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Solving healthcare related problems is one of the grand challenges in the 21st century.

In many nations, the need to improve existing medical and healthcare services is becom-

ing increasingly important due primarily to the growing population and ageing society.

The rapid advancement of sensors, computing and wireless communication technology

has brought rise to a new research field called Wireless Health, which transforms health

related services from the system based on episodic examination, disease diagnosis and

treatment to one with continuous monitoring, disease prediction and prevention.

In this thesis, I will summarize the projects in the Wireless Health research. They

consist of different critical healthcare applications, from pressure ulcer prevention and

gait analysis to non-contact cardiopulmonary monitoring and remote rehabilitation.

Each project is conducted and presented in an end-to-end manner, including identi-

fying medical problems, proposing solutions, developing systems and clinical verifi-

cation. As for the technology development part, a few novel embedded sensing and

computing technologies, including sensor system design, sensor modeling and sensor

signal processing, will be discussed. The ultimate goal of this interdisciplinary research

is to proof the medical hypothesis, verify the feasibility of technological solutions in

clinics, and finally enable Wireless Health from concept to practice.
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CHAPTER 1

Introduction

Population ageing is a global phenomenon in out society. It is reported that the number

of elderly (people aged 60 years or above) will increase from 600 million to 2 billion

by 2050, when it will be the first time in human history that elderly people outnum-

ber children (people aged 15 years). With the condition of the population ageing, the

prevalence of chronic diseases, such as heart disease, stroke, COPD, and cancer, is an-

other crisis that needs immediate action. Chronic diseases, the major cause of death in

almost all countries, account for more than 60% (35 million) of all deaths currently. It

is worthwhile to be pointed out that chronic diseases do not only affect old adults. Fur-

thermore, almost half of these deaths and over 85% of the burden of these diseases were

found in people less than 70 years old. Therefore, it is necessary to have an effective

solution to control chronic diseases, which can monitor and modify risk factors and

other possible causes leading to the development of these diseases before noticeable

symptoms of illnesses have developed.

Wireless healthcare technology is seeking for new solutions to make medical re-

sources, including medical facilities, medicines and professionals, accessible for any-

one, anytime, anywhere. It enables reducing the medical cost, promoting inclusion and

connectivity of individual life and the rest of the world, and increasing the engagement

between patients and doctors. The ultimate goal of pervasive healthcare is to revolu-

tionize the operation model of medical system (see Figure 1.1): ”Wireless healthcare

will transform health related services from the system based on episodic examination,

disease diagnosis and treatment to the one with continuous monitoring, disease predic-
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tion and prevention.” And these changes will make our healthcare system more effective

and economic, which benefits both billions of individuals around us and the societies

in which we live.

Figure 1.1: The Revolution of Public Health System Driven by Wireless Healthcare.

Wireless healthcare is at the interdisciplinary confluence of engineering, computer

science and medicine. Its research work is unique and challenging in identifying real

problems, developing practical solutions and evaluating feasibility and performance:

1. Problem Identification: it requires to collaborate with researchers in different

domains to identify key research problems in some specific medical application;

2. Solution Development: the solution development involves sensor design, system

prototype, signal processing, feedback report and visualization;

3. Performance Evaluation: the solution needs to be implemented and deployed in

real application scenarios for evaluation in an uncompromised way.

Accordingly, these interdisciplinary end-to-end research requirements bring both

huge challenges and impact to pervasive healthcare research works. In this thesis, I

will summarize the progress on a couple of high-impact medical applications. As part
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of my research vision, I have identified and developed many novel cost effective, de-

ployable, and application-specific medical sensing systems that can be easily used in

daily life by exploring, designing and building advanced sensors and signal processing

technologies. In summary, my research work has successfully addressed four importan-

t medical applications: Pressure Ulcer Reduction, Cardiopulmonary Monitoring, Fall

Prevention and Rehabilitation. These projects are shown in Figure 1.2, and will be

elaborated in the following chapters.

Smart Glove

Smart Shoe

Smart Insole

Smart 

Bedsheet

Smart Radio

Smart Cane

Smart 

Cushion

Smart 

Spirometer

WE-CARE

PAM

Smart

Headset

End-to-End Research in 

Wireless Health

Figure 1.2: Wireless Health Projects in This Thesis.
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CHAPTER 2

Pressure Ulcer Reduction

2.1 Introduction and Background

During the average 7 to 9 hours per day that we sleep, the human body heals itself

and grows. Those who have poor sleeping quality are prone to stress, fatigue, attention

deficit, or eating disorders [BRM89]. Sleep stage is a proven biometric in diagnosing

cardiovascular disease, diabetes and obesity [Par09]. Sleep difficulty is associated with

psychiatric disorders such as depression, alcoholism and bipolar disorder [Tha06].

Among the indicators of determining sleep quality (such as sleep stage and sleep

difficulty), sleep posture is also one of the most important factors and is heavily used in

performing medical diagnosis. One of the most common conditions is sleep apnea. In

recent years, several research works on sleep apnea analysis with sleep postures have

been investigated. Lee et al. reported that lateral (lying on side) postures can reduce

sleep disorders for mild and moderate sleep apnea patients [LPH09]. In related medical

conditions, Ambrogio et al. discovered the relationship between sleep postures and

chronic respiratory insufficiency, which leads directly to sleep apnea [ALK]. Further

work by Oksenberg and Silverberg investigated breathing disorder and sleep postures

[OS06]. These authors all concluded that patients with respiratory conditions should

avoid sleep in the supine (lying on back) position.

In addition to direct effects on respiratory problems, sleep posture can be important

during the recovery from serious operative procedures. It has been shown that sleep

quality affects the recovery times of patients in hospitals [SDH93]. More specifically,
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one of the main problems for post-surgical patients and elderly patients is formation of

pressure ulcers [PHR98]. Pressure ulcers, or bedsores, are localized injury to body tis-

sue, usually near the bone, resulting from low blood circulation and lack of movement.

Pressure ulcers are a serious, life-threatening disease, they develop quickly and are ex-

pensive to treat once they have progressed far enough [BMN10]. Prevention is the best

way to combat this problem, and in many cases, pressure ulcers are preventable. Hos-

pital staff need to be attentive to patients that are more susceptible to this condition, and

take action to relieve pressure on the highly sensitive locations by changing their sleep

postures. Current best practices in nursing involve moving patients every several hours.

However, there is no guarantee that patients remain in one posture in the meantime, or

even if patients are turned onto already sensitive locations.

Given these applications, autonomously monitoring patients during recovery is de-

sired, especially when pressure ulcers can develop very quickly. The goal of any medi-

cal system that prevents the formation of pressure ulcers requires the analysis of sleep-

ing postures, as well as notifications of susceptible and impending pressure points on

the patient’s body. Therefore, there is indeed a need for automatic sleep posture moni-

toring.

To date, researchers have proposed different ways to monitor sleep posture auto-

matically. Video cameras and microphones have been used previously to study sleep

posture patterns. For example, Nakajima et al. [NMT] prototyped a system based on vi-

sual signals to analyze sleep posture changes. However, the drawbacks of using video

involve lighting issues. Low light levels at night adds noise to the images, and even

when near-infrared cameras are used [LY08] the images still produced non-uniformity

and artifacts. Furthermore, video and voice taping raise serious privacy concerns for

users.

Inertial sensors, including accelerometers, gyroscopes and magnetometers, are an-

other applied technique used to monitor sleep. Sadeh and Acebo attached several tri-

axial accelerometers on limbs of people to monitor the sleep via actigraph [SA02].
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Kishimoto et al. deployed 14 wearable motion sensors on users at home for remote

sleep posture analysis [KAO06]. The main downside to this technique is that sensors

have to be attached to body which can be uncomfortable or burdensome to the users.

Alternatively, dispersed pressure sensors deployed in the mattress can record when

changes in body posture occur. This method is unobtrusive and does not interfere in

the comfort of users. Also it is a stable medium that is not affected by changes in the

environment. Hoque et al. facilitated a mattress with wireless-powered accelerometers

to record the movement activity [HDS10]. Jones et al. developed a bedsheet system

with 24 pressure sensors [JGK06]. However, the focus was on detecting posture change

rather than recognizing body posture. Similarly, Foubert et al. were able to detect

changes from lying to sitting posture [FMG12].

Figure 2.1: Human Body Pressure Image Samples

In this chapter, we focus on sleep posture analysis using pressure sensors. We

employ a dense pressure sensitive textile bedsheet and apply pressure image analysis

for sleep posture recognition. Our contribution in this work is threefold. First, we

propose a framework for automatic sleep posture analysis based on a dense pressure

sensitive bedsheet prototype (64 × 128 sensors) with e-textile material. We would like

to argue that pressure image analysis is more challenging than visual imaging due to

imcomplete body pressure maps and self occlusions. Second, we define and discuss a

set of geometric features from pressure images for posture analysis. These features are

effective to not only distinguish different postures but characterize each posture with

physical meanings (the details about geometric features will be elaborated in Section
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5.3). Third, we develop three heuristics based on sparse representation to classify sleep

postures. We evaluate our proposed methods with 14 subjects for 6 common sleep

postures in static evaluation trials, and 8 hour continuous monitoring trials where we

use transitional information from one posture to the next. The proposed method exhibits

better performance in terms of accuracy and robustness than traditional classification

methods.

In contrast to previous work which have generally focussed on recognizing three

postures, Left Fetus, Right Fetus, and Supine postures [HLA09, NAZ10], we describe

here a classification system that includes additional harder and commonly used pos-

tures. These being Left Log, Right Log, and Prone. The log postures are positions

where subjects are lying on their sides with legs almost straight. In many hospital set-

tings, these postures are supported with pillows behind their shoulders and back. The

aim of such postures is to to ameliorate the possibility of developing pressure ulcers on

the hips, shoulders, and buttocks.

The remaining part of the chapter is organized as follows. Section 5.2 describes the

overall design of this monitoring system that incorporates a pressure sensitive bedsheet.

Section 5.3 describes the algorithmic process of sleep posture recognition by extracting

pressure image features and classification using the theory of the Sparse Classifiers.

Experimental set up and results are given in Section 5.4. Finally, future work and

conclusion are discussed in Section 5.5.

2.2 Bedsheet Design

In this section, we present the design of the bedsheet system. The goal of this special-

ized bedsheet is to record the pressure distribution of the body while sleeping and then

perform data analysis for medical applications. For instance, when a patient has had

recent surgery around the left hip, limited pressure should be applied on that area and

a left-lying posture should not be allowed. When the bedsheet system detects that the
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patient is lying on his left side for a period of time, the patient or caregivers can receive

an alert to change the posture. Accordingly, the bedsheet system is designed with the

following consideration:

• High-resolution: The bedsheet should offer high resolution for pressure sensing.

Given enough resolution, it is possible to quantify the applied pressure on body

parts and enable high accuracy medical diagnosis.

• Comfort: The user should feel comfortable lying on the sheet. Also, it should be

easy to deploy in the home or hospital.

• Low-cost: For widespread use, the cost for the bedsheet implementation should

be low and affordable for most people.

There are some existing sensor products [Xse, Vis] that comprise of many piezo-

electrical pressure sensors. However, none of them meets the above design criterions

for wide applications.

Figure 2.2: Pressure Sensitive Bedsheet

Figures 2.2 and 2.3 show the prototype of our bedsheet system. The system consists

of three components: a 64 × 128 pressure sensor array, a data sampling unit, and a

tablet for data analysis and storage. The sensor array is based on eTextile material

which is a fiber-based yarn coated with piezoelectric polymer [XLH11]. The initial
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resistance between the top and bottom surfaces is high. When extra force is applied on

the surface of the eTextile, the inner fibers will be squeezed together and the electrical

resistance will become smaller.

(a) Scanning module (b) E-textile between conductive lines

Figure 2.3: System Components

The textile sensor array has a three-layer sandwiched structure: the top layer is

normal fabric uniformly coated with 64 parallel conductive lines; an eTextile layer in

the middle; and a bottom layer with 128 conductive lines (perpendicular to the top 64

lines). Within this structure, each intersection of conductive lines becomes a pressure

sensitive resistor. In total there are effectively 8192 pressure sensors.

When an electrical potential is applied between one of the vertical and horizontal

conductors, the resistance at the intersection point can be measured. By scanning all

of the vertical and horizontal lines in sequence, a resistance map can be created of the

entire bedsheet and, after converting to digital 8 bit values, a pressure image results.

Figure 2.4(a) shows an example of a user lying on the bedsheet. The subject sleeps

on the bedsheet in a right fetus posture, and the corresponding pressure image is illus-

trated in Figure 2.4(b). We can see that body parts (such as hip, legs) are shown clearly

in the pressure image due to the dense sensors in the bedsheet. It is helpful to charac-

terize the geometrical features of sleep postures and posture classification, which will

be discussed in detail in the next section.
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(a) One subject on the bedsheet system (b) Pressure image

Figure 2.4: System demonstration with one subject sleeping in a right fetus posture.

2.3 Framework for Sleep Posture Analysis

Figure 2.5 shows the sleep posture analysis process. The central three steps, Pre-

processing, Feature Extraction, and Sparse Classification, will be discussed in this sec-

tion.
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Figure 2.5: Sleep Posture Recognition Framework

2.3.1 Pre-processing

The pre-processing on the raw pressure images is required so that the images can be

standardized in such a way to enable successful classification. The raw images contain
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noise and artifacts that affect classification, and pre-processing mitigates the side effects

as much as possible.

• Firstly, the subject can be located anywhere on the bedsheet, so to correct this,

the images are aligned to a common center of mass and relocated to the center of

the image.

• A smoothing filter of a symmetric 5 × 5 unit normal distribution is applied. This

smoothing minimizes the effect of noise in the pressure map.

• The images are rotated so that the dominant axis of the body shape is aligned

vertically in the image. The dominant axis is found by an eigenvector calculation

by approximating the human body geometry as an ellipse. This accounts for the

different lying angles for the subjects.

• The images are normalized so that the sum of pixel weights is one. This step

attempts to counteract the affects for the different body mass of patients.

2.3.2 Feature Extraction

Traditional feature extraction methods on images include dimension reduction tech-

niques. Widely popular is Principal Component Analysis [Jol] which relies on finding

the dominant orthogonal axes which maximizes the statistical variances in the data. P-

CA is largely data dependent and is a general method to find macro structure in dataset-

s. This method has been applied to sleep posture recognition in current literature [Y-

OF11].

In this work, we propose a different method of feature extraction for posture clas-

sification that is based on the geometry of the pressure images. It is more attuned to

the physical characteristics of the body shape and has a definite physical meaning. An

advantage of using these proposed features over PCA reduction is the processing time

required to extract these features; our proposed features are based on simple geometry.
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In all, we propose 32 features to be extracted from each of the pressure images. The

features are described as either Spatial features or Bodypart features. Spatial features

are those features that describe global aspects of the image such as the proportion of the

image that is covered by the subject, how symmetric is the image, and direction of any

curvature in the pressure image. Bodypart features are localized features that describe

location and size of expected body parts such as the hip and shoulder.

Table 2.1: Global Spatial Features

No. Name Description

1 Coverage Proportion of image covered

2 Per25 Coverage of 25% of pressure

3 Per50 Coverage of 50% of pressure

4 Per75 Coverage of 75% of pressure

5-12 Reg1 - Reg8 Coverage over 8 fixed rectangular regions

13 Symmetry Measure of pressure symmetry

14 Balance Measure of pressure on both sides of image

15 DirCurve Measure of curvature of pressure image

Refer to Table 2.1 for a full a listing of the global Spatial features and Table 2.2 for

the localized Bodypart features. A more detailed explanation of the features follows

here. Unless otherwise stated, we will assume the x axis is along the short side of the

bedsheet, the y axis runs along the long side of the bedsheet.

Coverage Features (1-12)

The first feature is Coverage which is the number of pixels that have non-negative sen-

sor values divided by the total number of pixels. The next 3 features only consider

coverage for the pixels that contain 25%, 50%, 75% of the total pressure. Features 5-12

are coverage by regions. The regions are 8 equally sized subdivisions of the image as

shown in Figure 2.6. Given that the original dimensions of the image are 64 × 128
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pixels, the region sizes are 32 × 32 pixels.

Figure 2.6: Coverage by Regions: Features 5-12

Symmetry and Balance (13, 14)

Symmetry is the sum of the absolute value of the difference of pixels on either side of

the center image line. A supine posture would have more symmetry than a side posture.

Balance is the sum of the difference of pixels on either side of the center image line.

This is different to the Symmetry measure; we do not take the absolute value of the

difference of pixels. The resulting measure describes which side of the image contains

most of the pressure.

