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Abstract

Objectives: Mismatch negativity (MMN), an auditory event-related potential sensitive to

deviance detection, is smaller in schizophrenia and psychosis risk. In a multisite study, a

regression approach to account for effects of site and age (12–35 years) was evaluated

alongside the one-year stability of MMN.

Methods: Stability of frequency, duration, and frequency + duration (double) deviant

MMN was assessed in 167 healthy subjects, tested on two occasions, separated by
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U01MH081984, U01MH081944,

U01MH076989 52 weeks, at one of eight sites. Linear regression models predicting MMN with age

and site were validated and used to derive standardized MMN z-scores. Variance

components estimated for MMN amplitude and latency measures were used to

calculate Generalizability (G) coefficients within each site to assess MMN stability.

Trait-like aspects of MMN were captured by averaging across occasions and corre-

lated with subject traits.

Results: Age and site accounted for less than 7% of MMN variance. G-coefficients

calculated at electrode Fz were stable (G = 0.63) across deviants and sites for ampli-

tude measured in a fixed window, but not for latency (G = 0.37). Frequency deviant

MMN z-scores averaged across tests negatively correlated with averaged global

assessment of functioning.

Conclusion: MMN amplitude is stable and can be standardized to facilitate longitudi-

nal multisite studies of patients and clinical features.

K E YWORD S

event-related potential (ERP), generalizability, mismatch negativity (MMN), stability,

standardization

1 | INTRODUCTION

Mismatch negativity (MMN) is an auditory event-related potential

(ERP) component that is automatically evoked by an infrequently

occurring “deviant” auditory stimulus that differs in duration, pitch, or

another physical feature from a series of repeated preceding “stan-

dard” stimuli. MMN can be measured using either electroencephalog-

raphy (EEG) or magnetoencephalography. It is believed to reflect

sensory echoic memory, as detecting auditory deviance requires

online formation and maintenance of a memory trace of immediately

preceding standard stimuli. Because of its robust sensitivity to the

pathophysiology of schizophrenia (Avissar et al., 2018; Erickson, Ruf-

fle, & Gold, 2016), and its ability to predict conversion to a psychotic

disorder in clinical high-risk (CHR) individuals (Bodatsch et al., 2011;

Perez et al., 2014; Shaikh et al., 2012), MMN has great potential as an

ERP biomarker in schizophrenia research, leading to its inclusion in

the multisite North American Prodrome Longitudinal Study [NAPLS

Addington et al. (2012)]. Accordingly, the test–retest reliability and

stability of the MMN response over repeat test occasions must be

evaluated to better understand the generalizability of this ERP com-

ponent in multisite, clinical trials or longitudinal studies of psychosis.

The test–retest reliability of the MMN response has been the

focus of several studies because of its potential clinical utility

[see Naatanen (2003)] for a review), but reliability was assessed with

Pearson (Kathmann, Frodl-Bauch, & Hegerl, 1999; Kujala, Kallio,

Tervaniemi, & Naatanen, 2001; Pekkonen, Rinne, & Naatanen, 1995;

Schroger, Giard, & Wolff, 2000; Tervaniemi et al., 1999; Uwer & von

Suchodoletz, 2000) or Spearman (Deouell & Bentin, 1998; Schall,

Catts, Karayanidis, & Ward, 1999) correlation coefficients in many of

these studies. Alternatively, a measure that better captures agreement

in responses from one test occasion to the next is the intraclass

correlation (ICC) coefficient (Shrout & Fleiss, 1979). ICCs have

been calculated in some MMN studies (Biagianti et al., 2017;

Chen, Chan, & Cheng, 2018; Hall et al., 2006; Lew, Gray, &

Poole, 2007; Light et al., 2012; Light & Braff, 2005; McCleery

et al., 2019; Recasens & Uhlhaas, 2017). Regardless of what coeffi-

cient type was reported, only three studies (Biagianti et al., 2017;

Light et al., 2012; Light & Braff, 2005) had sufficiently long time-

intervals between tests (at least 6 months) to be considered relevant

to MMN stability.

