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Meta-analysis of epigenome-wide association studies in 
newborns and children show widespread sex differences in 
blood DNA methylation

A full list of authors and affiliations appears at the end of the article.

Abstract

Background: Among children, sex-specific differences in disease prevalence, age of onset, 

and susceptibility have been observed in health conditions including asthma, immune response, 

metabolic health, some pediatric and adult cancers, and psychiatric disorders. Epigenetic 

modifications such as DNA methylation may play a role in the sexual differences observed in 

diseases and other physiological traits.

Methods: We performed a meta-analysis of the association of sex and cord blood DNA 

methylation at over 450,000 CpG sites in 8,438 newborns from 17 cohorts participating in the 

Pregnancy And Childhood Epigenetics (PACE) Consortium. We also examined associations of 

child sex with DNA methylation in older children ages 5.5 to 10 years from 8 cohorts (n=4,268).

Results: In newborn blood, sex was associated at Bonferroni level significance with differences 

in DNA methylation at 46,979 autosomal CpG sites (p<1.3 x 10-7) after adjusting for white blood 

cell proportions and batch. Most of those sites had lower methylation levels in males than in 

females. Of the differentially methylated CpG sites identified in newborn blood, 68% (31,727) met 

look-up level significance (p<1.1 x 10-6) in older children and had methylation differences in the 

same direction.

Conclusions: This is a large-scale meta-analysis examining sex differences in DNA methylation 

in newborns and older children. Expanding upon previous studies, we replicated previous findings 

and identified additional autosomal sites with sex-specific differences in DNA methylation. 

Differentially methylated sites were enriched in genes involved in cancer, psychiatric disorders, 

and cardiovascular phenotypes.
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1. Introduction

There is a growing body of literature demonstrating that the in utero environment can impact 

health later in life [1–5]. DNA methylation is a commonly studied epigenetic mark that 
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can influence gene expression without change in DNA sequence and is one mechanism 

through which early-life exposures might contribute to the developmental origins of disease 

[6]. Exposures to chemicals during pregnancy such as those found in tobacco smoke 

and air pollution, as well as perinatal characteristics such as birth weight and gestational 

age, have been associated with differences in umbilical cord blood DNA methylation [7–

11]. Furthermore, site-specific differential methylation of cord blood DNA has also been 

associated with later-life health outcomes including asthma and insulin sensitivity [12–14].

In addition to exposures and health outcomes, inter-individual differences in DNA 

methylation levels are also impacted by sex. Among females, DNA methylation plays an 

important role in X-chromosome inactivation [15]. Prior studies have shown sex to be 

associated with DNA methylation measured in blood at birth (umbilical cord blood), [16–

20] in older children [19,21,22], and in adults [21,23–26] as well as in placenta [20,27,28]. 

As expected, there are widespread differences in DNA methylation levels between sexes at 

X chromosome CpG sites; however, these studies also reported significant differences in 

methylation of autosomes [18,21]. Furthermore, autosomal sites differentially methylated 

between sexes were enriched in genes involved in pathways related to RNA splicing, DNA 

repair, the nervous system and behavior [18,21]. Most prior studies have been limited in 

sample size, with fewer than 200 subjects. It is likely that a much larger meta-analysis would 

improve power to identify CpG sites with smaller DNA methylation differences between 

males and females at birth, a critical developmental period. Significant sex differences in 

disease prevalence, age of onset, and susceptibility across the life course have been observed 

for various conditions such as asthma and allergies, immune response, metabolic health, 

some pediatric and adult cancers, and psychiatric disorders [29–35]. Therefore, identifying 

the differences in DNA methylation between males and females may highlight the genes 

that play an active role in the biological mechanisms involved in sex-dependent differences 

impacting health.

We performed a meta-analysis of associations between sex and DNA methylation in 

newborn blood samples and conducted a follow-up meta-analysis in blood from older 

children in multiple cohorts. We also investigated enrichment of sex-associated differential 

methylation in specific biological pathways and diseases.

