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EPIGRAPH

I am reluctant to intrude in a discussion concerning matters of which I have no expert

knowledge, and I should have expected the very simple point which I wish to make to

have been familiar to biologists.

— G. H. Hardy

For such a model there is no need to ask the question ”Is the model true?”.

If ”truth” is to be the ”whole truth” the answer must be ”No”.

The only question of interest is ”Is the model illuminating and useful?”.

— G. E. P. Box

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Chapter 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Polygenic signals for generalizable predictions . . . . . . . 3
1.2 Defining a new phenotype based on

poly-measurements . . . . . . . . . . . . . . . . . . . . . . 4
1.3 A joint map between polygenic signals and

poly-measurement phenotypes . . . . . . . . . . . . . . . . 5

Chapter 2 Genetic Assessment of Age-associated Alzheimers Disease Risk:
Development and Validation of a Polygenic Hazard Score . . . . . 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Statistical Analysis . . . . . . . . . . . . . . . . . . 9

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 3 Modeling the 3D Geometry of the Cortical Surface With Genetic
Ancestry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Morphological Prediction for Genetic Ancestry . . . 24
3.2.2 Characterization of the Cortical Shape Morphs . . . 25

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vi



3.4 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . 28

Chapter 4 Williams Syndrome-Specific Neuroanatomical Profile and Its As-
sociations with Behavioral Features . . . . . . . . . . . . . . . . 32
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Adult WS Cohort . . . . . . . . . . . . . . . . . . . 35
4.2.2 Child Cohort . . . . . . . . . . . . . . . . . . . . . 35
4.2.3 Individuals with Atypical Deletions in WSCR . . . . 36
4.2.4 Imaging Acquisition and Extracting Multimodal MRI

Features . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.5 Model Training . . . . . . . . . . . . . . . . . . . . 37
4.2.6 Model Validation . . . . . . . . . . . . . . . . . . . 38

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 5 Williams Syndrome neuroanatomical score associates with GTF2IRD1
in large-scale magnetic resonance imaging cohorts: a proof of con-
cept for multivariate endophenotypes . . . . . . . . . . . . . . . . 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . 50
5.2.2 Derivation of the Williams Syndrome Neuroanatomi-

cal
Scores . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.3 Candidate Region Association Analysis . . . . . . . 52
5.2.4 Local Enrichment and Global SNP Heritability . . . 53

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 6 Determining the tree-structured topology of the human cortical
surface from vertex-based genome-wide association study summary
statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Material and methods . . . . . . . . . . . . . . . . . . . . . 63

6.2.1 Weighted Euclidean distance for summary Z-statistics
from voxel-based GWAS. . . . . . . . . . . . . . . 63

6.2.2 Procedures to determine tree-structured genetic topolo-
gies . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.3 Simulation studies . . . . . . . . . . . . . . . . . . 65
6.2.4 Empirical application to imaging genetic cohorts . . 66

vii



6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.1 Simulation Studies . . . . . . . . . . . . . . . . . . 67
6.3.2 Characterizing a genetically-mediated human cortical

surface neuroanatomical topology . . . . . . . . . . 67
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.5 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . 72

Appendix A Final notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.1 Spatial gene-by-environment mapping for

schizophrenia reveals neighborhood of upbringing effects
beyond urban-rural demarcations . . . . . . . . . . . . . . . 75

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



LIST OF FIGURES

Figure 2.1: Survival models on ADGC phase 1 dataset. . . . . . . . . . . . . . 12
Figure 2.2: Survival models among APOE 3/3 individuals. . . . . . . . . . . . 14
Figure 2.3: Model performance in replication sample . . . . . . . . . . . . . . 15
Figure 2.4: Predicted annualized incidence rate given PHS. . . . . . . . . . . . 16

Figure 3.1: Predicting the proportion of genetic ancestry by cortical surface
geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.2: Color-coded morphing process of the 3D geometry of the cortical
surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.3: Mean magnitude and variations of morphing across 12 regions of
cortical surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 4.1: Boxplot of model predicted scores from trained WS-specific neu-
roanatomical profile across groups in the child cohort. . . . . . . . 39

Figure 4.2: Elastic net model learnt features for predicting WS status. . . . . . 45

Figure 5.1: Flow chart of the study design. . . . . . . . . . . . . . . . . . . . . 52
Figure 5.2: Regional plot of the associations between SNP dosage and WS

neuroanatomical scores. . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 5.3: Meta-analysis and stratified analyses of the associations with rs2267824. 55
Figure 5.4: Local enrichment of genetic signals comparing to ENIGMA sum-

mary statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 6.1: Simulation results from 1000 iterations with randomly generated
two components topology. . . . . . . . . . . . . . . . . . . . . . . 68

Figure 6.2: Tree-structured topology of cortical surface thickness. . . . . . . . 73
Figure 6.3: Tree-structured topology of cortical surface thickness. . . . . . . . 74

ix



LIST OF TABLES

Table 2.1: Information of selected SNP for polygenic hazard scores. . . . . . . 13

Table 3.1: Percentage of Variance Explained in Different Predictive Models . . 25

Table 4.1: Demographics and global MRI measurements of participants in two
cohorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 4.2: Mediating effects and within-group correlations between model pre-
dicted WS neuroanatomic scores and behavioral measures. . . . . . 46

x



ACKNOWLEDGEMENTS

Chapter 2, in full, is a reprint of the material as it appears in Plos Medicine 2017.

Rahul S. Desikan*, Chun Chieh Fan*, Yunpeng Wang, Andrew J. Schork, Howard J.

Cabral, L. Adrienne Cupples, Wesley K. Thompson, Lilah Besser, Walter A. Kukull,

Dominic Holland, Chi-Hua Chen, James B. Brewer, David S. Karow, Karolina Kauppi,

Aree Witoelar, Celeste M. Karch, Luke W. Bonham, Jennifer S. Yokoyama, Howard

J. Rosen, Bruce L. Miller, William P. Dillon, David M. Wilson, Christopher P. Hess,

Margaret Pericak-Vance, Jonathan L. Haines, Lindsay A. Farrer, Richard Mayeux, John

Hardy, Alison M. Goate, Bradley T. Hyman, Gerard D. Schellenberg, Linda K. McEvoy,

Ole A. Andreassen, Anders M. Dale. PLoS, 2017. The dissertation author was the

primary investigator and co-first author of this paper.

Chapter 3, in full, is a reprint of the material as it appears in Current Biology

2015. Chun Chieh Fan, Hauke Bartsch, Andrew Schork, Chi-Hua Chen, Yunpeng Wang,

Min-Tzu Lo, Timothy T. Brown, Joshua M. Kuperman, Donald J. Hagler Jr., Nicholas

Schork, Terry L. Jernigan, Anders M. Dale. Cell Press, 2015. The dissertation author

was the primary investigator and author of this paper.

Chapter 4, in full, is a reprint of the material as it appears in NeuroImage:Clinical

2017. Chun Chieh Fan, Timothy T. Brown, Hauke Bartsch, Joshua M. Kuperman, Donald

J. Hagler Jr., Andrew Schork, Yvonne Searcy, Ursula Bellugi, Eric Halgren, Anders M.

Dale. Elsevier, 2017. The dissertation author was the primary investigator and author of

this paper.

Chapter 5, in full, is being prepared for submission for publication. Chun Chieh

Fan, Andrew J. Schork, Timothy T. Brown, Barbara E. Spencer, Natacha Akshoomoff,

Chi-Hua Chen, Joshua M. Kuperman, Donald J. Hagler Jr., Asta Kristine Hberg, Thomas

Espeseth, Ole A. Andreassen, Anders M. Dale, Terry L. Jernigan, Eric Halgren. The

dissertation author was the primary investigator and author of this paper.

xi



Chapter 6, in full, is being prepared for submission for publication. Chun Chieh

Fan, Andrew J. Schork, Westly K. Thompson, Asta Kristine Hberg, Thomas Espeseth, Ole

A. Andreassen, Anders M. Dale, Terry L. Jernigan, Nicholas J. Schork. The dissertation

author was the primary investigator and author of this paper.

xii



VITA

2017 Doctor of Philosophy in Cognitive Science
University of California, San Diego

2013-2017 Graduate Student Researcher
Teaching Asistant
Cognitive Science Department
University of California, San Diego

2009-2013 Attending Physician in Psychiatry
Ju-Shan Hospital, Taiwan

2009-2011 Master of Science in Epidemiology
National Taiwan University, Taiwan

2005-2009 Residency in Psychiatry
Taipei City Hospital, Taiwan

1997-2004 Medical Doctor
National Yang-Ming University, Taiwan

PUBLICATIONS

Chun Chieh Fan, Timothy T Brown, Hauke Bartsch, Joshua M Kuperman, Donald J
Hagler, Andrew Schork, Yvonne Searcy, Ursula Bellugi, Eric Halgren, Anders M Dale.
“Williams syndrome-specific neuroanatomical profile and its associations with behavioral
features”, NeuroImage:Clinical, 15, 2017

Olav B Smeland, Oleksandr Frei, Karolina Kauppi, W David Hill, Wen Li, Yunpeng
Wang, Florian Krull, Francesco Bettella, Jon A Eriksen, Aree Witoelar, Gail Davies,
Chun Chieh Fan, Wesley K Thompson, Max Lam, Todd Lencz, Chi-Hua Chen, Torill
Ueland, Erik G Jnsson, Srdjan Djurovic, Ian J Deary, Anders M Dale, Ole A Andreassen.
“Identification of Genetic Loci Jointly Influencing Schizophrenia Risk and the Cognitive
Traits of Verbal-Numerical Reasoning, Reaction Time, and General Cognitive Function”,
JAMA Psychiatry, 2017

A Devor, OA Andreassen, Y Wang, T Mki-Marttunen, OB Smeland, Chun Chieh Fan,
AJ Schork, D Holland, WK Thompson, A Witoelar, CH Chen, RS Desikan, LK McEvoy,
S Djurovic, P Greengard, P Svenningsson, GT Einevoll, AM Dale. “Genetic evidence
for role of integration of fast and slow neurotransmission in schizophrenia”, Molecular
Psychiatry, 22, 6, 2017

xiii



Tan, Chin Hong; Sugrue, Leo; Broce, Iris; Tong, Elizabeth; Tan, Jacinth; Hess, Christo-
pher ; Dillon, William; Bonham, Luke; Yokoyama, Jennifer; Rabinovici, Gil Dan; Rosen,
Howard; Miller, Bruce; Hyman, Bradley T; Schellenberg, Gerard; Besser, Lilah; Kukull,
Walter; Karch, Celeste; Brewer, James; Kauppi, Karolina; McEvoy, Linda; Andreassen,
Ole; Dale, Anders; Fan, Chun Chieh*; Desikan, Rahul*. “Polygenic hazard scores in
preclinical Alzheimers disease”, Annals of Neurology, 2017. *co-senior authors

Jennifer S Yokoyama, Celeste M Karch, Chun Chieh Fan, Luke W Bonham, Naomi
Kouri, Owen A Ross, Rosa Rademakers, Jungsu Kim, Yunpeng Wang, Gnter U Hglinger,
Ulrich Mller, Raffaele Ferrari, John Hardy, Parastoo Momeni, Leo P Sugrue, Christopher
P Hess, A James Barkovich, Adam L Boxer, William W Seeley, Gil D Rabinovici,
Howard J Rosen, Bruce L Miller, Nicholas J Schmansky, Bruce Fischl, Bradley T Hyman,
Dennis W Dickson, Gerard D Schellenberg, Ole A Andreassen, Anders M Dale, Rahul
S Desikan, International FTD-Genomics Consortium. “Shared genetic risk between
corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia”,
Acta neuropathologica, 133, 2017

Rahul S Desikan*, Chun Chieh Fan*, Yunpeng Wang, Andrew J Schork, Howard J
Cabral, L Adrienne Cupples, Wesley K Thompson, Lilah Besser, Walter A Kukull,
Dominic Holland, Chi-Hua Chen, James B Brewer, David S Karow, Karolina Kauppi,
Aree Witoelar, Celeste M Karch, Luke W Bonham, Jennifer S Yokoyama, Howard J
Rosen, Bruce L Miller, William P Dillon, David M Wilson, Christopher P Hess, Margaret
Pericak-Vance, Jonathan L Haines, Lindsay A Farrer, Richard Mayeux, John Hardy,
Alison M Goate, Bradley T Hyman, Gerard D Schellenberg, Linda K McEvoy, Ole A
Andreassen, Anders M Dale. “Genetic assessment of age-associated Alzheimer disease
risk: Development and validation of a polygenic hazard score”, PLoS medicine, 14, 2017.
*equal contribution

Raffaele Ferrari, Yunpeng Wang, Jana Vandrovcova, Sebastian Guelfi, Aree Witeolar, Ce-
leste M Karch, Andrew J Schork, Chun Chieh Fan, James B Brewer, Parastoo Momeni,
Gerard D Schellenberg, William P Dillon, Leo P Sugrue, Christopher P Hess, Jennifer
S Yokoyama, Luke W Bonham, Gil D Rabinovici, Bruce L Miller, Ole A Andreassen,
Anders M Dale, John Hardy, Rahul S Desikan, International FTD-Genomics Consortium,
International Parkinson’s Disease Genomics Consortium. “Genetic architecture of spo-
radic frontotemporal dementia and overlap with Alzheimer’s and Parkinson’s diseases”,
J Neurol Neurosurg Psychiatry, 88, 2017.

Min-Tzu Lo, David A Hinds, Joyce Y Tung, Carol Franz, Chun Chieh Fan, Yunpeng
Wang, Olav B Smeland, Andrew Schork, Dominic Holland, Karolina Kauppi, Nilotpal
Sanyal, Valentina Escott-Price, Daniel J Smith, Michael O’Donovan, Hreinn Stefansson,
Gyda Bjornsdottir, Thorgeir E Thorgeirsson, Kari Stefansson, Linda K McEvoy, Anders
M Dale, Ole A Andreassen, Chi-Hua Chen. “Genome-wide analyses for personality
traits identify six genomic loci and show correlations with psychiatric disorders”, Nature
Genetics, 49, 2017.

xiv



Luke W Bonham, Ethan G Geier, Chun Chieh Fan, Josiah K Leong, Lilah Besser,
Walter A Kukull, John Kornak, Ole A Andreassen, Gerard D Schellenberg, Howard J
Rosen, William P Dillon, Christopher P Hess, Bruce L Miller, Anders M Dale, Rahul
S Desikan, Jennifer S Yokoyama. “Agedependent effects of APOE 4 in preclinical
Alzheimer’s disease”, Annals of clinical and translational neurology, 3, 2016.