Direction of Curvature (15)

This measure detects the dominant direction of curvature of the body image. A per-

son lying on one side will have a detected body curvature, whereas a supine position

should exhibit a straighter pressure image. The steps to extract this feature metric are

as follows:

• Create a binary image that contain pixels that are above a suitable threshold. The

choice of threshold is obtained experimentally, although a reasonable estimate is

50% of the peak sensor value.

• Skeletonize the binary image by finding midpoints of boundary pixels (see Fig-

ure 2.7).
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• Remove joint pixels from the skeleton so that each curve is separated. Remove

curves that are shorter than 5 pixels.

• For all pixels along the curve, find the angle bisector. The director of curvature

is taken as the sum of the y components of the angle bisectors, i.e. in the lateral

axis of the bedsheet.

Figure 2.7: Direction of Curvature feature: Left: original image. Middle: thresholded

image. Right: skeletonized image.

Table 2.2: Local Geometrical Bodypart Features

No. Name Description

16,17 HipPoint (x, y) location of hip location

18-21 HipBox (x, y, width, height) of bounding box of hip

22 HipArea Area in pixels of bounding box of hip

23 HipPtoBox Ratio of hip location to bounding box width

24,25 ShPoint (x, y) location of shoulder location

26-29 ShBox (x,y,width,height) of bounding box of shoulder

30 ShArea Area in pixels of bounding box of shoulder

31 ShPtoBox Ratio of shoulder location to box width

32 HipShDist Hip to Shoulder Distance

Hip Features (16-23)

Since pre-processing of the image is done initially, we make the assumption that the hip
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is located in the quarter of the image below the center of mass of the pressure image.

An estimate of the hip location is taken to be the pixel that is located at the weighted

center of pixels in this quarter image. The bounding box around the hip is the rectangu-

lar region of the pixels that contain 75% of the pressure value within the quarter image

below the center of mass of the pressure image. The ratio of hip location to bounding

box width provides a measure that shows where the hip location is in relation to the

bounding box of the hip.

Figure 2.8: Hip and Shoulder Features

Shoulder Features (24-31)

Similar to the hip features (16-23) above, we extract the same information for the shoul-

der. A similar assumption applies to the quarter image above the center of mass for the

shoulder location. Figure 2.8 shows a sample of the locations and bounding boxes of

the hip and shoulders. Finally, Feature 32 is the pixel distance between hip and shoul-

der locations.

Since all the features described above are on different scales, the feature values are

scaled and shifted so that the resulting values are in the range [0,+1].
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2.3.3 Classification Preliminaries

Before we investigate Sparse Classfiers, we review the progression of classification

basics from Nearest Neighbor to Nearest Subspace, then to Sparse Classification.

The Nearest Neighbor classifier simply finds the closest training sample in the fea-

ture space to provide a prediction for a test sample. Euclidean distance is the most

common measure of closeness between the test sample and the training samples given

that the feature space consists of continuous variables.

With a training data set of n samples, and each training sample having m dimen-

sions (features), let each sample be ai ∈ Rm. Now given a new test sample y ∈ Rm, the

nearest neighbor is the training sample that minimizes the distance to the test sample:

argmin
i
||y − aix||2 (2.1)

where x is an identity vector and we assume that all features have been scaled to a

common range. The prediction is the class to which the nearest sample belongs.

Nearest neighbor classifier is a popular classifier because of its simplicity, robust-

ness to noise as long as there is sufficient training data. However it has several dis-

advantages such as high dimensional data reduces the effectiveness of classification.

Some features (dimensions) may be more important than others in classification and

Nearest Neighbor does not take this into account.

The Nearest Subspace classifier [LGL] extends Nearest Neighbor to include infor-

mation about assigned class labels. Instead of finding the closest training sample, Near-

est Subspace finds the closest subspace that is spanned by training samples belonging

to that class. So given a training data set of n samples, and each training sample having

m dimensions (features) and having a class label k, let the training samples for class k

be Ak. The training samples are column vectors placed side by side. Now given a new

test sample y ∈ Rm, the nearest subspace is the class that minimizes the distance of y
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to the subspace spanned by all the training samples of that class:

argmin
k
||y − Akx||2 (2.2)

where x is a vector of weight coefficients. For each class k, the test sample y can be

represented by a weighted combination of the training samples in class k if we consider

each of the training samples as basis vectors in the subspace spanned by the training

samples. So for each class k, Akx represents a reconstructed sample similar to y. This

classifier assigns the class label which minimizes the reconstruction error. The solution

to Nearest Subspace can be found using convex optimization with the constraint that

all weights are non-negative. Without this constraint, the solution degenerates in this

overdetermined system.

The Nearest Subspace classifier finds a representation of a test sample in the sub-

spaces spanned by class training samples. We extend this idea further using Sparse

Representation. The general idea is to represent the test sample using all the training

samples, initially without regard to the classes of the training samples. By imposing

sparsity constraints on the representation of the sample, a different type of classifier

can result. The following section describes classification using Sparse Representation

of samples.

2.3.4 Classification using Sparse Representation

Sparse Classification has been used previously in other medical analysis and has been

shown to have effective performance over a wide range of applications [XZS12b]. The

classification method comes from the theory of Compressed Sensing [CRT06b] which

proposes that data exhibits sparsity in some transformed representations. That is, a

signal can be represented as a sparse signal in a transformed feature space, and can be

accurately re-constructed with a lower sampling rate than the Nyquist-Shannon rate.

Given a data set of n samples, with each sample having m dimensions (features),

define the data matrix A ∈ Rm×n that comprises of these m-element column vectors
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arranged side by side. Now given a new sample y ∈ Rm, can a solution x ∈ Rn be

found such that x is described in terms of the data set? i.e. can we find x that satisfies:

y = Ax. (2.3)

So y is a linear combination of the columns in the data set, and x = [x1, x2, ..., xn]
T is

an unknown vector of coefficients. This linear system is underdetermined when there

are more unknowns than equations, and hence there are infinitely many solutions for x.

This is the case for our formulation of posture classification in this chapter. However,

if certain constraints are imposed, then a unique solution for x will exists that will

accurately represent the original sample. There are 3 main sparsity constraints on x

that have been considered in literature.

• l0 sparsity is defined to minimize the number of non-zero elements of x. Solving

for x has been shown to be NP-hard [Nat95b].

• l2 sparsity is the efficient least squares solution, however this is not always equiv-

alent to the l0 solution.

• l1 sparsity is defined as the minimal sum of absolute values of elements of x. Can-

des et al. [CRT06b] have proved that l1 sparsity is equivalent to l0 and, moreover,

can be solved as a convex optimization problem:

x̂ = argmin
x
||x||1, (2.4)

s.t. y = Ax.

The sparse representation of a sample is used in classification by matching this

representation to a set of class labels. The data set A is composed of training samples

and each sample has been assigned a class label, Cn. Let each training sample be

represented as a column vector, aij , where j is the sample number within class i. The

number of samples need not be the same for each class. The data matrix A is shown

here with samples grouped together in their classes:
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A =


| | | | | |

a11 a12 . . . a21 a22 . . . ak1 ak2 . . .

| | | | | |

 .
︸ ︷︷ ︸

class1

︸ ︷︷ ︸
class2

. . . ︸ ︷︷ ︸
classk

Any test sample y is represented by a linear combination of the training samples:

y = a11x1 + a12x2 + · · ·+ akjxn, (2.5)

where k is the number of class labels and j is the number of training samples for the

k-th class.

The l0 minimized sparse solution for x will have only a small number of non-zero

elements. The training samples that correspond to the non-zero elements are those that

can represent the new sample well. We propose 3 heuristics to select the class label

given a sparse solution for x and the data set with training labels as follows.

• Maximum Coefficient (MC). The class label belonging to the training sample that

corresponds to the largest coefficient of the sparse solution of x is the predicted

class label:

k̂ = Cargmaxi(xi). (2.6)

• Maximum Sum of Class Coefficients (MSCC). The predicted class label is the

class whose sum of coefficients of x is maximized:

k̂ = argmax
k

(
∑
i∈aki

xi). (2.7)

In other words, for each class k, take the sum of the coefficients of x that cor-

respond to the training samples belonging to that class. The predicted label is

the class that maximizes these sums. The training samples that are most closely

represented to the test sample should correspond to the bulk of elements of the

sparse solution to x.
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• Minimum Class Residual (MCR). An alternate choice for a heuristic to predict

the class label is to find the class that minimizes the class residual. The residual

is the error between the test sample and the reconstructed sample based on the

sparse solution to x:

residual = ||y − Ax̂||2. (2.8)

So the predicted class is

k̂ = argmin
k
||y − Akixi||2. (2.9)

Each of these 3 heuristics are evaluated in Section 5.4.

2.3.5 Hidden Markov Model for Continuous Posture Evaluation

In our experiments on the continuous sleep posture monitoring, we investigate the use

of Hidden Markov Models [Rab89, QB08] on time sequential images. The Hidden

Markov Model (HMM) is a stochastic process where internal states of a system depend

only on previous states and are hidden from direct observation. In our application,

the hidden states are the sleep postures of the subjects and the direct observations are

the pressure images from the bedsheet. Using HMMs, the sequence of postures is

ascertained from the sequence of pressure images and knowledge of the state transition

and observation probabilities.

The formulation of HMM is as follows (refer also to Figure 2.9). We represent N

postures as N hidden states, {S1, S2, . . . SN}. Postures can change to another posture

according to an assigned transition probability aij:

aij = Pr(st+1 = Sj | st = Si), (2.10)

where st is the posture at time t. So aij is the probability that a subject who is currently

sleeping in posture i changes to posture j. Sleeping postures can remain in one state

for an indeterminate amount of time, i.e. the current state can transition to the same

state, and this allows time-scale invariance in this model. With N postures, there are
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N × N transition probabilities. In our experiments in Section 5.4, the state transition

probabilities for each subject are calculated from the training data.

Although the direct observable outputs from our system are the pressure images,

we apply our classification method on each image to produce predictions for postures.

So for each state Si, there is the probability biq that posture q is predicted. Let vq be the

predicted posture, then the observation probability, biq, is the probability of predicting

posture vq given the hidden posture is Si:

biq = Pr(vq | st = Si). (2.11)

So, for every observed pressure image at time t, the HMM calculates all the observation

probabilities for the N predicted postures. The actual probability calculation is based

on a confidence measure from each of our heuristics of the Sparse Classifier.

a11 a22 

a12 

a21 

b11 b12 b1N b21 b22 b2N 

… 

… Posture 1 Posture 2 

… 

Figure 2.9: Hidden Markov Model with hidden postures. Only 2 postures are shown in

this diagram.

Our proposed confidence measure is a relationship between first best match and

second best match from a different posture [Low04]. For example, the Maximum Co-

efficient (MC) heuristic finds the posture that corresponds to the training sample with

the largest coefficient of the sparse solution. Let the maximum coefficient for this pre-

dicted posture vq be m1. Let the second best coefficient of the sparse solution that does

not have the same predicted posture vq be m2. Then we can calculate the observation

probability as:
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m1

m1 +m2

. (2.12)

Since the solution of the coefficients is sparse, most of the observation probabilities are

zero. The observation probability for the Maximum Sum of Class Coefficients (MSCC)

heuristic is similar where the first best match m1 is the maximum sum of the class

coefficients and the second best match m2 is the next best sum of the class coefficients

of a different class. The Minimum Class Residual (MCR) is adjusted to account for the

minimization:

1− m1

m1 +m2

, (2.13)

where m1 is the minimum class residual and m2 is the residual for the next best class.

We present the HMM results for the confidence measures for our 3 heuristics in Section

2.4.3.

2.4 Experimental Results

2.4.1 Experimental Setup

We ran two sets of studies in the lab to evaluate the performance of the system for

sleep posture monitoring. The first study was designed to collect training data and to

evaluate short term performance over fixed intervals. The second study analysed the

performance of the system for overnight continuous monitoring. The results of the

second study is given in subsection 2.4.3.

This section describes the performance of the first study. There are 14 subjects in

the experiment, where 9 subjects are male and 5 subjects are female. The weight of the

subjects ranges from 55kg to 85kg, and height between 155cm and 185cm, as shown

in Table 2.3. The bedsheet system was deployed on a standard twin-size coil spring

mattress during the experiments (See Figure 2.2).

In Idzikowski’s study of 1000 people [Idz03], left and right fetus postures, i.e. with
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Table 2.3: Training subjects

Gender Age Weight (kg) Height (cm)

1 Female 25 57 158

2 Female 31 53 162

3 Female 27 65 168

4 Female 24 58 162

5 Female 23 60 165

6 Male 27 70 178

7 Male 26 74 172

8 Male 22 62 170

9 Male 35 70 180

10 Male 39 66 178

11 Male 28 72 184

12 Male 27 68 175

13 Male 29 63 173

14 Male 26 65 176

legs bent, are most common at 41%. The other side lying postures, i.e. with straight

legs, account for 28% of positions. We refer to these as log postures. Supine (8%)

and prone (7%) postures are the next most common. Therefore, for the experimental

evaluation, we investigate the 6 postures including Left-Log (LL), Left-Fetus (LF),

Right-Log (RL), Right-Fetus (RF), Prone (P) and Supine (S). The examples of these

postures are shown in Figure 5.10.

In the data collection, 40 samples were recorded for each of the 6 postures for each

subject. At fixed intervals, the pressure image of the subject’s posture was recorded

while the subject maintained a comfortable sleeping position. Variations in body, arm

and leg positions were allowed and the system is tested on a range of positions that fall

within the 6 defined postures. All postures include a standard queen size pillow for the
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(a) Right

Fetus

(b) Right

Log

(c) Supine (d) Prone (e) Left Fe-

tus

(f) Left

Log

Figure 2.10: Six Postures used in experiments.

head. Testing was carried out with Leave One Out Cross Validation by subject, i.e. test

on one subject’s data with the training data from all the other subjects. Repeat this for

each subject. Sparse classifiers are implemented using the CVX convex optimization

package [CVX12].

(a) Camera frame for overhead

recording

(b) Sample of overhead image

Figure 2.11: Video recording setup for ground truth labelling

The following experiments were tested against ground truth labelling. Figure 2.11

shows a video camera rigging for the ground truth visual image collection. All posture

labels were marked manually from the visual images.
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2.4.2 Sparse Classification Results

Table 2.4 summarizes the precision and recall results of 6 posture classification using

the set of geometric features with different classifiers. The Sparse Classifiers with

Maximum Sum of Class Coefficients (MSCC) heuristic and Minimum Class Residual

(MCR) heuristics show a 20% improvement in accuracy over Decision Tree and Nearest

Neighbor classifiers, and 6% improvement in accuracy over Nearest Subspace.

Table 2.4: Accuracy comparison to other classifiers

Precision Recall f-measure*

C4.5 Decision Tree 57.0% 56.8% 56.9%

k-Nearest Neighbor 64.7% 62.1% 63.4%

Nearest Subspace 77.0% 76.5% 76.8%

Sparse Classifier (MC) 65.4% 61.0% 63.1%

Sparse Classifier (MSCC) 83.1% 82.7% 82.9%

Sparse Classifier (MCR) 83.5% 82.9% 83.2%

*f-measure is the harmonic mean of precision and recall

We note that the Maximum Coefficient (MC) heuristic does not show any improve-

ment in the accuracy over Nearest Neighbor. The reason was given previously and is

such that after the transformation into the sparse domain, the Maximum Coefficient

(MC) is a metric similar in nature to Nearest Neighbor. It essentially finds the single

training sample that maximizes its representativeness to the test sample, and does not

take into account the class membership. Nearest Subspace does take into account class

membership and hence exhibits a fair accuracy. The downside to Nearest Subspace is

that it requires multiple optimization problems to be solved, i.e. one for each class.

We note that the Sparse Classifiers only require a single run since it treats all the class

samples as one sample space.

We look more closely at the results of the Spare Classifiers and note the confusion

matrices given in Tables 2.5 to 2.9. Table 2.5 shows the confusion matrix for Nearest
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Table 2.5: Confusion Matrix Nearest Neighbor

LL LF P RL RF S Recall

LL 123 6 7 26 41 83 43%

LF 3 194 14 39 3 33 68%

P 1 27 234 0 19 5 82%

RL 46 21 0 171 6 42 60%

RF 45 9 14 25 185 12 64%

S 42 6 3 20 5 210 73%

Precision 47% 74% 86% 61% 71% 55%

Table 2.6: Confusion Matrix Nearest Subspace

LL LF P RL RF S Recall

LL 143 0 2 51 41 20 66%

LF 3 243 21 30 4 6 79%

P 10 16 253 0 20 4 83%

RL 27 17 0 183 2 9 76%

RF 44 7 10 13 262 5 77%

S 59 3 0 9 1 242 77%

Precision 50% 85% 88% 62% 90% 84%

Neighbor classifier and we note the similarity with the Maximum Coefficient Sparse

Classifier (MC) in Table 2.7.