Given the broad age range (12–35 years) in NAPLS (Addington

et al., 2012), and potential age differences between CHR individuals

who later transition to psychosis and those who do not, such studies

must control for potential confounding effects of normal aging on

MMN responses. One approach to adjust for any normal aging effects

on MMN is to apply a simple linear regression model to the healthy

control (HC) data. The resulting regression equation is used to calcu-

late age-corrected MMN z-scores for all subjects. This is done by sub-

tracting the predicted MMN based on a subject's age from his/her

observed MMN score, and then dividing the result by the standard

error of regression obtained from the HC age-regression model. Such

age-corrected MMN z-scores derived from a HC model have no rela-

tionship with age in the HC sample, but any pathological age effects

in patient or hold-out samples are preserved. The z-scores are readily

interpretable as linear transformations of MMN raw scores, reflecting

the degree of deviation or abnormality, in standard units, from the MMN

expected for a person of a given age in the HC sample. This approach is

not unprecedented, having been implemented previously in MMN

(Biagianti et al., 2017; Perez et al., 2014), other ERP (Hamilton, Roach,

et al., 2019;Hamilton,Woods, et al., 2019;Mathalon et al., 2018;Mathews

et al., 2016; Perez,Woods, et al., 2012; Perez, Ford, et al., 2012), functional

(Fryer et al., 2013; Fryer et al., 2016; Fryer et al., 2018) and structural
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(Heyes et al., 2001; Jernigan, Press, & Hesselink, 1990; Pfefferbaum

et al., 1992)magnetic resonance imaging studies.

In any multisite study design comparing patients and controls,

the effect of laboratory testing site should be carefully considered

(Glover et al., 2012). Despite applying all possible best practices to

minimize site-specific influences on experiments, differences in mean

responses between sites (i.e., fixed effects of site) remain possible due

to real differences in the random samples of participants studied at

each site. Therefore, the site effect should be modeled and, even

when site is not statistically significant, should not be disregarded

based on this criteria alone. Furthermore, it may be of interest to test

secondary/exploratory hypotheses that do not involve the entire

study sample. In such cases, simply including site in the model may

not be sufficient if the subset of participants is too small to accurately

estimate site effects.

In NAPLS, the effect of site can be added as a categorical

covariate in the age model. In this new model, a common age

effect is estimated across all sites such that site effects on either

MMN or age cannot create a spurious relationship between MMN

and age. Moreover, the error from this new model can be used

to calculate site- and age-adjusted MMN z-scores, reflecting the

difference, in standard units, from the MMN expected for a person

of a given age, from a particular site in the HC sample. Such

z-scoring is particularly useful for planned comparisons between

CHR individuals who convert (CHR-C) to a psychotic disorder and

those who do not (CHR-NC) within 24 months of initial NAPLS

baseline assessments because there is no feasible a priori method

to match these subjects on age and/or sample an equal number

from each site.

Accordingly, the goals of this study were to (a) describe a set of

site and age regression models in HCs that will be used to create stan-

dardized, site- and age-adjusted MMN z-scores for all NAPLS sub-

jects, (b) estimate variance components and associated G-coefficients

representing the single site stability of MMN responses measured

with different scoring methods separately at each of the eight NAPLS

sites, and (c) compare such G-coefficients calculated using raw and

z-scored MMN responses. Additional exploratory analyses are

presented to demonstrate the Spearman-Brown prophecy

(Brown, 1910; Spearman, 1910) in practice by averaging across MMN

measured on separate occasions to capture more trait-like aspects of

the MMN and relate it to subject traits.

2 | METHODS

2.1 | Participants

Participants were recruited at each of the eight NAPLS2 sites and

all provided written, informed consent to participate in this IRB-

approved study. EEG data were collected at baseline assessment from

241 HCs, and 167 (~70%) of these HCs completed at least one follow

up EEG assessment. Additional demographic characteristics of these

167 subjects are presented in Table 1.

All HCs had at least one global assessment of functioning (GAF)

as a part of study procedures (Endicott, Spitzer, Fleiss, &

Cohen, 1976; Jones, Thornicroft, Coffey, & Dunn, 1995). The current

GAF score nearest to the baseline EEG date (median time between

GAF and EEG was 22 days, IQR: 7–34.61 days) was saved for correla-

tion analyses. As an additional GAF metric, the mean current GAF

score across all assessments (max = 5, one every 6 months) during the

24 month study period was saved. There were 18 HCs (~11%) who

only had one GAF assessment, making their baseline GAF and mean

GAF scores equivalent.

2.2 | MMN paradigm

All sites used similar hardware and presentation software (www.

neurobs.com) to run the EEG experiment. Auditory stimuli were deliv-

ered via ER1-A Etymotic insert earphones and subjects responded

with a Cedrus RB-830 button box. Auditory stimuli delivery consisted

of 85% standard tones presented for 50 ms at 633 Hz, 5% duration

(DUR) deviants presented for 100 ms at 633 Hz, 5% frequency (FRQ)

