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Efficient three-dimensional Laplace-Fourier domain acoustic wave 
simulations using discontinuous finite-difference meshes with 
embedded boundaries

Hussain AlSalem∗, University of California at Berkeley, Petr Petrov∗ and 
Gregory Newman, Lawrence Berkeley Lab, and James Rector, University of 
California at Berkeley

SUMMARY

We develop embedded boundary and discontinuous mesh methods to handle
arbirarily shaped topography and accurately simulate acoustic seismic wave 
propagation in Laplace-Fourier domain. The purpose of the embedded 
boundary method is to enhance accurate wave simulation near the surface 
and the discontinuous mesh method is used to achieve considerable savings 
in both computation time and memory savings relative to fixed mesh 
schemes.

FINITE DIFFERENCE MODELING

Introduction

In acoustic seismic modeling, the objective is to describe the propagation of 
waves through the earth. Here, we consider wave propagation that is solved 
in the Laplace-Fourier Domain. We start by discretizing the three-
dimensional wave equation on a Cartesian grid xi,j,k = (ih, jh, kh) in space, 
where h > 0 is the grid size. We let the Laplace frequency be complex-
valued, s = σ + iω, consisting of a Laplace damping factor σ and the angular 
frequency ω. The solution to the forward problem is employed using a single 
frequency for 3D acoustic wave simulation (Hustedt et al., 2004). It is 
reduced from the 3D elastic wave field simulator developed by Petrov and 
Newman (2012). Most of the methods that have been developed for wave 
modeling in the frequency domain (see Lysmer and Drake (1972); Marfurt 
(1984); Pratt and Worthington (1990); Zahradník and Urban (1984); Jo et al. 
(1996); Štekl and Pratt (1998); Hustedt et al. (2004); Operto et al. (2007)) 
are based on solving the acoustic wave equation by the finite-difference 
method: on a uniform grid, the finite-difference methods provide an excellent
compromise between accuracy and computational efficiency.

Governing Equations

We consider the first-order hyperbolic system in a velocity-pressure 
formulation in the Laplace-Fourier domain. Let the 3D isotropic acoustic 
medium with density ρ and incompressibility κ occupy the region Ω. The 
equations of motion inside Ω are given by:



where s is the complex number given by σ+iω, σ is the Laplace damping 
factor, ω is the angular frequency, and . The velocities vx, vy and vz 
are the velocity wavefield components, P is the acoustic pressure, m is 
seismic moment density tensor, and the symbols ∂x, ∂y, and ∂z denote the 

partial differential operators  respectively. The Laplace-Fourier 
equations of motion (equation 1) are obtained by transforming the time-
domain system of equations (Virieux, 1986) using the following Laplace-
Fourier transform:

where g(t) includes the functions vx (t), vy (t), vz (t), and P(t). 

For the numerical solution of equation 1, we used second and fourth order 
finite-difference schemes with 7 and 13 point stencils, respectively. This 
system of equations must be augmented with boundary conditions. In the 
case of infinite media, the non-reflecting condition for wavefield components 
is applied at the boundaries of region Ω. We used the perfectly matched 
layer (PML) boundary conditions (Hastings et al., 1996; Kim and Pasciak, 
2010). However, at a free-surface boundary, one needs to incorporate the 
following boundary:

EMBEDDED BOUNDARY METHOD

Introduction 

Special attention to the numerical treatment of the free-surface boundary for
topography is deserved because it does not follow naturally from a Cartesian
grid. For acoustic forward modeling, second-order finite-difference methods 
do not implicitly satisfy the free-surface condition as is the case with 
finiteelement methods. Accurately implementing the free-surface condition 
on an irregular interface is difficult due to the nonlocal nature of the finite-
difference schemes. It implies that acoustic velocities above the free-surface 
are required to compute the pressure at or immediately below the surface 
(Fichtner, 2011).

