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Abstract

Contingent convertible bonds (CCBs) are new debt instruments that automatically
convert to equity when the issuing firm or bank reaches a specified level of financial dis-
tress. This paper presents a formal model of CCBs with finite maturity and where the
firm’s value process is driven by a jump diffusion process. We are able to derive closed-
form solutions for the value of the CCBs. In this paper we can completely characterize
two different types of CCBs: In the first case the number of shares granted at conversion
is fixed a priori. In the second specification the number of shares granted at conversion is
chosen a posteriori such that the value of the shares equals a specified value. Incorporating
jumps into the dynamics of the firm’s value process is important for two reasons. First
it can solve the predictability problem of the conversion and default event, i.e. including
jumps into the firm’s value process creates non-zero credit spreads for short maturities.
Second, the evaluation of CCBs depends on the capital structure. Without jumps the
evaluation of contingent convertible bonds can be independent of the amount of straight
debt. In a model with jumps the valuation of straight debt and contingent convertible debt
is interlinked as jumps could be large enough to trigger conversion and default simulta-
neously. Furthermore, it is observed that short-term debt has very different features than
long-term debt. Our model can capture the effect of the maturity on the debt contracts.

In order to apply CCBs in practice it is desirable to base the conversion on observable
market prices that can constantly adjust to new information in contrast to accounting trig-
gers. We can show how to use credit spreads and the risk premium of credit default swaps
to construct the conversion trigger and to evaluate the contracts under this specification.

CCBs are intended to avoid bank bailouts of the type that occurred during the sub-
prime mortgage crisis when banks were in trouble to recapitalize themselves and regulators
feared the consequences of default contagion. Hence, the second focus of this paper is to
analyze whether CCBs can be used as a regulation instrument. It is crucial to require that
the parameters of the CCBs are chosen such that they satisfy a no-early-default condition.
In this case a regulation that combines a restriction on the maximal leverage ratio and the
requirement of issuing a certain fraction of CCBs as part of the whole debt, can efficiently
lower the default probability without reducing the total value of the firm. However, if this
condition is violated, CCBs can increase the default risk of a bank.

∗I am very grateful to Robert M. Anderson for his invaluable support and guidance. I also want to thank
Ulrike Malmendier, Dwight Jaffee, Alexei Tchistyi and Demian Pouzo for very useful comments and suggestions.
This work was supported by the Coleman Fung Chair in Risk Management at UC Berkeley.
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1 Introduction

1 Introduction

This paper presents a formal model for a new regulatory hybrid security for financial firms,
so-called contingent convertible bonds. This instrument has the features of normal debt
in normal times, but converts to equity when the issuing firms are under financial stress.
Although these bonds could in principle be used by any firm, the focus here is to analyze
their potential as a regulatory instrument for banks.

As the ongoing financial crisis has illustrated, banks play an important role in the economy.
When they are healthy, banks channel savings into productive assets. But when they are
distressed, this role is compromised and banks lend less with adverse effects on investment,
output and employment. In this situation governments often intervene, but as we could see
during the past crisis, the measures are costly to taxpayers and may be limited in effectiveness.
There are several reasons why banks may inadequately recapitalize on their own in the first
place.

First, there is the so-called debt overhang problem. If a bank suffers substantial losses,
the managers, who should act in the interest of the shareholders, may prefer not to issue new
equity. If a distressed bank issues new equity, the bank’s bondholders profit from this as the
new capital increases the likelihood that they will get repaid. On the other hand, existing
shareholders bear costs as their claims on the firm are diluted. In this sense issuing new
equity creates a transfer from existing shareholders to bondholders. Hence, in order to satisfy
capital requirements shareholders may prefer the bank to sell risky assets or to reduce new
lending instead of issuing new equity. If during a financial crisis other banks are in trouble,
too, they will also cut lending and thus the economy as a whole suffers.

Second, there is the moral hazard problem of a government bailout. A government bailout
represents an implicit guarantee for the bondholders that their debt will be repaid. If bond-
holders believe that the government will not allow a bank to fail, the bondholders may be
more willing to lend money to a bank that pursues more risky strategies and have less incen-
tives to control the bank. This problem is particularly severe for the most important financial
institutes, that are “too big to fail”.

Furthermore, bankruptcy reorganization for banks is different than default restructuring
for other firms. Banking business relies on confidence. If a bank is in trouble, there is the
danger of a bank run as clients and short-term creditors may withdraw their capital. As in
the case of Lehman Brothers, distress for a financial firm often leads to partial or complete
liquidation in contrast to a restructuring according to Chapter 11 which can help a “normal”
company to return to economic viability.

In summary, the debt overhang problem can make banks reduce lending or sell assets
instead of recapitalizing themselves and maintaining their lending capacity. If restructuring
takes place, it is usually ineffective and disruptive and can affect other institutions. The
possibility of a government bailout can increase the riskiness of the strategies of a bank. For
this reason the discussion in the aftermath of the financial crisis has focussed on a resolution
mechanism that can allow quick and less disruptive recapitalization of distressed banks, but
does not shift the costs of risky activities to the government. A possible solution is contingent
convertible bonds.

Contingent convertible bonds are instruments that convert into equity if the bank is fi-
nancially distressed. The bank would issue these bonds before a crisis and if a certain trigger
is reached, conversion takes place automatically. The automatic conversion of debt into eq-
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1 Introduction

uity would transform an undercapitalized bank into a well capitalized bank at no cost to the
taxpayer.

The key issues for specifying CCBs are: When does conversion take place and how many
shares are given to the bondholders at conversion? The automatic conversion should be
triggered by the same mechanism that triggers default. From our understanding bankruptcy
is caused if the value of the firm’s assets is below a default barrier. Hence, conversion should
take place if the value of the firm’s assets reaches another barrier, namely the conversion
barrier. In view of the application as a regulation instrument it is sensible to require this
conversion barrier to be higher than the default barrier. In addition to the trigger, the rate
at which the debt converts into equity has to be specified. There are basically two different
approaches. In the first approach each dollar of debt converts into a fixed quantity of equity
shares. In this case the total value of the portfolio of shares granted at conversion depends on
the stock price at conversion. In the second approach the conversion is specified in terms of
the market value of equity. In this case the number of shares granted at conversion depends
on the stock price at the time of conversion. This paper considers both types of converting
debt into equity.

CBBs have been traded only very recently. In 2009 Lloyd’s bank issued the first £7
billion CCBs. The first and only time so far that contingent convertible bonds were used
as a regulatory instrument was in Switzerland, when the Credit Suisse Group AG issued $2
billion of these new bonds on February 14th, 2011. The coupon payments of the contingent
convertible bonds were substantially higher than for normal debt: 7.875% vs. 4% on average.

The idea of contingent convertible bonds has been a very vivid area of research in the
last 3 years. However, the literature on formal models of contingent convertible bonds is
still very limited. Qualitative discussions can be found in Flannery (2009a+b), Squam Lake
Working Group on Financial Regulation (2009), McDonald (2010) and Calomiris and Herring
(2011). The first structural formal model is presented in Albul, Jaffee and Tchistyi (2010).
Their model is based on Leland’s (1994b) structural credit risk model with optimal default
barrier. The firm’s value process follows a geometric Brownian motion and the bonds are of
infinite maturity. Conversion is triggered when the firm’s value process reaches an exogenous
conversion barrier and the conversion value is expressed in terms of the market value of
equity. Their paper provides many very interesting insights concerning regulation and capital
structure decisions. Our paper is closely related to Albul, Jaffee and Tchistyi’s (2010) work,
but our model is based on Hilberink and Rogers’ (2002) and Chen and Kou (2009)’s jump
process framework. As in Albul, Jaffee and Tchistyi we work with a structural credit risk
model, in which the optimal default barrier is chosen endogenously by the shareholders by
trading off tax benefits and bankruptcy costs. However, the bonds in our model have finite
maturity and are issued such that we obtain a stationary debt structure. The firm’s value in
our model follows a specific jump diffusion process, namely a Kou process. This particular
choice of process allows us to obtain a non-zero credit spread limit for a maturity approaching
zero. The valuation of CCBs becomes considerable more challenging under a jump diffusion
process. A jump that triggers conversion can be sufficiently large to trigger bankruptcy as well.
Hence, the conversion value of CCBs explicitly depends on the features of the straight debt.
In Albul, Jaffee and Tchistyi the valuation of straight debt and contingent convertible debt
could be separated. In our framework we can show that the valuation of the two different
debt instruments is interlinked. Furthermore, we do not only treat the conversion barrier
as exogenously given, but we also consider the case of it being chosen optimally by the
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1 Introduction

shareholders or the firm.
This is the first model where the conversion value is also specified as a fixed number of

shares. In order to price the conversion value that depends on a fixed number of shares, we
have to model the stock price process as well. As shares are essentially claims on a fraction of
the equity, the stock price process will depend on the capital structure and has to be modeled
endogenously. As we explicitly model the stock price process, we can completely characterize
the dilution costs to the old shareholders at conversion.

Specifying the conversion trigger in terms of the firm’s value process is conceptionally
appealing and allows us to derive analytical solutions for all prices. However, the firm’s value
process is unobservable and it would be desirable to base the conversion event on observable
prices. Some literature, e.g. De Spiegeleer and Schoutens (2011), propose to trigger conversion
when the stock price process first crosses a barrier level. As we will show the stock price is in
general not a sufficient statistic for the firm’s value process. Therefore, conversion based on
the stock price cannot be incorporated into our modeling framework. Moreover, it is possible
that more than one stock price and CCB price are consistent with our equilibrium conditions
if conversion is based on the stock price. These shortcomings are not appealing. However,
we can show that the unobservability of the firm’s value process can be circumvented by
using credit spreads or the risk premiums of credit default swaps (CDS). Credit spreads and
CDS risk premiums have the same advantages as stock prices as they constantly adjust to
new information in contrast to accounting triggers. We will prove that they are a sufficient
statistic for the firm’s value process. Thus, defining the conversion event in terms of credit
spreads or CDS risk premiums is equivalent to using the firm’s value process. In summary,
our evaluation formulas can be applied in practice with a trigger event based on observable
market prices.

We extend our model into several directions. First, we introduce a general approach which
allows all parameters of the firm’s value process to change after the conversion. In particular
we can model the special case, that the drift of the firm’s value process increases after con-
version as interest payments decrease. Second, we introduce exogenous noise trading into the
stock price process and can show that under certain conditions our pricing formulas are not
affected. Third, we show that contracts, for which the number of shares granted at conversion
is fixed a priori, are more robust against manipulation by the contingent convertible bond-
holders than contracts with a fixed value at conversion. It is possible to design a contract that
is robust against manipulation by the equity holders and contingent convertible bondholders.

In the last part of the paper we analyze whether contingent convertible bonds can be used
as a regulation instrument. We can show that under a technical assumption, the no-early-
default condition, a regulation that combines a restriction on the maximal leverage ratio and
the requirement of issuing a certain fraction of contingent convertible bonds as part of the
whole debt, can efficiently lower the default probability without reducing the total value of the
firm. However, if the no-early-default condition is violated, a regulation based on contingent
convertible debt can actually increase the risk. Therefore, it is crucial to make sure that this
condition is satisfied. If the contingent convertible bonds are issued in a smaller amount than
the straight debt, have a long maturity and the conversion barrier is sufficiently high, the
no-early-default condition is generally satisfied.

The paper is organized as follows. In Section 2 we present the formal model of Chen
and Kou. In Section 3 we add the contingent convertible bonds to the model. In Section
4 we derive closed-form prices for CCBs. Section 5 discusses the choice of the default and
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conversion barrier. In Section 6 we consider the case where conversion is based on observable
market prices instead of the unobservable firm’s value process. In Section 7 we present some
numerical simulations. Section 8 discusses the optimal design of CCBs. In Section 9 we
consider extensions to our model. Section 10 focusses on contingent convertible bonds as a
regulation instrument. Section 11 concludes. Most of the proofs and the special case of a
pure diffusion process are collected in the Appendix.

2 Model for Normal Debt

In this section we review Chen and Kou’s (2009) model, in which the firm’s value process
follows a particular jump-diffusion process. It is based on Leland’s (1994a) diffusion and
Hilberink and Rogers’ (2002) jump diffusion structural credit risk models with optimal default
barrier. As the model presented here applies to any firm and as we will only consider the
special case of banks in the section about regulation, we use the generic terminology “firm”
instead of “bank”.

The value of the firm’s assets at time t is denoted by Vt and under the risk-neutral measure
P 1 it evolves as

dVt = Vt(dZt + (r − δ)dt) (2.1)

where Z is some martingale, r is the constant riskless interest rate and δ represents the
proportional rate at which a part of the assets is disbursed to investors.2

We will follow Chen and Kou (2009) and specify Z as a jump diffusion process with double
exponentially distributed jumps. Note that as the firm has bondholders and shareholders, δ
cannot be seen as a dividend rate. First the coupons and principal repayments have to be
paid before the residual can be paid out as dividends. By assuming a constant riskless interest
rate we neglect the interest rate risk.

The firm is partly financed by debt which has two features: Its time structure and its
riskiness. In order to obtain a stationary debt structure, debt is constantly retired and
reissued. Assume that at every point in time the firm issues new debt in the amount of pD,
i.e. in the time interval (t, t+dt) new bonds with face value pDdt are issued. The debt has the
maturity profile ϕ, where ϕ can be any non-negative function with

∫∞
0 ϕ(s)ds = 1 and can be

interpreted as a density function. We will choose the maturity profile as ϕ(t) = me−mt, i.e.
the maturity of a specific bond is chosen randomly according to an exponentially distributed
random variable. Of all the debt issued in (t, t+ dt) the debt with face value pDϕ(s)dtds will
mature in the time interval (t+ s, t+ s+ ds). If we also consider all the debt that was issued
before t = 0 the face value of debt maturing in (s, s+ ds) is∫ 0

−∞
pDϕ(s− x)dxds =

∫ ∞
s

pDϕ(y)dyds = pDΨ(s)ds , Ψ(s) ≡
∫ ∞
s

ϕ(y)dy.

For our maturity profile this equals∫ 0

−∞
pDme

−m(s−x)dxds = pDds.

1As we consider only one martingale measure in this section, E will denote the expected value with respect
to P.

2We use the drift r− δ because we work under the risk-neutral measure P. Under the real world probability
measure the drift would be µ− δ, where µ is some constant.
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The face value of all the newly issued debt is pDds. Hence, the face value of all the debt
maturing in (s, s+ds) is equal to the face value of the newly issued debt. Thus, the face value
of debt stays constant and at every point in time equals

PD = pD

∫ ∞
0

Ψ(s)ds =
pD
m
.

Note, that for our maturity profile ϕ(t) = me−mt the parameterm is a measure of maturity.
As m increases a higher fraction of the debt matures earlier. If default never occurs, the
average maturity of debt is:∫ ∞

0
tϕ(t)dt =

∫ ∞
0

t(me−mt)dt =
1

m
.

For m = 0 only consol bonds are issued as in Leland (1994b). The choice of the exponential
maturity is needed in our model to express the debt in terms of some Laplace transform. This
enables us to derive an explicit solution for double exponential jump diffusion processes.

We assume that all debt is of equal seniority and is paid by coupons at the fixed rate cDdt
for the time interval (t, t+dt) until either maturity or default occurs. The first time the value
of the firm falls to some level VB or lower and thus default happens is denoted by τ . The
default barrier VB will be chosen optimally by the shareholders. In the case of default, we
assume that a fraction α of the value of the firm’s assets is lost. The value of a bond issued
at time 0 with face value 1 and maturity t is therefore

dD(V, VB, t) = E

[∫ t∧τ

0
cDe

−rsds

]
+ E

[
e−rt1{t<τ}

]
+

1

PD
(1− α)E

[
V (τ)e−rτ1{τ≤t}

]
.

The first term represents the net present value of all coupons up to the minimum of t and τ .
The second term can be interpreted as the net present value of the firm’s repayment when
default does not happen. The last term is the net present value of the assets if bankruptcy
occurs. We assume that the face value of all debt is PD and thus a bondholder with a bond
with face value 1 gets the fraction 1/PD of the value (1−α)V (τ) that remains after bankruptcy.
Note that if V were continuous, V (τ) would simply be VB, but for a process with jumps this
need not be the case.

The total value of all debt outstanding given our assumptions about the maturity profile
was derived by Chen and Kou (2009) and is given in the next proposition.

Proposition 1. The total value of all outstanding debt for the maturity profile ϕ(t) = me−mt

is

D(V, VB) =

∫ ∞
0

pDΨ(t)dD(V, VB, t)dt

=
cDPD +mPD

m+ r
E
[
1− e−(m+r)τ

]
+ (1− α)E

[
V (τ)e−(m+r)τ

1{τ<∞}

]
.

The main problem now is to compute the two expectations. For V following a geo-
metric Brownian motion an explicit solution is easily available. Note that the expectation
E
[
V (τ)e−(r+m)τ

1{τ<∞}
]

is bounded from above by VB and below by 0. In the two extreme
cases for the maturity rate m, Lebesgue’s dominated convergence theorem yields the following
corollary:

6



2 Model for Normal Debt

Corollary 1. The value of the debt for m→∞ and m→ 0 is given by

lim
m→0

D(V, VB) =
cDPD
r

E
[
1− e−rτ

]
+ (1− α)E

[
V (τ)e−rτ1{τ<∞}

]
lim
m→∞

D(V, VB) = PD.

The limit for m→ 0 corresponds to the case of consol bonds as in Leland’s (1994b) paper.

The total coupon rate of all the debt equals CD = cDPD. As by the choice of our maturity
profile, PD is constant over time and cD is assumed to be fixed, we get a stationary debt
structure: A unit of bonds issued one year ago will look exactly the same as a unit of bonds
issued today. If the value of the firm’s assets does not change they will also have the same
price.

According to Modigliani and Miller the total value of the firm is expressed as the sum
of the asset value plus tax benefits minus bankruptcy costs. We assume that there is a
proportional corporate tax rate c̄ and coupon payments can be offset against tax. Thus, for
the total coupon rate CD = cDPD the firm receives an additional income stream of c̄CDdt.

Definition 1. The tax benefits associated to the debt are denoted by TBD and the bankruptcy
costs by BC. The total value of the firm is defined as

Gdebt(V, VB) = V + TBD(V, VB)−BC(V, VB).

Proposition 2. The total value of the firm equals

Gdebt(V, VB) = V +
c̄CD
r
E
[
1− e−rτ

]
− αE

[
V (τ)e−rτ1{τ<∞}

]
. (2.2)

Proof. See Appendix 12.1

The value of the firm consists of the value of its assets plus the net present value of the
tax rebates minus the net present value of the losses on default. Now, we can express the
value of the firm’s equity as

EQdebt(V, VB) = Gdebt(V, VB)−D(V, VB).

Optimal capital structure and optimal endogenous default are two interlinked problems. The
optimal debt level PD and the optimal bankruptcy trigger VB have to be chosen simultane-
ously. When a firm chooses PD in order to maximize the total value of the firm at time 0,
the decision depends on VB. Vice versa, the optimal default trigger VB is a function of the
amount of debt PD. Leland (1994a+b) and Leland and Toft (1996) have shown how to choose
PD and VB according to a two-stage optimization problem. In the first stage, for a fixed PD,
equity holders choose the optimal default barrier by maximizing the equity value subject to
the limited liability constraint. In a second stage, the firm determines the amount of debt PD
that maximizes the total value of the firm. More precisely, the first stage problem is

max
VB

EQdebt(V, VB) such that EQdebt(V
′, VB) > 0 for all V ′ > VB

7



3 A Model for Contingent Convertible Debt

The “smooth pasting” condition as derived in Leland and Toft (1996) delivers an optimality
criterion:

∂EQdebt
∂V

(V, VB)|V=VB = 0.

In the case of two-sided jumps Chen and Kou prove that the solution to the smooth pasting
condition indeed maximizes the equity, respecting the constraint that the value of equity must
remain non-negative at all times. The optimal default barrier will be denoted by V ∗B and is
clearly a function of PD. The second stage optimization is formulated as

max
PD

Gdebt(V, V
∗
B(PD)).

In our model bankruptcy occurs at an endogenously determined asset value VB. For all
asset values larger than VB equity has a positive value. Note, that this does not mean that
bankruptcy occurs when debt service payments exceed the cash flow δV . At any point in time
the firm issues bonds which are worth D, but has to make a debt service of PD and after-tax
coupon payment of(1 − c̄)CD. Hence, (δV − (1 − c̄)CD − PD + D) is the payout rate to the
shareholders. As V falls, the cash flow δV declines and the price of the debt D(V, V B) will
fall as well, which can result in a negative payout rate to the shareholders. As long as the
equity value is positive, new stock can be issued to meet debt service requirements. Hence,
bankruptcy can only occur when the equity value becomes zero.

The initial total coupon rate CD will be chosen, such that debt sells at par, i.e. the price
of the debt equals its face value. Therefore, if the value of the firm’s assets does not change,
the firm can use the newly issued debt to repay the face value of the old debt. As we will see
later the optimal value of VB depends on the coupon rate CD. Hence, for a fixed amount of
debt PD, the initial coupon payment CD is computed by solving the following two equations
simultaneously. First, debt has to sell at par:

PD = D(V0, VB, PD, CD). (2.3)

Second, the optimality criterion is to maximize the equity value:(
∂EQdebt(V0, VB, PD, CD)

∂V0

)
V0=VB

= 0. (2.4)

3 A Model for Contingent Convertible Debt

3.1 Modeling Conversion

The special property of contingent convertible bonds is that the debt automatically converts
to equity if the firm or bank reaches a specified level of financial distress. We will model this
by introducing a barrier VC . The first time the value of the firm falls to or below this level,
the convertible bond fully converts into equity. Hence, the conversion time is defined as

τC = inf(t ∈ (0,∞) : V (t) ≤ VC).

The challenge of modeling convertible debt lies in the specification of the conversion value.
First, we present a model where the conversion value is based on a fixed number of shares.
In this case the stock price processes has to be modeled as well. We label them fixed share
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3 A Model for Contingent Convertible Debt

contingent convertible bonds (FSCCB). Second, we consider a model where the conversion
value is based on the market value of equity, i.e. the number of equity shares depends on the
stock price at conversion. Flannery (2002) labeled this kind of contingent convertible bonds
as “reverse convertible debentures” (RCD) and we will adopt this name:

1. FSCCB: Conversion value in terms of a fixed number of shares.

Here, the number of shares granted in exchange for a contingent convertible bond are
fixed in the contract. Therefore, the conversion value depends on the stock market price
at the time of conversion. We will model the stock price endogenously as a fraction of
the equity. There are basically two ways to choose the fixed number of shares granted
at conversion. Either this number is fixed at time zero without any reference to other
prices; in this case we obtain a unique price for the FSCCBs. The alternative is to
express this number in terms of the stock price S(t) at time t = 0. The number of
shares granted at conversion for a single CCB will then equal `

S(0) . The coefficient `

is a contract term. The value of the corresponding shares at time τC is S(τC). Hence,

at the time of conversion bondholders receive equity valued at its market price `S(τC)
S(0) .

However, the stock price at time 0 depends on the features of the CCBs, while the price
of the CCBs also depends on the stock price S(0). Hence, the stock price S(0) and the
price of CCBs have to be determined in an equilibrium. We will show that for this case
there exist in general two equilibrium prices for FSCCBs.

2. RCD: Conversion value in terms of the market value of equity.

Bondholders receive equity valued at its market price in the amount of ` at the time of
conversion τC . The coefficient ` is a contract term that determines the fraction of the
conversion value to the face value of the convertible bond at the time of conversion. In
the following we will assume that the value of equity for Vt = VC is sufficient to pay the
conversion value. This makes sense as the bondholders would only agree on a contract,
where it is known a priori that it is possible to fulfill the contractual obligations. There
are basically two ways of how the payments at conversion can be specified. In a model
without jumps both approaches coincide. Suppose that conversion is triggered by a
jump in Vt that crosses the conversion barrier VC . In the first approach, we assume that
the number of shares granted to the contingent convertible bondholders is determined
as if the firm’s value process first touches VC , conversion takes place at this time and
then the firm’s value process jumps to the value VτC . This means the number of shares
granted at conversion for a single bond with face value 1 is n′ = `

S(VC) , where S(VC)
denotes the stock price given the firm’s value process is equal to VC . The value of the
payment is then n′ · S(τC). We can think of S(VC) as a hypothetical stock price and
show that it is known at time zero when the contract is written. Hence, the number
n′ is a constant and this kind of RCD contract is actually a FSCCB contract. We will
label it RCD1.

In the second approach the number of shares granted is determined based on the stock
price S(τC) = S(VτC ), i.e. n′ = `

S(VτC ) . In this case conversion takes place after the firm’s

value process has crossed the conversion barrier. If the crossing happens by a jump,
S(VτC ) is smaller than S(VC). This implies that the number n′ is a random variable,
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3 A Model for Contingent Convertible Debt

which makes the contract different from the above FSCCBs. We use the name RCD2
for this second specification. In this paper we have solved the model for both cases.
The first approach has the advantage that RCDs and FSCCBs can be incorporated into
the same framework. Hence, in the main part of the text we focus on this contract
specification. In the Appendix we present the detailed solution to the second approach.