deviants presented for 50 ms at 1000 Hz, and 5% double-deviants

TABLE 1 Demographic Information

Site
Subjects Gender Test age Re-test age Education

Days between tests

Number (M, F) (mean ± SD) (mean ± SD) (mean ± SD) Min Median Max

UCLA 21 10, 11 18.15 ± 3.05 19.22 ± 2.98 11.38 ± 3.01 217 380 602

Emory 20 13, 7 21.82 ± 5.03 22.88 ± 5.03 13.6 ± 3.69 145 354 795

Harvard 23 11, 12 18.9 ± 4.56 19.94 ± 4.45 11.26 ± 3.15 77 353 686

Hillside 23 15, 8 17.1 ± 2.73 18.38 ± 2.72 10.78 ± 2.61 270 381 812

UNC 23 14, 9 20.3 ± 2.52 21.3 ± 2.51 13.78 ± 2.28 272 364 462

UCSD 17 13, 4 20.38 ± 6.64 21.24 ± 6.62 12.59 ± 4.05 147 350 400

Calgary 25 9, 16 21.76 ± 5.89 22.79 ± 5.81 13.6 ± 4.53 255 363 729

Yale 15 6, 9 21.51 ± 6.13 22.56 ± 6.08 12.8 ± 4.31 254 370 762

TOTAL 167 91, 76 19.91 ± 4.89 20.97 ± 4.83 12.46 ± 3.61 77 365 812
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(DBL) presented for 100 ms at 1000 Hz. A total of 1,794 tones were

presented over 3 separate blocks, with each block lasting approxi-

mately 5 minutes. Tones were presented with 5 ms rise and fall times

and a 500 ms stimulus onset asynchrony. In an effort to reduce the

effect of attention on MMN, participants were instructed to ignore

auditory stimuli and focus on a separate distractor task. A visual odd-

ball paradigm was run simultaneously with MMN, where image pre-

sentation was jittered to avoid cooccurring visual oddball and

MMN ERPs.

2.3 | EEG data acquisition

EEG was digitized at 1024 Hz using 32- or 64-channel electrode caps

(Biosemi, Amsterdam, The Netherlands), and the common 32 channels

were used in subsequent steps. Additional electrodes were placed on

the above and below the right eye, on the outer canthus of each eye,

and on the mastoids. An offline average mastoid reference was

initially applied to continuous EEG data prior to all preprocessing.

2.4 | Preprocessing

Mastoid-referenced, continuous EEG recordings were high-pass filtered

at 1 Hz prior to segmentation into 1,000 ms epochs (−500 to 500 ms).

Blinks and eye movement artifacts were recorded by electrodes placed

around the eyes and were subtracted from single trials using regression

(Gratton, Coles, & Donchin, 1983). Following baseline correction (−50 to

0 ms), outlier electrodes were interpolated within single trial epochs

based on previously established criteria (Nolan, Whelan, & Reilly, 2010).

A spherical spline interpolation (Delorme & Makeig, 2004) was applied to

any channel that was determined to be a statistical outlier (|z| > 3) on

one or more of four parameters, including variance to detect additive

noise, median gradient to detect high-frequency activity, amplitude range

to detect pop-offs, and deviation of the mean amplitude from the com-

mon average to detect electrical drift. Epochs were rejected, if they con-

tained amplitudes greater than ±100 μV in any of these electrodes: AF3,

AF4, F3, Fz, F4, FC1, FC2, FC5, FC6, C3, Cz, C4.

2.5 | ERP averaging and MMN measurement

ERP averages for all stimulus types were determined using a sorted

averaging method, which has been shown to reduce noise in the

MMN waveform by averaging over the subset of trials that optimizes

the estimated signal to noise ratio for each subject (Rahne, von

Specht, & Muhler, 2008). In this study, single-epoch root mean

squared (RMS) amplitude values averaged across the 12 electrodes

used for artifact rejection for each trial are calculated and sorted in

ascending order for each stimulus type. Following averaging, ERPs for

all stimulus types were low-pass filtered at 30 Hz, and then standard

tone ERPs were subtracted from deviant ERPs to obtain difference

waves. MMN peak amplitude was classified as the most negative peak

between 90 and 290 ms in the difference wave. MMN mean ampli-

tude ±10 ms around the peak was also quantified as an alternative

measurement to peak amplitude. Average amplitude in a fixed win-

dow defined based on grand average waveforms (90–170 ms for FRQ

and DBL, 150–230 for DUR) was quantified as a third approach. Peak

latencies were saved for a fourth set of analyses.