In this paper, we describe an embedded boundary method for the three-
dimensional acoustic wave equation with irregular free-surface boundary on 
a Cartesian grid. By computing pressure on either sides of the interface, we 



can satisfy a zero acoustic pressure at the free surface, yielding superior 
results compared to conventional implementations that model topography as
a staircase approximation. Bohlen and Saenger (2006) concluded that to 
model topography with a staircase method, more than 60 grid points per 
minimum wavelength are required in a second-order scheme to obtain 
acceptable results.

Theory

In simple topography settings, where the free surface is a flat plane that 
coincides with the top plane of the finite-difference grid, the free-surface 
boundary condition may be realized without staircasing error (Graves, 1996; 
Gottschammer and Olsen, 2001). However, when the free surface has a 
more complicated geometric structure, incorporating the free-surface 
boundary condition becomes more challenging because the finite-difference 
stencil will cross over the free surface as illustrated in Figure 1.

We consider a case where the free surface is immersed within a regular 
finite-difference grid and assume a homogeneous media around the 
boundary. The free surface can be defined by the equation:

We define grid nodes as interior nodes if they are inside the domain Ω and 
underneath the free-surface, as shown in Figure 1. Nodes outside the domain
of interest, i.e., above the free surface, are defined as exterior nodes, and 
points on the free-surface boundary are defined as boundary points. The 
ghost nodes are defined to be grid points outside the domain of interest but 
still being requested by stencils. For example, the second-order finite-
difference scheme with seven stencil points requires only one layer of nodes 
above the surface (Figure 1).



With the above definitions, the problem of free-surface boundary treatment 
becomes the problem of updating the wavefield at the ghost nodes such that
the wavefield at boundary points is forced to be zero according to the 
boundary condition in equation 3. Because we know the exact values of the 
pressure at the boundary, the boundary condition may be realized as 
extrapolation or interpolation of the wavefield from the interior nodes to the 
ghost nodes via the boundary points.

The value of the pressure at the ghost nodes may be defined by the method 
of images (Jackson, 2007; Griffiths, 2005):

For each ghost node Pg, we define a ghost mirror point Pg,m inside the surface 
medium. For planar or spherical boundaries, the relationship ensures the 
boundary condition is exact (Morse and Feshbach, 1954). For an arbitrary 
boundary, it becomes an approximation. However, when the distance 
between the ghost node and the boundary is small (about one or two grid 
spacings), the boundary may be considered as locally planar. In this case, we
can expect that equation 5 enforces equation 3 with good accuracy. Nodes 
above the ghost nodes that are not required by stencils are set to zero.

Ghost mirrors location 

To locate the position of the ghost mirror, we find the closest distance 
between each ghost node at (xg, yg, zg) and its interpolated surface f (x, y). 
By considering the normal vector from the surface and the vector between 
the closest point on the surface and ghost node, we get the following system
of non-linear equations:

By solving the system for x and y using the steepest-descent method, we 
attain the location of the closest point at the surface relative to the ghost 
node.

For a planar free surface, the distance ξR between Pg and the surface is 

equivalent to the distance  between Pg,m and the surface. However, if the 

surface is curved, the two distances (ξR and ) are not equal (see Figure 2).
Our algorithm accounts for curvature of the surface and corrects the location
of the ghost mirror Pg,m by assuming the free surface is spherical. Since we 
know the approximated topography f, we can find the mean radius for the 
curvature using:



where  is the normal to the local surface f (Spivak, 1981). Hence,  can 
be found by:

and the ghost node Pg is related to the ghost mirror Pg,m by:

where R is the radius of the curvature and a is the distance between the 
curvature origin and ghost node Pg. Assuming the surface is curved produces
marginally better results compared to assuming a planar surface.