In analogy to the normal debt case we denote by PC the total value of the convertible
debt. The fixed coupon paid by a unit contingent convertible debt is cC and the total amount
of the coupon payments equals CC . The maturity profile of the contingent convertible and
the normal debt is the same, but it is straightforward to relax this assumption. In summary
we have the following equations for a bond dD with face value 1 and a contingent convertible
bond dC with face value 1:

τ = inf(t ∈ (0,∞) : Vt ≤ VB) τC = inf(t ∈ (0,∞) : Vt ≤ VC)

PD = pD

∫ ∞
0

Ψ(s)ds =
pD
m

PC = pc

∫ ∞
0

Ψ(s)ds =
pC
m

CD = cDPD CC = cCPC .

Implicitly, we make the following assumption:

Assumption 1. The conversion level is always equal or larger than the bankruptcy level:

VC ≥ VB.

If contingent convertible debt is to be used as a regulation instrument, it is sensible to
make the even stronger assumption that VC > VB. In the case where VC ≤ VB the contingent
convertible debt degenerates to straight debt without any recovery payment.

The pricing structure of contingent convertible bonds is similar to that of straight debt
bonds: The price consists of the net present value of the coupon payments until conversion,
the net present value of the firm’s repayment if conversion does not occur and finally the
conversion value if conversion happens before maturity. The two different types of CCBs
considered in this paper distinguish themselves only in the conversion value. The value of a
single contingent convertible bond with face value 1 and maturity t equals

dC(V, VB, VC , t) = E

[∫ t∧τC

0
cCe
−rsds

]
+ E

[
e−rt1{t<τC}

]
+ conv(V, VB, VC , t)

where conv(V, VB, VC , t) is the conversion value of the respective bond. Following the same
argument as for straight debt we obtain the following proposition:

Proposition 3. The total value of all outstanding convertible debt equals

CB(V, VB, VC) =

∫ ∞
0

pCΨ(t)dC(V, VB, VC , t)dt

=

(
cCPC +mPC

m+ r

)
E
[
1− e−(m+r)τC

]
+ CONV (V, VB, VC)

where CONV is the total conversion value

CONV (V, VB, VC) =

∫ ∞
0

pC ·Ψ(t) · conv(V, VB, VC , t)dt

10



3 A Model for Contingent Convertible Debt

Proof. See Appendix 12.2

We have decided to use the terminology “conversion value” instead of “conversion pay-
ment” for CONV . The reason is that CONV is not an actual cash payment like the coupon
payments or the repayment of the principal value if conversion does not take place. The
conversion value represents a redistribution of the equity value among shareholders in the
event of conversion. This perspective is important when evaluating the value of the equity.
A more appropriate but less practicable name for CONV would be “the total value of the
shares granted to contingent convertible bondholders at conversion”.

3.2 Consistency and Equilibrium Requirements

The total tax benefits are the sum of the tax benefits of the straight debt and the tax benefits
of the contingent convertible debt:

TB(Vt, VB, VC) = TBD(Vt, VB, VC) + TBC(Vt, VB, VC)

=
c̄CD
r
E
[
1− e−rτ

]
+
c̄CC
r
E
[
1− e−rτC

]
where CD = cDP and CC = cCPC denote the total values of the coupon payments and c̄ is
the tax rate. As before coupon payments are tax deductible. The bankruptcy cost are

BC(Vt, VB) = αE
[
V (τ)e−rτ1{τ<∞}

]
.

The total value of the firm equals

G = Vt + TB −BC.

The value of the equity consists of the total value of the firm minus the payments which
the equity holders have to make to the bondholders. The payments to the holders of straight
debt have a different structure than the payments to contingent convertible bondholders. The
value of a contingent convertible bond could be split into two parts: First, the value of the
coupon payments and the repayment of the principal value if conversion does not take place.
These are actual cash payments. Second, the value of the shares granted at conversion. The
conversion shares given to the contingent convertible bondholders are not a cash payment but
represent a redistribution among shareholders. The value of the conversion shares depends
on the value of the equity as a whole. For the old shareholders it represents an actual cost,
but it does not change the value of the equity as a whole. The total equity will be only
affected by the value of actual cash payments. Hence, the conversion value for the various
contingent convertible bonds CONV (V, VB, VC) does not directly enter the valuation formula
for the total equity. The term CB − CONV equals the principal value paid in the case of
no conversion and the value of the coupon payments of the contingent convertible bonds. We
define the total equity as

EQ(Vt, VB, VC)

=Vt + TB(Vt, VB, VC)−D(Vt, VB)− (CB(Vt, VB, VC)− CONV (Vt, VB, VC))−BC(Vt, VB).

Note that at any time t the following budget equation has to hold:

Vt + TB = EQ+D + CB − CONV +BC.

11
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In Section 3.3.2 we introduce dilution costs DC(Vt, VB, VC). These are the costs that the
old shareholders have to bear because the claim on equity will be distributed among more
shareholders after the conversion. At the time of conversion there is only one value transfer:
The contingent convertible bondholders receive the conversion value CONV and the old equity
holders suffer from a loss in value equal to the dilution costs DC. As there is no other value
created or destroyed the budget equation requires the dilution costs to equal the conversion
value.

Lemma 1. The dilution costs DC coincide with the conversion value CONV .

After having specified the concrete form of the dilution costs and the conversion value, we
will verify in Section 3.3.2 that the above lemma holds in our model. In this sense our model
is consistent. Denote by

EQold(Vt, VB, VC) = EQ(Vt, VB, VC)−DC(Vt, VB, VC)

the value of the equity for the old shareholders.3 By Lemma 1 this can be written as

EQold(Vt, VB, VC) = Vt + TB(Vt, VB, VC)−BC(Vt, VB)−D(Vt, VB)− CB(Vt, VB, VC)

In a model without contingent convertible debt the equity holders choose the conversion
barrier VB such that it maximizes the value of the equity subject to the constraint that
the value of the equity is strictly positive for a firm’s value process larger than VB. In a
model including contingent convertible debt the default decision before conversion is made by
the old shareholders. However, if default does not happen before conversion, the contingent
convertible bondholders become equity holders as well. The optimal default barrier for the
old and new equity holders after conversion can be different than for the old shareholders
before conversion. The fact, that the old shareholders cannot commit to their optimal choice
before conversion, will be called the commitment problem. Hence, for a given amount of debt
PD and PC the old shareholders will choose a default barrier that maximizes the value of their
equity subject to the limited liability constraint and the commitment problem:

max
VB

EQold(Vt, VB) s.t. EQold(V
′, VB) > 0 for all V ′ > VB and s.t. the commitment problem.

In Section 5 we will formulate the problem formally and derive a general solution to it. For a
given level of debt PD and PC , the coupon values will be determined at time t = 0 such that
all the debt sells at par:

P = D(V0, VB, PD, PC , CD, CC) (3.1)

PC = CB(V0, VB, VC , PD, PC , CD, CC). (3.2)

As the variables VB, CD and CC are determined endogenously, the remaining choice variables
are VC , PD, PC ,m, `, c̄, V0 and r. In the following we will usually suppress the dependence of
the functions on all the parameters and use a short-hand notation where we only implicitly
write the dependence on the variables of interest.

3The labeling “total equity” for EQ and “equity for the old shareholders” for EQold is our own notation.
In other papers, e.g. Albul, Jaffee, Tchistyi (2010), the equity for the old shareholders is just called equity.
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3.3 Modeling the Stock Price Process

3.3.1 Stock Price Process without CCBs

A single stock is a claim on a fixed portion of the equity of a firm. Hence, we can define the
stock price process as the value of the equity for the old shareholders divided by the number
of shares.

Definition 2. If the capital structure of a firm includes only straight debt, but no contingent
convertible debt, the stock price is defined as

St = S(Vt) =
EQdebt(Vt)

n

where n is the number of shares n = EQ(V0)debt/S(0).

3.3.2 Dilution Costs

Shareholders do not only profit from the additional tax benefits from issuing contingent con-
vertible bonds, but also face the risk of dilution. This creates a tradeoff. In more detail, at
the time of conversion all the cash payments of the contingent convertible bonds, i.e. the
coupon payments and the repayment of the face value, fall to zero. Hence, the total value of
the equity of a firm at conversion is the same as the total value of the equity of an identical
firm that did not issue any CCBs. At the time of conversion holders of contingent convertible
bonds become equity holders. As this implies that new shares are issued, the value of the
shares of the old shareholders decreases: “The size of the cake stays the same, but is divided
among more people.” Here we want to model the dilution costs for the old shareholders.
Denote by n the number of shares of the old shareholders and by n′ the number of shares of
all the new shareholders after conversion. Hence the costs of dilution DC are defined as

DC(Vt, VB, VC) = E

[
n′

n+ n′
EQ(VτC )e−(r+m)(τC−t)1{τC<∞}1{τC<τ}|Ft

]
.

DC corresponds to the value of the shares of the new shareholders. It is calculated as the
present value of their fraction of the total equity weighted by the maturity profile. Hence, the
value of the equity for the old shareholders equals

EQold(Vt, VB, VC) = EQ(Vt, VB, VC)−DC(Vt, VB, VC).

The main difference between our two different contingent convertible bonds is the number of
shares granted to the bondholders.

3.3.3 Stock Price Process with CCBs

If the capital structure of a firm includes debt and CCBs we define the stock price in the
following way:

Definition 3. If Assumption 1 is satisfied, the endogenous stock price process is defined as

St = S(Vt) =


EQ(Vt)−DC(Vt)

n if t < τC
EQ(Vt)
n+n′ if τC ≤ t < τ

0 if t ≥ τ

13
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where n is the number of “old” shares

n =
EQ(V0)−DC(V0)

S0

and n′ is the number of “new” shares issued at conversion.4

Note that EQold(Vt) = EQ(Vt) − DC(Vt) is just the value of the equity for the old
shareholders.

3.4 Pricing CCBs

3.4.1 Pricing FSCCBs

The old shareholders own a number of shares that is equal to the value of equity to them
divided by the price of the stock at time t = 0:

n =
EQ(V0)−DC(V0)

S0
.

The number n is fixed at time zero. Note, that the stock price S0 has to be determined
endogenously and will depend on the features of the CCBs. Assume first, that n′ is fixed
and does not depend on S0. The contingent convertible bondholders receive a fixed number
of shares at conversion if and only if conversion and bankruptcy do not happen at the same
time. This condition is captured by τC < τ or equivalently VτC > VB.

Proposition 4. If the value of the shares, that holders of a single contingent convertible bond
with face value 1 receive at conversion, is n′S(τ)/PC , then the value of the individual bond
satisfies

dC(V, VB, VC , t) = E

[∫ t∧τC

0
cCe
−rsds

]
+ E

[
e−rt1{t<τC}

]
+

n′

PC
E
[
S(τC)e−rτC1{τC≤t}1{VτC>VB}

]
.

Under the assumption of an exponential maturity profile ϕ(t) = me−mt the total value of the
convertible debt CB is given by:

CB(V, VB, VC) =

(
cCPC +mPC

m+ r

)
E
[
1− e−(m+r)τC

]
+ n′E

[
S(τC)e−(m+r)τC1{τC<∞}1{VτC>VB}

]
.

Proof. See Appendix 12.2

In Lemma 1 we have already noted that CONV (V0) = DC(V0). Hence, instead of evalu-
ating the conversion value, we will focus on the dilution costs, which are equal to

DC(Vt) =
n′

n+ n′
E
[
EQ(VτC )e−(r+m)(τC−t)1{τC<∞}1{τC<τ}|Ft

]
(3.3)

We will evaluate this expression analytically in Section 4.3.1.
The value of the equity EQ(VτC ) is independent of the contingent convertible bonds as

conversion has already taken place. We confirm that the consistency result in Lemma 1 is
satisfied for our choice of the stock price process.

4The definition of the stock price implicitly assumes that no new shares can be issued before conversion, i.e.
the number of old shares n at time t = 0 is the same as the number of old shares n at conversion t = τC . This
restrictive assumption is only needed for the evaluation of FSCCBs. For the evaluation of RCD1 and RCD2
contracts and all the other results in this paper, this assumption is not necessary and can be relaxed.

14
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Corollary 2. The conversion value equals the dilution costs:

CONV (Vt) = DC(Vt)

Proof. Plugging in the definition of S(t) yields

CONV (V0) =n′E
[
S(τC)e−(m+r)τC1{τC<∞}1{τC<τ}

]
=

n′

n+ n′
E
[
EQ(VτC )e−(m+r)τC1{τC<τ}1{τC<∞}

]
= DC(V0)

Assume that the number n′ of total shares granted at conversion is expressed in terms of
the stock price. If a single FSCCBs gives a bondholder `/S0 shares, then the total number of
shares equals

n′ =
PC`

S0
=

n`PC
EQ(V0)−DC(V0)

.

This is an intuitive way of specifying the contract as it just says how much of the face value of
debt are convertible bondholders going to get in terms of the current stock price if conversion
takes place. However, introducing CCBs into the capital structure changes the stock price.
As soon as the agents in the economy anticipate that contingent convertible capital will be
issued they will discount the current stock price by the dilution costs. As the dilution costs
and the stock price at time 0 are interlinked variables, specifying n′ in terms of S0 will in
general lead to two possible equilibrium prices for FSCCBs. Therefore, it is undesirable to
specify the conversion value of FSCCBs in terms of the stock price S0, and one should avoid
such a contract design.

Proposition 5. If n′ = PC`
S0

, then there exist two different combinations of prices for {S0, DC(0)},
which satisfy the consistency and equilibrium conditions for FSCCBs. The dilution costs
DC(V0) at time t = 0 for a contingent convertible bond with such a fixed number of shares
equal:

DC(V0) =
EQ(V0) + n′S0

2
±

√(
EQ(V0) + n′S0

2

)2

− E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
n′S0.

Proof. See Appendix 12.2

In order to rule out multiple equilibrium prices, the FSCCB contract has to be specified
such that n and n′ are fixed a priori and chosen independently of S0. After the equilibrium
stock price is realized, we can determine a posteriori for which contract parameter ` the
condition n′ = `PC

S0
is satisfied. In our numerical analysis we will refer to n′ as a fraction of

the face value of debt in terms of the current market value of equity, because it is easier to
interpret. However, this will not be the contract definition but an a posteriori consequence of
the contract specification.
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3.4.2 Pricing RCDs

The conversion value of FSCCBs depends on the stock market price at conversion. RCDs
are designed to avoid this uncertainty and the conversion value is defined as a fraction ` of
the face value of convertible debt. There are basically two ways of how to conceptualize
the conversion value for RCDs. In the first case, which we will label RCD1, we introduce
the hypothetical stock price S(VC), which would be realized if the firm’s value process only
touches but does not jump over the conversion barrier VC . The total number of shares granted
to the bondholders equals n′ = `PC

S(VC) . Given certain assumptions about the dynamics of the

firm’s value process the value S(VC) is uniquely defined and known a priori at time 0. Hence,
RCD1s are actually a specific version of FSCCB contracts. Although the stock price appears
in the definition of n′ we will show that there exists a unique equilibrium price. RCD1 have
the advantage that they are relatively easy to implement.

In the second approach, labeled as RCD2, we try to take into consideration the fact that
if conversion is triggered by a jump in the firm’s value process, the stock price at conversion
S(VτC ) = SτC is lower than the hypothetical stock price S(VC). In particular, it can be so low
that the value of the equity is not sufficient to make the promised payment. If the value of
the equity after conversion is sufficiently large, the bondholder get n′ = `PC

SτC
shares, otherwise

they take possession of the whole firm. Note, that n′ is a random variable in this case, which
makes RCD2 different from FSCCB contracts. Because of the possibility of complete dilution
at conversion the stock price process has to be modeled differently for RCD2s than for the
other contracts. Most of the derivations for RCD2s are explained in Appendix 12.3.

RCD1
In the case of RCD1s we make the assumption that the value of the equity at conversion is

sufficient to make the promised payment. Relaxing this assumption is straightforward as the
agents would just price in the additional risk. However, it seems sensible that the agents would
usually only agree on a contract where it is known a priori that the contractual obligations
can be fulfilled.

Assumption 2. The parameters of the RCD1 contract are chosen such that

EQ(VC) ≥ `PC ,

i.e. the equity value at conversion is sufficient to give shares to the bondholders with a value
equal to the promised payment.

Proposition 6. If the value of the shares given to holders of contingent convertible bonds at
conversion is `, the values of the individual bonds of RCD1 under Assumption 2 satisfy

dC(V, VB, VC , t) = E

[∫ t∧τC

0
cCe
−rsds

]
+ E

[
e−rt1{t<τC}

]
+ `E

[
S(τC)

S(VC)
e−rτC1{τC≤t}1{VτC>VB}

]
.

The total value of the convertible debt RCD1 for an exponential maturity profile ϕ(t) = me−mt

under Assumption 2 is given by:

CB(V, VB, VC) =

(
cCPC +mPC

m+ r

)
E
[
1− e−(m+r)τC

]
+ `PCE

[
EQ(VτC )

EQ(VC)
e−(m+r)τC1{τC<∞}1{VτC>VB}

]
.
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Proof. See Appendix 12.2

Note, that the value of the equity after conversion is independent of any features of the
contingent convertible debt. Hence, we obtain a unique equilibrium price for RCD1 contracts
although the number of new shares n′ is defined with respect to some stock price.

RCD2
For RCD2s we do not require Assumption 2. The conversion value for RCD2s requires us

to distinguish several cases. If τC < τ , i.e. the downward movement of VτC is not sufficient
to trigger bankruptcy, the contingent convertible bondholders receive a payment. If on the
one hand the value of the equity is sufficiently large, they get a number of stocks such that
the value of the total payment equals `PC . If on the other hand the value of the equity is
insufficient to make the promised payment to the contingent convertible bond holders, they
take possession of the whole equity and the old shareholders are completely diluted out. We
assume that the face value of all contingent convertible debt is PC and thus a bondholder
with a bond with face value 1 gets a fraction 1/PC of the value of the equity EQ(VτC ) after
conversion in this case.

Proposition 7. If the payment to holders of contingent convertible bonds at conversion is `,
the values of the individual bonds of RCD2 satisfy

dC(V, VB, VC , t) =E

[∫ t∧τC

0
cCe
−rsds

]
+ E

[
e−rt1{t<τC}

]
+ `E

[
e−rτC1{τC≤t}1{`PC≤EQ(VτC )}1{τC<τ}

]
+

1

PC
E
[
e−rτCEQ(VτC )1{τC≤t}1{τC<τ}1{`PC>EQ(VτC )}

]
.

For an exponential maturity profile ϕ(t) = me−mt the total value of the convertible debt RCD2
is given by:

CB(V, VB, VC) =

(
cCPC +mPC

m+ r

)
E
[
1− e−(m+r)τC

]
+ `PCE

[
e−(m+r)τC1{τC<τ}1{`PC≤EQ(VτC )}

]
+ E

[
EQ(VτC )e−(m+r)τC1{V (τC)>VB}1{`PC>EQ(VτC )}1{τC<∞}

]
.

Proof. See Appendix 12.3

A detailed treatment of RCD2s is provided in Appendix 12.3. In Appendix 12.11 we
show that the two contracts RCD1 and RCD2 are identical if no jumps are included in
the firm’s value process. The idea is that without jumps the firm’s value process has to
touch the conversion barrier at the time of conversion, i.e. VτC = VC . As a consequence
EQ(VτC ) = EQ(VC) and thus S(VτC ) = S(VC). Under Assumption 2 the number of shares
granted at conversion is `PC

S(VτC ) for RCD2s and `PC
S(VC) for RCD1s. As both numbers coincide,

the two contracts are the same.
In Appendix 12.4 we compare RCD and FSCCB contracts in terms of the number of shares

n′ granted at conversion for different conversion parameters `.
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4 Evaluating the Model

4.1 Dynamics of the Firm’s Value Process

Now we make some explicit assumptions about the martingale in (2.1) and assume that it is
a Lévy process. Thus V can be expressed as

Vt = V0 exp(Xt) (4.1)

where X is a Lévy process. The key tool for our analysis will be the Laplace exponent of X.
The moment generating function of a Lévy process is of the form

E[exp(zXt)] = exp(tψ(z)) (4.2)

for some function ψ being analytic in the interior of its domain of definition. The Lévy-
Khintchine representation theorem characterizes a Lévy process, identifying a drift term, a
Brownian motion component and a jump component:

ψ(z) = bz +
1

2
σ2z2 +

∫
R

(ezy − 1− zy1{|y|<1})ν(dy)

where b is the drift, σ corresponds to the Brownian motion component and ν is the Lévy
measure identifying the jumps. The roots of ψ(z) = λ will be of importance in the following.
We can now define the first passage times in terms of X: τ is the first hitting time defined as
τ = τx = inf(t ≥ 0 : X(t) ≤ x) with x = log(VB/V ) and τC = τxC = inf(t ≥ 0 : X(t) ≤ xC)
with xC = log(VC/V ).

For a general Lévy process it is very difficult to characterize the distribution of the first
passage times. Following Chen and Kou (2009) we propose a two-sided jump model for the
evolution of the firm’s assets with a double exponential jump diffusion process. The main
advantage of the double exponential distribution is that it leads to an analytical solution for
various Laplace transforms of the first passage times. Due to the conditional memoryless
property of the exponential distribution we can also analytically evaluate the Laplace trans-
form of the conversion time for jumps that are too small to trigger default. We assume that
under the risk-neutral measure the value of the firm’s assets V follows

dVt = Vt

(
(r − δ)dt+ σdWt + d

(
Nt∑
i=1

(Zi − 1)

)
− λξdt

)

where N is a Poisson process with constant intensity rate λ. Zi are i.i.d. random variables
and the Yi = log(Zi) possess a double exponential density:

fY (y) = pη1e
−η1y1{y≥0} + qη2e

η2y1{y<0}

where η1, η2, p and q are positive numbers and p+q = 1. The parameters p and η1 correspond
to the upward jumps and q and η2 to the downward jumps respectively. The mean percentage
jump size ξ is given by

ξ = E[Z − 1] = E[eY − 1] =
pη1

η1 − 1
+

qη2

η2 + 1
− 1.
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The sources of randomness N , W and Y are assumed to be independent. In order to ensure
that ξ < ∞, we assume that η1 > 1. This condition implies that the average upward jump
cannot exceed 100%, which is reasonable in reality. Applying Itô’s lemma for jump diffusions
yields

Vt = V0 exp(Xt) = V0 exp

(
bt+ σWt +

Nt∑
i=1

Yi

)
.

where b = r − δ − 1
2σ

2 − λξ and for z ∈ (−η2, η1) the Lévy-Khintchine formula is given by

ψ(z) = bz +
1

2
σ2z2 +

∫
R

(ezy − 1)λfY (y)dy

= bz +
1

2
σ2z2 + λ

(
pη1

η1 − z
+

qη2

η2 + z
− 1

)
.

Note that under the above risk-neutral measure Vt is a martingale after proper discounting,
i.e.

Vt = E
[
e−(r−δ)(T−t)VT |Ft

]
where Ft is the information up to time t. Kou and Wang (2003) prove the following results:

Lemma 2. For any ρ > 0 it holds

E
[
e−ρτ

]
=
η2 − β3,ρ

η2

β4,ρ

β4,ρ − β3,ρ
exβ3,ρ +

β4,ρ − η2

η2

β3,ρ

β4,ρ − β3,ρ
exβ4,ρ

where τ denotes the first passage time of Xt to x and −β3,ρ > −β4,ρ are the two negative roots
of the equation ψ(β) = ρ.

Lemma 3. For any ρ > 0 and θ > −η2 it holds

E
[
e−ρτ+θXτ1{τx<∞}

]
= eθ

(
β4,ρ + θ

η2 + θ

η2 − β3,ρ

β4,ρ − β3,ρ
exβ3,ρ +

β3,ρ + θ

η2 + θ

β4,ρ − η2

β4,ρ − β3,ρ
exβ4,ρ

)
where τ denotes the first passage time of Xt to x and −β3,ρ > −β4,ρ are the two negative roots
of the equation ψ(β) = ρ.

For the evaluation of contingent convertible bonds we need to consider the case where
conversion occurs but the jumps are not large enough to trigger bankruptcy. For this reason
we show the following proposition.

Proposition 8. Assume that Xt follows a Kou process and τ denotes the first passage time
to x < 0, i.e. τ = inf(0 ≤ t : Xt ≤ x). It holds that for y > 0, θ > −η2 and ρ > 0:

E
[
e−ρτ+θXτ1{τ<∞,−(Xτ−x)<y}

]
=

(
η2 − β3,ρ

β4,ρ − β3,ρ
exβ3,ρ +

β4,ρ − η2

β4,ρ − β3,ρ
exβ4,ρ

)
eθx + eθx

η2

θ + η2

(
1− e−(θ+η2)y

)
(1− e−η2y)

·

(
exβ3,ρ

β4,ρ − β3ρ

(
η2 − β3,ρ

η2
β4,ρ − (η2 − β3,ρ)− e−η2y

(η2 − β3,ρ)(β4,ρ − η2)

η2

)

+
exβ4,ρ

β4,ρ − β3,ρ

(
β4,ρ − η2

η2
β3,ρ − (β4,ρ − η2) + e−η2y

η2 − β3,ρ

η2
(β4,ρ − η2)

))
where −β3,ρ > −β4,ρ are the two negative roots of the equation ψ(β) = ρ.
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Proof. See Appendix 12.5

Definition 4. The function J is defined as

J(x, θ, y, ρ) =E
[
e−ρτ+θXτ1{τ<∞,−(Xτ−x)<y}

]
,

where x < 0, θ > −η2, y > 0, ρ > 0 and τ = inf(t ≥ 0 : Xt ≤ x). The explicit form of
J(x, θ, y, ρ) is given in Proposition 8.

