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ABSTRACT Cell motility in response to environmental cues forms the basis of many developmental processes in multicellular9

organisms. One such environmental cue is an electric field (EF), which induces a form of motility known as electrotaxis.10

Electrotaxis has evolved in a number of cell types to guide wound healing, and has been associated with different cellular11

processes, suggesting that observed electrotactic behaviour is likely a combination of multiple distinct effects arising from the12

presence of an EF. In order to determine the different mechanisms by which observed electrotactic behaviour emerges, and13

thus to design EFs that can be applied to direct and control electrotaxis, researchers require accurate quantitative predictions of14

cellular responses to externally-applied fields. Here, we use mathematical modelling to formulate and parametrise a variety of15

hypothetical descriptions of how cell motility may change in response to an EF. We calibrate our model to observed data using16

synthetic likelihoods and Bayesian sequential learning techniques, and demonstrate that EFs impact cellular motility in three17

distinct ways. We also demonstrate how the model allows us to make predictions about cellular motility under different EFs. The18

resulting model and calibration methodology will thus form the basis for future data-driven and model-based feedback control19

strategies based on electric actuation.20

SIGNIFICANCE Electrotaxis is attracting much interest and development as a technique to control cell migration due to

the precision of electric fields as actuation signals. However, precise control of electrotactic migration relies on an accurate

model of how cell motility changes in response to applied electric fields. We present and calibrate a parametrised stochastic

model that accurately replicates experimental single-cell data and enables the prediction of input–output behaviour while

quantifying uncertainty and stochasticity. The model allows us to quantify three distinct ways in which electric fields perturb

the motile behaviour of the cell. This model and the associated simulation-based calibration methodology will be central to

future developments in the control of electrotaxis.

INTRODUCTION21

Cell migration underpins key physiological processes central to developmental biology, as well as wound healing and tissue22

regeneration, and it plays a crucial role in invasive, metastatic cancers. There are ongoing efforts to intervene in and influence23

these phenomena to, for example, inhibit metastasis (1) or accelerate wound healing (2). However, the cellular processes driving24

collective migration are complex and multifaceted, deriving from diverse physical mechanisms and various external stimuli (3),25

making it challenging for researchers to accurately and robustly direct cell motility. Due to the ease with which electric fields26

can be controlled and applied to cells, research into the control of cell motility has recently focused on exploiting electrotaxis27
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(also known as galvanotaxis) (3–5). However, the precise effects of electric fields on intracellular processes and thus on cell28

motility are not fully understood, making quantitative predictions and control policy design impractical.29

Electrotactic cells have been observed to change their motile behaviour in response to the presence of a direct current (DC)30

electric field (EF) (3–7). Researchers seeking to control cell motility exploit this phenomenon by applying external electrical31

cues to cell populations (2, 4–9). The key advantages of using electrical cues to guide cell migration include the ability to exploit32

endogenous, evolved biological functionality to respond to precisely controllable DC EFs. This compares favourably to using33

chemoattractants to guide motility, since chemical signals experienced by the cell cannot be so precisely or flexibly controlled,34

especially dynamically, and chemoattractants are usually highly cell-specific. In contrast, light-directed motility allows for35

precise actuation signals. However, it requires sophisticated optogenetic manipulations of the cell population under control (10).36

As such, EFs provide a relatively precise and simply implemented actuation signal to achieve specified motile behaviours.37

While an important strength of electrotactic cell control is that applying an EF for actuation is flexible enough to apply to38

any electrotactic cell type, the precise signal to be applied in order to achieve any specified goal needs to be carefully calibrated.39

At the most basic level, even the direction of migration within the same DC field has been shown to vary across different cell40

types, and within one cell type under different experimental conditions (5, 11). More broadly, a large number of biochemical41

and biophysical mechanisms have been implicated in the electrotactic response across different cell types (3). Each electrotactic42

mechanism, which may co-exist in combination at unknown relative strengths, may induce distinct observable effects on the43

dynamics of cellular motility. Overcoming this uncertainty in the observable electrotactic response is a fundamental challenge44

for designing EFs to control cell motility.45

Mathematical models are a vital tool for quantifiably specifying the different ways in which cells can change their motility in46

response to EFs (12–14). In this paper we describe a parametrised stochastic model of the motile behaviour of a single human47

corneal epithelial cell, in which the cell’s motility is driven by an internal polarity, in combination with the external influence of48

a DC EF. We assume that the cell can undergo both spontaneous and electrotactic polarisation. The model allows us to describe49

mathematically four distinct ways an EF may influence motility. We use experimentally observed trajectories of single cells,50

both with and without applied EFs, to calibrate the parameters of this model, thereby quantifying the extent to which different51

aspects of cell motility are impacted by the EF. The resulting calibrated model provides a vital first step towards being able to52

design feedback control policies and provide robustness guarantees, which are necessary if electrotaxis is to be used to control53

cell motility in practical applications such as wound healing or tissue engineering.54

Single-cell modelling55

The agent-based modelling framework used in this work follows standard modelling assumptions outlined in (13). Specifically,56

we model the evolution of the velocity of a single cell in the overdamped regime, so that cell velocity is proportional to the sum57

of non-frictional forces on the cell. We provide full details on the mathematical model in Materials and Methods and in the58

Supplementary Material.59

In the absence of any EF, the only non-frictional force acting on the cell is assumed to be an active force arising from60

the internal polarity of the cell. Thus, the cell velocity, v = vcell, is comprised of a single component. Based on qualitative61

observations of spontaneous cellular motility, we assume that the cell randomly switches between two states, depolarised or62

polarised. In the depolarised state, the velocity stochastically fluctuates around a zero modal value, such that ‖vcell‖ ≈ 0. In63

the polarised state, the modal values for the stochastic fluctuations of the velocity component are parametrised by ‖vcell‖ ≈ E,64

where the scalar-valued parameter E > 0 has dimensions µm min−1. In addition to the random changes in cell speed between65

depolarised and polarised states, the direction of cell motion (in the absence of an EF) is assumed to vary according to an66

unbiased random walk with positive diffusion constant � > 0, with dimensions min−1. Eq. (2) in Materials and Methods67

provides the mathematical formulation of this model.68

We hypothesise that a vector-valued DC EF, u, can affect cell motility in a variety of ways. We use a number of extensions69
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Quantifying the impact of EFs on single-cell motility

of the model in order to determine how motility is impacted by the EF, specifying, in particular, four distinct ways in which it70

may affect the dynamics of a motile cell. We parametrise the magnitude of each hypothesised electrotactic effect, observed71

at a reference EF strength of 200 mV mm−1, by the parameters W1, W2, W3 and W4, such that if W8 = 0 then the corresponding72

hypothesised effect is not included in the model. Eq. (3) in Materials and Methods provides the mathematical formulation of73

this model.74

The four means by which we model cell motility to be perturbed by the EF are:75

Velocity bias (W1) The EF imparts an additional component of force on the cell. The resulting velocity, v = vcell + vEF, is76

thus the sum of two components: the original polarity component, vcell, and an EF component, vEF. The EF velocity77

component acts in the direction of the field with magnitude W1E.78

Speed increase (W2) Polarised cells travel more quickly under the influence of an EF in the direction in which they are79

polarised. The modal magnitude of vcell for polarised cells is increased by W2E.80

Speed alignment (W3) Polarised cells travel more quickly when the direction of their polarisation aligns with the EF, but81

slower if opposed to the EF. The modal magnitude of vcell for polarised cells is increased by W3E cos(\), where \ is the82

angle between vcell (i.e. the polarity direction) and the EF direction.83

Polarity bias (W4) The random walk determining cell polarity is biased so that cells preferentially polarise in the direction of84

the EF. The strength of this bias is parametrised by W4.85

Two models can be distinguished: the autonomous model, where no EF is applied, and the electrotactic model, where a86

reference strength EF is applied. In each of these models, the cell velocity at time C, denoted v(C), undergoes a random walk.87

Figure 1 characterises each of these models by depicting the stationary probability distribution of this random walk. The top88

plot shows that, without an EF, the cell speed is most likely to be near zero or near E, with direction chosen uniformly at random.89

The bottom plot of this figure demonstrates how each electrotactic effect, quantified by the value of W8 for 8 = 1, 2, 3, 4, can90

be interpreted in terms of the probability distribution of the cell velocity: W1 translates the velocity distribution uniformly in91

the direction of the field; W2 rescales the domain of the distribution; W3 parametrises asymmetry in the shape of the velocity92

distribution; and W4 parametrises asymmetry in the density of the velocity distribution.93