2.6 | Common slope linear regression models

When experimental data come from one laboratory site, an ordinary

least squares (OLS) regression model can be applied to MMN

(or other response variable) data using age as a predictor to obtain a

simple linear equation that can be used to predict a subject's MMN

response at a given age. Such an OLS model predicting MMN scores

by age may have the form:

yi = β0 + ai*β0 + ei ð1Þ

In Equation (1), y is the MMN score, a is the age, and e is the

residual (i.e., difference between age-predicted and actual MMN

score) for the ith subject. The model error, or specifically, root-mean-

square error (RMSE), is calculated as:

Healthy Control Design Matrix
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F IGURE 1 A graphical representation of the design matrix used
to predict mismatch negativity (MMN) responses is plotted. The first
eight columns include an intercept term and seven site indicator

variables, where white represents 1 and black 0. These columns
capture fixed effects of site, while the ninth column is the age
covariate, with grayscale age value representing each of the
241 healthy control participants' ages at baseline MMN assessment.
This model is the common slope model where each site may have a
different y-intercept, but a common age relationship estimated using
data from all subjects and sites
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RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i
ei2ð Þ
n

vuuut
ð2Þ

The RMSE summarizes the model's error across all subjects, and it

can be used to calculate an age-corrected MMN z-score:

zi =
ei

RMSE
ð3Þ

In the multisite setting, one must consider laboratory site as

between subjects, categorical variable. This increases the OLS model

design matrix from two (intercept + age) to nine columns in NAPLS.

The additional seven columns are indicator variables that capture site

F IGURE 2 Site- and session-specific grand average mismatch negativity (MMN) deviant minus standard tone difference waveforms are
plotted for the Double (Frequency plus Duration) Deviant (Top), Frequency Deviant (Middle), and Duration Deviant (Bottom) from electrode
Fz. Grand Average MMN waveforms for each NAPLS laboratory site are plotted separately on the left-hand side for the first (1) and second
(2) test occasion. All 16 of these average waveforms are overlaid for each deviant type on the right-hand side. Time, in milliseconds (ms) from
tone onset is plotted on the x-axis, and amplitude, in microVolts (μV), is plotted on the y-axis
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membership (i.e., 1 if a subject is from that site, 0 otherwise), and only

seven indicator variables are needed to encode eight sites. The

corresponding design matrix for all 241 HCs included in the baseline

analysis is plotted in Figure 1.

This same design matrix is applied to all response variables (MMN

amplitude, latency, etc.), and the resulting parameter estimates are

used to obtain expected responses for a particular subject given sub-

ject age and site. The difference between a given subject's actual

value and that predicted value, divided by the RMSE [Equation (2)] of

the model yields an age- and site-corrected z-score, which represents

that subject's deviation, in standardized units, from the expected value

for a subject who is the same age, measured at the same site.

In addition to the standard assumptions of a regression model,

this design assumes (a) the age relationship does not differ between

sites, and (b) there is not a higher order polynomial (e.g., quadratic)

age relationship with the response variable. Both of these assump-

tions can be formally tested by either (a) adding site*age interaction

effects to the model or (b) adding a mean-centered, age-squared term

to the model and checking for a statistically significant improvement

in model fit with the r2 change F-test. In the age-squared case, this is

equivalent to the test of the relationship between the response vari-

able and the age-squared term. In the more complicated site*age

model, heterogeneous age relationships at the sites would lead to an

improved fit. Such F-tests were conducted for all variables (384 total),

and both Akaike and Bayseian-Swartz Information Criteria (AIC and

BIC) were calculated as additional descriptive measures of model

fitness (Sakamoto & Kitagawa, 1987). False discovery rate (FDR)

correction was applied separately to the two sets of F-tests, and

Bonferroni correction was separately applied to families of tests

limited to the electrodes (n = 32) for each measure and deviant type

(p = 0.05/32 = 0.0015625). Finally, the number of uncorrected

(p < .05) significant tests was listed for descriptive purposes.

Follow-up longitudinal MMN data were also z-scored using the

baseline HC model and t- or F-tests were conducted to assess age and

site effects, respectively, as additional measures of model fitness. This

subset of 167 follow up data points could be considered a “hold-out”

data set, and any site or age effects indicate that the z-scoring procedure

suboptimally accounted for linear effects of age and fixed effects of site.

2.7 | Variance components and G-coefficients

The longitudinal HC data were re-purposed as a single facet

(test occasion) G-study design to estimate variance components.

Such a design allows estimation of three variance components for

any response using the data from the participants at a particular

site. The variance components for Person (σ2p ), Occasion (σ2o ), and

Person x Occasion plus Error (σ2po+ e) are estimated separately for each

NAPLS laboratory site, as Site may represent another source of

variance [see Roach et al. (2019)]. Once variance components are

estimated, the G-coefficient, which provides a measure of general-

izability or stability of the measured score in this longitudinal

setup, can be calculated as in Equation (4):

G=
σ2p

σ2p +
σ2po+ e

no

� � ð4Þ

The NAPLS2 study design included EEG assessments at baseline,

12 month, and 24 month study time points. MMN scores from each

session are treated separately, with particular emphasis on using

baseline data to predict conversion to psychosis, meaning the best

choice for no is 1. Therefore, the G-coefficient is equal to the

intraclass correlation (ICC) defined by Shrout and Fleiss (e.g., ICC

(3,1) in (Shrout & Fleiss, 1979)) when no = 1. Variance components

were estimated using a restricted maximum likelihood approach in

Matlab (Witkovský, 2012). Components were estimated separately

and saved for the three deviant types (DBL, FRQ, DUR), 32 elec-

trodes, and four MMN measurements (peak amplitude, mean around

peak, mean in fixed window, and peak latency) for both MMN raw

scores and z-scores.

