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Abstract

We present the beginnings of a model of the human
capacity to learn abstract invariants, such as square. The
model is founded on four primary assumptions, which
we believe to be neurally plausible and generic: Metric
space, Topology, Comparison operations (subtraction,
greater-than/less-than), and Extraction of vertices. The
model successfully learns to discriminate simple planar
quadrilaterals, and generalizes that learning across
variations in viewpoint and modest variations in shape.

Introduction

A hallmark of human information processing is the
ability to detect and respond to abstract invariants. Many of
the most important outputs of visual perception and
cognition involve shape and spatial relations. As the Gestalt
psychologists pointed out early in this century, these are
relational notions. A square, or a melody, is not definable
in terms of any particular elements, but in terms of invariant
relationships.

We not only encode certain characteristic relations, but
we discover new ones with experience. This ability makes
possible high level, sometimes almost magical, expertise. In
chess, the best human player can compete with a computer
system that examines 250 million moves per second,
although plainly we did not evolve to process the specific
relations of shape and arrangement that are important in
chess. Human perceptual learning allows the discovery of
features and relations that make possible efficient
performance in almost every domain of expertise (Gibson,
1969; Goldstone, 1998).

Some key aspects of perceptual learning remain deeply
mysterious. A crucial one might be called the discovery
problem: Expertise in a classification task grows as new
stimulus relationships, often quite abstract, become the basis
of response. How does the visual system discover abstract
invariants, such as squareness, roundness, or parallelism?
By abstract invariant we mean a visual property that, while
computable from, is not definable in the vocabulary of
primitive features from which it is derived. For example, no
logical  concatenation—conjunctive,  disjunctive  or
otherwise—of neural responses in primary visual cortex
(i.e., local visual properties such as edges, vertices or Gabor
components) defines the invariant squareness. Squareness
is both more and less than any finite set of such features. It
is more because some new activation pattern might also
form a square, and it is less because many of the attributes
of any given activation pattern (e.g., its precise location,
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size and orientation) have nothing to do with their
squareness.

Because an abstract invariant is defined less in terms of
the visual primitives that compose it than in terms of the
relations among those primitives, it is a mystery how the
visual system discovers invariants in the outputs of such
primitives. It is possible to build a local feature detector by
systematically combining the outputs of a finite number of
simpler feature detectors (e.g., it is possible to define an
edge detector based on a weighted sum of the outputs of a
finite number of contrast detectors). Learning such a
feature is therefore a relatively simple matter of finding an
algorithm to discover the appropriate "wiring diagram” (i.e.,
weighting terms) from the input (a specific set of contrast
detectors) to the output (the local edge detector). Many
such learning algorithms exist, including supervised
learning algorithms such as back-propagation (Rumelhart,
Hinton & Williams, 1986), as well as numerous
unsupervised learning algorithms. All these algorithms
work precisely because (a) they operate by exploiting
statistical regularities in their inputs (or, in the case of
supervised rules, regularities in the input-output mappings),
and (b) the feature to be learned can be defined in terms of
the more basic features of which it is composed. By
contrast, because squareness does not correspond to any
finite collection of local features, there exists no analogous
wiring diagram that can detect all (and only) instances of
"squareness”. As such, there is no straightforward statistical
basis for learning "squareness” based on the outputs of local
feature detectors.

We assume that an invariant such as "squareness” is not
detected simply by constructing a large (potentially infinite)
number of detectors for specific squares and then summing
their outputs. As the Gestaltists argued against their
structuralist predecessors, we can always devise a new
square of a different size, made by arranging some new
elements, in a new position. It would still be readily
detected as a square. An algorithm geared to learning each
and every possible instance of a square would be unwieldy
to say the least. Humans, by contrast, can learn many
invariants in as little as one exposure and transfer that
learning to new instances.

How can we account for this performance? Although
perceptual learning of abstract relationships is well
documented (e.g., Chase & Simon, 1973; Gibson, 1969; for
an excellent recent review, see Goldstone, 1998), little
modeling has addressed the learning of abstract invariants.
Our aim in the present program of research is to develop
models of invariant detection and learning in visual shape
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perception.
goals.