[Figure 1 about here; moved to end of manuscript by endfloat.]94

Outline95

The primary goal of this work is to use single-cell experimental data to calibrate the parametrised mathematical model96

of spontaneous polarisation and electrotaxis. The model calibration process enables the identification of which of the four97

hypothesised electrotactic effects of EFs on cell motility can be observed in the experimental data. Importantly, the calibrated98

model also quantifies the relative contribution of each of these identified effects. In addition to the quantitative understanding of99

how electrotactic motility arises in cells, the calibrated model also allows us to simulate and predict the single-cell response to100

dynamic EFs.101

The data used for model calibration is gathered from two experiments in which the trajectories of motile human corneal102

epithelial cells are recorded (a) without any EF applied, and (b) with a DC EF at a reference strength of 200 mV mm−1, directed103

from left to right. These experiments are termed the autonomous and electrotactic experiments, respectively. We use these104

experiments in turn to first calibrate the parameters of the autonomous model and then the electrotactic model. To calibrate the105

electrotactic model, we first identify which of the four hypothesised electrotactic effects are supported by the data. Out of these106

identified electrotactic effects, we then proceed to quantify the relative contribution of each of them to the observed electrotaxis107

induced by the EF.108
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After formulating and calibrating the extended model of electrotaxis, we use simulations of the calibrated model to predict109

how the position and polarity of single cells evolve under the influence of different, dynamic EF inputs. The ability to make110

predictions using a calibrated, stochastic, uncertain model is a first step towards the future goal of model-based policy design111

for the electrotactic control of single-cell and population-level motility.112

MATERIALS AND METHODS113

Data collection114

Two experiments were carried out, which we call the autonomous and electrotactic experiments. In both experiments, time-lapse115

images of human corneal epithelial cells, seeded at a low density, were acquired at 5 min intervals over 3 h. In the electrotactic116

experiment, the cells were subjected to a DC EF at a reference strength, 200 mV mm−1, applied across the medium. In the117

autonomous experiment, no EF was applied. From the two resulting image sets, the positions of fifty cell centroids for each118

experiment were recorded over the entire time horizon. Visual confirmation from the raw experimental output confirms that cell119

collisions were rare, due to the low density (100 cells cm−2) at which cells are initially seeded. We thus assume that cell–cell120

interactions can be neglected in the current model. We denote the resulting cell trajectory data xNoEF,8 (C 9 ) and xEF,8 (C 9 ) for the121

autonomous and electrotactic experiments, respectively, where each trajectory is translated to begin at the origin, such that122

xNoEF,8 (0) = xEF,8 (0) = 0 for all 8. For each experiment, the index 8 = 1, . . . , 50 refers to the cell being traced, and C 9 = 5 9 min123

for 9 = 0, 1, . . . , 36 refers to the snapshot time points. We denote the entire set of data from each experiment as xNoEF and xEF,124

respectively.125

Materials126

EpiLife culture medium with Ca2+ (60 µM), EpiLife defined growth supplement, and penicillin/streptomycin were purchased127

from ThermoFisher Scientific (Waltham, MA, USA). FNC Coating Mix was purchased from Athena Enzyme Systems128

(Baltimore, MD, USA). Dow Corning high-vacuum grease was purchased from ThermoFisher. Agar was purchased from129

MilliporeSigma (Burlington, MA, USA). Silver wires with 99.999% purity were purchased from Advent Research Materials130

Ltd. (Oxford, United Kingdom).131

Cell culture132

Telomerase-immortalized human corneal epithelial cells (hTCEpi) were routinely cultured in EpiLife medium supplemented133

with EpiLife defined growth supplement and 1% (v/v) penicillin/streptomycin. Cells were incubated at 37 ◦C with 5% CO2 until134

they reached ∼70% confluence and were used between passages 55 and 65 for all cell migration assays.135

Electrotaxis assay136

Electrotaxis experiments were performed as previously described (15, 16) with minor changes. Briefly, electrotaxis chambers137

(2 cm x 1 cm) were constructed in 100 mm petri dishes with glass strips and high-vacuum grease. Chambers were coated138

with FNC Coating Mix, following the manufacturer’s instructions to facilitate cell attachment. Cells were seeded at a low139

density (100 cells cm−2) and cultured overnight (12 h to 18 h) in the chambers to allow sufficient attachment. Chambers were140

covered with glass coverslips and sealed with high-vacuum grease. Electric currents were applied to the chamber through141

agar-salt bridges connecting with silver–silver chloride electrodes in Steinberg’s solution (58 mM NaCl, 0.67 mM KCl and142

0.44 mM Ca(NO3)2, 1.3 mM MgSO4 and 4.6 mM Tris base, pH 7.4). Fresh cell culture medium (Epilife) was added into143

reservoirs to ensure good salt bridge contact and to support cell viability during electric stimulation. An EF strength of144

200 mV mm−1 was used, and field strengths were monitored at the beginning of the experiment and every 30 min afterwards to145
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ensure consistent EF application.146

Time-lapse imaging and quantification of cell migration147

Cell migration was monitored and recorded by phase-contrast microscopy using an inverted microscope (Carl Zeiss, Oberkochen,148

Germany) equipped with a motorized stage and a regular 10× objective lens. Time-lapse images were acquired at 5 min intervals149

using Metamorph NX imaging software (Molecular Device, Sunnyvale, CA, USA). To maintain standard cell culture conditions150

(37 ◦C, 5% CO2), a Carl Zeiss incubation system was used. Time-lapse images of cell migration were analyzed by using ImageJ151

software from the National Institutes of Health (http://rsbweb.nih.gov/ij/). Adherent cells in the images were manually152

tracked, and cells that divided, moved in and out of the field, or merged with other cells during the experiment were excluded153

from analysis. The position of a cell was defined by its centroid.154

Model construction155

We constructed a mathematical model of single-cell dynamics. The model tracks the position of the cell centre in the plane,156

x(C) ∈ R2, as a function of time, C ≥ 0 min, with initial condition x(0) = 0 at the origin. The position is a deterministic integral157

of cell velocity, v, such that158

dx(C) = v(C) dC, (1)

and the stochastic dynamics of v are modelled. The key to this modelling task is the non-dimensional internal variable159

representing the cell polarity, p(C) ∈ R2. We assume that the polarity imparts a force on the cell that corresponds to its active160

motility, resulting in a velocity component vcell (C).161

Modelling spontaneous polarisation and motility162

We first describe the model of cellular motility with no biasing EF, which we will term the autonomous model. The only velocity163

component is that due to polarisation, so that we write the cell velocity as a single component,164

v(C) = vcell (C) = Ep(C), (2a)

where the parameter E ≥ 0, with dimensions µm min−1, represents the modal magnitude of vcell for a polarised cell. Note that165

Eq. (2a) implies that the polarity variable, p, is a non-dimensionalisation of the velocity component vcell. We further assume166

that the polarity, p, undergoes a random walk according to a Langevin diffusion, such that167

dp(C) = −�∇, (p(C)) dC +
√

2� dB, (2b)

where B(C) ∈ R2 is a two-dimensional Wiener process, and the parameter � (in min−1) quantifies the speed at which the168

random walk approaches stationarity. The initial polarity, denoted p0 = p(0), also needs to be specified.169

The potential function , (p) in Eq. (2b) is defined to capture the intended features of the autonomous model, namely that170

cells stochastically spontaneously switch between polarised and depolarised states, and that the argument of the polarity is171

uniformly distributed, at stationarity. It can be shown (17, 18) that the transition rates between the polarised and depolarised172

states are determined by two non-dimensional energy barriers, denoted Δ,on and Δ,off . For further details on the definition173

of , , see the Supplementary Material. We will calibrate the autonomous model in Eq. (2) by identifying the parameters E and174

�, and also the two energy barriers, Δ,on/off , that are sufficient to determine the potential function, , .175
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Modelling motility bias due to an EF176

We use the vector u(C) with non-dimensional magnitude ‖u(C)‖ = D(C) to describe a (time-varying) DC EF of strength177

200D(C) mV mm−1, directed parallel to u(C). In particular, the EF used in the electrotactic experiment, with magnitude178

200 mV mm−1 in the positive G direction (left to right), is represented by the constant canonical unit vector, u(C) ≡ i, with179

constant (non-dimensional) magnitude D(C) ≡ 1. The autonomous model in Eq. (2) can be extended to include the four180

hypothesised effects of the EF. The velocity bias effect is accounted for by modelling the velocity using two components,181

v(C) = vcell (C) + vEF (C), (3a)

where the EF induces a deterministic velocity component in the direction of the field,182

vEF (C) = W1Eu(C). (3b)