2. Material and methods

2.1 Participating cohorts

PACE consists of over 40 international birth and child cohorts with a goal of performing 

coordinated Epigenome Wide Association Studies (EWAS) followed by meta-analysis to 

understand relationships between methylation and both exposures and child health outcomes 

[36]. Twenty-one independent cohorts contributed data to this study. We included 8,438 

newborns from 17 cohorts in the analysis of newborn blood DNA methylation and sex 

(ALSPAC, CHAMACOS, CHS, EARLI, EXPOsOMICS, GECKO, Gen3G, Generation R, 

GOYA, INMA, IOW F2, MoBa1, MoBa2, MoBa3, NEST, PREDO, Viva). For the child 

methylation analysis, we included 4,268 children from eight cohorts (ALSPAC, BAMSE, 

CHAMACOS, CHOP, Generation R, HELIX, IOW F1, Viva). Detailed methods on the 

individual cohorts participating in the cord blood and child analyses are provided in the 
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supplementary methods. All cohorts obtained written informed consent from participants 

prior to data collection which was approved by local ethics committees.

2.2 Methylation Measurement and Quality Control

DNA methylation was measured using the Illumina Infinium HumanMethylation450 

BeadChip [37] in all but one study (child blood samples from the IOWF1 cohort) that 

used the Illumina Infinium Methylation EPIC BeadChip. DNA from newborn or child 

blood samples underwent bisulfite conversion using the EZ-96 DNA Methylation kit 

(Zymo Research Corporation, Irvine, USA). Methylation quality control and normalization 

was conducted at the cohort level, as described in the supplementary material. β-values 

representing proportion of methylation at each CpG site (ranging from 0 = completely 

unmethylated to 1 = completely methylated) were used as the methylation outcome. In order 

to minimize the influence of outlier methylation values, β-values more extreme than 3 times 

the interquartile range below the 25th percentile or above the 75th percentile were removed 

prior to all cohort analyses.

2.3 Sex descriptive

As part of quality control, each cohort checked for sex-mismatches using the getSex 
function in the R package minfi [38] and sex mismatches were removed prior to individual 

cohort analyses. The number of participants for each cohort excludes sex mismatches.

2.4 Cohort Specific Statistical Analyses

Each cohort performed independent EWAS according to a common analysis plan. Each 

cohort used recorded child sex with females as the reference group. Each study used batch 

covariates most appropriate for their cohort (e.g. principal components or plate number) or 

a method such as ComBat [39]. Cell composition was estimated using estimateCellCounts 

in the minfi R package [38]. For cord blood analyses, the ‘CordBlood’ reference data set 

[40] was used to estimate proportions of seven cell types (CD8+ T-cells, CD4+ T-cells, NK 

cells, B-cells, monocytes, granulocytes, and nucleated red blood cells), while older child 

models used the ‘Blood’ reference data set [41] which estimates proportions of six cell types 

(CD8+ T-cells, CD4+ T-cells, NK cells, B-cells, monocytes, and granulocytes). Cohorts 

were also given the option to adjust for genetic ancestry in their models, and this information 

is included in cohort specific methods.

Models were run using M-type multiple robust linear regression [rlm( ) in the MASS 
R package] [42] to control for potential heteroscedasticity and influential outliers in the 

methylation data. In the primary cord blood analysis, the exposure was sex with the outcome 

of newborn methylation β-values, adjusting for seven estimated cell counts and batch 

covariates. In the primary older child models, the exposure was sex with the outcome of 

child methylation β-values, adjusting for six estimated cell counts, age of the child at blood 

draw, and batch covariates.

2.5 Meta-analysis

All cohorts submitted the results of their cohort level EWAS to the Children’s 

Environmental Health Laboratory (N. Holland-PI) at the University of California, Berkeley, 
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USA. We then performed a fixed effects meta-analysis weighted by the inverse of the 

variance—using the software METAL [43]—for the main model, which adjusted for seven 

cell-type proportions and batch. Shadow meta-analyses were conducted independently by 

L. Küpers at the University of Bristol, UK to verify results. All further analyses were 

conducted in R version 3.5.2 [44]. Since all but one study utilized the 450K BeadChip array 

(child blood samples from the IOWF1 cohort use the EPIC BeadChip) only probes present 

on the 450K BeadChip array were included in the analysis. We excluded SNP control probes 

(n = 65). The majority of cohorts included probes mapping to the X and Y chromosomes; 

however, some cohorts were only able to provide results for autosomal probes leaving a 

total sample size of N = 8,438 for autosomes, and N = 5,213 for subjects with data for sex 

chromosomes. Filtering of previously identified cross-reactive probes [45] was performed 

during processing of meta-analysis results. For autosomal probes, this left a total of 390,810 

CpG sites measured for association with sex at birth in the meta-analysis.

