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Abstract. In 2011, Han and Ji proved addition-multiplication theorems for integer parti-
tions, from which they derived modular analogues of many classical identities involving
hook-length. In the present paper, we prove addition-multiplication theorems for the subset
of self-conjugate partitions. Although difficulties arise due to parity questions, we are al-
most always able to include the BG-rank introduced by Berkovich and Garvan. This gives us
as consequences many self-conjugate modular versions of classical hook-lengths identities
for partitions. Our tools are mainly based on fine properties of the Littlewood decomposition
restricted to self-conjugate partitions.
Keywords. Hook-length formulas, BG-ranks, Integers partitions, Littlewood decomposi-
tion, core partitions
Mathematics Subject Classifications. 05A15, 05A17, 05A19, 05E05, 05E10, 11P81

1. Introduction and notations

Formulas involving hook-length abound in combinatorics and representation theory. One illus-
trative example is the hook-length formula discovered in 1954 by Frame, Robinson and Thrall
[FRT54], stating the equality between the number fλ of standard Young tableaux of shape λ and
size n, and the number of permutations of {1, . . . , n} divided by the product of the elements of
the hook-lengths multisetH(λ) of λ, namely:

fλ =
n!∏

h∈H(λ)

h
·

A much more recent identity is the Nekrasov–Okounkov formula. It was discovered indepen-
dently by Nekrasov and Okounkov in their work on random partitions and Seiberg–Witten the-
ory [NO06], and by Westbury [Wes06] in his work on universal characters for sln. This formula

https://www.combinatorial-theory.org
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Figure 1.1: Ferrers diagram and some partition statistics.

is commonly stated as follows∑
λ∈P

q|λ|
∏

h∈H(λ)

(
1− z

h2

)
=
∏
k>1

(
1− qk

)z−1
, (1.1)

where z is a fixed complex number. This identity was later obtained independently by
Han [Han10], using combinatorial tools and the Macdonald identities for type At [Mac72].

Recall that a partition λ of a positive integer n is a non-increasing sequence of positive
integers λ = (λ1, λ2, . . . , λ`) such that |λ| := λ1 +λ2 + · · ·+λ` = n. The integers λi are called
the parts of λ, the number of parts ` being the length of λ, denoted by `(λ). The well-known
generating series for P can also be obtained by (1.1) with z = 0:∑

λ∈P

q|λ| =
∏
j>1

1

1− qj
. (1.2)

Each partition can be represented by its Ferrers diagram, which consists in a finite collection
of boxes arranged in left-justified rows, with the row lengths in non-increasing order. The Durfee
square of λ is the maximal square fitting in the Ferrers diagram. Its diagonal will be called the
main diagonal of λ. Its size will be denoted d = d(λ) := max(s|λs > s). As an example,
in Figure 1.1a, the Durfee square of λ = (4, 3, 3, 2), which is a partition of 12 of length 4, is
coloured in red.

For each box v in the Ferrers diagram of a partition λ (for short we will say for each box v
in λ), one defines the arm-length (respectively leg-length) as the number of boxes in the same
row (respectively in the same column) as v strictly to the right of (respectively strictly below) the
box v. One defines the hook-length of v, denoted by hv(λ) or hv, the number of boxes u such that
either u = v, or u lies strictly below (respectively to the right) of v in the same column (respec-
tively row). The hook-length multiset of λ, denoted byH(λ), is the multiset of all hook-lengths
of λ. For any positive integer t, the multiset of all hook-lengths that are congruent to 0 (mod t)
is denoted byHt(λ). Notice thatH(λ) = H1(λ). A partition ω is a t-core ifHt(ω) = ∅. In Fig-
ure 1.1b, the hook-lengths of all boxes for the partition λ = (4, 3, 3, 2) have been written in their
corresponding boxes and the boxes associated withH3(λ) shaded in red. In the example, we have
H(λ) = {2, 1, 4, 3, 1, 5, 4, 2, 7, 6, 4, 1} andH3(λ) = {3, 6}.

A rim hook (or border strip, or ribbon) is a connected skew shape containing no 2×2 square.
The length of a rim hook is the number of boxes in it, and its height is one less than its number
of rows. By convention, the height of an empty rim hook is zero.
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Recall from the work of Berkovich and Garvan [BG06] that the BG-rank of the partition λ,
denoted by BG(λ), is defined as follows. First fill each box in the Ferrers diagram of λ with
alternating ±1’s along rows and columns beginning with a “+1” in the (1, 1) position (see Fig-
ure 1.1c). Then sum their values over all the boxes. Note that all boxes belonging to the diagonal
of a Ferrers diagram are filled with a “+1”. For instance, the BG-rank of λ = (4, 3, 3, 2) is 0.

Let a and q be complex numbers such that |q| < 1. Recall that the q-Pochhammer symbol is
defined as (a; q)0 = 1 and for any integer n > 1:

(a; q)n = (1− a)(1− aq) . . . (1− aqn−1),

and (a; q)∞ =
∏
j>0

(1− aqj).

A classical bijection in partition theory is the Littlewood decomposition (see for instance
[JK81, Theorem 2.7.17]). Roughly speaking, for any positive integer t, it transforms λ ∈ P into
two components, namely the t-core ω and the t-quotient ν (see Section 2 for precise definitions
and properties):

λ ∈ P 7→ (ω, ν) ∈ P(t) × P t.
In [HJ11], Han and Ji underline some important properties of the Littlewood decomposition,
which enable them to prove the following multiplication-addition theorem.

Theorem 1.1. [HJ11, Theorem 1.1] Let t be a positive integer and set ρ1, ρ2 two functions defined
on N. Let ft and gt be the following formal power series:

ft(q) :=
∑
λ∈P

q|λ|
∏

h∈H(λ)

ρ1(th),

gt(q) :=
∑
λ∈P

q|λ|
∏

h∈H(λ)

ρ1(th)
∑

h∈H(λ)

ρ2(th).

Then we have∑
λ∈P

q|λ|x|Ht(λ)|
∏

h∈Ht(λ)

ρ1(h)
∑

h∈Ht(λ)

ρ2(h) = t
(qt; qt)

t
∞

(q; q)∞

(
ft(xq

t)
)t−1

gt(xq
t).

Note that Walsh and Warnaar in [WW20] also prove multiplication theorems giving rise to
hook-length formulas. They also prove interesting extensions regarding leg-length.

Theorem 1.1 gives modular analogues of many classical formulas. For instance, setting
ρ1(h) = 1 − z/h2 for any complex number z and ρ2(h) = 1, it provides the modular analogue
of the Nekrasov–Okounkov formula (1.1) originally proved in [Han10, Theorem 1.2]:∑

λ∈P

q|λ|x|Ht(λ)|
∏

h∈Ht(λ)

(
1− z

h2

)
=

(qt; qt)
t
∞

(xqt;xqt)t−z/t∞ (q; q)∞
. (1.3)

In the present work, we extend Theorem 1.1 to an important subset of P , namely the self-
conjugate partitions, and derive several applications regarding these. Recall that the
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conjugate of λ, denoted λ′, is defined by its parts λ′i = #{j, λj > i} for
1 6 i 6 `(λ). For instance in Figure 1.1, the conjugate of λ = (4, 3, 3, 2) is
λ′ = (4, 4, 3, 1). A partition λ is said to be self-conjugate if it satisfies λ = λ′.

We denote the set of self-conjugate partitions by SC. This subset of partitions has been of
particular interest within the works of Pétréolle [Pét15b, Pét15a] where two Nekrasov–Okounkov
type formulas for C̃ and C̃ˇ are derived. See also the work of Han–Xiong [HX19] or Cho–Huh–
Sohn [CHS20]. The already mentioned Littlewood decomposition, when restricted to SC, also
has interesting properties and can be stated as follows (see for instance [GKS90, Pét15b]):

λ ∈ SC 7→ (ω, ν̃) ∈ SC(t) × P t/2 if t even,
λ ∈ SC 7→ (ω, ν̃, µ) ∈ SC(t) × P(t−1)/2 × SC if t odd.

Indeed, as will be detailed in Section 2, in the particular case of self-conjugate partitions, ele-
ments of the t-quotient ν ∈ P t can be gathered two by two through conjugation (except ν((t−1)/2)
when t is odd), therefore yielding the above vectors ν̃ and (ν̃, µ).

As can be seen above, to provide an analogue of Theorem 1.1 for self-conjugate partitions,
the t even case is simpler to handle, therefore we first restrict ourselves to this setting. Never-
theless, it yields a slightly more general result than Theorem 1.1, as the BG-rank can be incor-
porated.