The goal of a G-study is not to test a specific hypothesis. Thus, there

are no p-values associated with estimated variance components or

TABLE 2 Trial Numbers in ERP averages

Trial type Test Re-test

Standard 1,356.04 ± 108.13 1,329.51 ± 157.72

Double deviant 80.37 ± 7.42 78.43 ± 10.64

Frequency deviant 79.99 ± 7.06 79.28 ± 9.88

Duration deviant 80.26 ± 6.98 78.93 ± 9.93

Note: Mean ± Standard Deviation.

F IGURE 3 Estimated 95% confidence intervals are plotted for

the mean mismatch negativity (MMN) amplitude at 18 years of age.
The double (frequency plus duration; DBL, left), frequency (FRQ,
middle), and duration (DUR, right) deviants are plotted separately
along the x-axis from electrode Fz, and are separated and color-coded
by NAPLS laboratory site. Estimates were derived from a site and age
regression model of MMN amplitude averaged across a fixed window
of either 90–170 ms (for DBL and FRQ) or 150–230 ms (DUR)
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F IGURE 4 Scatterplots depict the relationships between mismatch negativity (MMN) amplitude averaged across a fixed window at electrode
Fz and participant years of age at testing for double (frequency plus duration; DBL, circles), frequency (FRQ, triangles), and duration (DUR,
squares) deviants. Data are plotted separately for each site, and thick lines depict the common age relationship across sites based on regression
models. Thin lines depict site-specific, nonlinear locally weighted predictions of MMN given age (Cleveland, Grosse, & Shyu, 1992), and there is
no higher-order polynomial or other nonlinear pattern of fit that is consistent across sites

ROACH ET AL. 7 of 15



G-coefficients. However, existing guidelines for determining clinical signif-

icance of ICCs suggest that the reliability coefficient can be qualitatively

categorized as follows: ICC < 0.4 is poor, 0.4 ≤ ICC < 0.6 is fair,

0.6 ≤ ICC < 0.75 is good, and 0.75 ≤ ICC < 1 is excellent (Cicchetti &

Sparrow, 1981). Therefore, G-coefficients were categorized using these

4 labels for descriptive purposes, as done previously (Roach et al., 2019).

2.8 | Exploratory correlations between MMN
variables and trait variables

To capture more trait-like aspects of MMN, z-scores from 6 fronto-

central electrodes (F3, Fz, F4, C3, Cz, C4) were averaged across the two

test occasions separately for each deviant type and correlated with mean

GAF or used to explore gender differences in MMN. As one method to

demonstrate the enhanced reliability of averaged MMN z-scores, baseline

MMN z-scores, and baseline GAF scores were also correlated. Similar to

age regression models, site was a categorical covariate and heterogeneity

of MMN-GAF relationships between sites were ruled out by first includ-

ing a site*GAF interaction term, and the r2 change F-test was used to

determine improvement in model fit.

Given the exploratory nature of these correlations, parameter

estimates, uncorrected p-values, as well as FDR-corrected p-values

within this trait family of tests are reported.

3 | RESULTS

MMN ERP waveforms from electrode Fz are plotted in Figure 2. There

is consistency between waveforms at each site and on each test occa-

sion despite the long interval between tests and differences in site

demographics. Descriptive statistics for trial numbers contributing to

individual subject and test occasion ERPs are included in Table 2.

3.1 | Common slope linear regression models

There were two sets of F-tests to assess the appropriateness of

common slope, site, and age regression models. In one set, a mean-

centered age-squared term was added to the model to test for qua-

dratic age relationships with MMN scores. Only 7.8% (30/384) of

these tests showed statistically significant quadratic age relationships

at an uncorrected level (ps < 0.05), none survived electrode-family

Bonferroni-correction (all ps > 0.0015625), and none were significant

after FDR-correction. Comparisons of AIC and BIC between age and

age-squared models indicated that the age-squared model was better

(i.e., smaller AIC or BIC values) for ~25% (95/384) of the models

based on AIC but only 4% (16/384) based on BIC. This indicates that

a quadratic age effect does not systematically improve MMN model-

ing and should be omitted.