Here we report initial progress toward those

Mixing Architectures in a Principled Fashion

What appears difficult about the problem of detecting
invariants may depend on one’s starting point. From the
standpoint of symbolic descriptions, squareness does not
seem too formidable. Given a closed figure, its vertex
locations, edge lengths and angle measurements, we can
easily write a mathematical test for squareness. But it
would be unwieldy to have such a routine for every spatial
invariant. Nor is it clear how such static routines could
come to learn new invariants. On the other hand, traditional
connectionist approaches readily support learning, but will
not come to classify (correctly) new squares if their initial
inputs are limited to concrete elements such as local
features.

Toward a Grammar of Form

What initial recodings of concrete inputs could allow
both the extraction of abstract relationships and the learning
of new ones? At the root of our approach is the idea that the
apparent openendedness of the human ability to learn
abstract invariants calls for a system that is formally like a
grammar with recursive rules. Natural languages can
generate an unlimited number of novel sentences based on a
fixed set of words and a recursive rule system for
combining them. The same idea has been applied to object
recognition: Objects may be decomposed into a finite
vocabulary of volumetric primitives and spatial relations
connecting them (e.g., Biederman, 1987; Marr & Nishihara,
1978). It seems plausible that human perceptual learning of
abstract spatial invariants depends on some basic set of
relations and some processes for concatenating them,

In the present work, we pursue this approach in
building a prototype shape network that extracts a small set
of important relations early on and uses them as inputs for
learning to classify simple shapes. We choose as our
domain the names of simple planar quadrilaterals, including
squares, rectangles, parallelograms, trapezoids and
rhombuses. This domain is useful for several reasons.
Most importantly, the labels refer to abstract entities.
Changes in retinal position, scale, and planar orientation
(for the most part) of the constituent elements do not affect
the correct labels. Second, this kind of classification is
arguably natural for humans. Young children readily come
to distinguish and name squares, rectangles and so on, and
generalize naturally across changes in size, position and
orientation. Third, planar shape classification—and the
subtleties of quadrilaterals in particular—hinge on
interesting spatial relations and comparisons. Ultimately,
our aim is to encompass richer domains of shape
description, including 3-d form, but the planar shape
domain is a reasonable choice for confronting the basic
challenges of how encoding and learning might cope with
abstract spatial relations.

A key challenge is to postulate only those steps for
recoding or finding relations that can be justified on
independent grounds. That is, success will not consist of
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finding a special-purpose processor that responds to
squareness, but allowing squareness to emerge naturally
from basic operations that we would expect, on independent
grounds, to be part of visual processing. By implementing
only operations that can be justified independently, we can
begin to develop the fundamental grammar of invariant
processing and ultimately test whether the scope and limits
of what is learnable within that grammar approximate those
of human visual cognition.

Based on a small set of early recodings that make sense
on general grounds, this first shape network can learn
abstract notions—specifically various kinds of quadrilateral
(4-vertex, planar) figures. It also classifies new instances,
such as a square of a size and position not previously seen.

Modeling Assumptions
The vocabulary of a "visual grammar" consists of a

finite set of basic operations corresponding to (presumably
innate) assumptions on the part of the visual system about
the nature of the visual world. For our current purposes, we
assume that the visual system comes into the world
equipped with (at least) the following knowledge/capacities:

I. Metric Space: We assume that neurons in early visual
processing (e.g., retina, LGN, V1) "know" (perhaps
implicitly, in the form of their interconnections) about
metric space: They know that their receptive fields
correspond to finite regions of larger metric space, and they
know (approximately) where in that space their receptive
fields are located. @ We assume that this knowledge
manifests itself in a neuron's (or hypercolumn's) ability to
signal its location independently of any of its other
properties, namely by activating other neurons representing
location (e.g., in Euclidean coordinates) independently of
the nature of whatever visual features happen to reside
there.

II. Adjacency (Topology): Implicit in (I), but deserving
of mention, we assume that neurons in early visual
processing "know about" their adjacency relations (and
possibly other topological relations).  This kind of
knowledge is manifest in the local lateral connectivity
among, for example, neurons in visual area V1.

III. Difference Operations: Third, we assume that,
given pairs of numerical quantities (e.g., coordinates in a
Euclidean space), the nervous system is equipped with
routines for performing various kinds of difference
operations, including subtraction, and evaluating greater-
than and less-than relations.

IV. Vertex Finding: Finally, we assume that early
visual routines can find vertices and other local changes in
contour curvature based on the outputs of basic local edge
computations.