The two hypothesised electrotactic effects of speed increase and speed alignment are both modelled through adapting the183

velocity component induced by the cell polarity, originally defined in Eq. (2a), into184

vcell (C) = (1 + W2D(C) + W3u(C) · p̂(C)) Ep(C), (3c)

where p̂ is the unit vector in the direction of the polarity, p. Finally, the hypothetical polarity bias effect is modelled in the185

stochastic evolution of the polarity variable p. We add a drift term proportional to the EF to the Langevin diffusion equation,186

such that187

dp(C) = −� [∇, (p(C)) − W4u(C)] dC +
√

2� dB, (3d)

where , (p) is the same potential function as used in Eq. (2b). As for the autonomous model, the initial value for the polarity,188

denoted p0 = p(0), is also required.189

Note that substituting u = 0 or setting W8 = 0 for all 8 = 1, 2, 3, 4 into Eq. (3) recovers the dynamics of the autonomous190

model, in Eq. (2). We will term the extended model in Eq. (3) the electrotactic model. It is parametrised by the four parameters191

E, Δ,on, Δ,off and �, with the same meaning and dimensions as in the autonomous model, and also by W8 for 8 = 1, 2, 3, 4,192

which, since u is non-dimensional, are all non-dimensional.193

The models in Eq. (2) and Eq. (3) result in a stochastic path for the velocity, v(C), with a parametrically determined stationary194

distribution. Following Eq. (1), each path can be integrated to produce a stochastic trajectory of the cell position over time. The195

stationary distributions of v under the autonomous and electrotactic models are depicted in Figure 1, where the polarised and196

depolarised regimes in both models can be identified. Furthermore, the effect of each of the parameters W8 , and hence each of197

the hypothesised electrotactic effects, can be identified by comparing the position, scale, and asymmetries of the two stationary198

distributions.199

Summarising simulations200

For any given set of parameter values, \ = (E,Δ,on,Δ,off , �, W1, W2, W3, W4), together with initial polarity, p0, and non-zero EF201

input, u(C), the stochastic model in Eq. (3) can be simulated. Note that, if the EF is zero, we simulate the autonomous model in202

Eq. (2). Each simulation produces a random trajectory, denoted l = (p(C), x(C))C≥0. We will use summary statistics to analyse203

the model outputs by mapping each simulated trajectory, l, to a number (or small set of numbers) that summarise the trajectory.204

More details of the summary statistics can be found in the Supplementary Material.205

We define one set of summary statistics based on simulated cell positions. We consider: (a) the total cell displacement over206

the time horizon of the experiments, ‖x(180)‖, denoted .1 (l); (b, c) the mean and standard deviation of the displacements,207
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‖x(C 9 ) − x(C 9−1)‖, between the five-minute sample points, denoted .2 (l) and .3 (l); and (d) the angle, arg (x(180)), between208

the final cell position and the positive G axis (i.e. the direction of the EF under the electrotactic experiment), denoted .4 (l).209

Note that the four summary statistics .1, .2, .3 and .4 can also be applied to the observed data, xNoEF,8 and xEF,8 , in addition to210

any simulated trajectory, l.211

In the models in Eq. (2) and Eq. (3), the polarity, p(C), evolves randomly from initial value p0. We define a further three212

summary statistics based on the simulated polarity, using a threshold polarity magnitude, ?̄. First, the time to polarise, )1 (l),213

is defined as the first time C ≥ 0 for which ‖p(C)‖ ≥ ?̄, for l generated using parameter value \ and initial condition p0 = 0.214

The time to depolarise, )0 (l), is the first time C ≥ 0 for which ‖p(C)‖ ≤ ?̄, for l generated using parameter value \ and215

initial condition p0 = i. Finally, the binary value Π) (l) for any given ) ≥ 0 is the indicator function of ‖p())‖ ≥ ?̄. Given a216

parameter value, \, the conditional expectations of these statistics are denoted by a bar, so that )̄1 = E()1 | \) and so on. Thus,217

Bayesian uncertainty in parameter values will propagate to the estimated values of )̄1, )̄0, and Π̄) . Note that these summary218

statistics cannot be applied to the observed data, and can only be used to summarise simulated trajectories.219

Model calibration and selection220

Given the experimental data sets, xNoEF and xEF, the autonomous and electrotactic models can be calibrated by identifying the221

values of the parameters,222

\ = (E,Δ,on,Δ,off , �, W1, W2, W3, W4),

that are consistent with the observed behaviour. We employ a Bayesian approach to parameter inference, whereby prior beliefs223

about \, encoded in a prior distribution, c(\), are updated in the context of the experimental data according to Bayes’s rule,224

c(\ | xNoEF, xEF) =
L(xNoEF, xEF | \)c(\)

?(xNoEF, xEF)
,

where L(xNoEF, xEF | \) is the likelihood of observing the data under the models in Eq. (2) and Eq. (3) with the parameter225

value \. The resulting posterior distribution, c(\ | xNoEF, xEF), represents the remaining uncertainty in the parameter values,226

given the experimental data (19).227

The simulation and inference algorithms used in this work have been developed in Julia 1.5.1 (20). The code is publicly228

available at github.com/tpprescott/electro.229

Bayesian synthetic likelihoods and sequential Monte Carlo230

In practice, the likelihood cannot be calculated directly, and so we require a likelihood-free approach. We replace the true231

likelihood with a synthetic likelihood, where for each value of \ the likelihood is approximated by the likelihood of summarised232

data under an empirical Gaussian distribution, which is fit to the sample mean and covariance of a set of = = 500 summarised233

simulations (21–23). The summary statistics we use are .1, .2, .3 and .4, as described in Summarising simulations, above. To234

mitigate the computational burden of the large number of model simulations required for parameter inference, we combine235

a sequential Monte Carlo (SMC) algorithm with synthetic likelihoods (21, 24, 25). This approach is a popular strategy for236

efficiently sampling from a target distribution, and also allows the exploitation of parallelisation to speed inference (21, 25–27).237

We provide full details of the SMC inference approach using summary statistics and synthetic likelihoods in the Supplementary238

Material.239
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Prior specification and model selection240

The space of possible parameter values is defined as the product of intervals,241

Θ = (0, 5]3 × (0, 0.5] × [0, 2]4,

where the interval bounds were chosen based on a preliminary qualitative, visual analysis of the simulation outputs in comparison242

to observed data. In order to identify which of the sixteen possible combinations of the four hypothesised electrotactic effects243

are best supported by the experimental data, we will define sixteen possible priors on Θ. For each of the sixteen subsets,244

- ⊆ {1, 2, 3, 4}, we define a uniform prior distribution c- (\) on Θ that takes a constant, positive value for parameter vectors \245

if and only if W8 > 0 for all 8 ∈ - , and is zero otherwise. Thus, by performing Bayesian inference using the prior distribution,246

c- , we constrain the electrotactic model in Eq. (3) to model only electrotactic effects included in the subset - ⊆ {1, 2, 3, 4}.247

We define an optimisation problem that aims to prevent over-fitting, by balancing the closeness of the model fit to data248

while prioritising smaller parameter dimensions. The optimal subset, - , of electrotactic effects is defined as the maximiser of249

the objective function,250

�` (-) = log ?- (xNoEF, xEF) − `(4 + |- |), (4)

where the regularisation parameter ` > 0 controls the cost of over-fitting by penalising the total number of non-zero parameters.251

This number is four, corresponding to E, Δ,on/off , and �, plus |- |, corresponding to the positive W8 for 8 ∈ - . We use ` = 0 and252

` = 2 in our analysis, although the choice of ` is somewhat arbitrary. One interpretation of the value of ` is that it effectively253

imposes a ‘prior’ on the subsets, - ⊆ {1, 2, 3, 4}, with probability mass proportional to exp(−` |- |).254

The first term in �` (-) measures the closeness of fit between the data and the model, when constrained to only include the255

electrotactic effects in - . This fit is defined for each - ⊆ {1, 2, 3, 4} by the value of the partition function,256

?- (xNoEF, xEF) =
∫

L(xNoEF, xEF | \)c- (\) d\.