In the second set of F-tests, age*site interaction effects were

added to the model to determine if there were site-specific differ-

ences in MMN-age relationships. Only 4% (16/384) of age*site F-tests

showed evidence of uncorrected effects (ps < 0.05), one survived

Bonferroni-correction (p < 0.0015625) and none were significant after

FDR correction. This more complicated model was better than the

simplified model based on AIC in 5.5% (21/384) of the models and

none of the models for BIC. This indicates that the age relationship

did not systematically differ between the sites.

In the common slope models, 33.3% (128/384) of the tests of

age relationships were statistically significant at an uncorrected

level (ps < 0.05), 13% (50/384) survived Bonferroni-correction

(ps < 0.0015625), and 18.5% (71/384) survived FDR correction.
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F IGURE 5 G-coefficients for the single-facet (test occasion)
generalizability substudies calculated separately for each NAPLS
geographic site for electrode Fz based on either raw (top) or
standardized mismatch negativity (MMN) z-scores (bottom).
Measurement approaches are plotted along the x-axis separately for
double-deviant (DBL, circles), frequency-deviant (FRQ, triangles), and
duration-deviant (DUR, squares) mismatch negativity. These include
peak amplitude (“Peak”: most negative peak between 90 and 290 ms
in the MMN difference wave), mean amplitude (“Mean”: ±10 ms
around the peak), average amplitude in a fixed window (“Window”:
90–170 ms for FRQ and DBL, 150–230 for DUR), and peak latency
(“Latency”). Dashed lines indicate qualitative categorization of
G-coefficients based on preexisting standards (Cicchetti &
Sparrow, 1981)

TABLE 3 Frequency of G-coefficients by NAPLS Site

Site Poor Fair Good Excellent Total

UCLA 136 99 117 32 384

Emory 168 192 23 1 384

Harvard 182 119 72 11 384

Hillside 197 135 46 6 384

UNC 169 114 61 40 384

UCSD 141 106 116 21 384

Calgary 130 103 104 47 384

Yale 108 146 77 53 384

TOTAL 1,231 1,014 616 211 3,072
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F IGURE 6 Scatterplots depict the relationships between mismatch negativity (MMN) amplitude averaged across a fixed window at electrode
Fz at first (Time 1, x-axis) and second (Time 2, y-axis) test occasions for double (frequency plus duration; DBL, circles), frequency (FRQ, triangles),
and duration (DUR, squares) deviants. Data are plotted separately for each site, and thick lines depict the site-specific linear relationship between
occasions along with shading to show 95% confidence intervals
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Across all models, site and age accounted for 6.32% of MMN vari-

ance (range: 0.2163–14.2434%), indicating that even for the

strongest site and age effects, at least 85% of the variance in the

MMN raw scores remained in the site- and age-corrected MMN

z-scores. Using these regression models, site-specific mean MMN

amplitude for the window measure from electrode Fz and 95%

confidence intervals (CIs) for an 18 year-old subject were esti-

mated and plotted in Figure 3.

The estimated means and CIs demonstrate that there is overlap

between the FRQ and DUR MMN amplitude across sites, with the

FRQ MMN being smallest at Emory. The DBL MMN estimates are

slightly larger (i.e., more negative MMN amplitudes) than the other

deviants with CIs that are approximately twice as wide as those for

the other deviants. The common age effect is plotted on top of site-

and deviant-specific scatter plots in Figure 4 for electrode Fz.

Tests of age relationships in the z-scored longitudinal follow-up

MMN data indicated that the age effect was removed in this hold-out

subsample, with only ~5% (20/384) statistically significant effects at

an uncorrected level (p < 0.05), consistent with what is expected by

chance. None survived FDR correction. Tests of site effects in these

data indicated ~15% (58/384) were significant at an uncorrected level.

Only 3 site tests of MMN latency measures survived FDR correction.

3.2 | Variance components and G-coefficients

G-coefficients for each electrode, deviant type, measure, and NAPLS

site are included in Table S1 for both raw MMN and z-scores. As can be

seen in Figure 5, the G-coefficients for Fz are fair or better (G ≥ 0.4) in

almost every MMN amplitude measure across NAPLS sites, but the

latency G-coefficients are highly variable and poor in many cases.

Frequencies of poor, fair, good, and excellent reliability categori-

zation of all G-coefficients are presented in Table 3 separated by

NAPLS site. The table demonstrates that the majority (~60%) of

G-coefficients were fair or better, including many (~27%) scores with

excellent generalizability. G-coefficients based on z-scores were

nearly equivalent to those based on raw scores (average difference

in G-coefficients = 0.0044), consistent with relatively small propor-

tions of MMN raw score variance being accounted for by age and

site. Site-specific relationships between mean MMN amplitude in a

fixed window on the first and second test occasions are plotted

along with corresponding deviant-specific scatter plots in Figure 6

for electrode Fz.

