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Whole genome sequencing (WGS) was compared to pulse-field gel electrophoresis (PFGE) of XbaI-digested
genomic DNA, as methods by which to evaluate a potential transmission of carbapenem-resistant
Klebsiella pneumoniae between 2 hospital inpatients. PFGE result demonstrated only 1-band difference between
the isolates, suggesting probable relatedness. In contrast, whileWGS data demonstrated the same sequence type
and very similar chromosomal sequences, over 20 single nucleotide variants were identified between the
isolates, bringing into question whether there was a transmission event. WGS also identified an additional
plasmid, with an XbaI restriction site in the isolates of the second patient that was not identified by PFGE.
While WGS provided additional information that was not available by PFGE, in this study, neither method
could definitively conclude the relatedness between the isolates.
© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Carbapenem-resistant Enterobacteriaceae (CRE) are an evolving
threat to public health. At the present time in the United States,
carbapenem resistance among the Enterobacteriaceae is predominantly
mediated by the class A β-lactamase, KPC (Gupta et al., 2011; Munoz-
Price et al., 2013; Temkin et al., 2014; Tzouvelekis et al., 2012). blaKPC
genes are typically encoded on plasmids that harbor resistance determi-
nants for several other antimicrobial classes (Nordmann et al., 2011;
Schultsz and Geerlings, 2012). As a result, such CRE are resistant
to many, if not all, currently available antimicrobials and are ex-
tremely difficult to treat (Temkin et al., 2014; Tzouvelekis et al.,
2012). The blaKPC-harboring plasmids are efficiently mobilized
both between isolates of the same species and across genera within
the family Enterobacteriaceae, providing an opportunity for rapid dis-
semination of carbapenem resistance in healthcare settings (Cuzon
et al., 2010; Mathers et al., 2011; Nordmann et al., 2009; Sidjabat
et al., 2009). Evaluation of hospital-based outbreaks of KPC-producing
Klebsiella pneumoniae can be challenging, as the majority of KPC-
producing isolates in the United States are of a common lineage, se-
quence type (ST) 258 (Kitchel et al., 2009). Furthermore, KPC-
producing K. pneumoniae can colonize the gastrointestinal tract of ex-
posed patients for prolonged periods of time, silently introducing
these isolates into healthcare facilities, and potentially only causing
clinical infections weeks to months after hospital admission. Pulse-
field gel electrophoresis (PFGE) remains the gold standard method
used to evaluate isolates of CRE in cases of suspected intrafacility trans-
mission (Goering, 2010). However, in regions where KPC is endemic,
PFGE datamay not yield the level of discrimination required to differen-
tiate intrafacility transmission from introduction of a closely related
strain from another healthcare facility. In contrast, sequencing of
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whole bacterial genomes has been shown to be a powerful tool
by which to track transmission of KPC-producing isolates within
healthcare facilities (Snitkin et al., 2012). Whole genome sequence
(WGS) data allow not only high-level resolution of genomic differences
between bacteria but investigation of antimicrobial resistance genes
and their associated mobile genetic elements such as transposons and
plasmids (Mathers et al., 2015c).

At our institution, the proportion of Enterobacteriaceae resistant to
carbapenems is b0.5%, and KPC accounts for the carbapenem-resistant
phenotype in 90% of these isolates (Pollett et al., 2014). Nearly, all
patients with CRE to date have had recent history of treatment in
long-term acute care hospitals and/or nursing homes, and for the vast
majority of cases, isolates were recovered in the first 48 hours of hospi-
talization. As such, when carbapenem-resistant K. pneumoniae (CRKP)
were isolated from 2 patients, both after prolonged hospitalization in
our surgical intensive care unit (ICU), we launched an investigation to
determine if these cases might represent hospital-based transmission.
We compared WGS to PFGE as tools to aid in this investigation, at our
facility with a low baseline incidence of CRE.

