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Computational mechanics tools make up a crucial part of modern engineering analysis.

The most widely used softwares typically employ finite element analysis (FEA) to approximate

the solutions to partial differential equations (PDEs). FEA relies on the construction of high-

quality boundary fitted meshes which can be costly to construct. More specialized numerical

methods are widely used within the academic community to not only avoid mesh generation

and remeshing, but also to tackle problems with unique requirements not well suited to FEA.

This work expands upon the theory of approximate extraction and interpolation-based methods,

enabling more advanced computational tools to be implemented within existing finite element

softwares.
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The first method discussed in this work is the interpolation-based immersed bound-

ary method. Immersed boundary methods avoid mesh generation by embedding a problem’s

computational domain in a structured background grid. With non-conforming meshes comes

additional difficulty in integration steps, limiting the execution of most immersed boundary

methods to custom research codes. Interpolation-based immersed boundary methods augment

existing FEA software to non-invasively implement immersed-boundary capabilities through

extraction. Extraction, which has previously been applied to implement isogeometric analysis

in finite element codes, interpolates the structured background basis as a linear combination

of Lagrange polynomials which can be easily integrated with existing software. In addition to

classic immersed boundary methods, immersed-isogeometric methods are also implemented,

using B-splines as background basis functions. B-splines offer higher levels of continuity than

classic finite element basis functions, enabling the method to model high-order derivative PDEs,

such as shell problems. Heaviside enrichment of the background basis as well as local refine-

ment through truncated hierarchically refined B-splines extends the capability of this method to

multi-material problems, including image-based analysis of composite materials.

Extending the theory of interpolation, this work also introduces interpolation-based

meshfree methods, specifically interpolation-based reproducing kernel particle method (RKPM)

. Developed for similar reasons as immersed boundary methods, meshfree methods do not

require a mesh connectivity data structure and are optimal for modeling large deformation,

fracture, or extreme events. Also like immersed boundary methods, meshfree methods require

sophisticated integration techniques that make them challenging to implement outside a research

setting. Interpolation-based RKPM is implemented within existing FEA software, and applied

in this work to a variety of problems, including high order derivative PDEs and multi-material

problems.
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Chapter 1

Introduction

1.1 Motivation

Computational mechanics play a vital roll in modern engineering. Computer aided design

(CAD) software has been widely employed in industry and most every product manufactured

today starts out as a CAD file. Computer aided analysis is less wide spread, but is standard

whenever products are too costly (or dangerous) to build and test prior to widespread manufacture.

Computer simulations can improve traditional engineering design and can provide insight

not possible to glean from physical experiments. This thesis will summarize the author’s

contributions to the field of computational mechanics and the technical tools she has created to

improve access to computer aided analysis methods.

The industry standard of computational mechanics tools is finite element analysis (FEA),

somtimes referred to as simply finite element (FE). FEA is an incredibly powerful tool for

solving partial differential equations (PDEs). The method has been applied to many classes

of engineering problems, including structural analysis, fluid mechanics, electro-magnetism,

plasma physics, and other highly coupled multi-physics systems. A key component of FEA

is the discretization of a physical or geometric domain into a computational mesh. This mesh

must conform to the domain geometry and accurately represent all physical features, while also

adhering to strict quality metrics. The quality of FEA simulation is closely tied to the quality

of the mesh, especially when employing high order basis functions, and the oft-cite study of
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Sandia engineers [31] found that up to 80% of an engineer’s billable time was consumed in the

generation and processing of geometric meshes. Especially as computational power becomes

cheaper and computers faster, the slowest part of computer aided engineering (CAE) remains the

human driven mesh generation steps. In order to increase the access to computational methods,

the problems presented by mesh generation must be addressed.

Considerable work has been done in the computational mechanics community to improve

mesh generation for more efficient FEA workflows. These methods are crucial to the field and

have done much to improve the CAE processes, but they remain cumbersome. There are also

applications where the creation of a mesh, or the re-meshing of a highly deformed material,

is simply unfeasible. This thesis will instead deal with methods that avoid mesh generation

all together. Three classes of methods are discussed: isogeometric analysis (IGA), immersed

boundary methods, and meshfree methods.

IGA was created to interface directly with CAD. The method employs the same math-

ematical basis used to describe geometric entities in CAD in analysis. By using the CAD

discretization for analysis, both meshing and the introduction of geometric error are avoided.

While classic FEA uses Lagrange polynomial basis functions, IGA utilizes B-splines, or non-

uniform rational B-splines (NURBS), to approximate PDEs. While seamless integration within

CAD has yet to be fully realized, IGA and the use of IGA bases provides additional benefits over

FEA, including higher accuracy per degree of freedom. Due to the higher levels of continuity

presented by B-splines, IGA has found use in the modeling of thin shelled structures and other

high order derivative problems.

Immersed boundary method were initially developed for fluid-structure interactions and

embed the computational domain within a structured non-conforming mesh. Because of their

flexibility in representing complex geometric features, immersed boundary methods are popular

for simulating interface problems of problems with evolving geometries. The computational

mesh remains constant regardless of the deformation of the material being modeled, or changes

to geometry made during design iterations. Basis functions on the background mesh may be
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arbitrarily intersected by domain interfaces, making integration and matrix assembly more

challenging than for traditional FEA.

Meshfree methods encompass a broad range of tools that eschew meshes entirely. These

methods typically define basis functions on a set of floating points that are not constrained by

mesh connectivity, making them ideal for modeling large deformations or extreme events. Major

topological changes, such as material fracture or fragmentation, can be modeled through such

methods. The reproducing kernel particle method (RKPM), a subset of meshfree methods, also

enables for the decoupling of continuity and polynomial reproducibility. This allows for high

order methods to be applied to these discontinuous problems. Meshfree methods in general, and

RKPM in particular, also allow for convenient local refinement through node insertion [163]. As

with immersed boundary methods, enforcement of boundary conditions and integration can be a

challenge.

These classes of methods each make important contributions to the field of computational

mechanics, and could enable design engineers and engineering analysts to perform simulations

not possible through widely available FEA software. However, the use of many of the methods

has been limited to academic specialists, and often the only users of the methods are the

developers themselves. The aim of this thesis is to broaden the access to specialty methods and

their unique benefits through the use of interpolation.

Interpolation-based methods were driven initially by the IGA community. The basis

functions utilized by IGA are rational functions with large supports, and are difficult to handle

within element-based classical FEA software. The idea of extraction, to represent the B-spline

or NURBS basis functions in terms of Bèzier polynomials, was introduced in [34, 148]. The

concept was later generalized to Lagrange extraction, where the Bèzier polynomials are further

represented in terms of Lagrange polynomials [144]. In this context, extraction is also referred

to as interpolation. Lagrange polynomials are traditionally used in classical FEA and a plethora

of software, both open-source and commercial, exists to integrate such functions. Seminal works

[97, 159] utilized interpolation to retrofit existing FEA software to perform IGA.
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1.2 Objectives

The objective of this thesis is to broaden access to specialized computational methods.

The methods prioritized in this work reduce the burden of mesh generation or geometric dis-

cretization. This goal is realized through the development of interpolation-based methods and

the adaptation of existing software tools to implement these methods. The primary products of

this work are as follows

• The introduction of the theory of approximate interpolation. Previously existing

interpolation-based methods exactly represented target background basis functions as

linear combinations of foreground functions. Theory detailed in this work proves special

cases of approximate interpolation-based methods still yield optimal error convergence

rates, and numerical results demonstrate optimal rates even for cases where theory has yet

to be derived.

• Interpolation-based immersed finite element and immersogeometric methods, which em-

ploy approximate interpolation to implement immersed methods within existing finite

element software. Benchmarking problems demonstrate optimal error convergence rates

for these methods for a multitude of PDEs and geometries.

• The extension of interpolation-based immersogeometric methods to multi-material prob-

lems through level-set Heaviside enrichment. Optimal error convergence rates are demon-

strated through numerical examples on complex geometries. Target application spaces are

illustrated via image-based composite material analysis.

• The presentation of interpolation-based RKPM, a specialized example of interpolation-

based meshfree methods. In addition to utilizing existing FEA software, the interpolation-

based approach demonstrates considerable speed ups in the computation of meshfree

derivatives and integration of shape functions.
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• The publication of open-source software modules to both reproduce all the numerical

examples presented in this thesis, and enable lay-users to apply the methods presented

here to additional PDEs and geometries.

1.3 Outline

This thesis contains six remaining chapters. Chapter 2 provides a literature review on

the computational methods that interpolation is applied to in this work (immersed boundary

methods and RKPM), and an overview of the prior use of interpolation-based methods. Chapter

3 provides the mathematical background on the nonstandard discretizations techniques and basis

functions employed by IGA and RKPM. Chapter 4 introduces interpolation-based immersed

boundary methods and immersed-isogeometric methods. The theory of approximate extraction

is derived. Several benchmarking problems validate the theory. The method’s utility is illustrated

through the implementation of trimmed shell analysis within open-source FEA software. Chapter

5 extends the body of work on interpolation-based immersed-isogeometric methods to include

multi-physics and multi-material problems through Heaviside enrichment truncated hierarchically

refined B-splines. The theory behind the enrichment and refinement strategies is given, as well

as the developments to the interpolation-based method to accommodate the more complex

methods. Image-based thermo-mechanical analysis of a composite sample demonstrates the

method’s capability. Chapter 6 introduces interpolation-based meshfree methods, focusing on

the reproducing kernel particle method. The final chapter will summarize the key points of this

thesis and indicate future directions the dissertation’s author recommends for the further work

on interpolation-based methods.
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Chapter 2

Literature Review

2.1 Immersed finite element methods

Immersed-boundary methods, also called unfitted methods or cut-cell methods, were first

introduced in the computational mechanics literature to deal with moving interfaces in finite

volume methods by Peskin in [134]. This work presented a method for modeling fluid–structure

interactions in the context of blood flow through a heart valve, an application which remains

of interest in the immersed-boundary community to this day. In this work, the impenetrable

boundary is modeled as a parametric curve embedded in a two-dimensional flow field which

exerts force on the flow and is linked with a no-slip boundary condition. Similar methods

summarized in the 2005 review [122] were used in fluid–structure interaction and fluid–fluid

interface codes with developments to the boundary condition enforcement and boundary tracking.

The method of embedding material in a Cartesian grid also gained traction within

the solid mechanics community and was influenced by both developments in meshfree or

particle methods [113, 156] and particle in cell methods from the fluids community [35]. These

methods differed from previous immersed-boundary methods as they typically dealt with a solid

undergoing significant deformation, which would have required remeshing in classical finite

element methods, rather than a solid interacting with a surrounding fluid. Immersed-boundary

methods were likewise applied to model crack propagation, as in [124].

Immersed boundary methods circumvent conforming mesh generation by embedding the
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geometric problem domain into a background grid constructed on a geometrically simple domain.

Initially proposed to track fluid-structure interfaces in [134], similar classes of immersed methods

were likewise developed by the solid mechanics community to accommodate discontinuities in

solution fields without remeshing to create boundary-fitted meshes. The partition of unity method

(PUM), introduced in [5], leverages the concept of enriching solution functions using a priori

knowledge of the location of discontinuities. This was combined with classical FEM in [154] and

[153] to introduce the generalized finite element method (GFEM). A similar enriched method,

characterized by adaptive enrichment schemes, known as the ‘eXtended’ finite element method

(XFEM) [124, 25, 28], was also introduced to model crack propagation and other discontinuous

problems.

Immersed boundary methods have also been extended to include high-order methods.

The finite cell method[133, 143] utilizes p refinement of Lagrange polynomial basis functions to

increase convergence rates, however the issue of integration error remained. Numerous solutions

have been proposed to reduce the geometric approximation error, including octree adaptive

integration [54] and moment fitting adaptive integration [89].

In the field of meshfree methods, the concepts of immersed or embedded methods have

been used to model heterogeneous materials [145] and to enhance solution accuracy and stability

near material interfaces in fluid-structure interaction problems [87].

Specific to finite element methods, the generalized finite element method (GFEM) [154]

and the subsequent extended finite element method (XFEM) [124] furthered development in

immersed-boundary methods. These methods, reviewed in [66], embed a material in a Cartesian

grid and “extend” the solution space by enriching it, while XFEM distinguishes itself by enriching

only locally near boundaries and discontinuities. These methods rely on a priori knowledge of

the partial differential equation (PDE) solution drawn from partition of unity methods (PUM)

[65].

The immersed framework has also been extended to the field of meshfree methods,

particularly RKPM [145]. Neural networks have been employed to enrich RKPM approximation
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spaces for localization [10], fractures [9], and problems with local features [11].

TraceFEM methods [131] are a different class of immersed-boundary methods based on

surface PDE descriptions (as derived in [56] and adapted in [57]). These methods are elegant

formulations for solving PDEs including equations for Stokes flow on surfaces that can be

coupled with PDE solutions in bulk [130].

Another recent immersed-boundary method, developed within the open-source software

FEniCS, is the multimesh method [94]. This method marks one of the few attempts to integrate

immersed-boundary methods into existing FE software distributions rather than research-specific

codes. However, the invasive nature of the implementation made it difficult to maintain and it

was not retained in the FEniCSx redesign of the software. The difficulty in selective integration

is not limited to the multimesh method and remains the major difficulty in the implementation of

immersed-boundary methods outside of custom research codes.

Some classes of immersed boundary methods are specially formulated to reduce the

difficulty of integrating over cut cells, including approximate domain methods and specifically

the shifted boundary method [117, 118]. The shifted boundary method maps the boundaries

of a computational domain to a mesh conforming surrogate domain and has been extended to

high-order methods in [3]. Similar to the shifted boundary method, interpolation-based immersed

methods like the one presented in this work provide the benefits of immersed methods without

requiring invasive implementation of custom quadrature methods.

A common issue in most (if not all) immersed boundary methods is the destabilizing effect

of small cut cells. This phenomena occurs when a background bases function is only sparsely

supported within the computational domain, and can result in ill-conditioning of linear systems

and drastically decreased critical timesteps for unsteady problems. Numerous strategieshave

been explored to address this issue and its symptoms , such as basis function agglomeration [109],

ghost penalty formulations [37], basis function removal [59], and specialized preconditioners

[96].
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2.1.1 Immersogeometric methods

A historically-separate line of research aimed at circumventing the FE meshing problem

is isogeometric analysis (IGA) [90, 51] where function spaces of smooth splines from computer-

aided design (CAD) are directly used to approximate PDE solutions. However, these spline

spaces often have more topological constraints on their construction than classical FE spaces,

and industrial CAD models often represent complex geometries by “trimming” [119] spline

patches to obtain the desired shapes. Thus instead of offering an alternative to immersed-

boundary methods, IGA has intensified interest in them. The symbiotic union of isogeometric

and immersed methods is referred to as “immersogeometric analysis” (IMGA) [101].

Since IGA was introduced, numerous methods have been developed to handle trimmed

spline patches [106, 139], and IGA was combined with the finite cell method in [140, 137, 141]

and with CutFEM to form CutIGA in [59]. As with classic immersed-boundary methods, inte-

grating over cut cells remains a challenge; though it has been addressed for an immersogeometric

specific solver using error-estimate based adaptive integration in [54]. Immersogeometric meth-

ods were applied to multi-material problems in what was labeled eXtended-IGA, or XIGA

[129, 146].

2.2 Meshfree methods

Meshfree methods encompass a large group of computational tools that approximate

PDEs with bases constructed on scattered points not connected through a mesh [41, 29]. Mesh-

free methods stemmed from diffuse element method [126], which was soon followed by the

development of element free Galerkin (EFG) methods [26, 27, 115]. Drawing from wavelet

methods, the reproducing kernel particle method (RKPM) was introduced in [113] and intro-

duced with discrete reproducing conditions to ensure optimal convergence and extended to large

deformation problems in [43]. In addition to circumventing meshing (and re-meshing, in the

case of large deformation problems) challenges, meshfree methods offer several advantages over
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classical FEM. Meshfree methods in general, and RKPM in particular, allow for convenient local

refinement through node insertion. While p−refinement increases the cost of evaluating RKPM

basis functions, it does not increase the number of degrees of freedom (DOFs). And perhaps

most notably, the continuity of RKPM bases are independent of polynomial order and controlled

solely by the kernel.

As RKPM basis functions are rational and have large overlapping supports, numer-

ical integration of basis functions over domain geometry presents a major challenge in the

implementation of RKPM.

The basis functions used in classic finite element methods are compactly supported and

can be accurately integrated using Gauss quadrature rules within a desirable order of precision.

Gauss quadrature has also be used for meshfree methods [55, 115]. As RKPM functions are

by nature rational functions with overlapping supports incompatible with Gauss quadrature

integration cells, the number of Gauss quadrature points required to reduce integration error to

below approximation error can result in impractical computation times.

Additionally, evaluation algorithms require a mechanism to identify the nearest neigh-

bors of each node to compute basis support size and identify non-zero shape functions at each

evaluation point, increasing complexity. Most tasks can be performed off-line as preprocessing

steps, but reducing the number of evaluation points is critical to implementing RKPM. Nodal

integration schemes with stabilization have thus been developed to enable large scale implemen-

tations of meshfree methods [44, 42, 135, 84]. As these integration tools are quite different from

those used in conventional mesh-based methods, meshfree methods have yet to be fully adopted

in widely used commercial codes.

2.2.1 Meshfree integration techniques

Evaluating RKPM shape functions at a given point (Equation ??) requires the inversion

of the moment matrix, making each evaluation computationally expensive. This computational

expense is usually made up for the relative reduction over over-all degrees of freedom when
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compared with classical FEM, but remains a motivating factor in the development of more

efficient nodal integration schemes Direct nodal integration (DNI), where shape functions and

their derivatives are only evaluated at nodes presents challenges as the first derivatives of meshfree

shape functions vanish at nodes (or nearly vanish at nonuniformly distributed nodes). Vanishing

or nearly vanishing derivatives result in an oscillatory mode of wavelength 2h (where h is the

nodal spacing) leading to instability [84, 29]. Numerous stabilization methods exist, such as the

least squares stabilization first proposed for element free Galerkin (EFG) in [24]. In this work,

the square of a solution residual is added as a stabilization term to a system’s energy functional.

As this term contains second order derivatives, which do not vanish at nodes, this serves to

stabilize the nodal integration. Unfortunately, the computation of second derivatives, even only

at nodal locations, adds considerable computational expense to this method.

Stabilized conforming nodal integration (SCNI), introduced in [44, 45], computes gradi-

ents via the divergence of spatially averaged strain, avoiding the computation of derivatives at

nodes and also eliminating spurious oscilliatory modes. SCNI with additional stabilization [84]

has been introduced to further increase ellipticity and hence stability of nodal integration. SCNI

requires the construction conforming representative nodal domains, which can be computational

expensive and difficult in the context of large deformations, and has thus be adapted in the

form of stabilized non-conforming nodal integration (SNNI)[74, 75]. While SNNI suffers from

reduced convergence rates, the addition of variational consistency terms [42] reduces integration

error to below method errors.

As nodal integration requires additional stabilization terms added to the variational

problem, it is challenging to adapt to the schemes to more complex multi-physics problems. For

example, the complex problems investigated in [157] are ill-suited to nodal integration and rely

instead on Gaussian integration.
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2.3 Weak enforcement of boundary conditions

In both immersed-boundary methods and meshfree methods there is no explicit relation-

ship between nodal degrees of freedom and physical boundaries. Therefore the typical strong

enforcement of essential boundary conditions is not possible and essential boundary conditions

must be enforced weakly through the problem’s variational form.

The simplest boundary condition enforcement method is the penalty method, where

deviation from the prescribed value is penalized at the boundary by alteration of the variational

form. This method was described in [6] and applied to meshfree methods [166] where strong

enforcement of Dirichlet boundary conditions is likewise difficult. While easy to implement, the

penalty method results in inconsistent variational forms and can therefore lead to sub-optimal

convergence rates.

Boundary condition enforcement using Nitsche’s method is more common in the im-

mersed boundary literature and was first proposed in [127] and implemented with formal error

estimates in [64]. Nitsche’s method was initially derived for the Poisson problem and has been

expanded to other PDEs including fluids problems as in [21]. Work done on CutFEM (a subset of

immersed-boundary methods similar to the finite cell method but historically separate) includes

applications of Nitsche’s method for a variety of PDEs, including elliptic problems [79, 81, 22].

A drawback of Nitsche’s method is its dependence on a penalty parameter, the magnitude

of which must be specified by the user. Several variations of Nitsche’s method have been derived

to maintain consistency even with a penalty of zero. Notably the non-symmetric method derived

for the Laplace problem, Kirchhoff–Love (KL) shells, and elasticity in [142] is stable with zero

penalty, as is the penalty-free method for diffusion interface problems in [32].

The Lagrange multiplier method, proposed in [7], adds complexity and is less frequently

used as it leads to numeric saddle point problems [36]. It is well-suited for some immersed-

boundary problems such as fluid–structure interactions [100] or in multi-physics codes [128] but

is not widely adopted.
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Figure 2.1. A plot from [159], illustrating the implementation of Bézier extraction and Lagrange
extraction to exactly interpolate a 1D B-spline curve.

2.4 Interpolation-based methods

A major advance in the design of IGA software was the concept of Bézier extraction [34]

where smooth B-spline basis functions are represented as linear combinations of less-regular

Bernstein basis functions. This extraction was generalized to T-splines in [148].

The main idea of extraction, as presented in these papers, was to utilize knot insertion

to reduce the continuity of the basis representing a given B-spline curve, allowing it to be

represented by the less continuious basis of Bézier elements. Each knot insertion decreases the

continuity by one at the point of insertion. The crucial characteristic of this insertion is that the

continuity of the B-spline curve itself is preserved.

The concept of Bézier extraction was later reformulated as interpolation of IGA basis

functions using Lagrange FE bases, referred to as ‘Lagrange extraction’ [144]. Lagrange

extraction allows for the direct reuse of FE software to perform IGA. This has been implemented

in both the open-source software package FEniCS [114] in [99] and in the software CodeAster

in [159].

This concept is illustrated in Figure 2.1 from [159]. The curve in question and it’s highly

continuous B-spline basis are shown in (a). The same curve is reproduced in (b) as the linear

combination of discontinuous Bernstein polynomials using Bézier extraction. The interpolation

is further generalized to Lagrange extraction in (c), where the same curve is represented as a
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linear combination of Lagrange polynomials. This figure illustrates the extraction performed

onto a general curve. With interpolation based methods, the curves being extracted are the

B-spline basis functions themselves.
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Chapter 3

Non-standard discretization methods for
approximating PDEs

The main contribution of this thesis is the development of interpolation-based tools that

increase access to sophisticated computational mechanics methods. The methods covered in

this work include isogeometric methods (IGA), reproducing kernel particle methods (RKPM),

and immersed boundary methods. The first two, IGA and RKPM, employ basis functions to

approximate PDEs that most users of FEA are unfamiliar with. For this reason this chapter

Immersed boundary methods may employ a variety of basis functions, including both

classical Lagrange polynomials and the functions utilized in IGA or even RKPM. As this method

differs from classical FEA in its treatment of interfaces as opposed to underlying functions, it

is discussed alongside the introduction of interpolation-based immersed boundary methods in

Chapter 4.