Corollary 3. Assume that Xt follows a Kou process and τ denotes the first passage time to
x < 0, i.e. τ = inf(t ≥ 0 : Xt ≤ x). It holds that for y > 0 and ρ > 0

E
[
e−ρτ1{−(Xτ−x)<y}

]
=

exβ3,ρ

β4,ρ − β3ρ

(
η2 − β3,ρ

η2
β4,ρ − e−η2y

(η2 − β3,ρ)(β4,ρ − η2)

η2

)
+

exβ4,ρ

β4,ρ − β3,ρ

(
β4,ρ − η2

η2
β3,ρ + e−η2y

η2 − β3,ρ

η2
(β4,ρ − η2)

)
.

Definition 5. The function G is defined as

G(x, y, ρ) =E
[
e−ρτ1{−(Xτ−x)<y}

]
,

where x < 0, y > 0, ρ > 0 and τ = inf(t ≥ 0 : Xt ≤ x). The explicit form of G(x, y, ρ) is
given in Corollary 3.

4.2 Evaluation of the Debt

Now it is straightforward to derive an expression for the firm’s debt D. The following three
propositions are shown in Chen and Kou (2009).

Proposition 9. The value of the firm’s debt equals

D =
CD +mPD
r +m

(
1− β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

(
VB
V

)β3,r+m
− β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

(
VB
V

)β4,r+m)
+ (1− α)VB

(
β4,r+m + 1

η2 + 1

η2 − β3,r+m

β4,r+m − β3,r+m

(
VB
V

)β3,r+m
+
β3,r+m + 1

η2 + 1

β4,r+m − η2

β4,r+m − β3,r+m

(
VB
V

)β4,r+m)
where −β3,ρ > −β4,ρ are the only two negative roots of ψ(β) = ρ and the value is independent
of the specification of the contingent convertible bonds.

Proposition 10. If the capital structure does not include any contingent convertible debt the
total value of the firm Gdebt equals

Gdebt = V +
c̄C

r

(
1− β4,r

η2

η2 − β3,r

β4,r − β3,r

(
VB
V

)β3,r
− β3,r

η2

β4,r − η2

β4,r − β3,r

(
VB
V

)β4,r)
−αVB

(
β4,r + 1

η2 + 1

η2 − β3,r

β4,r − β3,r

(
VB
V

)β3,r
+
β3,r + 1

η2 + 1

β4,r − η2

β4,r − β3,r

(
VB
V

)β4,r)
.
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4 Evaluating the Model

Recall that if the capital structure does not include any contingent convertible debt the
value of the equity of the firm EQdebt is the difference between the total value of the firm and
the value of its debt:

EQdebt(V, VB) = Gdebt(V, VB)−D(V, VB).

Proposition 11. For all V > VB and VB > V ∗B the function EQdebt(V, VB) is a strictly
increasing function in V

∂EQdebt(V, VB)

∂V
> 0

where V ∗B is the optimal default barrier as defined in Section 5.

As we will show in Section 5 later, the smallest possible default barrier, that we need to
take into consideration is V ∗B. Therefore, Proposition 11 is general enough for our purposes.
In order to evaluate the conversion value, we need to calculate the value of the equity at the
time of conversion EQ(VτC ).

Lemma 4. The value of the equity at conversion EQ(VτC ) satisfies

EQ(VτC ) = EQdebt(VτC ) =
∑
i

αiV
θi
τC

=
∑
i

V θi
0 αie

X(τC)θi

The coefficients αi and θi are defined in Appendix 12.5.

Proof. See Appendix 12.5.

Definition 6. The function T : (VB,∞)→ (0,∞) is defined as

T (Vt) = EQdebt(Vt, VB)

Corollary 4. The condition EQ(VτC ) ≥ `PC is equivalent to VτC ≥ T−1(`PC).

Proof. We have seen that EQ(VτC ) = EQdebt(VτC ) = T (VτC ). As by Proposition 11 T (.) is
strictly increasing, its inverse exists and is strictly increasing as well.

4.3 Evaluation of the CCBs

4.3.1 Evaluation of FSCCBs

The only difficulty is to evaluate the dilution costs given by equation 3.3.

Lemma 5.

E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
=
∑
i

αiV
θi

0 J

(
log

(
VC
V0

)
, θi, log

(
VC
VB

)
, r +m

)
where αi and θi are as in Lemma 4.
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4 Evaluating the Model

Proof. The total equity value is the difference between the total value of the firm and the
value of actual debt payments: In Lemma 4 we have shown that EQ(VτC ) has a structure of
the form

EQ(VτC ) =
∑
i

αiV
θi
τC
.

Therefore, calculating E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
boils down to∑

i

E
[
αiV

θi
τC
e−(r+m)τC1{τC<∞}1{τC<τ}

]
=
∑
i

αiV
θi

0 E
[
eθiXτC−(r+m)τC1{τC<∞}1{−(XτC−xC)<log(VC/VB)}

]
.

We conclude:

Theorem 1. The price of FSCCBs for t < τC equals

CB(Vt) =
CC +mPC
r +m

(
1− β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

(
VC
Vt

)β3,r+m
− β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

(
VC
Vt

)β4,r+m)
+

n′

n+ n′

(∑
i

αiV
θi
t J

(
log

(
VC
Vt

)
, θi, log

(
VC
VB

)
, r +m

))
.

where αi and θi are as in Lemma 4.

Proof. By Proposition 4, Lemma 1 and equation 3.3 the price of the FSCCB is given by

CB(V, VB, VC) =

(
cCPC +mPC

m+ r

)
E
[
1− e−(m+r)τC

]
+

n′

n+ n′
E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
.

The first summand corresponds to the value of the coupon payments and the repayment of
the face value if conversion does not take place. The second summand is the value of the
dilution costs. Applying Lemma 2, we can explicitly calculate the Laplace transformation of
the conversion time appearing in the first summand. Lemma 5 gives us an explicit expression
for the expectation in the second summand.

4.3.2 Evaluation of RCDs

RCD1:

Proposition 12. The price of RCD1s for t < τC equals

CB(Vt) =
CC +mPC
r +m

(
1− β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

(
VC
Vt

)β3,r+m
− β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

(
VC
Vt

)β4,r+m)
+

`PC∑
i αiV

θi
C

(∑
i

αiV
θi
t J

(
log

(
VC
Vt

)
, θi, log

(
VC
VB

)
, r +m

))
.

where αi and θi are as in Lemma 4.
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5 Optimal Default Barrier

Proof. By Proposition 6 the price of RCD1s is given by

CB(V, VB, VC) =

(
cCPC +mPC

m+ r

)
E
[
1− e−(m+r)τC

]
+ `PCE

[
EQ(VτC )

EQ(VC)
e−(m+r)τC1{τC<∞}1{VτC>VB}

]
.

The first summand is the value of the coupon payments and the repayment of the face value
if conversion does not happen. The second term corresponds to the conversion value. Lemma
2 allows us to calculate the expectation in the first term. We combine Lemma 4 and Lemma
5 to derive an expression for the second summand. Note, that EQ(VC) is nonrandom and
thus can be taken out of the expectation.

RCD2:

Theorem 2. The price of RCD2s for t < τC equals

CB =
CC +mPC
r +m

(
1− β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

(
VC
Vt

)β3,r+m
− β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

(
VC
Vt

)β4,r+m)

+ `PC ·G
(

log

(
VC
Vt

)
, log

(
VC

max(T−1(`PC), VB)

)
,m+ r

)
1{VC>T−1(`PC)}

+
∑

αiV
θi
t

(
J

(
log

(
VC
Vt

)
, θi, log

(
VC
VB

)
,m+ r

)
− J

(
log

(
VC
Vt

)
, θi, log

(
VC

T−1(`PC)

)
,m+ r

)
1{VC>T−1(`PC)}

)
1{VB<T−1(`PC)}

Proof. See Appendix 12.3.

5 Optimal Default Barrier

Only Straight Debt without Contingent Convertible Debt

Choosing the optimal debt level PD and the optimal bankruptcy trigger VB are two entangled
problems. When a firm chooses P in order to maximize the total value of the firm at time
0, the decision depends on VB. Vice versa, the optimal default trigger VB is a function of
the amount of debt PD. Following Leland (1994a+b) PD and VB are chosen according to
a two-stage optimization problem. In the first stage, for a fixed PD, equity holders choose
the optimal default barrier by maximizing the equity value subject to the limited liability
constraint. In a second stage, the firm determines the amount of debt PD that maximizes
the total value of the firm. In this section, we will focus on the first stage problem. The
solution to the whole problem is presented in Section 10. First, we summarize how the first
stage problem is solved in the case with only straight debt and in the next subsection we
extend the analysis to a firm that issues contingent convertible debt and straight debt. The
maximization problem is

max
VB

EQdebt(Vt, VB) such that EQdebt(V
′, VB) > 0 ∀V ′ > VB.

The case of only straight debt was already considered in Chen and Kou (2009):
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5 Optimal Default Barrier

Proposition 13. The optimal default barrier without CCBs solves the smooth pasting condi-
tion (

∂(V + TBD(V, VB) +BC(V, VB)−D(V, VB))

∂V
|V=VB

)
= 0

and equals:

V ∗B =
CD+mPD
r+m β3,r+mβ4,r+m − c̄CD

r β3,rβ4,r

α(β3,r + 1)(β4,r + 1) + (1− α)(β3,r+m + 1)(β4,r+m + 1)

η2 + 1

η2
.

In the following we want to outline the arguments presented in Chen and Kou (2009).

Proof. Denote by V ∗B the solution to

∂EQdebt(V, VB)

∂V
|V=VB= 0.

By the formula for the equity without contingent convertible debt we can easily verify that

V ∗B =
CD+mPD
r+m β3,r+mβ4,r+m − c̄CD

r β3,rβ4,r

α(β3,r + 1)(β4,r + 1) + (1− α)(β3,r+m + 1)(β4,r+m + 1)

η2 + 1

η2
.

Define H(V, VB) by

H(V, VB) =
∂

∂VB
EQ(V, VB).

The proof consists of the following steps:

1. The optimal VB satisfies VB ≥ V ∗B.

2. It holds that ∂EQdebt(V,VB)
∂V ≥ 0 for all V ≥ VB ≥ V ∗B, i.e. the equity value is increasing

in the firm’s value.

3. It holds that H(V, VB) ≤ 0 for all V ≥ VB ≥ V ∗B. Hence

EQdebt(V, y1) ≥ EQ(V, y2) for all V ∗B ≤ y1 ≤ y2 ≤ V ,

i.e. the firm will choose the lowest default barrier that satisfies the non-negativity
constraint

First, by definition EQdebt(V
∗
B, V

∗
B) = 0 and by step 2 EQdebt(V, V

∗
B) is nondecreasing in V .

Thus V ∗B satisfies the non-negativity constraint EQdebt(V
′, V ∗B) ≥ 0 for all V ′ ≥ V ∗B. Second,

any VB ∈ (V ∗B, V ] cannot yield a higher equity value because of step 3.
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5 Optimal Default Barrier

Case 1: Optimal default barrier VB for exogenous conversion barrier VC

The optimization problem for the old shareholders changes, when contingent convertible bonds
are included in the capital structure. We have to consider two different “notions of equity”
here: The value of the equity for the old shareholders equals

EQold(V, VB, VC) = V + TBD + TBC −BC −D − CCB.

The value of the debt excluding any features of the contingent convertible bonds is

EQdebt(V, VB) = V + TBD −BC −D.

The old shareholders will choose the default barrier VB such the value of their equity EQold is
maximized subject to the constraint, that EQold has to be nonnegative. There are basically
two different solutions to this optimization problem. Either the resulting default barrier VB is
larger than the conversion barrier VC or smaller. After conversion, the contingent convertible
bondholders will become equity holders and the optimization problem of the equity holders
is the same as in the case of only straight debt. If the old shareholders decide on a default
barrier VB that is smaller than VC , they will not be able to commit to it as after conversion
V ∗B (see last subsection) will be chosen. However, it is possible that the value of the equity for
the old shareholders EQold(V, V

∗
B, VC) becomes negative for V > VC . As the old shareholders

anticipate this, they will choose a default barrier larger than VC in this case.
More formally, the optimization problem is formulated as follows:

Definition 7. If the capital structure includes straight debt and contingent convertible bonds,
the old shareholders choose VB to maximize

max
VB

EQold(V, VB, VC) such that EQold(V
′, VB, VC) > 0 for all V ′ > VB.

subject to the commitment problem that VB = V ∗B if VB < VC .

We need to clarify what happens in the case where the default and conversion barrier
are crossed at the same time for VB < VC . Passing both barriers simultaneously can occur
because a jump that crosses the conversion barrier is large enough to cross the default barrier
as well. We treat the crossing as if it happened sequentially. First the conversion barrier
is passed and the contingent convertible bondholders become equity holders. For the equity
holders, consisting of the old and new shareholders, the optimal default barrier will be V ∗B,
but not the former barrier VB. Therefore the crossing of VB will not trigger default. Default
happens only, if the new barrier V ∗B is passed.

Next, we need to clarify how to treat the case VB ≥ VC . If default happens before
conversion, all the payments linked to the contingent convertible bonds are nil as well. Hence,
we will assume that value of the payments of a contingent convertible bond are the same as
if VB = VC :

CCB(V, VB, VC) = CCB(V, VB, VB) for VB > VC

How does the commitment problem affect the optimal choice of VB in this case? If VB ≥ VC
and a jump crosses both barriers at the same time, we treat this case as if the crossing had
happened sequentially. First, the default barrier is passed and the firm defaults. Second, the
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5 Optimal Default Barrier

conversion barrier is passed. But as default has already taken place, the value of the equity
is zero and the contingent convertible bondholders cannot be compensated with stocks. In
particular, the contingent convertible bondholders cannot change the default barrier to V ∗B
as in the previous case. If the default barrier and conversion barrier coincide, i.e. VB = VC ,
we can either assume that default happens first or that conversion takes place first. We have
decided, that first default should take place and after that we deal with the conversion. This
is a purely technical convention, which does not affect any of our main results qualitatively,
but simplifies the exposition.

We will now show, that there are only two possible solutions to the optimization problem.

Theorem 3. There are only two possible solutions for the optimal default barrier. Either the
optimal default barrier coincides with the optimal default barrier with only straight debt or
it equals the maximum of the conversion barrier and V∗∗B :VB = V ∗B or VB = max(VC , V

∗∗
B ),

where

V ∗∗B =

CD+CC+m(PD+PC)
r+m β3,r+mβ4,r+m − c̄(CD+CC)

r β3,rβ4,r

α(β3,r + 1)(β4,r + 1) + (1− α)(β3,r+m + 1)(β4,r+m + 1)

η2 + 1

η2
.

V ∗∗B equals the optimal default barrier of a firm with only straight debt with face value PD+PC
and coupon CD + CC . If

EQold(V, V
∗
B, VC) ≥ EQdebt(V, V ∗∗B , PD + PC , CD + CC) for all V ≥ VC

for V ∗∗B > VC > V ∗B or

EQold(V, V
∗
B, VC) ≥ 0 for all V ≥ VC .

for V ∗B < V ∗∗B ≤ VC then

VB = V ∗B

otherwise

VB = max(VC , V
∗∗
B ).

Proof. See Appendix 12.6.

The intuition behind the proof is the following. V ∗B can only be the optimal default barrier,
when it is feasible, i.e. the equity value of the old shareholders is always positive before
conversion EQold(V, V

∗
B, VC) > 0 for all V > VC . Even, when it is feasible to choose V ∗B, it

may be optimal for the old shareholders to default before conversion. We show that the equity
value of the old shareholders for VB > VC is the same as for a firm that issues only straight
debt in the amount PD + PC with coupon CD + CC : EQold(V, VB, VC , PD, PC , CD, CC) =
EQdebt(V, VB, PD + PC , CD + CC). The optimal default barrier for this amount of straight
debt is V ∗∗B . If V ∗∗B > VC and EQdebt(V, V

∗∗
B , PD + PC , CD + CC) > EQold(V, V

∗
B, VC), then

the old shareholders will prefer to default before conversion. However, if V ∗∗B < VC , the old
shareholder can get at most EQdebt(V, VC , PD +PC , CD +CC) if they decide to default before
conversion, i.e. the optimal default barrier before conversion is VC itself. However, we can
show that in this case the old shareholders will always prefer to default after conversion, i.e.
take VB = V ∗B if it is feasible.

We are particularly interested in the case, where the default and conversion barrier are
not the same. Hence, we assume
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5 Optimal Default Barrier

Assumption 3. The default barrier V ∗B < VC satisfies the no-early-default condition: For
V ∗∗B ≤ VC

EQold(V, V
∗
B, VC) ≥ 0 for all V ≥ VC

and for V ∗∗B > VC

EQold(V, V
∗
B, VC) ≥ EQdebt(V, V ∗∗B , PD + PC , CD + CC) for all V ≥ VC .

The no-early-default condition is composed of two statements: First, V ∗B is a feasible
default barrier, i.e. it satisfies the limited liability constraint. Second, it is never profitable
for the old shareholders to default before conversion, i.e. the value of the equity for the old
shareholders for V ∗B is always larger than the corresponding value for the optimal default
barrier larger than the conversion barrier. Assumption 3 is easily testable for a given amount
of debt.

Proposition 14. If Assumption 3 is satisfied, then the firm chooses the same default barrier
as in the case without contingent convertible capital:

VB = V ∗B.

Lemma 6. For a fixed amount of debt PD and PC and fixed coupon values CD and CC the
default barrier V ∗∗B is always larger than V ∗B.

Case 2: VB and VC chosen optimally

In the previous subsection we assumed that VC is exogenously given. In this subsection we
treat VC as a choice variable. From a decision theoretical point of view, VB and VC are
different. VB is not agreed on explicitly, when the debt is issued. By the very nature of debt,
default happens when the cash payments cannot be made anymore. As long as the equity
value is positive (EQold > 0), shareholders can (and will) always issue more equity to avoid
default. When EQold < 0, the firm defaults. Hence, VB is agreed on only implicitly as all
agents anticipate the shareholders’ actions. If the parameters change, e.g. more debt is issued,
the default barrier VB changes as well, as it is not a contract term. In contrast, VC is specified
in the contract a priori and cannot be changed a posteriori.

We will analyze two cases: In the first case the shareholders choose VC to maximize the
value of their equity and in the second case VC is determined to maximize the total value of
the firm. The main result of this section is that contingent convertible debt can degenerate
to straight debt without recovery payment. In this case the conversion barrier will coincide
with the default barrier V ∗∗B . If conversion takes place before default, the optimal conversion
barrier of the shareholders is strictly higher than the optimal conversion barrier for the firm
as a whole.

First, we consider the two-dimensional optimization problem of the shareholders. We will
simplify it to a two-stage optimization problem. The first stage is to choose VB optimally
for a given VC subject to the commitment problem, i.e. we have the same problem as in the
previous subsection. The second stage is to choose a VC , that maximizes the equity value for
the old shareholders. However, the solution may not be unique. We adopt the convention that
the smallest possible conversion barrier is chosen by the old shareholders if the solution is not
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5 Optimal Default Barrier

unique. This is motivated by the fact, that the shareholders have also additional costs from
dilution which are not explicitly modeled here, e.g. less control over the company. Hence,
a lower conversion barrier should be preferred. In summary, the second stage optimization
problem is

VC = inf{arg max
VC

EQold(V, VB(VC), VC) s.t. V ≥ VC ≥ VB(VC)}

Define V̄C as the smallest conversion barrier, such that the limited liability constraint for V ∗B
is satisfied:

V̄C = inf{VC ≥ V ∗B : EQold(V, V
∗
B, VC) ≥ 0 for all V ≥ VC}.

This infimum exists as the above set is non-empty (e.g. VC = V is included in the set). Next,
we define V ∗C ≥ V̄C as the smallest conversion barrier that maximizes the value of the equity
of the old shareholders for the default barrier V ∗B:

V ∗C = inf{arg max
VC :V≥VC≥V̄C

EQold(V, V
∗
B, VC)}.

Note, that EQold(V, V
∗
B, VC) is a continuous function in VC and the set over which we are

maximizing is compact. Hence, a maximum exists. The infimum of the nonempty set is
well-defined and unique.

Proposition 15. Assume that the shareholders choose {VB, VC} according to the two stage
optimization problem in order to maximize EQold. If

EQold(V, V
∗
B, V

∗
C) ≥ EQdebt(V, V ∗∗B , V ∗∗B ) for all V > V ∗∗B

then the optimal solution is

VB = V ∗B and VC = V ∗C ,

otherwise

VB = V ∗∗B and VC = V ∗∗B

Proof. See Appendix 12.6.

Now we change the optimization problem and consider the case where VC is chosen to
maximize the total value of the firm. This affects only the second stage, while the first stage
remains unaffected:

VC = inf{arg max
VC

G(V, VB, VC) s.t. V ≥ VC ≥ VB(VC)}

Proposition 16. Assume that VC is chosen to maximize the total value of the firm in a
second stage. If G(V, V ∗B, V̄C) > G(V, V ∗∗B , V ∗∗B ) for all V > V ∗∗B , then the optimal solution is

VB = V ∗B and VC = V̄C ,

otherwise

VB = V ∗∗B and VC = V ∗∗B
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Proof. See Appendix 12.6.

Note, that in the case where VB = V ∗B, the optimal conversion barrier for the old equity
holders is higher than the conversion barrier that is optimal for the firm as a whole. The
reason is that the firm and the old shareholders face different tradeoffs. The total value of
the firm is strictly increasing in a lower conversion barrier as a late conversion means more
tax benefits. The old shareholders also profit from a late conversion as it implies more tax
benefits and a lower conversion value. However, there is also a cost to the old shareholders
if conversion takes place later, as the coupon and face value payments for the contingent
convertible bonds increase. Therefore, it is in general not optimal for the old shareholders to
choose the lowest possible conversion barrier.

The key result of this section is the following: If the conversion barrier is chosen endoge-
nously by the firm, the contingent convertible bonds could degenerate to straight debt without
recovery payment. In this case the optimal default barrier V ∗∗B will be larger than V ∗B for the
same face value of debt and the same coupon payments. As we will discuss in Section 10, a
higher default barrier implies a higher default risk. Thus, a regulator prefers a lower default
barrier. Therefore, this section gives a strong argument for VC being fixed exogenously by
the regulator such that the contingent convertible debt does not degenerate to debt without
any conversion payment. Hence, in the following we focus on an exogenously given VC which
satisfies the no-early-default condition from Assumption 3.

6 Conversion Triggered by Observable Market Prices

6.1 Stock Price as a Sufficient Condition for Conversion

The firm’s value process is in general not observable. Our model so far has specified the
event of conversion in terms of the firm’s value process. In this subsection we want to analyze
whether conversion could also be specified in terms of the observable stock price.

The stock price process St can be expressed as a function of Vt. Recall that in the case
of a firm that has not issued any contingent convertible bonds, but only straight debt, the
relationship is very simple:

St =
EQ(Vt)

n
.

As ∂EQ(Vt)/∂Vt > 0 (see Proposition 11), the stock price is a strictly increasing function in
the value of the firm’s assets. If the firm also issues contingent convertible bonds, the situation
becomes more complicated. In Section 3.3.3 we have defined the stock price St = S(Vt) as a
function of Vt:

St = S(Vt) =

{
EQold(Vt)

n = EQ(Vt)−DC(Vt)
n if t < τC

EQ(Vt)
n+n′ if τC ≤ t < τ

We have shown that the dilution costs equal the conversion value for all specifications of
CCBs. Hence, it follows for all types of CCBs that

EQ(VτC )−DC(VτC ) =
n

n+ n′
EQ(τC).
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6 Conversion Triggered by Observable Market Prices

Hence, the stock price is a continuous function in Vt, even when we include contingent con-
vertible bonds. Given our closed form solutions for the conversion value and the dilution costs
we can give an explicit formula for the stock price as a function of Vt. However, if we include
contingent convertible debt, EQold(Vt) and therefore also S(Vt) are not necessarily strictly
increasing functions in Vt any more. First, we consider the special case, where S(.) is still a
strictly increasing function.

Assumption 4. Assume that the mapping between St and Vt is strictly increasing for Vt > VB.
This implies that the mapping S(.) is invertible for V > VB and its inverse S(.)−1 is strictly
increasing as well.

Proposition 17. Under Assumption 4 the stock price is a sufficient statistic for conversion,
i.e.

τC = inf{t ≥ 0 : Vt ≤ VC} = inf{t ≥ 0 : St ≤ SC} with probability 1

with SC = S(VC).

Proof. Obviously, Vt ≤ VC implies St ≤ SC . As S(.) is invertible with a strictly increasing
inverse, St ≤ SC also implies Vt ≤ VC .