We adjusted for multiple hypothesis testing using the stringent Bonferroni method, and 

considered CpG sites with Bonferroni adjusted p-values < 0.05 significant (e.g. 1.3 x 10-7 

for 390,810 tests for autosomes in newborns and 1.1x10-6 for 46,979 tests for lookup 

level correction in children). Summary statistics from the genome-wide DNA methylation 

meta-analysis are available at figshare (10.6084/m9.figshare.14228927).

To distinguish the relative contribution of these two explanations, we used one cohort 

(GOYA) as a reference in which to identify a group of CpGs with no true biological signal 

(P > 0.2) and recalculated λ values for this subset of CpGs in the other cohorts.

2.6 Enrichment Analyses

Before enrichment analysis was performed, CpG sites were annotated to nearby genes 

using the IlluminaHumanMethylation450kanno.ilmn12.hg19 package. We defined I2>50% 

as reflective of a high level of between-study heterogeneity [46] and restricted enrichment 

analysis to those CpGs with I2≤ 50%, which included 17,243 CpGs (in 8,059 genes) for the 

cord blood analysis and 10,436 CpGs (in 5,572 genes) for the older child analysis.

Using these genes, we performed enrichment analyses at two different levels: pathways and 

diseases. Detection of KEGG pathway database [47] over-representation against a universal 

Homo Sapien background was assessed by hypergeometric tests [48] using the gometh() 

function in the package missMethyl [49]. This function, which was designed specifically 

for gene set enrichment analysis of methylation data, minimizes bias due to the uneven 

distribution of probes in the Illumina 450K and EPIC BeadChip arrays. Hypergeometric 

over-representation was also performed against the DisGeNET [50] curated repository of 

gene-disease associations using the enrichDGN() function in the DOSE package [51]. A 

Bonferroni corrected cutoff of 0.05 was used for significance of pathways and diseases (e.g. 

1.52 x 10-4 for 322 tests for pathways and 4.16 x 10-6 for 3,779 tests for diseases).
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3. Results

3.1 Newborns

Results from 17 independent cohorts from the Pregnancy And Childhood Epigenetics 

(PACE) Consortium were included in the newborn meta-analysis (N=8,438). Newborn 

cohort sizes ranged from 53 to 1,319 participants. There was an even distribution of males 

(51%) and females (49%). Two cohorts, NEST and EARLI, performed separate models for 

European and non-European participants, resulting in two additional datasets (N=19 datasets 

total). The majority of datasets were made up of participants of European ancestry (N=15 

datasets, N=7,576 participants). Other datasets included Hispanic, Mexican-American, 

African-American, and mixed ethnicities. A summary of the participating newborn cohorts 

and datasets is included in Table 1.

The results of the individual cohort level newborn models are summarized in Supplemental 

Table 1. As expected, nearly all CpG sites (N=9,618, 99.8%) on the X chromosome were 

significantly differentially methylated between males and females. The average effect size 

(absolute value) expressed as a methylation beta value for differentially methylated CpG 

sites on the X chromosome was 0.18 (equals 18% methylation). In autosomes, there were 

a total of 46,979 Bonferroni significant sex-associated CpG sites out of a total of 390,810 

autosomal CpG sites. The lambda (λ) value, a measure of p-value inflation, for the meta-

analysis in autosomes only was 4.87. For cohort specific analyses, λ ranged from 1.18 to 

2.67 with a sample-size weighted average of 1.91 for autosome only data. All Bonferroni 

significant CpGs for autosomes are presented in Supplemental Table 2.

The plot in Figure 1a shows sites in autosomes with lower methylation in males below 

the null line and sites with higher methylation in males above the null line. Differentially 

methylated CpGs were observed across all autosomes. The majority (67%) of sex-associated 

sites on autosomes had lower methylation in males than females (Figure 2). The CpG-

specific differences in methylation levels between males and females were generally small 

with a median (interquartile range, IQR) difference in methylation of 0.62% (0.61%) for 

positive differences and 0.88% (1.1%) for negative differences (Figure 2a).

Among the top Bonferroni significant sites with effect sizes greater than 0.05 (absolute 

value) listed in Supplemental Table 2, cg26921482, which annotated to TBC1D24, had 

the largest effect size with mean methylation 23% lower in newborn males than females. 

Two CpGs also annotated to ZNF696 and had higher methylation in females than males. 

Additionally, some of the most differentially methylated CpGs annotated to lincRNA genes 

(LINC01347 and LINC00346) and a protein coding gene, PPP1R3G.