As the likelihoods L(xNoEF, xEF | \) cannot be calculated directly, the partition functions ?- (xNoEF, xEF) are estimated for each257

- by Monte Carlo sampling, where again the simulation-based synthetic likelihood is used in place of the true likelihood. More258

details of the specific sequential Monte Carlo sampling methodology used for this estimate are given in the Supplementary259

Material.260

RESULTS261

We initially calibrate the autonomous model, based on the data set xNoEF from the autonomous experiment alone, in order262

to confirm the principle of the modelling framework and its ability to replicate observed behaviours, and to check that the263

parameters are identifiable from the data. Then, we calibrate the full electrotactic model using the full data set, xNoEF and xEF,264

in two stages. We first assess which subset of the four hypothesised electrotactic effects are best supported by the data. After265

choosing the optimal combination of electrotactic effects, we then calibrate the parameters of the selected electrotactic model.266

Parameters of the autonomous model are identifiable267

We begin by confirming that the chosen modelling and inference approaches appropriately capture the autonomous experimental268

behaviour, xNoEF, where no external EF is applied. This scenario is modelled by the autonomous model in Eq. (2), which269

depends on four parameters, \NoEF = (E,Δ,on,Δ,off , �). The Bayesian synthetic likelihood approach was used to generate270

posterior samples for: the characteristic speed of a polarised cell, E µm min−1; the diffusion constant, � min−1, which determines271

the characteristic timescale of the spontaneous polarisation dynamics; and the dimensionless parameters, Δ,on and Δ,off ,272
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Quantifying the impact of EFs on single-cell motility

which respectively determine the relative rates at which cells switch from depolarised to polarised, and vice versa.273

[Figure 2 about here; moved to end of manuscript by endfloat.]274

Figure 2(a–d) depicts the marginals of the posterior distribution, c(\NoEF | xNoEF), for each of the four calibrated parameters.275

The prior distribution used for Bayesian inference assumed that the parameters were independently uniformly distributed on the276

intervals 0 < E ≤ 5 µm min−1, 0 < Δ,on/off ≤ 5, and 0 < � ≤ 0.5 min−1. Each plot in Figure 2(a–d) demonstrates that the277

posteriors are concentrated within a small interval of the prior support, implying that the parameters of the autonomous model278

are identifiable from the experimental data, with quantifiable uncertainty.279

The sample mean parameter value, calculated from the sample in Figure 2, can be used as a point estimate for the parameter280

values, E = 1.82 µm min−1, Δ,on = 1.59, Δ,off = 0.25, and � = 0.031 min−1. In Figure 2(e–f), we compare the observed281

trajectories from the autonomous experiment, xNoEF, to trajectories simulated from the autonomous model with parameter282

values given by this point estimate. A comparison between these plots shows that parameter inference based only on the selected283

four-dimensional summary statistics produces a close match (for this point estimate) between the visual characteristics of284

simulations and experimental observations.285

Figure 2(a–d) quantifies the uncertainty in each parameter value resulting from the Bayesian approach to parameter inference.286

In order to make sense of this uncertainty in terms of the model outputs, simulations can be used to interpret how the uncertainty287

propagates to observable behaviour. Figure 2(g–i) depicts an estimate of the uncertainty in (g) the average time a simulated288

cell takes to polarise, )̄1, (h) the average time a simulated cell takes to depolarise, )̄0, and (i) the proportion of simulated289

cells that are polarised at any time, Π̄∞. Each of these distributions are conditioned on the posterior parameter distribution in290

Figure 2(a–d). This procedure allows us to map quantified uncertainty in the parameter values to uncertainty in cell behaviour.291

The calibrated model suggests that the expected time for a cell to spontaneously polarise (i.e. without an EF applied) ranges292

from 22 min to 75 min (5% to 95% quantiles), with median value of 36 min. Similarly, the expected time for a cell to depolarise293

is 6 min to 21 min, with median value 10 min. Finally, the probability that a simulated cell is polarised (in any direction) at any294

one time is 0.29 to 0.40, with median value 0.34.295

Three of the four proposed electrotactic effects are supported by the data296

Given that the autonomous model can be calibrated to the data set from the autonomous experiment, we now seek to calibrate297

the full electrotactic model to the entire data set from both experiments. However, some or all of the hypothesised electrotactic298

effects used to define the model in Eq. (3) may not be supported by the experimental data. Thus, we first use the data to select299

which of these proposed effects can be detected in the observed cell behaviours. Recall that the parameters W1, W2, W3 and W4300

correspond to four distinct hypothesised electrotactic effects: velocity bias, speed increase, speed alignment, and polarity bias.301

Positive values of the parameters W8 , for 8 = 1, 2, 3, 4, mean that the corresponding effect is included in the model. Conversely,302

setting any of these parameters to zero excludes the corresponding effect(s) from the model. There are a total of 24
= 16303

possible combinations of the four proposed electrotactic effects that the model in Eq. (3) can implement, through combinations304

of positive and zero parameter values.305

[Figure 3 about here; moved to end of manuscript by endfloat.]306

Each of the 16 possible combinations of the four electrotactic effects corresponds to a subset - ⊆ {1, 2, 3, 4}. We evaluate307

each combination of electrotactic effects, given by - , with respect to the objective function, �` (-), given in Eq. (4). This308

objective quantifies the trade-off between the model fit and the number of non-zero parameters in order to select a suitably309

accurate model while avoiding overfitting. Figure 3 ranks each of the 16 possible combinations of electrotactic effects,310

- ⊆ {1, 2, 3, 4}, using two different objective functions. The top plot considers ` = 0, such that the maximiser of �0 is the311

combination that gives the best fit to data, with no consideration given to the dimension of parameter space. The bottom plot312
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uses ` = 2, which imposes a marginal cost on increasing the dimension of parameter space. Both objective functions are313

maximised by the subset - = {1, 2, 4}. This provides strong support for including the velocity bias, speed increase, and polarity314

bias effects of the EF in our model, and neglecting the hypothesised effect of speed alignment.315

The electrotactic effects of the EF on motility can be quantified316

Recall that cell motility is modelled as the sum of an active force component, deriving from cell polarisation, and a component317

comprised of other external forces acting on the cell. In the preceding section, we found that a polarised cell applies a greater318

active force in the presence of an EF (positive speed increase, W2 > 0). However, there is insufficient evidence that the increase319

in this active force varies with the direction of the EF (zero speed alignment, W3 = 0). Instead, the observed directional bias320

in motility in the electrotactic experimental data, xEF, is found to arise from a combination of the cell tending to polarise in321

alignment with the EF (positive polarity bias, W4 > 0) and the EF imparting an additional external force on the cell (positive322

velocity bias, W1 > 0). In this section, we quantify the relative contributions of each of these three non-zero effects to the323

observed electrotactic behaviour.324

Bayesian synthetic likelihoods were used to calibrate the electrotactic model by inferring the posterior distribution,325

c(\ | xNoEF, xEF), for326

\ = (E,Δ,on,Δ,off , �, W1, W2, W3, W4).

The chosen prior distribution, c1,2,4(\), is the product of independent uniform distributions on the intervals 0 < E ≤ 5 µm min−1,327

0 < Δ,on/off ≤ 5, and 0 < � ≤ 0.5 min−1, multiplied by independent and uniformly distributed priors for the electrotactic328

parameters on the intervals 0 < W1, W2, W4 ≤ 2. The remaining parameter in \ is fixed at W3 = 0.329

[Figure 4 about here; moved to end of manuscript by endfloat.]330

Figure 4(a–c) shows three empirical marginals from the posterior sample from c(\ | xNoEF, xEF), constructed using Bayesian331

synthetic likelihoods and SMC sampling. The three marginals shown correspond to the parameters of the three non-zero332

electrotactic effects, W1, W2, and W4. The posterior marginal distributions of the other non-zero parameters (E, Δ,on/off and �)333

closely match those in Figure 2, as depicted in the Supplementary Material. Similarly to Figure 2, the posterior distribution is334

concentrated in a small region of the prior domain, providing evidence that each of the new parameters is identifiable using the335

chosen summary statistics.336

The non-dimensional parameters W1, W2, and W4 can be interpreted as follows. For parameter W1, which quantifies velocity337

bias, the external force on the cell induced by the EF has magnitude approximately 39% to 65% that of the active force applied338

by a polarised cell (5% to 95% quantiles), with median value 51%. Similarly, for parameter W2, quantifying the speed change,339

the EF increases the speed of a polarised cell by approximately 9% to 24%, with median value of 16%. Finally, the field is340

found to induce a bias in cell polarisation towards alignment with the direction of the EF. Let q denote the angle between the341

cell polarity direction and the EF. At stationarity, q is distributed proportionally to exp(W4 cos(q)), with maximum at q = 0 and342

minimum at q = c. The parameter W4 thus determines the polarity bias effect towards q = 0, and is inferred to lie from 0.18 to343

0.72, with median value of 0.49.344

The mean of the SMC sample depicted in Figure 4(a–c) can be used as a point estimate for the parameter values:345