Generally, the log postures are harder to recognize than the other postures. Recall

for both Left Log and Right Log are always lower than for the other 4 postures, while

the precision rates are generally lower but not always. The log postures are most similar

to each other since both have legs outstretched and arm positions can vary. The next

most similar posture is Supine. This is seen in all of the confusion matrices as high

counts for predicted switched Left Log and Right Log, and Supine.
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Table 2.7: Confusion Matrix Sparse Classifier (MC)

LL LF P RL RF S Recall

LL 149 29 24 19 23 42 52%

LF 15 168 26 30 18 29 59%

P 9 24 202 6 20 25 71%

RL 40 25 5 176 22 18 61%

RF 11 22 23 19 194 21 67%

S 44 13 11 9 11 198 69%

Precision 56% 60% 69% 68% 67% 59%

Table 2.8: Confusion Matrix Sparse Classifier (MSCC)

LL LF P RL RF S Recall

LL 207 6 2 15 6 50 72%

LF 4 249 14 6 9 4 87%

P 1 22 245 1 12 5 86%

RL 14 27 1 219 12 13 77%

RF 0 9 14 3 262 2 90%

S 30 6 2 1 3 244 85%

Precision 81% 78% 88% 89% 86% 77%

Figure 2.12 shows two examples of misclassifications of hard log postures. The

left image shows Left Log posture that is incorrectly identified as Right-Log. This

typical kind of error can be explained from the pressure map that is extended behind

the subject’s back. Hence misclassifications can occur since the pressure image now

looks like a Right Log image. Similarly, the right image shows Right Log posture that

is incorrectly identified this time as Supine. Visually, this image is hard to not identify

as Supine.
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Table 2.9: Confusion Matrix Sparse Classifier (MCR)

LL LF P RL RF S Recall

LL 202 8 5 18 5 48 71%

LF 2 252 18 5 6 3 88%

P 1 22 249 1 10 3 87%

RL 12 28 2 225 10 9 79%

RF 0 11 15 5 257 2 89%

S 27 9 3 1 3 243 85%

Precision 82% 76% 85% 88% 88% 79%

(a) Left Log posture

misclassified as Right

Log

(b) Right Log posture

misclassified as Supine

Figure 2.12: Misclassified Postures

2.4.3 Overnight Continuous Monitoring

To further evaluate the accuracy of the pressure sensitive bedsheet system, we tested

the posture analysis for continuous overnight monitoring. In this study, we monitored

3 patients over 3 nights on the bedsheet. Overhead video images of the subjects were

recorded to manually extract the ground truth postures. Roughly 2600 pressure images

were recorded for each overnight session lasting 7-9 hours. Since subjects do not move

much while sleeping, the sampling rate was decreased to 10s per sample for the sake of
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memory constraints in the tablet.

We analysed the results using the HMM framework with subject dependent testing.

With three complete overnight data for each subject, we used two of the sets for subject

training and tested on the third, and repeated with cross validation. The results shown

in Table 2.10 compare two classification schemes: one with Hidden Markov Models

and the other with plurality voting over sliding window of size 10. Both of these classi-

fication methods showed small improvements in the accuracy of posture analysis over

long durations and sequential pressure imaging, compared to static posture analysis in

the previous sections.

Table 2.10: Experimental results for overnight studies

Precision Recall f-measure

HMM with MC 78.4% 73.6% 75.9%

HMM with MSCC 86.5% 84.7% 85.6%

HMM with MCR 86.0% 84.4% 85.2%

Sliding Window Plurality with MC 73.9% 76.5% 75.2%

Sliding Window Plurality with MSCC 83.7% 84.5% 84.1%

Sliding Window Plurality with MCR 83.8% 84.8% 84.3%

For sliding window plurality voting, the predicted posture is chosen as the posture

with the relative majority compared to the other postures, and is updated with a sliding

window of fixed size over the set of consecutive previous images. In each group of con-

secutive samples, the simple plurality vote of the predicted test sample classifications

is taken as the classification for that grouping of image samples, i.e. the posture that is

predicted most frequently.

Overall, the results of continuous monitoring study show that classification accu-

racy can be improved when sequential static images are available. The HMM based

sequential methods show roughly 2-3% improvement over static image classification

for the Maximum Sum of Class Coefficients (MSCC) and Minimum Class Residual
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Predicted Posture

Figure 2.13: An example of one subject’s 8 hour continuous monitoring study

(MCR) heuristics. Interestingly, the HMM with Maximum Coefficient method shows

the largest improvement. This may be explained by the fact that Nearest Neighbor type

methods benefit most by the clustering of points as more data is considered. A sliding

window size of 10 improves the classification by a percentage point over static image

classification, however this may not be statistically significant over a small total sample

size.

Figure 2.13 shows the result of one of the test subjects for an 8 hour overnight

continuous monitoring session with predicted and true postures given. The subject is

a typical sample of the progression of posture sequences. Here the subject had 12

discernable posture changes.

2.4.4 Stability Analysis

We also analyse the robustness of the classification by investigating the variation during

cross validation. Stability is a measure that describes how closely the classifier evalu-

ates results if given different data. Figure 2.14 shows the classification variation for the

6 postures for each of the classifiers.

The Sparse Classifiers have smaller variation values than the other traditional clas-

sifiers. This indicates that sparse classification is a more stable classification method.
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Figure 2.14: Classification variation for 6 postures

The log postures have a higher variation in classification accuracy than the other pos-

tures. This is explained by the higher variation in weight distribution for these postures.

In our data, the log postures vary much between fully lying on the side and lying on the

back.

Although the Maximum Coefficient (MC) Sparse Classifier achieves the same ac-

curacy as Nearest Neighbor, it does perform better when considering its better stability.
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Figure 2.15: Classification robustness with random row deletions
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We also consider the robustness of the algorithm with regards to input errors, such

as from disconnected wires in the bedsheet. The effect of this would be missing rows

or columns of data in the pressure image. Figure 2.15 shows experimentally how a

random number of failures of bus lines will affect the accuracy of the classification

result. Roughly 20% of the hardware connections can fail with only a 4% drop in

classification accuracy.

2.4.5 Feature Selection

In this section, we examine the effect of feature selection in classification. 32 features

are extracted from the pressure image set for classification. It is most certainly the case

that some features are redundant or do not have any effect on classification results. We

employ Sequential Forward Selection (SFS) to find subsets of features that are most

descriptive of the whole feature set [JKP94]. This method is considered a wrapper

method, ie the feature selection is based on using the classification results themselves

and the selection process wraps around the classification.

With this method, the first feature is selected by testing each feature individually in

classification. The feature with the highest accuracy performance is chosen first. In the

second round of selection, each of the remaining features is used with the first feature

in classification. The feature with the highest accuracy result is chosen as the second

feature in the feature selected subset. This process continues as one feature is added at a

time until all of the features are selected. Since the classification always uses previously

selected features, redundant features are not selected until the end.

Figure 2.16 shows the relationship between number of selected features chosen

using SFS and classification accuracy for each of the classifiers. Accuracy generally

increases as more features are used for all of the classifiers. There is a sharp increase

in accuracy using the Sparse Classifier with both Maximum Sum of Class Coefficients

(MSCC) and Minimum Class Residual (MCR) heuristics, from 65% to 78% between
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Figure 2.16: The impact of feature dimension on classification accuracy based on Se-

quential Feature Selection

15 features and 20 features. Moreover the three Sparse Classifiers appear to have a

threshold at 20 features in the accuracy results, with a smaller rate of increase in accu-

racy as more features are used. The traditional kNN and Decision Tree show modest

increase of about 10% throughout the whole feature selection process.

An alternative method of selecting features is based on filtering. Each of the fea-

tures are evaluated based on how well they separate the data into the correct classes.

Table 2.11 shows the order of features ranked by an information gain metric [CT91].

Information gain describes the reduction in information entropy caused by knowing

the value of a feature. Features with high information gain allow better classification.

Information gain, IG, is given by

IG(A,F ) = Entropy(A)−
∑
f∈F

|Af |
|A| Entropy(Af )

where Af is the subset of dataset A for which feature F has value f . Entropy is given

by

Entropy(X) = −
n∑
i=1

p(xi)log2p(xi)

where p(xi) is the probability of sample xi occuring in the dataset X . The features are

chosen one at a time and the classification does not include previously selected features.
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Table 2.11: Alternative method of ranking features by Single Feature Selection

InfoGain Feat # Feature InfoGain Feat # Feature

0.887577 17 HipPoint(y) 0.262988 11 Reg7

0.616256 18 HipBox(x) 0.256317 5 Reg1

0.581828 20 HipBox(w) 0.252169 24 ShPoint(x)

0.554651 16 HipPoint(x) 0.234055 32 HipShDist

0.536393 14 Balance 0.215533 23 HipPtoBox

0.497846 19 HipBox(y) 0.200476 29 ShBox(h)

0.47028 22 HipArea 0.196697 3 Per50

0.443133 6 Reg2 0.186926 4 Per75

0.435716 13 Symmetry 0.186884 28 ShBox(w)

0.400952 10 Reg6 0.171033 2 Per25

0.359848 1 Coverage 0.168928 26 ShBox(x)

0.340698 21 HipBox(h) 0.153444 15 DirCurve

0.321448 25 ShPoint(y) 0.143608 30 ShArea

0.318234 9 Reg5 0.126994 12 Reg8

0.302024 27 ShBox(y) 0.12267 8 Reg4

0.277772 31 ShPtoBox 0.117452 7 Reg3

The disadvantage of this method is that it does not take into account the redundancy in

some of the features. In experiments, this method was shown not to be as accurate as

the Forward Selection.

It is interesting to note, however, that the highest ranked features are those associat-

ed with hip location and bounding box. This can be expected since the diferent postures

do vary much in the pressure points of the hip region. It is a strong indicator of side

postures versus the supine and prone postures.
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2.5 Conclusion

This work presents a sleep analysis design that monitors sleep posture using a pres-

sure sensitive bedsheet. An application for such a system is to enable caregivers the

ability to automatically identify when patients are at risk of developing pressure ul-

cers or when subjects experience sleep apnea. This work also presents the novel use

of relevant features that can be extracted from pressure images, as well as state of the

art classification methods. We developed three heuristics for sparse classification, and

in our experiments, show that both Maximum Sum of Class Coefficients (MSCC) and

Minimum Class Residual (MCR) heuristics produce reliable sleep posture estimation.

Pressure monitoring systems need not be limited to sleep posture recognition. In

nursing home settings, evaluation of fall risk is a desirable endeavor. Advanced beds are

now being developed that can re-distribute support to different regions of the bed [Hil]

and also aid in the heat flow through the bed mattress. Using pressure point monitoring,

the goal is to increase healing speed of patients.

Future work also involves the ability to monitor transitional states as patients move

between pre-defined stable classified postures. There are more challenges here because

of the large variations in different subjects’ motions. 3D model reconstruction of pa-

tients from 2D pressure image is another goal that can be accomplished using the results

of this research work.
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CHAPTER 3

Cardiopulmonary Monitoring

3.1 Introduction

World Health Organization (WHO) reports that 63% of all deaths are from chronic

diseases such as heart disease, lung disorder, cancer and chronic respiratory disease

and diabetes [Wor]. Due to the long duration and generally slow progression, chronic

disease is difficult to accurately diagnose and treat effectively. So far, the most reliable

method for chronic disease diagnosis and treatment is periodic medical examinations

for health status. In U.S., there are more than 100 million Americans suffering from

chronic health conditions. The related cost of caring for them consume 75% of the total

national health care bill, of which a significant part is from medical examinations. If

there is a reliable method to automatically monitor the patients at home and transfer

the medical data to doctor for evaluation, it will contribute a significant savings of the

health care bill.

Among miscellaneous medical examinations, vital signs (i.e. heart rate and respi-

ratory rate) are the most important measures to access body functions, monitor illness

progression and perform effective treatments [DBG05]. Furthermore, vital sign mea-

surements are helpful to predict potential clinical events. For example, the variation in

respiratory rate is an important marker for cardiac arrest or admission to the intensive

care unit [CCH07].

There are several off-the-shelf home devices for measuring vital signs [Omr, For].

They require users to strictly follow the instrument instructions and perform the mea-
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surement under controlled conditions. For example, when the subject is using an ECG

device to measure heart beat, the electrode should be attached on the correct body part

and subjects should not talk during measurements. Therefore, it is difficult to always

obtain the valid vital sign measurements without the assistance of medical personnel.

Moreover, due to the inconvenient use of these devices, it is unlikely to periodically per-

form vital sign measurements by patients themselves. Further, measurements can only

be done when the subjects initiate this process. Continuous monitoring is not feasible

unless the sensor is attached to the subject all the time.

In recent years, the research community looks for non-invasive methods for vital

sign measurement. In general, existing work can be classified into two categories. The

first one is based on direct contact. During the measurement, the device needs to contact

the user’s body. For example, Watanabe et al. [WWT05] presented a thin, air-sealed and

pressure-sensitive cushion under the bed mattress to measure heartbeat, respiration and

body movements of the subject. Chi et al. [CNK10] developed a capacitive electrode

to measure heart rate without direct skin contact.

The other one is based on non-contact technique. Non-contact techniques enable

monitoring vital signs remotely and seems more appealing for users. Aoki et al. [AT-

M01] discussed a non-restrictive visual sensing method to detect the respiration pattern

by using a fiber grating camera and processor unit. Zhu et al. [ZFP05] developed an

infrared camera based system to monitor the respiration and infer associated heart rate.

Chekmenev et al. [CRF05] used a thermal camera consisting of a focal plane array

for a long-wave infra-red sensor to extract heart rate and respiration from temperature

changes. However, all these existing non-contact methods suffer from the following

aspects. First, these sensors are sensitive to the environmental changes such as light or

temperature, and there are no robust calibration methods to compensate these changes.

Second, subjects should always be within the visual range of sensors, which becomes

another kind of constraint. Last, they are expensive and not affordable for home use.

In this chapter, we present a low-cost microwave Doppler radar based system com-
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plementary to existing non-contact techniques. According to Doppler theory [Bla96],

the reflection signal will have quantitative phase change, called Doppler shift, due to

the movement of objects, and the sensitivity is high enough to measure heart beat and

chest wall movement. With the Doppler radar structure and signal model, we propose

a novel framework to automatically demodulate the Doppler radar signals and extract

heart rate and respiratory rate without any pre-calibration. Therefore, this radar is a

low-cost, reliable and easy to setup solution for non-contact vital sign monitoring.

The remainder of the chapter is organized as follows. In Section 3.2 we briefly

introduce the background of Doppler radar and related work on radar signal processing.

Then we describe the layered architecture of the Doppler-radar motion-sensing system

in Section 5.2. In Section 5.3 we address the challenges and present the framework for

vital sign detection. The experimental design, performance evaluation and analyses are

discussed in Section 5.4. Finally, we outline the future work and conclude the chapter

in Section 3.6.

3.2 Preliminary and Related Work

The Doppler effect was proposed by Christian Doppler in 1842 and has been wide-

ly applied in motion detection since then. Microwave Doppler radar was first applied

to measure respiratory rate and detect sleep apnea in 1975 [Lin92]. Doppler radar

transmits a continuous-wave signal, which is reflected by a target, then received and

demodulated in a receiver. According to Doppler theory, the position-varying informa-

tion will be proportionally demodulated in the reflected signal when the net velocity is

zero. Therefore, the chest wall movement from volume change in respiration can be

detected by the Doppler-radar motion-sensing system. With the advances of wireless

transmission and electronic devices, it is feasible to use in-phase and quadrature (I/Q)

Doppler radar for heart beat detection [DLL04, CLL08].
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Figure 3.1: The I/Q Doppler radar block diagram for non-contact vital sign detection

3.2.1 I/Q Doppler Radar

Fig. 3.1 shows the operation theory and block diagram of an I/Q Doppler radar for non-

contact vital sign detection. The Doppler radar system transmits the continuous-wave

signal T (t):

T (t) = AT cos(ωt+ φ(t)), (3.1)

where AT is the amplitude of the carrier signal, ω = 2πf denotes the angular veloc-

ity (carrier frequency), and φ(t) represents the time-varying phase information of the

transmitted signal.

The subject is at a distance d0 from the radar and the total traversal distance of

microwave signal is d(t) = 2(d0 + x(t)), where x(t) is the time-varying displacement

caused by heart beat and respiration.