As expected, CpGs differentially methylated in relation to sex annotated to genes that were 

enriched for several biological processes and diseases. The top 15 KEGG pathways are 

summarized in Figure 3a with results sorted from most to least significant, and size of 

circles representing the number of genes included in that pathway. KEGG pathways fell 

into groups containing cancer, signaling, endocrine, addiction, and longevity. Only four 

enriched pathways of 322 tested were Bonferroni significant, including several signaling 

pathways. Disease enrichment analyses showed 83 significant diseases of the 3,779 tested. 
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Genes to which significant CpG sites were annotated were significantly enriched in mental 

disorders as well as cancer-related outcomes (e.g. ductal carcinoma, neuroendocrine tumors, 

and thyroid neoplasms) and cardiovascular phenotypes (e.g. systemic arterial pressure, 

congenital heart defects, blood pressure) (Figure 4a).

3.2 Children

For the analysis in older children, data from nine independent cohorts were meta-analyzed 

(N = 4,268) (Table 2). Child cohorts ranged from 234 to 1,053 participants with an 

average of 497 participants per cohort and had a similar distribution of males (53%) and 

females (47%). Similar to the newborn participants, the majority of child datasets contained 

participants of European ancestry (N=4,034 from 7 cohorts), with other contributions from a 

Mexican-American cohort. Lambdas for individual autosomal analyses ranged from 1.05 to 

5.59 (Supplemental Table 3).

Among older children, most of the X chromosome sites (9,313) were significant. For 

the autosomes, there were 40,219 Bonferroni significant sites associated with child sex 

(Supplemental Table 4). Like newborns, the majority of significant autosomal CpG sites had 

lower methylation levels in males than in females, which can be seen on the plot in Figure 

1b. The effect size of differential methylation was small and similar to that in newborns with 

a median (IQR) difference in methylation of 0.62% (0.67%) among sites with significant 

positive differences and 0.94% (1.0%) among sites with significant negative differences 

(Figure 2b).

Among the top Bonferroni significant sites with effect sizes greater than 0.05 (absolute 

value), the CpG with the largest effect size (21% lower methylation in males than females) 

was cg12691488, which annotated to a lincRNA gene (LINC01347). Two significantly 

associated CpGs with lower methylation in males than females mapped to FRG1BP and 

three significantly associated CpGs with higher methylation in males than females mapped 

to ZNF696. Several significant CpGs mapped to PPP1R3G and had higher methylation in 

males compared to females.

The top 15 enriched KEGG pathways are summarized in Figure 3b with results sorted from 

lowest to highest p-value, and size of circles representing the number of genes included in 

that pathway. Of the 322 KEGG pathways tested, none were statistically significant after 

adjusting for multiple testing (Figure 3b). The top KEGG pathways predominantly belonged 

to groups associated with signaling, neuronal and endocrine functions. Of the 3,779 diseases 

tested, 35 had Bonferroni-corrected enrichment p-values lower than 0.05. Implicated genes 

are involved in blood pressure, hemorrhage, carcinomas, and mental disorders (Figure 4b).

3.3 Comparison of newborns and older children

There was considerable overlap between significant sites in newborns and children. Of 

the 46,979 CpG significant in newborns, 68% (31,850) met look-up level significance 

(p<1.1 x 10e-6 for 46,979 tests) in the smaller dataset of older children (Supplemental 

Table 5) demonstrating that many of these relationships with sex persisted over time. 

Of these overlapping sites, 99.6% (31,727) show methylation differences in the same 

direction. Additionally, there were 10,229 CpGs that were Bonferroni-significant (genome-
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wide significance, p<1.1 x 10-7) only in the older children, despite the smaller size of this 

dataset (Supplemental Table 6).

4. Discussion

This large-scale epigenome-wide meta-analysis involving multiple cohorts demonstrates 

widespread differences in methylation of autosomes between males and females at birth 

measured in newborn blood and most of these differences persist into later childhood. We 

report over 45,000 of the nearly 400,000 tested CpG sites to be significantly differentially 

methylated with small but consistently observed differences between males and females 

at birth and over 40,000 significant differences in older children with similar effect sizes. 

As expected, in both newborns and children, these differences were enriched in genes 

involved in a range of biological pathways important for development, but there was also 

sex-specific enrichment in cancer pathways and genes implicated in psychiatric disorders 

and cardiovascular phenotypes.