J Yokoyama, Chun Chieh Fan, Y Wang, N Kouri, R Ferrari, O Andreassen, J Hardy,
A Boxer, B Miller, G Schellenberg, D Dickson, A Dale, R Desikan. “Genetic overlap
between 4-repeat tauopathies suggests a role for development in the pathobiology of
corticobasal degeneration”, Journal of Neurochemistry, 138, 2016.

YuJen Chen, YuChun Lo, YungChin Hsu, ChunChieh Fan, TzungJeng Hwang, ChihMin
Liu, YiLing Chien, Ming H Hsieh, ChenChung Liu, HaiGwo Hwu, WenYih Isaac Tseng.
“Automatic whole brain tractbased analysis using predefined tracts in a diffusion spectrum
imaging template and an accurate registration strategy”, Human brain mapping, 36, 2015.

Chun Chieh Fan, Hauke Bartsch, Andrew J Schork, Chi-Hua Chen, Yunpeng Wang,
Min-Tzu Lo, Timothy T Brown, Joshua M Kuperman, Donald J Hagler, Nicholas J
Schork, Terry L Jernigan, Anders M Dale. “Modeling the 3D geometry of the cortical
surface with genetic ancestry”, Current Biology, 25, 2015.

Chi-Hua Chen, Qian Peng, Andrew J Schork, Min-Tzu Lo, Chun Chieh Fan, Yunpeng
Wang, Rahul S Desikan, Francesco Bettella, Donald J Hagler, Lars T Westlye, William S
Kremen, Terry L Jernigan, Stephanie Le Hellard, Vidar M Steen, Thomas Espeseth, Matt
Huentelman, Asta K Hberg, Ingrid Agartz, Srdjan Djurovic, Ole A Andreassen, Nicholas
Schork, Anders M Dale. “Large-scale genomics unveil polygenic architecture of human
cortical surface area”, Nature Communication, 6, 2015.

Chien-Hsiun Chen, Chau-Shoun Lee, Ming-Ta Michael Lee, Wen-Chen Ouyang, Chiao-
Chicy Chen, Mian-Yoon Chong, Jer-Yuarn Wu, Happy Kuy-Lok Tan, Yi-Ching Lee,
Liang-Jen Chuo, Nan-Ying Chiu, Hin-Yeung Tsang, Ta-Jen Chang, For-Wey Lung, Chen-
Huan Chiu, Cheng-Ho Chang, Ying-Sheue Chen, Yuh-Ming Hou, Cheng-Chung Chen,
Te-Jen Lai, Chun-Liang Tung, Chung-Ying Chen, Hsien-Yuan Lane, Tung-Ping Su, Jung
Feng, Jin-Jia Lin, Ching-Jui Chang, Po-Ren Teng, Chia-Yih Liu, Chih-Ken Chen, I-Chao
Liu, Jiahn-Jyh Chen, Ti Lu, Chun-Chieh Fan, Ching-Kuan Wu, Chang-Fang Li, Kathy
Hsiao-Tsz Wang, Lawrence Shih-Hsin Wu, Hsin-Ling Peng, Chun-Ping Chang, Liang-
Suei Lu, Yuan-Tsong Chen, Andrew Tai-Ann Cheng. “Variant GADL1 and response to
lithium therapy in bipolar I disorder”, New England Journal of Medicine, 370, 2014.

xv



ABSTRACT OF THE DISSERTATION
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Searching the genetic basis of human complex traits is an essential tool to illumi-

nating biological processes and predicting risks of diseases. However, with the advance

of genotyping technologies, e.g. genome sequencing, and sophistication of phenotypic

measurements, e.g. magnetic resonance imaging, two prong challenges have imposed

on the endeavor for mapping genotypes to phenotypes. First is the weak genetic signals

due to the multifactorial contributions from common genetic variants. The effect sizes of

those genetic variants become too small to be detected. The second is the inconsistency

xvi



of the phenotypic measurements, which the genetically fundamental units, or so called

endophenotype, are not apparent. This polygenes-polymeasurements problem become

even more prominent in recent surge of large-scale cross-traits genomic studies. This

dissertation is a collection of my series studies to develop novel methods to tackle the

polygenes-polymeasurement challenges. In particular, I focused on how to extract gener-

alizable signals from diverse genomic databses. The extracted signals can be useful in

either predicting disease risks or elucidating biological processes in human brain.
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Chapter 1

Overview

The genetic basis of dynamic biological processes that shape human complex

traits is the fundamental building block for each persons individuality. Complex traits,

such as intelligence and personality, have been found to vary closely with genetics even

before the discovery of double-strand DNA [1]. Efforts to find the associations between

DNA and human traits, i.e. to map genotypes to phenotypes, have led to important

discoveries about development, aging, and etiologies of diseases [2]. With the advance of

technology, now the mapping has reached down to the single-base pair level in the human

genome, in hopes of pinpointing which single-base can lead to variation in a human trait

[3].

However, as the resolution of measurements of genetic variation has become finer,

the challenges of genotype-phenotype mapping loom larger. The common traits in human

populations, such as intelligence, personality, and mental disorders, have substantial

amount of variations attributable to common genetic variants scattering across genome

[3]. There can be thousands of genetic variants jointly shaped individuals traits through

different biological mechanisms [4]. The contribution of each single-base pair, thus,

would be tiny. How to identify the associations from those scattered weak signals has

1



2

become a steep hurdle for understanding human complex traits. Increasing the resolution

of measurements of genetic variation only provides better chance to localize the causal

genetic variants rather than better power to detect weak signals.

Moreover, the inconsistency of measurements of some human traits stacks addi-

tional difficulties on genotype-phenotype mapping. For instance, many psychometric

tools are used to measure human intelligence, each targeting different cognitive domains,

such as working memory, executive function, and verbal fluency. Although evidence

suggests certain combinations of scores exhibit high heritability, i.e., have large amount

of shared variations with genetics [5], the definition of those cognitive domains is solely

based on the observable measurements across subjects. A complex trait with high her-

itability is not necessarily mean the measured variations are closer to the biological

processes. The genetically fundamental unit of a complex phenotype, or so-called en-

dophenotype, is an internal subunit of a complex trait that specifically shaped by a set

of genes [6]. For understanding how genetic perturbation cascading into the complex

phenotype, what we need are the endophenotype rather than the apparent phenotype. Yet

it is unclear how to extract genetically relevant subunit from multiple measurements,

all intending to measure one internal phenotype, such as a domain of intelligence. This

makes researchers used a score based on observable variations from multiple measure-

ments, which oftentimes makes the score inconsistent with the underlying true genetic

component [7]. This problem is particularly evident in the brain-imaging field where

measurements from magnetic resonance imaging can be millions of sampled points

across brain with diverse metrics [8, 9, 10, 11, 12, 13, 14]. All different metrics across

brain may actually measure the same process where there are a more parsimonious model

can characterize it. Here I termed this phenomonen as ”poly-measurement” for human

complex trait.

Current approaches to the challenges of polygenes and poly-measurements often



3

resort to brute force methods, by obtaining very large sample sizes for mapping [14].

The unintended consequence of large-scale studies, i.e. big data, is that the mapping

becomes a fishing expedition, yielding non-replicable associations and drawing criticism

for identifying weak unimportant genetic effects [4]. As George Box famously said, all

models are wrong but some are useful; the essence of the challenge in modern genotype-

phenotype mapping with large-scale data is to find generalizable signals that can either be

used for predicting individuals phenotypic outcome or illuminate the biological processes.

Under this premise, this dissertation is a collection of my series of inquiries

navigating the space between polygenes and poly-measurements for understanding the

genetic basis of human brain phenotypes. The polygenic architecture of variation in

human brains observed with high-dimensional measurements mandates novel analytic

strategies to identify a generalizable signal that can either illuminate the underlying

biological process or predict the eventual outcome of a given trait.

1.1 Polygenic signals for generalizable predictions

Chapter 2 of this dissertation is a project focusing on how to extract polygenic

signals for predicting the outcome of a given trait. The polygenic signals in this con-

text are the sum of small genetic perturbations that associate with a given trait, namely

Alzheimers disease (AD). Previous approaches using polygenic signals treated the out-

come as a static state, e.g. either you have the disease or not. Yet constant and stable

conditions are the exception rather than a common rule among human complex traits.

Since human development and aging are dynamic and time-dependent processes, diseases

resulting from disrupting these processes would also have strong time-dependent charac-

teristics. For example, Alzheimers disease (AD) has increasing incidence among older

individuals, and APOE risk variants, genes with large effect on AD, shift age of onset
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earlier [15]. Current approaches to defining a generalizable polygenic signal ignore the

strong time-dependent properties of human traits, treating age as a nuisance parameter in

the models [16, 17, 18]. The project described in Chapter 2 tackled this missing link by

explicitly taking time into consideration when deriving a generalizable polygenic signal.

1.2 Defining a new phenotype based on

poly-measurements

While chapter 2 focuses on the polygenic aspect of genotype-phenotype mapping,

chapter 3 begins to tackle the challenges imposed by poly-measurements. Brain imaging

measures structural or functional variation in the brain at millions of sampled points in

magnetic resonance images (MRI) [8, 9]. Currently, most genotype-phenotype mapping

with brain imaging uses the derived measures that group sets of sampled points into

discretized regions, such as hippocampus, and then do the associations with these regions

[13, 14]. As previous imaging studies based on co-inheritance among twins, the landmark-

defined regions are not necessarily endophenotypes [19, 10]. For a set of genes involving

in one particular molecular pathway can has its influence on several discontiguous

brain regions, resulting a covariance structure among measurements. Pure data-driven

machine learning approach is unlikely to discover this genetically driven covariance

structure neither. The algorithms have to search through all possible combinations across

MRI measurements, which are almost inexhaustible if we do not impose constraints

[20, 21]. In my dissertation, I used our knowledge about genetics to redefine poly-

measurement phenotypes that closely aligned with the genetic basis. In chapter 3, I

used genetic background, i.e. genetic ancestry, to define brain morphological indices

representing geometrical variation of the human cortical surface. Chapter 4 utilized a

naturally occurring large genetic perturbation to derive a neuroanatomical score from



5

multiple imaging measures, representing the holistic morphological difference between

individuals who had the large genetic perturbation and those who did not. Chapter 5

critically examined the generalizability of the neuroanatomical score. In particular, we

investigated whether the combined poly-measurements score based on the large-genetic

perturbation can enhance the signal for genotype-phenotype mapping among normally

developing individuals, identifying genetic variants relevant to the neurodevelopment.

1.3 A joint map between polygenic signals and

poly-measurement phenotypes

In the final chapter, I approached genotype-phenotype mapping from both ends

to see if we can simultaneously find links between polygenes and poly-measurements.

In this case, we inherit a double-curse of dimensionality. Computational resources and

sample size required both have great impact on joint mapping attempts. Previous studies

used co-heritability among twins as proxy measures for the genetic basis [19, 10, 12].

Although those studies provide great insight into the global genetic influence on the brain,

they nevertheless provide no direct link to the genetic variations at the base-pair level

in the human genome. High genetic correlations between two measurements from twin

studies mean that those two measurements are, on average, genetically similar. It does

not necessarily mean they both strongly associate with one molecular process driven by a

small set of genes, making the contribution of each gene large and easier to be detected

through associations. In chapter 6, we came up with a simple and intuitive approach

to reveal the genetic topology of the human cortical surface directly from association

signals with base-pair level variants of the human genome. This method is a preliminary

demonstration that the joint polygenes-poly-measurements mapping can be achieved

without the unquenchable need for large sample sizes.



Chapter 2

Genetic Assessment of Age-associated

Alzheimers Disease Risk: Development

and Validation of a Polygenic Hazard

Score

2.1 Introduction

Late onset Alzheimers disease (AD), the most common form of dementia, places

a large emotional and economic burden on patients and society. With increasing health

care expenditures among cognitively impaired elderly [22], identifying individuals at

risk for developing AD is of utmost importance for potential preventative and therapeutic

strategies. Inheritance of the 4 allele of apolipoprotein E (APOE) on chromosome 19q13

is the most significant risk factor for developing late-onset AD [15]. APOE 4 has a

dose dependent effect on age of onset, increases AD risk three-fold in heterozygotes and

fifteen-fold in homozygotes, and is implicated in 20-25% of patients with AD [23].

6
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In addition to APOE, recent genome-wide association studies (GWAS) have

identified numerous AD associated single nucleotide polymorphisms (SNPs), most of

which have a small effect on disease risk [24, 25]. Although no single polymorphism may

be informative clinically, a combination of APOE and non-APOE SNPs may help identify

older individuals at increased risk for AD. Despite the detection of novel AD associated

genes, GWAS findings have not yet been incorporated into a genetic epidemiology

framework for individualized risk prediction.

Building on a prior approach evaluating GWAS-detected genetic variants for

disease prediction [26] and using a survival analysis framework, we tested the feasibility

of combining AD associated SNPs and APOE status into a continuous measure polygenic

hazard score (PHS) for predicting the age-specific risk for developing AD. We assessed

replication of the PHS using several independent cohorts.

2.2 Methods

2.2.1 Participants

IGAP: To select AD associated SNPs, we evaluated publicly available AD GWAS

summary statistic data (p-values and odds ratios) from the International Genomics of

Alzheimers Disease Project . We used IGAP Stage 1 data, consisting of 17,008 AD cases

and 37,154 controls, for selecting AD associated SNPs [24].