The transmission wave is reflected by the subject and received at Doppler radar with

R(t):

R(t) = AR cos[ωt− 4πd0
λ
− 4πx(t)

λ
+ φ(t− 2d0

c
)], (3.2)
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where AR is the amplitude of the received signal, λ = c/f is the wavelength of the

carrier signal, and c is the speed of light. We can see that the time-varying displacement

x(t) is modulated in the phase change of the received signal. As shown in Fig. 3.1,

R(t) is down-converted by T (t) and then generates two baseband signals. One is the

in-phase signal, denoted by I(t):

I(t) = AI cos[
4πx(t)

λ
+

4πd0
λ

+ φ(t− 2d0
c

)] +DCI , (3.3)

and the other is the quadrature signal, denoted by Q(t):

Q(t) = AQ sin[
4πx(t)

λ
+

4πd0
λ

+ φ(t− 2d0
c

) + φ0)] +DCQ, (3.4)

where AI is the amplitude of in-phase signal, AQ the amplitude of quadrature signal,

and φ0 is the phase offset between I(t) and Q(t). DCI and DCQ are the DC offsets in

I/Q channels, respectively. The ratio between AI and AQ is called gain imbalance, and

φ0 is called phase imbalance. Both gain imbalance and phase imbalance are caused by

circuit imperfection.

I(t) and Q(t) are then digitalized by the data acquisition block (DAQ), and the

phase change, x(t), is demodulated for heart beat and respiration detection. For the

simplicity of presentation, we neglect the constant phase offset, 4πd0/λ+φ(t− 2d0/c),

in the I/Q receiver and use the following equations to describe the baseband signals in

the following part:

I(t) = AI cos(
4πx(t)

λ
) +DCI , (3.5)

Q(t) = AQ sin(
4πx(t)

λ
+ φ0) +DCQ. (3.6)
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3.2.2 Related Work

As shown in Fig. 3.1, demodulation module processes the baseband signals, I(t) and

Q(t), for heart beat and respiration information extraction. If the circuit in Doppler

radar is perfect, there will be no gain/phase imbalance, i.e., AI in Eq. (3.5) is equal to

AQ in Eq. (3.6), and φ0 in Eq. (3.6) is equal to zero. Under these ideal-case assump-

tions, there are several techniques for Doppler radar signal demodulation to extract

vital signs. Fletcher and Han developed a low-cost Doppler radar for vital sign mon-

itoring [FH09]. Droitcour et al. approximated I/Q signals to linear formulas while

the responding phase is small, and then extracted vital signs by tuning carrier frequen-

cy [DLL04]. Tao et al. converted transmission wave to a set of pulse signals and

detected the phase change on its peaks [TLW09]. Lee et al. proposed a reassigned

joint time-frequency transform to track the heart rate [LYK11]. Park et al. presented

an arctangent demodulation method with pre-calibration of DC offsets [PLL07]. Mas-

sagram et al. assessed the Doppler radar for heart rate variability and respiratory sinus

Arrhythmia [MLM09]. Li and Lin formulated I/Q signals into a complex vector to

perform Fourier analysis, and the phase change can be calculated by iterative spec-

trum comparison [LL08]. Boric-Lubecke et al. employed the Doppler radar sensor for

monitoring heartbeat interval [BLP09].

There are two main drawbacks in existing demodulation methods mentioned above.

First, all these methods either require approximating I/Q signals [DLL04] [TLW09]

and need accurate precalibration of DC offsets [LL08] [PLL07]. In fact, DC offset is

produced not only by the electronic components, but also by multi-channel transmis-

sion and reflection which is related to the environment. Therefore, the DC offsets in I/Q

channels have to be re-calibrated whenever the environment changes, which is not ap-

plicable in practice. Second, these methods assume circuit component are perfect such

that gain/phase imbalances are tiny. In real cases, the effect of gain/phase imbalance is

significant in actual radar systems. Park et al. [PYL07] measured the imbalance factors

in direct-conversion quadrature radar circuit and reported that imbalance is unavoid-
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able. In their experiments, the gain imbalance was 4.7 and phase imbalance was 18.5

degrees by average. Note that phase imbalance has serious negative impact on error

rate in signal demodulation [ZH05]. Therefore, it is necessary to have an accurate and

robust signal processing technique for signal demodulation in Doppler radar systems.

In our application, the associated challenges include two aspects:

1. Accuracy: the demodulation method should take into account all parameters (i.e.,

AI , AQ, φ0, DCI and DCQ) in signal model and directly extract the motion

component x(t) from I/Q signals;

2. Self-calibration: the environment might change and the signal model will be d-

ifferent during measurement. The demodulation method can self-calibrate and

tolerate the parameter changes. No manual set-up is required.

3.3 System Overview

In this section, we introduce the proposed Doppler radar system for non-contact self-

calibrating vital sign monitoring. Fig. 3.2 shows the overview structure of the Doppler-

radar vital-sign-detection system. In our system, there are four layers, including sensor

layer, pre-processing layer, modeling layer and information layer. The sensor layer

and pre-processing layer are built on the hardware. The modeling layer and informa-

tion layer belong to software design. The definition and function of each part will be

discussed in the following.

3.3.1 Hardware Design

The radar sensor system was designed and built using commercial integrated circuits

(ICs). The key building blocks used in the sensor system are shown in Table 3.1. The

radar sensor system was designed with homodyne transceiver architecture integrated

on Rogers 4350 laminate for enhanced RF performance. The designed hardware pro-
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Figure 3.2: The layered structure of non-contact self-calibrating vital sign monitoring

system, including sensor layer, pre-processing layer, modeling layer and information

layer.

totype of the radar sensor is shown in Fig. 3.3, which illustrates different functional

blocks. In our system, there are four layers, including sensor layer, pre-processing lay-

er, modeling layer and information layer. The sensor layer and pre-processing layer are

built on the hardware. The modeling layer and information layer belong to the software

design. The definition and function of each part will be discussed in the following.

The hardware design includes the sensor layer and the pre-processing layer. The sensor

layer generates a single-tone carrier signal that is transmitted to the target to gather the

desired phase information [Lin92]. In our design, the sensor layer was implemented

by using a voltage controlled oscillator (VCO). The single-tone signal from VCO is

divided by a balun into two parts: one is transmitted via a transmitter antenna to the

target, and the other one serves as the local oscillator (LO) signal to the demodulator.

If the target is moving, e.g. the chest wall of the subject, the single-tone carrier signal

would be modulated in the phase with the information of the target’s movement, which

is called non-linear phase modulation [GIL, GLF12]. Though a free-running VCO is

used in our design, coherent demodulation is realized since the transmit signal and the

LO signal come from the same signal source. The phase noise of the VSO does not
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affect the sensitivity in non-contact vital signal detection, owing to the range correla-

tion effect [DBL04]. Two patch antennas have been custom designed for the use in our

radar sensor system.

Table 3.1: Building Blocks of the Radar-Sensing System

Blocks Manufacturer Specification

VCO Hittite 2.25-2.5GHz; Pout: 4.5dBm

Demodulator Skyworks RF/LO: 0.4 3GHz; Gain: 1.2dB

LNA Hittite 2.3-2.5GHz; NF: 1.7dB; Gain: 19dB; P1dBout: 6dBm

Gain Block RFMD Gain: 12dB; P1dBout: 11dBm

BPF Johanson Pass band: 2400 2500 MHz

Op Amp Maxim IC Bias: 3V; GBW: 3 MHz

Controller TI Bias: 3V; 10-bit ADC

The pre-processing layer is an RF receiver that handles the signal from the sensing

layer and down-converts it to baseband I/Q signals. A low noise amplifier (LNA) is

at the front-end of the pre-processing layer, so as to ensure a good noise figure for the

receiver chain. It also provides a 19 dB gain to boost the weak signal reflected from

the moving target. A ceramic band pass filter, as shown in Table 3.1, follows the LNA

to block the out-of-band interferences. This is important because there are a lot of

strong interferences in the air, e.g. 900 MHz cellular signal and 5.8 GHz WIFI signal.

The filtered signal is further boosted by a gain block to reach a sufficient power level

that can drive the RF port of the demodulator. A quadrature demodulator converts the

received signal to baseband I/Q signals, which are further amplified by the baseband

operational amplifier (Op Amp). The Op Amp is configured with a differential input

structure and the baseband gain is determined by the feedback of the amplifier. It should

be known that the Op Amp has a gain bandwidth product (GBW) of only 3 MHz. So

the Op Amp also serves as a low pass filter that preserves the low-frequency vital sign

signals but blocks any other interferers. The baseband output is digitized by a 10-bit
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ADC integrated in a microcontroller and further process by the modeling layer and the

information layer.

Figure 3.3: The hardware prototype of the Doppler-radar vital-sign-detection system.

3.3.2 Software Design

There are two layers in software for demodulating I(t)/Q(t) and detecting vital signs

that take into account the unknown parameters (i.e., AI , AQ, φ0, DCI and DCQ). The

first layer is the modeling layer. With the input from the physical layer, the modeling

layer will reconstruct the baseband signal and demodulate phase information. Vital sign

related information will be processed in the information layer. In the current prototype,

the software part is implemented in Matlab running on PC. The software framework

will be elaborated in the next section.

3.4 Our Framework

In this section, we will further present the framework for signal demodulation and vital

sign analysis. In our framework, there are two main components, including modeling
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layer and information layer (see Fig. 3.4). The input baseband signals, (i.e., I(t)/Q(t)),

first feed into the modeling layer. After identifying the signal model with five param-

eters (i.e., AI , AQ, φ0, DCI and DCQ), baseband signals will be reconstructed (to

find I ′(t)/Q′(t)) and demodulated (to find x(t)). The demodulated data will be further

analyzed in the information layer.

Phase 

Demodulation

Signal 

Reconstruction

Vital Sign 

Extraction

Parameter 

Identification

Signal Model

Modeling Layer

Baseband 

Signals

Heart Rate

Respiratory Rate

Information Layer

Spectral Analysis

Filtering

Figure 3.4: The framework of signal demodulation in non-contact vital sign monitoring

systems.

3.4.1 Modeling Layer

As shown in Fig. 3.4, the modeling layer consists of building the signal model, iden-

tifying model parameters, reconstructing signals and demodulating phase information.

From Eq. (3.5) and Eq. (3.6), we can see that there are five unknowns in signal model,

i.e., AI , AQ, φ0, DCI and DCQ. Intuitively there are two potential methods to identify

these unknowns. The first one is based on statistical machine learning [Bis06] in artifi-

cial intelligence research domain. Given a set of labeled inputs, x(t), statistical learning

can build up the relationship between unknowns in the model and input signals. When

the relation model is established, it can estimate the values of unknowns with any ar-

bitrary input, x(t). Unfortunately, this method will fail in this application because the

Doppler radar signal model is time-varying and non-stationary, which conflicts with the
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precondition of most of machine learning methods [RW06].

The second one is to estimate model parameters based on the signal model Eq. (3.5)

and Eq. (3.6) with partial pre-calibration. It is assumed that a prior calibration can be

performed on the system such that gain imbalance (the ratio of AI and AQ) is 1 and

phase imbalance (φ0) is 0. Therefore, the I/Q channel signals will become:

I(t) = A0 cos(
4πx(t)

λ
) +DCI , (3.7)

Q(t) = A0 sin(
4πx(t)

λ
) +DCQ. (3.8)

In this form, there are only three parameters,A0,DCI andDCQ. Note that pairwise

samples, I(n) and Q(n), will stay on a circle whose center is (DCI , DCQ) and radius

is A0 because:

(I(t)−DCI)2 + (Q(t)−DCQ)2 = A0
2, (3.9)

it is feasible to fit all samples on a circle via least squares optimization [ZRV12] and

then identify these three unknowns. However, this method is not suitable for auto-

nated monitoring applications since it requires to calibration of gain/phase imbalance.

It is impossible to have a pre-fixed calibration for perfect imbalance compensation in

practice.

In this work, we attempt to build up the I/Q signal model directly from Eq. (3.5)

and (3.6) and demodulate the phase accurately.

3.4.1.1 Signal Model

Before looking into the signal model, let us remember the mathematical description for

the ellipse. An ellipse is a special case in conic curves which can be described by:
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F (x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey +G = 0, (3.10)

with one constraint:

B2 − 4AC < 0, (3.11)

where A,B,C,D,E,G1 are six parameters to describe an ellipse. (x, y) are coordi-

nates of points lying on the ellipse, and the formula F (x, y, A ∼ G) is defined as the

algebraic distance of an arbitrary point (x, y) to a given ellipse.

In contrast to the second method [ZRV12] mentioned above, we build up the I/Q

signal model without any assumptions and precalibration. With the derivation of Eq.

(3.5) and (3.6), it can be proved that a pairwise sample [I(m), Q(m)] from I/Q channels

stays on an elliptical curve (See APPENDIX for the proof in detail). In other words, we

can reformulate the signal model identification problem into an ellipse fitting problem.

Given a set of n measurements (I1, Q1), (I2, Q2), ..., (In, qn), there is an ellipse Fa

such that

argmin
A∼G

∑n
i=1 ‖F (Ii, Qi)‖22

s.t. B2 − 4AC < 0.
(3.12)

With the result from Eq. (3.12), we can use Eq. (3.31) - (3.35) in APPENDIX to

calculate the five parameters in signal model by the values of A ∼ G.

We can see that Eq. (3.12) is in a form of quadratically constrained least squares

(min-`2) problem. In general, it is a NP-hard problem [BV04] and impossible to obtain

global optimal solutions. Fitzgibbon et al. [FPF99] transferred the quadratical inequal-

ity constraint, B2 − 4AC < 0, into an equality constraint, 4AC − B2 = 1, under the

assumption that all the points, (x, y), are close to an ellipse and all distances, F (x, y),

are close to zeros.
1For simplicity, we will use A ∼ G to represent A,B,C,D,E,G
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argmin
A∼G

∑n
i=1 ‖F (Ii, Qi)‖22

s.t. 4AC −B2 = 1.
(3.13)

In this way, the formulation in Eq. (3.13) is well-posed and can be solved by Lagrange

regularization and eigenvalue decomposition [FPF99]. There are also some research

work under the similar assumption above [HF98, SCH12]. However, this method will

suffer from the actual scattered data for two reasons. First, when data is noisy and

F (x, y) is relatively large, the equality constraint in Eq. (3.13) will not be equivalent to

the inequality constraint in Eq. (3.12). Second, it is well-known that `2 minimization

based fitting is sensitive to outlier or sparse measurement errors.

According to compressed sensing theory [Don04] developed in recent years, there

are miscellaneous applications indicating that min-`1 based fitting is robust to outliers

or errors than min-`2 based fitting [CRT06c, WYG09a, XZS12a]. Inspired by this, we

consider to use min-`1 for signal model identification as follows:

argmin
A∼F

∑n
i=1 |aiA+ biB + ciC + diD + eiE +G|

s.t. B2 − 4AC < 0.
(3.14)

Eq. (3.14) is a `1 minimization problem with a non-linear constraint and even harder

than the quadratically constrained least square problems in Eq. (3.12). In the following

section, we will introduce the method to solve Eq. (3.14) by lower-bound and linear

matrix inequality (LMI) relaxation.

3.4.1.2 Model Identification

There are two relaxation steps to solve Eq. (3.14). First, we use the upper bound

relaxation to change the objective function. By defining an upper bound distance ti for

each sample (Ii, Qi), (i.e., |F (Ii, Qi)| ≤ ti), we can have the problem with a linear

objective function:
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argmin
A∼G,t

∑n
i=1 ti

s.t. F (A ∼ G) ≤ ti,

−F (A ∼ G) ≤ ti,

ti ≥ 0, i = 1, · · ·, n
B2 − 4AC < 0.

(3.15)

By now, the new problem formulation in Eq. (3.15) is still a non-convex problem

and unsolvable. Here we apply LMI relaxation by adding a couple of lifting variables

and constraints. More specifically, let v = [1, A,B,C,D,E,G]T be a basis to build a

moment matric, M , by v × vT � 0:

M =



1 A B C D E G

A A2 AB AC AD AE AG

B AB B2 BC BD BE BG

C AC BC C2 CD CE CG

D AD BD CD D2 DE DG

E AE BE CE DE E2 EG

G AG BG CF DG EG G2



=



1 y1 y2 y3 y4 y5 y6

y1 y11 y12 y13 y14 y15 y16

y2 y12 y22 y23 y24 y25 y26

y3 y13 y23 y33 y32 y35 y36

y4 y14 y24 y34 y44 y45 y46

y5 y15 y25 y35 y45 y55 y56

y6 y16 y26 y36 y46 y56 y66


� 0,

(3.16)

where
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y1 = A, y2 = B, y3 = C, y4 = D, y5 = E,

y6 = G, · · ·, y22 = B2, · · ·, y13 = AC, · · ·.
(3.17)

Note that a 48 × 1 unknown, y, and a linear matrix inequality constraint, M � 0,

are introduced here. As a consequence, we can rewrite the formulation in Eq. (3.15)

as:

argmin
y,t

∑n
i=1 ti

s.t. F (Ii, Qi, y1 ∼ y6) ≤ ti,

−F (Ii, Qi, y1 ∼ y6) ≤ −ti,
ti ≥ 0, i = 1, · · ·, n
y22 − 4y13 < 0

M � 0.