3.1 Isogeometric Analysis (IGA)

Isogeometric analysis (IGA) was first introduced in [90] and developed further in [51]

as a method to circumvent time-consuming mesh generation. IGA uses non-uniform rational

B-spline (NURBS) basis functions to both create an exact geometric model of a computational

domain and to perform computational analysis. NURBS are the standard in the computer-aided

design (CAD) and computer graphics communities [138]. By utilizing the native geometric
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representations used by CAD files for analysis, IGA users avoid the process of mesh creation

and eliminate error due to geometric approximations.

A 1D univariate B-spline basis is denoted here as
{

Bi,p(ξ )
}N

i=1, where n is the polynomial

order and N is the number of basis functions. The domain is discretized with a knot vector

Ξ = {ξ1,ξ2, ...,ξN+n+1} such that {ξi}N+n+1
i=1 ⊂ R and ξ1 ≤ ξ2 ≤ ... ≤ ξN+n+1. The functions

are then constructed recursively from the piecewise constant basis function

Bi,0(ξ ) =


1, if ξi ≤ ξ ≤ ξi+1

0, else
, (3.1)

using the Cox-de Boor recursion formula [52]

Bi,n(ξ ) =
ξ −ξi

ξi+n −ξi
Bi,n−1(ξ )

+
ξi+n+1 −ξ

ξi+n+1 −ξi+1
Bi+1,n−1(ξ ). (3.2)

If no interior knots are repeated, the basis is Cn−1 continuous at each knot in the interior domain,

and C∞ continuous between the knots. The basis will form a partition of unity if the first and last

knots are repeated n+1 times. Higher dimension basis functions can be constructed by applying

tensor-product operations to the univariate functions, such that

Biii,nnn(ξξξ ) =
dp

∏
m=1

Bm
im,nm

(ξ m), (3.3)

where dp is the parametric space dimension, and there are dp knot vectors Ξm =

{ξ m
1 ,ξ m

2 , ...,ξ m
Nm+nm+1}, where nm is the number of basis functions and nm is the poly-

nomial order of the mth parametric direction. Here iii = {i1, ..., idp} is a multi-index and

nnn = {n1, ...,ndp} is the vector of polynomial degrees. The B-spline basis of the set of these

functions is denoted by Bnnn := {Biii,nnn}.
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For brevity and greater generality, following chapters will drop the polynomial labeling

and bolding, referring to functions as only Bi. The notation Bi will also be reused in the context

of interpolation-based methods to refer to ‘background’ basis functions in general, which will,

unless otherwise noted, be B-splines.

While IGA development was initially motivated by the difficulty of creating high quality

meshes, there are additional benefits to the method. The same mathematical properties that make

B-splines attractive to the computer graphics community also enable them to be used for analysis

problems outside the scope of traditional finite element analysis. B-splines have been found to

be more accurate per degree of freedom than traditional Lagrange polynomials[61, 23], and to

have superior spectral properties [91].

Most notably, B-spline basis functions have higher levels of continuity per polynomial

degree than Lagrange polynomials. As stated, B-splines of polynomial order n will be Cn−1

continuous, where traditional FEA basis functions will typically be only C0 continuous. This

continuity can be used to approximate higher order derivative PDEs. IGA has been used with high

success for Kirchhoff–Love shell models, which involve 4th order derivatives [103, 105]. This

has been applied to a variety of problems, including wind turbines [19, 95, 83] and bio-prosthetic

heart valves [101, 102].

The knot-vector structure of multi-variate B-splines can limit discretizations. Most CAD

geometries employ multiple B-spline ‘patches’, thus any meaningful design-through-analysis

workflow must provide the means to couple the bases defined upon multiple intersecting patches.

This has been accomplished through penalty based enforcement [82], allowing for the analysis

of large structures including wind turbines and aircraft[165, 164].

Implementation of IGA remains a significant challenge. Quadrature rules have been

developed to tackle to the rational B-spline basis functions [92, 4], but the large support domains

of each function hinder efficiency. Bèzier extraction [34, 148] was developed to address these

issues, allowing for the rational B-spline function to be exactly represented as a linear combina-

tion of Bernstein polynomials. This was later generalized to Lagrange extraction [144], where
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B-splines are instead represented as Lagrange polynomials.

The introduction of Lagrange extractions, also known as interpolation, allowed for novel

implementations of IGA within existing finite element software. By replacing the difficult to

integrate B-spline discretizations with Lagrange polynomials, classic quadrature methods can be

employed. This was done using the open-source software package FEniCS in [99, 97] to create

the package tIGAr and also by [159].

3.1.1 Hierarchical B-splines

As with classical finite element meshes, local refinement with IGA presents a unique

set of challenges. Knot insertion, refining the one-dimensional knot vectors in the target region,

leads to arbitrary increases in degrees of freedom in surrounding regions. T-splines [149]

allow for T-shaped junctions in spline patches and were initially developed for the computer

graphics community. T-splines were utilized for computational analysis in IGA [147, 111, 110],

reducing system size while still allowing for local refinement. Similarly, hierarchically refined B-

splines [141] allow for T-junctions and provide efficient data-organizing structures. Furthermore,

truncated hierarchically refined B-splines [72, 73] retain the partition of unity property desirous

for approximating PDEs.

Chapter 5 of this thesis will employ hierarchically refined B-splines (HB-splines) for

local refinement. HB-splines are constructed using nested sequences of spline spaces created by

repeated knot insertion. Following the algorithms presented in [72], an HB-spline basis begins

with the construction of a sequence of r tensor-product spline spaces V l ,

V 0 ⊂ V 1 ⊂ ...⊂ V r−1, (3.4)

each of which has an accompanying B-spline basis Bl = {Bl
iii}, and tensor-product Cartesian

mesh K l , where elements are denoted by K. A sequence of subdomains Ωl are chosen, such
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(a) A 1D illustration of a sequence of meshed
subregions Ωl and quadratic B-spline bases
Bl .

(b) The hierarchically refined mesh K , the
HB-spline basis H , the THB-spline basis T ,
and the verification of the partition of unity.
The colors of the elements of K correspond
to the refinement level.

Figure 3.1. Local refinement is applied through truncated hierarchically-refined B-splines
(THB).
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that Ωl−1 is a subregion of Ωl ,

Ω
0 ⊇ Ω

1 ⊇ ...⊇ Ω
r−1, (3.5)

and each Ωl can be discretized with mesh elements K ∈ K l . Here r is the depth of refinement.

The HB-spline basis H := H r−1 is constructed recursively by the algorithm:



H 0 := B0,

H l+1 := {B ∈ H l
∣∣ supp(B) ̸⊂ Ωl+1} ∪

{B ∈ Bl+1
∣∣ supp(B)⊂ Ωl+1},

l ∈ {0, ...,r−2}.

(3.6)

In essence, each subsequent level’s basis H l+1 is formed from the union of the set of basis

functions from the previous level whose support is not in the new level’s subdomain Ωl+1, and

the set of functions from the new basis Bl+1 whose support is within Ωl+1. This is illustrated

with a 1D mesh in Figure 3.1.

The hierarchically refined basis H is associated with a hierarchically refined mesh K ,

defined as

K :=
r−1⋃
l=0

{K ∈ K l ∣∣ K ∈ Ω
l and K /∈ Ω

l+1}. (3.7)

While a useful tool for applying adaptive refinement to IGA, HB-spline bases violate the

partition of unity (PU) property. To regain the this property, the hierarchically refined bases are

truncated as in [72] and [73]. In addition to forming a partition of unity, truncation reduces the

size of some basis functions’ supports, thereby reducing the bandwidth of the resulting system

of equations when compared to a non-truncated HB-spline basis.

A given multivariate basis function Bl ∈ Bl can be represented as a linear combination
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of the more refined functions of level Bl+1:

Bl = ∑
Bl+1∈Bl+1

cBl+1(
Bl) Bl+1, (3.8)

where cBl+1(
Bl) are coefficients relating the coarse basis function Bl to the finer function Bl+1.

The truncation of Bl removes the contributions from Bl+1 ∈Bl+1 with support contained

within Ωl+1, such that

trunl+1(Bl) = Bl − ∑
Bl+1∈Bl+1,

supp(Bl+1)⊆Ωl+1

cBl+1(
Bl) Bl+1. (3.9)

Using a similar algorithm to that given in Eq. (3.6), the truncated basis T := T r−1 can

be constructed by



T 0 := B0,

T l+1 := {trunl+1(B)
∣∣ B ∈ T l, supp(B) ̸⊂ Ωl+1}

∪ {B ∈ Bl+1
∣∣ supp(B)⊂ Ωl+1},

l ∈ {0, ...,r−2},

(3.10)

as illustrated in Figure 3.1b. This truncated basis forms a partition of unity, as is proven in

Theorem 10 of [73].

3.2 The Reproducing Kernel Particle Method (RKPM)

RKPM is a meshfree method for solving PDEs. Instead of creating a mesh data structure,

a domain Ω ⊂Rd is discretized by a set of NP nodes of spatial coordinates {xxx1,xxx2, ...xxxNP}. Here

d denotes the spatial dimension. For ease of explanation, section work will deal only with the

case d = 2, with notation xxx = [x,y]. RKPM shape functions ΨI are associated with each node.
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The RKPM approximation of a function u is then given as

u(xxx)∼ uh(xxx) = ∑
I

ΨI(xxx)uI (3.11)

The shape functions can be expressed as

ΨI(xxx) = Φa(xxx− xxxI)C(xxx;xxx− xxxI). (3.12)

Φa(xxx) is the kernel function with compact support size aI defined as

aI = cahI, (3.13)

where ca is the normalized support size and hI is the nodal spacing associated with the node xxxI .

The nodal spacing is determined by

hI = max{||xxxI − xxxJ||}, ∀xxxJ ∈ BI (3.14)

where BI is the set of closest nodes to xxxI . For d = 2, BI will contain four nodes. The kernel

determines the local order of continuity. The shape of function support is also determined by the

kernel support, and is typically either circular or rectangular.

The function C(xxx;xxx−xxxI) is the correction function, and is used to impose the reproducing

conditions for desired Ω̄ completeness. The reproducing condition states that

∑
I

ΨI(xxx)xi
Iy

j
I = xiy j, 0 ≤ i+ j ≤ n (3.15)

where n is the order of reproducibility.
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The correction function can be computed as

C(xxx;xxx− xxxI) = HHHT(0)MMM−1(xxx)HHH(xxx− xxxI). (3.16)

HHH(xxx) is the basis vector

HHH(xxx) = [1,x,y,x2,xy,y2, ...,xn,xn−1y, ...,xyn−1,yn], (3.17)

MMM(xxx) is the moment matrix,

MMM(xxx) = ∑
I∈Gxxx

HHH(xxx− xxxI)HHHT(xxx− xxxI)Φa(xxx− xxxI), (3.18)

where Gxxx is the set of all nodes with support covering the point xxx. To avoid singular moment

matrices, the support of each shape function (and thus kernel function) must be sufficiently large

to provide adequate coverage to every evaluation point within the domain. Each point must be

covered by at least np kernels, where

np =

n+d

d

 . (3.19)

This is ensured by altering the normalized support size ca.

Examples of RKPM shape functions are plotted in Figures 3.2 and 3.3, for both a uniform

and non-uniform (perturbed) nodal distribution. Cubic B-spline kernels are employed, with

support sizes such that each kernel covers at least three neighboring nodes. Both linear and

quadratic reproducing conditions are applied, to compute the associated RKPM shape functions.

The evaluation of a given shape function at a point within the computational domain

requires the inversion of the moment matrix. While this matrix is small relative to the linear

systems typically dealt with in computational mechanics, the inversion must be performed at
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Figure 3.2. Cubic B-spline kernels (top), linear RKPM shape functions (middle) and quadratic
RKPM shape functions (bottom) are plotted for a 1D uniform nodal distribution.
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Figure 3.3. Cubic B-spline kernels (top), linear RKPM shape functions (middle) and quadratic
RKPM shape functions (bottom) are plotted for a 1D non-uniform nodal distribution.
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every evaluation point, for every shape function supporting that point.

The product rule is used to compute the derivatives of shape functions

∂ΨI

∂x
=

∂Φa

∂x
C+Φa

∂C
∂x

(3.20)

where computing the derivative of the correction function requires additional inversions of the

derivatives of moment matrices, adding to this computational cost.
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Chapter 4

Interpolation-based immersed finite ele-
ment analysis

This chapter introduces the concept of approximate interpolation through the application

of interpolation-based immersed boundary methods. Section 4.1 introduces the concept with

a scalar elliptic model PDE and provides a sketch of how a basic error analysis of the method

might proceed. Section 4.2 then describes how to implement interpolation-based immersed

analysis for arbitrary PDE systems in a way that efficiently reuses existing FE software. The

accuracy of the method is then explored for a variety of PDEs through numerical experiments in

Section 4.3 and applied to analysis of shell structures modeled geometrically by trimmed spline

surfaces in Section 4.4.

The interpolation-based immersed method employ a foreground integration mesh in

addition to a background discretization. The use of multiple meshes with different function

spaces can lead to ambiguity in terms like “element size” and “basis function”, so this work is

careful to distinguish between background, foreground, and interpolated entities through precise

terminology and notation. Notations are defined more comprehensively as they arise in context

later, but are also summarized here for convenient reference:

• h : background mesh element size

• η : foreground mesh element size
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Figure 4.1. (a) Domain discretized using a body-fitted mesh; (b) Domain discretized using
a tensor-product background mesh with a background-fitted foreground mesh; (c) Domain
discretized using a tensor-grid background mesh with a background-unfitted foreground mesh.

• Bi : background basis functions

• B̂i : interpolated background basis functions

• Ni : foreground basis functions

• n : polynomial degree of the background FE space

• k : polynomial degree of the foreground FE space

• k̂ : limiting degree min{n,k} of the interpolated background FE space

• P : interpolation into the foreground FE space

• Q : interpolation into the background FE space

• Q̂ : interpolation P ◦Q into the interpolated background FE space

Terms to distinguish the mesh immersions shown in Figures 4.1 (b) and 4.1 (c) are as

follows:

• Background-fitted foreground mesh: A foreground mesh which is fitted not just to the

domain geometry’s boundary but also to interior facets of the background mesh in the
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sense that the closure of the intersection of a background element with the PDE domain is

the closure of a union of foreground elements, as shown in Figure 4.1 (b).

• Background-unfitted foreground mesh: A foreground mesh such as the one shown in

Figure 4.1 (c) whose elements are fitted to the domain geometry but not to interior facets

of the background mesh.

The terms “fitted” and “unfitted” may be used without specifying the prefix “boundary-” or

“background-”, but only when the omitted prefix should be clear from context.

4.1 Immersed finite element analysis for a scalar elliptic
model problem

This section defines the proposed interpolation-based immersed method for a model

scalar elliptic problem Following sections will apply the method to several more complicated

problems. The model PDE is defined in Section 4.1.1, then a variational formulation suitable

for immersed methods is defined in Section 4.1.2. Section 4.1.3 reviews the formulation and

challenges of quadrature-based immersed methods, and Section 4.1.4 defines the construction

of a function space used for interpolation-based immersed analysis. Section 4.1.5 outlines an a

priori error estimate for the case of a background-fitted foreground mesh.

4.1.1 The model problem

The chooses model PDE is the Poisson equation with Dirichlet boundary conditions.

Let Ω ⊂ Rd be a spatial domain of interest. For simplicity of exposition, Ω is assumed to be

polyhedral and can be decomposed into affine simplicial elements exactly. The strong form of

the problem is as follows: Find u : Ω → R such that

−∆u = f in Ω ,

u = g on ∂Ω ,
(4.1)
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where f : Ω → R is a given source term and g : ∂Ω → R is given Dirichlet boundary data. The

weak form used as a starting point for formulating numerical methods is: Find u ∈ Vg such that

∫
Ω

∇u ·∇vdΩ =
∫

Ω

f vdΩ ∀v ∈ V0 , (4.2)

where

Vg :=
{

v ∈ H1(Ω) : v|∂Ω = g
}
, (4.3)

V0 :=
{

v ∈ H1(Ω) : v|∂Ω = 0
}
, (4.4)

in which restriction is understood in the sense of trace, and f and g are in at least L2(Ω) and

H1/2(∂Ω), respectively.

4.1.2 Discretization of the model problem

The most common discretization of the weak problem (4.2) is a conforming one employ-

ing finite dimensional subsets of Vg and V0. However, the construction of these subsets typically

relies on a boundary-fitted mesh to conform to the boundary conditions. Many immersed methods

therefore use nonconforming discretizations which enforce the Dirichlet boundary condition in a

weak sense. In particular, this work employs Nitsche’s method [127] for weak enforcement of

Dirichlet boundary conditions, leading to the discrete problem:

Find uh ∈ V h such that, ∀vh ∈ V h,

∫
Ω

∇uh ·∇vhdΩ−
∫

∂Ω

(
∇uh ·nnn

)
vhdΓ∓

∫
∂Ω

(
∇vh ·nnn

)
uhdΓ+

∫
∂Ω

Cpen

h
uhvhdΓ

=
∫

Ω

f vhdΩ∓
∫

∂Ω

(
∇vh ·nnn

)
gdΓ+

∫
∂Ω

Cpen

h
gvhdΓ , (4.5)

where the discrete space V h is a finite-dimensional subspace of H1(Ω) with no extra restrictions

on ∂Ω, h is a length scale indicating the refinement level of the discretizations (e.g., the element

diameter in a standard boundary-fitted discretization), nnn is the outward-pointing unit normal
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vector to ∂Ω, and Cpen ≥ 0 is a dimensionless constant. The “∓” in (4.5) must be selected

consistently on both sides of the equation, and toggles between the symmetric (“−”) and non-

symmetric (“+”) variants of the Nitsche method. The original symmetric variant proposed

by [127] remains well-posed for Cpen sufficiently large, with the lower bound emanating from

trace-inverse estimates (but often chosen on an ad hoc basis in practice). The non-symmetric

variant is well-posed for Cpen arbitrarily small (or zero), which has led some authors to advocate

its use in immersed discretizations [142] to sidestep technical concerns over the appropriate

values for Cpen and h. The non-symmetric variant retains optimal accuracy in the H1 norm,

which is often more relevant to applications like stress analysis. However, the symmetric variant

is optimal in both H1 and L2 norms, and is currently more widely used in practice.

4.1.3 Quadrature-based immersed discretization

In quadrature-based immersed methods the discrete space V h is defined by simply

restricting functions in an FE (or isogeometric) space defined on a background mesh to the PDE

domain Ω:

V h = span{Bi|Ω}n
i=1 , (4.6)

where {Bi}n
i=1 are the basis functions of the background-mesh FE space whose supports intersect

Ω. The principal challenge in implementing such a method is to accurately compute integrals of

the forms

∫
Ω

(· · ·)dΩ =
nel

∑
E=1

∫
ΩE∩Ω

(· · ·)dΩ and
∫

∂Ω

(· · ·)dΓ =
nel

∑
E=1

∫
∂Ω∩ΩE

(· · ·)dΓ , (4.7)

where ΩE is the E th element of the background mesh and nel is the total number of background

mesh elements. One can use standard Gaussian quadrature on ΩE when ΩE ⊂ Ω or on boundary

parts of ΩE when the background mesh is fitted to ∂Ω. Various schemes have been proposed

for integrating nontrivial intersections, but we focus in this paper on those which decompose

ΩE ∩Ω into a collection of quadrature elements, as shown in Figure 4.1 (b), and we refer to the
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mesh formed by these quadrature elements as a background-fitted foreground mesh. With such a

mesh, one can then decompose integrals like

∫
Ω

(· · ·)dΩ =
νel

∑
e=1

∫
ωe

(· · ·)dΩ and
∫

∂Ω

(· · ·)dΓ =
νel

∑
e=1

∫
∂Ω∩∂ωe

(· · ·)dΓ , (4.8)

where {ωe}νel
e=1 are the elements of the foreground mesh and standard Gaussian quadrature rules

can be accurately used on each one of its boundary parts.

While mathematically-appealing, this presents a major challenge from a software devel-

opment standpoint as now the mesh over which quadrature rules are defined is a separate data

structure from the mesh on which the basis functions are constructed. Implementation of such

methods therefore requires either custom software to be written from scratch or complicated

invasive modifications to be made in mature FE or IGA software designed for standard boundary-

fitted analysis. The primary motivation of the present work is to circumvent these difficulties

while retaining the high-order accuracy of quadrature-based immersed methods.

4.1.4 Interpolation-based immersed discretization

The main idea of the present work is to use a discrete space that consists of interpolations

of background-mesh basis functions on a Lagrange FE space defined over the foreground mesh:

V h = span
{

B̂i

}n

i=1
, (4.9)

where

B̂i = PBi :=
ν

∑
j=1

Bi(xxx j)N j , (4.10)

in which P is the operator that interpolates a function into the Lagrange FE space with basis

{N j}ν
j=1 and xxx j is the nodal point associated with foreground Lagrange basis function N j, i.e.,

Ni(xxx j) = δi j . (4.11)
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The space V h is a subset of the Lagrange FE space defined on the foreground mesh, so its

functions can be accurately integrated using Gaussian quadrature rules on each foreground

element. However, unlike in quadrature-based immersed methods, this remains true even with

a background-unfitted foreground mesh, like the one shown in Figure 4.1 (c), where, for an

arbitrary background element ΩE , ΩE ∩Ω is not necessarily equal to the closure of a union of

foreground elements.

For either background-fitted or background-unfitted foreground meshes, the basis {B̂i}n
i=1

exhibits the following properties:

1. If {Bi}n
i=1 forms a partition of unity, then {B̂i}n

i=1 does as well.

2. If the background function space spans polynomials of degree k and the foreground

function space spans polynomials of degree κ , then {B̂i}n
i=1 spans polynomials of degree

k̂ := min{k,κ}.

3. If both {Bi}n
i=1 and {Ni}

ν

i=1 have local support, then {B̂i}n
i=1 also has local support.

4. The continuity of {B̂i}n
i=1 is at least that of {Ni}

ν

i=1. Note that this may be lower than the

continuity of {Bi}n
i=1.

Moreover, for the specific case of a background-fitted foreground mesh, the interpolated back-

ground basis {B̂i}n
i=1 is equivalent to the original background basis {Bi}n

i=1 for a sufficiently high

foreground polynomial degree κ . If the background function space consists of piecewise poly-

nomials of degree k defined over a simplicial background mesh, the original background basis

is recovered with a Lagrange interpolation of degree κ ≥ k onto a simplicial background-fitted

foreground mesh. If the background function space consists of piecewise tensor-product polyno-

mials of degree k defined over a tensor-product background mesh, the original background basis

is recovered with a Lagrange interpolation of degree κ ≥ kd onto a simplicial background-fitted

foreground mesh.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.2. (a) Geometric domain (red) and background mesh (black). (b) Background basis
function. (c) Background-fitted foreground mesh. (d) Background-unfitted foreground mesh.
(e) Linear Lagrange interpolation of background basis function on background-fitted mesh. (f)
Linear Lagrange interpolation of background basis function on background-unfitted mesh. (g)
Quadratic Lagrange interpolation of background basis function on background-fitted mesh. (h)
Quadratic Lagrange interpolation of background basis function on background-unfitted mesh.
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To better convey the concept of interpolated background basis function, several interpola-

tions of an example background basis function are displayed in Figure 4.2. Figure 4.2 (a) shows

the geometric domain and background mesh in red and black respectively, while Figure 4.2 (b)

shows the example background basis function. The background basis function is a bi-quadratic

(k = 2) B-spline basis function of maximal Ck−1 continuity defined over the background mesh.