ADGC: To develop the survival model for the polygenic hazard scores (PHS), we

first evaluated age of onset and raw genotype data from 6,409 patients with clinically

diagnosed AD and 9,386 cognitively normal older individuals provided by the Alzheimers

Disease Genetics Consortium (ADGC, Phase 1, a subset of the IGAP dataset), excluding

individuals from the National Institute of Aging Alzheimers Disease Center (NIA ADC)

samples and Alzheimers Disease Neuroimaging Initiative (ADNI). To evaluate replication



8

of PHS, we used an independent sample of 6,984 AD patients and 10,972 cognitively

normal older individuals from the ADGC Phase 2 cohort. A detailed description of the

genotype and phenotype data within the ADGC datasets has been described in detail

elsewhere [26]. Briefly, the ADGC Phase 1 and 2 datasets consist of multi-center,

case-control, prospective, and family-based sub-studies of Caucasian participants with

AD occurrence after age 60. Participants with autosomal dominant (APP, PSEN1 and

PSEN2) mutations were excluded. All participants were genotyped using commercially

available high-density SNP microarrays from Illumina or Affymetrix. Clinical diagnosis

of AD within the ADGC sub-studies was established using NINCDS/ADRDA criteria

for definite, probable or possible AD [27]. For most participants, age of AD onset was

obtained from medical records and defined as the age when AD symptoms manifested, as

reported by the participant or an informant. For participants lacking age of onset, age at

ascertainment was used. Patients with an age-at-onset or age-at-death less than 60 years,

and Caucasians of European ancestry were excluded from the analyses. All ADGC Phase

1 and 2 control participants were defined within individual sub-studies as cognitively

normal older adults at time of clinical assessment. The institutional review boards of all

participating institutions approved the procedures for all ADGC sub-studies. Written

informed consent was obtained from all participants or surrogates.

NIA ADC: To assess longitudinal prediction, we evaluated an ADGC-independent

sample of 2,724 cognitively normal elderly individuals with at least 2 years of longitudi-

nal clinical follow-up derived from the NIA funded ADCs (data collection coordinated

by the National Alzheimers Coordinating Center) [28]. Specifically, we focused on older

individuals defined at baseline as having an overall Clinical Dementia Rating (CDR) of

0.0. To assess the relationship between polygenic risk and neuropathology, we assessed

2,960 participants from the NIA ADC samples with genotype and neuropathological

evaluations. For the neuropathological variables, we examined the Braak stage for neu-
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rofibrillary tangles (NFTs) (0: none; I-II: entorhinal; III-IV: limbic, and V-VI: isocortical)

[29] and the Consortium to Establish a Registry for Alzheimers Disease (CERAD) score

for neuritic plaques (none/sparse, moderate, or frequent) [30]. Finally, as an additional

independent replication sample, we evaluated all NACC AD cases with genetic data who

were classified at autopsy as having a High level of AD neuropathologuc change (n =

361), based on the revised NIA-AA AD neuropathology criteria [31]. The institutional

review boards of all participating institutions approved the procedures for all NIA ADC

sub-studies. Written informed consent was obtained from all participants or surrogates.

ADNI: To assess the relationship between polygenic risk and in vivo biomark-

ers, we evaluated an ADGC-independent sample of 692 older controls, mild cognitive

impairment and AD participants from the ADNI. On a subset of ADNI1 participants

with available genotype data, we evaluated baseline CSF levels of A1-42 and total tau, as

well as longitudinal clinical dementia rating-sum of box (CDR-SB) scores. In ADNI1

participants with available genotype and quality-assured baseline and follow-up MRI

scans, we also assessed longitudinal sub-regional change in medial temporal lobe volume

(atrophy) on 2471 serial T1-weighted MRI scans.

2.2.2 Statistical Analysis

We followed three steps to derive the polygenic hazard scores (PHS) for predicting

AD age of onset: 1) we defined the set of associated SNPs, 2) we estimated hazard ratios

for polygenic profiles, and 3) we calculated individualized absolute hazards.

Using the IGAP Stage 1 sample, we first identified a list of SNPs associated with

increased risk for AD, using a significance threshold of p ¡ 10-5. Next, we evaluated

all IGAP-detected, AD-associated SNPs within the ADGC Phase 1 case-control dataset.

Using a stepwise procedure in survival analysis, we delineated the final list of SNPs for

constructing the polygenic hazard score [32, 17]. Specifically, using Cox proportional



10

hazard models, we identified the top AD-associated SNPs within the ADGC Phase 1

cohort (excluding NIA ADC and ADNI samples), while controlling for the effects of

gender, APOE variants, and top five genetic principal components (to control for the

effects of population stratification). We utilized age of AD onset and age of last clinical

visit to estimate age appropriate hazards [33] and derived a PHS for each participant. In

each step of the stepwise procedure, the algorithm selected one SNP from the pool that

most improved model prediction (i.e. minimizing the Martingale residuals); additional

SNP inclusion that did not further minimize the residuals resulted in halting of the

SNP selection process. To prevent over-fitting in this training step, we used 1000x

bootstrapping for model averaging and estimating the hazard ratios for each selected

SNPs. We assessed the proportional hazard assumption in the final model using graphical

comparisons.

To assess for replication, we first examined whether the ADGC Phase 1 derived

predicted PHSs could stratify individuals into different risk strata within the ADGC Phase

2 cohort. We next evaluated the relationship between predicted age of AD onset and

the empirical/actual age of AD onset using cases from ADGC Phase 2. We binned risk

strata into percentile bins and calculated the mean of actual age in that percentile as the

empirical age of AD onset. In a similar fashion, we additionally tested replication within

the NACC subset classified at autopsy as having a high level of AD neuropathologic

change [31].

Because case-control samples cannot provide the proper baseline hazard [34], we

used the previously reported annualized incidence rates by age, estimated from the general

United States of America (US) population [35]. For each participant, by combining the

overall population-derived incidence rates and genotype-derived PHS, we calculated an

individuals instantaneous risk for developing AD, based on their genotype and age. To

independently assess the predicted instantaneous risk, we evaluated longitudinal follow-
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up data from 2,724 cognitively normal older individuals from the NIA ADC with at least

2 years of clinical follow-up. We assessed the number of cognitively normal individuals

progressing to AD as a function of the predicted PHS risk strata and examined whether

the predicted PHS-derived incidence rate reflects the empirical/actual progression rate

using a Cochran-Armitage trend test.

We examined the association between our PHS and established in vivo and

pathologic markers of AD neurodegeneration. Using linear models, we assessed whether

the PHS associated with Braak stage for NFTs and CERAD score for neuritic plaques

as well as CSF A1-42, and CSF total tau. Using linear mixed effects models, we also

investigated whether the PHS was associated with longitudinal CDR-SB score and

volume loss within the entorhinal cortex and hippocampus. In all analyses, we co-varied

for the effects of age and sex.

2.3 Results

From the IGAP cohort, we found 1854 SNPs associated with increased risk for

AD at a p ¡ 10−5. Of these, using the Cox stepwise regression framework, we identified

31 SNPs, in addition to two APOE variants, within the ADGC cohort for constructing

the polygenic model (Table 2.1). Figure 2.1 illustrates the relative risk for developing

AD using the ADGC case/control Phase 1 cohort. The graphical comparisons among

Kaplan-Meier estimations and Cox proportional hazard models indicate the proportional

hazard assumption holds for the final model (Figure 2.1).

To quantify the additional prediction provided by polygenic information beyond

APOE, we evaluated how PHS modulates age of AD onset in APOE 3/3 individuals.

Among these individuals, we found that age of AD onset can vary by more than 10 years,

depending on polygenic risk. For example, for an APOE 3/3 individual in the 10th decile
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(top 10%) of PHS, at 50% risk for meeting clinical criteria for AD diagnosis, the expected

age for developing AD is approximately 84 years (Figure 2.2); however, for an APOE

3/3 individual in the 1st decile (bottom 10%) of PHS, the expected age of developing AD

is approximately 95 years (Figure 2.2). The hazard ratio of 10th decile to 1st decile is

3.34 (95% CI: 2.62 - 4.24, logrank test: p = 1 x 10−22).

Figure 2.1: Survival analysis on ADGC phase 1 dataset. Kaplan-Meier estimates and
Cox proportional model fits from the case-control ADGC phase 1 dataset, excluding
NACC and ADNI samples. The proportional hazard assumptions were checked based
on the graphical comparisons between Kaplan-Meier estimation (dashed line) and Cox
proportional hazard models (solid line). 95% confidence intervals of Kaplan-Meier
estimation are also demonstrated (shaded with corresponding colors). The baseline
hazard (gray line) in this model is based on the mean of ADGC data.

To assess replication, we applied the ADGC Phase 1-trained model on indepen-

dent samples from ADGC Phase 2. Using the empirical distributions, we found that the
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Table 2.1: Information of selected SNP for polygenic hazard scores. Selected 31 SNPs,
their closest genes, log hazard ratio estimates, and their conditional p values in the final
joint model, after controlling for effects of gender and APOE variants.

Chr Position Gene log(HR) Conditional p in -log10
ε 2 allele 19 APOE -0.47 >15
ε 4 allele 19 APOE 1.03 >20
rs4266886 1 207685786 CR1 -0.09 2.7
rs61822977 1 207796065 CR1 -0.08 2.8
rs6733839 2 127892810 BIN1 -0.15 10.5
rs10202748 2 234003117 INPP5D -0.06 2.1
rs115124923 6 32510482 HLA-DRB5 0.17 7.4
rs115675626 6 32669833 HLA-DQB1 -0.11 3.2
rs1109581 6 47678182 GPR115 -0.07 2.6
rs17265593 7 37619922 BC043356 -0.23 3.6
rs2597283 7 37690507 BC043356 0.28 4.7
rs1476679 7 100004446 ZCWPW1 0.11 4.9
rs78571833 7 143122924 AL833583 0.14 3.8
rs12679874 8 27230819 PTK2B -0.09 4.2
rs2741342 8 27330096 CHRNA2 0.09 2.9
rs7831810 8 27430506 CLU 0.09 3
rs1532277 8 27466181 CLU 0.21 8.3
rs9331888 8 27468862 CLU 0.16 5.1
rs7920721 10 11720308 CR595071 -0.07 2.9
rs3740688 11 47380340 SPI1 0.07 2.8
rs7116190 11 59964992 MS4A6A 0.08 3.9
rs526904 11 85811364 PICALM -0.2 2.3
rs543293 11 85820077 PICALM 0.3 4.2
rs11218343 11 121435587 SORL1 0.18 2.8
rs6572869 14 53353454 FERMT2 -0.11 3
rs12590273 14 92934120 SLC24A4 0.1 3.5
rs7145100 14 107160690 abParts 0.08 2
rs74615166 15 64725490 TRIP4 -0.23 3.1
rs2526378 17 56404349 BZRAP1 0.09 4.9
rs117481827 19 1021627 C19orf6 -0.09 2.5
rs7408475 19 1050130 ABCA7 0.18 4.3
rs3752246 19 1056492 ABCA7 -0.25 8.4
rs7274581 20 55018260 CASS4 0.1 2.1

PHS successfully stratified individuals from independent cohorts into different risk strata

(Figure 2.3). Among AD cases in the ADGC Phase 2 cohort, we found that the predicted

age of onset was strongly associated with the empirical (actual) age of onset (binned in
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Figure 2.2: Survival models among APOE 3/3 individuals. Kaplan-Meier estimates
and Cox proportional model fits among APOE 3/3 individuals in ADGC phase 1 dataset,
excluding NACC and ADNI samples. The solid line represent the Cox fit whereas the
dashed line and shaded regions represent Kaplan-Meier estimation with 95% confidence
interval.

percentiles, r = 0.90, p = 1.1 x 10-26, Figure 2.3). Similarly within the NACC subset

with a high level of AD neuropathologic change, we found that PHS strongly predicted

time to progress to neuropathologically defined AD (Cox proportional hazard model, z =

11.8723, p = 2.82 x 10-32).

To evaluate risk for developing AD, combining the estimated hazard ratios from

the ADGC cohort, allele frequencies for each of the AD-associated SNPs from the

1000 Genomes Project and the disease incidence in the general US population [35],

we generated the population baseline-corrected survival curves given an individuals

genetic profile and age. iven an individuals genetic profile and age, the corrected survival
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Figure 2.3: Model performance in replication sample. (a) Risk stratification in ADGC
phase 2 cohort, using PHS derived from ADGC phase 1 dataset. (b) Predicted age of
AD onset as a function of empirical age of AD onset among cases in ADGC phase 2
cohort. Prediction is based on the final survival model trained in the ADGC phase 1
dataset. The dashed line and shaded regions represent Kaplan-Meier estimation with
95% confidence interval.

proportion can be translated directly into incidence rates (Figure 2.4). As previously

reported in a meta-analysis summarizing four studies from the US general population,

the annualized incidence rate represents the proportion (in percent) of individuals in a

given risk stratum and age, who have not yet developed AD but will develop AD in the

following year; thus the annualized incidence rate represents the instantaneous risk for

developing AD conditional on having survived up to that point in time. For example, for

a cognitively normal 65 year-old individual in the 80th percentile PHS, the incidence

rate would be: 0.29 at age 65, 1.22 at age 75, 5.03 at age 85, and 20.82 at age 95 (Figure

2.4); in contrast, for a cognitively normal 65 year old in the 20th percentile PHS, the

incidence rate (per 100 person-years) would be 0.10 at age 65, 0.43 at age 75, 1.80 at

age 85, and 7.43 at age 95. As independent validation, we examined whether the PHS

predicted incidence rate reflects the empirical progression rate (from normal control to

clinical AD). We found that the PHS predicted incidence was strongly associated with
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empirical progression rates (Cochrane Armitage trend test, p = 1.54 x 10-10).

Figure 2.4: Predicted annualized incidence rate given PHS. Annualized incidence rates
showing the instantaneous hazard as a function of PHS percentiles and age. The gray
line represents the population baseline estimate.

We found that the PHS was significantly associated with Braak stage of NFTs

(-coefficient = 0.115, standard error (SE) = 0.024, p-value = 3.9 x 10-6) and CERAD

score for neuritic plaques (-coefficient = 0.105, SE = 0.023, p-value = 6.8 x 10-6). We

additionally found that the PHS was associated with worsening CDR-Sum of Box score

over time (-coefficient = 2.49, SE = 0.38, p-value = 1.1 x 10-10), decreased CSF A1-42

(reflecting increased intracranial A plaque load) (-coefficient = -0.07, SE = 0.01, p-value

= 1.28 x 10-7), increased CSF total tau (-coefficient = 0.03, SE = 0.01, p-value = 0.05),

and increased volume loss within the entorhinal cortex (-coefficient = -0.022, SE = 0.005,

p-value = 6.30 x 10-6) and hippocampus (-coefficient = -0.021, SE = 0.0054, p-value =
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7.86 x 10-5).