Corollary 5. If Assumption 4 is satisfied, we can base the conversion event on the stock
price and obtain a unique pricing equilibrium. The prices for the different CCBs, which are
presented in Section 4.3, are still valid.
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Figure 1: Stock price as a function of the firm’s value process.

The situation changes if Assumption 4 is violated.5 In Figure 1 we plot the stock price
as a function of the firm’s value process for two different RCD1 contracts. In the right plot

5Sundaresan and Wang (2010) present a structural model for CoCo Bonds, in which conversion is based
on the stock price process. They claim that, in order to obtain a unique equilibrium, mandatory conversion
must not result in any value transfer between equity and CoCo holders (Theorem 1). However, their claim
is wrong. A pricing equilibrium can exist and be unique if the trigger price and conversion ratio are chosen
independently. The only crucial assumption is that the mapping between the stock price and the firm’s assets is
strictly monotonic. Sundaresan and Wang also illustrate their argument in a two period model. However, they
are just stating, that we need a monotonic relationship between the stock price and the firm’s value to obtain
a unique pricing equilibrium. In a two period model this condition coincides with their stronger condition that
there is no value transfer between shareholders and CoCo holders.
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6 Conversion Triggered by Observable Market Prices

Assumption 4 is satisfied. However, as we can see from the left plot, there exists parameter
values such that S−1(St) = {V L

t , V
M
t , V H

t } contains three elements, i.e. the stock price St is
the equilibrium price for the firm’s values V L

t < VM
t < V H

t . Particularly problematic is that
V L
t < VC < V H

t , i.e. the event of conversion and not conversion are consistent under a certain
stock price. If conversion is based on the stock price and the stock price is a nonmonotonic
function of the firm’s value process, then the prices cannot be evaluated within our modeling
framework.

More formally, define a conversion triggering stock price SC . Next, we define the conversion
time based on observables as

τ̃C = inf{t ≥ 0 : S̃t ≤ SC}

where S̃t is the stock price process. This can be used to define a new CCB contract C̃B, which
is identical to the former one except for the conversion time. Hence, the equity ẼQ and stock
price function S̃(V ) under this new conversion time change as well. Note, that as the CCB
price now explicitly depends on the stock price process (through τ̃), an equilibrium stock price
has to be the solution to the equation S̃t = S̃(Vt). In more detail, an equilibrium stock price
is a function S̃(.) : (VB,∞)→ R+

0 , that solves the following equation for all Vt ∈ (VB,∞):

n · S̃(Vt) =EQdebt + T̃BC(VT )− C̃B ⇔

n · S̃(Vt) =EQdebt +
c̄CC
r
E
[
1− e−rτ̃C

]
−
(
cCPC +mPC

m+ r

)
E
[
1− e−(m+r)τ̃C

]
− E

[
n′S̃(Vτ̃C )e−(m+r)τ̃C1{τ̃C<τ<∞}

]
This is a fix point problem. However, the fix point in this case is a function. In order to
prove existence and uniqueness of a solution we need to apply fix point theorems for infinitely
dimensional Banach spaces. We can show, that if we restrict the set of possible solutions to
functions S̃(Vt) for which the conversion time can be expressed in the form inf{t ≥ 0 : Vt ≤ VC}
for some VC , then it is possible that no equilibrium exists. If we simplify the model to discrete
time, we can show that multiple solutions can exist. It seems to be a nontrivial problem to
make a general statement about the existence and uniqueness of a solution. For this reason
we will propose different observable prices as conversion triggers in the next subsection, which
do not suffer from this shortcoming.

6.2 Conversion based on credit spreads and credit default swaps

In this paper we have developed a consistent and complete model for CCBs where the event
of conversion is based on the unobserved firm’s value. For practical purposes we need to
specify conversion in terms of an observable variable. As we have seen in the last subsection,
defining the event of conversion in terms of the stock price will only lead under Assumption
4 to the same pricing formulas as a model where conversion is based on the firm’s value
process. The reason is that the stock price implicitly depends on the features of the CCBs.
As a consequence it is possible that a particular stock price is consistent with two different
firm’s values. Hence, the stock price is in general not a sufficient statistic for the firm’s value
process. Our goal is it to find an observable variable that could fully reveal the firm’s value
process. We propose the credit spread and the risk premium of a portfolio of credit default
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6 Conversion Triggered by Observable Market Prices

swaps (CDS). As we will show, both, the credit spread and the risk premium for CDSs, are
not affected by the features of CCBs and this will allow us to use them as a sufficient statistic
for the firm’s value process.

First, we prove that the credit spread fully reveals the stock price. The credit spread is
defined as the risk premium between a risky and an identical risk-free bond.

Definition 8. The price of a unit default-free coupon bond with face value 1, maturity t and
coupon c is denoted by

b(c, t) =

∫ t

0
ce−rsds+ e−rt.

Lemma 7. The aggregated total value of default-free bonds for a firm that issues p default-free
unit bonds with maturity profile ϕ(t) = me−mt equals

B(C) =
C + Pm

m+ r

with C = Pc and P = p/m.

Proof.

B(C) =

∫ −∞
0

pΨ(t)b(c, t)dt =

∫ −∞
0

pc

(
1− e−rt

r

)
e−mtdt+

∫ ∞
0

pe−rte−mtdt

= pc

(
1

mr
− 1

r(m+ r)

)
+

p

m+ r
= pc

1

m(m+ r)
+

Pm

m+ r
.

The credit spread π is defined as the difference in the coupon payments of a risky and an
identical risk-free unit bond, that trade at the same price:

b(c, t) = dD(V, VB, c+ π, t)

We will first look at an aggregated credit spread Π, i.e.

B(C) = D(V, VB, C + Π)

where we assume that the portfolio of risky and risk-free bonds have the same face value PD
and maturity profile.

Lemma 8. The aggregated credit spread Π equals

Π = CD − C̃

where CD is the total coupon value of the risky debt and

C̃ = D(V, VB, CD)(m+ r)− PD ·m

Proof. The result follows from

D(V, VB, CD) = B(C̃) =
C̃ + PDm

m+ r
.
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6 Conversion Triggered by Observable Market Prices

Recall that CD = PD · cD. We conclude: The credit spread of a single bond equals

π = cD −D(V, VB, CD)
m+ r

PD
+m

Economically, it only makes sense to consider positive spreads. A necessary condition is
that the recovery payment in the case of default has a lower present value than the repayment
of the face value.

Assumption 5. In the following we assume that the value of the total straight debt, if it was
risk-free, is larger than total value of the risky debt:

B(CD) > D(V, VB).

Assumption 5 has an important implication:

Lemma 9. Assumption 5 implies that the value of the total straight debt, if it was risk-free,
is larger than the value of the largest possible recovery payment:

B(CD) > D(V, VB) ⇒ CD +mPD
r +m

> (1− α)VB.

Proof. See Appendix 12.7.

If we want to make a statement about the relationship between the credit spread π and
the firm’s value process, we need to analyze the dependency of D(V, VB) on V .

Lemma 10. If the condition CD+mPD
r+m ≥ η2

η2+1
β3,r+m+1
β3,r+m

(1 − α)VB is satisfied, then the value

of the straight debt is an increasing function in the firm’s value:

∂D(V )

∂V
> 0 for all V ≥ VB.

Proof. See Appendix 12.7.

Note that η2
η2+1

β3,r+m+1
β3,r+m

> 1. This means, that the condition in the above lemma is

stronger than Assumption 5. However, as the next lemma shows, it will always be satisfied
in our case.

Lemma 11. If the default barrier is chosen optimally as VB = V ∗B (i.e. VB is chosen optimally
by the shareholders as in the case with only straight debt), then the condition

CD +mPD
r +m

≥ η2

η2 + 1

β3,r+m + 1

β3,r+m
(1− α)VB

is always satisfied.

Proof. See Appendix 12.7.

Now we can completely characterize the relationship between π and V .
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6 Conversion Triggered by Observable Market Prices

Corollary 6. If the default barrier is chosen as VB = V ∗B, the credit spread π(V ) as a function
of the firm’s value process is strictly decreasing:

∂π

∂V
< 0 for all V ≥ VB.

Our goal was it to express the conversion trigger in terms of an observable process. The
next theorem shows that the credit spread is a suitable candidate.

Theorem 4. Assume that VB = V ∗B. There exists a unique value πC such that π(VC) = πC .
If the conversion time is defined as

τ∗C = inf(t ∈ [0,∞) : π(Vt) ≥ πC)

we get exactly the same evaluation formulas for CCBs as in the case where the conversion
time is defined as

τC = inf(t ∈ [0,∞) : Vt ≤ VC).

Proof. As π(V ) is strictly decreasing on [VB,∞) and VC > VB, existence and uniqueness of
πC follow. Furthermore, the strict monotonicity implies that with probability 1

{t ∈ [0,∞) : Vt ≤ VC} = {t ∈ [0,∞) : π(Vt) ≥ π(VC)} = {t ∈ [0,∞) : π(Vt) ≥ πC}

holds.

Another sufficient statistic for the firm’s value process is the risk premium of CDSs. A
credit default swap is an agreement that the seller of the CDS will compensate the buyer in
the event of a loan default. The buyer of the CDS makes a series of payments to the seller
and, in exchange, receives a payoff if the loan defaults. We define the CDS fee as π̃. For a
unit straight debt bond with face value 1 and maturity t the CDS risk premium has to satisfy∫ t

0
π̃e−rsds = b(t, cD)− dD(V, VB, t).

This means that a CDS together with a defaultable bond has the same value as an otherwise
identical default-free bond.

In the following analysis we construct an index, which is a strictly monotonic function
in the firm’s value process. Our index is a portfolio of CDS contracts such that the whole
debt is “insured”. For this purpose, we have to make the weak assumption that a CDS for a
risky bond with every possible maturity is issued. It is important to note that this portfolio,
that fully insures the aggregated debt, does not need to actually exist. As long as we observe
market prices for CDS contracts for every possible maturity, we can calculate the price of our
artificial index. The price of the portfolio is a weighted average of the CDS prices, where the
different maturities have the same weights as in the debt portfolio.

Proposition 18. The risk premium for credit default swaps on the aggregated debt satisfies
the following equation:

π̃
PD
m+ r

= (B(CD)−D(V, VB)) .
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Proof. Aggregation yields:∫ ∞
0

pD

∫ t

0
π̃e−rsdsΨ(t)dt =

∫ ∞
0

pD(b(t, cD)− dD(V, VB, t))Ψ(t)dt.

We only need to show the statement for the LHS.∫ ∞
0

pD
π̃

r

(
1− e−rt

)
e−mtdt = π̃pD

1

m(m+ r)
= π̃

PD
m+ r

.

This allows us to completely characterize the relationship between π̃ and V :

Proposition 19. If the default barrier is chosen as VB = V ∗B, the CDS risk premium π̃(V )
as a function of the firm’s value process is strictly decreasing:

∂π̃

∂V
< 0 for all V ≥ VB.

By the same argument as in Theorem 4 we conclude that conversion can be based on the
CDS risk premium.

One of the arguments of critics of CoCo-Bonds was that the conversion event cannot be
based on the observable stock price process. Indeed, there exist parameter values, for which
our evaluation formulas based on the firm’s value process and a model where conversion is
triggered by movements in the stock price, differ. However, we have shown that the unobserv-
ability of the firm’s value process can be circumvented by using credit spreads or the CDS risk
premium. Credit spreads have the same advantages as stock prices as they constantly adjust
to new information in contrast to accounting triggers. As credit spreads are not affected by
the features of CCBs, they are a sufficient statistic for the firm’s value process. Thus, defining
the conversion event in terms of credit spreads is equivalent to using the firm’s value process.
The same holds for CDS risk premiums.6

7 Numerical Examples

In this subsection we will calculate several scenarios numerically and discuss their interpreta-
tions. For the computations the values of the following parameters are fixed:

V0 = 100, r = 7.5%, δ = 7%, α = 50%, c̄ = 35%.

6A special case are firms that are “too big to fail” (TBTF). As debt of these firms is implicitly protected
by a government guarantee, the credit spread should be zero, i.e. the debt should be considered to be risk
free. However, even the big banks, that enjoyed this government guarantee, had to pay a risk premium on
their debt during the past crisis. This implies that the debt of TBTF firms is not completely insured. Either
there is some uncertainty about the government bail-out taking place or debt holders fear a hair cut after a
bail-out. In either case, the credit spread as a sufficient statistic for the firm’s value process works. Assume
for example that the loss after default for unprotected debt is α = 0.5. If the probability of a bail-out is 80%,
then the expected bankruptcy loss of the debt is α̃ = 0.8 · 0 + 0.2 · 0.5 = 0.1. If on the other hand a bailout is
certain, but a hair cut of 10% is to be expected, the expected bankruptcy loss of the debt is α̃ = 0.1. Either
way, we could apply the methods of this section, where we replace α with α̃ in the formula for the debt.
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These parameter values are similar to those used by Leland (1994a), Leland and Toft (1996)
and Hilberink and Rogers (2002) and are chosen to be consistent with the U.S. environment.

We display the spread of normal debt and contingent convertible bonds as a function of
log-maturity. By letting log(m−1) vary between -4 to 10 we receive mean maturity profiles
from about a week to 1000 years. For example a log-maturity log(m−1) of 1 corresponds to
an average maturity of 1

m = 2.7 years. The spread here is defined as an aggregate spread, i.e.

spread =
CD
PD
− r

for traditional debt and respectively

spreadC =
CC
PC
− r

for contingent convertible debt.
We consider three different firms. The parameters of the firm’s value process are chosen

such that the amount of “uncertainty” for all three firms is the same, i.e. the quadratic

variation is kept constant: 〈log
(
Vt
V0

)
〉 = σ2 + 2λ

(
p
η21

+ 1−p
η22

)
= 0.25

1. “No jumps”: σ = 0.25

2. “Infrequent large jumps”: σ = 0.15, η1 = 2, η2 = 2, p = 0.5, λ = 0.2.
On average every five years the firm’s value jumps. With 50% probability the firm losses
one third of its value, while with 50 % probability it gains one third.

3. “Frequent moderate jumps”: σ = 0.15, η1 = 10, η2 = 10, p = 0.25, λ = 0.5.
On average every two years the firm’s value jumps. With 75% probability the firm losses
1/11 of its value, while with 25% probability it gains 1/11.

We analyze the aggregate credit spreads and the dilution costs for different choices of the
conversion value parameter `, the conversion barrier VC and the amount of straight debt and
contingent convertible debt. For the straight debt we consider three different levels of debt
PD = 10, 30 and 40 and for the contingent convertible debt we vary PC = 10 and PC = 40.
The value of the firm’s assets is hold constant, which means that we swap debt respectively
CCBs for equity. For Figure 2 to 10 we assume that for every maturity the coupon values are
determined such that the debt sells at par. This can be interpreted as the case of a firm that
creates a new capital structure. In Figure 11 to 16 we fix the coupon payments such that the
debt sells at par at time 0 for V0 = 100. Here we think of a firm that has set up its capital
structure at time t = 0 and we follow the dynamics of the value of its assets over time.

7.1 Comparing RCD and FSCCB contracts

In Figure 2 we plot the spread and the default and conversion barrier for a firm without jumps.
The conversion ratio ` of the RCD1 contract is set to 1, i.e. the Coco bondholders receive
equity at conversion which has the same market value as the face value of the CCBs. The
most striking result is that the spread of the CCBs is completely independent of the capital
structure and equal to zero. This result illustrates that a model without jumps produces
unrealistic results.
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The humped-shaped form for normal debt was already found by Leland and Toft. A
higher curve corresponds to a higher leverage in terms of normal debt. This makes sense as
for a larger leverage the default barrier is higher which in turn implies a higher default risk.
Therefore the spread as a risk premium is also higher. Firms with low levels of debt have a
small spread, which increases with maturity. These firms are far away from the bankruptcy
level VB and thus the credit spread as a measurement of risk is low. As maturity is growing
the firm has more time to approach the critical level VB and thus the spread increases. As the
leverage increases the spread curve becomes more humped. Why is the spread of the highly
levered firm falling for a certain level of maturity. This can be explained by the argument
that if a firm has survived for a long period of time it is very likely that its value has gone
up. Thus conditioning on survival for a long time the firm’s value has to be on average far
away from VB and hence the lower spread indicates the decrease in riskiness. Note, that the
credit spreads for normal debt are equal to zero for short maturity.
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Figure 2: “No jumps”:
RCD1 spread as a function of maturity
for different levels of debt and different
conversion barriers. The parameters are
` = 1, PC = 10, PD = 10, 30, 40 and VC =
20, 60, 80.
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Figure 3: “Frequent, moderate jumps”:
RCD1 spread as a function of maturity
for different levels of debt and different
conversion barriers. The parameters are
` = 1, PC = 10, PD = 10, 30, 40 and VC =
20, 60, 80.

In Figure 3 and 4 we consider the two firms with jumps. In both cases we observe sub-
stantial credit spreads which depend strongly on the amount of straight debt. Figure 2 has
shown, that if no jumps are included in the firm’s value process, if ` is equal to 1 and if
the equity value at conversion is sufficiently high, then RCDs are risk-free. The contingent
convertible debt holders will always receive their full payments, but the time when this hap-
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pens may be random. In the case of RCD1 contracts with jumps the expected value of the
equity at the conversion time τC is in general lower than the value of the equity for Vt = VC .
Hence, the conversion value is lower than the face value of the CCBs, which results in the
positive credit spreads. The larger the jumps, the smaller is the expected value of the equity
at conversion and therefore the higher the spread. The curves of contingent convertible bonds
have a similar shape as the curves for the straight debt. Note that the limiting credit spreads
are nonzero for both bonds. The spreads for the contingent convertible bonds are higher than
for straight debt in Figures 3 and 4. This is mainly due to the fact that conversion happens
substantially earlier than default for most maturities. For short maturities, where the default
and conversion barrier are relatively close, conversion is most likely to occur by a jump. If the
conversion barrier is crossed by a jump the equity value after conversion is lower than if it is
passed by a continuous movement, which results in a higher credit spread for the contingent
convertible bonds.
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Figure 4: “Infrequent, large jumps”:
RCD1 spread as a function of maturity
for different levels of debt and different
conversion barriers. The parameters are
` = 1, PC = 10, PD = 10, 30, 40 and VC =
20, 60, 80.
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Figure 5: “Infrequent, large jumps”:
RCD2 spread as a function of maturity
for different levels of debt and different
conversion barriers. The parameters are
` = 1, PC = 10, PD = 10, 30, 40 and VC =
20, 60, 80.

In Figure 5 we consider a firm with infrequent, moderate jumps for RCD2 contracts. As
we can see the magnitude of the spreads is very similar to the corresponding RCD1 contract,
however the spreads for long maturities for RCD2 contracts are lower than for RCD1 contracts.
If the value of the equity at conversion is sufficient to make the promised payment, than the
face value of RCD2s equals the conversion value for ` = 1. For long maturities the default
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barrier is relatively low, which makes it more likely that the equity value at conversion is high.
Hence, for long maturities RCD2s are almost risk-free.

In Figure 6 we plot the spread and the default and conversion barrier for FSCCBs. The
conversion barrier is ` = 1 which means that for a contingent convertible bond with face
value 1, the debt holders will get 1

S0
shares at conversion. Without loss of generality we can

normalize S0 = 1 and hence think of ` as the number of shares granted at conversion. Of
course, one share at time t = 0 has a substantially higher value than a share at time t = τC .
Hence, we expect the conversion value to be relatively low. This is exactly, what we observe:
The spreads for FSCCBs are substantially higher than for RCDs, due to the lower conversion
value. In Figure 7 we increase ` to 1.5. The higher conversion value dramatically lowers the
spread. As we have discussed before, the specification of the number of shares at conversion
in terms of the stock price S0 at time 0 is problematic as it leads to multiple equilibria. Here,
we have focussed on the equilibrium with the lower conversion value.
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Figure 6: “Infrequent, large jumps”:
FSCCB spread as a function of maturity
for different levels of debt and different
conversion barriers. The parameters are
` = 1, PC = 10, PD = 10, 30, 40 and VC =
20, 60, 80.
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Figure 7: “Infrequent, large jumps”:
FSCCB spread as a function of maturity
for different levels of debt and different
conversion barriers. The parameters are
` = 1.5, PC = 10, PD = 10, 30, 40 and
VC = 20, 60, 80.

We already know, that a RCD1 is a special version of a FSCCB contract. How do we have
to choose the parameter `RCD1 such that the contract coincides with a given FSCCB contract
with parameter `FSCCB? Simple calculations show that

`RCD1

`FSCCB
=
S(VC)

S(0)
.
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In Figure 8 we plot the corresponding ratio. For long-term maturities with PD = 30 a FSCCB
contract that promises three times the face value of debt in terms of the current market value
of equity is equivalent to an RCD1 contract that pays the exact face value of debt in terms
of shares with value S(VC).

In Figures 4 and 5 we have seen that the spreads for RCD1 and RCD2 contracts are very
similar. However, the number of shares granted at conversion differs. The main difference
between the two contracts is that the conversion value of RCD1s is based on EQ(VC), while
the conversion value of RCD2s is primarily based on EQ(VτC ). If these two values coincide,
there is no difference between the two RCD contracts. In Figure 9 we plot the ratio

E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
/EQ(VC)E

[
e−(r+m)τC1{τC<∞}1{τC<τ}

]
.

For long-term contracts the ratio takes values from 0.8 to 0.9, i.e. if all other parameters of
the contract stay the same, the number of shares granted under RCD2s should be 10% to
20% higher than under RCD1s. Figure 10 plots the ratio of the dilution costs for RCD2s
and RCD1s. We observe that the dilution costs for RCD2s are actually around 5% to 12 %
higher than for RCD1s in the long run, i.e. less than the expected 10% to 20%. This can
be explained by the argument that for a low value of the firm’s assets VτC at conversion it is
likely that the old shareholders lose (almost) any claim on the company and in this case the
dilution costs for RCD1 and RCD2 contracts are the (almost) same.
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7.2 Assumption 3

If Assumption 3 is satisfied, the optimal default barrier is V ∗B < VC and we can apply the solu-
tion formulas developed in this paper. If the assumption is violated, the contingent convertible
debt degenerates to straight debt without any recovery payment. From the perspective of a
regulator, the contingent convertible bonds become unattractive. Hence, it is important to
know under which parameter constellations Assumption 3 holds. It requires that V ∗B satisfies
the limited liability constraint and that no default barrier larger than VC yields a higher value
for the old shareholders. We define a “critical” equity value:

EQcritical(V ) = max(0, EQdebt(V,max(V ∗∗B , VC), PD + PC , CD + CC)).

As long as EQold(V, V
∗
B, VC) > EQcritical(V ) for V > VC , Assumption 3 is satisfied. In Figure

11 we see that for an average maturity of 1 year and an amount of contingent convertible
debt (RCD1) that does not exceed the straight debt, the assumption holds. However, if the
amount of contingent convertible debt is large as in Figure 12, the assumption is violated.
Having very short maturity debt can also create problems. In Figure 13 we set the average
maturity to 1/10 year and the equity value of the old shareholders crosses the critical barrier.
On the other hand, long term debt seems to elevate the chances of satisfying the condition.
In Figure 14 we combine a large amount of contingent convertible debt (PC = 40) with a long
maturity (10 years) and the assumption holds.
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Figure 11: Testing Assumption 3 for
RCD1s. The parameters are ` = 1,m =
1, PC = 10, PD = 10, 30, 40 and VC =
20, 50, 70.
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Figure 12: Testing Assumption 3 for
RCD1s. The parameters are ` = 1,m =
1, PC = 40, PD = 10, 30, 40 and VC =
20, 50, 70.

Why can EQold(V, V
∗
B, VC) be negative and why does it eventually become positive again?

The equity value for the old shareholders can only be negative if the cash payments related to
the contingent convertible debt (i.e. coupon payments CC and face value PC) are very high.
If conversion takes place, the old shareholders are freed from all the cash payments of the
convertible debt. The total value of the equity that remains after conversion has by definition
a non-negative value. Thus, independently of how small the share of the old equity holders
is after conversion, it will have a non-negative value. Therefore, if the firm’s value process
falls sufficiently low and the cash payments for the contingent convertible bonds are high, the
equity value EQold can become negative. However, the prospect of conversion will eventually
lead to a positive price, if Vt falls further.
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Figure 13: Testing Assumption 3 for
RCD1s. The parameters are ` = 1,m =
10, PC = 10, PD = 10, 30, 40 and VC =
20, 50, 70.
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Figure 14: Testing Assumption 3 for
RCD1s. The parameters are ` = 1,m =
0.1, PC = 40, PD = 10, 30, 40 and VC =
20, 50, 70.

In the case of RCD2s and FSCCBs the findings are similar as depicted in Figures 15
and 16. The key results from these simulations are that as long as the conversion ratio is
sufficiently high (e.g. ` = 1 for RCDs), the amount of contingent convertible debt is smaller
than the amount of straight debt (PC < PD) and the maturity of the debt is sufficiently long
(e.g. 1

m > 1), Assumption 3 holds.
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Figure 15: Testing Assumption 3 for FSC-
CBs. The parameters are ` = 1,m =
1, PC = 10, PD = 10, 30, 40 and VC =
20, 50, 70.
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Figure 16: Testing Assumption 3 for
RCD2s. The parameters are ` = 1,m =
1, PC = 10, PD = 10, 30, 40 and VC =
20, 50, 70.

