
UC Irvine
ICS Technical Reports

Title
AMRM prototype board software API

Permalink
https://escholarship.org/uc/item/4pg6r4vj

Authors
Nicolaescu, Dan
Arora, Preshant
Badulescu, Ana-Maria
et al.

Publication Date
2000

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4pg6r4vj
https://escholarship.org/uc/item/4pg6r4vj#author
https://escholarship.org
http://www.cdlib.org/

AMRM Prototype Board Software API *

Dan Nicolaescu Prashant Arora Ana-Maria Badulescu
Alexander Veidenbaum

Department of Information and Computer Science
444 Computer Science, Building 302

University of California Irvine
Irvine, CA 92697-3425

{ dann,arora,ancuta,alexv }©ics. uci.edu

Technical Report #00-38

Notice:
may be
by Copyright
(Title i 7 U

June 2000

AMRM Prototype Board Software API *

Dan Nicolaescu Prashant Arora Ana-Maria Badulescu
Alexander Veidenbaum

Department of Information and Computer Science
444 Computer Science, Building 302

University of California Irvine
Irvine, CA 92697-3425

{ dann,arora,ancuta,alexv }@ics.uci.edu

Technical Report #00-38

Dept. of Information and Computer Science
Univ. of California at Irvine

June 2000

*This work was supported in part by the DARPA ITO under Grant DABT63-98-C-0045.

1

1 Introduction
1.1 Goals

2 Initialization and Clean-up

3 Reading and Writing to AMRM Board Memory
3.1 Cached access
3.2 Uncached access

3.2.1 Uncached SRAM .
3.2.2 Uncached DRAM.

4 Configuring the AMRM board
4.1 Setting the Timing Parameters
4.2 Reading the Timing and the Counters from the AMRM Board
4.3 Reseting the Counters
4.4 Reading the Status Registers

5 The AMRM GUI program

6 Trace-AMRM, a Trace-Driven Simulation Program

7 Using SimpleScalar simulator with AMRM board
7 .1 Changing the line size dynamically

2
2

2

3

3
3
4
4

4
5
5
5
6

6

6

7
8

1

The AMRM board is a platform for experimenting with reconfigurable memory hierarchies. The
current implementation supports 256MB DRAM and 2MB SRAM that can act as Levell cache.

The size of the cache, the line size, the write policy and associativity of the cache can be
configured at run time.

The board contains counters for the number of accesses (reads and writes), number of cache
hits, and a virtual time interface for accurate timing.

lel Goals

The central goal of the driver software is to present the programmer a software interface that
closely follows the features of the AMRM board, but does not expose too much the internals, or
how the board functions.

The software API allows the user to access all the features of the board from normal user-space
c I c++ programs, no knowledge about the PCI interface, or the kernel internals is needed.

The driver is cross-platform, it runs both in Windows-NT and Linux, by doing this we can
exploit the strength of both platforms: initial ease of developing a graphical application used for
debugging the board and the ability to use the power standard UNIX tools afterwards.

This document presents the software interface for working with the board, and documents the
capabilities of the following:

• AMRM-gui program, a GUI for accessing and testing the board

• Trace-AMRM, a trace driven simulation program that can be used to exercise the board

• Interfacing the AMRM board with the SimpleScalar simulator

2 Initialization and Clean-up

The board accesses use a 32bit unsigned integer data type, thus the following typedef. If on your
platform "int" is not 32bit wide change the following to a data type that is 32bit.
typedef unsigned int UINT;

int connectToBoard {);
This function should be called in a program before any other access to the AMRM board, it
initializes the driver, to board and the data structures for communication with the board.

void setCacheOnOff (int value);
Is used to enable/ disable the cache. The cache is initially disabled, so this function needs to be
called in order to enable it.

void clearCache {)).
Clear the cache. Invalidate all the entries.

2

void disconnectFromBoard ();
This function should be called at the end of the program, it frees all the resources used in the
communication with the board.

to AMRM Memory

The AMRM board has both SRAM and DRAM. They can be accessed as a cache memory
hierarchy, or separately.

All the read and write functions take a delta_t parameter that is the time that has passed from
the previous board access instruction. This time is added to the internal virtual time counter
and it can be used to accurately keep track of time.

32bit and 64bit values can be read and written to the board.

All the read functions block until the result is returned.