2.4 Discussion

In this study, by integrating AD-associated SNPs from recent GWAS and disease

incidence estimates from the US population into a genetic epidemiology framework, we

have developed a novel polygenic hazard score for quantifying individual differences

in risk for developing AD, as a function of genotype and age. The PHS systematically

modified age of AD onset, and was associated with known in vivo and pathologic markers

of AD neurodegeneration. In independent cohorts (including a neuropathologically

confirmed dataset), the PHS successfully predicted empirical (actual) age of onset and

longitudinal progression from normal aging to AD. Even among individuals who do not

carry the 4 allele of APOE (the majority of the US population), we found that polygenic

information is useful for predicting age of AD onset.

Using a case/control design, prior work has combined GWAS-associated poly-

morphisms and disease prediction models to predict risk for AD [36, 37, 38, 39, 40, 41]/

Rather than representing a continuous process where non-demented individuals progress

to AD over time, the case/control approach implicitly assumes that normal controls do

not develop dementia and treats the disease process as a dichotomous variable where the

goal is maximal discrimination between diseased cases and healthy controls. Given the

striking age-dependence of AD, this approach is clinically suboptimal for estimating risk

of AD. Building on prior genetic estimates from the general population [15, 42], we em-

ployed a survival analysis framework to integrate AD-associated common variants with

established population-based incidence [35] to derive a continuous measure, polygenic

hazard score (PHS). We note that the PHS can estimate individual differences in AD risk

across a lifetime and can quantify the yearly incidence rate for developing AD.
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These findings indicate that the lifetime risk of age of AD onset varies by poly-

genic profile. For example, the annualized incidence rates (risk for developing AD in a

given year) are considerably lower for an 80-year old individual in the 20th percentile

PHS relative to an 80-year old in the 99th percentile PHS (Figure 2.4). Across the lifes-

pan, our results indicate that even individuals with low genetic risk (low PHS) develop

AD, but at a later peak age of onset. Certain loci (including APOE 2) may protect against

AD by delaying, rather than preventing, disease onset.

Our polygenic results provide important predictive information beyond APOE.

Among APOE 3/3 individuals, who constitute 70-75% of all individuals diagnosed with

late-onset AD, age of onset varies by more than 10 years, depending on polygenic risk

profile (Figure 2.2). At 60% AD risk APOE 3/3 individuals in the 1st decile of PHS

have an expected age of onset of 85 whereas for individuals in the 10th decile of PHS,

the expected age of onset is greater than 95. These findings are directly relevant to the

general population where APOE 4 only accounts for a fraction of AD risk 3 and are

consistent with prior work 21 indicating that AD is a polygenic disease where non-APOE

genetic variants contribute significantly to disease etiology.

We found that the PHS strongly predicted age of AD onset in within the ADGC

phase 2 dataset and the NACC neuropathology confirmed subset demonstrating indepen-

dent replication of our polygenic score. Within the NIA ADC sample, the PHS robustly

predicted longitudinal progression from normal aging to AD illustrating that polygenic

information can be used to identify cognitively normal older individuals at highest risk

for developing AD (preclinical AD). We found a strong relationship between PHS and

increased tau associated NFTs and amyloid plaques suggesting that elevated genetic risk

may make individuals more susceptible to underlying Alzheimers pathology. Consistent

with recent studies showing correlations between AD polygenic risk scores and markers

of Alzheimers neurodegeneration [38, 39], our PHS also demonstrated robust associa-
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tions with CSF A1-42 levels, longitudinal MRI measures of medial temporal lobe volume

loss and longitudinal CDR-SB scores illustrating that increased genetic risk may increase

likelihood of clinical progression and developing neurodegeneration measured in vivo.

From a clinical perspective, our genetic risk score may serve as a risk factor for

accurately identifying older individuals at greatest risk for developing AD, at a given age.

Conceptually similar to other polygenic risk scores (for a review of this topic see [18])

for assessing coronary artery disease risk [43] or breast cancer [44], our PHS may help in

predicting which individuals may test positive for clinical, CSF or imaging markers of AD

pathology. Importantly, a continuous, polygenic measure of AD genetic risk may provide

an enrichment strategy for prevention and therapeutic trials and could also be useful

for predicting which individuals may respond to therapy. From a disease management

perspective, by providing an accurate, probabilistic assessment regarding the likelihood

of Alzheimers neurodegeneration, determining a genomic profile of AD may help initiate

a dialogue on future planning. Finally, a similar genetic epidemiology framework may

be useful for quantifying the risk associated with numerous other common diseases.

There are several limitations to our study. We primarily focused on Caucasian

individuals of European descent. Given that AD incidence [45], genetic risk [42, 46]

and likely linkage disequilibrium in African-Americans and Latinos is different from

Caucasians, additional work will be needed to develop a polygenic risk model in non-

Caucasian (and non-US) populations. The majority of the participants evaluated in our

study were predominantly recruited from specialized memory clinics or AD research

centers and may not be representative of the general US population. In order to be

clinically useful, we note that our PHS needs to be prospectively validated in large

community based cohorts, preferably consisting of individuals from a range of ethnici-

ties. The previously reported population annualized incidence rates were not separately

provided for males and females [35]. Therefore, we could not report PHS annualized



20

incidence rates stratified by sex. Another limitation is that our PHS may not be able

to distinguish pure AD from a mixed dementia presentation since cerebral small vessel

ischemic/hypertensive pathology often presents concomitantly with Alzheimers neu-

rodegeneration and additional work will be needed on cohorts with mixed dementia to

determine the specificity of our polygenic score. Finally, we focused on APOE and

GWAS-detected polymorphisms for disease prediction. Given the flexibility of our ge-

netic epidemiology framework, it can be used to investigate whether a combination of

common and rare genetic variants along with clinical, cognitive and imaging biomarkers

may prove useful for refining the prediction of AD age of onset.

In conclusion, by integrating population based incidence proportion and genome-

wide data into a genetic epidemiology framework, we have developed a polygenic hazard

score for quantifying the age-associated risk for developing AD. Measures of polygenic

variation may prove useful for stratifying AD risk and as an enrichment strategy in

clinical trials.
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Chapter 3

Modeling the 3D Geometry of the

Cortical Surface With Genetic

Ancestry

3.1 Introduction

Knowing how the human brain is shaped by migration and admixture is a critical

step in studying human evolution [47, 48], as well as preventing the bias of hidden

population structure in brain research [49, 50]. Yet the neuroanatomical differences

engendered by population history are still poorly understood. Most of the inference

relies on craniometric measurements, because morphology of the brain is presumed

to be the neurocraniums main shaping force before bones are fused and ossified [51].

Although studies have shown that the shape variations of cranial bones are consistent with

population history [52, 53, 54], it is unknown how much human ancestry information

is retained by the human cortical surface. In our groups previous study, we found that

the area measures of cortical surface and total brain volumes of European descendants

22
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in the United States correlate significantly with their ancestral geographic locations in

Europe [55]. Here, we demonstrate that the 3-dimensional geometry of cortical surface

is highly predictive of individuals genetic ancestry in West Africa, Europe, East Asia,

and America, even though their genetic background has been shaped by multiple waves

of migratory and admixture events. The geometry of the cortical surface contains richer

information about ancestry than the areal variability of the cortical surface, independent

of total brain volumes. Besides explaining more ancestry variance than other brain

imaging measurements, the 3D geometry of the cortical surface further characterizes

distinct regional patterns in the folding and gyrification of the human brain associated

with each ancestral lineage.

3.2 Results

The participants were recruited as part of the Pediatric Imaging, Neurocognition,

and Genetics (PING) study. A detailed overview of the study can be found in previous

publications (e.g., [49, 50, 56]). Briefly, PING was a multi-site project recruiting children

and adolescents from ages 3 to 21 at 10 sites in the United States. All participants

were screened for history of major developmental, psychiatric, or neurological disorders;

brain injury; or other medical conditions that affect development. Participants then

received neurodevelopmental assessments, standardized multimodal neuroimaging, and

genome-wide genotyping. The overall PING sample consisted of 1,493 participants;

1,152 individuals remained after quality control of the genotyping and neuroimaging data

(for quality control processes and demographics of the participants, see Supplemental

Information and Table S1). We focused our analyses on 562 individuals older than 12

years (289 males, mean age: 16.6 years, standard deviation: 2.6 years). Considering

that the morphological features of cortical surface change little after age 12 [56], this
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stratified approach further reduced the residual confounds of developmental effects.

The proportions of genetic ancestry were estimated using principal component

(PC) analysis with whole-genome single nucleotide polymorphism (SNP) reference

panels for ancestry [57, 58, 59]. Four continental populations were used as ancestral

references: West Africa (YRI, as Yoruba in Ibadan), Europe (CEU, as Utah residents with

northern and western European ancestry), East Asia (EA), and America (NA, as America

natives). The metrics for summarizing genetic ancestry in each ancestral component were

standardized as proportions, ranging from 0% to 100%. These proportions represent how

similar an individual is to the reference population genetically [59].

3.2.1 Morphological Prediction for Genetic Ancestry

We first tested whether the surface geometry of the cerebral cortex predicted

the proportion of genetic ancestry among participants. To characterize variation in the

geometry, we reconstructed the cortical surfaces from all individuals T1-weighted scans,

then represented the positions of the corresponding surface vertices using standard 3-D

Cartesian coordinates. The reconstruction and registration processes ensure that each

vertex on the reconstructed cortical surface is located in a homologous position with

respect to the curvature patterns for individuals [15, 16]. Taking the coordinates of all

vertices as a whole, we then have information about shape variation of the cortical surface,

including aspect ratios, sulcal depth, and gyrification. The prediction models were fit

with ridge regression while treating gender, age, age squared, total brain volumes, and

the scanner on which the image data were acquired, as nuisance covariates. The model

performance was evaluated using leave-one-out cross-validation (LOOCV).

As Figure 3.1 shows, the geometry of the cortical surface has good predictive

value for each of the ancestry components. The variances explained by the models are

66% for ancestry in YRI, 55% for ancestry in CEU, 49% for ancestry in EA, and 47% for
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ancestry in NA. To determine to what degree the geometric differences reflect variation in

area expansion of cortical surface, comparable models were computed using vertex-wise

surface area (Table 3.1). Also, to examine possible roles in the prediction of simpler

morphological attributes, such as aspect ratios of the cerebrum and volumes of subcortical

structures, we conducted comparable analyses predicting ancestry from these measures.

None has as much information about ancestry as the geometry of cortical surface (Table

3.1).

Table 3.1: Percentage of Variance Explained in Different Predictive Models. Cortical
surface geometry and cortical surface area are sampled in icosahedral level 4, which
contains 642 vertices in each hemisphere. All models are fit with the same setting and
evaluated with leave-on-out cross validation.

Cortical Surface
Geometry

Cortical Surface
Area

Brain
Aspect Ratio

Subcortical
Volumes

YRI 66% 17% 10% 5%
CEU 55% 12% 2% 2%
EA 49% 9% 6% 6%
NA 47% 9% 9% 0%

3.2.2 Characterization of the Cortical Shape Morphs

We then reconstructed the 3D geometry of the cortical surface based on the

linear relationship we observed between cortical surface geometry and the proportion of

genetic ancestry. This allowed us to visualize how the geometry of the cortical surface

changes as a function of increasing proportion of genetic ancestry in each ancestral

component. The morphing of 3D cortical surfaces from neutral ancestry (25% of genetic

ancestry in all four components) to 100% ancestry in each component is demonstrated

in Figure 3.2. As Figure 3.2 illustrates, the textural contrasts between regions of the

cortical surface indicate that the morphing process has complex, unique patterns for each

ancestral component, while the intensity varies from region to region. For example, as
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the proportion of the YRI component increases, the temporal surfaces move posteriorly

and inward. The proportion of the CEU component is associated with protrusion of

the occipital and frontal surfaces. Increases in the proportion of the EA component are

accompanied by variations in temporal-parietal regions. The NA component is associated

with flattening of the frontal and occipital surfaces.

Figure 3.3 summarizes the mean magnitudes and variations of the morphing in

each cortical surface region defined by genetic correlations [19]. The mean magnitudes

vary from cortical region to cortical region, corresponding to the description above. In

addition, YRI, EA, and NA all have relatively high magnitude and variations of morphing

in the posterolateral-temporal region.

3.3 Discussion

Our data indicate that the unique folding patterns of gyri and sulci are closely

aligned with genetic ancestry. The geometry robustly predicts each individuals genetic

background even though the population has been shaped by waves of migration and

admixtures [57, 60]. Previously, only modeling of facial features has achieved 64%

of explained variance in the YRI ancestry among African Americans [61]. Our 3D

representation of cortical surface geometry performs similarly in predicting YRI ancestry

and also performs well for the other three continental ancestries. As data in Table 3.1

show, the explanatory power is not due to the differences in total brain volumes, nor

to the differences in areal expansion of the cortical surface. Instead, regional folding

patterns characterize each ancestral lineage.

On the other hand, the global shapes of the reconstructed cortical surface geometry

match W. W. Howells description on craniometry of 2,524 ancient human crania from 28

populations [62]. Crania of African ancestry tended to have a narrower cranial base, and
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those of Northern European ancestry had elongated occipital and frontal regions. Crania

of East Asian ancestry had a high cranial vault, and those of Native American ancestry

had a flatter cranium. Regarding the morphing differences of YRI, EA, and NA, all

had high magnitude and variations in the posterior-temporal regions (Figure 3.3).These

findings are consistent with the notion that temporal bones contain more variations across

ancestral groups [52].

At first glance, these results are surprising because our model is based on the

contemporary United States population, which is the historical product of migrations,

slave trades, and local admixture events [60, 63, 64]. Nevertheless, the coordinates

of reference-inferred PC space reflect information about individuals ancestral origins

[59, 63, 65]. Our groups previous study also showed that the individuals positions in the

PC space are matched with their ancestral locations, rather than their current geographic

locations [55]. Therefore, our 3D representation might, to a certain degree, reflect the

neuroanatomical and/or neurocranial changes along the human migratory path in the

dispersal from Africa [66]. More precise characterization of an individuals ancestral

origins would require more complex estimates of ancestry based on global-scale reference

panels [32]. Further understanding of neuroanatomical change along the Out-of-Africa

scenario based on brain imaging data will require future studies using sampling methods

similar to the Human Genome Diversity Project [67].