Theorem 1.2. Let t be a positive even integer and set ρ1, ρ2 two functions defined on N. Let ft
and gt be the formal power series defined as:

ft(q) :=
∑
ν∈P

q|ν|
∏

h∈H(ν)

ρ1(th)2,

gt(q) :=
∑
ν∈P

q|ν|
∏

h∈H(ν)

ρ1(th)2
∑

h∈H(ν)

ρ2(th).

Then we have∑
λ∈SC

q|λ|x|Ht(λ)|bBG(λ)
∏

h∈Ht(λ)

ρ1(h)
∑

h∈Ht(λ)

ρ2(h)

= t
(
ft(x

2q2t)
)t/2−1

gt(x
2q2t)

(
q2t; q2t

)t/2
∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞ .

Remark 1.3. Note that the functions ft and gt in Theorem 1.2 are close to the ones in Theo-
rem 1.1, the explanation is that when t is even, there is no additional self-conjugate partition µ
in the Littlewood decomposition.

We will derive several consequences of this result, including a new trivariate generating func-
tion for SC, new hook-length formulas, new modular versions of the Han–Carde–
Loubert–Potechin–Sanborn, the Nekrasov–Okounkov, the Bessenrodt–Bacher–Manivel, the
Okada–Panova, and the Stanley–Panova formulas. Among them, we highlight here the self-
conjugate version of (1.3).
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Corollary 1.4. For any complex number z and t an even positive integer, we have:∑
λ∈SC

q|λ|x|Ht(λ)|bBG(λ)
∏

h∈Ht(λ)

(
1− z

h2

)1/2
=
(
x2q2t;x2q2t

)(z/t−t)/2
∞

(
q2t; q2t

)t/2
∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞ .

As some combinatorial signs naturally appear in the work of Pétréolle regarding Nekrasov–
Okounkov type formulas for self-conjugate partitions, we will also prove a signed refinement of
Theorem 1.2 (see Theorem 5.2 in Section 5, which actually generalizes Theorem 1.2).

It is also possible to prove a result similar to Theorem 1.2 when t is odd; nevertheless more
difficulties arise due to the additional µ ∈ SC appearing in the Littlewood decomposition. How-
ever, as will be seen later, the subset of SC for which µ is empty, can be handled almost similarly
as for Theorem 1.2 (see Theorem 6.2 in Section 6). The interesting thing here is that this subset
of SC actually corresponds to partitions called BGt in [Ber21], which are algebraically involved
in representation theory of the symmetric group over a field of characteristic t when t is an odd
prime number.

This paper is organized as follows. In Section 2, we provide the necessary background and
properties regarding the Littlewood decomposition for self-conjugate partitions. Section 3 is
devoted to the proof of Theorem 1.2, together with some useful special cases. Many interesting
modular self-conjugate analogues of the above mentioned classical formulas are then listed and
proved in Section 4. In Section 5, our signed generalization of Theorem 1.2 is proved, and finally
in Section 6 we study the odd case.

2. Combinatorial properties of the Littlewood decomposition on self-conju-
gate partitions

In this section, we use the formalism of Han and Ji in [HJ11]. Recall that a partition µ is a
t-core if it has no hook that is a multiple of t. For any A ⊂ P , we denote by A(t) the subset
of elements of A that are t-cores. For example, the only 2-cores are the “staircase” partitions
(k, k − 1, . . . , 1), for any positive integer k, which are also the only SC 2-cores.

Let ∂λ be the border of the Ferrers diagram of λ. Each step on ∂λ is either horizontal or
vertical. Encode the walk along the border from the South-West to the North-East as depicted in
Figure 2.1: take “0” for a vertical step and “1” for a horizontal step. This yields a 0/1 sequence
denoted s(λ). The resulting word s(λ) over the {0, 1} alphabet:

• contains infinitely many “0”’s (respectively “1”’s) at the beginning (respectively the end),

• is indexed by Z,

• and is written (ci)i∈Z.

This writing as a sequence is not unique since for any k, sequences (ck+i)i∈Z encode the same
partition. Hence it is necessary for that encoding to be bijective to set the index 0 uniquely. To
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tackle that issue, we set the index 0 when the number of “0”’s on and to the right of that index is
equal to the number of “1”’s to the left. In other words, the number of horizontal steps along ∂λ
corresponding to a “1” of negative index in (ci)i∈Z must be equal to the number of vertical steps
corresponding to “0”’s of nonnegative index in (ci)i∈Z along ∂λ. The delimitation between the
letter of index−1 and the one of index 0 is called the median of the word, marked by a | symbol.
The size of the Durfee square is then equal to the number of “1”’s of negative index. Hence a
partition is bijectively associated by the application s to the word:

s(λ) = (ci)i∈Z = (. . . c−2c−1|c0c1c2 . . .) ,

where ci ∈ {0, 1} for any i ∈ Z, and such that

#{i 6 −1, ci = 1} = #{i > 0, ci = 0}.

Moreover, this application maps bijectively a box u of hook-length hu of the Ferrers diagram
of λ to a pair of indices (iu, ju) ∈ Z2 of the word s(λ) such that

• iu < ju,

• ciu = 1, cju = 0

• ju − iu = hu.

The following lemma will be useful in Section 5.

Lemma 2.1. Set λ ∈ P and s(λ) its corresponding word. Let u be a box of the Ferrers diagram
of λ. Let (iu, ju) ∈ Z2 be the indices in s(λ) associated with u. Then u is a box strictly above
the main diagonal in the Ferrers diagram of λ if and only if |iu| 6 |ju|.

Proof. Let u be a box and (i, j) ∈ Z2 the corresponding indices in s(λ) = (ck)k∈Z such that
ciu = 1 and cju = 0. Assume that iu and ju have the same sign. This is equivalent to the fact
that the hook defined by the sequence ciu . . . cju begins and ends on the same side of the median
of s(λ).

Then the box u associated with this hook is either below the Durfee square or to its right.
Hence u is below when iu and ju are negative as we also know that iu < ju, then |ju| < |iu|. If
u is to the right of the Durfee square, which is above the main diagonal of the Ferrers diagram,
then both iu and ju are nonnegative. This implies that |ju| > |iu|.

Now, if we consider the case iu < 0 6 ju, the box u is in the Durfee square. The sequences
ciu . . . c−1 of length |iu| and c0 . . . cju of length ju + 1 correspond to the number of steps before,
respectively after, the corner of the Durfee square. Moreover u is below the main diagonal if and
only if the number of steps before the Durfee square is greater or equal to the number of steps
after. Hence it is equivalent to |iu| > |ju|+ 1.

Now we recall the following classical map, often called the Littlewood decomposition (see
for instance [GKS90, HJ11]).
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λ′1 λ′2 λ′3 λ′4 λ′5 NENW

λ1

λ2

λ3

λ4
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0

0

1 1

11

1

1

Figure 2.1: ∂λ and its binary correspondence for λ = (5, 5, 3, 2).

Definition 2.2. Let t > 2 be an integer and consider:

Φt : P → P(t) × P t
λ 7→ (ω, ν(0), . . . , ν(t−1)),

where if we set s(λ) = (ci)i∈Z, then for all k ∈ {0, . . . , t − 1}, one has
ν(k) := s−1

(
(cti+k)i∈Z

)
. The tuple ν =

(
ν(0), . . . , ν(t−1)

)
is called the t-quotient of λ and

is denoted by quott(λ), while ω is the t-core of λ denoted by coret(λ).

Obtaining the t-quotient is straightforward from s(λ) = (ci)i∈Z: we just look at subwords
with indices congruent to the same values modulo t. The sequence 10 within these subwords
are replaced iteratively by 01 until the subwords are all the infinite sequence of “0”’s before the
infinite sequence of “1”’s (in fact it consists in removing all rim hooks in λ of length congruent to
0 (mod t)). Then ω is the partition corresponding to the word which has the subwords (mod t)
obtained after the removal of the 10 sequences. For example, if we take λ = (4, 4, 3, 2) and t = 3,
then s(λ) = . . . 001101|010011 . . .

s
(
ν(0)
)

= . . . 001|001 . . . s (w0) = . . . 000|011 . . . ,
s
(
ν(1)
)

= . . . 000|111 . . . 7−→ s (w1) = . . . 000|111 . . . ,
s
(
ν(2)
)

= . . . 011|011 . . . s (w2) = . . . 001|111 . . . .

Thus

s(ω) = . . . 000001|011111 . . .

and
quot3(λ) =

(
ν(0), ν(1), ν(2)

)
= ((1, 1),∅, (2)) , core3(λ) = ω = (1).
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The following properties of the Littlewood decomposition are given in [HJ11].

