 
of data slopes upward as Ra increases. Analogously, in Nu∗–Ra∗

Q
space, the total envelope of data slopes upward as Ra∗

Q decreases, 
leading to a shallower scaling and a smaller value of β∗ . Thus, the 
difference between the onset slope and the composite slope re-
ported in Christensen and Aubert (2006) is predictable based on 
geometric (versus physical) considerations.

5. Summary

In this study, we have shown that heat transfer, plotted in 
diffusion-free parameter space, is controlled by viscous diffusivity 
of the fluid, in qualitative agreement with the viscous length-scale 
arguments put forward in King and Buffett (2013). Irrespective of 



J.S. Cheng, J.M. Aurnou / Earth and Planetary Science Letters 436 (2016) 121–129 127
Fig. 5. Numerical dynamo heat transfer data from Christensen et al. (1999) and Christensen and Aubert (2006) plotted using diffusive (a, b) and diffusion-free (c, d) parameters. 
a) Nu versus Ra heat transfer data. b) Best fit scaling exponent α for each E-dataset (a.k.a. for each ‘shingle’). A clear trend in the value of α exists as the value of E decreases. 
c) Diffusion-free heat transfer Nu∗ vs. diffusion-free buoyancy forcing Ra∗

Q . Here, the data appear to align with a single composite slope, β∗ = 0.53. d) Best fit diffusion-free 
scaling exponent α∗ versus E−1. The identical data shown in Fig. 5b are strongly flattened in diffusion-free parameter space, following (17); the α∗-values show no significant 
variation as a function of E .
the input trend α found at each individual Ekman number, Fig. 2
demonstrates that the supposedly diffusion-free β∗ value must ap-
proach the viscously-controlled onset scaling value of 3/5, so long 
as sufficiently many Ekman numbers are included. Furthermore, 
since the 3/5 scaling is associated with the onset of rotating con-
vection, this may indicate that Lorentz forces only weakly affect 
the convection processes in Christensen and Aubert (2006)’s dy-
namo data (e.g., Soderlund et al., 2012, 2015). Thus, we stress 
that the β∗ scaling is hydrodynamic in nature and is controlled 
by the viscous onset of convection. This viscously-controlled be-
havior then contradicts the idea that the diffusion-free composite 
fit β∗ provides geophysically-relevant scaling information.

Since diffusion-free heat transfer data appears to collapse 
nearly perfectly (Fig. 5), it is argued that diffusivities have indeed 
dropped out of the problem. However, we have shown here that 
exactly the opposite is true: The diffusion-free β∗ trend instead re-
veals that this is the viscously-controlled onset trend for nonmag-
netic rotating convection. This raises a separate fundamental point, 
which is that by removing all diffusivities a priori from the parame-
ters, it becomes difficult, or even impossible, to test whether diffu-
sivities matter (cf. Julien et al., 2012a; Featherstone and Hindman, 
2015). Any scaling – even viscously-controlled onset – appears to 
result from a diffusion-free process if the starting assumption is to 
remove all the diffusivities from the control parameters.

Our findings are relevant to our interpretation and understand-
ing of present day dynamo modeling results. Our results demon-
strate that the viscous diffusivity, via the onset conditions, plays 
a key role in determining supposedly diffusion-free behaviors of 
the system. Thus, Christensen and Aubert (2006)’s diffusion-free 
heat transfer scalings are likely only valid in geophysical settings 
in which dynamo action is occurring very near to the onset of con-
vection (Ra � Racrit). However, our Ra/Racrit estimates in Table 2 do 
not support this contention. Instead, these estimates indicate that 
convection in dynamo-generating regions is strongly supercritical 
in most solar system bodies. Since presently-available dynamo data 
do not provide support for diffusion-free physics, it still remains 
to be determined under what conditions, if any, dynamo genera-
tion becomes free of fluid diffusivities. Next generation models that 
incorporate advanced dynamo physics (e.g., Calkins et al., 2015) 
and advanced parallelization capabilities (e.g., Nataf and Schaeffer, 
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2015) may prove capable of reaching the hypothesized diffusion-
free regime.
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