3.1 Cached access

These function access do a cached access to the board.

UINT read32Cached (UINT address) unsigned short int delta_t);
Returns a 32bit value from the address address from the board.

void write32Cached (UINT address) UINT value) unsigned short int delta_t);
Writes the 32bit value to the address address on the board.

Some compilers for 32bit processors don't have a 64bit data type, that is why the 64bit accesses
are done using 2 32bit words.
void read64Cached (UINT address) UINT* addrFirst Word) UINT* addrSecondWord) unsigned
short int delta_t);
Read a 64bit value from address address on the board and put the first 32bit word to address
addrFirst Word and the second 32bit word to address addrSecondWord.
void write64Cached (UINT address) UINT first Word) UINT second Word) unsigned short int
delta_t);
Write a 64bit value made up from a 32bit first word first Word and a 32bit second word second
Word to the address address.

3.2 Uncached access

It is possible to do uncached accesses to the AMRM board, both the DRAM and the SRAM can
be accessed separately.

3

3.2.1 Uncached SRAM

The functions used for uncached SRAM access are presented below. The parameters and behav
ior is identical to the cached access functions.
UINT read32UncachedSram (UINT address) unsigned short int delta_t);
void read64 UncachedSram (UINT address) UINT* addrFirst Word) UINT* addrSecondWord) un
signed short int delta_t)).
void write32UncachedSram (UINT address) UINT value) unsigned short int delta_t))·
void write64 UncachedSram (UINT address) UINT first) UINT second) unsigned short int delta_t))·

3.2.2 Uncached DRAM

Similarly the functions for doing uncached DRAM access are:
UINT read32UncachedDram (UINT address) unsigned short int delta_t);
void read64 UncachedDram (UINT address) UINT* addrFirst Word) UINT* addrSecondWord)
unsigned short int delta_t);
void write32UncachedDram (UINT address) UINT value) unsigned short int delta_t))·
void write64 UncachedDram (UINT address) UINT first) UINT second) unsigned short int delta_t))·

4 the AMRM board

Various parameters of the AMRM board can be changed using the functions below.

void setL1Size (int lengthlnKBytes);
Sets the size of the cache to be lengthlnKBytes. The possible values are: 8, 16, 32, 64, 128, 256
and 512.

void setLineSize (int lengthlnBytes)).
Sets the cache line size to be lengthlnBytes. The possible values are: 8, 16, 32, 64, 128, 256 and
512.

void change WrPolicy (int wrpolicy);
With a true argument set the write policy to be write-back and with a false argument to be
write-though.

void setAdaptivity (int value))·
With a true argument make the cache be adaptive. NOTE: this is currently not implemented.

void setSramSize (int value)).
Set the size of the SRAM to be value. The size should be initialized correctly on boot-up, so
there's no real need to call this function.

void setDramSize (int value)).
Similar to the previous function, but for DRAM.

void setAssociativity (int value);
Set the cache associativity to be value. Possible values are: 1, 2 and 4. For now only a direct
mapped cache is implemented.

4

1 Setting the Timing Parameters

The timing parameters for the cache can be set using the functions below. This values will be
added to the virtual time register in each specific case.

void setCacheHitTime (int value)j
Set the cache hit time to be value.

void setMissFetchTime (int value) j
Set the miss fetch time to be value.

void setWriteThruMissTime (int value);
Set the write-through miss time to be value.

void set WriteBackMissFetchTime (int value)j
Set the write-back miss time to be value.

4 Reading the Timing and the Counters from the AMRM Board

The internal board counters can be read using the following functions.

UINT get VirtualTime (void) j
Read the virtual time from the board.

UINT getNumReads (void);
Read the number of reads.

UINT getNum Writes (void))·
Read the number of writes

UINT getNumReadHits (void))·
Read the number of read hits.

UINT getNum WriteHits (void))·
Read the number of write hits.

UINT getNum WriteBacks (void))·
Read the number of write backs. This should be zero when the cache is set to write-through.

4.3 Reseting the Counters

The counters on the AMRM board can be reset using the following functions.

void reset VirtualTime (void))·
Reset the virtual time counter.

void resetNumReads (void))·
Reset the number of reads counter.

void resetNum Writes (void))·
Reset the number of writes counter.

void resetNumReadHits (void))·
Reset the number of read hits counter.