Proposition 2.3. [HJ11, Theorem 2.1] Let t be a positive integer. The Littlewood decomposi-
tion Φt maps bijectively a partition λ to

(
ω, ν(0), . . . , ν(t−1)

)
such that:

(P1) ω is a t-core and ν(0), . . . , ν(t−1)are partitions,

(P2) |λ| = |ω|+ t
t−1∑
i=0

|ν(i)|,

(P3) Ht(λ) = tH(ν),

where, for a multiset S,

tS := {ts, s ∈ S} and H(ν) :=
t−1⋃
i=0

H(ν(i)).

When t = 2, Han and Ji also obtain additional properties on BG-rank and some other statis-
tics. The first part of their Theorem 2.2 with respect to the BG-rank reads as follows.

Proposition 2.4. [HJ11, Theorem 2.2] When t = 2, the Littlewood decomposition Φ2 has the
further two properties:

(P4) BG(λ) =

{
`(ω)+1

2
if BG(λ) > 0,

− `(ω)
2

if BG(λ) 6 0.

Now we discuss the Littlewood decomposition for SC partitions. Let t be a positive integer,
take λ ∈ SC, and set s(λ) = (ci)i∈Z ∈ {0, 1}Z and (ω, ν) = (coret(λ), quott(λ)). Then we
have (see for instance [GKS90, Pét15a]):

λ ∈ SC ⇐⇒ ∀i0 ∈ {0, . . . , t− 1},∀j ∈ N, ci0+jt = 1− c−i0−jt−1
⇐⇒ ∀i0 ∈ {0, . . . , t− 1},∀j ∈ N, ci0+jt = 1− ct−(i0+1)−t(j−1) (2.1)

⇐⇒ ∀i0 ∈ {0, . . . , t− 1} , ν(i0) =
(
ν(t−i0−1)

)′ and ω ∈ SC(t).

Therefore λ is uniquely defined if its t-core is known as well as the bt/2c first elements
of its quotient, which are partitions without any constraints. It implies that if t is even, there
is a one-to-one correspondence between a self-conjugate partition and a pair made of one SC
t−core and t/2 generic partitions. If t is odd, the Littlewood decomposition is a one to one
correspondence between a self-conjugate partition and a triple made of one SC t−core, (t−1)/2
generic partitions and a self-conjugate partition µ = ν((t−1)/2). Hence the analogues of the above
theorems when applied to self-conjugate partitions are as follows.
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Proposition 2.5. [Pét15b, Lemma 4.7] Let t be a positive integer. The Littlewood decomposition
Φt maps a self-conjugate partition λ to

(
ω, ν(0), . . . , ν(t−1)

)
= (ω, ν) such that:

(SC1) the first component ω is a SC t-core and ν(0), . . . , ν(t−1)are partitions,

(SC2) ∀j ∈ {0, . . . , bt/2c − 1} , ν(j) =
(
ν(t−1−j)

)′
,

(SC ′2) if t is odd, ν((t−1)/2) =
(
ν((t−1)/2)

)′
=: µ,

(SC3) |λ| =


|ω|+ 2t

t/2−1∑
i=0

|ν(i)| if t is even,

|ω|+ 2t

(t−1)/2−1∑
i=0

|ν(i)|+ t|µ| if t is odd,

(SC4) Ht(λ) = tH(ν).

The setD(λ) = {h(i,i)(λ), i = 1, 2, . . . } is called the set of main diagonal hook-lengths of λ.
For short, we will denote h(i,i) by δi. It is clear that if λ ∈ SC, then D(λ) determines λ, and
elements of D(λ) are all distinct and odd. Hence, as observed in [CHS20], for a self-conjugate
partition λ, the set D(λ) can be divided into the following two disjoint subsets:

D1(λ) := {δi ∈ D(λ) : δi ≡ 1 (mod 4)},
D2(λ) := {δi ∈ D(λ) : δi ≡ 3 (mod 4)}.

We have the following result.

Lemma 2.6. For a self-conjugate partition λ, set r := |D1(λ)| and s := |D3(λ)|. Then

BG(λ) = r − s.

Proof. Set a1 > a2 > · · · > ar > 0 and b1 > b2 > · · · > bs > 0 integers such that:

D1(λ) = {4a1 + 1, . . . , 4ar + 1},
D2(λ) = {4b1 + 3, . . . , 4bs + 3}.

Let us consider a hook in the main diagonal of λ whose length is 4a + 1 for a nonnegative
integer a. Then its leg and arm are both of length 2a. As the BG-rank alternates in sign, we have
BG(4a+1) = 1. In the same way, we can observe that BG(4b+3) = −1 for any main diagonal
hook-length 4b+ 3 ∈ D2(λ). Hence

BG(λ) =
r∑
i=1

BG(4ai + 1) +
s∑
j=1

BG(4bj + 3) = r − s.

Remark 2.7. Note that as its diagonal is filled with “+1”, we can consider λ hook by hook. In
the following example are depicted two hooks of length congruent to 1 (mod 4) and 3 (mod 4)
respectively.



10 David Wahiche

+ − + −
−
+
−

(a) A hook of length 7 = 4× 1 + 3.

+ − + − +
−
+
−
+

(b) A hook of length 9 = 4× 2 + 1.

In the case t = 2, we can combine Lemma 2.6 and Proposition 2.4 (P4) to derive the
following additional result.

Proposition 2.8. The Littlewood decomposition Φ2 has the further property:

(SC5) BG(λ) = r − s =

{
`(ω)+1

2
if BG(λ) > 0,

− `(ω)
2

if BG(λ) 6 0.

3. Multiplication-addition theorems for self-conjugate partitions

In this section, we prove Theorem 1.2 stated in the introduction and we exhibit some interesting
special cases.

3.1. A preliminary result on BG-rank and SC(t)-core partitions

In order to prove Theorem 1.2, we will need the following result, which can be of independent
interest.

Proposition 3.1. For any positive even integer t, the generating series of SC(t)-core with pre-
scribed BG-rank is:∑

ω∈SC(t)

q|ω|bBG(ω) =
(
q2t; q2t

)t/2
∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞ .

Proof. For an integer k, let ct/2(k) be the number of t/2-core partitions of k. Following
[CHS20], define for a nonnegative integer m:

SC(m)(n) :=
{
λ ∈ SC(n) : |D1(λ)| − |D3(λ)| = (−1)m+1dm/2e

}
.

Setting p = 1 in [CHS20, proposition 4.7], we get that for any integer m > 0, the number of
self-conjugate t-core partitions ω such that |D1(ω)| − |D3(ω)| = (−1)m+1dm/2e is

sc
(m)
(t) (n) =

{
ct/2(k) if n = 4k + m(m+1)

2
,

0 otherwise.

To prove this, the authors define a bijection φ(m) in [CHS20, Corollary 4.6] between ω ∈ SC(m)
(t)

and κ ∈ P(t/2) with |ω| = 4|κ|+m(m+ 1)/2 and κ independent of m.
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Recall from Lemma 2.6 that BG(λ) = r − s = |D1(λ)| − |D3(λ)|. Therefore

m =

{
2 BG(λ)− 1 if BG(λ) > 0,

−2 BG(λ) if BG(λ) 6 0.

Hence the bijection φ(m) maps a t-core self-conjugate partition ω with BG-rank j to a
t/2-core partition independent of j. Then property (SC5) from Proposition 2.8 implies that
|ω| = j(2j − 1) + 4|κ| with κ independent of j. Therefore we deduce

∑
ω∈SC(t)

q|ω|bBG(ω) =
∞∑

j=−∞

bjqj(2j−1) ×
∑

κ∈P(t/2)

q4|κ|. (3.1)

Now we compute the sum over j. Recall that the Jacobi triple product [HS99] can be stated
as

+∞∑
j=−∞

(−1)jzjqj(j−1)/2 = (z; q)∞ (q/z; q)∞ (q; q)∞ .

Therefore, setting z = −bq and then replacing q by q4 in the above identity, yields

+∞∑
j=−∞

bjqj(2j−1) =
(
−bq; q4

)
∞

(
−q3/b; q4

)
∞

(
q4; q4

)
∞ . (3.2)

Finally, to complete the proof of Theorem 1.2, it remains to compute the generating function
of t/2-core partitions which is well-known (see [GKS90, Han10]). However we shortly recall
its computation. By direct application of the Littlewood decomposition, using (SC3) and the
generating series (1.2) for P where q is replaced by qt/2, we have for ω ∈ P(t/2):

∑
λ∈P

coret/2(λ)=ω

q|λ| = q|ω|
t/2−1∑
i=0

∑
ν(i)∈P

qt|ν
(i)|/2 =

q|ω|

(qt/2; qt/2)
t/2
∞

.

