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ABSTRACT OF THE DISSERTATION

The kinetics of bacterial growth transitions

by

David William Erickson

Doctor of Philosophy in Physics (Biophysics)

University of California, San Diego, 2014

Professor Terence T. Hwa, Chair

Bacteria in changing environments must constantly adapt to grow and survive.

The adaptive response to change can be extremely complex, as it depends not only on

the current conditions, but also on the history of the cell over many generations. For this

reason, most of our understanding of bacterial physiology comes from so-called steady

state growth, where cultures are grown in static environments for a long time. As a

first step toward understanding the kinetics of adaptation, we build on the foundation

of steady-state growth and study transitions between two well-defined steady states of

E. coli.

We first focus on carbon upshifts, in which cells growing in steady state are

supplemented with a better carbon source and transition to a new steady state with

faster growth. We observe that the response of growth rate has multiple timescales and

xiii



occurs over the course of several generations. The rate of biomass accumulation (i.e.

flux), on the other hand, reaches its final behavior much more quickly. We develop a

model that quantitatively reproduces these kinetics using only empirical observations

of ribosome and catabolic enzyme synthesis in steady state and the known topology

of regulatory interactions. The model is solved analytically and has only a single free

parameter that captures the initial influx of the added carbon. We predicted that if this

initial flux is high enough the growth rate can transiently exceed its steady state value

for several hours; this is verified by synthetically titrating carbon transport enzymes.

We also studied carbon downshifts, in which cells growing on a combination of two

carbon sources deplete one of them and transition to slower steady state growth on only

a single carbon source. We observe that the growth rate recovers more quickly than

for upshifts, but the growth kinetics are also quantitatively captured by our model. We

are able to reproduce surprising and counterintuitive kinetics of growth transitions with

a conceptually simple model. The success of our approach demonstrates the power of

empirical characterizations to quantitatively capture biological phenomena.
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Chapter 1

Introduction and background

1.1 Introduction

In nature bacteria must constantly adapt to environmental changes in order to

grow and survive. Indeed, even in industrial bioreactors it is difficult to maintain an

optimal homogeneous growth environment and metabolic shifts are common [1]. Under-

standing how bacteria adapt to the changes in their environment is a major challenge of

bacterial physiology and systems biology [2].

Here we study the kinetics of Escherichia coli throughout growth transitions.

We begin in this chapter by reviewing important observations about bacterial growth in

constant environments. We then briefly discuss the commonly studied types of growth

transitions and define the growth transitions that we focus on here. In Chapter 2 we

present observations of the kinetics of mass accumulation throughout carbon upshift

transitions. In Chapter 3 we derive a simple analytical model of carbon upshift using the

observations from Chapter 1 and insights from the general observations made in Chapter

2. In Chapter 4 we compare the model to experimental observations and find good

agreement. In Chapter 5 we extend the simple model to carbon downshift transitions

and compare to observations. In Chapter 6 we summarize general lessons from this study

and remaining questions and future directions.

1
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1.2 Steady state balanced growth

Steady state, or balanced, growth is defined as the condition in which all cell

constituents increase by the same factor during the same time interval [3]. Bacteria

maintained in a proper constant environment for a long time grow exponentially and

reach steady state. The steady state growth condition is maintained indefinitely as

long as the environment is unchanged. Steady state growth provides a well-defined,

reproducible condition for studying bacterial physiology [4].

In steady state growth, the exponential rate of growth of the culture (the “growth

rate”) rate is an important quantity. By definition, in steady state growth each cellular

constituent (X) increases with the steady state growth rate (λ∗)

dX

dt
= λ∗X. (1.1)

Here, and throughout this document, we use asterisks (∗) to denote intrinsic quantities

observed in steady state balanced growth. The growth rate quantifies the ability of the

bacteria to grow in the prescribed environment and can be quantified accurately, easily,

and reproducibly [5]. Remarkably, despite the immense complexity of underlying regu-

latory networks, the macromolecular composition of the bacterial cell is found to depend

primarily on the growth rate of bacteria in steady state growth, largely independent of

the specific nutrients in the growth medium [6] [7] [8] [9].