It is important to note that these ancestry-related geometric features of the cortical

surface are not substantially attributable to variation in cortical surface area. Previous

studies of ancient crania often interpreted the shape differences as evidence of relative size

alterations of different cortical functional domains [68, 51]. Our results suggest that in the

case of the contemporary population, the differences in cortical surface geometry might

not reflect variation in the relative surface area of different functional cortical regions.

In prior studies, regionalization of the cortex has been linked to cognitive differences in
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humans [49, 50]. Any functional significance of the cortical surface geometry, per se,

remains to be established. The effects reported here might be mediated by neutral drift of

the phenotypic variations [69]. They can also result from a complex interaction between

the brain and neurocranium, with the former expanding while the latter acts as physical

resistance. Nevertheless, the causal relationships between the observed shapes and crania

are beyond the scope of our current study.

An implication of our ancestry-related 3D models is that, unless properly con-

trolled, hidden population structures could present a challenge in brain imaging studies

of admixed populations [65]. The regional differences between ancestral groups include

changing sulcus depths and folding angles. This issue becomes particularly relevant

in large, multi-site U.S. and international brain imaging studies [70]. With the advent

of inexpensive, high-throughput genotyping, it is now possible to control for spurious

effects due to ancestry admixture using genetically derived admixture factors in the

statistical analysis of data [49, 50]. It is also possible that the phenomena we observed

are linked with specific ancestral haplotypes. It may therefore be possible to use the

ancestral information to improve statistical power for gene discovery with methods such

as admixture mapping [71].
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Figure 3.1: Predicting the proportion of genetic ancestry by cortical surface geometry.
YRI: Yoruban, as the West Africa ancestry. CEU: Utah residents with northern and
western European ancestry. EA: East Asia. NA: America natives. In all predictive
models, the variables have been residualized with respect to the age, age squared,
gender, total brain volumes, and scanner used. All models excluded individuals with
a 0 proportion of genetic ancestry to that specific component. LOOCV: leave-one-out
cross-validation. The colors of the data points are determined by the proportion of
genetic ancestry as illustrated in the figure legend.
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Figure 3.2: Color-coded morphing process of the 3D geometry of the cortical surface.
The still image illustrates how each vertex on the cortical surface morphs from an
ancestry-neutral 3D cortical surface (a 25% proportion of genetic ancestry in all ancestral
components) to a 3D cortical surface with a 100% proportion of genetic ancestry in
a specific ancestral component. The morphing coefficients were estimated from the
PING sample. Here, the colors represent the direction of the morphing process. Moving
along the medial-lateral axis is coded in red, along the anterior-posterior axis in green,
along the dorsal-ventral axis in blue. The final color is the combination of these three,
depending on which direction the vertices move. For each viewing perspective, the
coloring frame of reference is rendered on the top of each column. The length of each
morphing line is the actual distance between two 3D cortical surfaces.
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Figure 3.3: Mean magnitude and variations of morphing across 12 regions of cortical
surface. Labeled in the topmost images, the following regions are defined in a previous
publication [19]: 1. central region, 2. occipital cortex, 3. posterolateral-temporal
region, 4. superiorparietal region, 5. orbitofrontal region, 6. superiotemporal region,
7. inferiorparietal region, 8. dorsomedialfrontal region, 9. anteromedial-temporal
region, 10. precuneus, 11. dorsolateral-prefrontal cortex, 12. parsopercularis. The
Euclidean distances between cortical surface of 100% ancestry and neutral ancestry
were calculated for each vertex. Depending on the surface regions where the verticesare
situated, the mean and standard deviations of the Euclidean distances are shown in the
boxplots.



Chapter 4

Williams Syndrome-Specific

Neuroanatomical Profile and Its

Associations with Behavioral Features

4.1 Introduction

Williams Syndrome (WS) is a rare multi-system disorder caused by hemideletion

of 26 genes on chromosome 7. Although the cognitive impact of WS is evident in

general intelligence and visuospatial capabilities, the cardinal feature of WS cognition is

overly social behavior [72]. WS individuals express heightened social approach behavior

and social emotional behavior very early on, distinguishing them from others with

disorders that include intellectual impairment [73]. This had led to extensive research

using magnetic resonance imaging (MRI), in the hope of identifying the mediating neural

processes from genetic deletions to social behavioral impact [74]. Previous MRI studies

had found that what distinguishes WS from other genetic disorders with intellectual

impairment e.g., Down syndrome is not the reduced total brain volume per se, but the

32
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aberrant regionalization of the brain [75]. The most consistent findings are the gyral

patterns in the superior parietal regions and orbital frontal cortex, which were found to

be different between WS patients and healthy individuals [76, 77, 78, 79].

Yet the specificity of these findings to WS and relevance to its distinct behavioral

features were left unanswered. Differences in regional cortical surface area, such as

in lingual gyrus, post-central gyrus, and temporal poles, were also reported [80, 81].

Abnormalities in the Sylvian fissures (Eckert et al., 2006) and disproportional volumetric

changes of subcortical structures were also reported, but not consistent [79, 82, 83, 78].

Furthermore, the diagnostic process for WS requires that clinicians identify individuals

with WS features and use fluorescent in situ hybridization (FISH) to confirm. This pre-

cludes identification of individuals who have different deletions in the WS chromosome

region (WSCR), resulting in slightly altered profiles of WS features. A recent analysis

focused on cases of individuals with atypical deletions in the WSCR suggested that

the varying size of the deletion would result in different behavioral profiles [84], which

conceivably would make it difficult to identify those individuals in clinical settings. The

rarity of both typical and atypical WS individuals makes the quantitative comparisons

across MRI measures and groups impractical.

Here, we re-examined the WS-specific neuroanatomical profile using a novel

analytic approach with the aim of developing a scoring system to quantify WS neu-

roanatomical variations. First, we extracted the WS-specific neuroanatomical profile

from an adult WS cohort, using multiple measures derived from structural MRI of

cerebrum, including subcortical volumes, cortical surface area [8, 9], sulcal depth [77],

and cortical surface geometry [85]. To deal with the large number of MRI measures

and limited sample size, we used an elastic-net model to achieve balance between the

robust prediction and sparseness for easy interpretation. The resulting model provides

the basis for calculating WS neuroanatomical scores that represent the similarity of an
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individuals brain to the WS given his/her multimodal MRI features. The generalizability

of the WS-specific neuroanatomical profile was then tested in an independent child WS

cohort. After establishing the generalizability of the model, we examined whether the

WS neuroanatomical scores could reflect the reduced size of genetic deletions in WSCR

and whether the scores were associated with the behavioral features of WS.

4.2 Methods

All participants were recruited as part of a multi-project program, including two

cohorts in current analyses, one as child cohort and the other as adult cohort. Except

time of recruitment, age differences, additional diagnostic groups, and behavior mea-

sures, the protocols for inclusion and imaging acquisition were kept the same, which

were described in separate publications [86, 87]. Participants were screened based on

the following measures: normal or corrected vision/hearing, English native-language

speaker, and no remarkable mental health history. Caregivers completed an interview and

extensive demographic and family history questionnaires to assess whether participants

met the screening criteria. Caregivers and child participants provided consent and assent,

respective, for participation. Individuals with intellectual disabilities required a more sim-

ple, verbally delivered description for assent along with guardian informed consent. All

procedures were explained in person, within the testing environment, with the caregiver

present, to show the participants more concretely what to expect. They could choose

at any time to withdraw from participation, even after beginning. Study protocols were

approved by the Institutional Review Boards at the Salk Institute and at UCSD.
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4.2.1 Adult WS Cohort

The adult cohort, on which the WS-specific neuroanatomical profile was trained,

consisted of 22 individuals with typical WS deletions (approximately 26 genes in the

WSCR 7q11.23 region) as well as 16 healthy controls (HC) (Table 4.1). Part of this cohort

has been involved in a series of MRI studies for WS that were published elsewhere [86,

88]. The diagnosis of WS was based on clinical presentation (WS Diagnostic Score Sheet)

and confirmation of meeting genetic criteria for WS using fluorescent in situ hybridization.

HCs were screened for a history of neurological disorders, psychiatric illness, and

substance abuse. Intellectual functioning was assessed with the age-appropriate version

of the Wechsler tests to include the Wechsler Adult Intelligence Scale 3rd Edition,

Wechsler Abbreviated Scale of Intelligence (WASI), and Wechsler Intelligence Scale

for Children 3rd Edition WISC-III [89]. Sociability was assessed with the Salk Institute

Sociability Questionnaire (SISQ) [73].

4.2.2 Child Cohort

The generalizability of the WS-specific neuroanatomical profile was tested with a

cohort of 60 children (age range 6 to 13 years): seven individuals with WS, 23 typical

developing children (TD), and 30 individuals with heterogeneous diagnoses to include

high-functioning autism (HFA), specific language impairment (SLI), and focal lesions in

the brain (FL). The demographic characteristics of each cohort are shown in Table 4.1.

Children with WS were diagnosed using the same criteria as adults with WS. Subjects

in the TD group were recruited from the community, had scores on a standardized test

of intellectual functioning (WASI) in the normal range and no history of developmental

or language delay. Individuals with HFA, SLI, and FL were recruited from populations

at a local pediatric neurology clinic and a clinic for speech and language disorders
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[87]. Detailed recruiting procedures and diagnostic criteria can be found in previously

published studies [87].

4.2.3 Individuals with Atypical Deletions in WSCR

We further examined if the scores from the trained model for WS-specific neu-

roanatomical profile can identify whose brain phenotypes lie between WS and HC, such

as individuals with reduced deletion size on WSCR. We tested our model on five indi-

viduals from one family with small deletions on chromosome 7q11.23, sparing regions

coding for FZD9, GTF2I, and GTF2IRD1 [84].

4.2.4 Imaging Acquisition and Extracting Multimodal MRI

Features

All participants were scanned on a 1.5 Tesla MRI scanner (GE HDxt, echo time

(TE) = 3.0 msec, repetition time (TR) = 8.7msec, inversion time = 270 msec, flip angle

= 8o, field of view = 24 cm, voxel size = 1.25x1.25x1.2 mm). To reduce and prevent

possible motion artifacts, real-time prospective motion tracking and correction (PROMO)

was used for all participating subjects [90, 91]. Distortions caused by nonlinearity of the

spatial encoding gradient fields were corrected with predefined nonlinear transformations

[92] . Non-uniformity of signal intensity was reduced with the nonparametric nonuniform

intensity normalization method [93]. After initial image data inspection and quality

control, T1-weighted images underwent automated volumetric segmentation and cortical

surface reconstruction using methods implemented in Freesurfer software [8, 9]. This

automated processing corrects variations in image intensity due to RF coil sensitivity

inhomogeneities, registers to a common reference, then segments volumes into cortical

and subcortical structures. For each cohort, one staff research associate performed quality



37

control (QC) of the surfaces and segmentations for all MRI images at the same time,

blind to age and group identification. Both the child cohort and the adult cohort went

through the same QC processes. The segmentations and reconstructed surfaces were

inspected for accuracy, manually edited using control points, and iteratively re-processed,

blind to age or group labels, to ensure consistent quality across different cohorts.

Four different morphological measures of T1-weighted images were derived,

including the volumes of subcortical structures [8], sulcal depths of the cortical surface

[77], cortical surface area [9], and geometric deformations of the cortical surface [85].

Sulcal depth is the distance from each point on the cortical surface to the average mid-

plane of the cortical surface, measuring gyrification of the brain. Cortical surface area

expansion is the area surrounding a given cortical surface point relative to total cortical

surface area. The geometric deformation is the 3D Cartesian coordinates of the cortical

surface, characterizing the folding patterns of the brain. Subcortical structure volumes

were divided by total brain volumes, and sulcal depths and geometric deformations were

divided by the cubic root of each total brain volume to produce a uniform index, as well as

to control for the global brain volume differences. Those imaging features were selected

as a comprehensive representation of the neuroanatomical variations of the human brain

possible with structural MRI without unnecessary a priori defined regions of interest.

4.2.5 Model Training

To characterize the WS-specific neuroanatomical profile from MRI measures,

we fit an elastic-net logistic regression using data from the adult cohort and checked

their performance with 10-fold cross validation. The index for model performance was

area under curve (AUC) in the ROC analysis. The model included all four types of MRI

measures; that is, cortical surface area (642 vertices-per-hemisphere), sulcal depths of

cortical surface (642 vertices-per-hemisphere), cortical surface geometry (642 vertices-
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per-hemisphere, each with 3D Cartesian coordinates), and subcortical volumes (thalamus,

caudate, putamen, globus pallidum, hippocampus, amygdala, nucleus accumbens, and

ventral caudate). To achieve the goal of balancing between predictive power and parsimo-

nious solution, we used the ridge penalties to reduce the problem of rank deficiencies and

additional lasso penalties for removing less relevant features [94]. The tuning parameters

were optimized during the cross-validation.

4.2.6 Model Validation

After deriving the WS-specific neuroanatomical profile from the previous training

step, the model was applied to the whole child cohort in predicting WS status out of a

heterogeneous group. The model was also applied to individuals with atypical deletion

size in the WSCR to examine if the scores were in-between the typical WS and HC.

Afterward, the relationships between model-predicted scores and behavioral measures

were explored using mediation analysis. Within-group variations were examined using

Pearson correlations while Sobel tests were used to test whether the group differences

were mediated by the neuroanatomical profile.

4.3 Results

In classifying WS status, the 10-fold cross-validation AUC of the WS-specific

neuroanatomical profile achieved 100% in the adult WS cohort (two-tail test for AUC

greater than 0.5, p ¡ 0.05). The model removes 98.4% of the input variables, leaving

412 features from four MRI measures. Among individuals with atypical deletions in

WSCR (atypical WS), their predicted scores of the WS-specific neuroanatomical profile

lay between typical WS and HC, which is significantly greater than HC (t19 = 9.4, p ¡

10−7), and less than patients with typical WS (t25=-2.2, p = 0.038). To further test the
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generalizability of the model, we applied the WS-specific neuroanatomical profile to the

whole child cohort. In this independent cohort, the profiling scores have AUC with 1.0

in predicting WS status, achieving 100% sensitivity and 100% specificity with various

decision cut-points (Figure 4.1).

Figure 4.1: Boxplot of model predicted scores from trained WS-specific neuroanatomi-
cal profile across groups in the child cohort. The predicted scores of each group were
demonstrated as median and inter-quartile range. The outliers were label as red-cross.
Among them, children with WS have higher scores, none overlapping with any other
group, that yield AUC of ROC analysis with one.