2. Materials and methods

2.1. Clinical isolates and antimicrobial susceptibility testing

Three CRKP isolates recovered from bile fluid from patient A (CRKP-
A) obtained hospital day 100 and from respiratory secretions (CRKP-B1)
and blood (CRKP-B2) from patient B collected hospital day 134 in 2014
were evaluated. Two additional CRKP (CRKP-X and CRKP-Y), isolated
from 2 different patients hospitalized in our facility around the same
time, were evaluated as controls. Antimicrobial susceptibility was per-
formed by the Clinical and Laboratory Standards Institute reference
broth microdilution method, on panels prepared in-house, as described
elsewhere (Pollett et al., 2014).

2.2. PFGE analysis

PFGE analysis of the CRKP isolates was performed using an XbaI
digestion of DNA from the 2 CRE isolates (CRKP-A and CRKP-B1), as
previously described for Escherichia coli (http://www.cdc.gov/
pulsenet/protocols.htm). PFGE data analysis was performed using
BioNumerics V. 6.6 11 (Applied Maths, Inc., Austin, TX).

2.3. WGS

DNA was extracted from the isolates using a tissue DNA extraction
kit on a BioRobot EZ1 (Qiagen, Valencia, CA, USA). Genomic shotgun
libraries were generated using Nextera XT DNA Library Preparation Kit
(Illumina, San Diego, CA, USA) following themanufacturer's instruction.
WGS was performed using an Illumina MiSeq with a 2X250bp v2
sequencing protocol.

2.4. WGS data analysis

Between 1.1 and 1.8 million reads per sample were acquired, and de
novo assembly was performed using SPAdes 3.1.1 (http://bioinf.spbau.
ru/spades). For each isolate, the number of contigs ranged from 111 to
132; the largest contigs were 368 kb to 430 kb; and the total genome
lengths ranged from 5.55 Mb to 5.71 Mb. Raw paired reads from
Illumina MiSeq for each isolate were processed using Galaxy tools
(Goecks et al., 2010) and submitted for single nucleotide variant
(SNV) analysis and generation of SNV phylogenetic tree (maximum
likelihood method) using Center of Genomic Epidemiology (CGE) CSI
Phylogeny (Kaas et al., 2014) (https://cge.cbs.dtu.dk/services/
CSIPhylogeny). The SNV calling was based on similar quality filter
criteria described elsewhere (Salipante et al., 2015a): 1) a minimum
of 15 reads, 2) relative depth at SNV positions of 50%, 3) minimum
distance between SNVs of 10, 4) minimum SNV quality of 30, and
5) minimum read mapping quality of 25 and minimum Z-score of
1.96. Multilocus sequencing type (MLST) was identified through use of
CGE MLST 1.7 (https://cge.cbs.dtu.dk/services/MLST). Antimicrobial re-
sistance genes were identified by both RAST (http://rast.nmpdr.org)
and CGE ResFinder (https://cge.cbs.dtu.dk/services/ResFinder). The
contigs containing antimicrobial resistance genes were analyzed by
BLAST to identify closely matched plasmids; the entire contigs were
then mapped to these plasmids using CONTIGuator (Galardini et al.,
2011) (http://contiguator.sourceforge.net). The closest plasmid was
then used as reference sequence to perform mapping from the raw
paired-end reads by using Geneious (Biomatters, Auckland, New
Zealand), generating a hypothetical plasmid map based on the consen-
sus sequence. The WGS data have been deposited in GenBank with ac-
cession nos. SAMN03997506 (CRKP-A), SAMN03997511 (CRKP-B1),
and SAMN03997513 (CRKP-B2).

2.5. PFGE band DNA gel purification and Sanger sequencing analysis

The regions of the gel corresponding to the 121.6–198.2 kb size
bands were cut out and DNA was recovered and purified using
Zymoclean Large Fragment DNA Recovery Kit (Zymo Research, Irvine,
CA, USA). Several sets of PCR primers were designed (Table 1) with 1
set amplifying a 648-bp region immediately upstream of XbaI restric-
tion site on the pRMH760-like plasmid, 1 set amplifying a 757-bp region
immediately downstreamof theXbaI site, and 1 set amplifying a 735-bp
region across the XbaI site. Twomore primer sets were designed to am-
plify the region containing aadB gene and aph(3′)-lb gene present on
this plasmid, respectively. PCR was performed using AmpliTaq Gold
Fast PCR Master Mix (Thermo Fisher, Carlsbad, CA, USA) and visualized
by conventional agarose gel electrophoresis. The same PCR primers
were diluted 10-fold and used as sequencing primers. Sanger sequenc-
ing analysis was performed using BigDye Terminator v3.1 cycle Se-
quencing Kit and ABI Prism 3130xl Genetic Analyzer (Thermo Fisher).