(3.18)

Note that the moment matrix M is symmetric and positive semidefinite, and the

formulation in Eq. (3.18) is convex and can be solved by semi-definite programming

[BV04]. Therefore, we have a feasible solution to identify the signal model with the

five unknown parameters.

3.4.1.3 Signal Reconstruction and Phase Demodulation

With the information of gain imbalance (AI/AQ) and phase imbalance (φ0) from the

above, we can use Gram-Schmit procedure [Bjo67] to reconstruct (I(t), Q(t)) input by

the following transformation:

 I ′(t)
Q′(t)

 =

 1 0

− tanφ0
AI

AQ cosφ0

 I(t)
Q(t)

 . (3.19)

Therefore, we can have the reconstructed baseband signal (I ′(t), Q′(t)):
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I ′(t) = AI cos(
4πx(t)

λ
) +DCI , (3.20)

Q′(t) = AI sin(
4πx(t)

λ
) +

AIDCQ
AQ cosφ0

− tanφ0DCI , (3.21)

and then we can demodulate heart beat and respiration related information, x(t), by the

arctangent formula directly:

x(t) = arctan[
Q′(t)− AIDCQ

AQ cosφ0
+ tanφ0DCI

I ′(t)−DCI
]. (3.22)

3.4.2 Information Layer

The information layer receives the demodulated signal, x(t), and performs further pro-

cessing, such as spectral analysis, band-pass filter and etc. The signal processing will

be shown in detail in the experimental part.

3.5 Evaluation

3.5.1 Experimental Setup

In this section, we discuss the evaluation on the proposed non-contact vital sign moni-

toring system. A 2.4G quadrature Doppler radar system is designed and implemented.

As shown in Fig. 3.3, all the RF components, including antenna, oscillator, amplifier-

s and filters, are fabricated on a printed circuit board. The system is operated at 5V,

and the total transmission power is−10dBm (0.1mW). After collection by an on-board

DAQ acquisition module, the digital baseband signals are transmitted to a computer for

phase demodulation.

For the sake of the comprehensive testing, we design three sets of experiments to

validate the performance of the system. First, we use the simulated data as a testbench

to quantify the residual of `1 minimization based demodulation algorithm. Second,
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an actuator is employed as a controlled subject for the movement detection test. This

experiment can examine the system performance from the end-to-end point of view. In

the last experiment, we have a pilot study with 15 subjects for detecting real vital signs,

including heart rate and respiratory rates, of human beings.

3.5.2 Performance Evaluation with Simulated Data

We developed a set of simulated data to quantify the performance of the proposed

demodulation method. The dataset are simulated from known ellipses with noise and

outliers. More specifically, the simulated dataset is divided into two classes. One class

is the simulated data with outliers only, and the distance from the outlier to the ellipse

is up to 50% of the semimajor axis. The other is with outliers and noise, in which

signal-noise-ratio is varying from 0.01 to 0.5. In the experiment, we apply the proposed

algorithm to perform ellipse fitting on the testbench. Given that the ground truth is

known ahead, the performance of demodulation can be quantitatively evaluated. We

use Fitzgibbon’s `2 minimization method [FPF99] for comparison.

First, we evaluate the algorithm performance on the outlier dataset. Fig. 3.5(a)

and Fig. 3.5(b) show an example of ellipse fitting from the traditional `2 minimization

method and the proposed `1 minimization method, respectively, where the blue dots

present the clean data (zero offset), the red dots present the outliers, the black curve is

the fitting result, and the red dash curve is served as ground truth. From this example

(15% outliers), we can see that `1 based algorithm is robust to the red outliers, and

the fitting ellipse perfectly matches with the clean data (see Fig. 3.5(b)). In contrast,

`2 based method is affected by the outlier points, and there is an obvious mismatch

between the fitting ellipse and the ground truth (see Fig. 3.5(a)).

Furthermore, we evaluate both methods with different outlier percentages, ranging

from 5% to 40%. For simplicity, we use the overlap area between fitting ellipse and

ground-truth ellipse to evaluate the matching accuracy [HC11]. Fig. 3.6 illustrated two
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(a) SNR = 0.1 (b) SNR = 0.1

Figure 3.5: An example of fitting results on outlier dataset from two algorithms. The

outlier percentage is 15%. Fig. 3.5(a) is the result of `2 based method, and Fig. 3.5(b)

is the result of `1 based method.

accuracy curves corresponding to these two strategies, respectively. It shows that `2

based method is sensitive to outliers, and `1 based method can tolerate the outliers up

to 20%.

Second, we test the performance on the data with Gaussian noise. Fig. 3.7 illustrates

the stability of `1 and `2 algorithms against noise. The SNR is ranging from 0.05 to 0.5.

We can see that, with the increase of noise level, both algorithms have more offset

compared to the ground truth (the red ellipse). On the other side, `1 is still significantly

better than `2 in all SNR levels.

3.5.3 End to End Testing with a Controlled Actuator

The second experiment is a real-scenario based experiment to test the performance

of non-contact radar sensing system. For accuracy of the evaluation, we use a pro-

grammable actuator to obtain controlled motions. As shown in Fig. 3.8, a set of lin-

ear actuator (ZABER TNA08A50) and linear translational stage (ZABER TSB28-1)

is placed 1m away from the Doppler-radar motion-sensing system. During the experi-

ment, the actuator is programmed to perform a series of standard sinusoidal movements,
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Figure 3.6: Two matching accuracy changing curves with different outlier percentages

from `1 based method and `2 based method, respectively.

and the radar system will measure and demodulate the actuator motion. To mimic the

chest wall movement (by respiration) and heart beat of human beings, the movement

amplitude is set from 0.1 cm to 4 cm, and the movement frequency is changing from

0.2 Hz to 2Hz [GWC97, RS89]. In the end, we use the normalized root mean squared

error (NRMS) to quantify the measurement error:

NRMS =

∑n
i=1 dist(i)

n · A , (3.23)

where dist(i) is the distance from the measured point to the sinusoidal curve, and A is

the amplitude of movements.

Fig. 3.10 shows an example of demodulation results, where where blue line denotes

the setting motion, and red dots denote the measured motion of our system. Fig. 3.10

illustrates that the measured motion is coherent with the pre-setup motion of linear

actuator, and the root mean squared error is less than 1%. Moreover, the residuals on
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(a) SNR = 0.5 (b) SNR = 0.4 (c) SNR = 0.3 (d) SNR = 0.2 (e) SNR = 0.1 (f) SNR = 0.05

(g) SNR = 0.5 (h) SNR = 0.4 (i) SNR = 0.3 (j) SNR = 0.2 (k) SNR = 0.1 (l) SNR = 0.05

Figure 3.7: Fitting results on noisy dataset from two algorithms. SNR is changing from

0.5 to 0.05. The first row (from (a) to (f)) is the fitting results of the `2 based method,

and the second row (from (g) to (l)) is the fitting results of the `1 based method. In

each figure, the red dash curve is the ground truth and the black solid curve is the fitting

curve.

different movement setups are listed in Table 4.2. To clearly represent the residual

change with different magnifications and frequencies, we plot the results of Table 4.2

in Fig. 3.9. From this figure, we can see that the averaged measurement error of the

Doppler radar sensing system is less 3% on average. In the mean while, it indicates

that the measurement error is unrelated to movement frequency but strongly associated

with the movement magnitude: the larger the amplitude, the smaller the measurement

error.

Based on the end-to-end evaluation results in real scenario, we can safely draw

the conclusion that our proposed fitting method outperforms the traditional method in

motion sensing applications.

3.5.4 A Pilot Study for Detecting Human Vital Signs

Our last experiment is to detect human vital signs. There are 15 subjects participating

the pilot study. As shown in Fig. 3.11, each subject sits in front of the Doppler-radar

sensor. Note that the distance between the subject and the radar sensor varies according
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Figure 3.8: Experimental setup for measuring the movement of a controlled actuator

to the sitting position. With the self-calibrating mechanism, there is no need to tune

the radar for each subject. For ease of the observation, subjects are under most natural

status without talking, coughing or breath-holding. Each measurement lasts 20 seconds,

and each subject is tested for 3 times. For the error analysis with ground truth, we use a

video camera to record the chest wall movement and a QPS ECG sensor [Car] to record

the heart beat, respectively.

Fig. 3.12 shows radar measurements and demodulation results on one subject from

the non-contact vital sign monitoring system. Fig. 3.12(a) and Fig. 3.12(b) present I/Q

and demodulation signals. Note that there is a significant gain imbalance in I/Q signals,

and heart beat and respiration signals are included in demodulation signals. Fig. 3.12(c)

is the spectral analysis result of the demodulation data. We can see that the frequency

components on respiration and heart beat are prominent in the spectrum.

Furthermore, we filter the demodulation signal in Fig. 3.12(b) with two band-pass

filtering to obtain vital sign signals. Fig. 3.13(a) and Fig. 3.13(b) show the respiration

and heart beat signals, respectively. We compare the demodulated respiration signal

with the subject’s respiration movements and find that they are coherent and synchro-

nized. Fig. 3.13(c) shows the recorded heart beats from the standard ECG device. We

can see that the peaks from Fig. 3.13(c) and Fig. 3.13(b) are well aligned with each
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Figure 3.9: The residual surface of movement measurement with different actuator

setups.

other. The same results are observed among all 15 subjects, which proves that our

self-calibrating radar sensor system can effectively extract vital sign information in a

non-contact approach.

3.6 Conclusion and Future Work

In this chapter, we presented a non-contact, self-calibrating vital sign monitoring sys-

tem using the Doppler radar. We considered the baseband signals in quadrature mi-

crowave radar and proposed a framework to automatically analyze I(t)/Q(t), including

direct signal modeling, model parameter identification and demodulation. In this work,

we formulated signal model identification into a quadratically constrained `1 minimiza-

tion problem and solved it with the upper-bound and LMI relaxation.

We performed three sets of experiments to evaluate the performance of our system.

We showed the accuracy and stability of our demodulation framework and examined
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Figure 3.10: The result of sinusoidal motion measurement. The movement frequency

is 10Hz, and the magnification is 1cm.

the end-to-end performance with two real-life scenarios. The results showed that our

system can effectively detect human vital signs.

In future work, we will consider a pilot study of non-invasive vital sign detection

with larger subject group. Moreover, we will try to further improve the demodulation

method for more complicated application scenarios, such as accurate vital sign detec-

tion when the subject is fast moving.

In this section, we prove that the samples from I/Q channels stay on an ellipse.

There is a sample [I(n),Q(n)] such as :

I(n) = AI cos(
4πx(n)

λ
) +DCI , (3.24)

Q(n) = AQ sin(
4πx(n)

λ
+ φ0) +DCQ. (3.25)

Based on product-to-sum/sum-to-product formulas, we can transform Eq. (3.25)

can be decomposed into:

I(n)−DCI

AI
= cos(

4πx(n)

λ
), (3.26)
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Table 3.2: The residual of movement measurement with different actuator setups (%)

Amplitude (cm)

Fr
eq

ue
nc

y
(H

z)
0.1 0.5 1.0 1.5 2 2.5 3 3.5 4

0.2 12.0 2.3 0.61 0.55 0.43 0.39 0.38 0.32 0.33

0.4 11.8 2.7 0.71 0.54 0.44 0.37 0.35 0.28 0.32

0.6 11.6 2.2 0.77 0.55 0.39 0.37 0.35 0.29 0.31

0.8 11.6 2.6 0.69 0.56 0.43 0.41 0.35 0.31 0.29

1.0 11.7 1.9 0.65 0.56 0.51 0.38 0.36 0.36 0.29

1.2 12.0 2.5 0.78 0.58 0.49 0.39 0.35 0.29 0.29

1.4 11.2 2.2 0.59 0.58 0.49 0.39 0.38 0.29 0.34

1.6 11.5 1.8 0.63 0.52 0.39 0.36 0.38 0.35 0.29

1.8 11.3 2.3 0.63 0.53 0.40 0.39 0.35 0.33 0.32

2.0 11.9 2.1 0.58 0.55 0.41 0.39 0.38 0.34 0.28

Q(n)−DCQ

AQ
= sin(

4πx(n)

λ
) cos(φ0) + cos(

4πx(n)

λ
) sin(φ0). (3.27)

According to trigonometric identities such that:

sin2(
4πx(n)

λ
) + cos2(

4πx(n)

λ
) = 1, (3.28)

we can eliminate 4πx(n)
λ

with Eq. (3.26), Eq. (3.27) and (3.28) to get that:

1

AI
2 I

2(n)− 2 sinφ0

AIAQ
I(n)Q(n) +

1

AQ
2Q

2(n)

+f1(φ0, DCI , DCQ)I(n) + f2(φ0, DCI , DCQ)Q(n)

+f3(φ0, DCI , DCQ) = 0.

(3.29)

Remember that Ax2 + Bxy + Cy2 +Dx+ Ey +G = 0 is a conic curve, and it is

an ellipse if and only if B2 − 4AC < 0.
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Figure 3.11: The Doppler radar is measuring vital signs from one subject.

From Eq. (3.29), we can get that:

B2 − 4AC = −4 cos2(φ0)

AIAQ
≤ 0. (3.30)

Therefore, we prove that Eq. (3.29) is an ellipse when phase imbalance φ0 is not

(2k + 1)π/2. In the case that φ0 = (2k + 1)π/2, Eq. (3.29) will degenerate into a line.

Furthermore, if the fitting ellipse F (x, y) = 0 is determined, the parameters in I/Q

signal model can be calculated through:

DCI =
2CD −BE
B2 − 4AC

, (3.31)

DCQ =
2AE −BD
B2 − 4AC

, (3.32)

AI =

√
AE2 + CD2 +GB2 −BDE − ACG

(B2 − 4AC)[
√

(A− C)2 +B2 − (A+ C)]
(3.33)
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AQ =

√
AE2 + CD2 +GB2 −BDE − ACG

(B2 − 4AC)[−
√

(A− C)2 +B2 − (A+ C)]
(3.34)

φ0 =
1

2
cot−1(

A− C
B

) (3.35)
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(a) Baseband I/Q Signals

(b) Demodulation Data

(c) Spectrum on Demodulation Data

Figure 3.12: The measurements with one subject with the non-contact vital sign moni-

toring system.
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(a) Respiration

(b) Heart Beat

(c) Heart Beat Ground Truth

Figure 3.13: Vital sign signals from demodulated data.
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CHAPTER 4

Fall Detection and Prevention

4.1 Introduction

Daily activities and behaviors is a key indicator of human health status. In recent years,

a lot of clinical studies prove that human activity and behaviors is highly related to med-

ical diseases, such as obesity [YAY05], autism [LBG00], and cerebral palsy [CCB11].

Therefore, it is important to enable accurate human activity measurements, and proven

data can be used as the evidence for medical diagnosis and treatment.

Currently there are two main methods to monitor human activities. One is to de-

ploy the remote sensors (such as camera, radar and infrared) in infrastructure such as

parking lots, office buildings and airports. Park and Trivedi [PT05] presented a camera-

based tracking system for human movement analysis and privacy protection. Kim and

Ling [KL09] investigated the feasibility of classifying different human activities based

on micro-Doppler signatures. Han and Bhanu [HB07] developed a hierarchical scheme

to automatically detect human movements via infrared sensors. However, one com-

monly key drawback is that the sensing scope of these remote sensors is immobile and

limited due to fixed deployment position. Information may be lost if people leave the

field of view of the sensors. Moreover, because of the privacy issue, users will feel

uncomfortable when their daily activities are under monitor.

The other method is to attach the inertial sensors (accelerometer, gyroscope and

etc.) on the human body to sensor the motor of body parts. Bouten et al. [BKV97]

described the development of a triaxial accelerometer and a portable data processing
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unit for the assessment of daily physical activity. Najafi et al. [NAP03] introduced a

gyroscope-based ambulatory system to detect body postures in elderly persons. With

advances in MEMS technologies, inertial sensors have become popular in recent years

for human activity sensing and tracking since they are low-cost, miniature and easy to

be integrated into personal carry-on devices such as smart phones, watches, and apparel

(e.g. shoes, clothes and hats). Figure 4.1 illustrates a number of examples of on-body

sensing devices integrated with inertial sensors. We can see that different devices will

be deployed on different locations on the human body accordingly. Therefore, the

activity signals captured by inertial sensors are highly dependent on both the human

activity and the location where the sensors are worn. In other words, it is highly possible

that the signals may be totally different when a person performs the same activity with

sensors on different locations. Therefore, any misplacement or displacement might lose

the sensing accuracy and make the analysis completely incorrect [ASV11].