As by (1.2)
1

(q; q)∞
=
∑
λ∈P

q|λ| =
∑

ω∈P(t/2)

∑
λ∈P

coret/2(λ)=ω

q|λ|,

we derive ∑
ω∈P(t/2)

q|ω| =

(
qt/2; qt/2

)t/2
∞

(q; q)∞
. (3.3)

Replacing q by q4 in (3.3), and using (3.1) and (3.2), this proves Proposition 3.1.
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3.2. Proof of Theorem 1.2

Let t be a fixed positive even integer. Let ρ1 and ρ2 be two functions defined on N. First we will
compute the term ∑

λ∈SC
coret(λ)=ω

q|λ|x|Ht(λ)|bBG(λ)
∏

h∈Ht(λ)

ρ1(h)
∑

h∈Ht(λ)

ρ2(h), (3.4)

where ω ∈ SC(t) is fixed. Let us remark that for λ ∈ SC and ω = coret(λ), one has BG(λ) =
BG(ω). Indeed ω is obtained by removing from λ ribbons of even length t and these have BG-
rank 0. Hence (3.4) can be rewritten as follows

bBG(ω)q|ω|
∑
λ∈SC

coret(λ)=ω

q|λ|−|ω|x|Ht(λ)|
∏

h∈Ht(λ)

ρ1(h)
∑

h∈Ht(λ)

ρ2(h).

Hence using properties (SC3) and (SC4) from Proposition 2.5, this is equal to

bBG(ω)q|ω|
∑
ν∈Pt

qt|ν|x|ν|
∏

h∈H(ν)

ρ1(th)
∑

h∈H(ν)

ρ2(th), (3.5)

where |ν| :=
t−1∑
i=0

|ν(i)|.

The product part qt|ν|x|ν|
∏

h∈H(ν) ρ1(th) inside the sum over ν can be rewritten as follows

t/2−1∏
i=0

qt(|ν
(i)|+|ν(t−1−i)|)x|ν

(i)|+|ν(t−1−i)|
∏

h∈H(ν(i))

ρ1(th)
∏

h∈H(ν(t−1−i))

ρ1(th).

When t is even, as mentioned in the introduction, Proposition 2.5 (SC2) implies that the
t-quotient ν is uniquely determined by its first t/2 components, which are any partitions. It also
implies that |ν(i)| = |ν(t−1−i)| and H(ν(i)) = H(ν(t−1−i)) for any i ∈ {0, . . . , t/2− 1} because
sizes and hook-lengths multisets of partitions are invariant by conjugation. Therefore

qt|ν|x|ν|
∏

h∈H(ν)

ρ1(th) =

t/2−1∏
i=0

q2t|ν
(i)|x2|ν

(i)|
∏

h∈H(ν(i))

ρ21(th).

Moreover by application of Proposition 2.5 (SC2) and (SC4), the sum part
∑

h∈H(ν) ρ2(th)
in (3.5) is

t/2−1∑
i=0

 ∑
h∈H(ν(i))

ρ2(th) +
∑

h∈H(ν(t−1−i))

ρ2(th)

 = 2

t/2−1∑
i=0

∑
h∈H(ν(i))

ρ2(th).
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Therefore (3.5), and thus (3.4), become

2bBG(ω)q|ω|
t/2−1∑
i=0

 ∑
ν(i)∈P

q2t|ν
(i)|x2|ν

(i)|
∏

h∈H(ν(i))

ρ21(th)
∑

h∈H(ν(i))

ρ2(th)


×

∑
ν∈P

q2t|ν|x2|ν|
∏

h∈H(ν)

ρ21(th)

t/2−1

.

Hence we get:∑
λ∈SC

coret(λ)=ω

q|λ|x|Ht(λ)|bBG(λ)
∏

h∈Ht(λ)

ρ1(h)
∑

h∈Ht(λ)

ρ2(h)

= tbBG(ω)q|ω|
(
ft
(
x2q2t

))t/2−1
gt(x

2q2t).

To finish the proof, it remains to sum both sides over all SC(t)-core partitions ω and apply
Proposition 3.1.

3.3. Special cases

Here we list useful special cases of Theorem 1.2. First, by setting ρ2 = 1, we have the following
result.

Corollary 3.2. Set ρ1 a function defined on N, and let t be a positive even integer and ft be
defined as in Theorem 1.2. Then we have∑

λ∈SC

q|λ|x|Ht(λ)|bBG(λ)
∏

h∈Ht(λ)

ρ1(h)

=
(
ft(x

2q2t)
)t/2 (

q2t; q2t
)t/2
∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞ .

Proof. Take ρ2 = 1 in Theorem 1.2. This yields gt =
∑
ν∈P

|ν|q|ν|
∏

h∈H(ν)

ρ1(th)2. Therefore we

get

gt(x
2q2t) =

x

2

d

dx
ft(x

2q2t).

The right-hand side of Theorem 1.2 is then

t

2

(
ft(x

2q2t)
)t/2−1

x
d

dx
ft(x

2q2t)×
(
q2t; q2t

)t/2
∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞ ,

while its left-hand side becomes∑
λ∈SC

q|λ||Ht(λ)|x|Ht(λ)|bBG(λ)
∏

h∈Ht(λ)

ρ1(h).

We complete the proof by dividing both sides by x and integration with respect to x.
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Similarly, as when we take ρ1 = 1 in Theorem 1.2, then ft becomes the generating func-
tion (1.2) of P (with q replaced by x2q2t), we immediately derive the following special case.
Corollary 3.3. Set ρ2 a function defined on N and let t be a positive even integer and gt be
defined as in Theorem 1.2. Then∑

λ∈SC

q|λ|x|Ht(λ)|bBG(λ)
∑

h∈Ht(λ)

ρ2(h) = tgt(x
2q2t)

× (q2t; q2t)
t/2
∞

(x2q2t;x2q2t)t/2−1∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞ .

4. Applications

In [HJ11], Han and Ji derive from Theorem 1.1 modular versions of many classical identities for
partitions. In this section, we give self-conjugate modular analogues of most of them as conse-
quences of Theorem 1.2 and its corollaries. The specificity for SC is that we have to consider t
even in all this section. Nevertheless, our results are slightly more general than in [HJ11], as the
BG-rank can be included in our formulas, although this was only possible in [HJ11] for t = 2.

4.1. A generating function

Setting ρ1(h) = 1 in Corollary 3.2, we derive the following trivariate generating function for SC:

∑
λ∈SC

q|λ|x|Ht(λ)|bBG(λ) =
(q2t; q2t)

t/2
∞

(x2q2t;x2q2t)t/2∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞ .

If we take x = 1, we obtain the generating function with respect to the BG-rank for SC:∑
λ∈SC

q|λ|bBG(λ) =
(
−bq; q4

)
∞

(
−q3/b; q4

)
∞ .

4.2. Two classical hook-length formulas

Recall the following hook-length formulas:∑
λ∈P

q|λ|
∏
h∈H

1

h2
= exp(q), (4.1)

∑
λ∈P

q|λ|
∏
h∈H

1

h
= exp

(
q +

q2

2

)
. (4.2)

These formulas are direct consequences of the Robinson–Schensted–Knuth correspondence (see
for example [Sta99] p.324). Again, we can use Corollary 3.2 to find self-conjugate modular
versions for them. The difference between the case of P treated in [HJ11] and the case of self-
conjugate partitions is that now ρ1 is replaced by its square leading to applications with 1/h and
1/
√
h instead of 1/h2 and 1/h.

The modular SC version of (4.1) is as follows.
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Corollary 4.1. For t an even positive integer, we have:∑
λ∈SC

q|λ|x|Ht(λ)|bBG(λ)
∏

h∈Ht(λ)

1

h

=
(
q2t; q2t

)t/2
∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞ exp

(
x2q2t

2t

)
.

Proof. Taking ρ1(h) = 1/h in Corollary 3.2, we have by using (4.1):

ft(q) = exp
( q
t2

)
.

Setting x = 1 and comparing coefficients b0 on both sides of Corollary 4.1, we get:

∑
λ∈SC

BG(λ)=0

q|λ|
∏

h∈Ht(λ)

1

h
=

(q2t; q2t)
t/2
∞

(q4; q4)∞
exp

(
q2t

2t

)
.

Note that in [HJ11], a similar formula was given for P only when t = 2. By identification of the
coefficients of bjx2nq2tn+j(2j−1) on both sides of Corollary 4.1 and using (3.2) on the right-hand
side, we have for all integers j and all nonnegative integers n:∑

λ∈SC,λ`2tn+j(2j−1)
|Ht(λ)|=2n
BG(λ)=j

∏
h∈Ht(λ)

1

h
=

1

n!2ntn
.