Figure 4.2 (c) and Figure 4.2 (d) show representative background-fitted and background-unfitted

foreground meshes. Figure 4.2 (e) and Figure 4.2 (f) show linear (κ = 1) Lagrange interpolations

of the example background basis function onto the background-fitted and background-unfitted

foreground meshes. These two interpolated background basis functions share the same shape as

the background basis function, but they are both inaccurate approximations of the background

basis function. Alternatively, Figure 4.2 (g) and Figure 4.2 (h) show quadratic (κ = 2) Lagrange

interpolations of the background basis function onto the background-fitted and background-

unfitted foreground meshes. These two interpolated background basis functions are much more

accurate approximations of the background basis function than the interpolated background basis

functions displayed in Figure 4.2 (e) and Figure 4.2 (f).

4.1.5 Best approximation estimates for the background-fitted case

Having presented the new paradigm for immersed finite element and isogeometric

analysis, this work now derives the H1-norm best approximation error

inf
vh∈span{B̂i}n

i=1

∥∥∥u− vh
∥∥∥

H1(Ω)
(4.12)

associated with the interpolated background FE space where u is the exact solution of our model

problem. Best approximation estimates of the form given by (4.12) can be combined with

coercivity and continuity results to arrive at a priori error estimates for a given immersed finite

element method (as done, e.g., for quadrature-based CutFEM with ghost penalty stabilization in

[38]). In this mathematical analysis, two assumptions regarding the foreground mesh must be
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made:

Assumption 1: The foreground mesh is background-fitted.

Assumption 2: The foreground mesh is free of hanging nodes.

Assumption 1 ensures that the background basis functions are smooth within every element of

the foreground mesh, while Assumption 2 ensures that the interpolated background FE space

is H1-conforming and thus the H1-norm best approximation error is well-defined. Note that

an immediate consequence of Assumption 1 is that the foreground mesh size η is less than or

equal to the background mesh size h. Two further assumptions must be made regarding the exact

solution u and the background FE space:

Assumption 3: The exact solution u lies in the space H k̂+1(Ω).

Assumption 4: There exists an interpolation operator Q : H1(Ω) → span{Bi}n
i=1 onto the

background FE space such that

∥v−Qv∥H1(Ω) ≤C1hk̂ ∥v∥H k̂+1(Ω)
(4.13)

and
νel

∑
e=1

∥Qv∥2
H k̂+1(ωe)

≤C2 ∥v∥2
H k̂+1(Ω)

(4.14)

for all v ∈ H k̂+1(Ω) where C1 > 0 and C2 > 0 depend on the background FE space polynomial

degree k and the shape regularity of the background mesh but not the background mesh element

size h.

Assumption 3 holds provided the problem geometry and parameters are sufficiently smooth,
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while Assumption 4 holds when the background FE space consists of classical finite element

functions or smooth spline functions provided there exists a continuous extension operator

E : Hk+1(Ω)→ Hk+1(Rd) (cf. [38, (9)]).

Now define Q̃ = P ◦Q. The H1-norm best approximation error associated with the

interpolated background FE space by the H1-norm error associated with the interpolation operator

Q̃ can be bound by:

inf
vh∈span{B̂i}n

i=1

∥∥∥u− vh
∥∥∥

H1(Ω)
≤
∥∥∥u− Q̃u

∥∥∥
H1(Ω)

. (4.15)

By the triangle inequality,

∥∥∥u− Q̃u
∥∥∥

H1(Ω)
≤ ∥u−Qu∥H1(Ω)+∥Qu−PQu∥H1(Ω) . (4.16)

Invoking Assumption 3, the first term on the right hand side of the above equation can be

immediately bound:

∥u−Qu∥H1(Ω) ≤C1hk̂ ∥u∥H k̂+1(Ω)
. (4.17)

To bound the second term, first recognize that

∥Qu−PQu∥2
H1(Ω) =

νel

∑
e=1

∥Qu−PQu∥2
H1(ωe). (4.18)

By Assumption 1, Qu|ωe is smooth for every foreground mesh element ωe. Thus

∥Qu−PQu∥2
H1(ωe) =C3η

2k̂∥Qu∥2
H k̂+1(ωe)

(4.19)

for every foreground element ωe where C3 is a constant that depends on the foreground FE space

polynomial degree κ and the shape regularity of the foreground mesh but not the foreground
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mesh element size η . Then combine (4.18), (4.19), Assumption 1, and Assumption 4 to arrive at

∥Qu−PQu∥H1(Ω) =
√

C2C3hk̂∥u∥H k̂+1(Ω)
. (4.20)

Combine (4.15), (4.16), (4.17), and (4.18) to arrive at the following estimate for the H1-norm

best approximation error associated with the interpolated background FE space:

inf
vh∈span{B̂i}n

i=1

∥∥∥u− vh
∥∥∥

H1(Ω)
≤Cinterphk̂∥u∥H k̂+1(Ω)

(4.21)

where Cinterp =C1 +
√

C2C3. It is evident that the above estimate is optimal with respect to both

the background mesh size h and the limiting degree k̂ of the interpolated background space. Note

that the convergence rate does not improve by decreasing the foreground mesh size η faster than

the background mesh size h or increasing the foreground polynomial degree k above that of the

background polynomial degree n.1

In the above analysis, the rather stringent assumption that the foreground mesh be

background-fitted was made. However, numerical experiments suggest that best approximation

estimates of the form given by (4.21) also hold when the foreground mesh is background-unfitted.

This is perhaps not too unexpected as the interpolated background FE space is complete up to

polynomial degree n̂ even when the foreground mesh is background-unfitted, but the preceding

analysis does not extend to this case as it require that the background basis functions be smooth

over each element of the foreground mesh.

The analysis also made the assumption that the foreground mesh be free of hanging

nodes. This was to ensure that the interpolated background FE space was H1-conforming.

That being said, later numerical experiments suggest the method may not need an interpolated

background FE space that is H1-conforming provided that the original background FE space is

H1-conforming. In particular, this method is able to attain optimal convergence rates for the

1If there is geometry error in the foreground mesh, then there can be some benefit to over-refining η near
boundaries (cf. Section 4.3.3), but geometry error is outside the scope of the analysis in this section.
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biharmonic problem using an interpolated background FE space that is only H1-conforming

when the original background FE space is H2-conforming. For the analysis of non-conforming

methods, note that a similar interpolation estimate to (4.21) could be derived element-wise,

using a weakened version of Assumption 2, where the mesh only needs to be free of hanging

nodes within each background element. However, this work is focused on the globally H1(Ω)-

conforming case for a more direct analogy to prior convergence analysis of quadrature-based

immersed methods.

Finally, the best approximation estimate given by (4.21) depends on the shape regularity

of the foreground mesh through the interpolation constant Cinterp, but later numerical experiments

suggest that high quality results are attained with interpolation-based immersed finite element

and isogeometric analysis even when the foreground mesh is of poor quality.

4.2 Reusing FE software for interpolation-based immersed
methods

As each basis function B̂i of V h in the proposed method is a linear combination of basis

functions defined on the foreground mesh used for element-by-element assembly, one may

implement interpolation-based immersed methods using existing FE software in a similar manner

as one would implement IGA via Lagrange extraction [144]. The cited paper emphasizes an

implementation based on modifying element-level shape function routines which could also be

followed for immersed methods. However, the method outlined here is based on global linear

algebra operations applied to the full, assembled system of equations, similar to what is done in

[99, 159] for IGA. The latter approach requires fewer modifications to the existing FE code and

is referred to as “non-invasive” by [159].
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4.2.1 Non-invasive implementation using extraction matrices

Consider a scalar variational problem of the form: Find uh ∈ V h such that, ∀vh ∈ V h,

a
(

uh,vh
)
= L

(
vh
)

, (4.22)

where a and L are a bilinear and linear form, i.e., the left- and right-hand sides of the Nitsche

formulation (4.5) for the Poisson model problem. V h = span{B̂i} is the solution space for the

interpolation-based immersed method. The state variable field is discretized by the interpolated

basis functions as

uh =
n

∑
i=1

diB̂i , (4.23)

where {di}n
i=1 are unknown coefficients. The linear system

Kd = F , (4.24)

must be solved, where the global stiffness matrix and forcing vector are

Ki j = a
(

B̂ j, B̂i

)
and Fi = L

(
B̂i

)
. (4.25)

In the interpolation-based immersed method,

B̂ j =
ν

∑
i=1

Mi jNi with Mi j = B j(xxxi) . (4.26)

Mi j projects the background functions onto the space of the foreground elements and can be

obtained by evaluating the background basis B j at the nodal points of the foreground mesh xxxi.

Using the (bi-) linearity of a and L, re-write (4.25) as

Ki j = ∑
k,ℓ

Mkia(Nℓ,Nk)Mℓ j and Fi = ∑
k

MkiL(Nk) . (4.27)
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In matrix form, this reads as

K = MT AM and F = MT B , (4.28)

where

Ai j = a(N j,Ni) , Bi = L(Ni) , (4.29)

M will be referred to as the “extraction matrix”. With some additional straightforward bookkeep-

ing, this method extends to linear PDE systems with multiple scalar solution fields, as presented

for extraction-based IGA in [99], and detailed in Chapter 5. It can also be applied to each step of

Newton iteration to solve a nonlinear problem, where a is the Gateaux derivative of a residual

form −L.

Crucially, the matrix A and vector B can be assembled using a standard boundary-fitted

FE code in a loop over elements in the foreground mesh. Thus, given a foreground mesh and an

extraction matrix M, one can directly reuse an existing FE code for interpolation-based immersed

analysis without making any modifications to the assembly procedures. The post processing

features of existing FE codes can also be reused by leveraging a foreground FE representation of

the solution:

uh =
ν

∑
j=1

c jN j , (4.30)

where the foreground FE coefficients {ci} are obtained from the solution d of (4.24) by

c = Md . (4.31)

4.2.2 Example implementation using FEniCS

For the numerical results in this paper, the method outlined in Section 4.2.1 is applied to

the existing FE automation toolchain FEniCS [114]. FEniCS allows arbitrary linear and bilinear

forms to be specified over a variety of classical FE function spaces using the Python-based
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Unified Form Language (UFL) [1]. UFL forms are compiled into efficient element-level routines

[107] which are used by the FE library DOLFIN [114] to assemble matrices and vectors. In the

notation of Section 4.2.1, UFL would be used to specify the forms a and L, and DOLFIN would

be used to assemble the matrix A and vector B, applying the compiled element-level routines

to elements {ωe}νel
i=1 of the foreground mesh. DOLFIN’s application–programmer interface

(API) provides access to the linear algebra objects A and B as data structures in the parallel

linear algebra library PETSc [12, 13, 14], which is used to form K and F via (4.28), solve the

linear system (4.24) for d, and compute the foreground FE coefficients c via (4.31). DOLFIN’s

output and visualization routines can then be applied to this foreground FE representation of the

solution.

This non-invasive reuse of FEniCS provides great flexibility for implementing formu-

lations of a variety of different PDE systems as we illustrate in the sequel. What remains is to

generate the foreground- and background meshes alongside the extraction operators M. The

tools and methods used to do so are outlined in the following subsection.

4.2.3 Mesh generation

This section describes the techniques used in the numerical examples of Sections 4.3 and

4.4 to generate both background-fitted and -unfitted foreground meshes.

Background-fitted foreground meshes

To generate background-fitted foreground meshes and their extraction matrices M, the

XFEM Tool Kit of the research code presented in [129] was used. Within this toolkit, the

foreground elements are created by repeated subdivision of a structured background grid. First,

each background cell is subdivided into a set of triangular or tetrahedral elements as is shown in

Figure 4.3 (b). Then, all edges of the elements are checked for intersections with the geometry.

Using a set of subdivision templates, elements with intersected edges are then again subdivided

into straight-edged triangular and tetrahedral elements such that new element vertices are created
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(a) (b) (c)

∂Ω

Figure 4.3. Generation of background fitted foreground meshes. (a) Single background element
with description of the boundary shown by a red curve; (b) regular subdivision of the background
element into triangles; (c) subdivision of triangles based on intersections of the interface with
edges; interface approximated by red lines.

at the intersection locations. The new element facets (i.e. edges in 2D and faces in 3D) are a

first-order geometric approximation of the domain boundary as shown in Figure 4.3 (c). The

XFEM tool kit constructs the extraction matrices M such that basis functions are enriched

following a Heaviside enrichment strategy [129]. Enrichment is needed when the support of a

basis contains two or more geometrically disconnected domains. Note that for the numerical

examples studied in this chapter, enrichment is not required to ensure optimal convergence.

Enrichment will be further investigated in chapter 5

While the procedure outlined enables the robust background-fitted triangulation of the

material domain, it may lead to elements of arbitrarily small size and arbitrarily large aspect ratio.

As an example, the 2D foreground meshes used in Subsection 4.4.2 contain elements with aspect

ratios as high as ∼ 300 and elements with volumes as small as ∼ 10−4 of the biggest elements.

The poor mesh quality is exacerbated in 3D. The 3D foreground meshes used for the example in

Subsection 4.3.1 contain elements that differ by a factor of ∼ 1027 in volume, and aspect ratios

as high as ∼ 1029. An example for the poor elements resulting from this mesh generation process

in 3D is shown in Figure 4.4.
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(a) (b)

Figure 4.4. (a) A tessellation of a hexahedral background element from the 3D mesh shown
in Figure 4.5, highlighting the sliver element in the rightmost corner. (b) Only the red section
consisting of small tetrahedral elements intersects the PDE domain Ω.

Background-unfitted foreground meshes

Mesh cutting tools, like the XFEM tool kit discussed in Section 4.2.3, generate

background-fitted meshes and do not require an additional mesh generator to create foreground

meshes. However, background-unfitted analysis allows substantially greater flexibility in the

generation of foreground meshes; essentially any existing mesh generator can be used, with

the only necessary information from the background mesh being an approximate element size.

This work employs two different approaches within the following examples, with the particular

details largely motivated by convenience. The background-unfitted foreground meshes used in

Section 4.3.5 were generated using FEniCS’s built in structured mesh functions, as were the

corresponding background meshes. For these examples, the background function spaces were

C0 Lagrange FE spaces, and the extraction operators were generated directly in FEniCS, using

its PETScDMCollection functionality. The background-unfitted foreground meshes used in

Sections 4.4.1 and 4.4.2 use an isogeometric background basis. These meshed were created

with FEniCS’s mshr module, which generates unstructured simplicial meshes from geometric

descriptions. The extraction operators were generated using the FEniCS-based isogeometric
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analysis library tIGAr [99] by simply overriding methods that normally generate structured

meshes for exact Lagrange extraction.

4.3 Numerical results

This chapter now explore the properties of interpolation-based immersed analysis numer-

ically using a variety of benchmark problems.

4.3.1 Comparing quadrature-based and interpolation-based methods

The first question this chapter seeks to answer is: How do interpolation-based immersed

methods with background-fitted foreground meshes compare with the more thoroughly-studied

class of quadrature-based immersed methods? (We defer the comparison of background-fitted and

-unfitted foreground meshes to Section 4.3.5.) In particular, this section uses the Poisson equation

as a model problem and consider a background function space of tensor-product B-splines of

degree n (at maximal continuity) and a foreground Lagrange FE space of equal polynomial

degree n = k on a simplicial mesh. The background function space contains monomials of

degree greater than n which cannot be represented exactly by the foreground function space, so

interpolation-based methods differ from quadrature-based ones.

To carry out this test, an instance of the Poisson problem was constructed using the

method of manufactured solutions, where the exact solutions were selected as

u(xxx) = sin(π(x2
1 + x2

2))cos(π(x1 − x2)) (4.32)

and

u(xxx) = sin(π(x2
1 + x2

2 + x2
3))cos(π(x1 + x2 + x3)) (4.33)

in 2D and 3D respectively, and source term is defined as f :=−∆u. For the 2D problem, Ω is

taken to be a unit square rotated by 45◦ about the origin (i.e., Ω = {xxx ∈ R2 : ∥xxx∥ℓ1 < 1/2}),

and the manufactured solution u is applied as Dirichlet data on the boundary of this rotated
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(a) (b)

Figure 4.5. Numerical solution to the Poisson problem using interpolation-based immersed
analysis, visualized on the foreground mesh of refinement level R = 2. Tests were performed on
both the 2D square (a) and 3D rotated cube (b).

square. Ω is then immersed into a structured background mesh of an axis-aligned bi-unit square

on which the background B-spline spaces are constructed. A suite of progressively-refined pairs

of background and background-fitted foreground meshes are used with background element size

h = 2−(R+1), where R ∈ {0, · · · ,6} denotes the refinement level and “h” is the square root of

background element area.

For the 3D case, Ω is taken to be an analogous rotated unit cube (rotated by 45◦ about the

x3 axis and then by 45◦ about the x2 axis) and a sequence of structured hexahedral background

meshes are defined with element size h = 2−(R+1), where R ∈ {0, · · · ,4} is the refinement level

and h is the cube root of the element volume. The foreground meshes in 3D are background-fitted

tetrahedral meshes.

Dirichlet boundary conditions are enforced weakly using the non-symmetric Nitsche

formulation (4.5), with Cpen = 0. A representative foreground mesh and numerical solution are

shown in Figure 4.5.

Figures 4.6 and 4.7 compare the convergence of interpolation-based and quadrature-based
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Figure 4.6. Convergence data for Poisson’s problem in 2D, comparing the results of traditional
FEA on the foreground mesh with the Lagrange FE space, the interpolation based immersed
method developed in this paper, and the quadrature based immersed method described in Section
4.1.3.

immersed calculations.2 Both types of immersed method are seen to converge optimally for

n = 1 and n = 2 in both H1
0 and L2 norms. Figures 4.6 and 4.7 also include convergence results

of standard FE analysis using the Lagrange FE space defined on the foreground mesh. This also

converges optimally with respect to h, but is less accurate per degree of freedom due to excess

foreground mesh refinement in cut background elements and less-efficient approximation of

smooth functions than the maximally-smooth B-splines of the background function space.

2The interpolation-based calculations use the FEniCS-based implementation described in Section 4.2, whereas
the quadrature-based calculations use a different research code with the requisite functionality which is outlined in
[129]
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Figure 4.7. Convergence data for Poisson’s problem in 3D, comparing the results of traditional
FEA on the foreground mesh with the Lagrange FE space, the interpolation based immersed
method developed in this paper, and the quadrature based immersed method described Section
4.1.3.

4.3.2 Non-conforming background spaces

The numerical analysis sketched in Section 4.1.5 made the assumption of a conforming

discrete space, i.e., that the discrete space V h of interpolated background functions was a subset

of the infinite dimensional space used to define the continuous variational problem (viz., H1 in

the case of the Poisson equation). However, one may wish to relax that requirement in practice to

eliminate topological constraints on the foreground mesh and/or interpolate smooth background

functions inexactly with less-regular foreground FE functions.
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As a model problem to illustrate non-conforming interpolation-based immersed analysis,

consider the biharmonic problem: Find u such that

∆
2u = f , (4.34)

with boundary conditions

u = σ on ∂Ω , (4.35)

∇u ·nnn = ∇σ ·nnn on ∂Ω , (4.36)

where f : Ω → R is a given source term and σ : Ω → R is an auxiliary function used to define

Dirichlet boundary data for u and ∇u ·nnn on ∂Ω.3 Unlike the nonsymmetric Nitsches method

used in the Poisson problem in (4.5), this problem is discretized using a symmetric Nitsche-like

method: Find uh ∈ V h such that, ∀vh ∈ V h,

∫
Ω

∆uh
∆vh dΩ+

∫
∂Ω

∇∆uh ·nnnvh −∆uh
∇vh ·nnndΓ

+
∫

∂Ω

(∇∆vh) ·nnn(uh −σ)−∆v(∇uh ·nnn−∇σ ·nnn)dΓ

+
∫

∂Ω

α

h3 (u
h −σ)vh +

β

h
(∇uh ·nnn−∇σ ·nnn)∇vh ·nnndΓ =

∫
Ω

f vh dΩ , (4.37)

where α > 0 and β > 0 are independent of h and η , but must be sufficiently large to ensure

stability of the formulation.4 In the computations of this paper α = β = 5. In the case of

immersed methods, the integrals
∫

Ω
(· · ·)dΩ and

∫
∂Ω

(· · ·)dΓ should be understood as being

split up over elements of the foreground mesh, as in (4.7). This distinction is important when

non-conforming spaces are used as some spatial derivatives may have distributional contributions

3One could instead define separate functions to prescribe boundary data for u and its normal derivative, but
an equivalent σ must exist for the problem to be well-posed and the present perspective is more convenient for
applying the method of manufactured solutions.

4For the method to be usable with piecewise-quadratic function spaces, α must be strictly positive, even if a
non-symmetric variant is used, as ∇∆vh ≡ 0 and only the penalty term is left to enforce uh ≈ σ .
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at interior mesh facets that are ignored, so (4.37) technically involves some abuse of notation.

As with the Poisson problem in Section 4.3.1, the method of manufactured solutions is

used with exact solutions

u(xxx) = cos(0.05πx1 +0.1)cos(0.05πx2 +0.1)) (4.38)

and

u(xxx) = cos(πx1 +0.5)cos(πx2 +0.5)cos(πx3 +0.5) (4.39)

in 2D and 3D, respectively, and setting the problem data to f := ∆2u and σ := u.

The rotated square and cube domains and mesh sequences from Section 4.3.1 are reused

for this problem. The background function spaces are selected to be H2-conforming. In particular,

quadratic B-splines of maximal continuity are used. However, the foreground function spaces

are taken to be quadratic Lagrange FE spaces, which, on simplicial meshes, do not represent all

multivariate monomials of the background B-spline spaces. Further, interpolations of background

functions on this Lagrange FE space are only C0, containing jumps in their first derivatives

(so they can be at most H3/2−ε -conforming, for ε > 0 arbitrarily-small). Interpolation-based

immersed analysis will therefore be non-conforming in this case. 2D and 3D convergence

results are shown in Figure 4.8. Optimal rates of 1 and 2 are achieved for the H2 and H1 norms

respectively, where “H2 norm” is understood in a broken sense (i.e., the square root of a sum over

squared foreground-element H2 norms) in this non-conforming setting. A rate of 2 is observed v

for the L2 norm, but this is expected, since an Aubin–Nitsche-type duality argument to obtain

an optimal L2 error bound breaks down for quadratic B-spline discretizations of the biharmonic

problem [152].

Remark. The 3D foreground meshes used in this section include some elements where η ≪ h,

such as the example shown in Figure 4.4. The harmful effects of small background element–

domain intersections on linear system conditioning have been studied previously in the context
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of quadrature-based immersed methods, along with a variety of possible remedies, but we

leave the adaptation of such techniques to the interpolation-based setting to future work, as

discussed further in Section 7.1. However, small foreground elements, where η → 0, present a

distinct challenge unique to interpolation-based methods, due to the blow-up of foreground basis

function derivatives .5 The resulting large numbers in the matrix A defined by (4.29) should,

in exact arithmetic, be canceled by small entries in the extraction matrix M when forming K

by (4.28). However, this cancellation is not exact due to finite precision. For the fourth-order

biharmonic problem in 3D, this can prevent convergence even with direct solvers. In the 3D

biharmonic examples from the present work, this issue is avoided by removing near-zero volume

elements from the assembly of A, skipping integration over foreground elements (and their

associated boundary facets) if their volume falls below 0.001% of the largest foreground element.