7.3 Agency Costs

In the basic Merton (1974) model, equity can be regarded as a Call option on the firm’s
assets. Therefore, equity holders always want to increase the risk (volatility), while debt
holders would like to decrease the risk. By including a rolling debt structure and tax benefits,
the risk incentives of equity holders and debt holders are in general not opposing any more.
As Leland (1994b) has pointed out, for short maturity debt, equity holders and debt holders
do both prefer not to scale up the risk. In our model with jumps and CCBs, the risk incentives
are more complex.

We consider three different firms, that have the same amount of total risk as measured
by the quadratic variation. The default barrier VB is chosen optimally and the conversion
barrier is set 20% higher than the default barrier. Following the second stage optimization as
described in Section 10, the amount of straight debt PD is chosen to maximize the total value
of the firm for a fixed amount of contingent convertible bonds PC = 10. Keeping the amount
of debt constant, we want to analyze which agents will profit or suffer from increasing the
risk. In our model we have two types of risk: continuous risk (measured by the volatility σ)
and jump risk (measured by the jump intensity λ). We will change the total amount of risk
(the quadratic variation) by either increasing the volatility or the jump intensity. Figure 17
shows by how many percentage points the equity value, debt value or CCB value changes, if
we increase the total risk by 1 percentage point. There are three main observations:

1. Contingent convertible bonds have very similar risk incentives as straight debt. The
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agency costs between equity holders and CCB holders are slightly larger than for debt
holders.

2. For short-term debt, the incentives of equity holders have the same sign as the incentives
for debt and CCB holders. This can be interpreted as lower agency costs for short
maturities.

3. The agency costs related to jump risk for a firm that is mainly exposed to continuous
risk are very small. Vice versa, the agency costs for continuous risk for a firm with
higher jump risk are also much less pronounced than for a firm with mainly continuous
risk.
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Figure 17: Risk incentives for RCD1 contracts with optimal debt. The parameters are ` =
1, PC = 10, cD = cC = 0.8, VC = 1.2 · VB. We plot the relative change in equity and debt
values for a relative change in total risk (quadratic variation).
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8 How should CCBs be designed?

We have presented and completely characterized two different CCB contracts: FSCCBs and
RCD2s. The contract RCD1 is a special case of FSCCB. The important question is which
should be used in practice. We will analyze the different contracts with respect to manipula-
tion, noise trading and multiple equilibria.

8.1 Manipulation

We think of manipulation as spreading “good” or “bad” news that will influence the stock price
and the credit spread. Furthermore, we assume that conversion is based on the credit spread
as described in Section 6. Spreading “good” news will temporarily increase the stock price
St and lower the credit spread πt. Spreading “bad” news results in the opposite movements.
However, after the manipulation the prices will return to their former level. Equivalently,
we can think of manipulation as directly affecting the firm’s value process Vt. The only
interesting case is when the firm’s value process Vt is lowered to a level Vmanip < VC which
triggers conversion and then returns to the former level Vt.

First we consider manipulation by contingent convertible bondholders. In the case of
RCD2 contracts spreading “bad” news can trigger conversion and lead to a temporary under-
evaluation of the stock price St. As the number of shares granted to contingent convertible
bondholders depends on the stock price at conversion, the temporary underevaluation has
a permanent effect. The lower the bondholders can press down the price, the more shares
they receive. After the price correction, the contingent convertible bondholders make a profit.
More formally, if the contingent convertible bondholders can temporarily manipulate the firm’s
value process to any arbitrary level Vmanip with VC ≥ Vmanip > VB and the tax benefits are
sufficiently low, the will always do so independently of the parameters of the RCD2 contract:

Proposition 20. Assume that a firm issues RCD2s and contingent convertible bondholders
can temporarily lower the firm’s value to an arbitrary Vmanip with VC ≥ Vmanip > VB. If the
equity value without CoCo bonds is sufficiently high, i.e. EQdebt(Vt) > CCB(Vt), they will
always manipulate the market for any ` ∈ (0,∞).

Proof. See Appendix 12.8.

We show in the proof, that EQdebt(Vt) + TBC(Vt) > CCB(Vt) is always satisfied. Hence,
if the tax benefits are sufficiently low, EQdebt(Vt) > CCB(Vt) will also hold.

The same mechanism does not work with FSCCB (and hence RCD1) contracts. Here
the interests of the contingent convertible bondholders are more aligned with those of the
shareholders. Spreading “bad” news can trigger conversion, but will not affect the number of
shares granted to the bondholders. Spreading “good” news can increase the value of the stocks,
but cannot trigger conversion. Hence, FSCCB contracts offer less incentives for manipulation
to the contingent convertible bondholders. More formally, there exists always a conversion
parameter ` such that the contingent convertible bondholders do not want to manipulate the
market:

Lemma 12. Assume that a firm issues RCD1s and contingent convertible bondholders can
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8 How should CCBs be designed?

temporarily lower the firm’s value to an arbitrary Vmanip > VB. If ` is small enough such that

CCB(Vt)− `PC
EQdebt(Vt)

EQdebt(VC)
≥ 0

they will not manipulate the market at time t.

Proof. If contingent convertible bondholders do not manipulate the market, they get CCB(Vt).

If the manipulate the market, they obtain shares that have a value of `PC
EQdebt(Vt)
EQdebt(VC) after the

price correction.

Hence, RCD1 contracts can always be designed such that the bondholders do not want to
manipulate the market at time t.

Second, we consider manipulation by the equity holders. We start with a RCD1 contract.
Equity holders will not manipulate the market at time t if

EQold(Vt, VB, VC)−
(
EQdebt(Vt)− `PC

EQdebt(Vt)

EQdebt(VC)

)
≥ 0

The first term is the value of their equity if they do not manipulate the market. The second
term is the value of their equity in the case of manipulation after conversion and after the
price correction. Plugging in the definitions, the inequality is equivalent to

TBC(Vt)− CCB(Vt, VB, VC) + `PC
EQdebt(Vt)

EQdebt(VC)
≥ 0

If ` = 1, i.e. the contingent convertible bondholders receive equity at conversion that has the
same market value as the face value of the CCBs, then the inequality will always be satisfied.

Proposition 21. Assume that a firm has issued straight debt and RCD1s. For Vt ≤ V0 and
` = 1, equity holders will never manipulate the market to trigger conversion.

Proof. See Appendix 12.8.

As a result, if the conversion value is sufficiently high, the equity holders will not ma-
nipulate the market to enforce conversion. A similar reasoning applies to RCD2 contracts.
Intuitively, the less likely manipulation by contingent convertible bondholders, the more likely
manipulation by the equity holders and vice versa. However, there exist parameters, such that
neither of them wants to trigger conversion. After conversion, the tax benefits of the con-
tingent convertible bonds are lost. If these benefits are sufficiently high and the conversion
parameter ` is chosen accordingly, neither of them will manipulate the market.

Lemma 13. Assume a firm issues RCD1s. If the conversion parameter ` is chosen such that

TBC(Vt) ≥ CCV (Vt)− `PC
EQdebt(Vt)

EQdebt(VC)
≥ 0

then neither equity holders nor contingent convertible bondholder will manipulate the market.

We have seen that RCD1 contracts are more robust against manipulation than RCD2
contracts. We favor RCD1 contracts with ` = 1. Equity holders will never manipulate such a
contract and for sufficiently high coupon payments cC the contingent convertible bondholders
will not do it neither.
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8.2 Noise trading

So far we have defined the stock price process as a function of Vt, i.e.

St =
1

n
(EQ(Vt)−DC(Vt))

for t < τC and the only source of risk was the process Vt. We will now suppose that St
is driven by the firm’s value process Vt and an additional independent process. This makes
economically sense as changes in the stock price do not necessarily solely reflect changes in
the fundamental value. Additional factors, e.g. noise trading, can be captured by including a
noise process.

Definition 9. The endogenous stock price process with noise trading before the time of con-
version (t < τC) is defined as

St = S(Vt) =
EQ(Vt)−DC(Vt)

n

(
1 + X̃t

)
where n is the number of ”old” shares and X̃t is an arbitrary martingale process, which has
expectation zero, i.e. E[X̃t − X̃s|X̃s] = 0 for s ≤ t and X̃0 = 0, and is independent of Xt,
which is driving Vt.

The intuition behind this modeling approach is that the stock price should reflect the
value of the shareholders’ claim on the firm’s productive assets. As it is shown empirically
stock prices can be more volatile than the fundamental value of the underlying assets. Hence,
the noise process X̃t should capture this additional source of uncertainty.

Proposition 22. The conversion value for FSCCBs and RCD1s under a stock price with
noise trading equals the corresponding payment without exogenous shocks.

Proof. The conversion value equals

n′E
[
S(τC)e−(m+r)τC1{τC<∞}1{τC<τ}

]
=
n′

n
E
[
(EQ(VτC )−DC(VτC )e−(m+r)τC1{τC<∞}1{τC<τ}

]
E
[(

1 + X̃τC

)]
=

n′

n+ n′
E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
by the assumption that E[X̃t] = 0 and the independenc of X̃ and X.

The situation is different for RCD2s. In this case fluctuations in the stock price affect
the number of shares granted to the contingent convertible bondholders at conversion. If
for example the stock price falls due to a downward shock in X̃, the bondholders get a
higher number of shares although the fundamental value did not change. In more detail,
the value of the equity used for the redistribution at the time of conversion is n · S(τC) =
EQdebt(τC) · (1 + X̃τC ). The condition if the equity is sufficient to fully pay the promised

conversion value changes to VτC > T−1

(
`PC

(
1 + X̃τC

)−1
)

.
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Proposition 23. The conversion value for RCD2s under a stock price with noise trading
does in general not equal the corresponding payment without exogenous shocks.

Proof.

CONV =`PCE

[
e−(m+r)τC1{τC<τ}1{VτC>T−1

(
`PC(1+X̃τC )

−1
)
}

]
+ E

[
EQdebt(VτC )

(
1 + X̃τC

)
e−(m+r)τC1{V (τC)>VB}1{VτC≤T−1

(
`PC(1+X̃τC )

−1
)
}1{τC<∞}

]
The problem is that X̃(τC) appears in a nonlinear way in the above formula and a closed-form
solution is not available. However, it is obvious to see that in general the expected value above
does not coincide with the corresponding expectation without exogenous shocks.

This is an argument in favor of FSCCBs and RCD1s over RCD2s.

8.3 Multiple equilibria

In Section 3.4.1 we have shown for FSCCBs, that defining the number of shares n′ granted
to the contingent convertible bondholders at conversion in terms of S(0) will lead to multiple
equilibria. This result can be extended to show, that if n′ is a function of any St with t < τC ,
there can be multiple equilibria. One way to circumvent this problem is simply to avoid linking
n′ to any stock price. However, when writing a contract it is natural to relate n′ to some
market price. A very appealing alternative are RCD1s. Here, the number n′ is calculated
using the model to predict S(VC). In this setup, all prices are unique. Similarly, for RCD2
contracts, we also obtain unique prices. This can be seen as an argument for RCD1 and RCD2
contracts.

8.4 Optimal design of CCBs

In a perfect market environment, the different CCBs should be equivalent as all information
is correctly priced. However, if we take into account manipulation and noise trading, RCD1
contracts with ` = 1 are more robust against this market imperfections than the other con-
tracts. In addition, RCD1 will always have a unique equilibrium price. In order to avoid that
CCBs degenerate to a straight debt contract without recovery payment, we have to ensure
that Assumption 3 holds. CCB contracts with a high maturity are more likely to satisfy this
assumption. For this reason we propose RCD1 with ` = 1 and a high average maturity as the
“best” contract.

9 Extensions

9.1 Time-Varying Firm’s Value Process

So far we have assumed that the firm’s value process does not change after conversion. In
particular, the proportional rate at which profit is disbursed to investors δ is constant before
and after conversion. Remember, that as the firm has bondholders and shareholders, δ cannot
be seen as a dividend rate. First, the coupons and principal payments have to be paid before
the residual is paid out as dividends. However, one of the arguments of introducing contingent
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convertible debt was that after the conversion the coupon payments are lower than before,
allowing the firm to recover from financial distress. A constant δ implies that after conversion
the total dividend payments equal the former dividend payments plus the payments for the
contingent convertible debt. This high dividend payment could be justified economically
by the argument, that after conversion the number of shareholders is larger than before.
Nonetheless, it seems that a high dividend payment during times of financial distress is not
very common. Hence, a more realistic model should take into account that the payout rate δ
decreases after conversion. In this section, we will introduce a general approach which allows
all parameters of the firm’s value process to change after the conversion. Notwithstanding,
the focus will be on different δs.

Assume two different payout ratios:

δ1 for [0, τC ] δ2 for (τc, τ ]

and

dVt = Vt

(
(r − δ1)dt+ σdW ∗t + d

(
Nt∑
i=1

(Zi − 1)

)
− λξdt

)
for t ≤ τC

dVt = Vt

(
(r − δ2)dt+ σdW ∗t + d

(
Nt∑
i=1

(Zi − 1)

)
− λξdt

)
for t > τC .

By assumption we have VC ≥ VB, which implies

τ ≥ τC .

Note, that the probability law of τC does not change. However, the probability law of τ is
not the same anymore. As the value of the coupon payments and the principal repayment of
contingent convertible bonds depends only on certain Laplace transforms of τC , introducing
the time-varying firm’s value process does not affect these values. But the prices of straight
debt coupons and the conversion values will change. In order to calculate the price of normal
debt coupons we need to calculate E [e−ρτ ] and E

[
eX(τ)−ρτ

1{τ<∞}
]
, where Xt relates to Vt

by Vt = V0 exp(Xt).

Theorem 5. The Laplace transform of the default time for a firm, whose payout ratio changes
at conversion, is given by

E
[
e−τρ

]
=c̄1

(
VB
V0

)β̄3,ρ
J(log(VC/V0), β̄3,ρ, log(VC/VB), ρ)

+ c̄2

(
VB
V0

)β̄4,ρ
J(log(VC/V0), β̄4,ρ, log(VC/VB), ρ)

+

(
VB
VC

)η2 η2 − β3,ρ

η2

β4,ρ − η2

β4,ρ − β3,ρ

((
VC
V0

)β3,ρ
−
(
VC
VB

)β4,ρ)
with

c̄1 =
η2 − β̄3,ρ

η2

β̄4,ρ

β̄4,ρ − β̄3,ρ

c̄2 =
β̄4,ρ − η2

η2

β̄3,ρ

β̄4,ρ − β̄3,ρ
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and −β̄3,ρ > −β̄4,ρ are the two negative roots of the equation

ψ̄(β) = ρ

with ψ̄ being the Lévy exponent of X̄t = (r − δ2)t + σW ∗t +
∑Nt

i=1 Yi. The functions −β3,ρ >
−β4,ρ are the two negative roots of the equation ψ(β) = ρ, where ψ is the Lévy exponent of

Xt = (r − δ1)t+ σW ∗t +
∑Nt

i=1 Yi The function J is defined as

J(x, θ, y, ρ) =E
[
e−ρτ+θXτ1{τ<∞,−(Xτ−x)<y}

]
The explicit form of J(x, θ, y, ρ) is given in Proposition 8.

Proof. See Appendix 12.9.

Theorem 6. The default time for a firm, whose payout ratio changes at conversion, satisfies
the following equality for θ > −η2:

E
[
e−τρ+θXτ1{τ<∞}

]
=d̄1

(
VB
V0

)−θ−β̄3,ρ
J(log(VC/V0),−β̄3,ρ, log(VC/VB), ρ)

+ d̄2

(
VB
V0

)−θ−β̄4,ρ
J(log(VC/V0),−β̄4,ρ, log(VC/VB), ρ)

+
η2 − β3,ρ

β4,ρ − β3,ρ

β4,ρ + θ

η2 + θ

(
VC
V0

)θ+β3,ρ
+

β4,ρ − η2

β4,ρ − β3,ρ

β3,ρ + θ

η2 + θ

(
VC
V0

)θ+β4,ρ
− J(log(VC/V0), θ, log(VC/VB), ρ)

where

d̄1 =
η2 − β̄3,ρ

β̄4,ρ − β̄3,ρ

β̄4,ρ + θ

η2 + θ

d̄2 =
β̄4,ρ − η2

β̄4,ρ − β̄3,ρ

β̄3,ρ + θ

η2 + θ

and with the same notation as in Theorem 5 for the rest.

Proof. See Appendix 12.9.

This allows us to calculate the price of straight debt. For the conversion value we need
to make only a small change in the evaluation formulas. The value of equity after conversion
EQ(VτC ) has to be determined using the second process, i.e. we replace all β3,ρ and β4,ρ

with β̄3,ρ and β̄4,ρ in the corresponding formula. The choice of the optimal default barrier is
analogous to the case of a constant δ.

10 Finding an Optimal Regulation Scheme

The main question is if contingent convertible bonds can be used as a regulation instrument
for banks. A “good” regulation instrument would reduce the default probability of a bank
without imposing to high costs on the bank. Intuitively, the higher the amount of debt of a
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firm, the higher the default probability. A simple way to limit the default probability is to
limit the amount of debt that a firm is allowed to have. This is equivalent to requiring the firm
to hold a minimum amount of equity. However, there are a cost to this regulation, as the firm
would lose tax benefits. Instead of limiting the amount of debt, the regulator could require
the bank to replace part of its debt with contingent convertible bonds. For example, Flannery
(2009a) proposes a scenario, in which banks can choose between holding equity equal to 6%
of an asset aggregate, or holding equity equal to 4% of the asset aggregate and CCBs equal
to 4% of the asset aggregate.

In the following we will first analyze the optimal capital structure of a firm without
regulation. Then we show that, if Assumption 3 is satisfied, a regulation schemes that restricts
the amount of straight debt and requires mandatory issuing of CCBs, strictly dominates a
regulation that only limits the amount of straight debt. The CCB regulation scheme will
achieve the same upper bound on the level of risk, but the total value of the firm will be the
same as under no regulation. In addition, under the CCB regulation scheme the costs to the
government in terms of tax benefits are lower than if no regulation is imposed. However, if
Assumption 3 is violated, these results do not hold any more .

Throughout the section we make the following two assumptions. First, the conversion
barrier VC is exogenously given. Second:

Assumption 6. The coupon payments of the contingent convertible bonds are positive:

cC > 0.

Note, that as long as there are bankruptcy costs the coupon of straight debt is always
positive, when debt is issued at par at time 0. Assumption 6 is satisfied in all practically
relevant situations. For example, for all RCD1 and RCD2 with ` ≤ 1, which are issued at par
at time 0, the assumption is satisfied.

10.1 Optimal Capital Structure without Regulation

First we consider a firm that issues only normal debt bonds. The parameter VB is determined
endogenously while the parameters m,λ, θ, V0, cD and r can be assumed to be given exoge-
nously. Hence, the only remaining choice parameter is the amount of debt PD. This will be
chosen to maximize the total value of the firm, i.e.

max
PD

Gdebt = max
PD

(V + TBD −BC).

Chen and Kou (2009) show that Gdebt(PD) is a strictly concave function in PD. Hence, for any
given V , there exists a unique PD that maximizes Gdebt(PD). As the initial value of the firm
V is given, the optimal choice of PD is a tradeoff between tax benefits TBD and bankruptcy
costs BC. Based on our endogenously determined parameters we solve

∂TBD
∂PD

=
∂BC

∂PD
.

If we allow the firm to issue CCBs in addition to normal debt, the optimization problem
changes to

max
PD,PC

(V + TBD + TBC −BC).
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We consider two cases: Either Assumption 3 is satisfied or not. The tricky part is, that this
assumption depends on the amount of debt issued by a firm. Hence, we will first analyze the
optimal capital structure conditioned on satisfying this constraint. Second, we determine the
optimal amount of debt under the restriction that the assumption is violated. Finally, the
firm picks the one of the two combinations {PD, PC}, which yields a higher total value of the
firm.

Case 1: Assumption 3 satisfied:

Under Assumption 3, the optimal barrier level VB equals V ∗B which is independent of any
features of CCBs. The optimization problem becomes

max
PD,PC

(V + TBD(PD) + TBC(PC)−BC(PD)).

The FOC for PD is then

∂TBD(V, V ∗B)

∂PD
=
∂BC(V, V ∗B)

∂PD
,

which coincides with the case without CCBs. The optimal level of straight debt does not
depend on any characteristics of the CCBs. The next lemma implies, that there exists a
unique value of PD that maximizes the total value of the firm.

Lemma 14. The total value of the firm G(PD) is a strictly concave function in PD, if VB =
V ∗B.

Proof. The only difference between G(PD) and Gdebt(PD) are the tax benefits TC(PC), which
do not depend on PD. Chen and Kou (2009) have proven the strict concavity of Gdebt(PD).

The total value of the firm depends on PC only through the tax benefits TBC , which are
monotonically increasing in PC .

Corollary 7. If the coupon payments cC are positive, then the total value of the firm G(PC)
is increasing in the value of contingent convertible debt PC .

Proof. The total value of the firm is defined as

G = V + TBD + TBC −BC.

As the amount of contingent convertible bonds only affects the tax benefits TBC which are
defined by c̄cCPC

r E[1− e−rτC ] and the coupons cC are not negative, the statement follows.

As a consequence of Corollary 7, equity will be crowded out by CCBs one-to-one as long as
Assumption 3 is satisfied. As we have seen the firm as a whole will always profit from issuing
CCBs, while the taxpayer pays the cost of the additional tax shield. We will in the following
assume that a firm can only issue CCBs as certain fraction of its debt. This assumption is
implicit or explicit in various proposals to use CBBs for banking regulation. Hence, there will
be only tax benefits for CBBs issued as part of a regulation requirement.
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Case 2: Assumption 3 violated:

If Assumption 3 is violated, the optimal default barrier is the maximum of V ∗∗B and VC . First,
we will focus on the case VB = V ∗∗B , which depends on PD and PC . The optimization problem
becomes

max
PD,PC

(V + TBD(PD, PC) + TBC(PD, PC)−BC(PD, PC)).

The FOC for PD and PC are then

∂TBD(V, V ∗∗B ) + TBC(V, V ∗∗B )

∂PD
=
∂BC(V, V ∗∗B )

∂PD
∂TBD(V, V ∗∗B ) + TBC(V, V ∗∗B )

∂PC
=
∂BC(V, V ∗∗B )

∂PC
.

We start with the special case cD = cC , i.e. the coupon payments for straight debt and
contingent convertible debt are the same. In this case, PD and PC are perfect “substitutes”
for the firm as the total value of the firm will only be influenced by PD +PC . The total value
of the firm is the same as for a firm that issues only straight debt in the amount of PD +PC .

Corollary 8. If cD = cC , then the firm would like to choose an amount of debt such the
default barrier is the same as in case 1.

Proof. Define P̃ = PD + PC and c̃ = cD = cC . Obviously it holds C̃ = c̃P̃ = cDPD +
cCPC = CD + CC which implies that EQdebt(V, VB, PD + PC , CD + CC) = EQ(V, VB, P̃ , C̃)
and Gdebt(P̃ , C̃) = Gdebt(PD + PC , CD + CC), i.e. the total value of the firm and the equity
value of the old shareholders is only influenced by the sum PD+PC . Hence, the optimal default
barrier V ∗∗B (P̃ , C̃) will be the same as in the case where only straight debt is issued.

The hypothetically optimal V ∗∗B is not feasible, as it would be smaller than VC . This leads
to the following conclusion:

Corollary 9. Assume that cD = cC . The optimal debt choice {PD, PC} is any combination
of PD and PC such that V ∗B(PD + PC) = VC .

If cD 6= cC , straight debt and the degenerated contingent convertible debt are not perfect
substitutes any more. We assume that at time zero all the debt is issued at par. At conversion,
which coincides with default, the contingent convertible bondholders receive nothing, while
the straight debt bondholders get the recovery payment. Thus, a higher coupon cC > cD is
needed to compensate the contingent convertible bondholders. Hence, we will assume that
the coupon cC for the contingent convertible debt has to be higher than cD. The optimization
problem of the firm is then

max
PD,PC

Gdebt(P̃ , C̃) subject to P̃ = PD + PC and C̃ = cDPD + cCPC .

This problem is equivalent to

max
P̃ ,c̃

Gdebt(P̃ , c̃P̃ ) subject to c̃ ∈ [cD, cC ].
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We split this two-dimensional problem into a two-stage optimization problem. In the first
stage, for any c̃ ∈ [cD, cC ] we solve the problem and obtain a unique optimal amount of debt
P̃ (c̃) and optimal default barrier V ∗B(c̃) (for simplicity we express the optimal default barrier
only in terms of the remaining choice variable c̃). In a second stage, the coupon c̃ is chosen
that maximizes the total value of the firm. We denote the optimal coupon by c∗:

c∗ = arg max
c̃∈[cD,cC ]

Gdebt(P̃ (c̃))

Proposition 24. Assume that cD < cC . If V ∗B(c∗) ≥ VC , then the optimal debt choice
{PD, PC} is the combination of PD and PC that satisfies

PD + PC = P̃ (c∗) and c∗(PD + PC) = PDcD + PCcC

If V ∗B(c∗) < VC , then the optimal debt choice {PD, PC} is the highest amount of PC such that
two conditions are satisfied: 1. V ∗∗B (PD, PC) = VC and 2. Assumption 3 is violated.