These four assumptions, along with the way they are
embodied and the ways in which they interact, form the
theoretical foundation of the current modeling effort. Our
goal in this paper is to demonstrate that, embodied in an
appropriate architecture, these asumptions are sufficient to
"bootstrap” the learning of abstract invariants such as
“square."




The Shape Network Model

The assumptions are instantiated in a [our-layer
"neural"-style network. Units in the first layer represent the
retinal coordinates of the vertices in an image of a
quadrilateral. We assume that the vertices are detected and
their spatial coordinates registered by an early preprocessing
stage (Assumptions IV and I, above). (We acknowledge
that simply "handing" the model the coordinates of vertices
is a strong simplification. We are currently working to relax
it and equip the model with a more realistic front-end.)
Units in the second layer compute the pair-wise Euclidean
distances between the coordinates coded in the first layer
(Assumptions [ and III). In the current implementation,
each unit represents one distance (e.g., there is one unit for
the distance between vertex 1 and vertex 2, another for
vertices 2 and 3, etc.), and distance is represented as
activation. That is, in Layer 2 layer, distance is rate-coded.
Coordinates are "read into" the model in a fixed order,
starting from some corner on the stimulus, and proceeding
around the figure clockwise.  This convention is a
simplified implementation of our more general assumption
that the system knows which vertices are connected to
which by virtue of an intervening contour (Assumption II,
topological relations). (In the current model, implicit
knowledge of sequential order of vertices in a connected
figure is important, although the particular starting point in
the sequence is not.)

Units in the third layer take their inputs from pairs of
distance units (i and j) in the second layer, and compare the
distances for their equality (Assumption III). Specifically:

1 it mld, ~d |< &
K ={[ml+—d,| otherwise, W

where ¢jj is the activation of equality unit ij, d, and dj are

distances i and j, 6 is a difference threshold that determines
the rate at which e drops off as the absolute difference in
distances increases, and m = max(d;, dj), serves as a scaling
factor. & was set to .02 in the simulations reported here. ejj
takes a value of 1 when d; and dj are within § of being
equal, and falls off toward zero as Id; djl approaches
infinity.

The resulting pairwise distance comparisons serve as
the input to the fourth (output) layer of units, which learn to
classify their inputs as representing various four-sided
geometrical figures (squares, parallelograms, trapezoids,
etc.). The net input to output node ¢ is simply the dot
product:

ni = Zj aj wjj (2)
where aj is the activation of node j in layer 3, and wjj is the
weight on the connection from j to i. The activation of
output node i is given by the logistic function:
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aj=1/(1+e™). (3)
Al the beginning of training, the connections between
the third and fourth (output) layers were initialized to zero.
On each training trial, one four-sided figure was presented
at a time to the network (as detailed below), and layers of
units were updated in sequence (layer 1, then layer 2, etc.)
until a pattern of activation was generated on the fourth
(output) layer. The connections between the third and
fourth layers were modified according to the difference
between the actual activation of output node i (a;) and the
desired output (d;) in response to the training pattern
(Rumelhart et al., 1986):
Awij=naj ( 1-aj)(a; - d;),
where 1 is a learning rate.

4)

Simulations

The present simulations were to designed to test the
model's ability to learn invariants such as square, rectangle,
etc., from a small number of examples (typically one) and to
explore its ability to generalize to new instances that differ
from the training examples in their location, size and
orientation. ~We also explored the model's ability to
generalize across small distortions in the coordinates of a
figure's vertices.

Training

We trained the model to classify six types of
quadrilaterals. They are shown in Figure 1 along with the
coordinates used for training. The model was trained on
one example of each, except for the trapezoid, of which
there were two examples.

We trained the model to perform two types of
classification. Inclusive classifications required the model
to respond to each stimulus with every label that applied to
it (e.g., a square is also a rectangle, a rhombus, etc., so in
this condition, the model was trained to respond with all
these labels given a square as a stimulus). Exclusive
classifications required the model to respond only with the
most specific label corresponding to a stimulus (e.g., a
square would activate only the square unit). The exclusive
classification is arguably the more humanly natural, and
serves as the basis of the majority of the tests reported here.
During training, stimuli were presented one at a time, and
the weights at the output layer were corrected in response to
the model's output, as described above. The weights were
updated "in batch”, after all stimuli had been presented.
Training proceeded until the mean square error of the
model's response at the output layer fell below .01. The
classification tasks were trained separately and stored as
separate matrices of connection weights. The model's
responses to the trained stimuli are shown in the second
column of Table 1 (Training) for the purposes of
comparison with the results of the other simulations. Not
surprisingly, the model learned to classify the patterns on
which it was trained.