The resulting geometric perturbation of the domain has no observable effect on solutions, as

illustrated by the convergence results of Figure 4.8. One can imagine pathological domain–mesh

intersections where such a strategy would lead to significant errors, but these do not arise in the

tests performed for this chapter, and the solution of fourth-order problems on topologically-3D

domains is itself relatively uncommon in applications.

4.3.3 Geometric approximations of domain geometry

The convergence tests of Sections 4.3.1 and 4.3.2 deliberately used polyhedral PDE

domains so that a foreground mesh of affine simplex elements could fit them exactly, allowing

for the isolation of errors due to interpolation of the background basis functions. This chapter

now considers a problem with a curved boundary where there is some geometry error between Ω

and the foreground mesh.

In particular, the classic linear elasticity benchmark of an infinite 2D plate with a circular

hole subjected to biaxial tension is choosen. The plane strain variant of the problem is considered.

5This blow-up does not manifest in quadrature-based methods since they directly evaluate background basis
function derivatives.
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Figure 4.8. Convergence data for the biharmonic problem.

An exact solution for the stress field is readily available in elasticity textbooks, e.g., [116, Section

7.7.5]. The problem is truncated to a finite square domain whose side length is four times the

diameter of the hole and the traction is applied from the exact solution to the infinite-domain

problem on the boundary. This finite-domain problem is further truncated by restricting it to the

upper-right quadrant of the x1–x2 plane and applying symmetry boundary conditions on the axes,

which eliminates rigid-body modes from the displacement solution of the original pure Neumann

problem. Linear elasticity is formulated as a problem for displacement, viz., Navier’s equations,

which also provide an opportunity to demonstrate interpolation-based immersed analysis for a

system of PDEs: Find a displacement field uuu : Ω → R2 such that

−∇ ·σσσ(uuu) = 000 (4.40)

subject to boundary conditions

uuu ·nnn = 0 on Γsym , (4.41)

(III −nnn⊗nnn)(σσσ ·nnn) = 000 on Γsym , (4.42)

σσσ ·nnn = ttt on Γt , (4.43)
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where Γsym ⊂ ∂Ω is the union of the symmetry planes where sliding boundary conditions are

applied, Γt = ∂Ω \Γsym is the Neumann boundary on which traction is prescribed, ttt is the

traction on Γt taken from the exact solution, and the Cauchy stress σσσ is

σσσ(uuu) = 2µεεε(uuu)+λ tr(εεε(uuu))III (4.44)

in terms of the symmetric gradient operator εεε(·) (which gives strain when applied to the dis-

placement) and Lamé parameters µ and λ , which are set from Young’s modulus E = 200×109

and Poisson’s ratio ν = 0.3 by standard formulas.

Navier’s equations are discretized with slip boundary conditions using a symmetric

Nitsche-like formulation analogous to (4.5): Find uuuh ∈ V h such that, ∀vvvh ∈ V h,

∫
Ω

σσσ(uuuh) : ∇vvvh dΩ

−
∫

Γsym

(uuuh ·nnn)nnn ·σσσ(vvvh) ·nnndΓ−
∫

Γsym

(vvvh ·nnn)nnn ·σσσ(uuuh) ·nnndΓ

+
∫

Γsym

β µ

h
(uuuh ·nnn)nnn · vvvh dΓ =

∫
Γt

ttt · vvvh dΓ , (4.45)

where β > 0 is a penalty parameter associated with Nitsche’s method (in this section β = 10)

and integrals should be understood in the sense of (4.7) (which is technically an abuse of notation

in the present case because it ignores the geometry error in the foreground mesh). Similarly,

the outward-facing unit normal nnn depends on the geometry of the foreground mesh, but this

dependence has been suppressed in the notation.

To study the behavior of interpolation-based immersed methods, a sequence of uniform,

structured background meshes of quadrilateral elements, covering the truncated plate and hole

are constructed. Several corresponding sequences of foreground meshes are considered, with

different levels of local refinement around the curved boundary of the hole. The three different

foreground mesh refinement levels are shown for an 8×8 background mesh in Figure 4.9, along

with representative displacement solutions. In all cases, the foreground mesh elements are affine
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(a) No foreground refinement
(b) One level of foreground refine-
ment

(c) Two levels of foreground re-
finement

Figure 4.9. Plots showing the magnitude of displacement. To resolve curved surfaces, the
foreground mesh is locally refined, while the same uniform background mesh is used.

triangles. For the background function spaces, we select B-spline spaces of degrees n = 1 and

n = 2, with maximal continuity for each, and, for the foreground function spaces Lagrange FE

spaces of corresponding polynomial degrees k = n are used.

Figure 4.10 shows the convergence of the L2 norm of error in the Cauchy stress for

different polynomial degrees and levels of foreground refinement. Even without foreground

refinement the case of n = 1 attains the optimal convergence rate. For n = 2, geometry error

dominates in the case without foreground refinement and limits the rate of convergence. However,

even with just one level of foreground refinement near the curved boundary, an optimal effective

convergence rate is observed. For affine foreground elements and a fixed level of local foreground

refinement, one still expects the geometry error to dominate in the ultimate asymptotic limit

(as occurs also with the even lower-order stair-step approximations of curved boundaries in

finite cell adaptive quadrature), but this phenomenon is unlikely to be encountered in practical

problems where the model error would dominate well before this asymptotic regime. The

authors hypothesize that the use of high-order isoparametric elements instead of local foreground

refinement would provide true optimal convergence, but high-order foreground mesh generation

is currently outside the capabilities of the software framework used for this paper.
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Figure 4.10. Frobenius norm of stress error tensor plotted against the background element size
shown with both linear basis functions and quadratic basis functions. In the case of quadratic
basis functions, the foreground mesh was refined as shown in Figure 4.9.

4.3.4 Nonlinear and unsteady problems

This chapter now considers the unsteady incompressible Navier–Stokes equations as an

example of a more complicated nonlinear PDE system. This problem also illustrates the use

of interpolation-based immersed finite element analysis in conjunction with stabilized finite

element formulations that use mesh-dependent variational forms, originally designed with the

standard body-fitted FE setting in mind.

In particular, consider the PDE system: Find velocity and pressure fields (uuu, p) : Ω×

(0,T )→ Rd ×R such that

ρ (∂tuuu+uuu ·∇uuu) =−∇p+µ∆uuu

∇ ·uuu = 0 (4.46)

subject to the boundary condition

uuu = ggg on ∂Ω , (4.47)

where d is the spatial dimension of Ω, (0,T ) is the time interval on which the problem is
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posed, ρ is mass density, µ is dynamic viscosity, and ggg is given Dirichlet boundary data. This

in space is discretized using a stabilized variational multiscale (VMS) formulation [17] with

non-symmetric Nitsche-like weak enforcement of the Dirichlet boundary condition [21], leading

to the semi-discrete problem: Find (uuuh, ph) ∈VVV h ×Qh such that, ∀(vvvh,qh) ∈VVV h ×Qh,

∫
Ω

(
ρ

(
∂tuuuh +uuuh ·∇uuuh

)
· vvvh +σσσ(uuuh, ph) : ∇vvvh +∇ ·uuuhqh

)
dΩ

+
∫

∂Ω

(
−(σσσ(uuuh, ph)nnn) · vvvh +(σσσ(vvvh,qh) ·nnn) · (uuuh −ggg)

)
dΓ

−
∫

∂Ω

(
ρ min{uuuh ·nnn,0}(uuuh −ggg) · vvvh

)
dΓ

+
∫

Ω

τM

((
uuuh ·∇vvvh +

1
ρ

∇qh
)
· rrrM − vvvh · rrrM ·∇uuuh

)
dΩ

−
∫

Ω

τ2
M
ρ
(∇vvvh) : (rrrM ⊗ rrrM)dΩ

+
∫

Ω

τC

(
rC∇ · vvvh

)
dΩ = 0 (4.48)

where

σσσ(uuu, p) = 2µεεε(uuu)− pIII (4.49)

gives the functional form of the Cauchy stress in terms of the velocity and pressure fields,

rrrM = ρ(∂tuuuh +uuuh ·∇uuuh)−∇ ·σσσ(uuuh, ph) (4.50)

is the residual of the strong momentum balance equation,

rC = ρ∇ ·uuuh (4.51)

is the residual of the strong continuity equation, and τM and τC are the momentum and continuity

stabilization parameters, respectively. A number of definitions for these stabilization parameters
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have been studied in the literature. This section follows [18] in defining

τM =

(
uuuh ·GGG ·uuuh +CIν

2GGG : GGG+
Ct

∆t2

)−1/2

, (4.52)

and

τC =
1

τMtr(G)
, (4.53)

with ν = µ/ρ the kinematic viscosity, ∆t the time step size of the temporal discretization, CI > 0

and Ct > 0 are dimensionless constants (set to CI = 60 and Ct = 4 in this work), and GGG is an

anisotropic mesh size tensor, which simplifies to

GGG = 4h−2III (4.54)

in the case of a uniform isotropic mesh with element size h. In the computations of this chapter,

this element size is taken from the uniform background mesh. The system of ordinary differential

equations emanating from the semi-discrete problem (4.48) is discretized by the implicit midpoint

rule in time, with a time step ∆t proportional to the background element size h.

As a representative instance of the Navier–Stokes problem, this chapters considers the

2D Taylor–Green vortex. The statement and spatially-periodic exact solution of this problem

are well-known. In numerical studies, it is often restricted to the square (0,π)2 with symmetry

boundary conditions (e.g., [62, Section 9.10.1]). However, in the present work, we take Ω to be

the rotated unit square used as the domain of the Poisson problem in Section 4.3.1, apply the

exact solution as the boundary data ggg, and use the same sequence of background and foreground

mesh pairs defined in Section 4.3.1. The stabilized formulation (4.48) permits the stable use of

equal-order discretizations, i.e.,

VVV h = (V h)d and Qh = V h (4.55)
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Figure 4.11. Convergence data for the velocity and pressure fields of the Taylor–Green vortex
problem using both linear and quadratic discretizations. Kinematic viscosity was set to 1/100
yielding a Reynolds number of 100, and error is evaluated at time T = 1.

for a single scalar function space V h. Our numerical tests in this section use the same linear and

quadratic choices for V h as used for the scalar Poisson problem in Section 4.3.1.

The convergence of velocity and pressure as h ∼ ∆t → 0 (resulting in a CFL number of

approximately 1) is shown in Figure 4.11. Effectively optimal rates of velocity convergence with

respect to the polynomial degree of the spatial discretizations in the L2 and H1 norms are seen. In

principle, using h ∼ ∆t and the implicit midpoint rule should limit convergence to second-order

in the L2 norm,6 but the quadratic spatial discretizations appear to be third-order in velocity

L2 error within the range of resolutions tested. Pressure H1 error convergence is also nearly

optimal, but with a drop in convergence rate on the finest meshes when using quadratic spatial

discretizations. This sub-optimal H1 pressure convergence is consistent with the analysis of

related stabilized methods for Stokes and Oseen flow, e.g., [93, 63], where error is bounded in a

norm on the velocity–pressure product space in which the pressure gradient is scaled by element

size, weakening its contribution.

6The assumption of h ∼ ∆t is tacit in the stabilized formulation used; refining ∆t faster than h would weaken
stabilization in the asymptotic regime. See [85] for additional discussion.
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4.3.5 Background-unfitted foreground meshes

The analysis of Section 4.1.5 and preceding numerical examples in Sections 4.3.1–

4.3.4 all used background-fitted foreground meshes. Background-fitted foreground meshes

are a necessity for quadrature-based immersed methods, since the quadrature rules defined on

foreground elements require smoothness of the integrand for accuracy. However, interpolations

of background basis functions on a foreground mesh are, by construction, smooth within

each foreground element and can be accurately integrated with foreground element-by-element

quadrature rules. Of course, the solution space for interpolation-based immersed methods consists

of interpolations of background basis functions that are non-smooth within each foreground

element, so the analysis of Section 4.1.5 is not applicable. However, the numerical results of the

current section suggest that optimal accuracy is maintained with background-unfitted foreground

meshes.

In the preceding examples, the background function space was taken to be a B-spline

space of maximal continuity. However, as a stress test of background-unfitted interpolation-based

immersion, this section instead tests it with C0 Lagrange background function spaces defined

on simplicial meshes. As test problems, consider the Poisson equation with a manufactured

solution (cf. Section 4.3.1) and the Taylor–Green vortex (cf. Section 4.3.4). For both of these test

problems, the domain is taken to be a rotated square, and the sequence of pairs of background

and background-unfitted foreground meshes are constructed similarly to the representative pair

shown in Figure 4.12 but at varying levels of refinement. In all tests, the foreground element size

η is kept proportional to the background element size h, and the polynomial degrees n and k of

the background and foreground are equal. For the Taylor–Green vortex problem, the same time

implicit midpoint rule with time step ∆t proportional to the background element size h was used

as in Section 4.3.4. The convergence results for both the Poisson and Navier–Stokes examples

are shown in Figures 4.13 and 4.14 respectively. Optimal convergence rates of L2 and H1 error

(of velocity in the case of Navier–Stokes) for linear and quadratic discretizations are seen.
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Figure 4.12. A representative example of a background mesh and a background-unfitted
foreground mesh.

Figure 4.13. Convergence data for the Poisson problem, generated using extraction onto unfitted
background meshes (Figure 4.12).

4.4 Application to IMGA of trimmed shells

A major success of IGA has been its application to thin shell analysis, originating in the

work of Kiendl and collaborators [104, 103, 105]. Smooth discrete function spaces from IGA

make it possible to apply the Bubnov–Galerkin method directly to Kirchhoff–Love theory where
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Figure 4.14. Convergence data for the Taylor–Green vortex problem generated using extraction
onto unfitted meshes (Figure 4.12), with Reynolds number 100, after elapsed time T = 1.

the displacement satisfies a fourth-order PDE system. This provides much better per-degree-

of-freedom accuracy than classical FE discretizations of shells, sometimes resolving important

qualitative solution features with orders of magnitude less computation [123]. However, the

original isogeometric Kirchhoff–Love shell formulation of [104] is restricted to boundary-fitted

spline representations of the midsurface geometry. With suitably-flexible spline technologies,

such as T-splines [149], it is practical to design such “analysis-suitable” geometries for industrial

applications as demonstrated for thin shell analysis of composite wind turbine blades [20],

prosthetic heart valve leaflets [86], and automobile parts [40]. However, the vast majority of

industrial CAD software defines surface geometries in an immersed way by cutting them out of

unfitted parametric coordinate charts along arbitrary trim curves [119]. Thus, immersogeometric

formulations are needed to directly analyze CAD models of shell structures. Quadrature-based

immersed methods for thin shells have previously been used in a number of studies [78, 49, 50].

In this section of the present work, interpolation-based IMGA is applied to Kirchhoff–Love

analysis of shells whose geometries are defined by subsets of a B-spline patch’s parameter space.

The specific variational formulation that used in this section is that of a geometrically-

nonlinear Kirchhoff–Love shell of uniform thickness hth whose material behavior follows a
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homogeneous isotropic St. Venant–Kirchhoff model defined by a Young’s modulus E and Poisson

ratio ν . A complete mathematical statement of this problem is given by [103] and its translation

into FEniCS UFL is available online in the library ShNAPr [98] developed to support the work

in [97]. The extensive kinematic definitions are therefore omitted for brevity as they are neither

novel nor essential to following the present study.

Pinned boundary conditions are implemented on the edges of trimmed shells using a

penalty formulation based on [82]. This consists of adding

+
1
2

∫
Lpin

αEhth

h

∣∣∣uuuh −ggg
∣∣∣2 dL (4.56)

to the shell structure’s elastic energy functional where Lpin is the portion of the trim curve

(in the reference configuration) on which pinned boundary conditions are to be applied, α >

0 is a dimensionless constant, h is the background-mesh element size, uuuh is the unknown

discrete displacement field of the shell structure’s midsurface, and ggg is the prescribed midsurface

displacement on the pinned boundaries. For quadratic spline discretizations, this “naive” penalty

method for pinned boundaries is essentially as accurate as a full Nitsche-type formulation (cf.

[30]) because the associated consistency term involves third-order derivatives. The use of (4.56)

in conjunction with an analogous rotational penalty has been demonstrated to be accurate for

coupling non-matching shell structures in practical problem settings [82, 94, 112, 165].

The examples of this section are limited to trimmed single-patch shell geometries. How-

ever the authors see no significant conceptual barrier preventing the application of the above-cited

patch coupling methodologies to collections of multiple trimmed patches, modeling shell geome-

tries with sharp crease-like features. Given a foreground FE mesh of the physical part of each

patch, the software framework of [165] could be applied more-or-less directly, with minimal

modifications, since it is already based on Lagrange extraction.
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4.4.1 Verification with boundary-fitted IGA

Interpolation-based IMGA of thin shells is first tested by trimming out a rectangular

domain which can easily be modeled with an untrimmed B-spline to provide a reference solution

for verification purposes. In particular, for each Cartesian component of the shell midsurface

displacement, the n = 2 sequence of scalar B-spline background and Lagrange-interpolated

foreground spaces from the 2D Poisson and biharmonic tests of Sections 4.3.1 and 4.3.2 are

reused, where the parametric-space domain is a rotated unit square trimmed out of an axis-aligned

bi-unit square, shown in Figure 4.15. Additionally, a new background-unfitted n = 2 sequence

of scalar B-spline background and Lagrange-interpolated foreground spaces are employed,

constructed as described in Section 4.2.3. In this test, the mapping from the B-spline parameter

space to the physical-space reference configuration of the shell’s midsurface are given by

XXX(ξξξ ) = ξ1eee1 +ξ2eee2 , (4.57)

where ξξξ = (ξ1,ξ2) is a point in the B-spline parameter space, XXX is the corresponding 3D point

on the reference configuration midsurface, and {e1,e2,e3} is the standard orthonormal basis

for a Cartesian coordinate system of 3D physical space into which the reference configuration

is embedded. The construction of an analogous sequence of untrimmed reference B-spline

discretizations is straightforward due to the square geometry.

Homogeneous (i.e., ggg = 000) pinned boundary conditions are applied to the entire boundary

of the unit square domain, using penalty coefficient α = 105, and material parameters of

E = 4.8×105 and ν = 0.38 are assumed, and thickness hth = 0.1 is set. A uniform force density

per unit reference area of 90eee3 is applied, leading to an “inflated” equilibrium configuration, of

which a representative numerical approximation using interpolation-based IMGA is shown in

Figures 4.15a and 4.15b. The out-of-plane displacement component is extracted at the center of

the plate using IMGA at several levels of refinement and is plotted as a function of number of
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degrees of freedom in Figure 4.15c. This displacement converges to the reference value obtained

from a highly-refined computation using standard untrimmed IGA. (This is a geometrically-

nonlinear problem, for which there is no analytical Kirchhoff–Love solution available.)

4.4.2 Background-fitted and -unfitted IMGA for a complicated trimmed
geometry

As a final example a more complicated trimmed spline geometry is considered, for

which a boundary-fitted IGA model would require unstructured spline technologies that are

not currently part of standard design workflows. Background-fitted and -unfitted meshes of the

trimmed geometry are shown in the spline parameter space in Figures 4.16a and 4.16b. The

parametric space is then mapped to a curved physical-space reference configuration by

XXX(ξξξ ) = ξ1eee1 +ξ2eee2 +A(1−ξ
2
1 )eee3 , (4.58)

as visualized in Figures 4.16c and 4.16d where A = 1/2. The physical problem solved on this

geometry is a static Kirchhoff–Love shell analysis with E = 3×104, ν = 0.3, and hth = 0.03,

pinned boundary conditions applied to the outer left and right sides of the parametric domain, and

a pressure follower load with force density per unit reference midsurface area of fff = 90nnn where

nnn is the unit normal vector to the deformed midsurface. Representative numerical approximations

of the resulting equilibrium configuration are shown in Figures 4.16e and 4.16f.

Remark. The static equilibrium configurations shown in Figures 4.16e and 4.16f were arrived

at by computing the steady-state solution of a dynamic Kirchhoff–Love shell problem with strong

mass damping and numerical dissipation from under-resolved backward-Euler time stepping.

This pseudo-time continuation method was necessary to avoid bifurcations that arise on some

meshes when attempting to apply static load stepping.

To study convergence with respect to mesh refinement quantitatively, the displacement

magnitude is extracted at the parametric point ξξξ = (0,−1/4) (corresponding to the bottom of
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(a) (b)

(c)

Figure 4.15. Examples of the background-fitted (a) and background-unfitted (b) discretizations
used to verify the IMGA formulation. (c) Displacement of the center of the plate is plotted
against the number of degrees of freedom in each mesh..

66



the inner circle) as a quantity of interest. This displacement is shown as a function of number

of degrees of freedom for both the background-fitted and -unfitted discretizations in Figure

4.17. Both types of discretizations converge to a consistent value as the number of degrees of

freedom increases, where we estimate the converged value of 0.0078 based on a highly-refined

background-unfitted discretization.

Chapter summary

This chapter presents a new interpolation-based immersed boundary method for approxi-

mating PDEs. This method is implementing within the existing finite element software FEniCS

with non-invasive modifications to the linear algebra solvers.

The new method is presented in contrast to a classical quadrature-based immersed

boundary method. A PDE is defined upon a computational domain, and basis of approximation

functions is created that does not conform to the geometry of the domain. While classical

quadrature based method integrates the nonconforming basis functions by shifting the quadrature

points to align with the domain geometry, the novel interpolation-based method instead employs

a boundary conforming foreground-basis. This foreground basis is defined upon a mesh that does

not have the same quality metrics of typical FEA and can be rapidly generated. The background

basis is replaced with an interpolated background basis, constructed of a linear combination of

foreground basis functions. The weights of this linear combination are organized into what is

called the extraction operator. Integration can thus be performed with the boundary conforming

foreground basis, eliminating the need to recompute quadrature points.

The interpolation-based immersed boundary method was developed to be implemented

within existing finite element software with minimal modifications. Foreground integration

meshes are used to define foreground function spaces, and a PDE’s variational form is assembled

with the foreground space. Prior to the linear solve step, the extraction operator is applied to

project the problem into the interpolated background basis. After the linear system is solved, the
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(a) Background-fitted mesh (b) Background-unfitted mesh

(c) Background-fitted reference configuration
(d) Background-unfitted reference configura-
tion

(e) Background-fitted deformed configuration (f) Background-unfitted deformed configuration

Figure 4.16. Background-fitted and -unfitted meshes (in B-spline parameter space) and reference
and deformed configurations (in physical space) of a trimmed shell structure subjected to a
follower load.
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Figure 4.17. Convergence of background-fitted and -unfitted analyses of a trimmed shell subject
to a follower load.

solution is projected back onto the foreground space to utilize the FEA software’s post-processing

and visualization capabilities. This workflow is demonstrated in this chapter with the open-source

FEA software FEniCS.

Several benchmark problems validated this method. The interpolation-based immersed

boundary method was compared to both a classical quadrature-based immersed-boundary method

and classical FEA on a series of poorly conditioned foreground meshes. The method was

extended to employ non-conforming foreground function spaces to model the biharmonic

problem. Approximate geometries were modeled with additional foreground refinement to

reduce geometric error to below method error, employing linear elasticity. The Navier–Stokes

equations demonstrated the methods ability to tackle nonlineat and unsteady problems. With

each problem, the method demonstrated optimal error convergence rates.