E = 1.84 µm min−1, Δ,on = 1.51, Δ,off = 0.29, � = 0.029 min−1, W1 = 0.52, W2 = 0.16, W3 = 0, and W4 = 0.47. Figure 4(d–e)346

compares the data from the electrotactic experiment, xEF, against 50 simulations from the electrotactic model, Eq. (3), using347

this point estimate. The observed bias in motility towards the direction of the EF is reflected in the stochastically simulated348

outputs. This provides visual confirmation that parameters inferred by Bayesian synthetic likelihood, based on the chosen349

summary statistics, produce simulated outputs that share observable characteristics with the experimental data.350
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DISCUSSION & CONCLUSION351

The primary goal of this work has been to use mathematical modelling to quantitatively tease apart the contributions of multiple352

hypothesised means by which EFs induce electrotaxis in single cells. We have presented an empirical, parametrised, agent-based353

model of electrotactic cell motility, and shown that it can be calibrated to single-cell trajectory data using likelihood-free354

Bayesian inference. To our knowledge, although many models of single-cell and collective motility under environmental cues355

have been developed (13), there have been few mathematical models of electrotaxis (28, 29), and this work is the first use of356

detailed mathematical modelling at a single-cell level to quantify motility under electrotaxis. Moreover, the inferred parameter357

values of the calibrated model provide quantitative, mechanistic insights into experimentally-observed electrotaxis.358

Specifically, by calibrating the model to experimental observations of electrotaxis in human corneal epithelial cells, we359

have concluded that the observed bias in motility is the product of three distinct effects of the EF. First, the presence of the EF360

directly biases the motility of all cells, independently of their polarisation state, in the direction of the EF. Second, polarised361

cells are more motile in the presence of the EF. Third, cells preferentially break their symmetry to polarise in alignment with362

the direction of the EF. By carefully calibrating the parametrised mathematical model to experimental data, we have quantified363

the relative contributions of each of these distinct effects to electrotaxis.364

A key strength of the model presented in Eq. (3) is its flexibility. The parametric design means that the Bayesian calibration365

methodology used in this work can be recapitulated to calibrate the same model to electrotaxis assays using other cell types or366

with different experimental conditions. Thus, observed differences in spontaneous and electrotactic motility between different367

cells and experimental conditions (3, 5) can be modelled and predicted within a common parametric framework. It is also368

important to acknowledge that we have chosen from only four hypothetical observable effects of electrotaxis. Other electrotactic369

effects may be reasonably included in the modelling process: for example, the EF may induce changes to the rate of polarisation370

and depolarisation (3). The electrotaxis model can straightforwardly be extended and recalibrated to account for any alternative371

hypothetical effects.372

We have also considered EFs at a single reference strength, requiring a single parameter to quantify each hypothesised373

electrotactic effect. However, the characteristics of electrotaxis have been observed to vary nonlinearly with EF strength (5).374

The model is sufficiently flexible to account for this phenomenon through the replacement of the parameters W8 with functions375

Γ8 (D) that vary with the EF strength, D mV mm−1. The challenge will then be to use experimental data gathered from assays376

using EFs of different strengths to infer each of the functions Γ8 in place of each of the parameters W8 .377

The model we have presented predicts single-cell electrotactic behaviour. However, there is a wealth of data and analysis378

on electrotaxis in the context of cell populations (3, 4, 6–9, 13). The electrotaxis model in this paper is a starting point for a379

comprehensive agent-based model that also incorporates phenomena such as volume exclusion, adhesion, elastic collisions,380

contact inhibition, and so on (13, 30, 31). Multifidelity approaches (27, 32) that can link experiments and information at the381

single-cell and multicellular level will be vital to identify and quantify the biasing effects of EFs on the collective motility of382

cell populations (12, 14, 33).383

The seven positive parameter values for the electrotactic model were inferred using data generated using two experimental384

inputs: a zero EF, and a constant EF of magnitude 200 mV mm−1. A fundamental motivation for developing this model is385

to allow predictions of observed behaviour under different EF inputs, with the ultimate goal of controlling cell motility by386

designing and applying dynamic EFs. In the Supplementary Material we show, using two examples of dynamic EFs, that the387

calibrated model can be simulated to produce predictions of single-cell electrotaxis under dynamic inputs. The model considered388

in this paper, and the Bayesian uncertainty quantification of its parameters, are important tools for enabling stochastic model389

predictive control designs of such policies based on output feedback and filtering (34). We have therefore provided a significant390

step towards the real-time model predictive control of populations of electrotactic cells.391
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Autonomous model

Electrotactic model

Figure 1: Comparison of the stationary distributions for the random velocity, v, under the autonomous and electrotactic models,

where darker regions correspond to greater probability. The bottom plot shows the hypothesised electrotactic effects of an

EF, applied in the positive G direction, parametrised by W1, . . . , W4. The effects of W1, W2 and W3 are visible in the shape of the

distribution. Polarity bias (W4) produces asymmetry in the distribution density, shown as a darker region to the right of the

figure.
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Quantifying the impact of EFs on single-cell motility
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Figure 2: Parameter inference and simulation of autonomous model. (a–d) All one-dimensional projections of the posterior

sample from c(\NoEF | xNoEF), with axes scaled to the support of the prior. The covariance structure of the posterior is given

in the Supplementary Material. (e–f) Comparison of autonomous data and simulations of autonomous model in Eq. (2).

(f) Simulations use parameters E = 1.82 µm min−1, Δ,on = 1.59, Δ,off = 0.25, and � = 0.031 min−1. (g–i) Posterior predictive

samples for )̄1 (expected time to polarisation), )̄0 (expected time to depolarisation), and Π̄∞ (probability of a simulated cell

being polarised) under the posterior, c(\NoEF | xNoEF).
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Figure 3: Objective functions �0 (-) and �2 (-) from Eq. (4), for combinations of electrotactic effects indexed by - ⊆ {1, 2, 3, 4}.
Greater values are preferred. Each objective function is translated to have zero minimum value.
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Quantifying the impact of EFs on single-cell motility
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Figure 4: Parameter inference and simulation of electrotactic model. (a–c) One-dimensional projections for W1, W2, and W4 of

the posterior sample from c(\ | xNoEF, xEF), with axes scaled to the support of the prior. The covariance structure of the full

posterior is given in the Supplementary Material. (d–e) Comparison of the electrotactic experimental data, xEF, and simulations

of the electrotactic model in Eq. (3). (d) Experimentally observed trajectories xEF,1, . . . , xEF,50. (e) Fifty simulations from model

in Eq. (3) with parameter values E = 1.84 µm min−1, Δ,on = 1.51, Δ,off = 0.29, � = 0.029 min−1, W1 = 0.52, W2 = 0.16,

W3 = 0, and W4 = 0.47.
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Supplementary Material

Quantifying the impact of electric fields on single-cell motility

Thomas P Prescott Kan Zhu Min Zhao Ruth E Baker

1 Mathematical model of electrotaxis

The autonomous model of cellular velocity in Eq. (2) is given by

v(t) = vp(t), (2a)

dp(t) = −D∇W (p(t)) dt+
√
2D dB, (2b)

and the electrotactic model in Eq. (3) is given by

v(t) = vcell + vEF, (3a)

vEF(t) = γ1vu(t), (3b)

vcell(t) = (1 + γ2u(t) + γ3u(t) · p̂(t)) vp(t), (3c)

dp(t) = −D (∇W (p(t))− γ4u(t)) dt+
√
2D dB. (3d)

Here, velocity is denoted by v and cell polarity is denoted by p. The vector u is the non-dimensionalised EF with

magnitude ‖u‖ = u, scaled such that u = α represents a field of strength 200α mVmm−1. The two-dimensional

standard Wiener process is denoted by B, and p̂ is the unit vector in the direction of polarity. Both models depend

on the parameters v, with units ➭mmin−1, and D, with units min−1. Thus p is a non-dimensional quantity. The

additional parameters, γ1, . . . , γ4, in the electrotactic model parametrise the four hypothesised electrotactic effects,

as described in the main text.