1.2.1 Ribosome line

Protein synthesis machinery (i.e. ribosomes and affiliated factors) plays a central

role in microbial growth. To keep up with the need for high rates of protein synthesis at

fast steady state growth rates, cells have increased ribosome content [6] [10] [11] [12]. For

E. coli in steady state exponential growth with growth rate modulated by the nutritional

quality of the medium, the RNA/protein ratio is linearly correlated with the growth rate

λ∗ [11] [13] [9]. For example, in Fig. 1.1 we plot the RNA/protein data from Table S10

of [14] with growth rate modulated by carbon source. The RNA/protein ratio is well

established as a proxy for ribosome content [6] [9]. Thus in steady state there is a linear
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Figure 1.1: Linear correlation between growth rate and RNA/protein. Growth rate of

wild-type E. coli NCM3722 is varied by nutrient quality during batch culture growth in

37◦C with good aeration. Total RNA and total protein amounts are quantified and the

ratio RNA/protein is linearly correlated with growth rate. Black points are data. Red

line is a linear fit to the data shown.

relationship between the growth rate and the ribosomal mass fraction

φ∗R = φR,min + λ∗/γmax (1.2)

with

φR ≡MR/M, (1.3)

where MR is the total mass of ribosomal proteins together with their affiliates, including

all the initiation factors, elongation factors, tRNA synthases, etc., and M is total protein

mass. The line is completely determined by the constants describing the vertical intercept

(φR,min) and the slope (1/γmax). We refer to the linear relationship between ribosomal

mass fraction and growth rate as “the ribosome line”.

The increasing fraction of total protein devoted to ribosomes can be rationalized

by considering constraints on the cell. To achieve faster growth the cell must produce

protein at a faster rate. All protein synthesis is a result of the activity of ribosomes.

Thus the cell needs amount of ribosomes at faster growth. The cell could maintain a

large ribosomal mass fraction even at slow growth, but this would come at the expense

of other (presumably more useful) proteins.
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1.2.2 Translational activity

In steady state growth the rate of protein synthesis is equal to the rate of growth.

Since ribosomes catalyze protein synthesis, the demand for ribosome activity depends

intimately on the growth rate. The cell can meet the demand for protein synthesis by

changing the amount of ribosomes and by adjusting the catalytic rate of the ribosome.

We already showed above that in steady state the ribosome abundance is a linearly

increasing function of the growth rate. In this section we will discuss the catalytic rate

of the ribosome.

We define “translational activity” (γ) as the protein synthesis rate per ribosome

mass

γ ≡
(
dM

dt

)
/MR. (1.4)

Here we do not distinguish between active and inactive riboomes; γ is the average activity

of all ribosomes. In steady state, protein synthesis rate is related to growth rate in

accordance with Eq. (1.1) and we can express the translational activity in terms of the

ribosomal mass fraction (defined in Eqs.. (1.3) and (1.4), respectively)

γ∗ = λ∗/φ∗R. (1.5)

Using Eq. (1.5) we can calculate the translational activity purely from the growth

rate and the ribosomal mass fraction in steady state. We use the growth rate dependence

of the ribosomal mass fraction (Eq. (1.2)) to calculate the translational activity as a

function of steady state growth rate

γ∗ =
λ∗

φR,min + λ∗/γmax
. (1.6)

The translational activity is found to be a Michaelis-Menten function of the steady state

growth rate.

The dependence of translation speed on growth rate in steady state is well known

[15] [16] [17] [11] [15]. The growth rate dependence of the translation speed is well

described by a Michaelis-Menten function and was recently found to be consistent with

the coregulation of ribosome- and tRNA-affiliated proteins [18].
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Figure 1.2: Linear correlation between growth rate and catabolic protein abundance.

1.2.3 Catabolic line

We have thus far explored the growth rate dependence of the abundance and

activity of the protein synthesis machinery in E. coli. Of course, the translation machin-

ery requires amino acid substrates to make proteins. In this section we will explore the

growth rate dependence of the carbon influx machinery required to provide the building

blocks for protein synthesis.