Lastly, the methods application to trimmed shell analysis is demonstrated. A benchmark-

ing problem using an inflated plate is used to verify the numerical behavior with comparison to

classical IGA. A trimmed shell geometry of a parabolic plate with tab is subjected to a uniform

follower load and the method was tested for both background-fitted and background-unfitted

foreground meshes.
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Chapter 5

Interpolation-based immersogeometric
analysis methods for multi-material and
multi-physics problems

The previous chapter of this examined interpolation-based immersed boundary methods

using a single uniform background basis for single material and single physics problems. This

chapter expands the applications of this method to multi-material and multi-physics problems

with the following contributions:

• Discontinuous state variable fields are approximated by background bases with Heaviside

enrichment applied at material interfaces.

• Material interfaces are described by level sets, and hierarchical refinement allows for local

refinement.

• Local foreground refinement is applied independently of background refinement, improv-

ing geometric approximation of material interfaces without increasing the number of

system degrees of freedom.

• Separate background bases are used to approximate different fields in multi-physics

applications, which are interpolated using a single foreground basis, allowing for easy

coupling.
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Furthermore, the following numerical examples are implemented in the next generation

open-source software library FEniCSx [15], with code available at [68]. Multi-material heat

conduction and linear elasticity are modeled to demonstrate the convergence rates of the proposed

workflow. A coupled thermo-mechanical problem illustrates the combined multi-material and

multi-physics capabilities of the interpolation-based immersed boundary framework.

The outline of this chapter is as follows: Section 5.1 describes this method’s treatment of

the geometric description of material interfaces and the Heaviside enrichment of solution spaces

with discontinuities at material interfaces. Section 5.2 details the novel interpolation-based

immersed boundary method’s application to multi-material and multi-physics problems and its

implementation workflow within existing FEM codes. Section 5.3 provides numerical results

validating and expanding upon this method.

5.1 Immersed material interfaces

Workflows to solve multi-material PDEs require functionalities to both describe the

geometry of material interfaces and to represent the associated discontinuities in the state

variable fields. In this chapter, level set functions (LSFs) are utilized to implicitly describe the

geometry of material interfaces, and a generalized Heaviside enrichment strategy in conjunction

with a set of interface terms is employed to represent the required discontinuities at material

interfaces.

5.1.1 Representing interface geometry through level set functions

The level set method, developed in [132], has been used to describe interfaces in the

extended finite element method (XFEM) [124, 25] and extended isogeometric analysis (XIGA)

[129, 146]. Following these works, the domain geometry is implicitly represented using LSFs

φi(xxx). An iso-level φt of the LSF describes the interface Γ± between two subdomains Ω+ and
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Figure 5.1. The function-wise enrichment strategy considers the material connectivity within a
basis functions support. The function Bk spans two material subdomains, denoted Ω1 and Ω2,
forming three disconnected material subregions Ωl=1

k , Ωl=2
k , and Ωl=3

k .

Ω− such that

φ(xxx)< φt , xxx ∈ Ω+,

φ(xxx)> φt , xxx ∈ Ω−, (5.1)

φ(xxx) = φt , xxx ∈ Γ±.

With nL LSFs, this method can represent up to 2nL subdomains. Materials are then associated with

these subdomains using a multi-phase level set model as in [160], where phases are identified by

phase indices P. Phase indices P are assigned with characteristic functions fi,

fi(xxx) =


0, φi(xxx)< φt ,

1, φi(xxx)≥ φt ,

(5.2)

such that

P(xxx) =
n

∑
j=1

2 j−1 f j(xxx). (5.3)

Phases are then mapped onto material subregions.

In this work LSFs are discretized using linear basis functions from a THB-spline basis
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Bk ∈ T ,

φ
h
i (xxx) = ∑

k
Bk(xxx)φ k

i , (5.4)

where φ k
i are the coefficients associated with LSF φi. The LSF are linearly interpolated such that

the coefficients are the nodal values φ k
i ≡ φi(xxxk). This discretization is used to construct material

characteristic functions and to enrich background basis functions.

5.1.2 Heaviside enrichment of basis functions at material interfaces

Heaviside enrichment have been widely used in PUM [5], GFEM [154], and XFEM

[28] as a means to represent strong discontinuities within elements. The enrichment strategies

presented in most existing literature, such as in [158, 80], add enriched basis functions for each

material domain.

While effective, these global enrichment strategies can lead to artificial numerical stiff-

ening around small geometric features. This stiffening is caused by interpolation of a state

variable field in locally disconnected domains of the same material by the same basis function as

shown in Fig. 5.1. The high-order, higher-continuity B-spline basis functions with large supports

employed in this work, alongside the complex material layouts presented in Section 5.4, would

exacerbate local stiffening effects and lead to an increased solution error. Typically, h-refinement

is used to avoid locally disconnected same-material domains within the region of support of any

given basis function, increasing overall system size. This work instead adopts the enrichment

strategy presented by [129] which considers the material connectivity in the individual basis

functions’ supports.

As shown in Figure 5.1, for a given function Bk with support supp(Bk), the phase IDs,

defined in Eq. (5.3), are used to identify the Lk distinct but connected material subregions Ωm
k ,

such that supp(Bk) = ∪Lk
m=1Ωm

k . For Lk distinct subregions, the basis function Bk requires Lk

enrichment levels.

74



Figure 5.2. A B-spline basis is defined on a structured background mesh and an example
function Bk is depicted in (a). Using the geometry description of the material subdomains in (b),
Heaviside enrichment is applied to form the discontinuous functions ψ1

k Bk and ψ2
k Bk, depicted in

(c) and (d) respectively. A Lagrange foreground function space is defined on the boundary-fitted
mesh in (e). The function space is used to interpolate the enriched background functions ψ̂1

k B̂k
and ψ̂2

k B̂k, depicted in (f) and (g), respectively.
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This enrichment is then achieved through characteristic functions ψm
k ,

ψ
m
k (xxx) =


1, if xxx ∈ Ωm

k

0, else,
(5.5)

such that the enriched basis functions can be expressed as

Bm
k (xxx) = ψ

m
k (xxx)Bk(xxx), ∀ m ∈ {1, ...,Lk}. (5.6)

The enriched basis functions constructed from a single non-enriched basis function, are

shown in Figure 5.2 for a two-material configuration. The bi-quadratic B-spline Bk depicted in

Figure 5.2(a) is enriched assigning one material to the inside and one material to the outside of

the ellipse shown in Figure 5.2(b). The basis function Bk is split into two enriched functions,

B1
k(xxx) = ψm

1 (xxx)Bk(xxx) in Figure 5.2(c) and B2
k(xxx) = ψ2

k (xxx)Bk(xxx) in Figure 5.2(d) allowing for

the representation of strong discontinuities at the material interface. Interface conditions are

enforced weakly; for example C0 continuity can be enforced at the interface using Nitsche’s

method [2].

5.2 The interpolation-based immersed boundary method
for multi-material PDEs

One of the core challenges associated with classic immersed methods is the construction

of custom quadrature rules for the various material regions within each intersected background

element. Numerous solutions exist and have been used in custom research codes, such as octree

refinement [58, 143, 101], interface reconstruction and tessellation [121, 46, 67], moment-fitting

[125, 155], and quadrature schemes using generalized Stokes theorem [151, 76, 77]. However,

the generation of such quadrature rules can generally not be implemented within existing finite
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element software without major changes to the software itself.

The interpolation-based immersed approach is instead designed to utilize the integration

subroutines of existing FEM codes. To this end, a boundary-fitted foreground mesh is constructed

with only minimal requirements on mesh quality. Element formation is then performed on the

poor quality boundary-fitted mesh using existing standard finite element routines. Using Lagrange

extraction operators [144] the resulting tangent matrix and force vector are projected into the

enriched THB-spline space. This can be done either on an elemental level during assembly, or

globally afterwards. The resulting final problem uses an approximation of the enriched function

space of the background mesh which is interpolated by the basis functions of the foreground

mesh.

The following Subsection 5.2.1 will first introduce the thermo-elastic model problem.

Subsection 5.2.2 will provide an overview of the interpolation-based approach specific to the

multi-material, multi-physics problems presented in this paper. For a more general and compre-

hensive introduction to the approach, we refer the reader to the authors’ previous work on the

topic [71]. The generation of the boundary-fitted foreground mesh is discussed in Subsection

5.2.3.

5.2.1 Multi-material and multi-physics model problem

To illustrate the application of interpolation-based immersed boundary methods to multi-

material and multi-physics problems, a thermo-elastic problem is introduced. This problem can

be broken into a thermal subproblem and a structural subproblem.

Let a domain of interest Ω with closure denoted Ω be composed of N material subdomains

M = {1, · · · ,N}

Ω =
⋃

m∈M

Ω
m ⊂ Rdp. (5.7)
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A different thermal conductivity κm may be associated with each material m

κ(xxx) = κ
m, xxx ∈ Ω

m, (5.8)

for m ∈ M . A source term f : Ω → R, a boundary heat flux term q : ∂Ω → R on Γq̄⊂∂Ω, and

Dirichlet boundary data T : ∂Ω → R on ΓT ⊂∂Ω are ascribed. The strong form for the thermal

problem then reads as: Find T : Ω → R such that ∀ m ∈ M

−∇ ··· (κ(xxx)∇T ) = f in Ω
m,

[[T ]] = 0 on all Γkm,

[[qqq]] = 0 on all Γkm,

−κ(xxx)∇T ·nnn = q on Γ
m
q̄ ,

T = T on Γ
m
T ,

(5.9)

where Γkm = Ω
k ∩Ω

m ̸= /0, with k ∈ M and k ̸= m, are the material interfaces, and [[·]] =

(·)k − (·)m is the jump of a given quantity over an interface Γkm. The material fields are defined

T m = T (xxx), xxx ∈ Ωm, and qqqm =−κm∇T m. The domains Γm
q̄ = Γq̄∪∂Ω

m, and Γm
T = ΓT ∪∂Ω

m are

the intersections of the domain boundaries with the material subdomain boundaries. nnn denotes

the surface normal.

The domain of interest Ω is embedded into a hierarchically refined background mesh

KT , generated using the sequence of refined meshes K l and subdomains Ωl
T .1 Note that the

largest subdomain Ω0
T must be chosen such that the closure of the domain of interest is a subset,

Ω ⊂ Ω0
T . The mesh KT is associated with the enriched THB-spline basis TT = {BT

i }. The

1Here the subscript (·)T refers to entities associated with the thermal subproblem. The subscript (·)u will refer to
entities associated with the structural subproblem. T and u are used as superscripts when referring to entities that
require subscripts for indices, such as B-spline basis functions (BT

i and Bu
i ).
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temperature field is discretized using the function space

V h
T = span{BT

i
∣∣ supp(BT

i )∩Ω ̸= /0}. (5.10)

The discrete form can then be defined as: Find T h ∈ V h
T such that ∀ θ h ∈ V h

T ,

n

∑
m=1

[∫
Ωm

κ∇T h ···∇θ
hdΩ

]
−
∫

Ω

f θ
hdΩ−

∫
Γq

qθ
hdΓ

= RD
T +RI

T , (5.11)

where RD
T and RI

T are Dirichlet and interface residual terms. The temperature Dirichlet

residual is the result of Nitsche’s method [127] enforcement of the Dirichlet boundary condition,

RD
T =

n

∑
m=1

[
∓
∫

Γm
T

κ(T h −T )(∇θ
h ·nnn)dΓ

−
∫

Γm
T

κθ
h(∇T h ·nnn)dΓ

+
∫

Γm
T

β D
T κ

h
(T h −T )θ h dΓ

]
, (5.12)

where β D
T ≥ 0 is a user defined constant. The first integral of Eq. (5.12) will be negative

for the symmetric version of Nitsche’s method (which is employed in numerical examples in this

work) or positive for the non-symmetric version. h is taken as the characteristic element size on

the foreground mesh, differing from the usual implementation where h is the element size on the

background mesh.

The temperature interface conditions, lines 2 and 3 of Eq. (5.9), are also enforced through
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a Nitsche-like method, resulting in the temperature interface residual

RI
T =

n

∑
i=1

n

∑
j=i+1

[
−
∫

Γi j

[[T h]]{κ∇θ
h} ·nnn)dΓ

−
∫

Γi j

[[θ h]]{κ∇T h} ·nnn)dΓ

+
∫

Γi j

γ
i j
T [[T h]][[θ h]]dΓ

]
, (5.13)

where {·} = wi(·)i −w j(·) j is the weighted average of a given quantity. Motivated by the

formulation in [2], these weights are defined as

wi =
(hi)dp/ω i

(hi)dp/ω i +(h j)dp/ω j
and

w j =
(h j)dp/ω j

(hi)dp/ω i +(h j)dp/ω j
, (5.14)

where hm is the characteristic size of the foreground element in domain Ωm bordering the

interface facet, ωm is the characteristic material parameter, which for the thermal subproblem is

κm, and dp is the domain dimension. The penalty parameter γ
i j
T is defined as

γ
i j
T = 2β

I
T

(hi)dp−1 +(h j)dp−1

(hi)dp/ω i +(h j)dp/ω j
, (5.15)

where β I
T ≥ 0 is a user specified constant.

The thermal subproblem can be stated compactly as the variational problem: Find

T h ∈ V h
T such that ∀ θ h ∈ V h

T

aT (T h,θ h) = LT (θ
h), (5.16)

where aT (T,θ) and LT (θ) can be computed from Eq. (5.11).

The structural subproblem may utilize a differently refined background discretization. In
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this case a separate sequence of refined domains Ωl
u may be selected. The structural subproblem’s

background mesh Ku is constructed with this sequence of subdomains and the same sequence of

refined tensor-product Cartesian grids K l . The basis Tu = {Bu
i } associated with the mesh is

used for the components of the displacement field uuu. Each displacement component is discretized

using the function space

V h
u = span{Bu

i
∣∣ supp(Bu

i )∩Ω ̸= /0}. (5.17)

Using a similar derivation (given in full in Appendix 5.A) as applied to the temperature

subproblem the mechanical variation problem is compactly written as: Find uuuh ∈ V h
u = [V h

u ,V h
u ]

such that, ∀vvvh ∈ V h
u

au(uuuh,vvvh) = Lu(vvvh). (5.18)

The two subproblems are coupled through a constitutive model accounting for the thermal

expansion by computing the mechanical strain εεεm as

εεεm(uuu,T ) = εεεu(uuu)− εεεT (T )

=
1
2
(
∇uuu+(∇uuu)T)−α(T −T0)III, (5.19)

where α is the thermal expansion coefficient and T0 is the temperature in the reference configura-

tion. III is the identity matrix.

The fully coupled system is then given by the variational problem: Find (uuuh,T h) ∈

[V h
u,V

h
T ] such that, ∀ (vvvh,θ h) ∈ [V h

u,V
h

T ]

aT (T h,θ h) = LT (θ
h) and

au(uuuh,vvvh)−b(T h,vvvh) = Lu(vvvh), (5.20)
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where the form b(T,vvv) is a result of the coupling conditions and is given by

b(T,vvv) =
n

∑
m=1

[∫
Ωm

εεε
u(vvv) : εεε

T (T )dΩ

]

+
∫

Γu

CCC : εεε
T (T ) ·nnn · vvvhdΓ

−
n

∑
i=1

n

∑
j=i+1

[∫
Γi j

[[vvv]] · {CCC : εεε
T (T )} ·nnndΓ

]
. (5.21)

5.2.2 Interpolated basis functions

In traditional immersed boundary methods custom quadrature rules would be used to

evaluate the integral in the weak form of the coupled problem, given in Eq. (5.20). The main idea

of the interpolation-based immersed paradigm is to interpolate the background basis functions

using a space of Lagrange functions defined on a foreground mesh, which can be integrated

with classical quadrature methods. This workflow thus introduces an interpolated background

function space for the thermal subproblem

V̂ h
T = span{B̂T

i
∣∣ supp(B̂T

i )∩Ω ̸= /0}, (5.22)

where the interpolated basis functions are defined as

B̂T
i :=

ν

∑
j=1

MT
i jN j (5.23)

where

MT
i j := BT

i (xxx j) (5.24)

is the Lagrange extraction operator. {N j}ν
j=1 is the basis of a Lagrange FE space with nodal

points xxx j such that Ni(xxx j) = δi j. Here ν is the number of foreground basis functions. The same
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foreground space is used to interpolate the background bases for both the temperature and the

displacement state variables.

The approximations of the temperature field becomes

T h =
nT

∑
i=1

B̂T
i dT

i =
nT

∑
i=1

ν

∑
j=1

MT
i jN jdT

i , (5.25)

where {dT
i }

nT
i=1 are the unknown coefficients and nT is the number of basis functions in the

temperature field’s interpolated background B-spline basis. The displacement is similarly

discretized with vector valued function spaces as

uuuh =
(dp·nu)

∑
I=1

B̂BB
u
I duuu

I =
(dp·nu)

∑
I=1

(dp·ν)

∑
J=1

Muuu
IJNNNJduuu

I . (5.26)

Details regarding this discretization are given in Appendix 5.A.

The variational problem in Eq. (5.20) can be assembled using the interpolated bases in

Eqs. (5.25) and (5.26) to form the linear system

KKKθθ 000

KKKθvvv KKKvvvvvv


dddT

ddduuu

=

 fff θ

fff vvv

 , (5.27)

where

Kθθ
i j = aT (B̂T

i , B̂
T
j ), (5.28)

Kθvvv
iJ = b(B̂T

i , B̂BB
uuu
J), (5.29)

Kvvvvvv
IJ = auuu(B̂BB

uuu
I , B̂BB

uuu
J), (5.30)

f θ
i = LT (B̂T

i ), and (5.31)

f vvv
i = Lu(B̂BB

uuu
I ) (5.32)

are the matrix entries.
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By consolidating the extraction operators for all components in a single matrix

MMM =

MMMT 000

000 MMMuuu

 (5.33)

the linear system can be rewritten as

MMMT

AAAθθ 000

AAAθvvv AAAvvvvvv

MMM

dddT

ddduuu

= MMMT

bbbθ

bbbvvv

 , (5.34)

where

Aθθ
i j = aT (Ni,N j), (5.35)

Aθvvv
iJ = b(Ni,NNNJ), (5.36)

Avvvvvv
IJ = auuu(NNNI,NNNJ), (5.37)

bθ
i = LT (Ni), and (5.38)

bvvv
I = Lu(NNNI). (5.39)

The quantities AAAθθ , AAAθvvv, AAAvvvvvv, bbbθ , and bbbvvv are evaluated and assembled on the boundary-

fitted foreground mesh. As the foreground basis is the typical conforming Lagrange polynomial

basis, existing commercial or open-source FE software applying standard quadrature rules may

be utilized.

The extraction operators can either be computed globally, as suggested in Eq. (5.35), or

on an element level for more efficient implementation. However, the latter option requires a

modification of the assembly maps in existing FE software. After solving the linear system in

Eq. (5.34) with the interpolated basis, the solution is post-processed by projecting the solution

for each field onto the foreground basis.

A visual example of the interpolation of an enriched B-spline basis function is given in
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Figure 5.2. The boundary-fitted foreground mesh in Figure 5.2(e) is used to define a discontinuous

Lagrange polynomial foreground function space. The enriched background functions B1
k and B2

k

are interpolated with this function space, as shown in Figure 5.2(f) and (g).

In this work, B-spline background spaces are utilized to exploit their superior approx-

imation properties as compared to traditional finite element function spaces [61] and to build

upon previous work done with enriched THB-splines in XIGA implementations [146]. The

interpolation scheme presented here can be utilized with other background basis functions as in

the previous work by the authors [71], where both B-splines and classic Lagrange polynomial

bases were used. The method can be applied to multi-material problems provided the background

basis used is sufficiently enriched at material interfaces.

5.2.3 Foreground mesh generation

Both state variable fields are interpolated using the same Lagrange FE space {N j}ν
j=1

which is constructed on a boundary-fitted foreground mesh. To generate this foreground mesh,

the elements of a background mesh intersected by interfaces are decomposed into triangles and

tetrahedrons whose facets approximately reconstruct the interfaces.

To ensure the foreground mesh is sufficiently refined, a background mesh for decomposi-

tion KD is constructed from the series of hierarchically refined meshes K l ,

KD :=
r−1⋃
l=0

{K ∈ K l|K ∈ Ω
l
D and K /∈ Ω

l+1
D }, (5.40)

where Ωl
D ⊇ Ωl

T ∪Ωl
u is a series of subdomains containing the union of the subdomains used for

each subproblem’s discretization. This ensures that KD is at least as refined as the meshes used

for each subproblem’s discretization and allows for additional refinement of the foreground to

improve geometric resolution. The construction of a decomposition mesh KD is illustrated in

Figure 5.3.

The decomposition mesh KD is triangulated by first applying a pre-defined triangulation
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Figure 5.3. A series of uniformly refined meshes K l is shown in the top row. Series of nested
subdomains, Ω

l+1
T ⊆ Ωl

T , shown in the second row, and Ωl+1
u ⊆ Ωl

u, shown in the third row,
are defined for each state variable. For the decomposition mesh the series of subdomains Ωl

D,
shown in the last row, is defined such that the domain on each level l contains the union of the
lth level domains for both variable fields. The hierarchically refined meshes KT , Ku, and KD,
shown in the rightmost column, are constructed with the mesh series K l in the top row and their
respective subdomain series.
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(a) (b) (c)

Figure 5.4. Foreground integration meshes are formed by triangulating cut elements of the
decomposition mesh KD. (a) A cell is intersected by the isocontour of the discretized level set
function φ h = φt defining a material interface. (b) The cell is subdivided into triangular cells and
isocontour-edge intersections (indicated by black cicles) are computed. (c) Using the intersection
points as nodal points, the cell is further subdivided.

to the intersected background elements, as shown in Figure 5.4 (a-b). This pre-defined triangula-

tion forms 4 triangular elements in 2D domains or 24 hexahedral elements in 3D. Through root

finding along elemental edges, the location of the isocontour is found, indicated by the black dots

in Figure 5.4 (b). A subdivision template is then applied to each intersected triangle/tetrahedron,

as shown in Figure 5.4 (c), to further subdivide the triangles/tetrahedrons into a set of triangles

and tetrahedrons whose facets follow the LS isocontour. The last step is repeated recursively

for each individual LSF φ h
i which enables sharp geometric corners and edges to be captured

where multiple interfaces meet. This approach has been used previously by, e.g., [150]. The

resulting approximation of the interface is piecewise linear and depends on the resolution of the

decomposition mesh KD.

Note that the sliver elements and poor aspect ratios in meshes produced by this method

are still suitable for the interpolation of the background basis functions which is not bound by

the typical mesh quality constraints of traditional FEM [108]. The resulting foreground mesh is

of mixed element type (triangles and quadrilaterals in 2D, or hexahedrons and tetrahedrons in

3D) and contains hanging nodes. To accommodate the hanging nodes on the foreground mesh

and to adequately interpolate the discontinuous enriched background basis functions described
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in Subsection 5.1.2, this method employs discontinuous Galerkin type elements for foreground

function spaces. As the original THB-spline background basis maintains at minimum Cp−1

continuity within each material domain, the continuity of the interpolated basis is likewise Cp−1

continuous where interpolation is exact [144]. This work expands upon previous results using

approximate extraction methods [71], where the constraints placed on the foreground Lagrange

basis are lessened while numerical accuracy is maintained.