The cortical surface features extracted by the model are shown in Figure 4.2. The

weights of selected features reflect the relative importance for predicting WS. Selected

local features can be observed across different cortical surface regions, yet sparing

the dorsal and medial part of the frontal cortex. The orbitofrontal cortex and superior
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parietal cortex contain predictive features consistently across all three cortical surface

measures (Figure 4.2). In addition, the cortical surface area contained predictive features

in the Sylvian fissure and temporal poles. Two subcortical structures were also selected.

Disproportionally decreasing sizes of left putamen (weights = -0.010) and left nucleus

accumbens (weights = -0.014) were predictive for WS status.

The relationships among WS status, the WS-specific neuroanatomical profile,

and behavioral function of WS are illustrated in Table 4.2. The Sobel tests for mediation

indicate that the group differences in general intelligence, SISQ stranger score, and

SISQ empathy score are largely explained by the mediating effect of the WS-specific

neuroanatomical profile (all p values ¡ 10−3, Bonferroni corrected). In the within-group

analyses, the variations of the WS-specific neuroanatomical profile are significantly

associated with SISQ empathy scores, with a trending p-value after applying Bonferroni

correction for 9 independent tests (corrected p = 0.063).

4.4 Discussion

In this study, we sought to use a novel approach for characterizing the defining

features of a WS-specific neuroanatomy and relating it to behavior. Features within the

orbitofrontal cortex, superior parietal cortex, and Sylvian fissures were predictive for WS

status across MRI measurements (Figure 4.1). Disproportional reductions in the putamen

and nucleus accumbens are also important features for predicting WS status. The robust

performance of our extracted WS-specific neuroanatomical profile are consistent in both

adult and child cohorts (Figure 4.1). We also demonstrated that the scores for individuals

with atypical deletions on WSCR lay between the WS and HC, and were associated with

cardinal behavioral features of WS (Table 4.2).
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MRI studies of WS have focused on localizing the neuroanatomical abnormalities

[86, 76, 77, 95, 96, 88]. Although WS individuals have smaller brains in general,

early studies have shown that the reductions are not uniformly distributed across brain

regions [75]. Gyrification abnormalities in the orbitofrontal cortex, Sylvian fissures,

and superior parietal regions have been reported [86, 76, 77, 88]. Some have found

that amygdala volumes are disproportionally increased [82, 83] while others found

no significant changes [79, 78]. The joint relationships across these neuroanatomical

features were seldom examined in WS [74, 97]. One study had used tensor metrics of

cortical surface to predict WS status in adult cohorts [97]. Different from what they

attempted, our study aimed to evaluate all MRI measurements jointly, and the WS-specific

neuroanatomical profile achieved 100% AUC in the independent child cohort (Figure

4.1).

Our sparse representation of WS profile matched with previously hypothesized

causes of the behavioral profile of WS patients [79, 76, 88]. The selected features of

cortical surface area located at the orbitofrontal, temporal parietal junction, and insula

(Figure 4.2) are relevant to social functions [98, 96, 99]. The superior parietal region

has been linked most strongly to the visuospatial processing deficits in WS [79]. Our

mediation analyses using the Sobel test showed that the WS-specific neuroanatomical

profile explained more variability in the behavioral measures than the WS status itself.

This suggests that the WS-specific neuroanatomical profile may capture the underlying

neuroanatomical factors that drive the related cognition and social behaviors. Since our

behavioral analyses are limited in the WS adult cohort, we envision that longitudinal

studies among children can be helpful to further establish the causal relationships between

observed neuroanatomical profile and behavioral features of WS. Nevertheless, the robust

performance of the WS-specific neuroanatomical profile in our child cohort suggests

these features are already expressed during childhood.



42

Furthermore, case studies have indicated that atypical WS patients with smaller

genetic deletions have lower social ratings than typical WS patients [73]. The telomere

side of WS-related chromosomal regions, which tends to be spared in smaller deletions,

contains genes such as GTF2I and GTF2IRD1, which have been associated with social

behaviors in mouse models [100, 101]. Very recently, a study using induced pluripotent

stem cells from WS suggested FZD9 may be responsible for aberrant neurodevelopment

[102]. Our data show that individuals with smaller deletions would have lower WS-

specific anatomical scores than typical WS while those scores are positively correlated

with hypersociability. These findings suggest that our extracted WS-specific profile of

features might relate directly to the underlying genetic cause of hypersociability in WS.

Our study has several limitations. The training samples for the WS-specific

neuroanatomical profile are relatively small compared with other machine-learning appli-

cations [94]. Small sample sizes are common in published studies of WS, considering

that the prevalence of WS is rare [72]. Direct group comparisons across multiple MRI

measures would suffer the burden of multiple hypotheses testing. Our approach for

extracting WS-specific features circumvents this limitation of group comparisons. We

kept a careful balance between interpretability and predictive power, achieving 100%

AUC in both cross-validation of the adult cohort and the independent testing child co-

hort. Even though the robustness of the predictive performance is ensured, the feature

selections are nevertheless constrained by the number of training samples [94]. This

may explain why some previous reported neuroanatomical abnormalities, such as the

amygdala [79, 82, 83], are not selected as predictive features. The neuroanatomical

differences between WS patients and controls are not limited to regions we selected.

The differences may be more similar to locally smoothed gradients. Meanwhile, it is

also unclear how sensitive the WS-specific neuroanatomical profile is to the scanning

protocols. Although our results indicate that our model can identify WS in different age



43

ranges from a very heterogeneous developmental cohort, the MRI images of training

and testing samples were obtained and processed with the same protocol. Applying our

WS-specific scores in other settings would be a further test of its clinical and research

utilities.

Taken together, our novel multidimensional imaging approach captures the

widespread differences observed within the neural architecture of individuals with WS.

The model can have direct clinical applications, such as measuring the neuroanatomical

phenotype of atypical WS with different sizes of deletions on WS chromosomal regions.

Furthermore, a major benefit of our analytic strategy is that the extracted features can

be readily applied to other imaging datasets. Applications of the extracted features on a

large imaging genomic cohort would further inform research on the genetic influences of

social behaviors.
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Figure 4.2: Elastic net model learnt features for predicting WS status. The blue or red
indicates that the surface measures at that region were selected to be discriminative
features. The red represents WS individuals with increased value of measures on
that region ,whereas the blue represents the decreased value of measures among WS
individuals. The magnitude of those colors indicates their relative importance for
classifying WS and HC.
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Table 4.2: Mediating effects and within-group correlations between model predicted
WS neuroanatomic scores and behavioral measures. The mediating effect is checked
with Sobel test for mediation, treating model predicted WS neuroanatomic scores as the
mediator and each behavioral measure as dependent variable.

Mediating Effect Within HC Within WS
FIQ z = -6.31 p = 1e-10 r = 0.29 p = 0.34 r = 0.18 p = 0.52
SISQ V Stranger z = 3.73 p = 9e-5 r = -0.01 p = 0.96 r = 0.10 p = 0.74
SISQ - Empathy z = 4.61 p = 2e-6 r = 0.09 p = 0.74 r = 0.70 p = 7e-3



Chapter 5

Williams Syndrome neuroanatomical

score associates with GTF2IRD1 in

large-scale magnetic resonance

imaging cohorts: a proof of concept for

multivariate endophenotypes

5.1 Introduction

The morphology of an adult brain represents a holistic snapshot of a unique

neurodevelopmental history; its variations are an accumulation of dynamic processes

working in concert with few constraints [103]. Different brain regions share the same

original sets of proto-structures emerging from interactive molecular signaling programs

during early embryonic stage. Post-natal brain growth, myelination and subsequent

regressive processes leading to mature functional circuits provide further overlap in

47
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the processes giving rise to adult brain morphology. These developmental processes,

furthermore, are guided by distributed patterns of gene expression, interactions with

the environment and operate under spatial constraints imposed by the cranium that may

link the morphology of various parts of the adult brain [103, 104]. Consequently, the

perturbation of a developmentally critical gene often results in diverse morphological

abnormalities not limited to a single brain region [105, 100, 81]. Given this, it is

reasonable to expect that variability interjected into neurodevelopment via a genetic

variant may not only contribute to variability in the MRI derived morphology of a single

delineated brain region, but also to covariance among multiple regions [104].

However, genetic studies of neuroanatomy using magnetic resonance imaging

(MRI) continue to prioritize morphological measures on specific landmark-defined brain

regions, such as the volumes of subcortical nuclei [13] or average thickness of cortical

parcellations [106]. Although this approach captures some genetic effects of structural

variations, it bypasses the fact that the morphological state of an adult brain is the sum of

previous developmental processes across brain regions. These landmark-defined regions

of interest (ROIs) therefore may have lost genetically relevant information by ignoring

co-varied components, while concurrently introducing irrelevant variance by combining

measures from genetically unrelated neighbors [107].

TThe limitations of this ROI approach are most evident in the context of studying

effects on neurodevelopment, as the age-dependent processes have been shown to consist

of a gradient spreading across the cortical surface without a discernable relationship to

traditional anatomical landmarks [50]. Past efforts to redefine the imaging phenotypes

beyond landmark-based ROIs include learning a sparse representation from patients with

Alzheimers disease [107] or redrawing ROIs based on the genetic correlations from twin

studies [19, 10]. These methods can be conceptualized as projecting the multidimensional

measures of MRI onto a lower dimensional axis while filtering out components irrelevant
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to the genetic signals. Such methods have seldom focused, however, on neurodevelop-

mental disorders, such as Williams Syndrome (WS), that have larger neuroanatomical

impacts and more finite candidate genetic regions attributable to the neuroanatomical

differences. Since statistical power is the most critical factor for identifying genes through

associations [108], a redefined MRI measure that contains more relevant genetic signals

and reduces the burden of multiple comparisons can greatly facilitate the discovery of

neurodevelopmental genes.

WS is a multi-systemic disorder caused by hemi-deletion of roughly 27 genes

on chromosome 7, resulting in cardiovascular morbidities, intellectual impairment, and

hypersociability [95, 72]. Besides a decrease of about 11% in brain size, patients

with WS have aberrant regionalization of cortical surfaces as assessed with brain MRI,

particularly in superior parietal regions and the orbitofrontal cortex [76, 75, 77, 78, 96].

Animal models have suggested GTF2IRD1, a gene-encoded general transcription factor,

as one of the most promising candidate genes for neuroanatomical differences in WS

[100, 109, 101, 84]. Genetic perturbations on GTF2IRD1 have recently been associated

with dog friendliness toward humans [110].Despite such findings in animal models,

associations of this gene with brain or behavioral phenotypes in the healthy human

population are lacking. Without association studies on brain phenotypes in healthy

human populations, it remains unclear whether common genetic variants on those genes

have an impact on typical brain development.

Here, we describe a novel two-pronged approach to capturing genetic effects on

neurodevelopment. First, using one single score to represent the global neuroanatomical

variations, and a candidate genes approach by examining only the WS region, we limit

the effect-size requirements imposed by Bonferroni correction. Second, and more

important, we increase the sensitivity of the anatomical phenotype by using a single

derived score calculated from multidimensional MRI measures. In our previous work,
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we derived a single global measure that characterizes how WS brains are structurally

different from controls, across multiple parameters in multiple locations [85]. In this

study, we demonstrate that the WS neuroanatomical score can be regarded as an MRI

endophenotype, enriched in genetic information pertaining to neurodevelopment. By

applying the neuroanatomical scores to five imaging genetic cohorts with brain MRI and

single nucleotide polymorphisms (SNP) data (n = 1863 healthy European descent), we

demonstrate, for the first time, that a common variant in GTF2IRD1 is associated with

variation in brain structure (Bonferroni corrected p = 0.023). The genetic signals are

more enriched than traditionally defined ROI and have significantly high SNP-heritability

(h2 = 0.82, se = 0.25, p = 5e-4). Our results provide a proof of concept for the strategy of

using multivariate structural measures as a derived intermediate phenotype for genetic

association studies.

5.2 Methods

5.2.1 Participants

We selected 1,863 healthy imaging genetics subjects from five independent co-

horts: 184 were from the Alzheimers Disease Neuroimaging Initiative (ADNI) [111], 653

were from the Nord-Trndelag Health Study (HUNT) [112], 325 were from the Norwegian

Cognitive NeuroGenetics (NCNG) [113], 250 were from the Thematically Organized

Psychosis study (TOP) [114], and 451 were from the Pediatric Imaging Neurocognition

and Genetics Study (PING) [115]. From each study, only healthy, unrelated, European

ancestry subjects were retained for analysis. Because the WS neuroanatomical scores

were nevertheless trained on an adult WS cohort [116], the residual confounding of age

effect might have an impact on the association. Given that the PING study contains

the youngest individuals across all cohorts, we further stratified the PING sample into
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two subcohorts, one for those ages 16 years and older, and the other for those younger

than 16. Each study collected 3D T1 MRI images according to comparable acquisition

protocols and was processed with the same FreeSurfer reconstruction protocols. Whole

genome genotypes were imputed according to the same Mach/Minimac procedure using

the 1000 Genomes Project as a reference. Estimated dosages of 110 SNPs falling within

the WS hemi-deletion region (chromosome 7q11.23, 72Mb-74Mb, hg19) were imputed

with good quality in all cohorts and selected for analysis.

5.2.2 Derivation of the Williams Syndrome Neuroanatomical

Scores

We used a penalized regression model to calculate WS neuroanatomical scores

given individuals MRI measures. Full details of the training and validation of the model

have been published elsewhere [85]. Briefly, 3D T1 MRI images were obtained on 22

Williams Syndrome patients and 16 healthy controls. A multivariate regularized logistic

regression was trained to discriminate WS patients from healthy controls on the basis of

30760 predictors, including estimated cortical surface area [9], cortical surface geometry

[85], and sulcal depths [77] for each of 5124 reconstructed vertices and the volumes of 16

subcortical structures [8]. In order to capture the subtle morphological reorganizations of

the WS brain, intra-cranial volumes (ICV) was used as a covariate to ensure overall brain

size was not driving the classification. For each subject in our healthy imaging genetics

cohort, we applied the resulting discriminative weights to the same neuroimaging feature

space, summarizing this high dimensional data with a single, composite neuroanatomical

score reflecting their morphological variations on the axis between healthy individuals

and patients with WS. Figure 5.1 illustrates the flowchart of the analytic strategy and

visualization of the weights for contributing neuroimaging measure to the final composite

scores.
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Figure 5.1: Flow chart of the study design. The first stage of the analysis (Training) was
deriving neuroanatomical scores based on case-control data, which has been published
elsewhere [116]. The second stage of the analysis (Candidate Region Associations) is
the focus of this paper, wherein we directly apply the neuroanatomical scores from large
scale imaging genetic cohorts without further calibration of the model parameters.