1

2

3

4

5

Figure 4.1: Examples of on-body inertial sensing devices for human activity monitoring

and recognition: 1) Nike+; 2) BodyMedia; 3) Healthset; 4) Basis Band; 5) Fitbit.

Based on this observation, it is difficult to understand the inertial sensor signal with-

out any priori information. In fact, researchers have been developing techniques to ei-

ther extract location information from the captured activity signals or take advantage of
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the sensor location information as a priori information to achieve better activity recog-

nition performance. For example, Vahdatpour et al. [VAS11] developed a SVM-based

approach to identify the sensor location on the human body when people walk. Long et

al. [LYA09] customized the activity recognition algorithm to specific sensor locations

to improve the performance of the recognizer. Among all these existing techniques,

the common point is that they treat sensor localization and activity recognition as two

separate problems assuming the other part information is known. Unfortunately, either

of them will be available in practical applications. In this chapter, we argue that the

sensor location information and the activity signals are intertwined and can be solved

as one problem.

We proposed the solution to co-recognize human activity and sensor location in a

single framework, which is not necessary to have any priori information about sen-

sor and human activity. Specifically, our framework uses sparse signal theory, which

enables to reconstruct the signal with limited or incomplete samples if the signal has

sparsity in some transformation domain [Don06]. Here, we prove that human activity

signals captured by wearable inertial sensors are indeed sparse, and then take advantage

of this sparsity information to classify activity signals and recognize where the sensor

is located on the human body simultaneously. Based on our experiments, our method

can recognize 14 activities and 7 on-body locations with 87.72% recognition accuracy

on average.

The remainder of this chapter is organized as follows. In Section 4.2 we briefly

introduce the theory of sparse signals and review some existing work on human activ-

ity recognition based on the theory. Then, we describe our human activity and sensor

location co-recognition framework in Section 4.3. The experimental results and analy-

sis are presented in Section 5.4. Finally, we outline the future work and conclude the

chapter in Section 4.5.
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4.2 Preliminary and Related Work

4.2.1 Sparse Signals and `1 Minimization

Sparse signal processing (or compressed sensing) [Don06] is a ground-breaking sig-

nal processing procedure developed recent years. It has been widely applied in many

research domains such as communications, medical image processing and computer

graphics due to its capability of accurate signal reconstruction with lower sampling rate

claimed by Nyquist-Shannon sampling theorem [CRT06a].

Suppose that x ∈ Rn is a vector of unknown variables, y ∈ Rm is the available

measurements, and A ∈ Rm×n is the data matrix to describe the relation between x and

y. Then, we have:

y = Ax. (4.1)

In many real-world applications, the number of unknowns, n, is more than the num-

ber of measurements, m, i.e. n > m. In such cases, Eq. (4.1) represents an underdeter-

mined system, and x can not be uniquely reconstructed from the data matrix A and the

measurements y. However, in situations where x is sparse enough, we can reconstruct

x with the `0 sparsity formulation from:

minx∈Rn ‖ x ‖`0
s.t. y = Ax.

(4.2)

Eq. (4.2) is a determined system and has stable solution. However, Eq. (4.2) is

intractable because it is an NP-hard problem [Nat95a]. The traditional heuristic to

approximate the sparsity `0 is to use the minimal energy `2:

minx∈Rn ‖ x ‖`2
s.t. y = Ax.

(4.3)

It is well-known that `2 is a least square formation and can be efficiently solved.

However, the energy minimization `2 is not necessarily equivalent to the sparsity `0 in
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most cases. In 2006, the authors of [CRT06a] proved that the solution of Eq. (4.2) is

highly the same as the solution with the `1 minimization.

minx∈Rn ‖ x ‖`1
s.t. y = Ax.

(4.4)

It has been proved that this `1 minimization can be formulated as a convex prob-

lem [Don06]. In such case, the optimization problem is well-posed and can be solved

in polynomial time.

4.2.2 Sparse Signals for Pattern Recognition

One important application of sparse signals is pattern recognition and classification.

In recent years, it has been applied successfully to many pattern recognition problems

including face recognition [WYG09b], speech recognition [GVH07], and iris recogni-

tion [PPC11]. The formulation of sparse signal based classification strategy is relative-

ly straight forward. Consider a pattern recognition problem with K different classes.

Each class k has nk training samples, each having m attributes. In total, there are

n =
∑K

i=1 ni training samples. We can collect all these training samples to form a

matrix A with m rows and n columns as follows:

A = [A1, A2, · · ·, Ai, · · ·, Ak]
= [a11, a12, ..., a1n1 , a21, a22, ..., a2n2 , · · ·,
, · · ·, ai1, ai2, ..., aini

, · · ·, ak1, ak2, ..., aknk
],

(4.5)

where aij is the j-th training sample from class i.

Following Eq. (4.1), any given unknown input y ∈ Rm can be represented as a

linear span of training sample matrix A ∈ Rm×n as:

y = x1a11 + x2a12 + · · ·+ xnaknk
, (4.6)

where x1, x2, · · ·, xn are a sparse set of weights.
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Under this formulation, the class membership of y, which is encoded as the sparsest

solution of the underdetermined system given in Eq. (4.1) can be found by solving

Eq. (4.4).

4.2.3 Related Work

There are some existing research work on using sparse representation for human activ-

ity analysis. Yang et al. [YJS09] used 8 motion sensing motes distributed on the human

body to recognize 12 different human activities. Liu et al. [LYC09] adopted a similar

strategy to recognize human activities captured by camera videos. Compared to these

existing studies, our work differs in the following aspects:

1. Sensing technology: Instead of using video cameras [LYC09], we use inertial

sensors (accelerometer and gyroscope) attached on the human body to collect

human activity signals;

2. Sensing strategy: Rather than distributing multiple sensor nodes to cover the

entire body as in [YJS09], we use only one single sensor node on the body to

recognize human activity. We believe this sensing strategy is less intrusive and

can be applied to a much wider range of real-world applications;

3. Sensor location: The work in [YJS09] requires that the sensor nodes are fixed

in some specific locations. Any misplacement of the sensor nodes will make the

recognition fail. In comparison, our method does not have this limitation and

enables the co-recognition of human activity and sensor location in one single

step.

A preliminary version of this work has appeared [XZS12d]. Compared to previous

work, we include a further study and discussion of the algorithm performance in this

chapter. Specifically, there are two new contributions. First, we investigated algorithm

robustness on feature dimension reduction. In this chapter, we evaluate the algorithm
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robustness from two aspects: classification accuracy and classification stability. The

detailed analysis of this part is addressed in Section 4.4.4. Second, we compared our al-

gorithm with two most used classification methods, nearest neighbor (NN) and nearest

subspace (NS), to justify its advantage. The comparison study includes three aspects:

classification accuracy, classification stability and robustness on feature dimension re-

duction. The experimental results proved the advantage of our method and discussed

the applicable conditions (see Section 4.4.6). Note that we use the same dataset on

evaluation for the sake of consistency with previous work.

Sparse 
Representation

via L1
Minimization

Motion 
Sensors

Feature
Extraction

Sparse Signal
Based

Classification

Determined 
Activity and 

Sensor Location
Raw
Data

Feature 
Vectors

Sparsest 
Solution

Figure 4.2: The three important components of our sparse signal based framework

4.3 Our Framework

In this section, we present our proposed framework for co-recognizing human activity

and on-body sensor location. As shown in Figure 4.2, our framework consists of three

important components: feature extraction, sparse representation via `1 minimization,

and Bayesian sparse signal based classification. We will describe the details of all these

components in this section.

4.3.1 Feature Extraction

There are many existing studies focusing on exploring the best features that can be

extracted from human activity signals. Following previous work [ZS12], we extract

statistical features in motion signals, such as mean, standard deviation and nonnegative

entropy, to represent human activities. These parameters index a family of probability

distribution and describe the characteristics of a population. In this chapter, we use
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Table 4.1: Selected Features and Their Definitions
No. Statistical Feature Definition

1 Arithmetic Mean The DC component (average value) of the signal

2 Median The median signal value

3 Stand Deviation Measure of the distribution of the signal

4 Variance The square of the standard deviation

5 Root Mean Square The quadratic mean value of the signal

6 Mean Derivatives The average value of the first order derivatives of the signal over the window

7 Skewness The degree of asymmetry of the sensor signal distribution

8 Kurtosis the degree of peakedness of the sensor signal distribution

9 Interquartile Range Measure of the statistical dispersion, being equal to the difference between

the 75th and the 25the percentiles of the signal over the window

10 Zero Crossing Rate The total number of times the signal changes from positive to negative or vice versa

11 Mean Crossing Rate The total number of times the signal change from below average to above average or vice versa

12 Pairwise Correlation Correlation between two axes of each sensor and different sensors

12 statistical features listed in Table 4.1 because they these features been proven to be

useful in classifying human activities and other related pattern recognition problems by

existing studies [ZS11b]. All these features are extracted from both accelerometer and

gyroscope signals. In total, 64 features for each segment are extracted and denoted as

x ∈ R64. Also, note that every feature in the vector is independent of others.

4.3.2 Sparse Representation via `1 Minimization

We follow the formulation described in Section 4.2 to construct the data matrix A.

Specifically, we collect n samples from activity i and sensor location j. For each sam-

ple, we extract features described in the previous subsection to form a feature vector a.

Then a feature matrix Aij can be constructed as:

Aij = [a1, a2, · · ·, an]. (4.7)

In this way, we build the data matrix A covering all K activities and L locations as:

A = [A11, A12, · · ·, AKL]. (4.8)

As described in Section 4.2, any given test sample y from unknown activity and
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location can be represented in terms of the matrix A as

y = A11x11 + A12x12 + · · ·+ AKLxkl, (4.9)

where x = [x11, x12, · · ·, xkl] is the sparse representation of y w.r.t. matrix A, and the

coefficient xij is referred as feature index for feature matrix Aij . In such case, x can be

found via the `1 minimization formulated in Eq. (4.4).

4.3.3 Bayesian Sparse Signal Based Classification

Given the sparse representation x of the test sample y, we can identify its activity class

membership i and location class membership j altogether by computing the residual

values between y and each feature matrix Aij defined as:

residualij = ‖y − Aijxij‖2, (4.10)

the lower the residual value is, the more similar y is to feature matrix Aij . Therefore, y

is classified as the activity classC and sensor location class S that produces the smallest

residual:

{C, S} = argmin
ij

residualij. (4.11)

Let P (i, j|C, S) be the probability that the test sample y is classified as activity i

and sensor location j when the true activity class is C and true sensor location class

is S. Since the residual value is a measure of the similarity between y and the feature

matrixAij , the lower the residual is, the higher the probability that the classified activity

class i and location class j will be the same as the true activity class C and true location

class S. Therefore, we can model the probability P (i, j|C, S) using the residual values

as:
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P (i, j|C, S) = 1− residualij∑K
i=1

∑L
j=1 residualij

. (4.12)

Based on the sum rule of probability theory, the probability of y classified as activity

i when the true activity class is C can be derived by summing up the probability at each

sensor location from

P (i|C) = 1−
∑L

j=1 residualij∑K
i=1

∑L
j=1 residualij

, (4.13)

and the test sample y is classified as activity class C∗ that has the highest probability:

C∗ = argmax
i

P (i|C) . (4.14)

Similarly, the probability of y classified as location j when the true location class is

S is calculated by summing up the probability over all activity classes from

P (j|S) = 1−
∑K

i=1 residualij∑K
i=1

∑L
j=1 residualij

, (4.15)

and the test sample y is classified as sensor location class S∗ that has the highest prob-

ability

S∗ = argmax
j

P (j|S) . (4.16)

4.4 Experiments and Evaluation

4.4.1 Experimental Setup and Dataset

We ran a pilot study in a laboratory environment to evaluate the performance of our

proposed approach. The dataset is collected using an customized human motion sensing

node, called a TelosB mote [GLJ09]. As shown in Figure 4.3, the size of the TelosB

mote is 1.267 inch by 2.580 inch, and it includes a tri-axial accelerometer and a bi-axial
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gyroscope (i.e. five data channels). For each channel, the signal sampling rate is 50 Hz,

and all the samples are stored in an on-board SD card.

2.2. Fundamental guidelines

For a golf player to develop a sound swing, it is re-
quired to know principles that are essential to building
a prefect swing. Applying these fundamental guide-
lines helps individual golfers improve their proficiency
by learning how to establish positions as well as how
to adjust those parts of the swing that is not fundamen-
tally correct. The goal in achieving a perfect swing is
to hit the ball squarely and straight [36]. This would
also give the golfer maximum distance. Consequently,
it is important to investigate actions that prevent devel-
opment of a perfect swing. According to the literature,
there are two kinds of common mistakes new players
make resulting in a poor shot [8]: wrist rotation and
out-of-plane movements. In this study, we focus on
evaluating golf swing in terms of the angle of wrist ro-
tation. However, we make our experiments highly con-
trolled to prevent introducing effects of other mistakes,
e.g. out-of-plane movements, in our results. Wrist ro-
tation occurs when the player rotates the wrists clock-
wise or counterclockwise resulting in the golf club to
become “open” or “closed,” respectively. This can hap-
pen during any segment of the swing. The result is that
at impact, the golf ball will go either to the right or
the left of the target line. Hitting the ball with an open
clubface will cause the ball to fly to the right of the
target line (slice), while hitting the ball with a closed
clubface will cause the ball to fly to the left of the tar-
get line (hook). Both of these outcomes are highly un-
desirable when playing a game and result from the ro-
tation of the wrist.

The second common swing mistake is out-of-plane
movement. The golf swing plane is defined by the
plane which contains the line created by the golf club
at address and the target line. This is demonstrated
in Fig. 2. A swing is considered an in-plane swing
if the swing, including takeaway, backswing, down-
swing, and follow-through, remains on a plane at the
address position [8]. Out-of-plane movements can hap-
pen during any segment of the swing. They can be due
to several important movements and postures includ-
ing over-bending the elbows, raising the arms too high,
not raising the arms enough, and bending the wrists
among others. Each of these actions has a different
effect on the outcome of the swing. In general, out-
of-plane movements cause the ball to leave the target
line, but more importantly, they reduce strength of the
swing resulting in a weak impact and shorter driving
distance.

Fig. 2. Swing plane.1

2.580 in.

1.267 in.

Fig. 3. Custom-designed sensor board attached to a mote.

3. System architecture

We use a BSN consisting of several sensor units
placed on the body and the golf club to capture the
physical movements of the golf swing. Each sensor
node, also called a mote, is equipped with a custom-
designed sensor board consisting of several inertial
sensors as shown in Fig. 3. We use the TelosB mote
which is commercially available from XBow R©. The
mote has a microcontroller for processing and storage,
and a radio for communication. Embedded with our
custom-designed sensor board, a tri-axial accelerom-
eter and a bi-axial gyroscope are interfaced with the
mote platform. The mote and the sensor board are
powered by a Li-Ion battery integrated with each node.

Our body-worn sensor nodes are placed on the up-
per body and arms to capture significant motions dur-
ing the swing [5]. The movements of the golf club are
captured by the two nodes attached to the club. This
configuration ensures that the system captures inertial
information associated with the major parts of the body
involved in the golf swing. We placed two nodes on the
golf club (one near the club head and another near the
grip, as shown in Fig. 4), one on the right wrist, one on
the left arm, and one on the back at waist level. We will
demonstrate effectiveness of this sensor setup through
our experiments. The optimal sensor configuration, in-
cluding the best senor placement and smallest set of

1Swing plane image is courtesy of http://thebestpaintersintown.com

H. Ghasemzadeh et al. / Wearable coach for sport training: A quantitative model to evaluate wrist-rotation in golf 3

Figure 4.3: TelosB mote for human motion sensing

We collected the data from 3 male subjects whose ages are 25, 28, and 33 respec-

tively. Each subject performed 14 different activities including: 1) stand to sit ; 2) sit to

stand ; 3) sit to lie ; 4) lie to sit ; 5) bend to grasp ; 6) rising from bending; 7) kneeling

right; 8) rising from kneeling; 9) look back; 10) return from look back; 11) turn clock-

wise; 12) step forward; 13) step backward; and 14) jumping. Meanwhile, the subjects

were asked to wear the sensing device at 7 different locations during their performance.

These locations are: a) waist; b) right wrist; c) left wrist; d) right arm; e) left thigh;

f) right ankle; and g) left ankle. Therefore, we have 98 combinations of activity and

sensor location in total. For each location, each subject performed each activity for 10

trials.