Proof. See Appendix 12.10.

The key result of this section is the following. If Assumption 3 is satisfied, the default
barrier will be strictly smaller, than in the other case. In addition, if Assumption 3 is violated,
the default barrier is to some extent unresponsive to restrictions in the maximal amount
of straight debt, as straight debt and the degenerated contingent convertible debt become
(perfect or imperfect) substitutes. In the next section we will discuss regulation. Intuitively
speaking, a regulator wants to enforce a small default barrier, because this will imply a lower
default probability. Based on this section we will conclude that the regulator wants to require
that only contingent convertible bonds satisfying Assumption 3 are issued.

10.2 Optimal capital structure with regulation

In this section we discuss different regulation schemes. The regulator will impose restrictions
on the capital structure of a bank, such that the “risk” does not exceed a pre-specified level.
We will formalize the concept of “risk” from the perspective of a regulator, but intuitively the
regulator wants to enforce a low default barrier. The lower the default barrier, the lower the
probability of default.

Definition 10. The probability that default happens before t as a function of PD is defined
as

Υ(t, PD) = P(τ ≤ t).

We assume that the regulator uses a specific risk measure:

Definition 11. Denote the parameter space of the choice variables as Θ. We are only in-
terested in Θ = {(PD, PC) ∈ [0,∞)2}. A risk measure χi(PD, PC) is a mapping from Θ to
[0,∞). A regulation scheme is defined as a restriction of the parameters of our model to the
set Θ̃ such that χi(PD, PC) ≤ ω for all (PD, PC) ∈ Θ̃ and a fixed risk level ω. If we consider
only one choice variable we suppress the other in the notation of χi.

We make the additional assumption that the risk measure has the property that if the
default probability P(τ ≤ t) is higher under (PD, PC) than under (P̃D, P̃C) for all t, then
χi(PD, PC) ≥ χi(P̃D, P̃C).
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Definition 12. A capital requirement ρi is defined as the maximum amount of debt PD that
a firm is allowed to include in its capital structure such that risk measure χi(PD) is always
smaller than some critical value ω:

ρi = sup{PD ∈ [0,∞) : χi(P̃D) ≤ ω ∀P̃D ≤ PD}.

Example 1. We define

ρ1(ω) = sup {PD ∈ [0,∞) : Υ(1, PD) ≤ ω}

The measure ρ2 is not restricted to the time period 1:

ρ2(ω) = sup

{
PD ∈ [0,∞) :

∫ ∞
0

s(t)Υ(t, PD)dt ≤ ω
}

where s(t) is a weighting function satisfying
∫∞

0 s(t)dt = 1.

The intuition behind the two capital requirements ρi is that by setting ω sufficiently low,
the default probability is restricted from above in a certain sense. Our model allows us to
calculate the Laplace transform of the default time in closed form. Applying Laplace inversion
we can numerically calculate the two capital requirement regulation schemes.

If we want to compare different regulation schemes, we have to specify what a ”good“
regulation means. Regulation can be costly to the firm and the taxpayer. The taxpayers
are affected by the amount of tax benefits that they are granting to the firm, while a not
”optimal“ amount of debt can lower the total value of the firm G.

Definition 13. If two regulation schemes have the same maximum amount of risk ω as
specified by the risk measure χi, the first regulation scheme is said to be more efficient if the
total value of the firm is strictly higher than under the second scheme.

We want to show that requiring a firm to replace a certain amount of its straight debt by
contingent convertible debt can be a more efficient regulation scheme than using only maximal
capital requirements.

Throughout this section we assume that Assumption 3 is satisfied. This has the following
consequences:

1. G(PD) is strictly concave and there exists a unique optimal amount of debt, which we
will denote by P ∗D.

2. The optimal default barrier is V ∗B.

We can conclude the following:

Corollary 10. The optimal default barrier V ∗B is a function of PD but not PC .

Corollary 11. The optimal amount of debt PD is independent of any features of CCBs.

Corollary 12. The default probability Υ(t, PD) is strictly increasing in PD.

Corollary 13. The default probability Υ(t, PD) is independent of PC .
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Corollary 14. Any risk measure χi is increasing in PD.

Corollary 15. The risk measures χ1 and χ2 are independent of PC .

Now we want to compare a capital requirement regulation scheme ρi with a regulation
scheme that requires the mandatory issuing of CCBs.

Definition 14. A CCB regulation scheme is a tuple φi = (φDi , φ
C
i ) of an upper bound on the

amount of straight debt φDi and a fixed amount of CCBs φCi such that

χi(P̃D, P̃C) ≤ ω ∀P̃D ≤ φDi , P̃C = φCi .

In order to prove rigorously that a CCB regulation scheme is more efficient than a capital
requirement regulation scheme, we have required Assumption 3, which can be tested. The
economic intuition behind our regulation approach is straightforward. First, we assume that
there exists an optimal level of leverage of straight debt. This makes sense as a firm issuing
straight debt faces the tradeoff between tax benefits and bankruptcy costs and the optimal
leverage should set the marginal gains of tax benefits equal to the marginal costs of bankruptcy
costs. Next, it is also intuitive to assume that a higher amount of straight debt increases
the default probability. Hence, if the optimal leverage of a firm implies a too high default
probability from the point of view of the regulator, one way to reduce it is to require the firm
to lower its level of debt. This would also lower the tax benefits associated with the straight
debt. As the new level of leverage is not optimal for the firm any more the total value of the
firm will be lower under such a regulation. However, the firm as a whole would benefit from
issuing CCBs as it profits from the tax benefits. The amount of CCBs can be chosen such
that its tax benefits exactly compensate for the loss due to the capital requirement.

Proposition 25. Consider first a firm without any regulation. Its optimal amount of debt is
P ∗D and the maximal total value of the firm is G(P ∗D). Second consider a capital requirement
ρi. The risk measured by χi for i = 1, 2 under this scheme is limited to ω and the loss in total
value to the firm is G(P ∗D)−G(ρi). Third, we define a CCB regulation scheme as (φDi , φ

C
i ),

where φDi = ρi and φCi is such that TB(φCi ) = G(P ∗D) − G(ρi). The risk under the CCB
regulation scheme is bounded by ω and the total value of the firm is equal to the value under
no regulation, i.e. it is efficient compared to the capital requirement and the firm is indifferent
between the CCB regulation and no regulation.

Note that the above regulation scheme is in a certain sense equivalent to a regulation
where existing straight debt is partly replaced by CCBs. Hence, if the optimal amount of
debt P ∗D without regulation is known, requiring the firm to replace a certain fraction of the
optimal debt amount by CCBs and hence ending up with a lower level of straight debt, will
yield exactly the same outcome.

We make an additional assumption:

Assumption 7. The value of the contingent convertible debt is larger than the related tax
benefits: CB > TBC .

For a realistic tax rebate rate, this assumption will always be satisfied.

Lemma 15. The maximal total tax benefits under the CCB regulation scheme are lower than
the maximal tax benefits under no regulation.
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Proof. See Appendix 12.10.

Definition 15. The total leverage is defined as

TL =
PD + PC

G
.

Lemma 16. The maximal possible total leverage under the CCB regulation scheme is higher
than the maximal possible total leverage under a pure capital requirement regulation scheme,
if Assumption 7 is satisfied.

Proof. See Appendix 12.10.

The above CCB regulation scheme yields the same total value for the firm as the case
where no regulation is imposed. Hence, the firm as a whole does not suffer. Next, the tax
deduction costs for the taxpayer are lower compared to the case without regulation. Therefore,
the taxpayer is better off. Most importantly, the default probability is lower than in the case
without regulation.

The above results hold only if Assumption 3 is satisfied. If this assumption is violated,
the optimal default barrier is at least VC , which is by definition larger than V ∗B. Furthermore,
if Assumption 3 is violated, the default barrier can increase in the amount of contingent
convertible bonds PC . Hence, requiring a bank to issue CoCo bonds can actually increase
its risk. Next, as in this case straight debt and degenerated contingent convertible bonds
become (perfect or imperfect) substitutes, any capital requirement on the straight debt can
be circumvented by issuing more CoCos. The traditional capital requirement regulation would
become ineffective. Hence, a regulator would always impose restrictions such that Assumption
3 holds.

10.3 TBTF Firms

In this section we analyze firms that are “too big to fail” (TBTF). As bankruptcy of such
firms might result in a crisis of the overall financial system, the government will not let them
fail. At the time of default of a TBTF firm the government will take over its assets and its
obligations to make payments to debt holders. Hence, the debt holders of TBTF firms have
an implicit government guarantee on their debt contract, which makes their debt basically
risk-free.

We will first model formally a TBTF firm, that issues only straight debt. As its debt is
risk-free, the value equals:

DTBTF
debt =

CD +mPD
m+ r

.

This comes at a cost to the government. At the time of default, the government steps in and
obtains assets worth V (τ). In return, the government takes over the obligation to make the
coupon payments and repayments of the face value of debt forever. Therefore, the value of
the government subsidy for the firm is

SUBTBTF (V, VB) =
CD +mPD
m+ r

E
[
e−(m+r)τ

]
− E

[
V (τ)e−rτ

]
.
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The total value of the firm equals the value of the firm’s assets plus the tax benefits and the
government subsidy. Because of the potential government bailout, the bankruptcy costs do
not appear in total value of the firm.

GTBTFdebt (V, VB) = V + TBD(V, VB) + SUBTBTF (V, VB)

= V +
c̄CD
r
E
[
1− e−rτ

]
+
CD +mPD
m+ r

E
[
e−(m+r)τ

]
− E

[
V (τ)e−rτ

]
The equity value is the residual claim of the total value of the firm after the value of the debt
is subtracted:

EQTBTFdebt (V, VB) = GTBTFdebt (V, VB)−DTBTF
debt

Albul, Jaffee and Tchistyi (2010) consider TBTF firms in their model with infinite maturity
bonds. They show, that if only consol bonds are issued, the value of the equity and the
optimal default barrier are the same as for a normal firm. However, in our model with a
rolling debt structure this result does not hold any more.

Proposition 26. The optimal default barrier of a TBTF firm equals

V ∗∗∗B =
CD+mPD
r+m β3,r+mβ4,r+m − c̄CD

r β3,rβ4,r

(β3,r + 1)(β4,r + 1)

η2 + 1

η2
.

Proof. V ∗∗∗B is simply the solution to the smooth pasting condition:(
∂(EQTBTFdebt )(V, VB)

∂V
|V=VB

)
= 0

A TBTF firm does not face the tradeoff between tax benefits and bankruptcy costs. As
long as VB = V ∗∗∗B the firm will issue as much debt as possible.

Proposition 27. Assume that VB = V ∗∗∗B . The total value of a TBTF firm is strictly in-
creasing in the amount of straight debt:

∂GTBTFdebt

∂PD
> 0

Hence, the regulator should restrict the total amount of debt, that a TBTF firm is allowed
to issue. Assume that the regulator wants to limit the risk of all banks to specific level.
According to our definition of risk, this is equivalent to imposing an upper bound on the
default barrier VB. Let’s denote this target default barrier by V̄B. Assume, that we have two
firms that are identical, but one is considered TBTF, while the other does not profit from
an implicit government guarantee. What is the upper bound on the amount of straight debt
for these two firms, that ensures that the default barrier is below V̄B? Proposition 13 and
Proposition 26 imply that the optimal default barriers are proportional to PD:
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Proposition 28. The optimal default barriers for a normal firm and a TBTF firm can be
written as

V ∗B = κ∗PD V ∗∗∗B = κ∗∗∗PD.

It holds κ∗ ≤ κ∗∗∗. Therefore, in order to enforce that the default barrier is below the
critical level V̄B, the regulator has to use a stricter capital requirement for TBTF firms
(PD ≤ V̄B/κ∗∗∗), than for a normal firm (PD ≤ V̄B/κ∗).

This proposition says that the default risk is increasing faster in the amount of straight
debt PD for a TBTF firm than for a normal firm. Extending the evaluation formulas for
CCBs to a TBTF firm is straightforward. We just need to replace EQdebt by EQTBTFdebt and
V ∗B by V ∗∗∗B . The regulator can apply a similar CCB regulation scheme to a TBTF firm as
described in the last subsection. The CCBs can be used to compensate the firm for its loss
in the total value due to the capital requirement. As the TBTF already profits from the
government subsidy SUBTBTF , it will usually need less tax benefits from the CCBs to obtain
the same total value as a firm without this subsidy. The main takeaway of this subsection is
that a TBTF firm will always have a lower amount of straight debt than a comparable normal
firm under regulation.

11 Conclusion

In the aftermath of the financial crisis of 2008 contingent convertible bonds were discussed
as regulation instruments for banks. CCBs are new debt instruments that automatically
convert to equity when the issuing firm or bank reaches a specified level of financial distress.
We conceptualize the modeling of CCBs and we are the first to present a formal model for
this new hybrid security, which incorporates jumps in the firm’s value process and allows
for a rolling debt structure. We extend Chen and Kou’s model to incorporate contingent
convertible debt by introducing a second barrier which triggers conversion. We are able to
completely characterize two different types of CCBs: In the first case the number of shares
granted at conversion is fixed a priori. In the second specification the number of shares granted
at conversion is chosen a posteriori such that the value of the shares equals a specified value.
We are the first to determine the dilution costs to the old shareholders for the two types of
CCBs. Our analysis shows that CCBs behave similarly to straight debt in many ways: The
credit spread as a function of maturity is humped-shaped and the limiting credit spread for
a maturity approaching zero is generally non-zero.

However, the specification of the conversion payment has huge effects on the features of
CCBs. In order to obtain a unique equilibrium price for FSCCBs, certain restrictions have
to be imposed on the design of this debt contract. There are two different conceptional
approaches to modeling RCDs. In one approach RCDs and FSCCBs can be incorporated into
the same unified framework. In the other approach, FSCCBs and RCDs have very distinct
properties. We also explain how to evaluate the model if the parameters of the firm’s value
process change after conversion.

We discuss whether conversion can be based on observable market prices. We show that
the conversion event can be specified in terms of credit spreads or risk premiums for CDSs,
leading to the same pricing formulas that we have obtained when conversion was triggered
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by movements in the firm’s value process. Hence, our evaluation formulas can be applied in
practice with a trigger event based on observable market prices.

An important question concerns the optimal design of CCBs. We show that FSCCBs and
RCD1s are not affected by noise in the stock price process. Furthermore, FSCCB and RCD1
contracts are more robust against manipulation by the contingent convertible bondholders.
If in the case of conversion bond holders of RCD1s get shares that have the same value as
the face value of debt (i.e. the conversion parameter ` is equal to 1), then equity holders will
never manipulate the market. Therefore, we favor RCD1 contracts with ` = 1.

Last but not least we analyze the potential of CCBs as a regulation instrument. If the
no-early-default condition is satisfied a regulation combining leverage restrictions and the
requirement of issuing a certain fraction of CCBs can efficiently lower the default probability
without reducing the total value of the firm. However, if the no-early-default condition is
violated, a CCB regulation can actually increase the risk. In order to ensure that this condition
holds, only CCBs with a long maturity should be issued.
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12 Appendix

12 Appendix

12.1 Proofs for Section 2

Proposition 2. The total value of the firm equals

Gdebt(V, VB) = V +
c̄CD
r
E
[
1− e−rτ

]
− αE

[
V (τ)e−rτ1{τ<∞}

]
. (12.1)

Proof. By definition, the total value of the firm equals

Gdebt(V, VB) = V + TBD(V, VB)−BC(V, VB)

= V + c̄CDE

[∫ τ

0
e−rtdt

]
− αE

[
V (τ)e−rτ1{τ<∞}

]
= V +

c̄CD
r
E
[
1− e−rτ

]
− αE

[
V (τ)e−rτ1{τ<∞}

]
.

12.2 Proofs for Section 3

Proposition 3. The total value of all outstanding convertible debt equals

CB(V, VB, VC) =

∫ ∞
0

pΨ(t)dC(V, VB, VC , t)dt

=

(
cCPC +mPC

m+ r

)
E
[
1− e−(m+r)τC

]
+ CONV (V, VB, VC)

where CONV is the total conversion value

CONV (V, VB, VC) =

∫ ∞
0

pC ·Ψ(t) · conv(V, VB, VC , t)dt

Proof. First note that

Ψ(s) =

∫ ∞
s

ϕ(y)dy =

∫ ∞
s

me−mydy = e−sm

Hence, it follows that PC = pC
∫∞

0 Ψ(s)ds = pC
∫∞

0 e−msds = pC
m . Therefore, we get

CB(V, VB, VC) =

∫ ∞
0

pΨ(t)dC(V, VB, VC , t)dt

=pCcCE

[∫ τC

0
e−rt

∫ ∞
t

Ψ(s)dsdt

]
+ pCE

[∫ τC

0
e−rsΨ(t)dt

]
+

∫ ∞
0

pC ·Ψ(t) · conv(V, VB, VC , t)dt

=pCcCE

[∫ τC

0
e−rt

1

m
e−mtdt

]
+ pCE

[∫ τC

0
e−rte−mtdt

]
+ CONV (V, VB, VC)

=
(pCcC

m
+ pC

)
E

[
1

−(r +m)

(
e−(r+m)τC − 1

)]
+ CONV (V, VB, VC)

=
cCPC +mPC

m+ r
E
[
1− e−(m+r)τC

]
+ CONV (V, VB, VC).
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Proposition 4. If the value of the shares, that holders of a single contingent convertible bond
with face value 1 receive at conversion, is n′S(τ)/PC , then the value of the individual bond
satisfies

dC(V, VB, VC , t) = E

[∫ t∧τC

0
cCe
−rsds

]
+ E

[
e−rt1{t<τC}

]
+

n′

PC
E
[
S(τC)e−rτC1{τC≤t}1{VτC>VB}

]
.

Under the assumption of an exponential maturity profile ϕ(t) = me−mt the total value of the
convertible debt CB is given by:

CB(V, VB, VC) =

(
cCPC +mPC

m+ r

)
E
[
1− e−(m+r)τC

]
+ n′E

[
S(τC)e−(m+r)τC1{τC<∞}1{VτC>VB}

]
.

Proof. We only need to calculate the total conversion value:

CONV =

∫ ∞
0

pCΨ(t)dC(V, VB, VC , t)dt

=
n′

PC

∫ ∞
0

pCe
−mtE

[
S(τC)e−rτC1{τC≤t}1{VτC>VB}

]
dt

=
n′

PC
pCE

[
S(τC)e−rτC

∫ ∞
τC

e−msds1{VτC>VB}1{τC<∞}

]
=

n′

PC
pCE

[
S(τC)e−rτC

1

m
e−mτC1{VτC>VB}1{τC<∞}

]
=

n′

PC

pC
m
E
[
S(τC)e−(m+r)τC1{τC<∞}1{VτC>VB}

]
.

Proposition 5. If n′ = PC`
S0

, then there exist two different combinations of prices for {S0, DC(0)},
which satisfy the consistency and equilibrium conditions for FSCCBs. The dilution costs
DC(V0) at time t = 0 for a contingent convertible bond with such a fixed number of shares
equal:

DC(V0) =
EQ(V0) + n′S0

2
±

√(
EQ(V0) + n′S0

2

)2

− E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
n′S0.

Proof. Equation 3.3 has to be satified for V0, which implies

DC(V0) =
n′S0

EQ(V0)−DC(V0) + n′S0
E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
Solving for DC(V0) yields

DC(V0) =
EQ(V0) + n′S0

2
±

√(
EQ(V0) + n′S0

2

)2

− E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
n′S0.

As the price of FSCCBs at time zero is a function of DC(0), multiplicity of the market value
of the dilution costs results in multiple equilibrium prices.
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Proposition 6. If the value of the shares given to holders of contingent convertible bonds at
conversion is `, the values of the individual bonds of RCD1 under Assumption 2 satisfy

dC(V, VB, VC , t) = E

[∫ t∧τC

0
cCe
−rsds

]
+ E

[
e−rt1{t<τC}

]
+ `E

[
S(τC)

S(VC)
e−rτC1{τC≤t}1{VτC>VB}

]
.

For an exponential maturity profile ϕ(t) = me−mt the total value of the convertible debt CB
for RCD1 under Assumption 2 is given by:

CB(V, VB, VC) =

(
cCPC +mPC

m+ r

)
E
[
1− e−(m+r)τC

]
+ `PCE

[
EQ(VτC )

EQ(VC)
e−(m+r)τC1{τC<∞}1{VτC>VB}

]
.

Proof. Recall that under Assumption 2 n and n′ are set as

n =
EQ(V0)−DC(V0)

S0
and n′ =

`PC
S(VC)

.

At the time of conversion the stock price S(VC) equals the equity value divided by the number
of old and new shares:

S(VC) =
EQ(VC)

n+ n′
=

EQ(VC)

n+ `PC
S(VC)

which is equivalent to

S(VC)n+ `PC = EQ(VC) ⇔

S(VC) =
EQ(VC)− `PC

n
⇔

S(VC)

S0
=

EQ(VC)− `PC
EQ(V0)−DC(V0)

.

Hence, the dilution costs simplify to

DC(V0) =
`PC

(EQ(V0)−DC(V0))S(VC)/S(0) + `PC
E
[
EQ(VτC )e−(r+m)τC1{τC<∞}1{τC<τ}

]
=`PCE

[
EQ(VτC )

EQ(VC)
e−(r+m)τC1{τC<∞}1{τC<τ}

]
. (12.2)

By Lemma 1 it follows

CONV (V0) = DC(V0).

Note, that the value of the equity after conversion is independent of any features of the
contingent convertible debt. In particular, the dilution costs do not appear on the RHS of
equation 12.2.
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12.3 Modeling RCD2s

In this section we present the details for modeling RCD2s. The number of shares granted
at conversion is determined based on the stock price S(VτC ), i.e. the contingent convertible
bondholders receive n′ = `PC

S(VτC ) shares. We do not require Assumption 2 to be satisfied.

Assume that the value of equity for VτC = VC is sufficient to pay the conversion value.
Then, in a model without jumps and ` = 1 the contingent convertible bond with face value 1
has the same features as a riskless bond with face value 1. If we include jumps the contingent
convertible bondholders face the additional risks that conversion and bankruptcy happen
simultaneously or that the value of the equity after conversion is not sufficient to pay the
promised conversion value. Hence, jumps introduce two additional sources of risk.

12.3.1 Evaluation of RCD2s

The conversion value for RCD2s requires us to distinguish several cases. If τC < τ , i.e. the
downward movement of VτC is not sufficient to trigger bankruptcy, the contingent convertible
bondholders receive a payment. If on the one hand the value of the equity is sufficiently
large, they get a number of stocks such that the value of the total payment equals `PC . If
on the other hand the value of the equity is insufficient to make the promised payment to
the contingent convertible bond holders, they take possession of the whole equity and the
old shareholders are completely diluted out. We assume that the face value of all contingent
convertible debt is PC and thus a bondholder with a bond with face value 1 gets a fraction
1/PC of the value of the equity EQ(VτC ) after conversion in this case. Recall proposition 7.

Proposition 7. If the payment to holders of contingent convertible bonds at conversion is `,
the values of the individual bonds satisfy

dC(V, VB, VC , t) =E

[∫ t∧τC

0
cCe
−rsds

]
+ E

[
e−rt1{t<τC}

]
+ `E

[
e−rτC1{τC≤t}1{`PC≤EQ(VτC )}1{τC<τ}

]
+

1

PC
E
[
e−rτCEQ(VτC )1{τC≤t}1{τC<τ}1{`PC>EQ(VτC )}

]
For an exponential maturity profile ϕ(t) = me−mt the total value of the convertible debt CB
is given by:

CB(V, VB, VC) =

(
cCPC +mPC

m+ r

)
E
[
1− e−(m+r)τC

]
+ `PCE

[
e−(m+r)τC1{τC<τ}1{`PC≤EQ(VτC )}

]
+ E

[
EQ(VτC )e−(m+r)τC1{V (τC)>VB}1{`PC>EQ(VτC )}1{τC<∞}

]
.
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Proof. We only need to do the calculations for the conversion value:

CONV =

∫ ∞
0

pCΨ(t)dC(V, VB, VC , t)dt

=`pCE

[
e−rτC

∫ ∞
τC

e−mtdt1{`PC≤EQ(VτC )}1{τC<τ}

]
+
pC
PC

E

[
e−rτCEQ(VτC )

∫ ∞
τC

e−mtdt1{τC<τ}1{`PC>EQ(VτC )}

]
=`

pC
m
E
[
e−(r+m)τC1{`PC≤EQ(VτC )}1{τC<τ}

]
+

pC
mPC

E
[
e−(r+m)τCEQ(VτC )1{τC<τ}1{`PC>EQ(VτC )}1{τC<∞}

]

Equipped with the results of Section 4, we can derive the price of RCD2s.