3. Results

3.1. Case summaries and epidemiologic investigation

Patient A had end-stage liver disease due to alcoholic cirrhosis that
was complicated by ascites and renal failure. The patient was trans-
ferred to our surgical ICU following a short stay at an outside hospital
for management of sepsis secondary to peritonitis and evaluation for
liver transplantation. On hospital day 43, a CRKP was isolated from pa-
tient A's respiratory secretions and 57 days later from the patient's
bile fluid (CRKP-A, obtained hospital day 100). Patient A was placed
on contact precautions per hospital policy. Patient B had hepatitis C
and alcoholic liver cirrhosis and was transferred from a long-term
acute care facility after a prolonged hospitalization for complicated cho-
lecystitis, sepsis, respiratory failure, and acute renal failure. Patient B
was admitted to the same surgical ICU as patient A, 42 days after patient
A's admission and the day prior to the first isolation of CRKP from pa-
tient A. After 93 days hospitalization, the first 40 of which were in a
room adjacent to patient A, CRKP was isolated from patient B's abdom-
inal drainage. Forty-one days later, CRKP-B1 (collected hospital day
134) was isolated from respiratory secretions; and CRKP-B2 (collected
hospital day 134), from blood. Review of medical records and unit logs
revealed several shared care personnel between the patients, including
physicians, nurses, care partners, allied health workers (e.g., dialysis),
and housekeeping. Additionally, both patients underwent endoscopic
procedures, liver transplantation, intubation, and central line placement
prior to isolation of CRKP. Due to the multitude of commonalities, we
determined that there was a high likelihood of unit-based transmission
of CRKP from patient A to patient B. No surveillance cultures were per-
formed on these patients, either at admission or during their hospitali-
zation, to evaluate for CRKP colonization.

http://www.cdc.gov/pulsenet/protocols.htm
http://www.cdc.gov/pulsenet/protocols.htm
http://bioinf.spbau.ru/spades
http://bioinf.spbau.ru/spades
https://cge.cbs.dtu.dk/services/CSIPhylogeny
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http://rast.nmpdr.org
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Table 1
Primers for PCR and Sanger sequencing.

Target Amplicon size Forward primer Reverse primer

Xba1Up 648 bp 5′-TGTCCATGATTCAGCAGAGAGCT-3′ 5′-TTG GCT GAT GCT ATC GAC CCT-3′
Xba1Down 757 bp 5′-CACACTGAGTGTCATGGTTGGT-3′ 5′-CGC ACC TTA TGG CAA TAC CGA-3′
Xba1Cross 735 bp 5′-TGTCACGACAGCACCATCACT-3′ 5′-CCT CAG CTA AGT CAG CAG TTC GAT-3′
aadB 701 bp 5′-GGTAAGCTGTAATGCAAGTAGCGT-3′ 5′-AGC CTG TAG GAC TCT ATG TGC T-3′
aph(3′)Ia 689 bp 5′-GGTAGCGTTGCCAATGATGTTACA-3′ 5′-GTC AGC GTA ATG CTC TGC CA-3′
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3.2. Evaluation of isolates relatedness by PFGE and WGS