5.2.3 Candidate Region Association Analysis

Each imputed SNP dosage was regressed against the composite WS neuroanatom-

ical score while controlling age, age squared, gender and the first seven principle com-

ponents of genetic ancestry as potentially confounding covariates. For each SNP effect

was estimated in each cohort separately and combined post-hoc according to an inverse

variance weighted meta-analysis implemented in PLINK. To account for multiple com-

parisons, we used a Bonferroni adjustment for the 110 linked SNPs. Our significance

threshold was set to p ¡ 0.05/110 = 0.00045, conservatively controlling for 110 correlated
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tests. We then used CAVIAR to determine which SNP is the potential causal variant

[117].

5.2.4 Local Enrichment and Global SNP Heritability

To demonstrate the enrichment of local genetic signals by using newly defined

WS neuroanatomical scores, we performed the quantile-quantile plot comparing log10(p)

between our SNP associations in the WS chromosomal regions and summary statistics

of ROI approach from ENIGMA consortium (n = 12,596) 5. Despite of the scale of

our imaging genetic cohorts, the sample size is considered as modest in the context of

genome-wide association studies. Therefore, to prevent under powered genome wide

analyses while quantifying the global genetic signals of WS neuroanatomical score,

we used Genome-wide Complex Trait Analysis (GCTA) [118] to estimate the variance

explained by all of the SNPs on the entire genome (i.e., the SNP-heritability).

5.3 Results

The training and validating of WS neuroanatomical scores have been published

elsewhere [116]. In short, the derived neuroanatomical scores robustly distinguished

WS from other groups in both the training set (leave-one-out cross-validation area under

curve as 100%) and the validating set (area under curve as 100%). The composite

WS score significantly mediates the cognitive differences between cases and controls,

especially tests quantifying social behaviors 25. Having derived this multivariate measure

which characterizes WS, we then applied the score to healthy imaging genomic cohorts.

Each healthy individuals MRI measures were combined into one single score given the

derived weights of WS neuroanatomical score. The score of cohort members is normally

distributed and not correlated with genetic ancestry.
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The associations between SNPs and neuroanatomical score in imaging genomic

cohorts are shown in Figure 5.2 and Figure 5.3. One locus containing 3 SNPs located at

GTF2IRD1 showed statistical significance after Bonferroni correction (Figure 5.2, top

SNP, rs2267824, corrected p = 0.023). Effect sizes of the associated SNP were consistent

across cohorts (Figure 5.3) except for the cohort with individuals younger than 16 years

old. After excluding individuals younger than 16 years old, the association of rs2267824

became stronger (reference allele: C, coefficient: 0.018, corrected p = 5.5e-3). CAVIAR

confirmed that the region contains one single locus and rs2267824 was the potential

causal variant. In addition, one SNP within 250kb of FZF9 showed nominal significance

(rs2237280, uncorrected p = 0.00627).

Figure 5.2: Regional plot of the associations between SNP dosage and WS neu-
roanatomical scores. The results of 110 SNP associations were plotted against gene
annotations and physical positions. The coloring of each SNP represents the linkage
disequilibrium with the top SNP, rs2267824.
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Figure 5.3: Meta-analysis and stratified analyses of the associations with rs2267824.
The reference allele is set as C while the coefficients were unitless, as the WS neu-
roanatomical scores were similarity measures range from 0 to 1.

The quantile-quantile plots compared with associations from the ENIGMA study

demonstrated significantly enriched genetic signals in the WS chromosomal regions when

using the WS neuroanatomical score (Figure 5.4). In terms of global genetic signals,

the WS neuroanatomical score has high heritability (h2 = 0.82, se = 0.25, p = 5e-4)

despite the fact that less than one percent of phenotypic variation can be explained by the

potential causal SNP, rs2267824.
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5.4 Discussion

Here we demonstrate that the WS neuroanatomical score can be regarded as an

MRI endophenotype, enriched in genetic information pertaining to neurodevelopment.

By applying the neuroanatomical score to five imaging genetic cohorts, we show that a

common variant in GTF2IRD1 is associated with variation in brain structure. The genetic

signals were more enriched than traditionally defined ROI and have significantly high

SNP-heritability. Our results provide a proof of concept for the strategy of using multi-

variate structural measures as a derived intermediate phenotype for genetic association

studies. An optimized multivariate MRI procedure defines the intermediate phenotype

that can accurately capture the continuous nature of the underlying brain variations, thus

providing greater power for detecting genetic associations.

The associations between GTF2IRD1 and the WS neuroanatomical score support

a critical role of this general transcription factor for normal brain development, and

specifically for one of the characteristic personality traits of WS. WS has a unique neu-

roarchitecture compared to other developmental disorders with intellectual impairment,

but few studies have tied anatomical changes to strikingly heightened social behavior

[74, 76, 77, 78, 88]. Previous case studies of partial hemi-deletions in WS indicate that

the region telomeric to 7q11.23, which includes GTF2IRD1, is crucial for the changes in

social behaviors characteristic of WS [100, 84, 119]. Animal models also support the role

of textitGTF2IRD1 in brain development [100, 109, 101]. In particular, a recent study

on dog friendliness found the genetic variations on GTF2IRD1 and textitGTF2I were

positively selected for the tendency to socially engage with humans [110]. Our results

provide converging evidence for the role of GTF2IRD1 in human brain development and

social cognition.

It is likely that other genes also affect the neuroanatomical profiles we defined
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here, and they may act synergistically in producing the observed phenotype. For example,

a study of neuron-like cells derived from stem cells in WS demonstrated reduced neuron

proliferation and enhanced dendritic elaboration resulting from the perturbation on FZD9

[102]. As our associations found a suggestive signal located at the FZD9, although

much weaker than the main GTF2IRD1 effects, it nevertheless jointly contributed to the

variations in neuroanatomical profiles. This interpretation is supported by the effects

of partial hemi-deletions which spare the FZD9 gene [102, 84, 116]. We found that

although WS neuroanatomical scores were increased among these subjects, it is much

weaker than in those with a typical hemideletion [116]. Further evidence for synergistic

effects were found in studies implicating both GTF2IRD1 and FZD9 in the Wnt pathway

[105, 120, 121].

In addition, we found significantly high heritability of the observed variations

in our defined neuroanatomical score, indicating polygenic contributions. Although the

neuroanatomical scores were highly specific to WS status among patient groups [116],

the variations in scores among healthy adults can represent the accumulation of multiple

developmental processes with diverse genetic perturbations, each with small effects. This

phenomenon is compatible with the theory of the modularized genetic networks in which

canalized phenotypes, e.g. typically developed brains, can tolerate many small genetic

perturbations unless genetic hubs are drastically disturbed [81, 4]. In this framework, the

WS deletions would represent a large perturbation of a neurodevelopmental process which

in typical developed individuals only shows small variations attributable to regulatory

genes across the genome. Although our WS neuroanatomical scores were enriched

for WS relevant genetic effects, it nevertheless characterized an underlying canalized

developmental process. Using our analytic strategy with diverse genetic developmental

disorders may provide further insight into this enduring question about phenotype-

genotype mapping.
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In sum, our results provide further support for the role of GTF2IRD1 in the

Williams Syndrome phenotype and a proof of concept for deriving multivariate MRI

phenotypes for genotype-phenotype studies. This strategy may prove useful in other neu-

rodevelopmental disorders that typically have restricted genetic deletions or alterations.

In addition, more accurate measurement of the neuroanatomical phenotype should also

provide greater power for genetic studies of diseases such as schizophrenia and autism

spectrum disorders where the genetic basis is distributed across the genome, and should

ultimately facilitate the discovery of other mediating paths from genes to disorders.
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Figure 5.4: Local enrichment of genetic signals comparing to ENIGMA summary
statistics. Quantile-quantile plots were based on the comparison between our results
and summary statistics from ENIGMA study. Only SNP associations from the WS
chromosomal regions were included in this analysis. Despite ENIGMA is almost 10
fold larger sample size than our current study, the genetic signals were enriched in
our analyses as the tails of quantile-quantile plot significantly deviate away from the
expected null. Upper left, compared to associations between SNPs of WS chromosomal
regions and intra-cranial volumes (ICV) in ENIGMA. Upper right, compared to associa-
tions between SNPs of WS chromosomal regions and Putamen volumes in ENIGMA.
Lower left, compared to associations between SNPs of WS chromosomal regions and
hippocampal volumes in ENIGMA. Lower right, compared to associations between
SNPs of WS chromosomal regions and amygdala volumes in ENIGMA.



Chapter 6

Determining the tree-structured

topology of the human cortical surface

from vertex-based genome-wide

association study summary statistics

6.1 Introduction

Characterizing the influence of genetic variation on the organization of the human

brain is critical for understanding the biological mechanisms controlling neural develop-

ment and brain-related disease susceptibilities [122]. Although, structural features of the

brain as measured by, e.g., magnetic resonance imaging (MRI), have been shown to be

heritable [123, 124, 11], modularly organized [19, 10], and close to pathological process

of diseases [96], determining which regions are under common genetic control, and to

what degree, are not trivial to address. With the advent of genome-wide association

studies (GWAS), it has been possible to identify genetic variants that are associated with

60
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MRI-determined features of the brain [14]. However, due to the inherent multidimen-

sional nature of data generated by MRI, which often involves thousands of sampling

points (vertices/voxels) on cortical surface, researchers often reduce the data and define

broad regions of interest (ROIs) to focus studies and reduce the burden of multiple hypoth-

esis testing on statistical power for detecting associations. The highly multidimensional

nature of MRI data is further compounded in genetic studies, particularly GWAS, where

one may want to test millions of variants for association with MRI-derived phenotypes.

Many strategies have been proposed for reducing this burden, including averaging over

a set of MRI vertices from anatomically pre-defined regions [125, 12], using penalized

regressions to jointly model SNP effects on clusters of vertices [20, 21], and applying

polygenic scores from GWAS to specific MRI-derived phenotypes [126, 127]. These

analysis methods all require the use of data from each individual, which can not only

be hard to obtain if one wants to combine multiple data sets to increase power, but

can also be computational challenging if one wants to relate all the genetic variants

to each of the voxels (or subsets of them) simultaneously [14]. In addition, analysis

methods, such as partial least squares and canonical correlation analysis methods, that try

to relate very large sets of independent variables (such as genetic variants in a GWAS) to

many dependent variables (such as individual voxels from an MRI analysis) are often

very difficult to interpret, hard to generalize, and even more difficult to replicate given

uncertainty in relevant parameter estimates without extremely large sample sizes. Since it

is often the case that summary statistics of GWAS results, possibly applied to each voxel,

are available or can be generated quite easily using standard GWAS analysis methods,

analysis strategies that take require only summary statistics are an attractive alternative.

Leveraging GWAS summary statistics to look for patterns across studies focusing

on different phenotypes is not entirely new. In fact, many methods to pool summary

statistics from GWAS across multiple traits have been proposed [128, 129, 130, 131].
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Unfortunately, many of the methods that combined summary statistics from GWAS

studies rely on different assumptions about the relationships between the variants and the

phenotypes of interest, must account for linkage disequilibrium (LD) between the variants

(often Single Nucleotide Polymorphisms (SNPs)), and often have poor power to detect

associations across the studies [132, 133, 134, 135]. Thus, if used in the characterization

of genetically-mediation neuroanatomical patterns in the brain based on MRI data they

could result in neuroanatomical topologies that are highly uncertain and lack confidence.

This is particularly problematic given that most imaging genetics studies that combine

GWAS data with MRI data since available summary statistics with sample sizes larger

than 10,000 are derived from studies that focused on defined metrics and brain regions of

interest, such as hippocampal volumes [13].

We have developed a novel and intuitive analytic framework that leverages sum-

mary statistics from voxel-based MRI GWAS to identify and characterize the genetically-

mediated neuroanotomical topology of the human cortical surface. Our methods rely

on the use a weighted pairwise Euclidean distance measure applied to z scores obtained

from summary statistics for individual SNP associations from GWAS on individual

voxels as a metrics for the genetic distance between voxels. These pairwise distances

are then used in a unique hierarchical clustering scheme that can reveal a tree-structured

topology of the voxels that can be refined to reveal groups of voxels that appear to be

under common genetic control. We have validated the approach through simulation

studies, we show that it can robustly recover pre-specified clusters of voxels even when

the sample sizes for the GWAS and MRI data are modest. We ultimately applied our

method to a large (n=1429) set of vertex-wise GWAS studies and revealed a compelling

genetically-mediated topology of the human cortical surface. The method can easily be

used to address other questions surrounding the organization of the brain and can also be

used to identify genetically-mediated patterns in any setting in which a large number of
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GWAS studies have been pursued on different phenotypes.

6.2 Material and methods

We describe the proposed method below in sections addressing: 1. The analyt-

ical technique for quantifying the distance between voxels based on GWAS summary

statistic data; 2. The strategy for clustering the voxels; 3. The simulation studies use to

assessment the power and robustness of the methods; and 4. Our strategy for applying to

actual MRI voxel-based GWAS summary statistic data to identify a genetically-mediated

neuroanatomical topology of the human cortical surface.

6.2.1 Weighted Euclidean distance for summary Z-statistics from

voxel-based GWAS.