5

void resetNum WriteHits (void);
Reset the number of write hits counter.

void resetNum WriteBacks (void);
Reset the number of write backs counter.

void reset Counters ();
Is a convenience function that resets all the counters.

4A Reading the Status Registers

The status registers can be read using the functions below.

UINT getStatuslnterrupt (void);
Read the status of the interrupt register.

UINT getStatusCounterOverfiow (void);
Read the status of the counter overflow register. If it the value is true one of the counters has
overflown.

5 The AMRM GUI program

The AMRM GUI program was designed for the testing the AMRM board and is an easy interface
to all the boards features. It runs under Windows NT.

It has dialog boxes that allow to:

• change the cache size

• change the cache line size

• change the cache associativity

• read the performance counters

• reset the performance counters

• run programs instrumented to use the AMRM board, and then display the performance
counters

• read and write data from DRAM

• access a cache location, a cache line or the tag corresponding to a cache location

6 Trace-AMRM, a Trace-Driven Simulation Program

The AMRM board can be used to do trace-driven simulation using the trace-AMRM program.
Trace-AMRM reads a memory trace in a format presented bellow executes the actions in the
trace and when at the end it prints the read/write hit/miss counters and the virtual time.

The trace contains lines in the following format:

6

• 32 and 64 bit read commands
R 32-64 ADDRESS DELTA_T [VALUE]
32 or 64 bit access
ADDRESS - a 32bit value representing the address of the access
DELTA_T - a 16bit value representing the time from the previous instruction

• 32bit write command
W 32 ADDRESS DELTA_T VALUE
VALUE - a 32 value to be written for a write instruction, this field is not present for a read
instruction

• 64bit write command
W 64 ADDRESS DELTA_T VALUEl VALUE2
VAL UEl and VAL UE2 are 32bit values, VAL UEl is the MSW of the 64bit value to be
written and VAL UE2 is the LSW.

• set line size
L DECIMAL_VALUE
VALUE is in bytes can be: 8, 16, 32, 64, 128, 256, 512

• set cache size
C DECIMAL_VALUE
VALUE is in KBytes and can be: 8, 16, 32, 64, 128, 256, 512

• set associativity
A DECIMALVALUE
VALUE can be 1, 2 and 4 for a direct-mapped, 2-way or 4-way set-associative cache.
Only the direct-mapped cache is currently implemented.

VALUE, VALUEl, VALUE2, ADDRESS and DELTA_T are hexadecimal.

Usage:
trace-AMRM TRACE.FILE_NAME

Using SimpleScalar simulator with AMRM

We ran several test programs and benchmarks through SimpleScalar simulator, using both the
AMRM board and SimpleScalar's cache simulator. The miss rates and number of memory
accesses collected by SimpleScalar and the board were identical. The virtual time from the
board and the time reported by SimpleScalar are comparable. They may slightly differ if the
last instruction in the program is not a memory access, since the board virtual time doesn't get
updated.

In order to use the AMRM board, we firstly call the initialization functions, and then the
functions for setting up the parameters of the cache. They should be the same for the AMRM
board and for SimpleScalar's cache simulator. To use any of the functions, just include the
following in the source code:

7

#include "amrmAPI.h"
#include "amrmAPI-aux.h''

Secondly, for each access to the SimpleScalar's cache simulator we inserted calls to the functions
for accessing the board (read or write), with the appropriate value for delta_t.

The programs to be simulated through SimpleScalar do not need to be recompiled for using
the board. Only some source files of the simulator were modified and needed to be recompiled:

• the source-file with the simulator itself. We had to insert the calls to the board functions
for both initialization and read/write accesses

• the source-file of the cache simulator. SimpleScalar's cache simulator models only non
blocking write-back cache. We wanted write-through, blocking cache.

1 Changing the line size dynamically

To dynamically change the line size from SimpleScalar, we inserted annotated instructions in
the source code of the sample programs to be ran, and then extended SimpleScalar to recognize
these annotated instructions and make the appropriate calls to the board functions.

For instance, for changing the line size to a value XX, we used

#define CHANGE(XX) asm("addi/a 2,3," #XX)

Whenever SimpleScalar fetches the annotated instruction addi/ a, it will call the function for
changing the line size on the AMRM board. Note: when changing the line size on the board,
you also have to flush the cache on both the AMRM board and SimpleScalar.

8