Theorem 7. The price of the RCD2s equals

CB =
CC +mPC
r +m

(
1− β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

(
VC
V

)β3,r+m
− β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

(
VC
V

)β4,r+m)

+ `PC ·G
(

log

(
VC
V0

)
, log

(
VC

max(T−1(`PC), VB)

)
,m+ r

)
1{VC>T−1(`PC)}

+
∑

αiV
θi

0

(
J

(
log

(
VC
V0

)
, θi, log

(
VC
VB

)
,m+ r

)
− J

(
log

(
VC
V0

)
, θi, log

(
VC

T−1(`PC)

)
,m+ r

)
1{VC>T−1(`PC)}

)
1{VB<T−1(`PC)}

Proof. We only need to prove the formula for the conversion value.

CONV =`PCE
[
e−(m+r)τC1{τC<τ}1{`PC≤EQ(VτC )}

]
+ E

[
EQ(VτC )e−(m+r)τC1{τC<τ}1{`PC>EQ(VτC )}1{τC<∞}

]
=`PCE

[
e−(m+r)τC1{VτC>max(T−1(`PC),VB)}

]
+ E

[
EQ(VτC )e−(m+r)τC1{VB<VτC≤T−1(`PC)}1{τC<∞}

]
1{VB<T−1(`PC)}

=`PCE

[
e−(m+r)τC1{

−(X(τC)−xC)<− log

(
max(T−1(`PC ),VB)

VC

)}
]

+
∑

αiV
θi

0 E
[
e−(m+r)τC+θiX(τC)

1{VB<VτC≤T−1(`PC)}1{τC<∞}

]
1{VB<T−1(`PC)}

=`PCE

[
e−(m+r)τC1{

−(X(τC)−xC)<− log

(
max(T−1(`PC ),VB)

VC

)}
]

+
∑

αiV
θi

0 E

[
e−(m+r)τC+θiX(τC)

(
1{−(XτC−xC)<log(VC/VB)} − 1{−(XτC−xC)<log(VC/T−1(`PC))}

)
1{τC<∞}

]
1{VB<T−1(`PC)}
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12.3.2 Costs of Dilution for RCD2s

For contingent convertible bonds with a flexible number of shares at conversion, the dilution
costs are much more complicated. Here, the number of shares depends on the stock price value
S(τC) at the time of conversion. In more detail, the number of shares of the old shareholders
are

n =
EQ(V0)−DC(V0)

S(0)

while the number of new shares of the bondholders equal

n′ =
`PC
S(τC)

if the equity value EQ(VτC ) is sufficiently high. Otherwise, contingent convertible bondholders
own the whole remaining equity. Note, that n′ is a random variable at time t = 0. Therefore
the dilution costs DC at time t = 0 are

DC(V0) = E

[
EQ(VτC )e−(r+m)τC

`PC
(EQ(V0)−DC(V0))S(τC)/S(0) + `PC

1{τC<∞}1{EQ(VτC )≥`PC}

]
+ E

[
EQ(VτC )e−(m+r)τC1{τC<∞}1{EQ(VτC )<`PC}

]
.

Under certain assumptions on the stock price process this equation boils down to CONV (V0).

12.3.3 Modeling the Stock Price Process for RCD2s

If RCD2s are included in the capital structure, there is the possibility that old shareholders
are completely diluted out before bankruptcy. Hence, the stock price of the “old” shares can
be zero, although the company has not defaulted. However, there will be the “new” shares
of the former contingent convertible bondholders with a positive value. Hence, we need to
distinguish between “old” and “new” shares:

Definition 16. The endogenous stock price for the old shares is defined as

Sold(t) = Sold(Vt) =


EQ(Vt)−DC(Vt)

n if t > τC
EQ(Vt)
n+n′ if τC ≤ t < τ and EQ(τC) ≥ `PC

0 if τC ≥ t and EQ(τC) < `PC or if τ ≤ t

and the price for the new shares is

Snew(t) = Snew(Vt) =


Sold(t) if t < τC
Sold(t) if τC ≤ t < τ and EQ(τC) ≥ `PC
EQ(Vt) if τC ≤ t < τ and EQ(τC) < `PC (here we have normalized n′ = 1)

where n is the number of “old” shares

n =
EQ(V0)−DC(V0)

Sold(0)
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and n′ is the number of “new” shares issued at conversion

n′ =
`PC

Sold(τC)
.

In the case of RCD2s the conversion value and dilution costs must also coincide:

Proposition 29. The conversion value for RCD2s equals the dilution costs:

CONV (Vt) = DC(Vt)

Proof. Recall that n and n′ are set as

n =
EQ(V0)−DC(V0)

Sold(0)

and

n′ =
`PC

Sold(τC)
.

At the time of conversion the stock price Sold(τC) equals the equity value divided by the
number of old and new shares:

Sold(τC)1{EQ(VτC )≥`PC} =
EQ(VτC )

n+ n′
1{EQ(VτC )≥`PC}

=
EQ(VτC )

n+ `PC
Sold(τC)

1{EQ(VτC )≥`PC}

which is equivalent to

(Sold(τC)n+ `PC)1{EQ(VτC≥`PC} = EQ(VτC )1{EQ(VτC≥`PC} ⇔

Sold(τC)1{EQ(VτC≥`PC} =
EQ(VτC )− `PC

n
1{EQ(VτC≥`PC} ⇔

Sold(τC)

Sold(0)
1{EQ(VτC≥`PC} =

EQ(VτC )− `PC
EQ(V0)−DC(V0)

1{EQ(VτC≥`PC}.

Hence, the dilution costs simplify to

DC(V0) =E

[
EQ(VτC )e−(r+m)τC

`PC
(EQ(V0)−DC(V0))S(τC)/S(0) + `PC

1{τC<∞}1{EQ(VτC≥`PC}1{τC<τ}

]
+ E

[
EQ(VτC )e−(m+r)τC1{τC<∞}1{EQ(VτC )<`PC}1{τC<τ}

]
=`PCE

[
e−(r+m)τC1{`PC≤EQ(VτC )}1{τC<τ}

]
+ E

[
e−(r+m)τCEQ(VτC )1{τC<τ}1{`PC>EQ(VτC )}1{τC<∞}

]
=CONV (Vt).
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12.4 Comparing RCDs and FSCCBs

The two contracts RCD and FSCCB differ in the specification of the number of shares n′

granted to the contingent convertible shareholders in the event of conversion. We have seen
that RCD1s are actually a particular version of FSCCBs. Here, we want to analyze whether
we can make any statement about n′ in the both cases.

The old shareholders own a number of shares n that is fixed at time t = 0 and that is
equal to the value of equity to them divided by the price of the stock at time t = 0:

n =
EQ(V0)−DC(V0)

S(0)

Assume that in the case of FSCCBs the new shareholders (i.e. the holders of contingent
convertible bonds) receive a fixed number of shares n′ that satisfies a posteriori the following
condition:

n′FSCCB =
PC`

S0
=

n`PC
EQ(V0)−DC(V0)

.

In the case of RCD1s the corresponding number is

n′RCD1 =
`PC
S(VC)

=
n`PC

EQ(VC)− `PC
.

Note that the last equality follows from the assumption that

`PC = n′RCD1S(VC) =
n′RCD1

n+ n′RCD1

EQ(VC).

How do the two numbers n′FSCCB and n′RCD1 relate to each other? Denote the contract
parameters for the two specifications by `FSCCB respectively `RCD1. Assume that `RCD1 ≥
`FSCCB. By the definition of n we can conclude

n′RCD1 =
n`RCD1PC

EQ(VC)− `PC

=
EQ(V0)−DC(V0)

EQ(VC)− `RCD1PC

`FSCCBPC
S0

`RCD1

`FSCCB

=
EQ(V0)−DC(V0)

EQ(VC)− `RCD1PC
n′FSCCB

`RCD1

`FSCCB
.

Hence

n′RCD1

n′FSCCB
=

EQ(V0)−DC(V0)

EQ(VC)− `RCD1PC︸ ︷︷ ︸
>1

`RCD1

`FSCCB
.

The inequality EQ(V0)−DC(V0)
EQ(VC)−`RCD1PC

> 1 holds in our model because we will show later that EQ(.)

is a strictly increasing function and that DC(V0) < `FSCCBPC .

Lemma 17. If `RCD1 ≥ `FSCCB then n′RCD1 > n′FSCCB.

It is important to note, that the numbers n′RCD1 and n′FSCCB are both constants inde-
pendently of future realizations of Vt.
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12.5 Proofs for Section 4

Proposition 8. Assume that Xt follows a Kou process and τ denotes the first passage time
to x < 0, i.e. τ = inf(0 ≤ t : Xt ≤ x). It holds that for y > 0, θ > −η2 and ρ > 0:

E
[
e−ρτ+θXτ1{τ<∞,−(Xτ−x)<y}

]
=

(
η2 − β3,ρ

β4,ρ − β3,ρ
exβ3,ρ +

β4,ρ − η2

β4,ρ − β3,ρ
exβ4,ρ

)
eθx

+ eθx
η2

θ + η2

(
1− e−(θ+η2)y

)
(1− e−η2y)

(
exβ3,ρ

β4,ρ − β3ρ

(
η2 − β3,ρ

η2
β4,ρ − (η2 − β3,ρ)− e−η2y

(η2 − β3,ρ)(β4,ρ − η2)

η2

)

+
exβ4,ρ

β4,ρ − β3,ρ

(
β4,ρ − η2

η2
β3,ρ − (β4,ρ − η2) + e−η2y

η2 − β3,ρ

η2
(β4,ρ − η2)

))

where −β3,ρ > −β4,ρ are the two negative roots of the equation ψ(β) = ρ.

Proof.

E
[
e−ρτ+θXτ1{τ<∞,−(Xτ−x)<y}

]
=E

[
eρτ+θXτ1{τ<∞,Xτ=x}

]
+ eθxE

[
e−ρτ+θ(Xτ−x)

1{τ<∞,0<−(Xτ−x)<y}

]
=eθxE

[
e−ρτ1{τ<∞,Xτ=x}

]
+ eθxE

[
eρτ1{τ<∞,0<−(Xτ−x)<y}

] ∫ 0
−y e

θY η2e
η2Y dY∫ 0

−y η2eη2Y dY

=eθxE
[
e−ρτ1{τ<∞,Xτ=x}

]
+ eθxE

[
e−ρτ1{τ<∞,0<−(Xτ−x)<y}

] η2

θ + η2

(
1− e−(θ+η2)y

)
(1− e−η2y)

Note that

E
[
e−ρτ1{τ<∞,0<−(Xτ−x)<y}

]
= E

[
e−ρτ

]
− E

[
e−ρτ1{Xτ=x}

]
− E

[
e−ρτ1{−(Xτ−x)>y}

]
Using the following results from Kou and Wang (2003) we can finish the proof:

E
[
e−ρτ1{Xτ=x}

]
=

η2 − β3,ρ

β4,ρ − β3,ρ
exβ3,ρ +

β4,ρ − η2

β4,ρ − β3,ρ
exβ4,ρ (12.3)

E
[
e−ρτ1{−(Xτ−x)≥y}

]
= e−η2y

η2 − β3,ρ

η2

β4,ρ − η2

β4,ρ − β3,ρ

(
exβ3,ρ − exβ4,ρ

)
y > 0 (12.4)

Lemma 4. The total value of the equity at conversion EQ(VτC ) satisfies

EQ(VτC ) = EQdebt(VτC ) =
∑
i

αiV
θi
τC

=
∑
i

V θi
0 αie

X(τC)θi
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with

α1 = 1 θ1 = 1

α2 = − c̄CD
r

β4,r

η2

η2 − β3,r

β4,r − β3,r
(VB)β3,r θ2 = −β3,r

α3 = − c̄CD
r

β3,r

η2

β4,r − η2

β4,r − β3,r
(VB)β4,r θ3 = −β4,r

α4 = −αVB
β4,r + 1

η2 + 1

η2 − β3,r

β4,r − β3,r
(VB)β3,r θ4 = −β3,r

α5 = −αVB
β3,r + 1

η2 + 1

β4,r − η2

β4,r − β3,r
(VB)β4,r θ5 = −β4,r

α6 =
CD +mP

r +m

β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m
(VB)β3,r+m θ6 = −β3,r+m

α7 =
CD +mP

r +m

β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m
(VB)β4,r+m θ7 = −β4,r+m

α8 = −(1− α)VB
β4,r+m + 1

η2 + 1

η2 − β3,r+m

β4,r+m − β3,r+m
(VB)β3,r+m θ8 = −β3,r+m

α9 = −(1− α)VB
β3,r+m + 1

η2 + 1

β4,r+m − η2

β4,r+m − β3,r+m
(VB)β4,r+m θ9 = −β4,r+m

α10 =
c̄CD
r
− CD +mP

r +m
θ10 = 0.

Proof. The total equity value is the difference between the total value of the firm and the
value of actual debt payments:

EQ(Vt) = G(Vt)−D(Vt)− CB(Vt) + CONV (Vt)

Hence, we conclude that

EQ(V ) =

V +
c̄CD
r

(
1− β4,r

η2

η2 − β3,r

β4,r − β3,r

(
VB
V

)β3,r
− β3,r

η2

β4,r − η2

β4,r − β3,r

(
VB
V

)β4,r)
+
c̄CC
r

(
1− β4,r

η2

η2 − β3,r

β4,r − β3,r

(
VC
V

)β3,r
− β3,r

η2

β4,r − η2

β4,r − β3,r

(
VC
V

)β4,r)
− αVB

(
β4,r + 1

η2 + 1

η2 − β3,r

β4,r − β3,r

(
VB
V

)β3,r
+
β3,r + 1

η2 + 1

β4,r − η2

β4,r − β3,r

(
VB
V

)β4,r)
− CD +mP

r +m

(
1− β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

(
VB
V

)β3,r+m
− β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

(
VB
V

)β4,r+m)
− (1− α)VB

(
β4,r+m + 1

η2 + 1

η2 − β3,r+m

β4,r+m − β3,r+m

(
VB
V

)β3,r+m
+
β3,r+m + 1

η2 + 1

β4,r+m − η2

β4,r+m − β3,r+m

(
VB
V

)β4,r+m)
− CC +mPC

r +m

(
1− β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

(
VC
V

)β3,r+m
− β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

(
VC
V

)β4,r+m)
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This has a structure of the form

EQ(Vt) =
∑
i

αiV
θi
t

where Vt is the only time dependent variable. Note that at the time of conversion τC the
value of the tax benefits of the contingent convertible bonds and the value of CB − CONV
are zero. Hence, the corresponding terms in EQ(VτC ) disappear.

12.6 Proofs for Section 5

Theorem 3. There are only two possible solutions for the optimal default barrier. Either the
optimal default barrier coincides with the optimal default barrier with only straight debt or
it equals the maximum of the conversion barrier and V∗∗B :VB = V ∗B or VB = max(VC , V

∗∗
B ),

where

V ∗∗B =

CD+CC+m(PD+PC)
r+m β3,r+mβ4,r+m − c̄(CD+CC)

r β3,rβ4,r

α(β3,r + 1)(β4,r + 1) + (1− α)(β3,r+m + 1)(β4,r+m + 1)

η2 + 1

η2
.

V ∗∗B equals the optimal default barrier of a firm with only straight debt with face value PD+PC
and coupon CD + CC . If

EQold(V, V
∗
B, VC) ≥ EQdebt(V, V ∗∗B , PD + PC , CD + CC) for all V ≥ VC

for V ∗∗B > VC > V ∗B or

EQold(V, V
∗
B, VC) ≥ 0 for all V ≥ VC .

for V ∗B < V ∗∗B ≤ VC then

VB = V ∗B

otherwise

VB = max(VC , V
∗∗
B ).

Proof. We will first show when V ∗B is optimal. Assume the following five conditions are all
satisfied:

1. Assume that first

EQold(V, V
∗
B, VC) ≥ 0 for all V ≥ VC

i.e. the default barrier V ∗B satisfies the limited liability constraint.

2. Second, the equity of the old shareholders for VB > VC is given by

EQold(V, VB, VC , PD, PC , CD, CC) = EQdebt(V, VB, PD + PC , CD + CC),

i.e. the equity value of the older shareholders for VB > VC is the same as for a firm that
issues only straight debt in the amount PD + PC with coupon CD + CC .
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3. Third, if the shareholders want to default before conversion the optimal default barrier
is V ∗∗B if V ∗∗B > VC and VC otherwise.

4. Fourth, it should hold that

EQold(V, V
∗
B, VC) ≥ EQold(V, V ∗∗B , V ∗∗B ) for V ∗∗B > VC and for all V ≥ VC

i.e. the older shareholders do not want to default before conversion for V ∗∗B > VC .

5. Fifth,

EQold(V, V
∗
B, VC) ≥ EQold(V, VC , VC) for all V > VC ,

i.e. the old shareholders prefer the default barrier V ∗B to the default barrier VC .

The fourth and the fifth condition imply that the shareholders will never choose a default
barrier higher than or equal to VC , because this would result in a lower equity value. By
the commitment condition, the optimal default barrier after conversion is V ∗B. This is a valid
solution to our optimization problem, if and only if the limited liability constraint is satisfied.
The first condition ensures that the limited liability constraint is satisfied for V ≥ VC . After
conversion V ∗B trivially satisfies the limited liability constraint.

The first and fourth condition are stated as assumptions in our theorem. Now we need
to show that the second, third and fifth condition are always satisfied. We start with the
second statement. Recall that if the conversion barrier is smaller than the default barrier,
we can treat this case as if the default and conversion barrier are the same. Hence, for all
VB = y ≥ VC

EQold(V, y, VC , PD, CD, PC , CC)

=EQdebt(V, y, PD, CD) + TBC(V, y)− CCB(V, y, y, PC , CC)

=V +
c̄CD
r
E
[
1− e−rτ

]
+ αE

[
V (τ)e−rτ1{τ<∞}

]
−
(
cPD +mPD

m+ r
E
[
1− e−(m+r)τ

]
+ (1− α)E

[
V (τ)e−(m+r)τ

1{τ<∞}

])
+
c̄CC
r
E
[
1− e−rτ

]
−
((

cPC +mPC
m+ r

)
E
[
1− e−(m+r)τ

]
+ 0

)
=EQdebt(V, y, PD + PC , CD + CC)

This means that the equity value of the old shareholders is the same as in the case with only
straight debt, but with a higher face and coupon value. Chen and Kou (2009) have shown
the EQdebt(V, VB) is strictly decreasing in VB for V ≥ VB and VB ≥ V ∗∗B . Hence,

EQdebt(V, V
∗∗
B ) ≥ EQdebt(V, y) for all y ≥ V ∗∗B , for all V ≥ V ∗∗B .

We have already shown, that in the case of only straight debt V ∗∗B is the optimal default barrier
for an amount of debt PD + PC and a coupon value of CD + CC . However, if V ∗∗B < VC , the
commitment problem rules out V ∗∗B as a solution. The old shareholders would maximize their
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equity value by choosing VB = VC . This proves the third statement. In order to show the
fifth statement, we have to reformulate it:

EQold(V, V
∗
B, VC)− EQold(V, VC , VC)

=EQdebt(V, V
∗
B) + TBC(V, VC)− CCB(V, V ∗B, VC)− EQdebt(V, VC)− TBC(V, VC) + CCB(V, VC , VC)

=EQdebt(V, V
∗
B)− EQdebt(V, VC)− CONV (V, V ∗B, VC)

The equality holds as the conversion value for VB = VC is equal to zero: CONV (V, VC , VC) =
0. Assume first, that at conversion the old shareholders are completely diluted out, i.e. all
the equity is given to the new shareholders. In this case, the event of conversion is like the
default event for the old shareholders and they are indifferent between V ∗B and VC :

EQold(V, V
∗
B, VC) = EQold(V, VC , VC)

which is equivalent to

EQdebt(V, V
∗
B)− EQdebt(V, VC) = CONV (V, V ∗B, VC)

i.e. the conversion value equals exactly the gain in the equity value due to a lower default
barrier. Obviously, complete dilution gives the highest possible conversion value and hence
establishes an upper bound on CONV (V, V ∗B, VC). Therefore, for an arbitrary amount of
shares granted at conversion the following inequality has to hold:

EQdebt(V, V
∗
B)− EQdebt(V, VC) ≥ CONV (V, V ∗B, VC)

which is equivalent to

EQold(V, V
∗
B, VC) ≥ EQold(V, VC , VC)

and thus proves the statement.
What happens, if the first condition (limited liability for V ∗B) is violated? The value of

the equity will be zero before conversion and hence, default will be triggered for a value of
the firm’s assets that is larger than VC . Anticipating this, the old shareholders will choose a
default barrier VB > VC such that the value of their equity is maximized. As we have shown
before, this problem is equivalent to maximizing

max
VB≥VC

EQdebt(V, VB, PD + PC , CD, CC) s.t. EQdebt(V
′, VB, PD + PC , CD + CC) > 0 ∀ V ′ > VB

A firm with only straight debt, that has face value PD + PC and coupons CD + CC , would
ideally choose V ∗∗B . However, if V ∗∗B < VC , the commitment problem does not allow it to
take V ∗∗B . As EQdebt is strictly decreasing in the default barrier, the firm would choose the
smallest possible default barrier such that VB > VC , which is obviously VC . The limited
liability constraint is trivially satisfied as EQdebt is strictly increasing in the firm’s value. A
similar reasoning applies to the case where the fourth condition is violated.
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Proposition 15. Assume that the shareholders choose {VB, VC} according to the two stage
optimization problem in order to maximize EQold. If

EQold(V, V
∗
B, V

∗
C) ≥ EQdebt(V, V ∗∗B , V ∗∗B ) for all V > V ∗∗B

then the optimal solution is

VB = V ∗B and VC = V ∗C ,

otherwise

VB = V ∗∗B and VC = V ∗∗B

Proof. From Theorem 3 we already know, that the optimal default barrier is either V ∗B or
max{V ∗∗B , VC}. In the case, where VB = V ∗B, the old shareholders’ equity can be at most
EQold(V, V

∗
B, V

∗
C), as V ∗C is chosen such that is maximizes their equity value. In the other case

the old shareholders will choose a conversion and default barrier, such that default happens
before conversion, i.e. VB ≥ VC . As we have seen in the proof of Theorem 3 in this case
EQold(V, VB, VC , PD, CD, PC , CC) = EQdebt(V, VB, PD + PC , CD + CC). The optimal default
barrier is then V ∗∗B . In order to ensure, that default happens before conversion the conversion
barrier must be smaller than V ∗∗B , i.e VC ≤ V ∗∗B . As VC is a choice variable, the old shareholders
can always ensure that this condition holds by setting VC = V ∗∗B . Hence, the old shareholders
can get at most EQdebt(V, V

∗∗
B , V ∗∗B ) in this case. Comparing the two maximal values yields

the optimal choice.

Proposition 16. Assume that VC is chosen to maximize the total value of the firm in a
second stage. If G(V, V ∗B, V̄C) > G(V, V ∗∗B , V ∗∗B ) for all V > V ∗∗B , then the optimal solution is

VB = V ∗B and VC = V̄C ,

otherwise

VB = V ∗∗B and VC = V ∗∗B

Proof. For V ≥ VC ≥ VB the total value of the firm is a strictly decreasing function in the
conversion barrier:

∂G(V, VB, VC)

∂VC
< 0

This is due to the fact that

G(V, VB, VC) = V + TBD(V, VB) + TBC(V, VC)−BC(V, VB)

and hence the total value of the firm is only affected by VC through the tax benefits. It is
easy to verify that

∂TBC(V, VC)

∂VC
=
∂ c̄CCr E [1− e−rτC ]

∂VC
< 0
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for any Markov process V . Therefore, the firm would always choose the lowest possible
conversion barrier for a given VB in the first stage, which is VC = VB. However, by choosing
VC = VB the default barrier does not stay fixed, but can change as well. As we have seen in
the proof of Theorem 3 in this case EQold(V, VB, VC , PD, CD, PC , CC) = EQdebt(V, VB, PD +
PC , CD+CC). The optimal default barrier is then V ∗∗B and the resulting total value of the firm
is G(V, V ∗∗B , V ∗∗B ). If the firm chooses the lowest possible value of V̄C , such that V ∗B satisfies the
limited liability constraint, then the total value of the firm equals G(V, V ∗B, V̄C). Comparing
the optimal total values of the firm for the two cases yields the optimal solution.

12.7 Proofs for Section 6

Lemma 9. Assumption 5 implies that the value of the total straight debt, if it was risk free,
is larger than the value of the largest possible recovery payment:

B(CD) > D(V, VB) ⇒ CD +mPD
r +m

> (1− α)VB.

Proof.

B(CD) ≥ D(V, VB) ⇔
CD +mPD
r +m

≥ CD +mPD
r +m

(
1− Ã− B̃

)
+ (1− α)VB

(
C̃ + D̃

)
⇔

CD +mPD
r +m

≥ (1− α)VB
C̃ + D̃

Ã+ B̃

with

Ã =
β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

B̃ =
β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

C̃ =
β4,r+m + 1

η2 + 1

η2 − β3,r+m

β4,r+m − β3,r+m

D̃ =
β3,r+m + 1

η2 + 1

β4,r+m − η2

β4,r+m − β3,r+m

All we need to show is that

C̃ + D̃

Ã+ B̃
< 1
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C̃ + D̃

Ã+ B̃
=

η2

η2 + 1

(β4,r+m + 1)(η2 − β3,r+m) + (β3,r+m + 1)(β4,r+m − η2)

β4,r+m(η2 − β3,r+m) + β3,r+m(β4,r+m − η2)

=
η2

η2 + 1

(
1 +

η2 − β3,r+m + β3,r+m − η2

β4,r+m(η2 − β3,r+m) + β3,r+m(β4,r+m − η2)

)
=

η2

η2 + 1

< 1

Lemma 10. If the condition CD+mPD
r+m ≥ η2

η2+1
β3,r+m+1
β3,r+m

(1 − α)VB is satisfied, then the value

of the straight debt is an increasing function in the firm’s value:

∂D(V )

∂V
> 0 for all V ≥ VB.