The sliver elements resulting from this procedure do not themselves present problems

with the interpolation-based workflow. However, due to the arbitrary location of material

interfaces with respect to cell boundaries, it is possible for cells to be cut such that only a small

portion of a basis function’s support resides inside a given material domain. These small cell cuts

result in sparsely supported basis functions, which can present issues with stability and linear

conditioning.

Numerous strategies exist to mitigate these issues and were recently reviewed in [53].

Strategies include basis function removal [59], ghost stabilization [37], and basis function

agglomeration [8] or extension [39], and have the potential to be implemented within the

presented interpolation-based framework. The benchmark problems presented in this work

do not require special treatment of sparsely support basis functions and the authors leave the

implementation of these stabilization strategies to future work.

5.3 Numerical Results

The accuracy of the proposed method is demonstrated through the study of several

benchmark problems. Problems were defined in the Python-based open-source FE code FEniCSx,

using foreground meshes and extraction operators generated by the open-source XIGA code

MORIS, available at github.com/kkmaute/moris [120]. The source code with which the results

were generated is also available at github.com/jefromm/EXHUME dolfinX [68].
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Figure 5.5. The geometric configurations for the 2D (left) and 3D (right) domains. A three-
material beam is embedded in a structured background grid and rotated such that material
interfaces do not align with element edges (in 2D) or facets (in 3D). Elements intersected by
the level set functions defining the beam geometry are triangulated to form a boundary-fitted
foreground mesh.

5.3.1 Resolving discontinuities in solution fields through Heaviside
enrichment

In this Subsection, a multi-material beam undergoing a spatially varying heat load

presents a weakly discontinuous temperature solution field. In this work, weak discontinuities

refer to discontinuities in the gradients of solution fields. The solution is approximated with

an interpolated Heaviside-enriched background basis, using the interpolation-based immersed

boundary workflow. The convergence results from this study demonstrate the accuracy of this

method’s enrichment scheme for multi-material problems. Beams in both 2D and 3D domains

are considered.

The beam is initially defined with corner coordinates (0,0) and (L,H) in 2D, and (0,0,0)

and (L,H,H) in 3D, with L = 5 and H = 1. The beam is divided into 3 sections, with interfaces

at x = L/4 and x = 3L/4. Each section of the beam is assigned a thermal conductivity κ1 = 1.0,

κ2 = 0.1, and κ3 = 1.0. To ensure the non-conformity of the material interfaces with respect to

the background mesh facets, the 2D beam is rotated about the origin by angle φ = 20◦, while

the 3D beam is rotated about y- and z-axes by angles φy =−5◦ and φz = 5◦, respectively. The

2D beam is embedded into rectangle with corner coordinates (-1.0, -0.5) and (5,3) and the
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Figure 5.6. The temperature solution field plotted for both domain geometries, using a bi(tri)-
quadratic B-spline basis interpolated with a bi(tri)-quadratic foreground Lagrange space. The
solution is weakly discontinuous at material interfaces.

3D beam is embedded into a rectangular prism with corner coordinates (-0.5, -0.25,-0.25) and

(5.5,1.75,1.75). The geometric configurations are shown in Figure 5.5. Each edge (in 2D) or

plane (in 3D) of the beam is defined by a level set function which extends beyond the beam

domain in the mesh. The functions are extended through the entire mesh to fully resolve the

corners (in 2D) or edges (in 3D) of the beam.

Thermal diffusion is governed by the Poisson equation. The strong and weak forms of

this problem are given by Eqs. (5.9) and (5.11) in Subsection 5.2.1. The source term

qB =−∇ · (κ∇Tex) (5.41)

is constructed from the exact solution

Tex(x′) =
1
κ

sin
(

4π

L
x′
)
. (5.42)

In 2D the beam-aligned coordinate is expressed in global coordinates as

x′ = xcos(-φ)− ysin(-φ), (5.43)
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Figure 5.7. Ideal convergence rates are seen for both bi(tri)-linear and quadratic B-spline basis
functions, which were interpolated with equal order foreground Lagrange function spaces. The
convergence rates are ideal for both the 2D domain (top) and 3D domain (bottom).
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and in 3D

x′ = zsin(-φy)+
(
xcos(-φz)−ysin(-φz)

)
cos(-φy), (5.44)

where xxx = [x,y,z] are the mesh coordinates. The exact solution is imposed as Dirichlet boundary

data on the ends of the bar, x′ = 0 and x′ = L.

For the 2D domains a suite of meshes with average background element sizes h ∈

0.5× [1,0.5,0.25,0.125,0.0625] was used. In 3D, the background element sizes h ∈ 0.58×

[1,0.5,0.25,0.125] were used. The foreground meshes were constructed with the workflow

described in Subsection 5.2.3. Results from the 2D mesh with background element size h = 0.5

and from the 3D mesh with background element size h = 0.29 using bi(tri)-quadratic Lagrange

foreground bases to interpolate bi(tri)-quadratic enriched B-spline bases are shown in Figure

5.6. Convergence rates are plotted in Figure 5.7 for both bi(tri)-linear and quadratic enriched

background spline spaces interpolated with equal-order foreground bases. Ideal convergence

rates validate the interpolation-based immersed boundary workflow for multi-material problems.

5.3.2 Approximating curved geometries through local foreground
refinement

A major challenge in the modeling of multi-material problems is the discretization of

material interfaces. In this work, local refinement of the foreground mesh is performed to increase

geometric resolution without affecting the number of degrees of freedom in the solution space. In

this example the linear elastic behavior of an infinite plate with an embedded circular inclusion

of radius R = 0.5 is modeled, with local refinement employed to improve the approximation of

the inclusion geometry.

The inclusion is comprised of Material 1 with Lamé constants λ1 = 497.16 and µ1 =

390.63, while the exterior plate is made of Material 2 with λ2 = 656.79, and µ2 = 338.35. A

uniform isotropic eigenstrain of ε0 = 0.1 is imposed on the inclusion. The weakly discontinuous
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Figure 5.8. Approximated radial displacement of the eigenstrain problem. The background mesh
is shown in white, while the foreground integration mesh is overload in black. The background
mesh remains the same as local refinement is applied to the foreground for improved geometric
resolution. The images correspond to the coarsest refinement level with background element size
h = 0.625.

Figure 5.9. Error convergence data for the eigenstrain problem, illustrating the efficacy of
foreground refinement. With no foreground refinement, the L2 convergence rate is limited by the
geometric error. With sufficient foreground refinement (3x LR), the convergence rate approaches
the ideal of 3.
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analytic solution for the radial displacement is given in [161] as

ur =


C1r, r ≤ R,

C1
R2

r
, r ≥ R,

(5.45)

where

C1 =
(λ1 +µ1)ε0

λ1 +µ1 +µ2
. (5.46)

Exploiting symmetry, only the upper right quadrant of the plate is modeled as shown in

Figure 5.8. Symmetry conditions are enforced on the left and bottom edges of the domain, and

the exact displacement is prescribed on the right and top edges. The solution domain is a 5×5

square, with a quarter circle at the lower left corner.

The strong and discrete forms of the multi-material linear elasticity PDE are detailed in

Appendix 5.A. For this example the mechanical strain is computed by

εεεm(uuu) =


εεεu(uuu)− ε0III, xxx ∈ Ω1

εεεu(uuu), xxx ∈ Ω2

(5.47)

where the total strain εεεu(uuu) = 1
2(∇uuu+(∇uuu)T).

The domain Ω is immersed into an axis-aligned 5× 5 square on which the enriched

background B-spline spaces are constructed. A suite of background meshes with characteristic el-

ement lengths h ∈ 0.625× [1,0.5,0.25,0.125,0.0625,0.03125] are used to generate convergence

data.

The foreground meshes used here are locally refined about the material interfaces, as

seen in Figure 5.8. The background basis functions remain constant, meaning that there is no

increase to the number of solution degrees of freedom with foreground refinement.

The convergence plots in Figure 5.9 show the expected convergence rates for the bi-linear

B-spline function space. With the bi-quadratic function space and no foreground refinement, the
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dominating effects of geometric error are shown with degraded L2 convergence rates. Geometric

error is reduced through local foreground refinement, allowing the function approximation error

to dominate the overall convergence. With local foreground refinement the convergence rates

approach the ideal rates exhibited by the method for problems without geometric approximation

error, as in Subsection 5.3.1.

The foreground meshes generated using this octree local refinement strategy include

hanging nodes, which are difficult for most commercial or open-source finite element software

to handle. To accommodate these hanging nodes, this interpolation-based workflow employs

C−1 discontinuous foreground Lagrange polynomial basis functions, . Classical discontinuous

Galerkin methods require augmentation of the variational form to enforce continuity at cell

interfaces [47], but this augmentation is not done within this workflow.

The results in this work suggest that for a problem where conforming FE methods would

require C0 continuity, a C−1 interpolated basis can be employed provided the background basis is

at least C0 continuous. More generally, so long as the background basis is sufficiently continuous

it may be interpolated with a less-continuous foreground basis. This attribute of interpolated-

based methods was first exploited in [71] to approximate fourth-order PDEs with a background

basis of quadratic B-spline bases, which are C1 continuous, interpolated with a foreground basis

of quadratic Lagrange polynomials, which are only C0 continuous.

5.4 Image-based thermo-mechanical analysis of composite
materials, utilizing multiple levels of local refinement

The capability of this method to tackle distinct discretization requirements of state

variable fields within a multi-physics problem is illustrated here in a coupled thermo-elastic

problem. This problem is posed on an alumina-epoxy composite sample undergoing simultaneous

heating and loading conditions. Separate background discretizations are interpolated with a

single foreground discretization for the two fields.
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Figure 5.10. Top:Micro-CT image of alumina-epoxy composite, where the white sections signify
alumina particles and the grey is the surrounding epoxy. Bottom: Smoothed image used to
generate the LSF geometric description
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(a) The foreground integration mesh utilizes two levels of local refinement to resolve the geometry of the
material interfaces, and contains 81,809 cells.

(b) The mesh used for the classical boundary-fitted FEM comparison was generated with 3 levels of
uniform refinement. The mesh elements were uniformly triangulated and modified to improve mesh
quality. The mesh contains 1,675,860 cells.

Figure 5.11. The whole domain is shown in the images on the left with the box indicating the
region shown in the zoomed in view on the left.
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The geometry of the composite sample is taken from a real micro-CT image converted to

an implicit level-set description. The micro-CT image,from [162] and shown in Figure 5.10a, is

made up of 200×200 pixels, with a pixel size of 8µm, and the specimen is 1.6mm by 1.6mm.

The epoxy is represented by the grey background while the alumina particles appear white. The

image was then manually processed to generate the smoothed image shown in 5.10b, which

was then converted to the implicit level-set description. The following material properties, from

[33, 16], were used: Poisson ratios νAl = 0.23 and νEp = 0.358, elastic moduli EAl = 320e9

Pa and EEp = 3.66e9 Pa, thermal conductivities κAl = 25.0 W/mK and κEp = 0.14 W/mK, and

thermal expansion coefficients αAl = 15e−6 1/Co and αEp = 65e−6 1/Co.

The process described in Subsection 5.2.3 was used to construct a foreground integration

mesh, beginning with a uniform 80 element by 80 element axis aligned decomposition mesh.

Two levels of local refinement were applied about the material interfaces, and the refined

decomposition mesh was triangulated. The resulting foreground mesh, shown in 5.11a, contains

81,809 cells.

For comparison purposes, a similar workflow was used to generate a boundary-fitted

mesh for use in classical FEM. Classical FEM with FEniCSx requires a single element type

mesh without hanging nodes. To avoid hanging nodes and to sufficiently resolve the gradients of

the state variable fields the decomposition mesh was uniformly refined three times forming a 640

element by 640 element square mesh. The cut cells were triangulated to create a boundary-fitted

mesh, and then the remaining quadrilateral elements were triangulated. The mesh was then

modified with the software package Coreform Cubit 2023.11 to improve mesh quality metrics.

The resulting mesh, shown in Figure 5.11b, contains 1,675,860 cells. The method described here

was used to ensure the level set descriptions of the material interfaces matched between this

mesh and the foreground mesh used with the interpolation-based immersed boundary method.

With this sample, a heated compression-shear test was simulated. The top and bottom

displacements were imposed as uuutop = [−0.01,−0.01]mm and uuubottom = [0,0]mm. The tem-

perature at the top and bottom edges were specified as Ttop = 0oC and Tbottom = 100oC. The
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Figure 5.12. The temperature field results are compared for four different mesh configurations.
The left shows the entire domain with the box indicating the region shown in the zoomed in view
on the right.
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Figure 5.13. The the temperature gradient magnitude field is compared for four different mesh
configurations. The left shows the entire domain with the box indicating the region shown in the
zoomed in view on the right.
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Figure 5.14. The displacement magnitude field results are compared for four different mesh
configurations. The left shows the entire domain with the box indicating the region shown in the
zoomed in view on the right.
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Figure 5.15. The mechanical strain magnitude field results are compared for four different mesh
configurations. The left shows the entire domain with the box indicating the region shown in the
zoomed in view on the right.
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environmental temperature was T0 = 0oC. The sides were left both traction and heat flux free.

The governing equations for heat conduction and linear elasticity were coupled via the

constitutive law adding a thermal expansion component to the total strain as in Eq. (5.19).

Dirichlet boundary conditions for each field were imposed using Nitsche’s method. Nitsche’s

terms enforcing continuity in T and uuu were also imposed upon the allumina-epoxy interfaces.

Bi-linear B-splines are used for the temperature field and bi-quadratic B-splines are used

for each component of the displacement field, and both fields are interpolated using bi-quadratic

Lagrange polynomials. For the boundary-fitted FEM comparison, Dirichlet boundary conditions

were likewise enforced using Nitsches method, a bi-linear Lagrange basis was used for the

temperature field, and a bi-quadratic Lagrange basis was used for the displacement. The results

for the temperature field, the temperature gradient magnitude, the displacement magnitude, and

the strain magnitude are shown in Figures 5.12, 5.13, 5.14, and 5.15, respectively. Within the

figures, the foreground meshes are drawn in black while the background meshes are overlaid in

white. The same foreground mesh, with two levels of local refinement to resolve the composite

geometries, is used for each discretization.

Table 5.1. Degrees of freedom (DOFs) associated with the background function spaces at various
levels of local refinement and with the uniformly refined FEM function spaces.

No Local 1x Local 2x Local Uniformly Refined
Refinement Refinement Refinement Boundary-Fitted Mesh

Bi-linear basis DOFs 8,321 17,247 48,191 5,027,580
Bi-quadratic basis DOFs 9,381 22,166 60,729 10,055,160

Progressive levels of local refinement were applied to the background B-spline function

spaces, as seen in the rows of Figures 5.12, 5.13, 5.14, and 5.15. This local refinement was

implemented with THB-splines, previously defined in chapter 3. The regions of refinement with

high-order splines are larger than those for the low-order to adequately support the truncated

basis. This can be seen by comparing the white background meshes used for the temperature field

depicted in Figures 5.12 and 5.13 with those used for the displacement field in Figures 5.14 and

103



5.15. The number of degrees of freedom associated with the various background discretizations

are shown in Table 5.1.

With two levels of local refinement, the results were in qualitative agreement with the

ones of the uniformly refined classical FEM example with far fewer degrees of freedom. As

previously noted, the uniformly refined meshes were initially generated with the same workflow

used to create the boundary conforming foreground meshes, a ‘hands-off’ method requiring

only a bitmap image file. A more efficient mesh with fewer elements could be created for use in

classical FEM but only with either significant user intervention or with sophisticated meshing

software. Additionally, the workflow used here can easily be extended to 3D image stacks, which

are not easily processed for classical FEM.

Chapter summary

This chapter presents a new interpolation-based immersed boundary method for multi-

material and multi-physics problems. This method employs enriched truncated hierarchically

refined B-spline background spaces and discontinuous hierarchically refined Lagrange integration

spaces.

Domain geometry and material interfaces are represented by level set functions, which

can be generated by, for example, geometric primitives or from 2D or 3D images. The domain is

embedded in a grid with an associated B-spline basis and the level set function is discretized

and used to compute Heaviside characteristic functions. Basis functions are inspected and

individually enriched with respect to the disconnected material subregions within their supports.

The enriched and refined background bases are interpolated by a discontinuous fore-

ground basis. This foreground basis requires a boundary-fitted mesh, but is not subject to usual

mesh conditioning constraints. The foreground meshes are thus constructed by the discretized

level set function boundary descriptions and hierarchically refined quadrilateral meshes. Cells

in the refined quadrilateral mesh intersected by the domain and material interface geometry are
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triangulated to form a mixed-element type foreground mesh, which can be used by classical

finite element codes to define a foreground basis. The level of refinement used to create the

foreground mesh may exceed the level of refinement used for the background basis, allowing for

greater geometric resolution without increasing the system’s degrees of freedom associated with

the background basis.

The background basis is interpolated using extraction operators. Extraction operators are

constructed by evaluating the background basis at the locations of the foreground basis nodes.

Existing classical finite element codes assemble the linear systems using the Lagrange foreground

basis. The linear system is then projected onto the interpolated basis with the extraction operators

and the system is solved with the interpolated basis. Interpolation allows the enriched and refined

B-splines basis to be utilized in traditional finite element codes without the addition of complex

integration subroutines, broadening the applicability of this method.

Several benchmark problems validated this method. Interpolated enriched bases were

used in both 2D and 3D for a multi-material thermal diffusion problem with exact geometric

representation. The numerical approximations were compared with analytic solutions and errors

were computed. The L2 and H1 errors converged at ideal rates with mesh refinement. Foreground

only refinement was implemented for a multi-material linear elasticity PDE involving a circular

domain. When compared to the analytic solution, errors from a non-refined foreground mesh

converged ideally with a bi-linear basis, but the L2 convergence rate of the bi-quadratic basis was

limited to 2nd order due to geometric error in the discretization of the domain boundary. With

sufficient foreground refinement, the ideal 3rd order convergence for the bi-quadratic basis was

observed.

Lastly, micro-CT images were used to generate a geometric discretization of an alumina-

epoxy composite sample. Thermo-elastity was simulated, coupling separately discretized tem-

perature and displacement fields through a thermal expansion component. Unique THB-spline

bases were used for each field, bi-linear for temperature, and bi-quadratic for displacement. The

results were in qualitative agreement with the ones of a uniformly refined traditional boundary
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conforming finite element simulation.

5.A Discretization of multi-material equations for linear
elasticity

Let a domain of N material subdomains Ω = Ω
1 ∪Ω

2 ∪ ...∪Ω
N ⊂ Rdp be the domain of

interest, with varied material properties µ and λ :

µ(xxx) = µ
m,xxx ∈ Ω

m and (5.48)

λ (xxx) = λ
m,xxx ∈ Ω

m. (5.49)

Following the problem set up in Subsection 5.3.2, a source term bbb : Ω → Rdp , a traction term

hhh : ∂Ω → Rdp on Γhhh ⊂ ∂Ω and Dirichlet boundary data uuu : ∂Ω → Rdp on Γuuu ⊂ ∂Ω are ascribed.

The strong form of this problem is then: Find uuu : Ω → Rdp such that ∀ m ∈ M

−∇ ···σσσm = bbb in Ω
m ,

[[uuu]] = 0 on all Γkm

[[σσσ ]] ·nnn = 0 on all Γkm

σσσ
m ·nnn = hhh on Γ

m
hhh ,

uuu = uuu on Γuuu

(5.50)

where Γkm = Ω
k ∩Ω

m ̸= /0, k ∈ M and k ̸= m are the material interfaces. Γm
hhh
= Γhhh ∪ ∂Ω

m,

and Γm
uuu = Γuuu ∪ ∂Ω

m are intersections of the domain boundaries with the material subdomain

boundaries, and nnn denotes the surface normal. Here [[·]] = (·)k − (·)k is again the jump of a given

quantity over the Γkm interface, and nnn is the surface normal. For each material subregion the

displacement is uuum = uuu(xxx), xxx ∈ Ωm. The Cauchy stress tensor in each material subdomain is

defined

σσσ
m =CCCm : εεε

m = 2µ
m

εεε
m +λ

mtr(εεεm)III (5.51)
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in terms of the strain εεεm, whose definition will vary depending on application, and σσσ(xxx) = σσσm,

xxx ∈ Ωm.

The computational domain Ω is embedded into a hierarchically refined background mesh

Ku, generated using a sequence of refined meshes K l and subdomains Ωl
u, and associated with

the THB basis Tu = {Bu
i }. Each component of the displacement is then discretized with the

function space

V h
u = span{Bu

i | supp(Bu
i )∩Ω ̸= /0}, (5.52)

where Bu
i ∈ Tu, the basis of enriched THB-splines.

The discrete form is then: find uuuh ∈ V h
u = [V h

u ,V h
u ] such that all vvvh ∈ V h

u

n

∑
m=1

[∫ m

Ω

σσσ(uuuh) : εεε
u(vvvh)dΩ

]
−
∫

Ω

bbb · vvvh dΩ

−
∫

Γhhh

hhh · vvvh dΓ = RD
u +RI

u , (5.53)
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where RD
u and RI

u are the Dirichlet and interface residuals,

RD
u =

n

∑
m=1

[
∓
∫

Γm
uuu

(uuuh −uuu) ·σσσ(vvvh) ·nnndΓ

−
∫

Γm
uuu

vvvh ·σσσ(uuuh) ·nnndΓ

+
∫

Γm
uuu

β D
u E
h

(uuuh −uuu) · vvvh dΓ

]
(5.54)

and

RI
u =

n

∑
i=i

n

∑
j=1+i

[
−
∫

Γi j

[[uuuh]] · ({σσσ(vvvh)} ·nnn)dΓ

−
∫

Γi j

[[vvvh]] · ({σσσ(uuuh)} ·nnn)dΓ

+
∫

Γi j

γ
i j
u [[uuuh]] · [[vvvh]]dΓ

]
. (5.55)

As with the temperature Dirichlet residual, the first line of Eq. (5.54) is either negative for

symmetric Nitsche’s method, which is used in this work, or positive for non-symmmetric

Nitsche’s method. Once again, {·}= wi(·)i −w j(·) j is the weighted average of a given quantity,

with weights as defined in Eq. (5.14) using the elastic modulus as the material parameter ω . The

penalty parameter γ
i j
u is defined as

γ
i j
u = 2β

I
u

(hi)dp−1 +(h j)dp−1

(hi)dp/E i +(h j)dp/E j
, (5.56)

where β I
u ≥ 0 is a user specified constant which controls the accuracy of the the interface

condition, and E(xxx) = Em, xxx ∈ Ωm.

The linear elastic subproblem can be compactly written as the variational problem: Find

uuuh ∈ V h
u = [V h

u ,V h
u , ] such that, ∀vvvh ∈ V h

u

au(uuuh,vvvh) = Lu(vvvh), (5.57)
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where au(uuu,uuu) and Lu(vvv) can be derived from Eq. (5.53).