3.3 | Exploratory correlations between MMN
variables and trait variables

Parameter estimates along with test statistics for all trait-like MMN

models are presented in Table 4. There were no significant site*GAF

interaction effects for either DBL (F[7,151] = 0.974, p = 0.45) or

FRQ (F[7,151] = 0.867, p = 0.5341) MMN, but there was evidence

of heterogeneous DUR MMN-GAF relationships between sites

(F[7,151] = 2.1644, p = 0.0401, r2 = 0.1185). Scatter plots of the

relationships between each deviant type and mean GAF scores are

plotted separately for each site in Figure 7. The plots show mostly

negative relationships (i.e., greater GAF is associated with more nega-

tive MMN) for FRQ and DBL MMN, but only negative relationships

between DUR MMN and GAF at Emory (t[18] = −2.545, p = 0.0203,

r2 = 0.2647) and UCSD (t[15] = −2.431, p = 0.0281, r2 = 0.2826).

Reduced models for DBL and FRQ MMN revealed negative relation-

ships with GAF (DBL: r2 = 0.0564, FRQ: r2 = 0.0598), controlling for

site, but only the FRQ MMN effect survived FDR correction (Table 4).

Had trait-like aspects of MMN and GAF not been emphasized

through averaging across assessments, neither the time 1 FRQ MMN

(β̂ = −0.011, t(158) = −1.5, p = 0.135, r2 = 0.02) nor the time 1 DBL

MMN (β̂ = −0.001, t(158) = −0.177, p = 0.86, r2 = 0.0072) z-score

relationships with nearest current GAF score would have reached

statistical significance.

In the gender models, there was neither evidence of a site*gender

interaction effect for any deviant type (all ps > 0.487), nor evidence of

a gender difference between males and females in the reduced

models.

4 | DISCUSSION

One goal of this study was to present a site and age modeling strategy

to create regression models to produce standardized site- and age-

adjusted MMN z-scores for all participants and all test occasions in

NAPLS2, and in doing so, demonstrate the utility of such an approach

for large, multisite studies. The main purpose of the generalizability

analyses presented was to quantify variance components and associ-

ated G-coefficients representing the single site, single session stability

of MMN responses measured about 1 year apart. G-coefficients indi-

cated that for both raw MMN and age and site- adjusted z-scores, the

stability of amplitude measures was fair or better and consistent

across the 8 laboratory sites, while the stability of latency measures

TABLE 4 Parameter estimates for
trait-like average MMN exploratory
models

Deviant Term Estimate S.E. t-statistic p-value FDR p-value

DUR Male vs female 0.032 0.146 0.218 0.82745 1.00000

FRQ Male vs female −0.049 0.130 −0.379 0.70534 1.00000

DBL Male vs female 0.097 0.132 0.730 0.46647 1.00000

DUR Mean GAF score −0.011 0.009 −1.196 0.23350

FRQ Mean GAF score −0.021 0.008 −2.679 0.00816 0.04078

DBL Mean GAF score −0.017 0.008 −2.140 0.03386 0.13542
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F IGURE 7 Scatterplots depict the relationships between mean scores for Global Assessment of Functioning (GAF) averaged across all study
time points (x-axis) and standardized z-scores from mismatch negativity (MMN) amplitude averaged across a fixed window averaged across two
test occasions and electrodes F3, Fz, F4, C3, Cz, C4 for double (frequency plus duration; DBL, circles), frequency (FRQ, triangles), and duration
(DUR, squares) deviants (y-axis). Data are plotted separately for each site, and thick lines depict the site-specific linear relationship between mean
MMN along with shading to show 95% confidence intervals. Most sites and deviants show negative relationships, indicating that better mean

GAF scores are associated with larger (i.e., more negative) MMN z-scores
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was inconsistent across sites and poor in many cases. This suggests

that amplitude measures are optimal for longitudinal studies of MMN.

Several alternatives to the z-score approach for removing

site- and age-related confounds in clinical studies are potentially prob-

lematic. One alternative is to ignore site- and age-related variation.

A second approach would be to eliminate subjects from certain sites

in order to match groups on age at each site. In studies of rare out-

come events or patients, which is one of the motivations of a multisite

study like NAPLS, eliminating subjects is disadvantageous. A third

approach is to conduct ANCOVA with site and age as a covariates. The

problem with an age factor in ANCOVA is that MMN-age relationships

are derived from a pooled estimate of aging effects from all of the groups

being compared, including the CHR. On theoretical grounds, it is reason-

able to hypothesize that physiological measures like MMN in the psycho-

sis prodrome may have abnormal age trajectories, reflecting abnormal

brain maturation, and other pathogenic processes operating during the

transition to psychosis or disease-related progressive brain changes

occurring after illness onset (Kiang, Braff, Sprock, & Light, 2009; Light

et al., 2015; Todd et al., 2008). Accordingly, we believe ANCOVA models

are inappropriate because of their potential to remove disease-related

aging effects along with normal aging effects within the study sample.