Also common to both models is the potential function W (p). This function is defined to capture the intended

features of the autonomous model, namely that cells stochastically, spontaneously switch between polarised and

depolarised states, and that the direction of the polarity is uniformly distributed at stationarity. Denoting p = |p|,
it follows from the latter requirement that the potential function W (p) = W (p) must be radially symmetric. The

interpretation of the parameter v as the modal speed of a polarised cell also implies that the polarised and depolarised

states are characterised by p stochastically switching between the regimes p ≈ 0 and p ≈ 1. We therefore require

a potential function with local minima at p = 0 and p = 1. We also require both a local maximum at p = p̄ for

p̄ ∈ (0, 1), and W →∞ as p→∞, for these two minima to define two ‘wells’ where p(t) is found with the highest

probability. Following [11], this function is implemented as

W (p) = β

(

1

6
p6 − 1

4

(

p̄2 + 1
)

p4 +
1

2
p̄2p2

)

, (S1)

where the parameter values p̄ ∈ (0, 1) and β > 0 define the local minimum values of the wells at p = 0 and p = 1.

It can be shown [17, 18] that the rates at which the polarity stochastically switches between the two wells are

determined solely by the timescale parameter, D min−1, and the non-dimensional values of the two energy barriers

1
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of the potential function,

∆Won = W (p̄)−W (0) = β(3p̄4 − p̄6)/12, (S2a)

∆Woff = W (p̄)−W (1) = β(1− p̄2)3/12, (S2b)

which represent the changes in potential, W , between the minima at p = 0 and p = 1 and the local maximum at

p = p̄. These parameters are sufficient to specify β and p̄ in Eq. (S1), and thus uniquely determine the potential

function, W . Hence, we calibrate the models in Eq. (2) and Eq. (3) by inferring the common parameters, v, D, and

∆Won/off , together with the parameters γ1, . . . , γ4 specific to the electrotactic model.

Note on polarity definition Our description of the model interprets the variable p as the cell polarity, and

treats velocity as the combination of a polarity component and a component due to the EF. Another interpretation

of p is available if we specifically define single-cell polarity as the non-dimensionalisation of the velocity by v. In

the electrotactic model, this alternative definition identifies cell polarity as the variable

v/v = (1 + γ2u+ γ3u · p̂)p+ γ1u.

The variable p, with dynamics (3d), is then interpreted as a slowly-responding component of the cell polarity (in

the alternative definition) to the EF input, while γ1u, identifiable with velocity bias, is an instantly-responding

component of the cell polarity. However, these definitions are internal to the model, in the sense that they have

no effect on the observable position or velocity of simulated cells. Thus, in the current work, we choose to identify

‘cell polarity’ as the modelled variable p, while noting that alternative interpretations are possible.

2 Likelihood-free Bayesian inference

The Bayesian inference framework uses the experimental data, xNoEF and xEF, to update a prior distribution, π(θ),

into a posterior distribution, π(θ | xNoEF,xEF), by multiplying by the likelihood, L(xNoEF,xEF | θ), according to

Bayes’ rule,

π(θ | xNoEF,xEF) ∝ L(xNoEF,xEF | θ)π(θ).

To define the likelihood, we first consider simulations of the models in Eq. (2) and Eq. (3).

For a given parameter vector, θ, initial polarity, p0, and non-zero EF input, u(t), the model in Eq. (3) is

simulated and a trajectory, ω = (p(t),x(t))t≥0, is produced. This stochastic trajectory has conditional density

p(ω | θ,p0,u(t)). We assume that there is a known distribution, ϕ(p0), for the initial polarity: for the inference

procedure carried out in the main text, we assume that ϕ is a Gaussian distribution with zero mean and diagonal

covariance matrix, with component-wise variances of 0.1. For the two specific experimental inputs, u(t) ≡ 0 and

u(t) ≡ i, we integrate the density p with respect to ϕ(p0) and thus define two densities,

pNoEF(ω | θ) =
∫

p(ω | θ,p0,u(t) ≡ 0)ϕ(p0) dp0, (S3)

pEF(ω | θ) =
∫

p(ω | θ,p0,u(t) ≡ i)ϕ(p0) dp0, (S4)

for trajectories simulated by the autonomous and electrotactic models, respectively. Each observed trajectory in

2
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the experimental data set, xNoEF,i and xEF,i, thus defines a set in the simulation space,

Ω(xNoEF,i) =
{

ω = (x(t),p(t))t≥0 : x(tj) = xNoEF,i(tj)
}

,

Ω(xEF,i) =
{

ω = (x(t),p(t))t≥0 : x(tj) = xEF,i(tj)
}

,

of all simulated trajectories that are indistinguishable from the observed data. We thus define the likelihoods of

each simulation as

LNoEF(xNoEF,i | θ) =
∫

Ω(xNoEF,i)

pNoEF(ω | θ) dω,

LEF(xEF,i | θ) =
∫

Ω(xEF,i)

pEF(ω | θ) dω,

for the cell indices i = 1, . . . , 50. The likelihoods of each trajectory thus combine to give the posterior,

π(θ | xNoEF,xEF) ∝ L(xNoEF,xEF | θ)π(θ)

=
50
∏

i=1

LNoEF(xNoEF,i | θ)LEF(xEF,i | θ)π(θ). (S5)

However, it is clear that the likelihood of each of the experimentally observed trajectories cannot easily be calculated.

We therefore identified the posterior parameter distribution using a likelihood-free (i.e. simulation-based) Bayesian

inference approach, harnessing the concept of synthetic likelihoods.

2.1 Synthetic likelihoods

We focus on the autonomous case first; the electrotactic case follows in exactly the same way, albeit with an

obvious change of notation. The synthetic likelihood approach approximates the likelihoods, LNoEF(xNoEF,i | θ) for
i = 1, . . . , 50, in two stages. The first stage is to reduce the dimension of the data space by defining a function of the

simulated and observed trajectories that maps the data to a low-dimensional summary statistic. The second stage

is to (a) use repeated simulation of the summarised model at the parameter value θ to fit an empirical multivariate

Gaussian distribution for the summary statistic, and then (b) to approximate the likelihood with the synthetic

likelihood of the experimental data, defined as the likelihood of the summarised data under the fitted empirical

Gaussian distribution.

We define the function Y : ω 7→ R
4 as:

Y1(ω) = ‖x(180)‖, (S6a)

Y2(ω) =
1

36

36
∑

j=1

‖x(tj)− x(tj−1)‖, (S6b)

Y3(ω) =





1

36

36
∑

j=1

‖x(tj)− x(tj−1)− Y2(ω)‖2




1/2

, (S6c)

Y4(ω) = arccos

(

i · x(180)
Y1(ω)

)

, (S6d)

for sample time points tj = 5j min. Thus, the entries of Y (ω) denote the random values of

❼ the net displacement,

❼ the mean and standard deviation of the displacements over five-minute intervals,
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❼ and the angle between the final position and the positive x axis,

for stochastic simulations ω of the electrotactic model in Eq. (3), given θ, p0, and u(t). Note that we can also

calculate the values of the function Y in Eq. (S6) for the experimentally observed data, xNoEF,i and xEF,i, for

i = 1, . . . , 50. With a slight abuse of notation, we denote the resulting summarised experimental data by yNoEF,i =

Y (xNoEF,i) and yEF,i = Y (xEF,i), respectively.

For a given value of θ, the synthetic likelihood approach [21–23] assumes that the random value of Y (ω) under

the density pNoEF,i(ω | θ) is a Gaussian random variable with parameter-dependent mean µNoEF(θ) and covariance

ΣNoEF(θ). We estimate this mean and covariance with the sample mean and covariance of simulated summary

statistics Y (ωk), for k = 1, . . . , n, produced by simulating the autonomous model n times using the parameter value

θ. The resulting approximation of each trajectory’s likelihood, L̃NoEF,n ≈ LNoEF, is summarised as

L̃NoEF,n(xNoEF,i | θ) = N
(

yNoEF,i | µ̂NoEF(θ), Σ̂NoEF(θ)
)

i = 1, . . . , 50, (S7a)

µ̂NoEF(θ) =
1

n

n
∑

k=1

Y (ωk), (S7b)

Σ̂NoEF(θ) =
1

n

n
∑

k=1

(Y (ωk)− µ̂NoEF(θ))(Y (ωk)− µ̂NoEF(θ))
T , (S7c)

ωk ∼ pNoEF(· | θ) k = 1, . . . , n, (S7d)

where N denotes the Gaussian density and where the chosen number of simulations, n, needs to be appropriately

large [22]. In our case, we choose n = 500.

Finally, with the appropriate adaptation of the procedure above to also apply to the electrotactic model, we can

multiply each these trajectory synthetic likelihoods into an overall synthetic likelihood for the experimental data,

LNoEF,n(θ) =
50
∏

i=1

L̃NoEF,n(xNoEF,i | θ), (S8a)

LNoEF,n(θ) =
50
∏

i=1

L̃EF,n(xEF,i | θ), (S8b)

L(xNoEF,xEF | θ) ≈ Ln(θ) = LNoEF,n(θ)LEF,n(θ), (S8c)

each calculation of which requires n simulations of the autonomous model and n of the the electrotactic model.