To approximate the solutions to multi-material linear elasticity problems, this workflow

introduces an interpolated background function space

V̂ h
u = span{B̂u

i
∣∣ supp(B̂u

i )∩Ω ̸= /0}, (5.58)

where the interpolated background basis functions are defined

B̂u
i :=

ν

∑
j=1

Mu
i jN j, (5.59)

where

Mu
i j := Bu

i (xxx j) (5.60)

is the displacement component Lagrange extraction operator. {N j}ν
j=1 is the basis of a Lagrange

FE space with nodal points xxx j such that Ni(xxx j) = δi j. Here ν is the number of foreground basis

functions. Note that for multi-physics problems, the same foreground space is used to interpolate

the background bases for both the temperature and the displacements.

The approximation of each displacement component is then

uh
k =

nu

∑
i=1

B̂u
i duk

i =
nu

∑
i=1

ν

∑
j=1

Mu
i jN jd

uk
i , (5.61)

where {duk
i }nu

i=1 are the unknown coefficients associated with each state variable field and nu is

the number of basis functions in the interpolated background B-spline basis. k ∈ {1, ...,dp} are

the indices associated with each of the displacement components, with dp denoting the physical

109



dimension. The vector-valued approximation of displacement is defined as

uuuh =
dp

∑
k=1

nu

∑
i=1

B̂u
i duk

i eeek (5.62)

where eeek are the directional unit vectors. For brevity in notation, new capital letter indices

I = dp(i−1)+ k and J = dp( j−1)+ k are defined such that the vector value basis functions are

B̂BB
u
I = B̂u

i eeek and NNNJ = Nu
j eeek, (5.63)

and the approximation of displacement can be written

uuuh =
(dp·nu)

∑
I=1

BBBu
I du

I =
(dp·nu)

∑
I=1

(dp·ν)

∑
J=1

Muuu
IJNNNJdu

I , (5.64)

where du
I = duk

i , and Muuu
IJ are the components of the vector valued displacement field extraction

operator

Muuu
IJ = B̂BB

u
I (xxxJ) . (5.65)

The variational form in Eq. (5.57) assembled using the interpolated basis forms the linear system

KKKvvvvvvddduuu = fff vvv, (5.66)

where

Kvvvvvv
IJ = auuu(B̂BB

u
I , B̂BB

u
J), and (5.67)

f vvv
I = Luuu(B̂BB

u
I ). (5.68)

110



Applying extraction, the linear system in Eq. (5.66) is rewritten as

(MMMvvv)TAAAvvvvvvddduuu = (MMMuuu)Tbbbu, (5.69)

where AAAvvvvvv and bbbvvv are computed with the foreground basis

Avvvvvv
IJ = auuu(NNNI,NNNJ) and (5.70)

bvvv
I = Luuu(NNNI). (5.71)

The quantities AAAvvvvvv and bbbvvv are evaluated and assembled with the boundary-fitted foreground mesh,

following the workflow outlined in Subsection 5.2.2.
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Chapter 6

Interpolation-based reproducing kernel
particle method

The previous two chapters have introduced and applied interpolation-based immersed-

boundary and immersogeometric methods to a wide class of problems. The work presented has

gone beyond past interpolation-based implementations through the application of approximate,

as opposed to exact, extraction. With approximate extraction, the interpolated basis is not

everywhere equivalent to the background basis.

In the first sections of chapter 4, the interpolation error arising from this approximation

is limited to the regions surrounding material or domain interfaces, and is thus bounded by

the method error, allowing for interpolation-based immersed boundary methods to maintain

ideal error convergence rates. Venturing beyond what has been mathematically shown, chapter

4 also presents numerical evidence that approximate extraction can be extended to loosen

the constraints placed on the foreground. The local refinement techniques explored in 5 also

employed foreground meshes with hanging nodes, further violating the assumptions made in

chapter 4.

This chapter builds upon the concept of approximate extraction and non-background fitted

interpolation with the extension of interpolation-based methods to meshfree methods, specifically

the reproducing kernel particle method (RKPM). Recall that RKPM was introduces alongside

IGA in chapter 3. The new method presented here will be referred to as Interpolation-based
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RKPM, or Int-RKPM.

The outline of the chapter is as follows: Section 6.1 introduces the novel computational

method combining interpolation with RKPM; Section 6.2 provides numerical data supporting

the efficacy of the proposed method when applied to (1) a single material poisson problem, (2) a

single material biharmonic problem, (3) a linear elastic problem with approximate geometry, (4)

a tri-material poisson problem and (5) a bi-material linear elasticity problem with approximate

geometry.

6.1 Interpolation-based RKPM for implementation within
existing finite element software frameworks

Despite the significant development of nodal integration techniques, efficient integration

and assembly remains a challenge in the implementation of RKPM. This work introduces a novel

computational method employing interpolation to represent RKPM bases as linear combinations

of Lagrange polynomial bases. Interpolation-based RKPM (Int-RKPM) reduces assembly costs

when compared to classical RKPM methods, and is implemented within existing finite element

software.

6.1.1 Properties of Int-RKPM functions

The main idea of interpolation-based methods is to replace a basis function, which for

some reason may be difficult to integrate or otherwise work with, with an approximation of that

function. This approximation is constructed of a secondary ‘foreground’ basis {Ni}ν
i=0, where ν

is the number of basis functions. Thus, an RKPM function ΨI is approximated as

ΨI(xxx)∼ Ψ̂I(xxx) =
ν

∑
j=0

MI jN j(xxx), (6.1)

where the tensor MI j is referred to as the extraction operator.

The properties of a basis of interpolated functions {Ψ̂I}NP
I=0 will depend on both the
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properties of both the original ‘background’ basis {ΨI}NP
I=0 and the foreground basis {Ni}ν

i=0.

In this work, {Ni}ν
i=0 is composed of Lagrange polynomials and thus satisfies the kronecker

delta property Ni(xxx j) = δi j. Due to this interpolatory property, the components of the extraction

operator are computed by evaluating the original background function at the nodal locations of

the foreground basis,

MI j = ΨI(xxx j). (6.2)

Following [71], several properties of the interpolated basis can be derived. Provided the original

basis {ΨI}NP
I=0 forms a partition of unity, the interpolated basis {Ψ̂I}NP

I=0 will as well. The function

space spanned by the interpolated basis will span polynomials of degree κ , where κ =min{k,n},

n being the polynomial order spanned by the background basis and k being the polynomial order

spanned by the foreground basis. If both the foreground and background basis have local support,

then the interpolated basis will as well.

Furthermore, if both foreground and background basis satisfy the reproducing condition

NP

∑
I=0

ΨI(xxx) f α(xxxI) = f α(xxx), and
ν

∑
i=0

Ni(xxx) f α(xxxi) = f α(xxx), (6.3)

where f α is a polynomial of degree α , then the interpolated basis also satisfies the condition

NP

∑
I=0

Ψ̂I(xxx) f α(xxxI) =
NP

∑
I=0

ν

∑
j=0

MI jN j(xxx) f α(xxxI) = (6.4)

ν

∑
j=0

N j(xxx)

(
NP

∑
I=0

ΨI(xxx j) f α(xxxI)

)
=

ν

∑
j=0

N j(xxx) f α(xxx j) = f α(xxx). (6.5)

The derivatives of the interpolation functions can be computed using the derivative of the
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Figure 6.1. A linear RKPM shape function ΨI , using a cubic B-spline kernel is plotted along
with its first derivative ∂xΨI and second derivative ∂xxΨI . The second row shows the analogous
Int-RKPM function Ψ̂I and its derivatives ∂xΨ̂I and ∂xxΨ̂I , interpolated with a linear foreground
function space with element size equal to the average background nodal spacing. h-refinement
and p-refinement are performed on the foreground basis Ni, and are shown in the third and fourth
rows, respectively.
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Figure 6.2. A quadratic RKPM shape function ΨI , using a cubic B-spline kernel is plotted
along with its first derivative ∂xΨI and second derivative ∂xxΨI . The second row shows the anal-
ogous Int-RKPM function Ψ̂I and its derivatives ∂xΨ̂I and ∂xxΨ̂I , interpolated with a quadratic
foreground function space with element size equal to the average background nodal spacing.
h-refinement and p-refinement are performed on the foreground basis Ni, and are shown in the
third and fourth rows, respectively. The fifth row shows the results of combined p-refinement and
two levels of h-refinement, which is more accurately able to interpolate the second derivatives
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foreground functions:

∂xΨ̂I(xxx) =
ν

∑
j=0

MI j∂xN j(xxx). (6.6)

Again, provided the foreground and background bases satisfy the gradient reproducing condition

NP

∑
I=0

∂xΦI(xxx) f α(xxxI) = ∂x f α(xxx), and
ν

∑
i=0

∂xNi(xxx) f α(xxxi) = ∂x f α(xxx), (6.7)

the interpolated basis will as well

NP

∑
I=0

∂xΦ̂I(xxx) f α(xxxI) =
NP

∑
I=0

ν

∑
j=0

MI j∂xN j(xxx) f α(xxxI) = (6.8)

ν

∑
j=0

∂xN j(xxx)

(
NP

∑
I=0

ΦI(xxx j) f α(xxxI)

)
=

ν

∑
j=0

∂xN j(xxx) f α(xxx j) = f α(xxx). (6.9)

RKPM shape functions Ψ and a series of Int-RKPM shape functions Ψ̂, are shown in

Figures 6.1 and 6.2.

Previous interpolation work deals primarily with exact interpolation, where the fore-

ground basis is sufficiently refined to exactly interpolate every function in the background basis.

In [71] and [70], approximate extraction was implemented to utilize interpolation for immersed

boundary analysis, where the interpolation is exact in the majority of a computational domain

but approximate in the lower dimensional surface where background elements were cut. Also in-

vestigated in [71] were so-called ‘background-unfitted’ foreground meshes. In background-fitted

foreground meshes, the foreground cells conform to the boundary of each background basis

function support. These constraints are not present with background-unfitted foreground meshes,

which nevertheless yielded optimal error convergence rates when employed to approximate

PDEs. With RKPM and other meshfree methods the construction of background-fitted fore-

ground meshes, where foreground cells would conform to the support of each RKPM function,

presents a considerable challenge and would prove counter to the goal of Int-RKPM which is to
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decrease the computational cost and implementation overhead of meshfree methods.

Int-RKPM thus represents a new iteration of background-unfitted foreground interpo-

lation techniques. With the loosening of constraints on the foreground mesh discretization

comes increased choice on the part of the user, and considerable space is dedicated in this work

to quantifying the effect of foreground space on the properties of Int-RKPM. In general, the

discretization used to generate the foreground basis should have average element size equal to or

less than the average nodal space of the background RKPM point distribution, and should be

of equal polynomial order (i.e. k = n). This work will discuss both foreground h− refinement,

where the foreground mesh is refined relative to the background RKPM discretization, and

foreground p− refinement, where the polynomial order of the foreground basis is increased

relative to the background RKPM order of reproducibility. Both types of foreground refinement

are shown in Figures 6.1 and 6.2. The effects of these refinements and will be discussed in

following sections 6.2.

6.1.2 Using Int-RKPM bases to solve PDEs

The poisson problem is used to model the use of Int-RKPM functions to solve PDEs.

The strong form of this problem is simply: Find u : Ω → R such that

−∆u = f in Ω ,

u = g on ∂Ω , (6.10)

where g is Dirichlet boundary data. Nitsche’s method [127] is used to enforce boundary condi-

tions such that the approximate form can be written: Find uh ∈ V h such that ∀vh ∈ V h,

∫
Ω

∇uh ·∇vhdΩ−
∫

∂Ω

(
∇uh ·nnn

)
vhdΓ∓

∫
∂Ω

(
∇vh ·nnn

)
uhdΓ+

∫
∂Ω

Cpen

h
uhvhdΓ

=
∫

Ω

f vhdΩ∓
∫

∂Ω

(
∇vh ·nnn

)
gdΓ+

∫
∂Ω

Cpen

h
gvhdΓ , (6.11)
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where nnn is the normal vector, Cpen is a user defined constant, and h is understood to be the

background function nodal spacing. This work employs the symmetric Nitsche’s method, such

that the ∓ signs in equation 6.11 are taken as −. The left and right hand side of equation 6.11

can be grouped into a bilinear and linear form, respectively,

a(uh,vh) = L(vh). (6.12)

For classic RKPM, the function space V h = VRKPM = span{ΨI}, where each shape

function ΨI can be computed with Equation 3.20 . Functions uh
RKPM ∈ VRKPM are then expressed

as

uh
RKPM(xxx) = ∑

I
ΨI(xxx)uI. (6.13)

These shape functions can be integrated either using Gauss-quadrature schemes or some flavor

of stabilized nodal integration, to assemble the linear system

KKKddd = FFF (6.14)

where KIJ = a(ΨJ,ΨI), dI = uI , and FI = L(ΨI) are defined in terms of the bilinear and linear

form.

With interpolation-based RKPM the function space V h = VInt−RKPM = span{Ψ̂I}, where

each shape function Ψ̂I is an approximation of the corresponding function ΨI , as in equation

6.1. With the extraction operator given in equation 6.2, functions uh
Int−RKPM ∈ VInt−RKPM are

expressed as

uh
Int−RKPM(xxx) = ∑

I
Ψ̂I(xxx)ûI = ∑

I
∑

j
MI jN j(xxx)ûI. (6.15)

To assemble the linear system in equation 6.14, allow K̂IJ = a(Ψ̂J,Ψ̂I), d̂I = ûI , and
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F̂I = L(Ψ̂I). The stiffness matrix and force vector are thus

K̂IJ = a(Ψ̂J,Ψ̂I) = MJla(Nl,Nk)MkI and F̂I = L(Ψ̂I) = MIkL(Nk). (6.16)

The quantities a(Nl,Nk) and L(Nk) can be easily computed with the foreground Lagrange

polynomial basis {Ni}ν
i=0. The only evaluation of the original RKPM basis resides within the

computation of the extraction operator, see equation 6.2. This feature of Int-RKPM allows

existing finite element software to be easily augmented to use meshfree methods.

6.1.3 Implementation through open-source finite element software

Efficient integration techniques have been developed for meshfree methods, but these

techniques are difficult to implement within existing finite element codes. Open source im-

plementations of RKPM [88] and other meshfree methods [136] rely on considerable custom

software packages.

As Int-RKPM replaces the integration of RKPM basis functions with integration of classic

Lagrange polynomials, it is naturally implemented within existing FEM software. Following

previous works on interpolation-based IGA [99, 97] and immersogeometric methods [71, 70],

this chapter employs the popular open source software FEniCSx [15] to illustrate the potential of

Int-RKPM.

6.2 Numerical Results

6.2.1 Comparison of interpolation-based RKPM with classic RKPM

To demonstrate the efficacy of Int-RKPM a simple poisson problem on a unit square was

modeled. A suite of RKPM point sets was used to investigate error convergence rates. Each point

set was create by perturbing a uniform grid of points in a jittered grid [48] with initial uniform

spacing of h and perturbations of εhη in each coordinate. η ∈ (0,1) was randomly generated

for each point and coordinate and ε is referred to as the perturbation parameter. The accuracy
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of integration schemes is shown to be linked to to the uniformity of points [42] thus multiple

perturbation parameters ε ∈ [0,1] were investigated. However, provided points did not overlap,

the performance of Int-RKPM was not dependent on the point distribution, and for all RKPM

point sets in this chapter ε = 0.5.

With the point sets, RKPM bases were defined using a cubic B-spline kernel and circular

supports. The normalized support size of each function was n+1, where n is the polynomial

order of reproducibility. Both linear, n = 1, and quadratic, n = 2, RKPM bases were investigated.

Interpolation was performed using continuous-Galerkin type Lagrange polynomial fore-

ground bases defined upon a suite of uniform quadrilateral boundary conforming meshes. The

effects of both p− and h−refinement on the foreground basis were investigated. Initial fore-

ground element sizes are proportional to background nodal spacing. With h−refinement, the ratio

of foreground element size to average RKPM nodal spacing was decreased to 2:1 (for 1x h−ref)

and 4:1 (for 2x h−ref). The polynomial order of the foreground basis, k, is set initially to n, the

polynomial order of reproducibility of the background basis. With p−refinement, k = n+ p

where p is the level of refinement.

Int-RKPM is here compared with a classic implementation of RKPM where integrals are

computed using a Gauss-Quadrature grid. The grid size is equal to the average nodal spacing

of the RKPM pointset. A 6×6 Gauss scheme is used for the linear RKPM basis, and an 8×8

Gauss scheme is used for the quadratic RKPM basis.

The Poisson problem introduced in 6.1.2 is modeled, using the method of manufactured

solutions to set f =−∆uex in Equation 6.39 and g = uex in Equation 6.39, where

uex = sin(0.1x+0.1)sin(0.1y+0.1) (6.17)

The results are shown in Figure 6.3.

For the linear basis, results shown in the first row of Figure 6.3, interpolation-error

increases error magnitude but does not impact the convergence rate of Int-RKPM. h−refinement
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Figure 6.3. Convergence data for the poisson problem, comparing Int-RKPM with classic
RKPM.
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reduces error magnitude to below that of classic RKPM for the L2 error norm, and reduces the

magnitude marginally for the H1 error norm. A level of p−refinement is sufficient to match the

error magnitude of Int-RKPM to classic RKPM for this example.

This behaviour is qualitatively explained by comparing the derivatives of Int-RKPM in

Figure 6.1. The second row of Figure 6.1 corresponds to the blue (circle) line in Figure 6.3,

where the first derivative is interpolated as the linear combination of relatively coarse piecewise

constant foreground functions. When foreground h− refinement is applied for the third row of

Figure 6.1, the approximation is improved, resulting in the decreased error magnitude shown by

the pink (triangle) line in the plot in Figure 6.3. However, it is not until foreground p−refinement

is applied to in the fourth row of 6.1, and the interpolation of the derivative is given by pieceswise

linear functions, that the interpolation error is decreased sufficiently to reproduce the classic

RKPM results. This is shown by the overlap of the yellow (star) line and black (square) line in the

plot in Figure 6.3. However, it must be emphasized that no amount or type of local foreground

refinement is required for the Int-RKPM method to exhibit optimal convergence rates.

For the quadratic basis, the second row of plots in Figure 6.3, the results produced by

Int-RKPM are practically identical to classic RKPM. Additional foreground refinement neither

increases the rate of convergence nor decreases the magnitude of the error. These results can be

qualitatively understood by analyzing the quadratic Int-RKPM derivatives in Figure 6.2. The

second row of the figure shows the Int-RKPM functions without any foreground refinement. The

first derivative of the function is interpolated with piecewise linear functions. The improvements

to the interpolation of the derivative are minimal with the application of foreground h−refinement,

seen in the third row, and foreground p−refinement, seen in the fourth row.

6.2.2 Interpolation for high-order derivatives

Numerous problems in engineering applications are described by PDEs containing higher

order derivatives. Notably, the equations characterizing Kirchhoff love shells contain fourth

order derivatives and must be approximated by functions belonging to an H2-conforming basis.
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RKPM bases can easily satisfy this property, but due to the relative difficult in computing high

order basis function derivatives, particle methods have not been widely applied to shell problems.

The computation of derivatives of an interpolated RKPM basis can be done with stan-

dardized finite element operations, removing this level of difficulty. To demonstrate the efficacy

of interpolated-RKPM with non-conforming function spaces, the biharmonic problem is tested,

with strong form Find u : Ω → R such that

∆
2u = f , (6.18)

with boundary conditions

u = g on ∂Ω , (6.19)

∇u ·nnn = h on ∂Ω , (6.20)

where f : Ω → R is a given source term and g : ∂Ω → R and h : ∂Ω → R are boundary data.

Employing the method of manufactured solutions, f = ∆2uex, g = uex, and h = ∇uex ·nnn. For this

numerical example,

uex(x,y) = sin(0.1y+0.1)sin(0.1x+0.2). (6.21)

Boundary conditions are weakly enforced using Nitsche’s-like residual terms, such that the weak

form can be written as: Find uh ∈ V h such that, ∀vh ∈ V h,

∫
Ω

∆uh
∆vh dΩ+

∫
∂Ω

∇∆uh ·nnnvh −∆uh
∇vh ·nnndΓ

+
∫

∂Ω

(∇∆vh) ·nnn(uh −uex)−∆v(∇uh ·nnn−∇uex ·nnn)dΓ

+
∫

∂Ω

α

h3 (u
h −uex)vh +

β

h
(∇uh ·nnn−∇uex ·nnn)∇vh ·nnndΓ =

∫
Ω

f vh dΩ , (6.22)

where α > 0 and β > 0 are user specified constants. For the computations of this paper,
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Figure 6.4. Convergence data for the biharmonic problem approximated with Int-RKPM,
comparing various levels of foreground h− and p− refinement.

α = β = 10.

The same suite of background RKPM basis functions as employed in the previous exam-

ple are used along with uniform quadrilateral foreground meshes. Numerical tests investigated

L2, H1
0 , and H2

0 error convergence rates with concurrent foreground and background refinement.

Results are shown in Figure 6.4.

As in the lower order derivative Poisson problem investigated in subsection 6.2.1, some

additional foreground refinement is required to reduce interpolation error. This is because with

this example, the method must not only interpolate the first derivatives of the original RKPM

function, but also the second derivatives. As seen in the first rows of Figures 6.1 and 6.2, the

second derivatives of RKPM functions are difficult to fully resolve. This, in addition to the high

computational cost of computing higher order derivatives, is a reason why meshfree methods are

under utilized for high order PDEs like the biharmonic problem.

While the results of the previous section showed that p−refinement of the foreground

mesh improved the approxiation potential of Int-RKPM, p−refinement alone is not sufficient

to achieve optimal error convergence rates for this PDE, as seen by the solid colored pink blue

and green lines. And unlike the Poisson problem, the original Int-RKPM without foreground

refinement (the solid pink line) not only has a larger error magnitude, but the errors do not
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Figure 6.5. Local foreground refinement is performed to increase geometric resolution for
problems with approximate interface representation. The foreground meshes are shown along
with the RKPM point discretization, which is the same for each level of local refinement.

converge at all. In this case, foreground h−refinement is required to acheive optimal rates. that

is required. With two levels of h−refinement (such that the ratio of foreground element size to

background nodal spacing is 4:1) optimal rates are observed. This can be qualitatively understood

by examination of the third column of images in Figure 6.2.

6.2.3 Extensions to approximate geometries

Int-RKPM can also be applied to problems of more complicated geometric domains

than those illustrated in the previous two sections. RKPM, and other meshfree methods, do not

require high quality boundary conforming meshes to approximated curved or otherwise complex

geometries, but in general require a boundary conforming geometric discretization to perform

integration. This is likewise the case for Int-RKPM where the integration discretization is in fact

a mesh used to create a foreground function space.

In this example linear elasticity is modeled in a plate with a hole. Navier’s equations for
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linear elasticity are as follows: Find uuu : Ω → R2

−∇ ·σσσ(uuu) = 0 (6.23)

with Cauchy stress tensor

σi j(uuu) = 2µεi j(uuu)+λεkk(uuu))δδδ i j, (6.24)

where the ε(uuu)i j =
1
2
(ui, j +u j,i) is the strain and µ and λ are Lamé parameters. Traction and

symmetry boundary conditions are imposed

uuu ·n = 0 on Γsym , (6.25)

(III −nnn⊗nnn)(σσσ ·n) = 000 on Γsym , (6.26)

σσσ ·n = ttt on Γt . (6.27)

Using Nitsche’s method to enforce symmetry conditions, Navier’s equation is discretized

as Find uuuh ∈ V h such that, ∀vvvh ∈ V h,

∫
Ω

σσσ(uuuh) : ∇vvvh dΩ

−
∫

Γsym

(uuuh ·n)n ·σσσ(vvvh) ·ndΓ−
∫

Γsym

(vvvh ·n)n ·σσσ(uuuh) ·ndΓ

+
∫

Γsym

β µ

h
(uuuh ·n)n · vvvh dΓ =

∫
Γt

ttt · vvvh dΓ, (6.28)

where β > 0 is the penalty parameter associated with Nitsche’s method, once again set to 10.