PFGE analysis demonstrated a difference of 1 band (indicated by
arrow) between CRKP-A (collected hospital day 100) and CRKP-B1 (col-
lected hospital day 134), indicating that the isolateswere closely related
(Fig. 1A). SNV phylogenetic tree generated from the WGS data, and 30
other K. pneumoniae genomes available on the NCBI database showed
both patients clustered closely to a reference genome KPNIH33
(Conlan et al., 2014) (Fig. 1B). MLST from WGS data identified ST258
for all 3 CRKP. blaKPC3, flanked by a 10.0-kb Tn4401 isoform d transpo-
son, was the sole carbapenemase gene in all 3 isolates (Table 1). The
contigs that harbored the Tn4401 isoform d transposons in these 3 iso-
lateswere of the same size (25.3 kb) andwere 100% identical. However,
due to the limitation of short sequencing reads, we were unable to gen-
erate a complete plasmid sequence for this 25.3-kb sequence element.
Using KPNIH33 as the reference genome, 24 and 22 high-confidence
SNVs (defined as N20 reads at the variant site with N95% relative
depth) were identified between CRKP-A and CRKP-B1 or CRKP-B2, re-
spectively (Table 2). Only 2 SNVs were found between CRKP-B1 and
CRKP-B2, suggesting low level of intrinsic variability in the WGS assay
and that these isolates (with ≤3 SNVs)were indistinguishable at the ge-
nomic level (Tables 2 and 3). Most of these SNVs were synonymous,
A B
A B

Fig. 1.A, PFGE gel of CRKP frompatientA (isolate A) and patient B (isolate B1). Blue lines indicate
121.59 kb and 198.22 kb in lanes A and Bwere cut out, andDNAwas recovered for PCR and Sang
B2 and CRKP X and Y (underlined), compared to 30 K. pneumoniae reference genomes (carbap
regions (red bars) on the pRMH760-like plasmid. D, Gel electrophoresis demonstrating robus
B lane of the PFGE gel, but absent in the DNA recovered from A lane of the PFGE gel. Primers
digestion.
with the exception of 5 which affected various genes (Table 3). In con-
trast, 145 pairwise variants were observed between CRKP-A and
KPNIH33; 133, between CRKP-B1 and KPNIH33; and 131, between
CRKP-B2 and KPNIH33 (Data not shown). Similarly, whenwe evaluated
2 CRKP isolated from 2 other patients hospitalized at our facility, we
found a very different ST919 strain (CRKP-Y) that harbored blaKPC3
on a Tn4401b transposon and a ST258 strain (CRKP-X) that harbored
blaKPC3 on a Tn4401d transposon (Fig. 1B). Although CRKP-X also clus-
tered closely to KPNIH33, there were 55–67 SNVs between this isolate
and CRKP-A, CRKP-B1, and CRKP-B2 (data not shown), suggesting a sig-
nificant difference. Interestingly, none of the SNVs identified between
CRKP-A and CRKP-B1 were predicted to affect an XbaI restriction site
and, therefore, could not account for the altered PFGE band pattern
noted in Fig. 1A. It is possible this XbaI site was present in a region of
suboptimal sequence coverage and excluded from our SNV analysis by
our quality filters.

3.3. Identification of an additional plasmid in the isolates from patient B

Several contigs identified in CRKP-B1 and CRKP-B2 were absent in
CRKP-A—these mapped to the plasmid pRMH760 (Harmer and Hall,
2014). Raw readmappingof these contigs, usingpRMH760 as reference,
A BL A A A A

XbaI-
Up

XbaI-
Down

XbaI-
Cross aadB aph(3')Ia

2645 bp

1605 bp
1198 bp

676 bp
517 bp

D

C

up down

cross

B B B B

matching bands, and red arrow indicates the 1-banddifference. PFGE agarose gel between
er sequencing. B,Maximum likelihood phylogenetic tree based on SNV for CRKPA, B1, and
enem-resistant isolates are in boldface). C, Five sets of primers were designed to amplify
t amplification of 4 regions of the pRMH760-like plasmid in the DNA recovered from the
flanking the XbaI site did not amplify in either lane, indicating a complete XbaI enzyme
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wasused to generate a 170.6-kb consensus sequencewith 98.5%homol-
ogy to pRMH760. This pRMH760-like putative plasmid harbored the
aminoglycoside resistance genes aadB and aph(3′)Ia, the trimethoprim
resistance gene dfrA10, and 2 copies of sulfonamide resistance gene
sul1 (Table 1). Interestingly, both isolates from patient B demonstrated
slightly higher MICs to amikacin and gentamicin, which were deter-
mined by reference broth microdilution (CLSI, 2014), when compared
to CRKP-A (Table 1). In addition, the pRMH760-like plasmid harbored
an XbaI restriction site; the predicted XbaI-digested linear DNA of this
plasmid was predicted to comigrate with the 171.6-kb genomic DNA
fragment observed on the PFGE gel. Sequences corresponding the
upstream region of the pRMH760-like plasmid XbaI site, downstream
of theXbaI site, aadB and aph(3′)Ia (Fig. 1C),were successfully amplified
in the PFGE gel–recoveredDNA fromCRKP-B1, but not CRKP-A (Fig. 1D).
Sanger sequencing of the amplicons yielded sequences that matched
theWGS data. As a control, primers designed to span across the XbaI di-
gestion site did not yield amplification, indicating complete XbaI en-
zyme digestion of the DNA. Notably, this difference was not observed
by the BioNumerics software on the PFGE gel (Fig. 1A).