Generalization Across Viewpoint

We next tested the model with translated and scaled
version of the stimuli on which it had been trained. Table |
shows the model's responses to scaled, oriented and
distorted versions of the training stimuli using the exclusive
response criteria.

Figure 1. Training Stimuli.

Results were similarly successful in the inclusive
labelling condition: generally, the model correctly assigned
all relevant labels to a given test display.

These results demonstrate that the model treats the
trained figures as invariants, responding equivalently to
them regardless of their location in the visual field, size, or
orientation. This kind of strong invariance with orientation
illustrates a limitation of the current simplified model. To
the human visual system, a square rotated 45 in the picture
plane may be a diamond, not a square (Mach, 1897).

Tolerance for Distortion
Human shape classification includes some tolerance for

distortion, A square with one side slightly too long may

still look squarelike. As asymmetry increases, squareness
decreases and other classifications become more probable.
We do not have quantitative data about human observers’
tolerance for distortion, or whether it varies by task, etc.
Qualitatively speaking, however, we would expect a
plausible model to accept some distortion but not too much
in maintaining a shape response.

In the model, this tolerance is controlled by the
parameter 8, which modulates the magnitude of response
for departures from equality of given length pairs.

Table 2 shows the model's responses with the value of &
used in these simulations (.02). It can be seen that, as would
be expected of human observers, small (2%) distortions that
technically violate squareness are ignored. Larger
deviations do change the response of the model, however.
For example, a 12% lengthening of parallel sides leads the
network to abandon the “square” response and classify the
shape as a rectangle.

=
Shape E ;"3‘) g g
Square 94 96 94 --
Rhomb. 93 97 93 93
Rect. 93 93 91 92, .83
Par. 91 9 92 93
Trap. | 95,95 98 95 91, 452
Qud | 9 91 91 34b
Table 1. Classification Results for Exclusive
Categorization. Classification scores are shown for

transfer tests involving changes in scale, orientation and

proportion. Classification scores were calculated from

shape network outputs as: c/(c+w), where c is the
network's output for the correct response and w is the
network’s highest response for any incorrect response.

Scale changes consisted of a doubling of all lengths.

Orientation was changed by 90 deg from the training

set except for the square, which was rotated 45 deg.

Proportion change displays varied and also included

position and orientation changes.

a The network gave a higher score to parallelogram (.51)
for this display (vertex coordinates: (2,3), (5,6), (9, 8),
(4, 3).)

b The network gave a higher score to parallelogram (.66)
for this display (vertex coordinates: (0,0), (5,2), (7, 0),

(3, 1))
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Vertex Technically Shape Net's
Coord. Correct Shape Highest Resp.
(0.0,0.0)0.0,5.0) QUAD 004 SQu. 94
(5.1,5.1)(5.0,0.0)

(0.0,0.0)(0.0.5.1) RECT. .20 SQu. .80
(5.0,5.1)(5.0,0.0)

(0.0,0.0)(0.0,5.0) QUAD. 043 RHMB. 97
(5.6,5.6)(5.0.0.0)

(0.0.0.0)(0.0.5.4) RECT. 38 RECT. 88
(5.0,5.4)(5.0,0.0)

Table 2. Distortion Tolerance. (See text.)

Discussion

The shape network succeeded in learning to distinguish
squares, rectangles, parallelograms and other quadrilaterals
based on training with one example of each (two examples
of trapezoids). It did so in both inclusive and exclusive
response conditions, generally activating strongly all correct
shape labels in the former condition and limiting its
response to the single most specific (and correct) choice in
the latter condition. The model correctly classified new
instances that had no overlap in coordinates or edge lengths
with the training instances. The basic comparisons built
into the early layers of processing made possible learning of
abstract invariants involving spatial relationships.

Although the model is simplified in a number of
respects and performs a restricted shape classification, it
demonstrates how combining early registration of certain
relations with learning in a neural network might account
for discovery of abstract invariants. The interest of the
approach depends on whether the basic operations in the
model are ad hoc manipulations to perform the task under
study or are likely to be part of a basic inventory of relations
in a visual “grammar.” How plausible are the key
ingredients here?