The case j = 0 is the same result as Pétréolle ([Pét15b] Corollary 4.24):∑
λ∈SC,λ`2tn
|Ht(λ)|=2n

∏
h∈Ht(λ)

1

h
=

1

n!2ntn
,

as the conditions on λ in the summation necessarily imply by the Littlewood decomposition
that ω = ∅, which is equivalent to BG(λ) = 0.

Now we prove the following modular SC version of (4.2).

Corollary 4.2. For t an even positive integer, we have:∑
λ∈SC

q|λ|x|Ht(λ)|bBG(λ)
∏

h∈Ht(λ)

1

h1/2

=
(
q2t; q2t

)t/2
∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞ exp

(
x2q2t

2
+
x4q4t

4t

)
.

Proof. Take ρ1(h) = 1/h1/2 in Corollary 3.2. Then by direct application of (4.2), we have:

ft(q) = exp

(
q

t
+
q2

2t2

)
.
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Setting x = 1 and comparing coefficients b0 on both sides of Corollary 4.2, we derive:

∑
λ∈SC

BG(λ)=0

q|λ|
∏

h∈Ht(λ)

1

h1/2
=

(q2t; q2t)
t/2
∞

(q4; q4)∞
exp

(
q2t

2
+
q4t

4t

)
.

On the other hand, by comparing coefficients of q2tn+j(2j−1)x2nbj on both sides of Corol-
lary 4.2 and using (3.2) on the right-hand side, we have the following result, which is true for all
integers j and all positive integers n:

∑
λ∈SC

λ`2tn+j(2j−1)
|Ht(λ)|=2n
BG(λ)=j

∏
h∈Ht(λ)

1

h1/2
=

1

2n

bn/2c∑
k=0

1

k!(n− 2k)!tk
. (4.3)

As underlined by one of the reviewers, one can remark that the right-hand of (4.3) can be
actually rewritten as a Hermite polynomial. Indeed, for n a nonnegative integer, the Hermite
polynomial Hn can be defined as follows (see for instance [Ism05, Sze75]):

∀z ∈ C, Hn(z) :=

bn/2c∑
k=0

n!

k!(n− 2k)!
(−1)k(2z)n−2k.

Therefore (4.3) yields the following unusual expansion for this polynomial:

Hn

(
i
√
t

2

)
= (2i)ntn/2n!

∑
λ∈SC

λ`2tn+j(2j−1)
|Ht(λ)|=2n
BG(λ)=j

∏
h∈Ht(λ)

1

h1/2
. (4.4)

4.3. The Han–Carde–Loubert–Potechin–Sanborn formula

The following formula is an interpolation between (4.1) and (4.2) conjectured by Han in [Han09]
and proved by Carde–Loubert–Potechin–Sanborn in [CLPS08] :∑

λ∈P

q|λ|
∏
h∈H

1

h

1 + zh

1− zh
= exp

(
1 + z

1− z
q +

q2

2

)
. (4.5)

Here is a modular SC version of (4.5).

Corollary 4.3. For t an even positive integer, for any complex number z, we have:

∑
λ∈SC

q|λ|x|Ht(λ)|bBG(λ)
∏

h∈Ht(λ)

(
1

h

1 + zh

1− zh

)1/2

=
(
q2t; q2t

)t/2
∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞ exp

(
1 + zt

1− zt
x2q2t

2
+
x4q4t

4t

)
.
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Proof. Take ρ1(h) =
(

1
h
1+zh

1−zh

)1/2
in Corollary 3.2. By direct application of (4.5), we have:

ft(q) = exp

(
1 + zt

1− zt
q

t
+
q2

2t2

)
.

4.4. The Nekrasov–Okounkov formula

In [Pét15a], Pétréolle discovered and proved analogues of the Nekrasov–Okounkov formula (1.1)
for SC and DD (which is a slight deformation of SC). In his work, a sign appears combinato-
rially, which corresponds to the algebraic sign in the associated Littlewood formulas for Schur
functions [Lit40, 11.9.5 p.238]. Here it is possible to avoid the sign and only use (1.1) with
Theorem 1.2 to derive a modular SC version of Nekrasov–Okounkov type when t is even. This
is given in Corollary 1.4 that we prove below. In Section 5 we will prove refined versions of our
results which take the signs into account.

Proof of Corollary 1.4. Take ρ1(h) = (1− z/h2)1/2 in Corollary 3.2, we have by application
of (1.1):

ft(q) = (q; q)z/t
2−1

∞ .

The conclusion follows when this result is plugged in the right-hand side of Corollary 3.2.

By setting z = −c2/x2 and letting x→ 0, the left-hand side of Corollary 1.4 becomes:∑
λ∈SC

q|λ|bBG(λ)
∏

h∈Ht(λ)

c

h
.

On the right-hand side, the three first terms remain unchanged, while we can write for all j > 1:

(
1− x2jq2tj

)(z/t−t)/2
= exp

(
1

2

(
c2

tx2
+ t

)∑
k>1

x2jkq2tjk

k

)
,

therefore

(x2q2t;x2q2t)(z/t−t)/2∞ = exp

(
1

2

(
c2

tx2
+ t

)∑
k>1

x2kq2tk

k(1− x2kq2tk)

)

= exp

(
c2q2t

2t
+O(x2)

)
−−→
x→0

exp

(
c2q2t

2t

)
.

Therefore∑
λ∈SC

q|λ|bBG(λ)
∏

h∈Ht(λ)

c

h
=
(
q2t; q2t

)t/2
∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞ exp

(
c2q2t

2t

)
,

which is equivalent to the identity in Corollary 4.1.
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4.5. The Bessenrodt–Bacher–Manivel formula

The following formula deals with power sums of hook-lengths. Its proof is based on a result due
to Bessenrodt, Bacher and Manivel [Bes98, BM02] which provides a mapping, for any couple
of positive integers j < k, the total number of occurrences of the part k among all partitions
of n to the number of boxes whose hook-type is (j, k − j − 1). In [HJ11], Han and Ji explain
that this result can be embedded in the following generalization, which is true for any complex
number β: ∑

λ∈P

q|λ|
∑
h∈H

hβ =
1

(q; q)∞

∑
k>1

kβ+1 qk

1− qk
. (4.6)

The modular SC version of (4.6) takes the following form.

Corollary 4.4. For any complex number β and t an even positive integer, we have:∑
λ∈SC

q|λ|x|Ht(λ)|bBG(λ)
∑

h∈Ht(λ)

hβ

=
(q2t; q2t)

t/2
∞

(x2q2t;x2q2t)t/2∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞

∑
k>1

(tk)β+1 x2kq2kt

1− x2kq2kt
.

Proof. Take ρ2(h) = hβ in Corollary 3.3 and then use (4.6) to compute:

gt(q) =
tβ

(q; q)∞

∑
k>1

kβ+1 qk

1− qk
.

4.6. The Okada–Panova formula

The following formula is the generating function form of the Okada–Panova formula, which was
conjectured by Okada and proved by Panova in [Pan12]:

∑
λ∈P

q|λ|
∏
h∈H

1

h2

∑
h∈H(λ)

r∏
i=1

(
h2 − i2

)
= C(r)qr+1 exp(q), (4.7)

where
C(r) :=

1

2(r + 1)2

(
2r

r

)(
2r + 2

r + 1

)
.

To find a modular SC version of (4.7), we want to use Theorem 1.2 with ρ1(h) = 1/h and

ρ2(h) =
r∏
i=1

(
h2 − i2

)
. Recall from [HJ11] that:

fα(q) :=
∑
λ∈P

q|λ|
∏

h∈H(λ)

1

(αh)2
= exp

( q
α2

)
. (4.8)
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We also define as in [HJ11]:

gα(q) :=
∑
λ∈P

q|λ|
∏
h∈H

1

(αh)2

∑
h∈H(λ)

r∏
i=1

(
(αh)2 − i2

)
.

In order to evaluate gα(q), Han and Ji introduce the polynomials defined by the following
relations:

Br,0(α) =
r∏
j=1

(
α2 − j2

)
,

Br,k(α) =
[
α2 (k + 1)2 − r2

]
Br−1,k(α) + α2Br−1,k−1(α) for k ∈ {1, . . . , r − 1},

Br,r(α) = α2r.

This enables them to rewrite gα(q) in [HJ11, Proposition 8.2] as:

gα(q) = exp
( q
α2

) r∑
k=0

Br,k(α)C(k)
( q
α2

)k+1

. (4.9)

We prove the following modular SC version of (4.7).