2.2 SMC and sequential inference

In order to produce a sample from the posterior distribution, we use sequential Monte Carlo (SMC) with synthetic

likelihoods [21–27], as outlined in Algorithm 1. This method is chosen in order to exploit parallelisation, miti-

gating the computational burden of MCMC-based approaches that is incurred due to the large numbers of model

simulations required for accurate likelihood-free inference. SMC defines a sequence of intermediate importance

distributions that evolve towards the target posterior. This approach is particularly useful in comparison to naive

rejection sampling: since we will use non-informative priors, rejection sampling is too inefficient, as it proposes

parameters in extremely low-likelihood regions of parameter space too frequently.

In Algorithm 1 we produce a weighted sample from the Bayesian synthetic likelihood approximation to the

posterior, π(θ | xNoEF,xEF). The intermediate distributions at each iteration are proportional to the tempered

distributions

πT1,T2
(θ) ∝ LNoEF,n(θ)

T1LEF,n(θ)
T2π(θ),

4
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Algorithm 1 Sequential Inference: Synthetic Likelihood SMC

Input: Observed summary statistics yNoEF and yEF; prior π; perturbation kernel K(· | θ); .
Output: Weighted sample set of parameters θi with weights Wi, from the synthetic likelihood approximation to

the posterior π(θ | xNoEF,xEF).
1: Sample N independent θi from π.
2: Set weights W 0

i = 1/N for i = 1, . . . , N .
3: Initialise T1 = 0, T2 = 0 and r = 0.
4: repeat

5: Update r ← r + 1.
6: Find ∆T1 ∈ [∆Tmin, 1− T1] to solve ESS({W r

i }) = αESS({W r−1
i }), for weights W r

i such that

logW r
i = logW r−1

i +∆T1 logLNoEF,n(θi),

for the synthetic likelihoods, LNoEF,n(θi). Use ∆T1 = ∆Tmin or ∆T1 = 1− T1 if ESS({W r
i }) is, respectively,

uniformly less than or uniformly greater than αESS({W r−1
i }) on the interval [∆Tmin, 1− T1].

7: Update T1 ← T1 +∆T1.
8: if ESS({W r

i }) < Nmin then

9: Resample from {θi} according to weights W r
i .

10: Reset weights W r
i = 1/N .

11: end if

12: Update parameters θi ← θ⋆i to perturbed values, sampled as θ⋆i ∼ K( | θi).
13: until T1 = 1.
14: repeat

15: Update r ← r + 1.
16: Find ∆T2 ∈ [∆Tmin, 1− T2] to solve ESS({W r

i }) = αESS({W r−1
i }), for weights W r

i such that

logW r
i = logW r−1

i +∆T2 logLEF,n(θi),

for the synthetic likelihoods, LEF,n(θi). Use ∆T2 = ∆Tmin or ∆T2 = 1 − T2 if ESS({W r
i }) is, respectively,

uniformly less than or uniformly greater than αESS({W r−1
i }) on the interval [∆Tmin, 1− T2].

17: Update T2 ← T2 +∆T2.
18: if ESS({W r

i }) < Nmin then

19: Resample from {θi} according to weights W r
i .

20: Reset weights W r
i = 1/N .

21: end if

22: Update parameters θi ← θ⋆i to perturbed values, sampled as θ⋆i ∼ K( | θi).
23: until T2 = 1.

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2021. ; https://doi.org/10.1101/2021.01.22.427762doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.22.427762
http://creativecommons.org/licenses/by/4.0/


where the sequence of temperatures (T1, T2) evolves from (0, 0) to (1, 1) such that first T1 increases to 1 with T2 held

at 0, and then T2 increases to 1 with T1 held at 1. In Algorithm 1, we define K(· | θ) to be a multivariate Gaussian

density with mean θ and diagonal covariance matrix, with component-wise variances of 0.001. The effective sample

size, ESS, used to adaptively choose the increment in temperature, is defined as

ESS({Wi}) =
(

∑

i

Wi

)2

/
∑

j

W 2
j

for any finite set of sample weights, Wi.

Note that, due to the sequence in which the intermediate distributions are produced, we can terminate Algo-

rithm 1 early, where T1 = 1 and where T2 = 0 (i.e. at line 13). The sample resulting from this early termination is

a weighted sample from the intermediate distribution,

π1,0(θ) ∝ LNoEF,n(θ)π(θ),

which approximates the posterior π(θ | xNoEF) conditioned on the autonomous experiment alone. The results

depicted in Figure 2(a–d), in the main text, are the result of such an early termination. The covariance structure

of this sample is depicted in Figure S1.

The intermediate sample was used as a common starting point for sixteen subsequent runs of Algorithm 1 for

each of the priors πX , all starting at line 14 of Algorithm 1 with T1 = 1 and T2 = 0 and evolving to T1 = T2 = 1.

The output of the completed algorithm, for the prior πX using the subset X = {1, 2, 4}, is depicted in Figure S2.

The comparison of the marginals of the common parameter set, v, ∆Won/off , and D, between the early termination

and the completed algorithms is given in Figure S3.

3 Simulated behaviour from dynamic inputs

3.1 Summary statistics

Recall that the polarity, p(t), evolves randomly from initial value p0. We will use the polarity, p(t), to define four

possible cell states: depolarised, denoted Ω0; polarised in the positive x direction, denoted Ω+; polarised in the

negative x direction, denoted Ω−; and polarised perpendicular to the x axis, denoted Ω⊥. We further coarse-grain

the polarity by defining a cell as polarised, denoted Ω1, if it is not depolarised. Here, the sets Ω⋆ are defined by the

following partition of the state space of polarity vectors, p = [px, py], such that

Ω0 = {p ∈ R
2 | ‖p‖ < p̄},

Ω+ = {p ∈ Ω1 | px > |py|)},
Ω− = {p ∈ Ω1 | px < −|py|)},
Ω⊥ = {p ∈ Ω1 | |px| < |py|},

where Ω1 = ΩC
0 = Ω+∪Ω−∪Ω⊥ and p̄ is the polarity threshold defined by the energy barriers, ∆Won/off , according

to Eq. (S2). These four coarse-grained states are depicted in Figure S4.

We use the following summary statistics, defined by these coarse-grained polarisation states, to analyse model

simulations, ω = (x(t),p(t))t≥0. Each summary statistic condenses ω into a time or a binary value. We first define

the hitting times, T⋆(ω), as the earliest time t ≥ 0 at which p(t) ∈ Ω⋆, which may be zero if p(0) ∈ Ω⋆ for the given

ω. Thus, T0 is the first time at which the simulated cell becomes depolarised. Similarly, T+ is the first time at

which the simulated cell becomes polarised in the positive x direction, and so on. For the fixed time point, T , we

6
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also define the binary indicator ΠT (ω) to take the value 1 if the cell is polarised at time T (i.e. if p(T ) ∈ Ω1), and 0

otherwise. Finally, we define the binary indicator P⊥→−(ω) to take the value 1 if the cell is polarised perpendicular

to the x axis before it is first polarised in the negative x direction (i.e. if T⊥(ω) < T−(ω)), and 0 otherwise. The

resulting summary statistics are given by

T0(ω) = inf{t ≥ 0 : p(t) ∈ Ω0},
T1(ω) = inf{t ≥ 0 : p(t) ∈ Ω1},
T−(ω) = inf{t ≥ 0 : p(t) ∈ Ω−},
T⊥(ω) = inf{t ≥ 0 : p(t) ∈ Ω⊥},
ΠT (ω) = I(p(T ) ∈ Ω1),

P⊥→−(ω) = I(T⊥(ω) < T−(ω)).

Note that, unlike the summary statistics, Y , defined in Eq. (S6), we cannot apply these functions to the experimental

data since cell polarity cannot be directly measured.

Finally, each of the summary statistics can be averaged across many simulations: the averaged value is notated

with a bar, to give the conditional expectation of the summary statistic for a given parameter value and for a given

initial condition (or distribution of initial conditions). Thus T̄0 = E(T0 | θ,p0) is the average time a simulated

cell takes to depolarise for parameter values θ and initial polarity value p0, and so on. Note that Π̄T is then the

probability that a simulated cell is polarised at time T . Similarly, P̄⊥→∞ is the probability that a simulated cell

is polarised perpendicular to the x axis before first being polarised in the negative x direction. Thus, posterior

uncertainty in θ propagates to uncertainty in the conditional expectations, allowing us to interpret parametric

uncertainty in terms of simulated model outputs.