We start by noting that our formation of a Euclidean distance between summary-

level Z-statistics associated with a SNP assessed in two different GWAS of two voxels

is closely related to the polygenic model LD score regression and mixed-effects SNP-

heritability models for exploring individual SNP-based genetic correlation methods as

outlined in many different publications [134, 132, 133, 135]. Essentially, assuming that,

for a given SNP j (j=1,,L), where L is the total number of SNPs in GWAS applied to

two different phenotypes (i.e., vertex in our case), has an effect on the two vertices that

follows bivariate normal distribution with mean vector and covariance matrix of the form:

N(0, [
σ2

1 j ρ12 j

ρ12 j σ2
2 j

]) (6.1)

Where p12j is the correlation between the voxels attributable to the SNP. The

expected value of this Euclidean distance between individual Z-scores for vertex 1 (Z1)



64

and 2 (Z2) can then be expressed as the following:

E[∑
j
(Z1 j −Z2 j)

2]

= ∑
j

E[Z2
1 j]+E[Z2

2 j]−2E[Z1 j,Z2 j]

= B+n∑
j
(σ2

1 j +σ
2
2 j −2ρ12 j)

(6.2)

Where B is a bias term and n is the sample size. Because the Z-statistics from

the GWAS do not necessarily represent independent causal effect estimates of the SNPs

but can be correlated due to potential underlying linkage-disequilibrium (LD) between

the SNPs, we weighted each of the Z-scores for the two voxels based on their degree of

LD in order to approximate the independent contribution of the SNPs [135]. To achieve

this, we used the LDAK software to calculate the weights for each SNP [134]. The

benefit of using the Euclidean distance measure outlined above is that we do not need to

estimate the shared variance and covariance across SNPs to arrive at a measure of genetic

correlation as with many other methods. Rather, we only need a distance metric to define

and determine the degree of similarity across the genetic associations in the GWAS for

each of the voxels in a pair.

6.2.2 Procedures to determine tree-structured genetic topologies

With the genetic distance defined for each pair of V vertices (where V is the

total number of voxels considered in a study for which there are GWAS summary Z-

statistics for each SNP), we can construct a V x V distance matrix that represents the

Z-statistic-based GWAS distance between each pair of vertices. Hierarchical clustering

can then be applied to this distance matrix to identify a tree-structured topology of the
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voxels considered in the analyses. Because hierarchical clustering builds a tree structure

iteratively by merging each vertex with its most similar neighbor, this building process

when applied to the matrix of distances defined above is equivalent to finding the vertiex

neighbor, i, of vertex j, based on:

i = argmin
i

∑
j

σ
2
2 j −2ρ12 j (6.3)

As such, traversing the resulting hierarchical tree from the top to the bottom

represents moving from those vertices with the greatest shared (or similar) genetic

influences, to those with the lowest shared (or least similar) genetic influences. To

determine how many unique clusters of vertices with shared genetic association and

association strength levels there might be, we used gap statistics [136].

6.2.3 Simulation studies

To simulate realistic settings in which there are some number of clusters of

vertices with common genetic determinants, we had to make some assumptions because

there are an infinite number of possible scenarios we could have explored. As a result,

we focused on a few simple settings that demonstrate the effectiveness of the proposed

technique to recapitulate known genetically-mediated topologies (i.e., clusters). We

repeated simulations to assess the reliability and variability of the proposed techniques

ability to recover a known topology. For each of repeated simulations, we randomly

generated a voxel-based topology with two distinct genetically-mediated clusters where

each of M total SNPs effect sizes (associated with the SNP ms (m=1,,M) Z-score) on the

vertices were randomly assigned for each of the two components, k (k=1,2) as:

N(0,
h2

k
mk

) (6.4)
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We used HAPGEN2 [137] to randomly generate 1500 individuals with L total

genotypes with realistic LD patterns derived from the LD patterns exhibited by the

data on the European populations from 1000 genome project (phase 3 data) [138]. We

pursued 1000 total simulations while varying the heritability of each the two topological

components from 0.01 to 0.07. These ranges of heritability are consistent with SNP-based

heritability estimates from individual-level random effects models [139]. We used Jaccard

index [140] to evaluate the accuracy of recovered topologies for each simulation. We

considered using an unweighted Euclidean distance measure in our simulation studies to

determine what difference the weighting might make. In addition, in order to contrast the

ability of the proposed method (with and without weighting) to recover known topologies

with other methods designed to quantify genetic correlations between sets of phenotypes,

we also applied the LD score regression method to the simulated data [132].

6.2.4 Empirical application to imaging genetic cohorts

To identify and characterize an actual genetically-mediated neuroanatomical

topology of the human cortical surface, we applied our methods to data from three

published imaging genetic cohort studies: PING [115], HUNT [112], and NCNG [113].

Combining data from these three independent cohorts, a total of n=1429 individuals of

European descent with typical development were used in the analyses. We note that all

three cohorts used the same MRI processing and quality control procedures for both the

MRI measures, genotyping and genotype imputation strategies. In particular, the 3D

reconstructed cortical surfaces were registered to a common spherical coordinates to

ensure each vertex on cortical surface was compatible across all the individuals [8, 9]).

To derive summary statistics from the GWAS on each vertex, we used a standard linear

model relating genotype dosages for the imputed genotypes as well as covariates (the

independent variables) to cortical surface voxels (the dependent variables). We chose two
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widely used cortical surface measures for the vertex-specific GWAS: cortical surface area

and cortical surface thickness. The covariates included in the association analyses for each

SNP and voxel were age, age-squared, gender, and first five genetic principle components

from a genetic relationship matrix (GRM) created for all subjects to accommodate any

cryptic stratification and differences in ancestry among the individuals in the analyses.

For the voxel-based analyses, we down sampled the voxels to 642 points per hemisphere

using matrix calculations described in MatrixEQTL [141].

6.3 Results

6.3.1 Simulation Studies

The simulation results are depicted in Figure 6.1. The proposed procedure, using

both weighted and unweighted Euclidean distances, reaches 100 percent accuracy in

recovering the known topology. It is notable that in recovering the known topology by

the propose methods there were false positives when heritability was 0.04 or greater. The

weighted Euclidean distance provides better accuracy than the non-weighted Euclidean

distance method when the heritability was less than 0.04. Interestingly, the use of the

well-published LD score regression technique for characterizing the genetic correlation

between voxels performed poorly relative to the proposed method.

6.3.2 Characterizing a genetically-mediated human cortical surface

neuroanatomical topology

After applying the proposed method to the MRI data on the 1429 individuals

from the three cohorts discussed in the Materials and Methods section, we uncovered

a compelling tree-structured topology of cortical surface area, as illustrated in Figure
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Figure 6.1: Simulation results from 1000 iterations with randomly generated two
components topology. Each of iterations generated 1500 diploids of chromosome
one based on the reference panel. The same hierarchical clustering processes were
performed for each of different distance metrics.

6.2. Of 1284 sampled vertices, 14 clusters were identified based on gap statistics

(Figure 6.2, lower left). In general, the genetic modules of cortical surface area were

bilaterally symmetric. The first tree bifurcation divides subcortical regions, and the

second differentiates the anterior-posterior axis (Figure 6.2, subfigure 1 and 2). In

addition, lateralization was also observed in the final cluster results (Figure 6.2, lower

right). The left hemisphere includes three additional clusters that corresponding to the

Wernickes area (Figure 6.2, region A), Geschwinds area (Figure 6.2, region B), and
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Brocas area (Figure 6.2, region H). The cluster results also grouped anterior cingulate,

insular, and orbitofrontal cortex as one single genetic module (Figure 6.2, region G)

which suggests that the recovered genetically-mediated regions of the cortical surface are

consistent with a great deal of known biology. For the analysis of the cortical thickness

data, Figure 6.3 illustrates the results. Four genetically-mediated clusters were identified

(Figure 6.3, lower left). Similar to the cortical surface area, the first tree bifurcation

differentiates the subcortical region (Figure 6.3, subfigure 1) and the identified clusters

were bilaterally symmetric. The other clusters clearly suggest a top-down gradient m

which again is intuitive (Figure 6.3, regions A, B, C).

6.4 Discussion

Using our simple and intuitive proposed approach for identifying and characteriz-

ing genetically-mediated neuroanatomical clustering in the cortical surface of the human

brain, we identified a compelling hierarchical structure of cortical brain regions. Our

proposed method differs from other methods for exploring the shared genetic determi-

nants of multiple phenotypes in that it does not rely on estimating genetic correlation.

Rather our approach relies on a weighted Euclidean distance of Z-statistics obtained from

GWAS on individual vertices from cohort studies with MRI data. Our method can recover

tree-structured genetically-mediated topologies even when the sample size is moderate to

small. The neuroanatomical regions clustering together and the hierarchical relationships

between them revealed by our method coincide with known functional domains, and

suggests shared genetic influences on language and social processing centers of the brain.

We also contrasted our proposed method with a traditional method for identifying

genetic correlations between different phenotypes and show that this method does not

perform as well (Figure 6.1). This suggests that our proposed method could have broader
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application than characterizing the genetically-mediated topology of human cortical

surface. For example, our technique could be used to find more genetically homoge-

neous groups of traits in any GWAS settings (e.g., those considering the shared genetic

influences of many different diseases or phenotypic features for which independent

GWAS have been pursued). These more homogeneous groups could then be exploited

by combining them to increase the sample size to identify individual loci that might

influence them. In this light, improving statistical power for identifying causal loci by

pooling multiple genetic association analyses depends on the underlying shared genetic

effects across traits considered in an analysis [7]. Pooling methods for summary statistics

[129, 131, 130] without a way to define the genetically homogeneous group could have

limited benefit since the resulting combination of GWAS may include traits that are not

likely to share genetic determinants. Our approach provides a way to generate the genetic

clusters first using summary statistics and then picking out the traits that it makes most

sense to combine to increase power to identify individual loci that influence them all.

In terms of the neuroanatomical topology of the human cortex that we identified,

both the topologies for cortical surface area and thickness shared similar characteristics

with the topologies derived from, e. g., twin studies. Bilateral symmetry, anterior-

posterior differentiation in surface area, and top-down gradient in surface thickness have

been noted in previous clustering results based on twin genetic correlations [19, 10].

However, the genetic lateralization of cortical surface area that we identified has not

been shown before. Our results also suggest a genetic basis for language development,

as the Wernicks area, Geschweinds area, and Brocas area have separate set of genetic

influences. The regions related to social processing [98], i.e., anterior cingulate, insular,

and orbitofrontal cortex, are also clustered as one genetically homogeneous module by

our method. This suggests the genetic influences on the structural variation of cortical

surface follow known functional domains of human cognition. It remains to be seen
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which groups of genes are involved in each functional domain to a greater degree than

others. Our results nevertheless provide a first glance into the genetic influence on the

functional domains of human cognition.

Considering the modest sample size used in our empirical study of the human

cortical surface area, our study is more of a proof-of-concept than a definitive assessment

of the genetically-mediated topology of human cortex. A larger sample size would allow

for greater precision in resolving genetically-mediated topological maps of the brain [94].

Given that the summary statistics are easier to share, as more researchers are willing to

share summary statistics of multiple traits, our method has great promise in analyzing

summary data provided to the community in the future. For example, the ENIGMA

project has influenced the community to use the same MRI data processing pipeline

to ensure consistency when meta-analyses are pursued with the data [14]. Voxel-wise

GWAS will greatly benefit from similar thinking, using the same registration process to

ensure comparable voxels when GWAS are performed. Our proposed method can be

extended in at least one important way. The method can incorporate prior information

about the SNP effect sizes, such as functional annotations [142] or pathogenic scores

of SNP [143] to weight the SNPs when the distance function is computed between two

vertices [135]. Ultimately, we have developed a simple and intuitive way of clustering

vertices to identify important and biologically-relevant patterns and fell that its application

can shed light on important aspects of the way the brain is organized. We also believe

that the proposed method can motivate the development of more powerful strategies for

analyzing high-dimensional data in efficient ways.
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Figure 6.2: The tree structure is based on the dendrogram of hierarchical clustering
while the cluster results were based on the gap statistics. Each of the four identified
clusters except subcortical regions were labeled in different colors and labeled as A to
C. The first two bifurcating points were demonstrated in subfigure 1 and 2. The final
clusters were visualized in the lower right of the figure.
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Figure 6.3: Tree-structured topology of cortical surface thickness. The tree structure is
based on the dendrogram of hierarchical clustering while the cluster results were based
on the gap statistics. Each of the four identified clusters except subcortical regions were
labeled in different colors and labeled as A to C. The first two bifurcating points were
demonstrated in subfigure 1 and 2. The final clusters were visualized in the lower right
of the figure.



Appendix A

Final notes

It has been an exciting journey for studying genotype-phenotype mapping in the

era of large-scale genomics. Besides the projects mentioned from chapter 2 to chapter 6,

there are others that is ”genetically oriented” but out of the scope in this dissertation. In

particular, because of the properties of genetic variants (rare mutation rates, randomization

during meiosis, and upstream in the causal chains), the genetic association can be a good

tool to understand the environmental factors and their underlying processess.

A.1 Spatial gene-by-environment mapping for

schizophrenia reveals neighborhood of upbringing

effects beyond urban-rural demarcations

Being born and residing in an urban setting during early life has been linked to

an increased risk of schizophrenia. Apart from understanding the environmental factors

that underlie this association, there is currently a dearth of information about regionally-

varying risk factors mapped at a resolution superior to crude urban-rural categories. It

75
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is also unclear whether spatial variation is related to genetic risks for schizophrenia, a

disorder which has high heritability at the population level. We utilized a large-scale

genetic case-cohort study (n=23,852) to critically explore the complex interplay between

locale of upbringing effects and individuals genetic liabilities for schizophrenia. We

applied a novel spatial mapping approach to estimate the spatial variation of locale effects

(E) and gene-by-locale interactions (GxE) after taking into consideration urban-rural

differences, genetic ancestry, and individuals genetic liabilities. Genetic liabilities were

assessed using polygenic risk scores (PRS) derived from an independent genome-wide

association study cohort (n = 150,064). We found significant contributions of spatially

varying E and GxE beyond simple urban-rural differences. The E and GxE explained 10-

and 5-fold more disease variance than the urban-rural categories, respectively. Within the

boundaries of the capital city of Copenhagen, spatial variation was observed with odds

ratios ranging from 0.63 to 1.90 for E and 0.72 to 1.39 for GxE. An interactive map can

be found at (https://chunchiehfan.shinyapps.io/iPSYCH Geo/). Our results indicate the

locale of individuals upbringing has is associated with the risk of schizophrenia. This risk

variation has finer resolution than a simple urban-rural demarcation. A series of sensitivity

analyses suggest the locale of upbringing can substantially modulate individuals genetic

susceptibilities to schizophrenia. Our results are a first look into spatial risk variation in

the context of large-scale genetic studies, which could contribute to our understanding of

modifiable risk factors of schizophrenia.
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