After data collection, we extract features listed in Table 4.1 from each data unit.

Our sensor node has five data channels, and we can extract 64 features from each data

unit.

4.4.2 Sparsity of Human Activity

Based on the discussion in Section 4.2.1, sparse representation can perform accurate

recognition and classification based on one important prerequisite: the representation

x of y should be a sparse vector in the space spanned by the training samples A. Un-

fortunately, few works prove the sparsity of their problems before using this principle,
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either theoretically or empirically. For the sake of avoiding blind decisions, we did the

preliminary experiments to investigate the sparsity of human activities.

Without the loss of generality, we randomly selected 30 samples from a single ac-

tivity, and each sample has 30 randomly selected features. In this way, we can form a

sample matrix A1 ∈ R30×30. We also built A2 ∈ R30×30 with 3 human activities and

A3 ∈ R30×30 with 9 activities. Note that in all these sample matrixes, column space

consists of samples, and the row space is based on the features. Similar to [SEH11], we

generated a Gaussian random matrix G ∈ R30×30 and performed SVD [GR70] on A1,

A2, A3 and G respectively to evaluate the sparsity of human activity. All their singu-

lar value profiles are illustrated in Figure 4.4. It indicates that compared to G, A1, A2

and A3 are low-rank since their SVD profiles have significant downtrend compared to

G. Knowing that all features are statistically independent (see Section 4.3.1), low-rank

should be caused by column space, which means that the sample space is overcomplete.

This is an experimental indiction that the training samples A are a sparse set. Specifi-

cally, comparing A1 with A2 and A3, we can see that the sample space from the same

activity class (i.e. A1) has a higher degree of sparsity.
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Figure 4.4: The log-scale singular values of the sample matrix A1, A2 and A3. We also

use Gaussian random matrix G for comparison.
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4.4.3 Classification Performance Evaluation

For this part, we evaluate the classification performance of our framework. Our eval-

uation is based on three metrics: (1) the classification accuracy of co-recognition of

activity and sensor location based on Eq. (4.11); (2) the classification accuracy of ac-

tivity based on Eq. (4.14); and (3) the classification accuracy of sensor location based

on Eq. (4.16). For evaluation, we adopt a 10-fold cross validation strategy. Specifically,

we divide the whole dataset into 10 sets. At one time, 5 sets are used to build the data

matrix A and the remaining 5 sets for testing. The whole procedure iterates 10 times.

There are two important aspects in algorithm evaluation. One is the classification

accuracy. Given large number of testing inquiries, the algorithm should offer the cor-

rect responses with high probability. The other aspect is the classification stability. If

the training and testing datasets are changed, the recognition result should vary slightly

from the average rate.

Table 4.2 shows the evaluation results in terms of the above three metrics. As

shown, metric (1) achieves an 87.42% precision value and an 87.93% recall value. For

metric (2) and (3), it is interesting to see that with Bayesian fusion, the classification

accuracy is improved. Specifically, for activity recognition, the precision and recall

reach 88.79% and 89.21%. For location recognition, both the precision and the recall

are higher than 96%. For stability, we observe that the standard deviation of metric (1)

is as low as 1.26% (the mean of precision and recall variation). After Bayesian fusion,

both metric (2) and matric (3) have better robustness. As shown in Table 4.2, the varia-

tion of metric (2) is 1.25% and 1.02% for precision and recall variation. For metric (3),

the variation is always less than 0.5% in general.

To take a closer look at the classification results, Table 4.3 and 4.4 show two confu-

sion tables with respect to activity classification (metric (2)) and sensor location classi-

fication (metric (3)), respectively. In Table 4.3, we notice that activity 7) kneeling right

and activity 8) rising from kneeling are most often confused. Although these two ac-
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Table 4.2: Classification performance evaluated by three metrics

Activity&Location (%) Activity (%) Location (%)

metric (1) metric (2) metric (3)

Precision 87.42± 1.43 88.79± 1.25 96.02± 0.43

Recall 87.93± 1.10 89.21± 1.02 96.24± 0.38

Table 4.3: Confusion Table of Recognition on 14 Human Activities
1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total Recall

1 79 1 0 1 0 0 0 0 0 0 0 1 0 2 84 94%

2 3 79 0 0 0 0 0 0 0 2 0 0 0 0 84 94%

3 1 1 74 8 0 0 0 0 0 0 0 0 0 0 84 88%

4 2 2 3 72 0 1 2 0 0 0 2 0 0 0 84 86%

5 0 0 0 1 78 0 0 0 0 1 0 0 1 2 84 93%

6 0 0 0 0 0 78 0 0 1 1 2 1 0 1 84 93%

7 0 0 0 0 0 0 72 8 0 0 2 1 1 0 84 86%

8 0 0 0 0 1 0 8 67 0 0 1 4 2 1 84 80%

9 0 0 0 0 1 0 0 0 78 2 3 0 0 0 84 93%

10 1 0 0 0 0 2 0 0 4 76 1 0 0 0 84 90%

11 1 0 0 0 0 0 2 0 1 2 71 2 5 0 84 85%

12 0 0 0 2 0 0 4 0 0 0 1 74 3 0 84 88%

13 0 0 0 0 0 0 2 4 1 2 0 9 66 0 84 79%

14 0 0 0 0 0 0 0 0 0 0 0 0 0 84 84 100%

Total 87 83 77 84 80 81 100 79 85 86 83 92 78 90

Precision 91% 95% 96% 86% 98% 96% 72% 85% 92% 88% 86% 80% 85% 93%

tivities are a pair of complementary processes and visibly different from each other in

the time domain, our algorithm describes the human activity signal in a statistical way

and removes the temporal information in the data. Therefore, complementary processes

should share many features in the space domain. As for sensor location classification,

as illustrated in Table 4.4, most precision and recall values are more than 98%. How-

ever, location e) Left Thigh and location f) Right Ankle are confused with each other

the most. Specifically, the corresponding accuracy is around 92%. It indicates that the

selected features described in Section 4.3 can not reliably distinguish the two cases. We

could consider this issue to enhance the algorithm performance in future work.
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Table 4.4: Confusion Table of Recognition on 7 On-Body Sensor Locations

a b c d e f g Total Recall

a 166 1 0 0 1 0 0 168 99%

b 0 163 2 1 1 1 0 168 97%

c 2 1 158 0 4 1 2 168 94%

d 0 0 1 163 3 1 0 168 97%

e 4 0 0 0 154 10 0 168 92%

f 2 1 1 0 5 157 2 168 93%

g 0 0 0 0 0 0 168 168 100%

Total 174 166 162 164 168 170 172

Precision 95% 98% 98% 99% 92% 92% 98%

4.4.4 Robustness on Feature Dimension Reduction

In this experiment, we investigate the impact of feature dimension on performance of

our framework. As mentioned before, in total we extract 64 features. We start from 60

features and reduce the number of features by the decrement 5. Figure 4.5 shows the

averaged misclassification rates for each feature dimension in terms of the three classi-

fication metrics. We can see that the misclassification rate of co-recognition increases

from 13% to 39% while the feature dimension decreasing from 64 to 30. Furthermore,

it indicates that 55 is the significant turning point, where the misclassification rates in-

crease greatly (more than 10%) when the feature dimension is less than 55 (from 55 to

50).

In addition to the classification accuracy (see Fig. 4.5), we also examined the clas-

sification stability of our framework with feature dimension. For simplicity of the p-

resentation, we investigated the performance on co-recognition of human activity and

sensor location (metric (1)). As shown in Fig. 4.6 (the blue error bar), we observe

the variation of the misclassification rate also increases with a decrease of the number

of features. This implies that the feature number has significant impact not only on
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Figure 4.5: Impact of Feature Dimension on Classification Accuracy

the classification accuracy, but on the classification stability. Specifically, the variation

increases to 5% when the feature number drops to 35.

More specifically, to examine the robustness of our framework in terms of different

features, we randomly selected 55 features out of 64 as an example and evaluated the

framework for 10 times. Table 4.5 shows the results. As shown, it is interesting to see

that our compressed sensing-based framework is not sensitive to the specific features

selected, with the standard deviation of the performance less than 1.41% for all cases.

Table 4.5: Impact of Features on Classification Performance

Activity&Location (%) Activity (%) Location (%)

Precision 83.14± 1.41 86.01± 1.15 92.73± 0.53

Recall 83.78± 1.27 87.15± 0.94 93.24± 0.47

4.4.5 Comparison Between `1 and `2

As stated in Section 4.2, `1 is a better heuristic for sparsity optimization than `2. In

this section, we empirically validate this point and compare the classification perfor-
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Figure 4.6: Impact of Feature Selection on Classification Stability of metric (1)

mance between `1 and `2 optimization strategies. As an example, Figure 4.7 shows

the solutions from both `1 and `2 optimization with one test sample from activity 7

(kneeling right) at location d (right arm). As illustrated, the solution from `1 is quite

sparse has few significantly large components. Moreover, the maximal spike marked

by the red circle is associated with the training samples belonging to the same activity

class and sensor location class. In comparison, the solution from `2 has few significant

components and many small components. The spikes are dense and distributed over all

activity and sensor location classes (see Figure 4.7).

For clarity of the presentation, we augment this result in the residual computation.

Figure 4.8 illustrates the corresponding residual values between the test sample and all

98 classes defined by Eq. (4.10) for both `1 and `2. As shown in the figure, the class

membership of the test sample can be easily found by the minimal residual (pointed by

the red arrow) for the `1 optimization strategy. For `2, although the minimal residual

also corresponds to the true class, the difference between the minimal residual and the

residual values of other classes is not significant in this example.

Also, we compare the classification performance between `1 and `2. Table 4.6

shows the results in terms of the recognition rates. As shown, `1 outperforms `2 across
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Figure 4.7: Solutions of `1 and `2 Optimization Strategies

all three metrics consistently in terms of both recognition accuracy and stability. It is

worth emphasizing that the enhancement from `1 compared to `2 has stronger scalabil-

ity: the larger the scale, the greater is the benefit. Based on the indication in Figure 4.7,

it is not surprised that `1 outperforms `2 overwhelmingly in terms of both accuracy and

stability. Specifically, the co-recognition classification accuracy could be improved by

20.75% with `1 optimization. Correspondingly, the gain of stability from `1 optimiza-

tion is 3.17X on average.

Table 4.6: Classification performance comparison of `1 and `2
Activity&Location Activity Location

metric (1) metric (2) metric (3)

mean std mean std mean std

`1(%) 87.72 1.26 89.00 1.13 96.13 0.41

`2(%) 72.65 5.46 80.94 4.28 85.32 1.31
`1−`2
`1

20.75% 3.17X 9.95% 2.78X 11.25% 2.20X
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Figure 4.8: Residuals of 98 Classes of `1 and `2 Optimization Strategies

4.4.6 Sparse Representation (SR) Based Classifier v.s. Two Classical Methods

As a last experiment, we show the advantage of our method with respect to different

feature dimensions compared to two classical classification methods: Nearest-Neighbor

(NN) based classifier [CH67] and Nearest-Subspace (NS) based Classifier [BHK97].

For simplicity of the presentation, we only show the results on classification accuracy

(the mean of precision and recall) here. Figure 4.9 illustrates the average classification

accuracy rates as a function of feature dimension. Each curve represents one classi-

fication method respectively. Similar to Section 4.4.4, features at each dimension are

sequentially selected, and the performance is based on the average.

As shown in the figure, all methods have better performance with feature dimension

scaling-up. We can see that the performance of NN and NS are close, which follow the

similar trend, and the SR-based classifier is different from them. More specifically,

when the feature dimension is less than 40, NN and NS are better than SR; when the

feature dimension is more than 40, the SR-based classifier outperforms the other t-

wo methods. This observation indicates that using only 40 features is not sufficient
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to recover the human activity signal via `1 minimization. However, when the feature

dimension is equal or more than 45, the SR-based method can achieves a steady perfor-

mance and beats the other two classical classification methods, achieving a maximum

recognition rate of 87.72%.
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Figure 4.9: Classification Performance Comparison Between SR, NN and NS

4.5 Conclusion

Inspired by the sparsity of human activity signals, we adopted and described a sparse

signal representation technique to co-recognize human activity and sensor location

in wearable sensor networks. The experimental results showed that our method can

achieve greater than 87% recognition accuracy with 14 different activities and 7 on-

body locations. We also showed that using the `1 norm is better than the `2 norm in

terms of both accuracy and stability. Moreover, we compared a SR-based framework

to two classical methods, NN-based method and NS-based method, respectively. The

results showed that SR outperforms both of them when feature dimension is more than

a threshold. Considering the promising results in the pilot study, we intend to run ad-
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ditional experiments with a larger-scale group and evaluate more activities and sensor

location in future work.
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CHAPTER 5

Remote Rehabilitation

5.1 Introduction

In traditional medicine, physical rehabilitation programs are performed in hospitals or

outpatient treatment centers, where therapists trained in rehabilitation provide guidance

as well as monitor patient recovery. Rehabilitation exercise programs help patients

return to regular health after surgical procedures or illness.

Physical rehabilitation is well recognized to provide accelerated and long lasting

benefits to patients [BH07, FCE01]. Johns Hopkins Hospital implemented physical re-

habilitation programs in early post-surgical stages, and found up to 22% reduction in

ICU stays and clear reductions in net financial costs [LMK13]. The aim of such reha-

bilitation regimens is to improve muscular strength and specific body range of motion.

Patients undergoing physical rehabilitation follow the exercises assigned by physical

therapists on a regular or semi-regular basis. There is a need for physical therapists to

manually monitor and evaluate the rehabilitation process in order to check the patients’

recovery progresses according to plan. With manual monitoring, there is not only a

large cost in tracking rehabilitation progress, but also the measurement of progress is

difficult to quantize. Automated monitoring of rehabilitation exercises is proposed here

as a solution.
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5.1.1 Related Work

In this section, we describe the current literature in the field of automated physical

rehabilitation monitoring then with a focus on on-bed exercises. Zhou and Hu’s sur-

vey [ZH08] of human motion tracking systems for rehabilitation targeted primarily

stroke sufferers, but this list of technological approaches can be applied to rehabili-

tation in general. Specialized exercise equipment, such as treadmills, or even robotic

guidance devices [KVA00] have been investigated for strength building applications.

In addition, visual tracking of body posture has undergone much research, however

many relied on marker systems placed on the body [TH03]. Furthermore, marker-free

systems try to overcome these limitations by building 2-D [FB02] or 3-D models of

the human body [DF01]. Other non-visual methods have been research, such as using

inertial sensors [JMO05]. Combination of sensors are also described, such as Huang’s

et al. work with inertial sensors and visual camera that tracked both (fine-grain) finger

and (course-grain) hand movements for upper extremities rehabilitation [HXS12].

More specific to patients who are bed-ridden or restricted to motions on bed, are

current research approaches that focus on posture change detection. Posture change

analysis by Nakajima et al. used real-time video image sequences to extract optical

flow information [NMT01]. Jones et al. used a 24 pressure sensor array to identify

posture movement times and then evaluated sleep restlessness [JGK06], while Adami

et al. used 4 load cell sensors with 200Hz sampling rates to analyze time varying

waveforms as patients move on bed [APH10].

Accurate detection of posture movement are shown in these previous methods.

They are able to show the existence of posture changes, but they do not target the

recognition of actual posture. A system to detect transitions between sitting and lying

postures using large pressure sensor arrays placed under the mattress was developed by

Foubert et al. [FMG12]. Yousefi et al. were successful in recognizing sleep posture

using principle component analysis (PCA) [YOF11], while Hsia et al. used statisti-
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Figure 5.1: Bedsheet Prototype

cal feature extraction [HHC08]. Harada et al. investigated body posture tracking and

used generative models of human body pressure to match the patient’s pressure distri-

bution [HSM00]. Similarly, our previous work in this field investigated static posture

recognition [LXH13], however, this current project will focus toward the transitional

and dynamic nature of body motion as seen in pressure image sequences.

The remainder of the chapter is organized as follows. Section 5.2 describes the

overall design to recognize on bed rehabilitation exercises as well as a description of

the pressure sensitive bedsheet. Section 5.3 details the algorithmic process using a di-

mension reduction methods on body pressure image sequences and subsequent exercise

recognition. Experimental set up and results are given in Section 5.4. Finally, future

work and conclusion are discussed in Section 5.5.

5.2 System Overview

Our system design consists of a high density sensor bedsheet and a connected tablet

which collects the pressure image sequences. The tablet analyses the data and transmits

the results through wireless communication to a monitoring station. A subject lies on
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Figure 5.2: Process Flow for On-bed Exercise Monitoring

the bedsheet and follows the instruction given by physical therapists. The tablet along

with the bed sheet can pre-store the treatment scripts in its persistent storage and play

the scripted text visually and vocally.