Two previous studies reported excellent MMN reliability

(Fz ICC > 0.8) using a long duration deviant similar to this study and a

window measurement (135–205 ms) from nose-referenced data

(Light et al., 2012; Light & Braff, 2005). These reliability coefficients

were based on either 10 patients with schizophrenia (Light &

Braff, 2005), 168 patients with schizophrenia, or 58 healthy subjects

(Light et al., 2012), tested twice, at least 1 year apart. While the

corresponding window measure G-coefficients, averaged across all

8 NAPLS sites, was smaller in the present study (raw and z-score

MMN at Fz G = 0.625), the subjects in this study were younger,

healthy participants who may have experienced more true score

change in a 1 year interval than the older schizophrenia patients and

controls in other studies. A similar age group of 28 young, healthy

participants (Biagianti et al., 2017) had good duration deviant peak

amplitude reliability based on two MMN sessions, approximately

6 months apart (Fronto-central 6 electrode average ICC = 0.72), which

is closer to reliability averaged across all NAPLS sites in this study

(raw and z-score peak MMN at Fz G = 0.644) and consistent with the

idea that more true score change occurs in younger subjects. It is also

worth noting that when averaging all 8 NAPLS sites' separately calcu-

lated G-coefficients in our traveling subjects study, where subjects

were tested on two consecutive days at each site, the duration devi-

ant MMN based on the window measure similarly has ~60% of the

relative variance attributed to persons, and 40% attributed to error,

on average [raw MMN at Fz G = 0.6, Roach et al. (2019)]. These esti-

mates are consistent with other MMN reliability studies of healthy

subjects that also reported good reliability using long duration devi-

ants (Fz ICC = 0.66 in Hall et al., (2006)] or frequency deviants

[Cz ICC = 0.6 in Lew et al. (2007)].

The Spearman-Brown prophecy formula indicates that reliability of a

score increases as test length or the number of items averaged to sum-

marize a subject's score increases (Brown, 1910; Spearman, 1910). In the

case of this study, averaging across the two EEG test occasions reduces

the contribution of the error variance component to the calculation of

the G-coefficient in Equation 4. This shifts the average G-coefficient at

Fz for all deviant types from good (G > = .6) to excellent (G > = .75). In

practice, this averaging emphasized the trait-like attributes of the MMN

scores, allowing relationships between averaged GAF scores and FRQ

MMN to emerge. This negative correlation between GAF and MMN has

previously been observed in schizophrenia patients using DUR MMN

(Fulham et al., 2014; Jahshan et al., 2012; Koshiyama et al., 2018; Light &

Braff, 2005). Future studies exploring the relationship between MMN

and functioning should consider averaging across multiple assessments

to emphasize trait-like aspects of MMN and functioning measures while

also reducing error variance. There were no gender differences in aver-

aged MMN scores, consistent with some (Qiao et al., 2015; Yang

et al., 2016) but not all (Light et al., 2015) prior reports.

There are several limitations in the present stability analyses

that should be carefully considered. Because estimates of variance

components can be fairly unstable when the number of measure-

ments is small, having only a subset of all the HC subjects studied

on only two test occasions at each site is not ideal. It is possible

that HCs who returned for a second EEG assessment represent a

biased subgroup of subjects who were above-average in compli-

ance, leading to inflated G-coefficients. For example, the Yale site

had the lowest number of subjects in their G-study, the lowest

retention rate (41.67%), and the greatest number of excellent G-

coefficients. However, the Calgary site had the most subjects, the

best retention rate (92.6%), and the second greatest number of

excellent G-coefficients.

Despite these limitations, MMN amplitude measures appear to

have fair or better stability across all NAPLS sites, similar to the

within-site test–retest reliability previously reported in a small (N = 8)

sample traveling subjects study (Roach et al., 2019). Furthermore,

site- and age-standardization of MMN measures via linear regression

minimally changed the G-coefficients while removing fixed effects of

site and age in the full (N = 241) NAPLS2 HC sample. These MMN

z-scores can be used to test for pathological aging effects in the CHR

sample and to test hypotheses in subsamples of subjects that may not

be balanced in number and/or age across the 8 sites (e.g., comparing

CHR-C to CHR-NC). This simple, linear transformation represents a

useful approach to multisite EEG studies of rare patient populations or

clinical trials. The consistency of MMN waveforms and G-coefficients

across site between two test occasions indicates that MMN amplitude

measures are generalizable, and like in other consortium studies

(e.g., Light et al., 2015), it is feasible to combine data from multiple,

appropriately controlled and calibrated, research laboratory sites to

study MMN.
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