We compared our findings to prior studies investigating cord or peripheral blood methylation 

differences by sex (Supplemental Table 7). Only one prior meta-analysis by McCarthy 

et al. [21] has looked specifically at differential methylation between males and females, 

and this was assessed using the Illumina 27K chip. Although a few cohorts contributed 

cord-blood data, most of the cohorts included in their analysis used adult blood data. This 

study reported 187 significant autosomal CpGs, of which, in our newborn meta-analysis, 

we replicate 167 (90%) at genome-wide significance and same direction of effect and in 

our child meta-analysis, 164 (89%) at genome-wide significance and same direction of 

effect. Another study by Yousefi et al. [18] reported 3,031 CpGs with sex differences in 

cord-blood for a subset of the CHAMACOS population (which also contributed data to 

this meta-analysis). Our newborn meta-analysis replicated 2,762 (91%) of the Yousefi et al. 

significant CpGs with the same direction of effect, and our child meta-analysis replicated 

2,709 (89%) significant CpGs in the same direction of effect. The newborn meta-analysis 

adds 44,107 autosomal CpGs not previously identified in studies focused on methylation 

differences by sex with increased sample size and after adjustment of cord blood cell-type 

heterogeneity. We also report 37,397 new autosomal CpG sites differentially methylated by 

sex in the blood of older children. Although we identified a large number of differentially 

methylated CpGs sites, it should be noted that for many of these sites, the effect sizes were 

quite small.

Interestingly, in both newborns and older children, about two-thirds of the significantly 

differentially methylated sites had lower methylation in males than females. In general, 

greater gene expression is observed with lower methylation when CpG sites are in the 

promoter region. Hypermethylation in females is expected in X chromosome CpG sites due 

to X chromosome inactivation in females; however, we found that differences in methylation 

by sex are not limited to sex-chromosomes and that the higher methylation pattern for 

females is also common outside of sex-chromosomes. Notably, the opposite trend has been 

observed in placenta, where the majority of differentially methylated sites in autosomes had 

higher methylation in males than females [27]. Our finding indicates that there are many 

autosomal CpG sites that are differentially methylated between males and females; however, 
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most conventional EWAS adjust for sex allowing for these differences to be accounted for in 

sex-independent analyses.

The CpG with the largest negative association with newborn sex (lower methylation in males 

compared to females) annotated to TBC1D24, and was also significantly associated with sex 

in older children. TBC1D24 encodes for a protein involved in neuronal development and has 

also been associated with epilepsy and neurological disorders [52,53]; sex differences have 

been observed for both conditions [54,55]. The CpG with the largest positive association 

with child sex (lower methylation in females than males) was LINC01347, and was also 

significantly associated with newborn sex. Another significantly associated CpG site in 

both newborns and children also annotated to a lincRNA, LINC00346. Long intergenic 

noncoding RNAs (lncRNAs) affect gene expression through regulation of chromatin [56]. 

Differences in their expression levels have been associated with neuropsychiatric disorders 

(e.g. schizophrenia), cancers, and coronary artery disease [57–59]. Furthermore, differences 

in lincRNA expression profiles by sex have previously been observed [59,60].

Sex-specific differences have been observed in numerous diseases and studies show 

evidence for an epigenetic role in sexual dimorphism for disease [61]. Diseases with 

observed differences by sex include asthma [62], autoimmune and allergic diseases [32,63], 

cardiovascular diseases [64], and pediatric infectious diseases [31]. Early-life differences 

between males and females also suggests an underlying developmental component, 

especially in newborns who have had fewer lifetime exposures [65]. We report many 

biological pathways and diseases where the genes to which differentially methylated sites 

annotate are enriched in both newborns and children. While some differences are expected 

since the progression of development in females and males is naturally different, other 

differences may be related to disease risk. Some of the most significant disease pathways 

have been previously shown to differ between sexes. Our disease enrichment analysis 

included several psychiatric disorders, and studies have shown that anxiety disorders are 

more common and more severe in women [66]. In concordance with our findings, another 

recent study of differential methylation by sex in cord blood also reported significant 

enrichment of genes related to neurodevelopmental disorders [67]. Autism is diagnosed 

in males more often than females, and there are differences in the features of autism in each 

sex [68]. In children, genes involved in ADHD were significantly enriched for differentially 

methylated CpG sites. ADHD diagnoses are two-fold higher in males than females with 

different behaviors associated with the sexes [69]. A prior study in the CHAMACOS cohort 

also reported methylation differences between males and females in genes involved in 

neurological disorders [18]. Our data suggest that DNA methylation may represent one 

mechanism contributing to the developmental differences between males and females that 

impact sex-dependent differences in health.