3.2 Simulation results

We simulated the model under two new dynamic inputs: a switching field, uswitch(t), and a stopping field, ustop(t).

For 0 ≤ t ≤ 90 min, both inputs apply a DC EF of magnitude 200mVmm−1 in the positive x direction. The

switching field, uswitch(t), reverses this field over 90 < t ≤ 180 min, by applying a 200mVmm−1 DC EF in the

negative x direction. In contrast, the stopping field, ustop, removes the field over 90 < t ≤ 180 min.

3.2.1 Point estimate

Five hundred simulations of the electrotactic model in Eq. (3) were run under each input, uswitch and ustop. The

parameters used in these simulations were the point estimates given by the empirical mean of the posterior sample

in Figure S2, v = 1.84 ➭mmin−1, ∆Won = 1.51, ∆Woff = 0.29, D = 0.029min−1, γ1 = 0.52, γ2 = 0.16, γ3 = 0, and

γ4 = 0.47. The results of these simulations are depicted in Figures S5 and S6. For the switching input, uswitch, the

ensemble average position in Figure S5 shows clear migration from left to right in the first 90 minutes, which then

reverses direction for the second 90 minutes. In contrast, the ensemble average position for the stopping input,

ustop, moves much less in the second 90 minutes. Note that the small number of individual trajectories depicted in

Figure S5 illustrate that the underlying behaviour of each agent is highly stochastic, and that the ensemble average

behaviour is not reflective of each individual cell’s trajectory.

Beyond predicting directly observable behaviour (i.e. cell position), the model also enables us to analyse the

internal polarisation state of the cells, which cannot be as easily observed. For the 500 simulations under each

dynamic EF, the fraction of simulated cells with polarity in each of the four coarse-grained states shown in Figure S4

was recorded. The trajectories of these proportions are shown in Figure S6 for each of uswitch and ustop. Under

the given point estimate of the parameter values, by the switching/stopping time at t = 90, over 50% of cells are
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depolarised. Approximately 20–25% of cells are polarised in alignment with the EF, a similar number are polarised

perpendicular to the field, and the remainder are polarised counter to the field.

After the field switches direction for t > 90, as shown in the top plot of Figure S6, there is little change in the

proportion of cells that are depolarised, or polarised perpendicular to the x axis. However, over the subsequent

90min, the distribution of cells in each state evolves to a new stationary distribution. The proportion of cells

polarised in alignment with the new EF (i.e. in the negative x direction) increases, and the proportion of cells

polarised counter to the new direction decreases. In contrast, for the EF ustop, the distribution evolves over the

subsequent 90min horizon to a new symmetric stationary distribution, with roughly equal proportions polarised in

the positive and negative x directions, with a slightly higher proportion of depolarised cells.

3.2.2 Bayesian parameter uncertainty

The simulated dynamics in Figure S5 and Figure S6 were generated using a point estimate of each of the seven

positive parameter values, and setting γ3 = 0. However, the output of the Bayesian parameter inference procedure

is an empirical sample, depicted in Figure S2, which reflects the Bayesian posterior uncertainty in these seven

positive parameter values. Similarly to the analysis of the autonomous model, simulations can be used to interpret

how this uncertainty propagates to uncertainty in the cell’s simulated behaviour. Figure S7 depicts an estimate of

the uncertainty in (a) the average time taken for a cell to depolarise, T̄0, (b) the average time taken for a cell to

be polarised in the negative x direction, T̄−, and (c) the probability that a cell is polarised perpendicular to the

x axis before becoming polarised in the negative x direction, P̄⊥→−. These posterior predictive distributions are

constructed assuming a cell is initially polarised in the positive x direction, and for the value of the EF input over

t > 90; that is, for u = −i in the case of uswitch and u = 0 for ustop.

We observe that the uncertainty in the expected time taken for cells to depolarise, T̄0, is similar under both

EFs: from 5.8min to 25.2min for the switched input (median value 10.8min), and from 6.9min to 28.5min for

the stopped input (median value 12.5min). However, the distribution of values for T̄− shows that cells under the

switched field are significantly quicker than under the stopped field to reverse their polarisation to align with the

negative x axis. The expected time for a cell to reverse its polarisation under the switched field is 51min to 227min,

with median value 93min, while under the stopped field the expected time a cell takes to reverse its polarisation is

84min to 346min, with median value 147min.

We observe in Figure S6 that the distribution of cells in each of the coarse-grained polarisation states reaches

its new steady state within approximately 30min. This is notably faster than the timescales, shown in Figure S7,

of individual polarised cells switching their direction of polarity. This is likely due to the fact that the majority of

cells at t = 90 are not actually polarised in the positive x direction, and these are therefore more able to quickly

respond to the switch in the EF. In contrast, those cells that are polarised in the positive x direction are relatively

slower to reverse the direction of their polarity.

Finally, an important experimental observation is that, in reversing the direction of motility under a switched

input, many cells transiently travel perpendicular to the field direction [4, 8]. The value of P̄⊥→−, depicted in

Figure S7, gives the probability that a simulated cell is polarised perpendicular to the x axis before reversing

polarity from the positive to negative x direction. Under the switched input, 77% to 88% (median value 82%) of

simulated cells demonstrate this behaviour. Thus, simulations from this model replicate a characteristic feature of

the cellular response to dynamic EFs, without this feature being explicitly specified in the model’s design or used

to calibrate the model’s parameters.
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Figure S1: Weighted sample from π(θ | xNoEF) generated by the early termination of Algorithm 1 for identified
parameters, v, ∆Won, ∆Woff , and D. Diagonal plots are empirical histograms (as in Figure 3). Off-diagonal
heatmaps represent empirical pairwise distributions, where brighter colours correspond to greater density. Axes in
the bottom-left are scaled to the prior support; the top-right scales are zoomed in to the region of greatest positive
posterior likelihood.
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Figure S2: Weighted sample from π(θ | xNoEF,xEF), generated by the completion of Algorithm 1 for identified
parameters, v, ∆Won, ∆Woff , D, γ1, γ2, and γ4. Diagonal plots are empirical histograms (as in Figure S3 and
Figure 7). Off-diagonal heatmaps represent empirical pairwise distributions, where brighter colours correspond to
greater density. Axes in the bottom-left are scaled to the prior support; the top-right scales are zoomed in to the
region of greatest positive posterior likelihood.
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Figure S3: One-dimensional projections for v, ∆Won, ∆Woff , and D of the sample from the posterior,
π(θ | xNoEF,xEF), generated by the completion of Algorithm 1, with axes scaled to the support of the prior. Dotted
curves replot the one-dimensional projections of the estimated intermediate posterior distribution, π(θ | xNoEF),
generated by early termination of Algorithm 1, and also shown in Figure S1.
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Coarse grained polarity

Figure S4: Coarse-grained classification of polarity, p(t), into one of four states: depolarised (Ω0); polarised in the
positive x direction (Ω+); polarised in the negative x direction (Ω−); polarised perpendicular to the x axis (Ω⊥).

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 22, 2021. ; https://doi.org/10.1101/2021.01.22.427762doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.22.427762
http://creativecommons.org/licenses/by/4.0/


(a) Before switch (b) After switch

Mean

(c) Before stop (d) After stop

Figure S5: Model predictions of displacement, x(t), under (a, b) the switching EF, uswitch, and (c, d) the stopping
EF ustop, shown (a, c) before the step change at t = 90min, and (b, d) after the step change at t = 90min, where
x(90) is reset to zero. Simulations are generated from the electrotactic model in Eq. (3), using the sample mean of
the posterior sample depicted in Figure S2. Thicker, red curves represent the ensemble average of 500 simulations,
and the other colours are five randomly selected trajectories.
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Figure S6: Fraction of 500 simulations with polarity p(t) in each of the four coarse-grained states depicted in
Figure S4, for (a) the switching input, uswitch, and (b) the stopping input, ustop. Simulations are generated from
the electrotactic model in Eq. (3), using the sample mean of the posterior sample depicted in Figure S2.
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Figure S7: Posterior predictive samples for (a) expected time to depolarisation, T̄0 min, (b) expected time to
polarisation in the negative x direction, T̄− min, and (c) probability of perpendicular polarisation before negative
polarisation, P̄⊥→−, under the posterior π(θ | xNoEF,xEF) depicted in Figure S2. Simulations assume initial polarity
p0 = i in the positive x direction, with constant EFs u = −i (Switch) and u = 0 (Stop).
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