Exploiting symmetry, a 5×5 square with a quarter circle of radius R = 1 was modeled. For an

infinite plate under an applied equal-biaxial strain, the resulting stress tensor components can be
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computed using Kirsch’s equations as

σrr = σ∞

(
1−
( r

R

)2
)
, and σθθ = σ∞

(
1+
( r

R

)2
)
. (6.29)

The exact solution for the stress field, converted to Cartesian coordinates is applied as traction

ttt = σσσ ex ·n.

Jittered grid RKPM pointsets with ε = 0.5 were generated without regard to the geometry

of the hole/inclusion. A series of pointsets with average nodal spacing h were used to generate

convergence data, with h ∈ 0.625{1,0.5,0.25,0.125,0.06125}

The boundary conforming foreground meshes shown in Figure 6.5 were generated using

the open source software MORIS [120]. MORIS is an immersed finite element code that utilizes

level-set geometry descriptions to enrich and integrate both classic lagrange and isogeometric

basis functions. It also provides functionality to rapidly generate boundary conforming meshes

with its level-set geometry processing sublibrary. In 2D, the algorithm begins with a uniform

tensor-product grid, and then triangulates the quadrilateral cells intersected by the level-set

isocountour indicating the domain boundary. After triangulation a root finding algorithm is used

to locate the intersections of element edges the isocounter. Using the intersection points as new

nodes, the cells are further triangulated. The analogous 3D process begins with tetrahedron cells

that are decomposed into a boundary conforming mixed hexahedron-tetrahedron mesh.

Local foreground refinement is performed to improve geometric resolution and reduce

geometry error. The algorithm to implement local refinement employs quadtree or (or octree in

3D) refinement of cells in the intial background grid prior to their triangulation (or subdivision

into hexahedrons). If additional levels of refinement are required, the cells of the newly refined

grid intersected by the level-set isocontour can be further identified and subdivided. For this

example, three sets of foreground meshes are utilized, with no, one level, and two levels of local

refinement, examples of which are shown in Figure 4.9.

The meshes generated for this purpose are not suitable for classical FEM as they are
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poorly conditioned and may contain elements with arbitarily large aspect ratios. Additionally, the

meshes generated with local refinement contain hanging nodes which are not supported by most

FEM software. While the poor conditioning of the elements on the foreground mesh presents

no challenge for interpolation based methods, the hanging nodes are a different story. Function

spaces defined on meshes with hanging nodes are C−1 continuous, and are not suitable for

approximating PDEs with standard Galerkin’s method. While the previous numerical example in

Section 6.2.2 utilized a non-conforming function space, it was shown that the interpolation error

needed to be minimized with foreground refinement to achieve optimal convergence rates. The

problem presented by a C−1 foreground mesh is similar, but cannot be overcome with foreground

refinement.

Instead, a novel ‘double interpolation’ strategy is employed. A new C0 ‘midground’

mesh and function space V mg = span{Nmg
i }µ

i=1 is introduced. The midground mesh is selected

such that the foreground mesh is ‘midground fitted’, meaning the domain of each cell on the

midground can be exactly represented as the union of cells on the foreground mesh. This

minimizes interpolation error between the midground and foreground mesh and insures the

continuity of the interpolated basis. In this case, the midground mesh is taken as the initial grid

used in the foreground mesh generation process.

The RKPM basis is first interpolated with functions from the midground space, and then

interpolated again onto the foreground space

Ψ̂I(xxx) =
µ

∑
j

M1
I jN

mg
j (xxx) =

µ

∑
j

ν

∑
k

M1
I jM

2
jkNk(xxx), (6.30)

where

M1
I j = ΨI(xxx

mg
j ) and M2

ik = Nmg
i (xxx j) (6.31)

are the new extraction operators.
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The impact of this double refinement strategy on an individual shape function is illustrated

in Figure 6.6.

The effects of both local refinement and double interpolation on the approximation

PDEs is shown in Figure 4.10. The dotted lines depict results from the original interpolation

strategy, while solid lines shown result with two levels of interpolation. With the original

interpolation strategy, the discontinuities in the locally refined interpolated bases degrade error

convergence rates. With the introduction of doubled interpolation, local refinement is sufficient

to reduce geometric error and achieve ideal error convergence rates for both linear and quadratic

interpolated RKPM functions.

6.2.4 Three-material square model problem

Heaviside enrichment is employed to modify RKPM for multi-material problems, follow-

ing the enrichment scheme employed for immersed IGA in chapter 5 Section 5.1.2. As with the

immersed setting, the material subdomains are described with characteristic functions ψm,

ψ
m(xxx) =


1, if xxx ∈ Ωm

0, else.
(6.32)

Each basis function is inspected to determine if its support is intersected by a material interface.

If so, it is enriched. The enriched basis functions are expressed as

Ψ
m
I (xxx) = ψ

m(xxx)Ψ(xxx), ∀ m ∈ {1, ...,L}, (6.33)

where L is the number of material subdomains. The original basis function can be recovered by

the summation of these enriched functions,

ΨI(xxx) = ∑
m

Ψ
m
I (xxx) (6.34)
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(a) A quadratic shape function is interpolated with a foreground function space defined on a mesh with
hanging nodes, resulting in discontinuities.

(b) The same shape function is first interpolated with a C0 midground function space, and then with the
C−1 foreground space, eliminating discontinuities

Figure 6.6. Visualizations of an RKPM shape function interpolated with a C−1 function
space, and in the two step process referred to as double interpolation using an intermediary C0

midground space.
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Figure 6.7. Convergence data for Int-RKPM applied to the linear elasticity problem of a plate
with hole. Normal interpolation is used for the dotted lines, and double interpolation used for the
solid lines

This section implements global enrichment as opposed to function-wise enrichment [146],

requiring sufficiently small supports of basis functions in the vicinity of the interface.

For enriched Int-RKPM, the material characteristic functions are discretized with a

piece-wise constant function space defined on the foreground integration mesh.

This enrichment scheme is tested on a multi-material domain using Poisson’s problem.

A 1x1 unit square is divided into 3 subdomains with interfaces at x = 0.2 and x = 0.8, such that

the subdomains are defined

xxx ∈ Ω
1, 0.0 ≤ x ≤ 0.2

xxx ∈ Ω
2, 0.2 < x ≤ 0.8 (6.35)

xxx ∈ Ω
3, 0.8 < x ≤ 1.0.

The subdomains are assigned material properties κ(xxx) = κm, xxx ∈ Ωm, with κ1 = 1.0, κ2 = 0.5,

and κ2 = 1.0, and are shown in Figure 6.8(a).

A source term f : Ω → R and Dirichlet boundary data T : ∂Ω → R on ΓT ⊂ ∂Ω are

ascribed. The strong form for the thermal problem then reads as: Find T : Ω → R such that ∀
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(a) (b) (c)

Figure 6.8. The subdomains, exact solution Tex, and the x-derivative of the exact solution. Black
dots show the nodal locations of the RKPM basis functions.

m ∈ M

−∇ ··· (κ(xxx)∇T ) = f in Ω
m,

[[T ]] = 0 on all Γkm,

[[qqq]] = 0 on all Γkm,

T = T on Γ
m
T ,

(6.36)

where Γkm = Ω
k ∩Ω

m ̸= /0, with k ∈ M and k ̸= m, are the material interfaces, and [[·]] =

(·)k − (·)m is the jump of a given quantity over an interface Γkm. The material fields are defined

T m = T (xxx), xxx ∈ Ωm, and qqqm =−κm∇T m. The domain Γm
T = ΓT ∪∂Ω

m are the intersections of

the domain boundaries with the material subdomain boundaries. nnn denotes the surface normal.

For this example the method of manufactured solutions is employed using the exact

solution

Tex(xxx) =
1
κ

sin
5π(x−0.2)

3
sin

5πy
3

, (6.37)
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which is constructed to be strongly continuous over the domain, but weakly discontinuous at

material interfaces. Tex and its x-derivative are shown in Figure 6.8. Tex is ascribed as Dirichlet

boundary data on the domain boundary. The source term is thus

f =−∇ ··· (κ(xxx)∇Tex) =
25π2

9
sin

5π(x−0.2)
3

sin
5πy

3
. (6.38)

The discrete form can be defined as: Find T h ∈ V T such that ∀θ h ∈ V h,

n

∑
m=1

[∫
Ωm

κ∇T h ···∇θ
hdΩ

]
−
∫

Ω

f θ
hdΩ = RD

T , (6.39)

where RD
T is the Nitsche’s method residual for enforcing Dirichlet boundary conditions,

RD
T =

n

∑
m=1

[
∓
∫

Γm
T

κ(T h −T )(∇θ
h ·nnn)dΓ −

∫
Γm

T

κθ
h(∇T h ·nnn)dΓ +

∫
Γm

T

β D
T κ

h
(T h −T )θ h dΓ

]
, (6.40)

h is taken as the foreground mesh size, and β D
T is a user specified constant. For this example

β D
T = 10. Heaviside enrichment results in strongly discontinuous basis functions, thus continuity

of the solution field must be enforced at the interfaces.This is done through the addition of

residual RI
T to equation 6.40. The residual is constructed as

RI
T =

n

∑
i=1

n

∑
j=i+1

[
−
∫

Γi j

[[T h]]{κ∇θ
h} ·nnn)dΓ

−
∫

Γi j

[[θ h]]{κ∇T h} ·nnn)dΓ

+
∫

Γi j

γ
i j
T [[T h]][[θ h]]dΓ

]
, (6.41)

where {·}= wi(·)i −w j(·) j is the weighted average.

The function space used to discretize the temperature field is constructed of RKPM shape
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functions. The shape functions, of polynomial order n = 1 or n = 2, have circular supports of

normalized radius a = n+1. The support radius is normalized by each domain kernel spacing,

computed using the distance between the node and its fourth farthest neighbor. Cubic splines are

used as kernel functions φ . Interpolation is performed with a boundary conforming quadrilateral

mesh, with element sizes equal to nodal spacing and equal order foreground polynomials (k = n).

For classic RKPM, integration is performed using Gauss quadrature points defined upon

a uniform grid or equal resolution to the RKPM-nodal spacing. A 6×6 Gauss point rule was

employed for linear basis functions and an 8×8 Gauss point rule was employed for quadratic

basis functions. For the enriched classic RKPM analysis, the exact characteristic function for

each material interface was used from the domain description in equation 6.35.

The results of this convergence study are shown in Figure 6.9. Classic RKPM and

Int-RKPM behavd almost identically in the presence of solution discontinuities, see the errors

plotted along the line y = 0.3 in Figure 6.10. Without enrichment, suboptimal error convergence

rates are observed due to solution errors near the discontinuities.

With Enriched RKPM and Enriched-Int RKPM, ideal error convergence rates are achieved

for n = 1, with Enriched-Int RKPM having slightly worse error magnitude in the H1 error norm,

following what was observed in subsection 6.2.1. For n = 2, Enriched RKPM demonstrates ideal

error convergence rates in the pre-asymptotic regime, but rates increase with refinement due to

slight errors near the discontinuities (see the yellow line in Figure 6.10). Enriched Int-RKPM

provides a smoother solution space and produces ideal error convergence rates in the asymptotic

regime.

6.2.5 Material interfaces with irregular geometries

Employing both the enrichment strategy introduced in Section 6.2.4 and the local re-

finement techniques from Section 6.2.3, Int-RKPM is extended to multi-material PDEs with

irregularly shaped interfaces. This capability is verified with a classic benchmarking problem: a

circular inclusion is embedded in a semi-infinite medium and a uniform isotropic eigenstrain is
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Figure 6.9. Convergence data for the three material heat conduction problem, comparing .

imposed upon the inclusion. The formulation of this problem is given in this thesis in chapter 5

Section 5.3.2 and appendix 5.A.

The weakly discontinuous analytic solution for the radial displacement is given in [161]

as

ur =


C1r, r ≤ R,

C1
R2

r
, r ≥ R,

(6.42)
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Figure 6.10. Enriched RKPM and classic RKPM are compared with their interpolation counter-
parts. Enriched RKPM and Enriched Int-RKPM accurately resolves the weakly discontinuous
temperature field.

where R is the radius of the inclusion and

C1 =
(λ1 +µ1)ε0

λ1 +µ1 +µ2
. (6.43)

For this example, the inclusion is comprised of Material 1 with Lamé constants λ1 =

497.16 and µ1 = 390.63, while the exterior plate is made of Material 2 with λ2 = 656.79,

and µ2 = 338.35. The eigenstrain ε0 = 0.1 is imposed on the inclusion. The same geometric

discretizations and RKPM functions used in Section 6.2.3 of this chapter are employed here,

such that R = 1. To approximate an infinite domain, the exact solution is imposed as Dirichlet

boundary data on the top and right of the domain, and symmetry conditions are enforced on the

left and bottom.
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With enrichment and double interpolation, the midground mesh must also be enriched

to accommodate for discontinuities within basis functions. As with the background RKPM

functions, midground shape functions with support straddling the material interface are identified.

By restricting the midground function space to discontinous Galerkin type spaces, a relationship

may be developed associating each cell with a unique set of degrees of freedom. Thus all cells on

the midground mesh ω
mg
e , covered by triangular elements on the foreground mesh will support

basis functions requiring enrichment.

Using the characteristic functions given in Equation 6.32, the midground functions are

enriched such that

Nmg,m
i = ψ

m(xxx)Nmg
i , ∀m ∈ {1, ...,L}. (6.44)

As this will add additional degrees of freedom to the midground basis, an additional set of

characteristic functions must be defined to facilitate enrichment of the background RKPM basis:

ψ
m
mg(xxx) =


1, if xxx ∈ {ω

mg
e }m

0, else,
(6.45)

where {ω
mg
e }m is the set of all elements in the midground mesh covered by quadrilateral elements

in Ωm on the foreground mesh or by triangular elements on the foreground mesh.

The foreground and midground characteristic functions are illustrated for the circular

inclusion problem in Figure 6.11.

Thus enriched RKPM functions being evaluated for double interpolation are expressed as

Ψ
m
I (xxx) = ψ

m
mg(xxx)Ψ(xxx), ∀ m ∈ {1, ...,L}. (6.46)

Note that as the midground material indicator functions may overlap, the summation of enriched

RKPM functions is no longer equivalent to the original function.
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Figure 6.11. The material subdomain indicator functions discretized on both the foreground
and midground meshes. Foreground meshes use two levels of local refinement.

With enrichment and double interpolation, ideal error convergence rates are observed for

both linear and quadratic functions. Local refinement is required to reduce geometric error to

below method error for quadratic functions. This problem validates the use of Int-RKPM for

multi-material PDEs on irregular geometries.

Chapter summary

This chapter introduces a novel interpolation-based reproducing kernel particle method

(Int-RKPM). This method is implemented through the open-source finite element software

FEniCSx. Classical RKPM shape functions are interpolated as linear combinations of Lagrange

polynomial shape functions. As with most meshfree methods, a foreground mesh is required for

integration purposes, but it not subject to the typical quality constraints of classic finite element

analysis. This foreground mesh is used to create a foreground Lagrange polynomial basis for

interpolation of the RKPM basis. The interpolated basis retains the vital properties of the original

RKPM basis, and is suitable for the approximation of PDEs, as illustrated in the numerical

examples.

The first numerical example demonstrates the error convergence rates of a Poisson

problem, comparing classical RKPM (integrated using high-order Gauss quadrature schemes)

with the Int-RKPM methods. It is shown that a quadratic foreground basis of equal spatial
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Figure 6.12. Convergence data for eigenstrain imposed upon a circular inclusion, comparing
both local refinement and the classic interpolation and double interpolation techniques.

refinement to the background nodal spaceing is sufficient for the Int-RKPM results to match

the error magnitude of the classic RKPM. The biharmonic numerical example demonstrate the

effective continuity of the Int-RKPM basis is sufficient to solve fourth order PDEs, which is

not possible with classic FEA. Int-RPKPM is then tested with foreground meshes possessing

hanging nodes, resulting from quadtree local refinement strategies. A novel double interpolation

strategy is implemented to ensure C0 continuity of the interpolated basis, and with this strategy

local refinement is implemented to reduce geometric error for problems with irregular domain

boundaries. Int-RKPM is implemented with Heaviside enrichment to solve multi-material PDEs,

as demonstrated by the fourth numerical example. Enrichment is also implemented with local
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foreground refinement, using the new double interpolation technique.
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Chapter 7

Conclusions and future work

7.1 Conclusion

This thesis introduces a new paradigm for defining and implementing high-order-accurate

immersed-boundary methods, immersogeometric methods, and RKPM. These methods are based

on interpolating basis functions defined on a boundary-unfitted background discretization into a

function space defined on a foreground mesh that is fitted to the domain boundary but subject to

fewer topological or geometrical constraints than a standard FEA mesh.

Compared with existing variational immersed methods that use foreground meshes to

define quadrature rules for functions on background meshes, interpolation-based immersed finite

element analysis provides more flexibility with respect to the construction of the foreground mesh

and more straightforward reuse of existing FE software. The interpolation-based methodology is

capable of exactly reproducing quadrature-based immersed methods under certain conditions,

but it also enables efficient approximations that reduce computational cost with no significant

loss of accuracy.

The extension of the proposed interpolation-based immersed method to multi-material

and multi-physics also demonstrates significant advantages to traditional multi-material and

multi-physics methods. The more geometrically complex a multi-material interface is, the more

expensive traditional immersed boundary methods become, and thus the greater the reduction in

computational cost from employing interpolation. The interpolation-based method also employs
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a single integration mesh that can be used for coupling multiple fields using different background

discretizations.

Interpolation-based RKPM is perhaps the most novel contribution within this disserta-

tion. Int-RKPM is able to reproduce the results of classical RKPM for several fundamental

benchmarking problems, with considerable computational savings. Viewed as a new integration

technique, it has the potential to increase access to meshfree methods through implementation

workflows within existing FE software. Taken as a new method for approximating the derivatives

of RKPM functions, the potential applications are more numerous.

The interpolation-based methods presented in this thesis require the construction of a

foreground mesh and execution of an assembly loop over its elements. An engineer prioritizing

simplicity may then ask, why not just directly solve the system resulting from this foreground

discretization? The preceding sections contain several different answers to this question, which

are now compiled into an itemized summary of the advantages of the various interpolation-based

methods over classical body-fitted FE analysis using the foreground mesh:

• The linear system resulting from the foreground discretization would be singular in

many problems of interest, e.g., the fourth-order biharmonic (Sections 4.3.2 and 6.2.2)

and Kirchhoff–Love (Section 4.4) problems. These problems can only be solved with

sufficiently continuous basis functions, such as quadratic B-splines or RKPM functions

employing quadratic B-spline kernels.

• Even for second-order problems, one might wish to use a non-conforming approximation

of H1, e.g., a foreground mesh containing hanging nodes, whose construction is subject to

fewer topological constraints. This demonstrated in Sections 4.3.3, 5.4, and 6.2.3, which

employ mixed element type locally refined foreground meshes with hanging nodes. These

types of foreground meshes are not easily discretized by most FEA software, and not at all

supported outside the interpolation framework within FEniCS or FEniCSx.

• Even if the domain Ω is easy to mesh in a conforming way, one may still wish to approxi-
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mate PDE solutions with functions such as B-splines that are only convenient to construct

on a tensor-product grid.

• The numerical results of Section 4.3.1 demonstrate that interpolation-based immersed

methods consistently require fewer degrees of freedom for the same accuracy when

compared to classical body-fitted FE analysis using the foreground mesh (in cases where

the latter is well-posed at all).

• Many of the attractive properties of RKPM not available in classical FEA can still be

exploited in the interpolated setting. For example local refinement, or the arbiatray

addition or subtraction of individual basis functions can be performed without altering

the foreground integration mesh. Additionally, the number of degrees of freedom in an

RKPM approximation does not increase with increasing polynomial reproducibility, which

dramatially reducing the size of the resulting linear system when compared with classical

FEA.

The non-invasive implementation of interpolation-based immersed methods discussed in

Section 4.2 is of great practical significance, as implementation cost has been a major barrier to

widespread adoption and application of immersed methods proposed in the academic literature.

The FEniCS-based prototype used for experiments appearing in chapter 4 is available online

[69]. The dissertation author is the primary developer of this module. This tool is reccomended

for users looking to interface with classic FEniCS modules, including the software library

tIGAr. The next gen FEniCSx-based module used for the experiments appearing in chapter 5 is

available online [68]. The dissertation author is the sole developer of this module. This tool is

recommended for all new users of interpolation-based immersed methods.

The numerical experiments appearing in chapter 6 were also performed within FEniCSx.

The python module developed for the implementation of Int-RKPM within FEniCSx will be

made available on the dissertation author’s github upon publication of the material appearing in
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chapter 6. This module is made up of two parts, one employing FEniCSx for Int-RKPM, and

one with only standard python dependencies for classical RKPM.

7.2 Future work

This thesis has demonstrated the application of interpolation-based methods to several

computational mechanics techniques. The dissertation author makes the following recommenda-

tions for additional avenues of research.

• Within FEniCSx, additions to the interpolation-based immersed boundary workflow will

be the implementation of stabilization techniques to address issues of linear conditioning.

Unpublished work has investigated the addition of basis agglomeration (introduced for

CutFEM in in [60]) to improve conditioning. The implementation of ghost stabilization

[37] could also increase the functionality of the interpolation-based method for unsteady

or time dependent problems, where the critical time step can be several decreased by cut

cells.

• Further characterization of the effects foreground basis quality on the behaviour of interpo-

lated bases. This work has demonstrated that the behaviour and properties of interpolated

bases are primarily dependent upon the properties of the background basis, but with the ex-

tension to purely background-unfitted extraction in Chapter 6, users have greater freedom

to alter the foreground mesh and basis defined with it.

• Hand in hand with the previous bullet, further characterization of the properties of bases

interpolated with C0 foreground spaces, and their use for higher order PDEs, is still lacking.

While this is justified in the case of exact interpolation, it is unclear how this is possible

with in the cases of approximate interpolation.

• Extension of the discontinuity modeling capabilites of Int-RKPM, in particular investi-

gating the potential of kernel scaling [157, 162] to represent discontinuities as opposed
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to enrichment. Kernel scaling has the potential to represent either weak or strong discon-

tinuities, avoiding the necessities of Nitsches interface conditions. A ‘purely meshfree’

implementation, kernel scaling also results in smaller linear systems than enrichment as

it adds no additional degrees of freedom. This also allows for easier bookkeeping and

implementation. Kernel scaling and enrichment also enable Int-RKPM to model strongly

discontinuous problems such as fracture. The idea of utilizing Int-RKPM for fracture

requires one to grapple with the largest disadvantage of interpolation-based methods: the

requirement of a boundary conforming foreground mesh. The dissertation author leaves

these questions to future researchers.
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