We also observed inflated λ values in this meta-analysis, particularly for cohorts with larger 

sample sizes. λ, also referred to as the genomic inflation factor, is a measure of p-value 

inflation where a value > 1 implies some inflation of the observed test statistics. Such 

inflation could be due to the presence of residual confounding or to abundance of true 

biological signal, which is possible given the phenotype of interest and large number of 

associations identified even in autosomes. To distinguish the relative contribution of these 
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two explanations (residual confounding or abundance of true biological signal), we used one 

cohort (GOYA) as a reference in which to identify a group of CpGs with no true biological 

signal (P > 0.2) and recalculated λ values for this subset of CpGs in the other cohorts. 

For all cohorts, newly calculated lambdas were closer to one but still somewhat inflated 

(Supplemental Tables 8 and 9) suggesting that abundance of true signal does contribute to 

but cannot entirely explain the inflated λ values observed.

Our study has several limitations and strengths. Although our study included cohorts of 

multiple ancestries, including European, Hispanic, and African American, most participants 

were of European ancestry. More work involving a larger number of non-European descent 

participants is needed to ensure generalizability of results. Individual cohorts used different 

normalization methods for methylation data; however, prior studies within the PACE 

consortium show little difference in final EWAS results from differently normalized data, 

so we do not expect this to strongly impact the final meta-analysis results [7]. Since this 

study did not assess if the methylation changes are impacting gene expression, we cannot 

confirm if these methylation differences extend to functional changes. These results warrant 

further follow-up to assess if these methylation changes do indeed impact gene expression 

in order to confirm the biological significance of these findings [2,70,71]. Although the 

gometh() function takes into account the bias introduced by the uneven distribution of 

probes in the 450K and EPIC BeadChip arrays in our pathway analyses, the hypergeometric 

over-representation analysis for disease enrichment (enrichDGN) does not. Further, our 

analyses were restricted to cord and peripheral blood. Sex-specific methylation in other 

tissues, such as placenta, may also have implications for disease across the life course.

We report novel findings of autosomal methylation differences between males and females 

using robust statistical models with a large sample size that was well-powered to assess 

small effect sizes. We used a cord blood reference dataset, which includes nucleated red 

blood cells to estimate and adjust for cell-type heterogeneity in newborns [72]. All cohorts 

ensured correct classification of sex prior to analyses using sex chromosome methylation 

data as a quality control measure. We also included analyses of methylation at two distinct 

time-points (newborns and older children) suggesting that methylation differences by sex at 

many of these CpG sites were relatively stable throughout childhood.

In summary, we observed numerous autosomal methylation differences in blood between 

males and females, which is likely to be important for normal sex-specific biological 

development. However, differentially methylated CpG sites were enriched in genes involved 

in diseases and pathways with differential prevalence between sexes. These findings may 

suggest that early life DNA methylation differences represent a potential mechanism 

contributing to regulation of differential disease prevalence by sex.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Plot of meta-analysis EWAS results of differential methylation by sex in (a) newborns 

and (b) children. Sites with higher methylation in males compared to females are plotted 

above the x-axis while those with lower methylation in males compared to females are 

shown below the x-axis. The red lines represent the Bonferroni thresholds for significant 

CpG sites in each direction (higher and lower methylation in males compared to females) 

The grey boxes indicate the chromosome and the plot colors vary between blue and black 

for visual clarity between different chromosomes. The varying widths of the chromosomes 

corresponds to the length of the chromosomes
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Figure 2. 
Volcano plots of meta-analysis EWAS results of differential methylation by sex in (a) 

newborns and (b) children. Absolute effect sizes ranged from 0 to 0.23 (methylation 

β-value). Overall, there were more CpG sites with lower methylation in males compared 

to females.
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Figure 3. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways with enrichment differences 

between males and females in (a) newborn and (b) older children. The size of the circles 

represents the number of differentially methylated genes in a pathway.
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Figure 4. 
Diseases with significant enrichment differences between males and females in (a) newborns 

and (b) older children. Disease enrichment analysis was performed using DisGeNET. The 

size of the circles represent the number of differentially methylated genes in a pathway.
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