DISCONTINUOUS MESH METHOD

Theory

In typical seismic models, the velocity and density tends to increase with 
depth. Thus, small cell sizes can be used at the top and and larger cell sizes 
can be used at deeper regions of the model. This issue can be partly 
addressed by varying the vertical cell sizes (∆z) with depth. However, lateral 
cell sizes (∆x and ∆y) are still constrained by the global minimum velocity 
(Pasalic et al., 2010).

We make x, y and z meshing to be discontinuous to take advantage of 
variations in velocity. Our approach divides the model into a number of 
regions, separated by horizontal planes (Figure 3). Within each region, ∆x, 
∆y, and ∆z are uniform and equal; however, they vary from region to region. 
In this way, discretization becomes a discontinuous function of depth.



Communication across region interfaces

Within each discontinuous region, the wave propagation calculations can be 
performed as for the uniform mesh. However, we clearly need to have some 
communication across the region interfaces (Figure 3). This can be done by 
simple trilinear interpolation across the relevant acoustic pressure values 
from one region to another. Hence, using finite difference, the wave 
propagation in Laplace-Fourier domain can be approximated by

where Ai is the forward modeling operator for region i, Ai,j is the interpolation 
operator from region j to region i, and Pi and Fi are the acoustic pressure and 
source function for region i, respectively.



The proposed discontinuous mesh finite-difference scheme is a flexible 
technique which brings significant savings in computational effort and 
memory requirements. However, certain constraints must be observed. The 
most important constraint is the number of communication layers across the 
region interfaces. For an N-th-order-finite-difference scheme, the 
communication will occur over 2N layers (planes for 3-D case) in z-direction 
to ensure minumum reflection from the interface.

NUMERICAL TESTS

Two experiments are performed to test the embedded boundary and 
discontinuous mesh methods on 3-D homogeneous velocity models. For the 
first experiment, we use second-order finite-difference embedded boundary 
scheme to test our embedded boundary method on the hill surface depicted 
in Figure 4. We compare a profile 50 m below the central line profile and 
implement a homogeneous media with velocity of 2250 m/s, density of 2300 
kg/m3, and uniform grid spacing of 50 m. The source is the Ricker-wavelet 

with a frequency of 2 Hz and damping  and is located at (x, y, z) = (1200, 
1200, 2600) m. For this experiment, spacing has been reduced for the 
staircase solution to demonstrate that when spacing is reduced for the 
staircase method, the higher resolution solution converges to the embedded 
boundary method solution with spacing 50 m (Figure 5).

The second experiment is performed on homogeneous velocity model, with a
velocity of 5000 m/s. The excitation is applied 20 m below and normal to the 
10° sloping free-surface. Mesh spacing discontinuously increases with depth 



in such a way as to ensure a minimum of 10 points per shortest wavelength. 

A Ricker wavelet with a frequency of 20 Hz and damping  is used as the 
source waveform. Observation points are placed 5 m below and normal to 
the sloping free-surface. The situation is depicted in Figure 6.

In the experiment, the discontinuous mesh with embedded boundary method
is applied on a second-order finite-difference scheme to calculate the 
pressure response at observation points. The acoustic pressure values 
corresponding to observation points are shown in Figure 7. The acoustic 
pressure values obtained by the analytical solution and discontinuous mesh 
with embedded boundary are compared. Overall, the mean error for the 
method is less than 5% (Figure 8).



CONCLUSIONS

We presented a discontinuous mesh with embedded boundary finite-
difference scheme for solution of the Laplace-Fourier acoustic wave 
equation. Our embedded boundary method uses a regular Cartesian grid 
system, which greatly simplifies mesh generation and omits the need to 
change our current finite-difference formalizations. The free-surface 
boundary is enforced at actual surface locations through the method of 
images, allowing for an accurate representation of an arbitrary free-surface 
geometry. The discontinuous mesh method is ideal for use in acoustic 
modeling with topography and full waveform inversion since it leads to 
considerable savings in both computation time and memory requirements. 
These savings are primarly due to a reduction in the total number of finite-
difference cells.
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