5.2.1 Bedsheet design

Figure 5.1 shows the prototype of the bedsheet system. The system consists of three

components: a 64 × 128 pressure sensor array, an embedded data sampling unit, and

a tablet for data analysis and storage. The sensor array is based on eTextile material

which is fiber-based yarn coated with piezoelectric polymer [XLH11,XHA12]. Without

pressure, the resistance of the eTextile material is high. As external force is applied to

the surfaces of the material, the eTextile fibers are squeezed together and, due to its

pressure sensitive characteristics, the electrical resistance decreases in that region.

The bedsheet itself has a three-layer structure. The top layer is regular fabric that is

coated with 64 parallel conductive lines. The middle layer is the eTextile material and

the bottom layer has 128 conductive lines arranged perpendicular to the top 64 lines. At
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each intersection of conductive lines, the structure forms a pressure sensitive resistor.

There are effectively 8192 pressure sensors in total.

5.2.2 Algorithm Overview

Figure 5.2 introduces the three main steps, and this process is described in more detail

in the following section.

• Step 1: Pre-processing of the pressure image

• Step 2: Dimension reduction via manifold learning

• Step 3: Activity recognition using manifold matching.

Exercise recognition uses a subject’s pre-recorded training data to match exercises

under test. The training data consists of samples of on-bed exercises that are analyzed

to produce a low dimensional representation, i.e. a manifold, from the original high res-

olution pressure images. When new exercise data is recorded, it is mapped to the same

low dimensional manifold representation and matched to the closest training exercise

manifold.

5.3 Algorithmic Framework for Exercise Monitoring

This section details the algorithmic framework of the on-bed patient exercise recogni-

tion.

• Step 1: Pre-processing

The pre-processing of the raw pressure images is required so that the image se-

quences can be standardized in such a way to enable successful recognition. The raw

images contain noise and artifacts that affect recognition, and pre-processing mitigates
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the side effects as much as possible.

Firstly, the subject can be located anywhere on the bedsheet, so to correct this, the

images are aligned to a common center of mass and relocated to the center of the im-

age. A smoothing filter of a symmetric 5 × 5 unit normal distribution is applied. This

smoothing minimizes the effect of noise in the pressure map. The images are normal-

ized so that the sum of pixel weights is one. This step attempts to counteract the affects

for the differing body mass.

• Step 2: Dimension Reduction using Manifold Learning

In this work, we compare two methods of manifold learning: Local Linear Embed-

ding (LLE) and Isomap.

5.3.1 Local Linear Embedding

The first method to map the image sequence X to a low dimensional space is based on

the Local Linear Embedding (LLE) framework by Saul and Roweis [SR03], which has

various applications in machine learning systems [LXH12]. LLE is an unsupervised

algorithm that reconstructs the global data non-linearly while preserving local linearity.

After the computation, similar images will be clustered within the low dimensional

manifold. In general, there are three steps in the algorithm, which will be described in

the following.

5.3.1.1 k-Nearest Neighbor Searching

The first step is to search k-nearest neighbors for each image. In the searching process,

we use Euclidean distance to evaluate the similarity between images. Normally the

topology of embedding will be well-preserved over a range of neighborhood sizes. For

this work, we searched for the 30 nearest neighbors of each image. Alternatively, a
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threshold distance can also be used to select the local nearest neighbors.

5.3.1.2 Weighted Reconstruction With Nearest Neighbors

The second step is to reconstruct a sample image using its nearest neighbors. Assume

that an arbitrary image x has k-nearest neighbors xi. Then x can ideally be represented

as a linear combination of its neighbors. In general, an exact reconstruction will not be

found, so a reconstruction error e can be formulated as:

e = ‖x−
k∑
i=1

wixi‖, (5.1)

where wi denotes the reconstruction weight for the neighbor xi. The optimization pro-

cess minimizes the reconstruction error of all images by setting the weight wi values.

There are two attributes of the problem to ensure it is well-imposed: (1) exclusiveness:

the weight wi of x is zero if xi is not in the nearest neighbor list of x; (2) normalization:

the sum of the weights of nearest neighbors should be 1. Therefore, we can rewrite the

problem for all images:

E =
N∑
j=1

‖xj −
N∑
i=i

wijxij‖. (5.2)

We can see that Equation (5.2) represents the reconstruction problem and has a

closed least square solution, where the weights wij can be solved efficiently [SR03].

5.3.1.3 Low Dimensional Embedding Construction

The third step is to construct the corresponding embedding in a low dimensional space.

Based on the calculation results from the second step, the intrinsic geometrical structure

of each local cluster is characterized by wij . We assume that the neighborhood relation

in high dimensional space should be preserved in low dimensional space, i.e. within

a manifold. Based on this assumption, the embedding process is to search for the low
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dimensional representation y of x by minimizing the following error E ′:

E ′ =
N∑
j=1

‖yj −
N∑
i=i

wijyij‖, (5.3)

where yj are the corresponding points in the low dimensional manifold. We note that

Equation (5.3) is in a quadratic form and the embedding optimization process is effi-

ciently solvable. Furthermore, all the manifold points yi will be computed globally and

simultaneously, and no local optima will affect the construction result.

Equation (5.2) indicates that the low dimensional construction is only based on the

locality of the high dimension data. This means that the computed manifold yi can be

translated with an arbitrary displacement without affecting Equation (5.3). Moreover,

LLE states the computed manifold yi can be rotated by an arbitrary angle without af-

fecting Equation (5.3) too. This geometric attribute can be represented and formulated

in the following two equations:

N∑
i=1

yi = 0, (5.4)

1

N

N∑
i=1

yi · yi = 1. (5.5)

Therefore, manifold construction problem becomes an eigenvalue problem [SR03], in

which we select the matrix rank to have the desired manifold dimension.

5.3.2 Isomap

The second method to map the image sequence X to a low dimensional space is based

on the Isomap framework by Tenenbaum et al. [TSL00]. Isomap also performs non-

linear dimension reduction and extends the classical linear Multi-dimensional Scaling

(MDS) [KW78]. The task of MDS is to find a set of co-ordinates that satisfies the given

pairwise distances between the points. However, given that the points may lie on a
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manifold inside a high dimensional space, linear pairwise distances may not represent

the true structure.

5.3.2.1 k-Nearest Neighbor Searching

This stage is similar to LLE where k-Nearest Neighbors for each original image are

selected using the Euclidean distance in high dimensions.

5.3.2.2 Computation of Geodesic Pairwise Distance

The distances between all pairs of images are estimated given the distances between lo-

cal sets of images. This results in the geodesic pairwise distances, i.e. the shortest path

distances DX
ij along a curved surface. Floyd’s algorithm can be used to find the shortest

paths between every pair of images in a graph, or other faster methods [KGG94].

5.3.2.3 Low Dimensional Embedding via Multi-Dimensional Scaling

The final stage of Isomap applies the regular MDS algorithm to the geodesic distances.

MDS finds points Y that minimize the total error between pairwise distances in high

dimensional space and pairwise distances in low dimensional space:

min
Y

N∑
i=1

N∑
j=1

(DX
ij −DY

ij)
2, (5.6)

where DY
ij is the pairwise distance between points in the low d-dimensional space Y .

The low dimensional embedding is solved by taking the co-ordinates of the top d eigen-

vectors of the inner-product matrix of the geodesic pairwise distances [KW78].

Contrasting with LLE, Isomap preserves pairwise distances within the manifold,

while LLE preserves the local linear structure within the manifold.

• Step 3: Exercise Recognition using Manifold Matching
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5.3.2.1 Map input to manifold

Once the training data has been reduced in dimensionality to its corresponding low di-

mensional form, we can evaluate the process using new test data against the training

data. The testing data needs to be converted into manifold form. Note that it is pos-

sible to run the whole LLE or Isomap algorithm again on the combined testing data

and training data in order to find the low dimensional representation of the test data,

however this is not necessary.

Instead, a portion of the algorithm need only be executed [SR03, ZS11a]. Given a

new test image x̂, we wish to find its low dimensional representation, ŷ. To do so, the

weights wi are computed from the k nearest neighbors of x̂ in the training set, xi. This

is again the least squares solution to minimize

‖x̂−
k∑
i=1

wixi‖, (5.7)

with the constraint
∑k

i=1wi = 1. Since the corresponding low dimensional co-ordinates

of xi are known during the training phase, we can construct the resultant embedded co-

ordinates for ŷ using the same weights:

ŷ =
k∑
i=1

wiyi, (5.8)

where yi are the corresponding embedded points of xi.

5.3.2.2 Manifold Matching

Exercise tracking involves checking how well the test testing data follows the trajec-

tory of a given exercise manifold. We can compare trajectories using a similar idea to

the Hausdorff distance. The distance of a point to a manifold is equal to the shortest

Euclidean distance to any point in the manifold. The similarity of two manifolds is the

mean of the point distances of all the points of one manifold, M1 to the other manifold,
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Table 5.1: Confusion Matrix LLE
Leg Lift Head Lift Heel Slide Lateral Roll Sit Up Total Recall

Leg Lift 42 4 6 0 0 52 80.8%

Head Lift 9 42 2 0 0 53 79.2%

Heel Slide 7 0 54 0 0 61 88.5%

Lateral Roll 0 0 0 50 0 50 100%

Sit Up 0 0 0 1 56 57 98.2%

Total 58 46 62 51 56 273

Precision 72.4% 91.3% 87.1% 98.0% 100%

Table 5.2: Confusion Matrix Isomap

Leg Lift Head Lift Heel Slide Lateral Roll Sit Up Total Recall

Leg Lift 45 3 4 0 0 52 86.5%

Head Lift 7 44 2 0 0 53 83.0%

Heel Slide 6 1 54 0 0 61 88.5%

Lateral Roll 0 0 0 49 1 50 98.0%

Sit Up 0 0 0 3 54 57 94.7%

Total 58 48 60 52 55 273

Precision 77.6% 91.7% 90.0% 94.2% 98.2%

M2. This is expressed as

s(M1,M2) =
1

TM1

TM1∑
i=1

min
1≤j≤TM2

‖M1(i)−M2(j)‖, (5.9)

where TM1 and TM2 are the number of points in each manifold. This metric allows

manifolds of different lengths to be compared since different subjects take different

times to perform each activity. Since the Hausdorff metric is not symmetric, we can

take the following sum as the manifold matching metric,

d(M1,M2) = s(M1,M2) + s(M2,M1). (5.10)
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So, to measure how well a subject adheres to the prescribed exercise, the testing data is

mapped to corresponding low dimensional embedding points that defines a manifold,

then the manifold is measured against the expected exercise manifold.

Figure 5.3: Example of Leg Lift Exercise

5.4 Experimental Results

5.4.1 Experimental Setup

We evaluated this framework for exercise monitoring on 10 subjects, 7 male subjects

and 3 female subjects. The weight of the subjects ranged from 50kg to 85kg, and height

between 155cm and 188cm. There were 5 selected on-bed exercises: alternating Leg

Lifts, Head Lifts, alternating Heel Slides, alternating Lateral Rolls (lying on back to

lying on side), and Sit-Ups. These exercises have been selected as being appropriate

for on-bed monitoring [NW06]. In the training data collection, at least 5 sets of image

sequences were recorded for each of the 5 on-bed exercises for each subject, so there

were more than 250 exercise sequences under test. Each image sequence comprises

one exercise activity, e.g. one Leg Lift exercise activity includes lifting of the right leg
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Figure 5.4: Left and Right Leg Lift

followed by the left leg. The order of left and right does not matter in this system. Each

image sequence of exercise activity contained at least 40 individual images. Variations

in body, arm and leg positions were allowed.

The training data for each subject was combined and manifold learning was applied

to generate the training manifolds for the exercises. Testing was carried out by exercise

activity and repeated for each of the exercise activities.

5.4.2 Experimental Evaluation

Tables 5.1 and 5.2 show recognition results for the 5 exercises in 10 subject dependent

testing. Notably, the highest recognition rates are Lateral Rolls and Sit Ups. This can

be expected since these exercises involve the greatest physical exertion and hence the

greatest pressure image differences. The other three exercises exhibit a comparably

lower rate of recognition due to more of a fine grain difference in the pressure im-

age sequences. The confusion matrix shows that there are the most misclassifications
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Figure 5.5: Head Lift

between Left Lifts and Heel Slides. By observing Figures 5.4 and 5.7, there are clear

similarities in the pressure images and the leg positions only constitute minor variations

in the overall pressure maps.

Figure 5.10 shows samples of the low dimensional visualization of manifolds for

some of the exercises. Generally the shapes of the manifolds give an indication of the

differences between the exercises. It is interesting to note in Figure 5.10(d) that the

variations in Sit Ups can be seen. Using the Manifold Matching method, a quantified

measurement of exercise recognition is performed.

5.4.3 Comparing LLE and Isomap

The accuracy results between LLE and Isomap are somewhat similar as shown in Tables

5.1 and 5.2. LLE has higher accuracy for the Lateral Rolls and Sit Ups, while Isomap

shows higher accuracy for Left Lifts, Head Lifts and Heel Slides.

Figure 5.11 shows samples of how head-lifts appear on a leg-lift manifold under
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Figure 5.6: Example of Heel Slide Exercise

LLE, and sit-up compared to lateral rolls. Figure 5.12 shows the same results for I-

somap. It is evident that the sample exercises can be discerned from each other. It

is interesting to note that the manifold shapes produced by Isomap tend to be more

variable, which may contribute to the slight variation in accuracy levels.

The dimension reduction algorithm requires the data to be non-sparse, i.e. there

must be sufficient sampling of pressure images to track motions. The current state of

technology for pressure images of this resolution are 2-5 samples per second. Higher

sampling rates can be achieved with the loss of image resolution.

Figure 5.13 suggests that the intrinsic dimension of the rehabilitation exercise data

is 2 and is seen at the knee point of the dimensionality graph.

5.4.4 Sequential Evaluation

As a further evaluation of this framework for exercise recognition, we investigated a

longitudinal study of continuous monitoring through a number of set exercise activity

programs. More specifically, each of the 5 exercises were performed sequentially to

analyze whether the algorithm can separate and recognize the exercises. Figure 5.14
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Figure 5.7: Right Heel Slide

Figure 5.8: Lateral Rolls

shows the evaluation results of this experiment, where red dash line represents the

ground truth, and blue line represents the classification results. We can see that 3 sets

of 5 different exercises are performed sequentially in this evaluation, and finally 13 out

of the 15 exercises are recognized correctly.

5.5 Conclusion

In this work, an on-bed exercise monitoring system design, that allows care-givers to

track compliance to physical rehabilitation programs, is presented. We employ the
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Figure 5.9: Sit Up

novel use of dimension reduction techniques from pressure images to find intrinsic

subspace representations of the data. We also evaluated a metric to match manifolds to

enable quantified measurement of adherence to prescribed exercises.

Future work involves quantifying the performance of a given exercise with respec-

t to standard exercise models, i.e. how closely is the patient following the exercise

patterns such as angle of Leg Lifts and length of Heel Slide. Other future endeavors in-

cludes facilitating a system to work on chairs for sitting rehabilitative exercise, not only

in clinical rooms or home-base care but also for cars or wheelchairs. 3D model recon-

struction of patients from 2D pressure image is another goal that can be accomplished

using the results of this research work.
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(a) Leg Lift (b) Heel Slide

(c) Lateral Roll (d) Sit Up

Figure 5.10: Samples of Exercise Manifolds LLE

(a) Leg Lift (blue) vs Head Lift (red) (b) Roll (blue) vs Sit up (red)

Figure 5.11: Samples of Exercise Manifolds LLE
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(a) Leg Lift (blue) vs Head Lift (red) (b) Roll (blue) vs Sit up (red)

Figure 5.12: Samples of Exercise Manifolds Isomap
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Figure 5.13: Intrinsic Dimensionality of the manifolds are found at the knee points of

the graph.
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Figure 5.14: A set of 15 exercise activities performed sequentially against ground truth
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CHAPTER 6

Summary

In summary, this thesis introduces embedded sensing and computing technologies in

four high-impacted healthcare fields, including pressure ulcer reduction, cardiopul-

monary monitoring, fall prevention and rehabilitation. More specifically, Chapter 2

discussed the technologies based e-Textile materials for non-invasive pressure mea-

surement and pressure ulcer reduction [LXH13]. Chapter 3 introduced a non-contact

vital sign detection and measurement system based on the Doppler radar. Its related

self-calibration algorithm is also addressed [Xa13]. Chapter 4 presented a framework

of inertial sensor based human activity analysis. This framework is based on statisti-

cal feature extraction and sparse representation [XZS12c]. Chapter 5 demonstrated a

remote rehabilitation system based on the Smart Bedsheet platform [LHX13].
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