Proof. Define x = VB/V . Obviously, it holds

∂D(V )

∂V
=
∂D(V )

∂x

∂x

∂V
=
∂D(V )

∂x

−VB
V 2

.

Hence, we need to show ∂D(V )
∂x < 0.

We will use Lemma B.1 from the Appendix of Chen and Kou (2009) which states the
following: Consider the function g(x) = Axα1 +Bxβ1 −Cxα2 −Dxβ2 , 0 ≤ x ≤ 1. In the case
of 0 ≤ α1 ≤ α2 ≤ β1 ≤ β2, A+B ≥ C +D and A > C, then g(x) ≥ 0 for all 0 ≤ x ≤ 1.

In our case the debt as a function of x is given by

D(x) =
CD +mPD
r +m

(
1− β4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m
xβ3,r+m − β3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m
xβ4,r+m

)
+ (1− α)VB

(
β4,r+m + 1

η2 + 1

η2 − β3,r+m

β4,r+m − β3,r+m
xβ3,r+m +

β3,r+m + 1

η2 + 1

β4,r+m − η2

β4,r+m − β3,r+m
xβ4,r+m

)
Therefore,

D′(x) =− CD +mPD
r +m

(
β3,r+mβ4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m
xβ3,r+m−1

+
β4,r+mβ3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m
xβ4,r+m−1

)
+ (1− α)VB

(
β3,r+m(β4,r+m + 1)

η2 + 1

η2 − β3,r+m

β4,r+m − β3,r+m
xβ3,r+m−1

+
β4,r+m(β3,r+m + 1)

η2 + 1

β4,r+m − η2

β4,r+m − β3,r+m
xβ4,r+m−1

)
=−

(
Axα1 +Bxβ1 − Cxα2 −Dxβ2

)
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with

A =
CD +mPD
r +m

β3,r+mβ4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m

B =
CD +mPD
r +m

β4,r+mβ3,r+m

η2

β4,r+m − η2

β4,r+m − β3,r+m

C = (1− α)VB
β3,r+m(β4,r+m + 1)

η2 + 1

η2 − β3,r+m

β4,r+m − β3,r+m

D = (1− α)VB
β4,r+m(β3,r+m + 1)

η2 + 1

β4,r+m − η2

β4,r+m − β3,r+m

and

α1 = α2 = β3,r+m − 1

β1 = β2 = β4,r+m − 1

From Kou and Wang (2003) we know that β4,r+m > η2 > β3,r+m > 0. Hence 0 ≤ α1 ≤ α2 ≤
β1 ≤ β2. Next,

A+B =
CD +mPD
r +m

(
β3,r+mβ4,r+m

η2

)
and

C +D = (1− α)VB

(
β3,r+mβ4,r+m

η2 + 1
+
β3,r+m(η2 − β3,r+m) + β4,r+m(β4,r+m − η2)

(η2 + 1)(β4,r+m − β3,r+m)

)
We need to show that A+B ≥ C +D. Note, that

A+B

C +D
≥ 1 ⇔

CD+mPD
r+m

(1− α)VB
≥

β3,r+mβ4,r+m
η2+1 +

β3,r+m(η2−β3,r+m)+β4,r+m(β4,r+m−η2)
(η2+1)(β4,r+m−β3,r+m)

β3,r+mβ4,r+m
η2

⇔

CD+mPD
r+m

(1− α)VB
≥ η2

η2 + 1
+

η2

η2 + 1

(
η2 − β3,r+m

β4,r+m(β4,r+m − β3,r+m)
+

β4,r+m − η2

β3,r+m(β4,r+m − β3,r+m)

)
⇔

CD+mPD
r+m

(1− α)VB
≥ η2

η2 + 1

(
1 +

β3,r+m(η2 − β3,r+m) + β4,r+m(β4,r+m − η2)

β3,r+mβ4,r+m(β4,r+m − β3,r+m)

)
We know that 0 < β3,r+m < η2 < β4,r+m. Hence, it holds that

β3,r+m(η2 − β3,r+m) + β4,r+m(β4,r+m − η2)

β3,r+mβ4,r+m(β4,r+m − β3,r+m)
<

1

β3,r+m

By assumption we have

CD+mPD
r+m

(1− α)VB
≥ η2

η2 + 1

β3,r+m + 1

β3,r+m
=

η2

η2 + 1

(
1 +

1

β3,r+m

)
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Thus, we conclude

CD+mPD
r+m

(1− α)VB
≥ η2

η2 + 1

(
1 +

1

β3,r+m

)
≥ η2

η2 + 1

(
1 +

β3,r+m(η2 − β3,r+m) + β4,r+m(β4,r+m − η2)

β3,r+mβ4,r+m(β4,r+m − β3,r+m)

)
.

Last but not least, we need to show A > C.

A− C =
CD +mPD
r +m

β3,r+mβ4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m
− (1− α)VB

β3,r+m(β4,r+m + 1)

η2 + 1

η2 − β3,r+m

β4,r+m − β3,r+m

By assumption CD+mPD
r+m > (1− α)VB as η2

η2+1
β3,r+m+1
β3,r+m

> 1. Hence, it is sufficient to show the

following:

β3,r+mβ4,r+m

η2

η2 − β3,r+m

β4,r+m − β3,r+m
− β3,r+m(β4,r+m + 1)

η2 + 1

η2 − β3,r+m

β4,r+m − β3,r+m

=
β3,r+mβ4,r+m(η2 + 1)(η2 − β3,r+m)− η2β3,r+m(β4,r+m + 1)(η2 − β3,r+m)

η2(η2 + 1)(β4,r+m − β3,r+m)

=
β3,r+m(η2 − β3,r+m)(β4,r+m − η2)

η2(η2 + 1)(β4,r+m − β3,r+m)

>0

The last step follows from the fact that 0 < β3,r+m < η2 < β4,r+m.
Therefore, all the conditions for Lemma B.1 from Chen and Kou (2009) are satisfied and

thus D′(x) < 0.

Lemma 11. If the default barrier is chosen optimally as V ∗B (i.e. VB is chosen optimally by
the shareholders as in the case with only straight debt), then the condition

CD +mPD
r +m

≥ η2

η2 + 1

β3,r+m + 1

β3,r+m
(1− α)VB

is always satisfied.

Proof. Plugging in the expression for V ∗B yields

CD +mPD
r +m

≥ η2

η2 + 1

β3,r+m + 1

β3,r+m
(1− α)VB ⇔

CD +mPD
r +m

≥ β3,r+m + 1

β3,r+m
(1− α)

CD+mPD
r+m β3,r+mβ4,r+m − c̄CD

r β3,rβ4,r

α(β3,r + 1)(β4,r + 1) + (1− α)(β3,r+m + 1)(β4,r+m + 1)

This expression is equivalen to

CD +mPD
r +m

(
β3,r+m

β3,r+m + 1
α(β3,r + 1)(β4,r + 1) + (1− α)β3,r+m

)
︸ ︷︷ ︸

>0

≥ − c̄CD
r

(1− α)β3,rβ4,r︸ ︷︷ ︸
>0

As long as CD > 0, i.e. the firm has to make positive coupon payments, the above expression
will always hold. However, Assumption 5 implies that CD > 0.
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12.8 Proofs for Section 8

Proposition 20. Assume that a firm issues RCD2s and contingent convertible bondholders
can temporarily lower the firm’s value to an arbitrary Vmanip with VC ≥ Vmanip > VB. If the
equity value without CoCo bonds is sufficiently high, i.e. EQdebt(Vt) > CCB(Vt), they will
always manipulate the market for any ` ∈ (0,∞).

Proof. By lowering the firm’s value process to Vmanip the contingent convertible bondholder
enforce conversion and will receive equity with the market value min{`PC , EQ(Vmanip)}. The
total equity EQ(V ) = EQdebt(V ) is a continuous and strictly monotonic function for V ∈
(VB, VC). Hence for any given ` there exists a Vmanip such that `PC > EQ(Vmanip). Hence,
by manipulating the market the contingent convertible bondholders can always completely
dilute out the old shareholders and take control over the firm. We know that before conversion
EQold(Vt) > 0. This is equivalent to EQdebt(Vt) + TBC(Vt) > CCB(Vt). If the tax benefits
are sufficiently low, the equity value after manipulation EQ(Vt) = EQdebt(Vt), which is then
owned only by the contingent convertible bondholders, is larger than the bondholder’s value
without manipulation CCB(Vt). In this case, manipulation is profitable.

Proposition 21. Assume that a firm has issued straight debt and RCD1s. For Vt ≤ V0 and
` = 1, equity holders will not manipulate the market to trigger conversion.

Proof. At time 0, the contingent convertible bonds sell at par:

CCB(V0, VC) = PC

Hence, the inequality is satisfied

TBC(V0)︸ ︷︷ ︸
≥0

+PC
EQdebt(V0)

EQdebt(VC)︸ ︷︷ ︸
≥1

≥ PC

As the conversion value is less than the face value, i.e. CONV (Vt, VB, VC) ≤ PC for V0 ≥
Vt ≥ VC , it holds that

CCB(Vt, VB, VC) ≤ PC for V0 ≥ Vt ≥ VC .

Therefore

TBC(Vt) + PC
EQdebt(Vt)

EQdebt(VC)
≥ CCB(Vt, VB, VC).

12.9 Proofs for Section 9
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Theorem 5. The Laplace transform of the default time for a firm, whose payout ratio changes
at conversion, is given by

E
[
e−τρ

]
=c̄1

(
VB
V0

)β̄3,ρ
J(log(VC/V0), β̄3,ρ, log(VC/VB), ρ)

+ c̄2

(
VB
V0

)β̄4,ρ
J(log(VC/V0), β̄4,ρ, log(VC/VB), ρ)

+

(
VB
VC

)η2 η2 − β3,ρ

η2

β4,ρ − η2

β4,ρ − β3,ρ

((
VC
V0

)β3,ρ
−
(
VC
VB

)β4,ρ)
with

c̄1 =
η2 − β̄3,ρ

η2

β̄4,ρ

β̄4,ρ − β̄3,ρ

c̄2 =
β̄4,ρ − η2

η2

β̄3,ρ

β̄4,ρ − β̄3,ρ

and −β̄3,ρ > −β̄4,ρ are the two negative roots of the equation

ψ̄(β) = ρ

with ψ̄ being the Lévy exponent of X̄t = (r − δ2)t + σW ∗t +
∑Nt

i=1 Yi. The functions −β3,ρ >
−β4,ρ are the two negative roots of the equation ψ(β) = ρ, where ψ is the Lévy exponent of

Xt = (r − δ1)t+ σW ∗t +
∑Nt

i=1 Yi The function J is defined as

J(x, θ, y, ρ) =E
[
e−ρτ+θXτ1{τ<∞,−(Xτ−x)<y}

]
The explicit form of J(x, θ, y, ρ) is given in Proposition 8.

Proof.

E
[
e−τρ

]
= E

[
e−τCρe−(τ−τC)ρ

1{τ>τC} + e−τCρ1{τ=τC}

]
= E

[
e−τCρE

[
e−(τ−τC)ρ

1{τ>τC}|XτC , τC

]
+ e−τCρ1{τ=τC}

]
(12.5)

We will first consider the conditional expectation:

E
[
e−(τ−τC)ρ

1{τ>τC}|XτC , τC

]
= E

[
e−τ̄ρ

]
where X̄t is defined as

X̄t = (r − δ2)t+ σW ∗t +

Nt∑
i=1

Yi

and τ̄ = inf
(
t ∈ [0,∞) : X̄t ≤ log(VB/V (τC))

)
. The above equality is true on account of the

Markov property of Xt. Hence,

E
[
e−(τ−τC)ρ|XτC , τC

]
= c̄1

(
VB

V (τC)

)β̄3,ρ
+ c̄2

(
VB

V (τC)

)β̄4,ρ
= c̄1

(
VB
V0

)β̄3,ρ
e−X(τC)β̄3,ρ + c̄2

(
VB
V0

)β̄4,ρ
e−X(τC)β̄4,ρ
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where

c̄1 =
η2 − β̄3,ρ

η2

β̄4,ρ

β̄4,ρ − β̄3,ρ

c̄2 =
β̄4,ρ − η2

η2

β̄3,ρ

β̄4,ρ − β̄3,ρ

and −β̄3,ρ > −β̄4,ρ are the two negative roots of the equation

ψ̄(β) = ρ

with ψ̄ being the Lévy exponent of X̄t. The first expectation in 12.5 equals

E

[
e−τCρ

(
c̄1

(
VB
V0

)β̄3,ρ
e−X(τC)β̄3,ρ + c̄2

(
VB
V0

)β̄4,ρ
e−X(τC)β̄4,ρ

)
1{τ>τC}

]

=E
[
e−τCρ−β̄3,ρX(τC)

1{xC−X(τC)<xC−xB}

]
c̄1

(
VB
V0

)β̄3,ρ
+ E

[
e−τCρ−β̄4,ρX(τC)

1{xC−X(τC)<xC−xB}

]
c̄2

(
VB
V0

)β̄4,ρ
where xC = log(VC/V0) and xB = log(VB/V0). The condition 1{xC−X(τC)<xC−xB} ensures
that the downward jumps are not large enough to trigger conversion and bankruptcy. Now
we can apply Proposition 8 to the two expectations. The second expectation in equation 12.5
equals

E
[
e−τCρ1{τ=τC}

]
= E

[
eτCρ1{xC−X(τC)>xC−xB}

]
= e−η2(xC−xB) η2 − β3,ρ

η2

β4,ρ − η2

β4,ρ − β3,ρ

(
exCβ3,ρ − exCβ4,ρ

)
=

(
VB
VC

)η2 η2 − β3,ρ

η2

β4,ρ − η2

β4,ρ − β3,ρ

((
VC
V0

)β3,ρ
−
(
VC
V0

)β4,ρ)

where we have applied equation 12.4 in the second line.

Theorem 6. The default time for a firm, whose payout ratio changes at conversion, satisfies
the following equality for θ > −η2:

E
[
e−τρ+θXτ1{τ<∞}

]
=d̄1

(
VB
V0

)−θ−β̄3,ρ
J(log(VC/V0),−β̄3,ρ, log(VC/VB), ρ)

+ d̄2

(
VB
V0

)−θ−β̄4,ρ
J(log(VC/V0),−β̄4,ρ, log(VC/VB), ρ)

+
η2 − β3,ρ

β4,ρ − β3,ρ

β4,ρ + θ

η2 + θ

(
VC
V0

)θ+β3,ρ
+

β4,ρ − η2

β4,ρ − β3,ρ

β3,ρ + θ

η2 + θ

(
VC
V0

)θ+β4,ρ
− J(log(VC/V0), θ, log(VC/VB), ρ)
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where

d̄1 =
η2 − β̄3,ρ

β̄4,ρ − β̄3,ρ

β̄4,ρ + θ

η2 + θ

d̄2 =
β̄4,ρ − η2

β̄4,ρ − β̄3,ρ

β̄3,ρ + θ

η2 + θ

and with the same notation as in Theorem 5 for the rest.

Proof.

E
[
e−τρ+θXτ1{τ<∞}

]
=E

[
e−ρτC+θXτCE

[
e−ρ(τ−τC)+θ(Xτ−XτC )|X(τC), τC

]
1{τ>τC} + e−ρτC+θX(τC)

1{τ=τC}

]
=E

[
e−ρτC+θXτC

(
d̄1

(
VB

V (τC)

)θ+β̄3,ρ
+ d̄2

(
VB

V (τC)

)θ+β̄4,ρ)
1{τ<∞,τ>τC} + e−ρτC+θX(τC)

1{τ<∞,τ=τC}

]

=E

[(
e−ρτC−β̄3,ρX(τC)d̄1

(
VB
V0

)−θ−β̄3,ρ
+ e−ρτC−β̄4,ρX(τC)d̄2

(
VB
V0

)−θ−β̄4,ρ)
1{τ<∞,τ>τC}

]
+ E

[
e−ρτC+θX(τC)

1{τ<∞,τ=τC}

]
The first expectation can be calculated using Proposition 8. The second expectation equals

E
[
e−ρτC+θX(τC)

1{τC<∞,τ=τC}

]
= E

[
e−ρτC+θX(τC)

1{τC<∞,−(X(τC)−xC)≥xC−xB}

]
= E

[
e−ρτC+θX(τC)

1{τC<∞}

]
− E

[
e−ρτC+θX(τC)

1{−(X(τC)−xC)<xC−xB}

]
which can also be calculated using Proposition 8.

12.10 Proofs for Section 10

Proposition 24. Assume that cD < cC . If V ∗B(c∗) ≥ VC , then the optimal debt choice
{PD, PC} is the combination of PD and PC that satisfies

PD + PC = P̃ (c∗) and c∗(PD + PC) = PDcD + PCcC

If V ∗B(c∗) < VC , then the optimal debt choice {PD, PC} is the highest amount of PC such that
two conditions are satisfied: 1. V ∗∗B (PD, PC) = VC and 2. Assumption 3 is violated.

Proof. If V ∗B(c∗) ≥ VC , then V ∗B(c∗) is feasible. Hence, the firm will choose a combination of
PD and PC which leads to c∗(PD+PC) = PDcD+PCcC . However, because of the commitment
problem, VB = V ∗B(c∗) < VC is not a feasible solution. By the strict concavity of Gdebt(P̃ )
we conclude, that the optimal default barrier will be VB = VC . Hence, the firm will choose
{PD, PC} such that V ∗∗B = VC . As long as VB = VC the total value of the firm is a strictly
increasing function in PD and PC . The firm solves the following problem:

max
PD,PC

V + TBD(VC) + TBC(VC)−BC(VC)
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Therefore, the firm choses the highest values for PD and PC such that V ∗∗B (PD, PC) = VC . As
cD < cC the marginal increase in tax benefits for contingent convertible debt is higher than
for straight debt. Hence, the optimal debt choice {PD, PC} is the highest amount of PC such
that V ∗∗B (PD, PC) = VC under the constraint that Assumption 3 is not satisfied.

Lemma 15. The maximal total tax benefits under the CCB regulation scheme are lower than
the maximal tax benefits under no regulation.

Proof. The total value of the firm for debt PD and no CCBs is Gdebt(PD). By assumption

Gdebt(P
∗
D) = V + TBD(P ∗D)−BC(P ∗D)

= Gdebt(ρi) + TBC(φCi )

which is equivalent to

BC(P ∗D)−BC(ρi) = TBD(P ∗D)− TBD(ρi)− TBC(φCi ).

As P ∗D ≥ ρi, and the default barrier is strictly increasing in the amount of debt, it holds that
BC(P ∗D) > BC(ρi), which yields

TBD(P ∗D) > TBD(ρi) + TBC(φCi ).

Lemma 16. The maximal possible total leverage under the CCB regulation scheme is higher
than the maximal possible total leverage under a pure capital requirement regulation scheme,
if Assumption 7 is satisfied.

Proof. The total leverage with the CCB regulation scheme is

TL1 =
ρi + φCi

GD(ρi) + TBC(φCi )
.

The total leverage for the regulation without contingent convertible bonds equals

TL2 =
ρi

GD(ρi)
.

Obviously, we have ρi
GD(ρi)

< 1. By Assumption 7 it holds
φCi

TBC(φCi )
> 1. Hence, we conclude

φCi
TBC(φCi )

> ρi
GD(ρi)

. This is equivalent to TL1 > TL2 as the following chain of equivalent
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statements shows.

ρi + φCi
GD(ρi) + TBC(φCi )

>
ρi

GD(ρi)
⇔

ρi
GD(ρi)

GD(ρi)

GD(ρi) + TBC(φCi )
+

φCi
GD(ρi) + TBC(φCi )

>
ρi

GD(ρi)
⇔

ρi
GD(ρi)

(
GD(ρi)

GD(ρi) + TBC(φCi )
− 1

)
+

φCi
GD(ρi) + TBC(φCi )

> 0 ⇔

φCi
GD(ρi) + TBC(φCi )

GD(ρi) + TBC(φCi )

TBC(φCi )
>

ρi
GD(ρi)

⇔

φCi
TBC(φCi )

>
ρi

GD(ρi)
.

12.11 Pure Diffusion Case

In the pure diffusion case the value of the firm’s assets which follows a geometric Brownian
motion is given by

dVt = Vt((r − δ)dt+ σdWt).

Thus the process X is simply

Xt =

(
r − δ − 1

2
σ2

)
t+ σWt.

and its Laplace exponent is given by

ψ(z) =
1

2
σ2z2 +

(
r − δ − 1

2
σ2

)
z.

The default time τ is defined as τ = τx = inf(t ≥ 0 : X(t) ≤ x) with x = log(VB/V ) and
τC = τxC = inf(t ≥ 0 : X(t) ≤ xC) with xC = log(VC/V ). The Laplace exponent of τ is
calculated for example in Duffie (2001):

Lemma 17. The Laplace exponent of τx for the pure diffusion process X equals

E
[
e−λτx

]
= eβλx

where βλ =
γ+
√
γ2+2σ2λ

σ2 and γ = r − δ − 1
2σ

2. Note that −βλ is the negative root of the
equation ψ(z) = λ.

The evaluation of the straight debt is presented in Leland (1994b):
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Proposition 30. The value of the debt equals

D = D(V, VB) =
CD +mPD
r +m

(
1−

(
VB
V

)βr+m)
+ (1− α)VB

(
VB
V

)βr+m
while the total value of the firm is

Gdebt(V, VB) = V +
c̄CD
r

(
1−

(
VB
V

)βr)
− αVB

(
VB
V

)βr
.

The law of the first passage time equals:

P(τ ≤ t) = Φ(h1) + exp

(
2µx

σ2

)
Φ(h2),

where h1 = x−γt
σ
√
t

, h2 = x+γt

σ
√
t

and x = log(VBV0 ). Finally, the optimal barrier level is:

V ∗B =
CD+mPD
r+m βr+m − c̄CD

r βr

1 + αβr + (1− α)βr+m
.

12.11.1 RCDs in a Pure Diffusion Model

The distinction between RCD1s and RCD2s was due to the possibility of jumps. In a pure
diffusion model both contracts coincide. Here we require that Assumption 2 is satisfied, i.e.
we consider only contracts where the value of the equity after conversion is sufficient to make
the promised payment.

Proposition 31. In a pure diffusion model the two contracts RCD1 and RCD2 are identical.
The price of the CCBs is given by

CB(V, VC) =

(
cCPC +mPC

m+ r

)
+ PC

(
(m+ r)`− cC −m

m+ r

)(
VC
V

)βm+r

.

The price of RCDs is completely independent of any features of the straight debt.

Proof. First note that VτC = VC and hence EQ(VτC ) = EQ(VC).

CB(V, VC) =
cPC +mPC
m+ r

E
[
1− e−(m+r)τC

]
+ `PCE

[
e−(m+r)τC

]
=
cPC +mPC
m+ r

+ PC

(
(m+ r)`− c−m

m+ r

)
E
[
e−(m+r)τC

]
.

Lemma 18. The limit for m→ 0 corresponds to the case where only consol bonds are issued.
The price of RCDs simplifies to

CB(V, VC) =
cCPC
r

+ PC

(
r`− cC

r

)(
VC
V

)βr
.

Remark 1. Albul, Jaffee and Tchistyi’s (2010) model is the special case for m→ 0.
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12.11.2 FSCCBs in a Pure Diffusion Model

Proposition 32. The price of FSCCBs in a pure diffusion model equals

CB(V, VB, VC) =
cCPC +mPC

m+ r

(
1−

(
VC
V

)βm+r
)

+
n′

n+ n′
EQdebt(VC)

(
VC
V

)βm+r

where

EQdebt(VC) =VC +
c̄CD
r

(
1−

(
VB
VC

)βr)
− αVB

(
VB
VC

)βr
− CD +mPD

r +m

(
1−

(
VB
VC

)βr+m)
+ (1− α)VB

(
VB
VC

)βr+m
.

Proof. First note that VτC = VC and hence EQ(VτC ) = EQ(VC).

CB(V, VB, VC) =
cCPC +mPC

m+ r

(
1− E

[
e−(m+r)τC

])
+

n′

n+ n′
EQdebt(VC)E

[
e−(m+r)τC

]
.

In contrast to RCDs the price of FSCCBs explicitly depends on VB and thus on the features
of the straight debt.

Lemma 19. For m → 0 we obtain the special case of consol bonds. The pricing formula
simplifies to

CB(V, VB, VC) =
cCPC
r

(
1−

(
VC
V

)βr)
+

n′

n+ n′
EQdebt(VC)

(
VC
V

)βr
where

EQdebt(V, VB, VC) = V +
c̄CD
r

+
c̄CD
r
− c̄CD + c̄CC + r`PC − cCPC

r

(
VC
V

)βr
.
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