Corollary 4.5. For any positive integer r and t an even positive integer, we have:

∑
λ∈SC

q|λ|x|Ht(λ)|bBG(λ)
∏

h∈Ht(λ)

1

h

∑
h∈Ht(λ)

r∏
i=1

(
h2 − i2

)
= t
(
q2t; q2t

)t/2
∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞

× exp

(
x2q2t

2t

) r∑
k=d(r−t+1)/te

Br,k(t)C(k)

(
x2q2t

t2

)k+1

.

Proof. Take ρ1(h) = 1/h and ρ2(h) =
r∏
i=1

(
h2 − i2

)
in Theorem 1.2 andα = t in (4.8) and (4.9)

to rewrite ft and gt, respectively.

4.7. The Stanley–Panova formula

Panova and Stanley proved the following formula [Pan12, Sta10]:

n!
∑
λ`n

∏
h∈H(λ)

1

h2

∑
h∈H(λ)

h2k =
k∑
i=0

T (k + 1, i+ 1)C(i)
i∏

j=0

(n− j) (4.10)

where T (k, i) is a central factorial number [Sta99, ex.5.8] defined for k > 1 and i > 1 by:

T (k, 0) = T (0, i) = 0, T (1, 1) = 1,

T (k, i) = i2T (k − 1, i) + T (k − 1, i− 1) for (k, i) 6= (1, 1).



20 David Wahiche

By setting ρ1(h) = 1/(αh) and ρ2(h) = (αh)2k, we have as in (4.8)

fα(q) =
∑
λ∈P

q|λ|
∏

h∈H(λ)

1

(αh)2
= exp

( q
α2

)
, (4.11)

and by using (4.10)

gα(q) =
∑
λ∈P

q|λ|
∏
h∈H

1

(αh)2

∑
h∈H(λ)

α2kh2k

= α2k exp
( q
α2

) k∑
i=0

T (k + 1, i+ 1)C(i)
( q
α2

)i+1

. (4.12)

Now we prove the following modular SC version of (4.10).

Corollary 4.6. For any positive integer k and t an even positive integer, we have:∑
λ∈SC

q|λ|x|Ht(λ)|bBG(λ)
∏

h∈Ht(λ)

1

h

∑
h∈Ht(λ)

h2k

= t2k+1
(
q2t; q2t

)t/2
∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞

exp

(
x2q2t

2t

) k∑
i=0

T (k + 1, i+ 1)C(i)

(
x2q2t

t2

)i+1

.

Proof. Take ρ1(h) = 1/h and ρ2(h) = h2k in Theorem 1.2 and α = t in (4.11) and (4.12) to
rewrite ft and gt, respectively.

5. Signed refinements

In [Pét15b], Pétréolle proved the following SC Nekrasov–Okounkov type formula similar
to (1.1), which stands for any complex number z:

∑
λ∈SC

δλq
|λ|

∏
u∈λ

hu∈H(λ)

(
1− 2z

huεu

)
=

(
(q2; q2)

z+1
∞

(q; q)∞

)2z−1

. (5.1)

Here, δλ and εu are signs depending on the partition λ, and the position of any box u in its
Ferrers diagram (written u ∈ λ in the above formula), respectively. If the Durfee square of λ has
size d, then one simply defines δλ:= (−1)d. Recall that this sign also has an algebraic meaning
regarding Littlewood summations for Schur functions indexed by partitions in SC. Next, for any
partition λ ∈ SC and a box u = (i, j) ∈ λ, εu is defined as −1 if u is a box strictly below the
diagonal of the Ferrers diagram and as 1 otherwise.

Our goal in this section is to prove a multiplication-addition theorem similar to Theorem 1.2
including the above signs. Nevertheless one can notice that for λ ∈ SC, we have actually



combinatorial theory 2 (2) (2022), #13 21

δλ = (−1)|λ|. Indeed, by Lemma 2.6 in Section 2 and by definition of the BG-rank, one has
|λ| ≡ r − s (mod 2); and moreover d = r + s by definition of D1(λ) and D3(λ). This means
that the sign δλ can readily be omitted, by replacing q by −q in formulas like (5.1) and their
modular analogues.

Recall that Lemma 2.1 allows to determine the position with respect to the main diagonal of
the Ferrers diagram, thanks to the correspondence between a box of λ and a pair of indices of
the corresponding word s(λ). Next, to include the sign ε, we will need a refinement of Proposi-
tion 2.3 (P3), which is an immediate consequence of the Littlewood decomposition: for λ ∈ P
and any box u ∈ λ with hook-length hu ∈ Ht(λ) (here t is any positive integer), there exists a
unique k ∈ {0, . . . , t − 1} and a unique box uk ∈ ν(k) such that hu = thuk , where huk is the
hook-length of uk in the partition ν(k). We will say that the box uk is associated to the box u.
We have the following result for self-conjugate partitions.

Lemma 5.1. Set λ ∈ SC, let t be a positive even integer. Set u ∈ λ such that hu ∈ Ht(λ). Then
the following properties hold true:

1. The box u does not belong to the main diagonal of λ.

2. The application u 7→ u′, where u′ is the symmetric of u with respect to the main diagonal
of λ, is well-defined on λ, bijective and satisfies hu′ = hu ∈ Ht(λ) and εu = −εu′ .

3. If uk and ul are the boxes associated to u and u′ respectively, then l = t− 1− k.

Proof. For any SC partition, all hook-lengths of boxes on the main diagonal are odd numbers.
As t is even, the result (1) follows.

Next (2) is a direct consequence of (1) and the definitions of SC and εu.
Finally, to prove (3) we need to explicit the bijection between the coordinates of a box of λ

and a pair of indices of the corresponding word s(λ) = (ci)i∈Z defined in Section 2. Let us
introduce the two following sets:

I := {i ∈ Z | ci = 1 and ∃j ∈ Z such that i < j, cj = 0},
J := {j ∈ Z | cj = 0 and ∃i ∈ Z such that i < j, ci = 1}.

By definition of s(λ), those sets are finite. Therefore one can write I = {i1, . . . , iλ1} and
J = {j1, . . . , jλ′1} such that the sequence (ia)a∈{1,...,λ′1} (resp. (jb)b∈{1,...,λ1}) is strictly increasing
(resp. strictly decreasing).

Let F (λ) be the Ferrers diagram of λ and define the application

Ψ : F (λ) → I × J
(x, y) 7→ (iy, jx).

Note that Ψ is injective by monotony of the sequences (ia) and (jb).
Recall that λ ∈ SC translates in terms of the associated word to:

cj = 1− c−1−j ∀j ∈ N. (5.2)
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This implies that |I| = λ′1 = |J | = λ1. Let ψ : I → ψ(I) be the application such
that ψ(im) := −1 − im. The aforementioned property actually guarantees that ψ(I) ⊂ J .
As |I| = |J |, we deduce that ψ is bijective. Moreover, as (ia)a∈{1,...,λ′1} is strictly increasing, we
derive that (ψ(ia)) is strictly decreasing and for any a ∈ {1, . . . , λ′1 = λ1}, we have ja = −1−ia.

Suppose that (iy, jx) ∈ Ψ(F (λ)) is such that iy ≡ k (mod t) and jx ≡ k (mod t).
By (2.1) and the bijectivity of ψ sending (ia) to (jb), we have that (ix, jx) ∈ Ψ(F (λ)) and
ix ≡ t− 1− k (mod t) and jy ≡ t− 1− k (mod t). As u′ has coordinates (ix, jy) and is as-
sociated to the box ul, we derive that l = t− 1− k, which concludes the proof.

5.1. A signed addition-multiplication theorem

We will now prove a generalization of Theorem 1.2 which includes the sign mentioned above.

Theorem 5.2. Set t an even integer and let ρ̃1, ρ̃2 be two functions defined on Z× {−1, 1}. Set
also ft(q), gt(q) the formal power series defined by:

ft(q) :=
∑
ν∈P

q|ν|
∏

h∈H(ν)

ρ̃1(th, 1)ρ̃1(th,−1),

gt(q) :=
∑
ν∈P

q|ν|
∏

h∈H(ν)

ρ̃1(th, 1)ρ̃1(th,−1)
∑

h∈H(ν)

(ρ̃2(th, 1) + ρ̃2(th,−1)) .

Then we have∑
λ∈SC

q|λ|x|Ht(λ)|bBG(λ)
∏
u∈λ

hu∈Ht(λ)

ρ̃1(hu, εu)
∑
u∈λ

hu∈Ht(λ)

ρ̃2(hu, εu)

=
t

2

(
ft(x

2q2t)
)t/2−1

gt(x
2q2t)

(
q2t; q2t

)t/2
∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞ .

Proof. The proof follows the same steps as the one of Theorem 1.2, but now (3.5) becomes

bBG(ω)q|ω|
∑
ν∈Pt

qt|ν|x|ν|
∏
u∈ν

ρ̃1(thu, εu)
∑
u∈ν

ρ̃2(thu, εu), (5.3)

where ω is in SC(t). The product part qt|ν|x|ν|
∏

u∈ν ρ̃1(thu, εu) inside the sum over ν can be
rewritten as follows

t/2−1∏
i=0

qt(|ν
(i)|+|ν(t−1−i)|)x|ν

(i)|+|ν(t−1−i)|
∏

h∈H(ν(i))

ρ̃1(th, 1)ρ̃1(th,−1).

Indeed, by Lemma 5.1, each box u ∈ ν(i), with 0 6 i 6 t − 1, is bijectively paired with a box
u′ ∈ ν(t−1−i) satisfying ρ̃1(thu′ , εu′) = ρ̃1(thu,−εu). The sum part

∑
u∈ν ρ̃2(thu, εu) in (5.3)

can be rewritten in a similar fashion. We leave the rest of the proof to the reader as the remaining
computations are similar to the ones used to prove Theorem 1.2.
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Note that Theorem 1.2 is a consequence of Theorem 5.2, by choosing
ρ̃1(a, ε) = ρ1(a) and ρ̃2(a, ε) = ρ2(a). Moreover by choosing ρ̃1 = 1 or ρ̃2 = 1, we have special
cases similar to Corollaries 3.2 and 3.3. However we will only highlight the case where ρ̃2 = 1,
as this one yields interesting consequences.

Corollary 5.3. Set ρ̃1 a function defined on Z × {−1, 1}, and let t be a positive even integer
and ft be defined as in Theorem 5.2. Then we have∑

λ∈SC

q|λ|x|Ht(λ)|bBG(λ)
∏
u∈λ

hu∈Ht(λ)

ρ̃1(hu, εu)

=
(
ft(x

2q2t)
)t/2 (

q2t; q2t
)t/2
∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞ .

5.2. Applications

We have applications similar to the ones obtained in Sections 4.1–4.7. However we only high-
light the cases concerning Sections 4.1–4.4, which are the most interesting in our opinion and
are all derived from Corollary 5.3.

First note that the generating series obtained with ρ̃1 = 1 is the same as the one in Section 4.1.
Next, when t is an even positive integer and λ ∈ SC, notice that∏

u∈λ
hu∈Ht(λ)

εu = (−1)|Ht(λ)|/2.

Therefore the specialization ρ̃1(a, ε) = 1/(aε) yields a hook-length formula equivalent to the one
in Corollary 4.1 when x is replaced by x

√
−1. Similarly, the specialization ρ̃1(a, ε) = 1/(aε)1/2

yields a hook-length formula equivalent to the one in Corollary 4.2 when x is replaced by x 4
√
−1.

Now the signed modular analogue of (4.5) is as follows.

Corollary 5.4. For t an even positive integer, for any complex number z, we have:

∑
λ∈SC

q|λ|x|Ht(λ)|bBG(λ)
∏
u∈λ

hu∈Ht(λ)

1

h
1/2
u

1 + εuz
hu
√
−1

1− εuzhu

=
(
q2t; q2t

)t/2
∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞ exp

(
1 + zt

1− zt
x2q2t

2
+
x4q4t

4t

)
.

Proof. Take

ρ̃1(a, ε) =
1

a1/2
1 + εza

√
−1

1− εza

in Corollary 5.3 and use the identity ρ̃1(a, 1)ρ̃1(a,−1) = (1+za)/(a(1−za)) and Formula (4.5)
to conclude.
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The signed modular SC analogue of the Nekrasov–Okounkov formula (1.1), which is actually
a modular analogue of (5.1), is the following.

Corollary 5.5. For any complex number z and t an even positive integer, we have:

∑
λ∈SC

q|λ|x|Ht(λ)|bBG(λ)
∏
u∈λ

hu∈Ht(λ)

(
1− z

huεu

)

=
(
q2t; q2t

)t/2
∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞

(
x2q2t;x2q2t

)(z2/t−t)/2
∞ .

Proof. Take ρ̃1(a, ε) = 1 − z/(aε) in Corollary 5.3, then use the identity
ρ̃1(a, 1)ρ̃1(a,−1) = 1− z2/a2 and (1.1) to conclude.

Note that taking b = 1 in the above formula, one gets Pétréolle’s result [Pét15b, Théo-
rème 4.22], in which q, y, z have to be replaced by −q, x, z/t, respectively.

By identifying coefficients on both sides of the previous formula, we get the following con-
sequence.

Corollary 5.6. For all positive integers n and all integers j, we have∑
λ∈SC,λ`2nt+j(2j−1)

BG(λ)=j

∏
h∈Ht(λ)

1

h

∑
h∈Ht(λ)

h2

2
=

1

2ntn−1(n− 1)!
(t+ 3n− 3). (5.4)

Proof. By Lemma 5.1, the left-hand side of Corollary 5.5 can be rewritten as follows∑
λ∈SC

q|λ|x|Ht(λ)|bBG(λ)
∏
u∈λ

hu∈Ht(λ)
εu=1

(
1− z2

h2u

)
. (5.5)

The left-hand side of (5.4) is the coefficient of q2tn+j(2j−1)x2nbj(−z2)n−1 in (5.5). Using the
following identity ∏

m>1

1

1− qm
= exp

(∑
k>1

qk

k(1− qk)

)
,

the right-hand side of Corollary 5.5 can be rewritten:

R =
(q2t; q2t)

t/2
∞

(x2q2t;x2q2t)t/2∞

(
−bq; q4

)
∞

(
−q3/b; q4

)
∞ exp

(
−z2

2t

∑
k>1

(x2q2t)k

k(1− (x2q2t)k)

)
.
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Thus, by also using (3.2), our desired coefficient is equal to[
q2tn+j(2j−1)x2nbj(−z2)n−1

]
R

=
[
q2tnx2n(−z2)n−1

] (q2t; q2t)
t/2
∞

(x2q2t;x2q2t)t/2∞ (q4; q4)∞
exp

(
−z2

2t

∑
k>1

(x2q2t)k

k(1− (x2q2t)k)

)

=
[
q2tnx2n

] 1

2n−1tn−1(n− 1)!

1

(x2q2t;x2q2t)t/2∞

(∑
k>1

(x2q2t)k

k(1− (x2q2t)k)

)n−1

=
[
q2tx2

] 1

2n−1tn−1(n− 1)!

(
1 +

t

2
x2q2t

)(
1

1− x2q2t
+

x2q2t

2 (1− (x2q2t)2)

)n−1
=

1

2n−1tn−1(n− 1)!

(
t

2
+

3(n− 1)

2

)
=

1

2ntn−1(n− 1)!
(t+ 3n− 3).

Corollary 5.6 could also be derived from Corollary 4.6 by setting k = 1 and comparing the
coefficients of q2tn+j(2j−1)x2nbj on both sides.

6. The odd case

In this section, we analyse the case where t is a positive odd integer. Recall that in this case the
Littlewood decomposition can be written as follows

λ ∈ SC 7→ (ω, ν̃, µ) ∈ SC(t) × P(t−1)/2 × SC. (6.1)

When t is odd, Formula (3.4) in [GKS90] gives a connection between the BG-rank of a
partition, and its t-quotient and its t-core. However the formula implies a dependence between
t-core and t-quotient, which is not convenient for multiplication-addition type theorems. This is
why we will formulate multiplication-addition type theorems without the BG-rank.

Moreover, because of the partition µ ∈ SC appearing in (6.1), more difficulties arise which
make a general result less elegant than in the even case. Even if it is possible to prove a gen-
eral odd analogue to Theorem 1.2 (without the BG-rank), formulas on self-conjugate partitions
would be required to derive interesting applications. These are, to our knowledge, missing in the
literature. This is why we will focus here on a subset of self-conjugate partitions for which µ is
empty, which, as will be explained, is algebraically interesting.

For a fixed positive odd integer t, let us define

BGt := {λ ∈ SC,Φt(λ) = (ω, ν) ∈ SC(t) × P t with ν((t−1)/2) = ∅}.

Note that λ is in BGt if and only if the partition µ is empty in (6.1). Following [Ber21], we
also define for an odd prime number p, the set of self-conjugate partitions with no diagonal
hook-length divisible by p:

BGp := {λ ∈ SC | ∀i ∈ {1, . . . , d}, p - h(i,i)}.
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Algebraically, this set yields interesting properties in representation theory of the symmetric
group over a field of characteristic p, see for instance [BG10, Ber21]. Combinatorially, it is
natural to extend this definition to a set BGt for any positive odd number t.