Finding Vertices. The model assumes the ability to
locate vertices—points of contour slope discontinuity—in
the visual array. This makes sense if the human visual
system readily encodes such points and if they are required
for a variety of tasks in visual processing. For vertices, this
appears to be the case. The mere fact that these points have
many names in the literature (e.g., vertices, tangent
discontinuities, key points, etc.) is suggestive. Location of
vertices appears to be required for many middle and high-
level visual processes, such as contour interpolation
(Shipley & Kellman, 1990) and object recognition (Hummel
& Biederman, 1992). Even so, we do not yet have a
completely satisfactory model of vertex finding. One goal
of the present research is to develop a suitable method to
extract vertices from luminance maps of natural images.

Distance Computations. The model computes distances
between vertices. In the present work, retinal extents (rather
than real lengths in the physical world) are all that are
required. Evidence from a variety of perceptual tasks,
including studies of size perception and size constancy,
implies that visual space has a metric, and retinal as well as
real extents are routinely measured.
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Distance Comparisons. ~Comparing extents would
seem to be of the essence of form classification, e.g., it
defines the difference between a square and a rectangle.
There is also reason to believe that humans are highly
sensitive to aspect ratios in shape perception.

In short, each of the three kinds of information
extracted by the early stages of the model seems to be not
only a type of information potentially available to visual
processing, but information that is routinely used for a
variety of visual tasks. These are the kinds of information
that are plausibly members of a set of basic inputs from
which higher-level relationships can be constructed. The
model’s shape classification abilities emerged more from
“off-the-shelf” components than from tools specially
engineered for a limited task.

At the same time, there are limitations of the present
model, and some aspects of the results reflect arbitrary
simplifications. Many limitations involve the domain of
shape classification. Additions to the model will be needed
to encompass planar shapes of various numbers of vertices,
and even more elaboration may required to perform
meaningful classification of smooth forms, beginning with
the simple circle, which has no vertices. These challenges
may help reveal more about the grammar of shape.
Attempts to organize the shape domain have a long and
continuing history (e.g., Attneave, 1954; Hochberg &
Brooks, 1960; Leyton, 1993), yet no system of general
utility has emerged. It is possible that further development
of the modeling efforts begun here, combined with research
on the abstract relationships learnable in human shape
classification can help clarify and constrain the grammar of
shape.

Another kind of limitation of the present results
involves learning.  Although we believe the relations
extracted in the early layers of the network are generic and
not contrived, our current model has the good fortune to
include only these several sorts of information. In natural
circumstances, human perceptual learners must discover
which among routinely computed or potentially computable
basic functions will be relevant to a particular classification
task. Suppose our stimulus inputs had included many more
concrete and relational features, and feedback in our task
was supposed to allow the system to converge on the notion
of “square.” At a minimum, many more examples would be
needed by the network to separate the useful invariants from
irrelevant variation. Even more may be needed, however. A
system that registers lengths and colors, for example, and
has comparisons such as equality/difference may have to
learn to compare lengths rather than colors, by sampling
possible comparisons or by applying previously learned
strategies. Even if some comparisons are automatically
computed, as in our simple model, it seems unlikely that all
learnable comparisons are carried out all the time. If, as we
suspect, the most advanced varieties of perceptual learning
involve sensitivity to higher-order relations that are
synthesized from new combinations of basic relations, then
a fundamental problem will be how the search for useful
new combinations is guided.



The model’s current architecture is unrealistic in the
sense that we postulate a separate unit for every vertex-to-
vertex distance (layer 2), and every distance comparison
(layer 3). (The model’s input is similarly unrealistic in the
sense that units are dedicated to particular vertices on the
quadrilateral, rather than vertices at locations in the visual
image.) These representations are spatially multiplexed, in
the sense that identical properties of different entities (e.g.,
different lengths, length comparisons), are represented by
completely separate units in the network. This architectural
convention cannot be expected to scale to represent figures
with arbitrary numbers of vertices. In future incarnations of
the system, we intend to replace this spatial multiplexing
with temporal multiplexing, allowing separate vertex
coordinates, distances, and distance comparisons to be
represented by the same units firing at different times (for
similar ideas, and for a summary of neurophysiological
support for temporal multiplexing in the visual system, see
Hummel & Biederman, 1992, and the references therein).

Our prototype shape network can discover, from
plausible building blocks, the abstract invariants that
determine a simple shape classification. Building on this
foundation, we hope to discover the visual grammar and
computational processes that make possible and constrain
human perceptual learning.
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