4. Discussion

In recent years, next-generation sequencing (NGS) technologies
have evolved to the pointwhere sequencing ofwhole bacterial genomes
is possible in clinical settings, including the availability of benchtop se-
quencers such as the 454 GS Junior, Ion Torrent PGM, and Illumina
MiSeq (Dunne et al., 2012; Fournier et al., 2014; Sherry et al., 2013).
We sought to determine if the use of WGS data for our investigation
could provide a more refined analysis on strain relatedness than was
available by PFGE, as has been shown in other studies (Mathers et al.,
2015a; Salipante et al., 2015b). We found 22–24 high-quality SNVs be-
tween the CRKP isolated from patients A and B. Recently, Salipante
et al. (2015a) proposed a cutoff of ≤3 genomic variants between isolates
to define them as indistinguishable, ≤12 genomic variants for isolates to
be considered closely related, and ≥13 variants to be considered unrelat-
ed, based on a study usingWGS for bacterial strain typing of a collection
of vancomycin-resistant Enterococcus faecium, methicillin-resistant
Staphylococcus aureus, and Acinetobacter baumannii. For CRKP isolates
specifically, up to 17 SNV differences were observed in an outbreak at
the National Institutes for Health hospital (Snitkin et al., 2012), and up
to 10 (Weterings et al., 2015) or 15 (Mathers et al., 2015b) SNV differ-
enceswere observed in 2 other ST258K. pneumoniae–related outbreaks.
In our study, the number of SNVs (22–24) between the CRKP isolated
frompatients A andB seemed to be slightly greater thanwhat other out-
break investigations have observed, but the lack of a consensus defini-
tion for relatedness makes it very challenging to reach a definitive
conclusion regarding transmission, based on the present data. It should
be mentioned that our analysis was based on short-read MiSeq data,
which do not allow construction of complete genome or plasmid
maps, potentially yielding an incomplete SNV profiling. Furthermore,
we employed a high-stringency filter for our SNV calls, as has been
done elsewhere (Salipante et al., 2015a), to helpmitigate overcalling ge-
nomic diversity due to SNVs introduced to the data, as sequencing er-
rors. Such evaluation of only regions with the highest quality
sequence coverage likely also results in undercalling of the total number
of sequence variations between isolates. In contrast, long-read sequenc-
ing platforms, such as the PacBio RS, are associated with a higher inher-
ent error rate, which may overcall SNVs and require correction by
another NGS platform such as the Illumina system.

It should be noted that the SNV cutoffs proposed by Salipante et al.
(2015a)may be overly restrictive. Bacterial isolates are known to diver-
sify within a single infected/colonized host, and each individual patient
who acquires a CRKP will develop, over time, a genomically diverse
population of the organism (Worby et al., 2014). CRKP-A and CRKP-B1
were isolated 76 days apart—which may have provided ample time
for the accumulation of SNVs across the CRKP genome, within the



Table 3
Single nucleotide variants among K. pneumoniae isolates.