The following result explains the connection between the two above sets and is proved
in [BG10, Lemma 3.4] for any prime number p. Nevertheless, we give a proof here to gen-
eralize it to any positive odd integer t.

Lemma 6.1. For any positive odd integer t, we have:

BGt = BGt .

Proof. Take λ ∈ SC \ BGt. There exists (x, x) ∈ λ such that t | h(x,x). Recall that h(x,x) is
necessarily odd. Take m such that h(x,x) = t(2m + 1). Let (ix, jx) ∈ Z2 be the pair of indices
in s(λ) associated with the box (x, x). Then jx > 0 and ix < 0. Moreover, by (5.2), one has
ix = −jx − 1. As h(x,x) = jx − ix, we get h(x,x) = 2jx + 1. This yields 2jx + 1 = t(2m + 1).
Therefore we have

jx = tm+
t− 1

2
.

This implies that there exists a sequence “10” in the subword
(ckt+(t−1)/2)k∈Z = s(µ), where µ = ν((t−1)/2) is the partition uniquely defined by the Little-
wood decomposition. Hence µ 6= ∅ and therefore λ /∈ BGt.

Conversely, let λ ∈ SC \ BGt. So µ 6= ∅. Set s(λ) = (ck)k∈Z the corresponding word.
Remark that µ 6= ∅ is equivalent to the existence of i1 ∈ N such that cti1+(t−1)/2 = 0 and
c−ti1+(t−1)/2 = 0. This implies that there exists a hook of length t(2i1 + 1) which is on the main
diagonal of λ. Therefore λ /∈ BGt.

We now prove the following result which is the analogue of Theorem 5.2 for t odd, restricted
to the set BGt = BGt.

Theorem 6.2. Let t be a positive odd integer and set ρ̃1, ρ̃2 two functions defined on Z×{−1, 1}.
Let ft and gt be the formal power series defined in Theorem 5.2. Then we have

∑
λ∈BGt

q|λ|x|Ht(λ)|
∏
u∈λ

hu∈Ht(λ)

ρ̃1(hu, εu)
∑
u∈λ

hu∈Ht(λ)

ρ̃2(hu, εu)

= (t− 1)
(
ft(x

2q2t)
)(t−3)/2

gt(x
2q2t)

(q2t; q2t)
(t−1)/2
∞ (−q; q2)∞

(−qt; q2t)∞
.

Proof. The proof follows the same lines as the ones of Theorems 1.2 and 5.2 but
with b = 1. Here t is odd and the summation on the left-hand side is over partitions in BGt (there-
fore ν((t−1)/2) = µ = ∅), so the Littlewood decomposition shows that, in our situation, (5.3)
takes the form

q|ω|
∑

ν∈Pt−1

qt|ν|x|ν|
∏
u∈ν

ρ̃1(thu, εu)
∑
u∈ν

ρ̃2(thu, εu),
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where ω is a fixed t-core in BGt. Next we can transform the above expression by using Propo-
sition 2.5 and Lemma 5.1: although the latter was proved in the t even case only, it is possible
to extend it to t odd for partitions λ ∈ BGt, by noticing that a box u is on the main diagonal
of λ and satisfies hu ∈ Ht(λ) only if u is associated by the Littlewood decomposition to a box
in ν((t−1)/2) = µ, which is empty in our situation. Therefore we can proceed as in the proof of
Theorem 5.2, but the factor t in Theorem 5.2 now becomes t− 1.

The remaining part to finish the proof is the computation of the generating series of parti-
tions ω in BGt that are t-cores, that are partitions in the set BGt

(t). As remarked in [AO91], the
generating series of BGt is given by∑

λ∈BGt

q|λ| =
∏
k>1
t-2k+1

(1 + q2k+1) =
(−q; q2)∞

(−qt; q2t)∞
. (6.2)

By using Proposition 2.5 (SC3) of the Littlewood decomposition and the generating series (1.2)
for partitions, the left-hand side of (6.2) can be rewritten as

∑
ω∈BGt

(t)

q|ω|

(∑
ν∈P

q2t|ν|

)(t−1)/2

=
1

(q2t; q2t)(t−1)/2∞

∑
ω∈BGt

(t)

q|ω|.

Hence the generating series of BGt
(t) is

∑
ω∈BGt

(t)

q|ω| =
(q2t; q2t)

(t−1)/2
∞ (−q; q2)∞

(−qt; q2t)∞
.

The rest of the proof follows the exact same steps as for Theorem 1.2, without taking the BG-rank
into account.

Note that by taking ρ̃1(a, ε) = ρ1(a) and ρ̃2(a, ε) = ρ2(a) in the above result, we get an
analogue of Theorem 1.2 for t odd and b = 1, restricted to the set BGt = BGt.

We now derive applications of Theorem 6.2 in the same spirit as the ones proved in Sections 4
and 5, but for odd t. As the specializations are the same here, we do not give details for the proofs.

First, our bivariate generating function takes the form:∑
λ∈BGt

q|λ|x|Ht(λ)| =
(q2t; q2t)

(t−1)/2
∞ (−q; q2)∞

(x2q2t;x2q2t)(t−1)/2∞ (−qt; q2t)∞
.

Next, the odd analogues of Corollaries 4.1 and 4.2 for BGt are summarized in the following
result.

Corollary 6.3. For t a positive odd integer, we have:∑
λ∈BGt

q|λ|x|Ht(λ)|
∏

h∈Ht(λ)

1

h
=

(q2t; q2t)
(t−1)/2
∞ (−q; q2)∞

(−qt; q2t)∞
exp

(
(t− 1)

x2q2t

2t2

)
,
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and∑
λ∈BGt

q|λ|x|Ht(λ)|
∏

h∈Ht(λ)

1

h1/2

=
(q2t; q2t)

(t−1)/2
∞ (−q; q2)∞

(−qt; q2t)∞
exp

(
(t− 1)

(
x2q2t

2t
+
x4q4t

4t2

))
.

The odd version of Corollary 5.4 is as follows.

Corollary 6.4. For t a positive odd integer, for any complex number z, we have:

∑
λ∈BGt

q|λ|x|Ht(λ)|
∏
u∈λ

hu∈Ht(λ)

1

h
1/2
u

1 + εu
√
−1zhu

1− εuzhu

=
(q2t; q2t)

(t−1)/2
∞ (−q; q2)∞

(−qt; q2t)∞
exp

(
(t− 1)

(
1 + zt

1− zt
x2q2t

2t
+
x4q4t

4t2

))
.

Now the odd version of the modular signed Nekrasov–Okounkov type formula given in
Corollary 5.5 is given bellow.

Corollary 6.5. For t a positive odd integer, for any complex number z, we have:∑
λ∈BGt

q|λ|x|Ht(λ)|
∏
u∈λ

hu∈Ht(λ)

(
1− z

huεu

)

=
(q2t; q2t)

(t−1)/2
∞ (−q; q2)∞

(−qt; q2t)∞

(
x2q2t;x2q2t

)(t−1)(z2/t2−1)/2
∞ .

Finally, the odd analogues of Corollaries 4.4, 4.5 and 4.6 are given in the three results below.

Corollary 6.6. For any complex number β and t a positive odd integer, we have:

∑
λ∈BGt

q|λ|x|Ht(λ)|
∑

h∈Ht(λ)

hβ = (t− 1)
(q2t; q2t)

(t−1)/2
∞ (−q; q2)∞

(x2q2t;x2q2t)(t−1)/2∞ (−qt; q2t)∞

×
∑
k>1

(tk)β+1 k
x2kq2kt

1− x2kq2kt
.

Corollary 6.7. For any positive integer r and t a positive odd integer, we have:

∑
λ∈BGt

q|λ|x|Ht(λ)|
∏

h∈Ht(λ)

1

h

∑
h∈Ht(λ)

r∏
i=1

(
h2 − i2

)
= (t− 1)

(q2t; q2t)
(t−1)/2
∞ (−q; q2)∞

(−qt; q2t)∞

× exp

(
(t− 1)

(
x2q2t

2t2

)) r∑
k=d(r−t+1)/te

Br,k(t)C(k)

(
x2q2t

t2

)k+1

.
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Corollary 6.8. For any positive integer k and t a positive odd integer, we have:

∑
λ∈BGt

q|λ|x|Ht(λ)|
∏

h∈Ht(λ)

1

h

∑
h∈Ht(λ)

h2k = (t− 1)t2k
(q2t; q2t)

(t−1)/2
∞ (−q; q2)∞

(−qt; q2t)∞

× exp

(
(t− 1)

x2q2t

2t2

) k∑
i=0

T (k + 1, i+ 1)C(i)

(
x2q2t

t2

)i+1

.
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