Reference (KPNIH33) location CRKP-A CRKP-B1 CRKP-B2 Variant type Affected gene

1 1104614 A G G Synonymous
2 1120295 C T T Nonsynonymous AIW70704.1 = LysR family transcriptional regulator
3 1434384 A G G Synonymous
4 1583898 T C C Synonymous
5 1712388 G T T Synonymous
6 1713375 C A C Synonymous
7 1982119 A T T Synonymous
8 2142962 C T C Synonymous
9 2238744 G A A Synonymous
10 2492974 A C C Nonsynonymous AIW70970.1 = ATP-dependent helicase HrpA
11 2578845 T G G Noncoding
12 2639561 A G G Nonsynonymous AIW71106.1 = urea ABC transporter ATP-binding protein
13 2840365 A T T Synonymous
14 3095316 A G G Synonymous
15 3415321 T C C Synonymous
16 3614084 T C C Synonymous
17 4239941 C T T Synonymous
18 4239950 T A A Nonsynonymous AIW72527.1 = hypothetical protein
19 4568820 A G G Synonymous
20 4592807 C A A Nonsynonymous AIW72874.1 = oligogalacturonate lyase
21 4603942 A G G Synonymous
22 4604101 G A A Synonymous
23 4828372 T C C Synonymous
24 5283801 A T T Noncoding
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host(s). To this point, Golubchik et al. (2013) found asmany as 40 SNVs
across the genomes of different colonies of S. aureus isolated from a sin-
gle nares swab collected from a colonized individual. Both the present
study and other outbreak investigations have sequenced a limited, rep-
resentative number of isolates fromeach patient, whichmay grossly un-
derestimate the diversity of the bacterial population present in a given
patient and result in correspondingly incorrect inferences of transmis-
sion events (Worby et al., 2014). In our particular evaluation, we do
not know how long patients A (or B) may have been colonized with
the CRKP prior to development of infection, but it is clear that long-
term colonizationwith CRE—up to years—is common, and both patients
had extensive exposure to the healthcare system inwhich CRE are prev-
alent (Marquez et al., 2013). Little data are available that document the
rate at which bacteria and, in particular, members of the Enterobacteri-
aceae undergo genomic diversification within a single patient. The esti-
mated rate at which E. coli accumulates point mutations is 1.6 × 10−10

per base pair per generation (Barrick et al., 2009), and the rate of change
for K. pneumoniae is thought to be in the range of 5–10 SNVs/genome/
year (Bowers et al., 2015; Mathers et al., 2015c). However, this is in
the absence of selective pressures such as host response, antimicrobials,
and other medications (Zdziarski et al., 2010). SNVs may accumulate
significantly more rapidly under the selective pressure of an infected
or colonized host. For example, a study of E. coli used for therapeutic
bladder colonization found the rate at which SNVs accumulated was
1.3–2.5 times that of the same E. coli when propagated in vitro. The
rate of mutation in this study was dependent on the individual host, in-
dicating diversification rates are host specific (Zdziarski et al., 2010).
Thus, while the presence of 24 SNVs between CRKP-A and CRKP-B1 in-
dicates a certain degree of divergence between these isolates, a trans-
mission between the 2 patients is still a possibility, considering both
patients had extensive exposure to antimicrobial therapy, which could
theoretically increase the rate of mutation of the CRKP in vivo. Further-
more, the 25.3-kb regions flanking Tn4401d were 100% identical be-
tween the isolates in the present study, providing another supporting
evidence for relatedness. Of note, while the Tn4401d isoform is relative-
ly uncommon (Mathers et al., 2015c), we identified it in isolate CRKP-Y,
which was isolated from a third patient 9 months after discharge of
these 2 patients from our hospital. We cannot rule out the possibility
that both patients acquired CRKP from the hospital environment, or
other colonized patients, via 2 independent acquisition events. As
such, while WGS data may aid in the investigation of transmission
events, absent very low (i.e. ≤3 SNVs, which would indicate recent,
direct transmission) or high (i.e. for example N100 SNVs, which would
indicate significant genomic distance and no recent transmission
event) diversity, conclusive definitions of isolates as part of an outbreak
remain unresolved. Nonetheless, standardization of WGS data analysis
and development of consensus guidelines by which to define related-
ness of CRE and other important hospital-associated pathogens will
significantly improve our ability to evaluate such events.
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