Cyclic AMP (cAMP) has a global regulatory role in E. coli and is required

for the expression of many catabolic enzymes [19] [20]. The synthesis of cAMP is in-

hibited by glucose uptake via the phosphotransferase system [21] [22]. E. coli grown

on PTS-independent carbon sources has also showed reduced cAMP levels [23] [24]

[25]. Recently it was shown that in steady state the mass fraction of cAMP-dependent

catabolic proteins correlates linearly with growth rate when E. coli is grown in mini-

mal medium batch culture with different carbon sources [14]. We replot the data from

Table S1 of [14] in Fig. 1.2. The Lac repressor (LacI) was deactivated using isopropyl-β-

D-thiogalactopyranoside (IPTG) to characterize the cAMP-dependent expression level

[26]. We note that OD600 is roughly proportional to total protein independent of nutri-

ent conditions (see Fig. S14 in [14]) so that the y-axis of Fig. 1.2 is proportional to the

mass fraction of LacZ. Then

φ∗Cj = hCj(1 − λ∗/λC) (1.7)



6

where

φ∗Cj ≡MCj/M (1.8)

is the mass fraction of the catabolic protein MCj . The constant hCj is the y-intercept

and is specific to each catabolic protein. The constant λC is the x-intercept and is shared

by all proteins. We refer to the linear relationship between catabolic mass fraction and

steady state growth rate as “the catabolic line”.

1.2.4 Growth rate addition

Bacteria cultured in the presence of two carbon sources can either consume

them both simultaneously (simultaneous usage) or consume only one while suppress-

ing metabolism of the other (hierarchical usage). Here we discuss simultaneous carbon

usage. We show that the steady state growth rate of E. coli on the combination of

carbon sources can be predicted from the knowledge of the steady state growth rates on

the individual carbon sources.

For saturating concentrations of carbon source Cj its influx is

JCj = kCjMCj . (1.9)

kCj is the catabolic rate constant. MCj is the mass of the rate-limiting catabolic enzyme

for the carbon source Cj. In the simplest case of simultaneous carbon usage the total

carbon flux is the sum of the individual carbon fluxes. Then the total carbon flux JC

for E. coli cultured in the presence of two carbon sources (C1 and C2) is

JC = kC1MC1 + kC2MC2. (1.10)

The carbon efficiency relates carbon flux to protein flux

c0 ≡
dM

dt
/JC . (1.11)

It was recently observed that the carbon efficiency c0 is constant and thus carbon flux

is proportional to protein synthesis flux (Table S8 in [27]). We use the steady state

condition Eq. (1.1) for total protein mass to find a relationship between carbon flux and
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the steady state growth rate

λ∗ = c0
JC
M
. (1.12)

The catabolic line discussed in Sec. 1.2.3 relating the expression of catabolic

enzymes to the steady state growth rate in minimal medium supplemented with dif-

ferent carbon sources is also observed for growth on multiple carbon sources. Thus

the expression of the catabolic proteins is captured by the catabolic line Eq. (1.7)

(φ∗Cj = hCj(1 − λ∗/λC)).

The mass fraction of catabolic proteins is related to the steady state growth rate

by the catabolic line Eq. (1.7). The mass fraction of the catabolic proteins, in turn,

determine the total carbon flux by flux addition Eq. (1.10). The resulting total carbon

flux is related to the growth rate via the carbon efficiency by Eq. (1.12). Combining

these three observations reveals that for growth on two carbon sources (with steady

state growth rate λ∗12)

λ∗12
λC − λ∗12

= c0 (kC1hC1 + kC2hC2) . (1.13)

For growth on a single carbon source Cj with growth rate λ∗j , the same calculation yields

λ∗j
λC − λ∗j

= c0 (kCjhCj) . (1.14)

Substituting Eq. (1.14) into Eq. (1.13) we find

λ∗12
λC − λ∗12

=
λ∗1

λC − λ∗1
+

λ∗2
λC − λ∗2

. (1.15)

The growth rate on two simultaneously used carbon sources can be quantitatively pre-

dicted solely in terms of the growth rates on the individual carbon sources and the

constant phenomenological parameter λC . The validity of this relation has been verified

for growth on simultaneously used carbon sources in steady state [28].

Our model for the kinetics of bacterial growth transitions relies on the same

equations as this two carbon growth rate formula derivation. The fact that Eq. (1.15)

is quantitatively verified provides a measure of confidence in the validity of Equa-

tions (1.7), (1.10) and (1.12) and their applicability.
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1.3 Dynamic nutrient environments

Thus far we have described observations about the growth of E. coli in steady

state exponential growth. Studying steady state growth is unparalleled as a tool to study

bacterial physiology because it provides a well-defined and reproducible condition. But in

nature the availability of nutrients changes in time. Bacteria must adapt to the changing

environment in order to grow and survive. Indeed, bacterial fitness is dependent on how

they adapt to changing conditions. Here we will investigate the kinetics of biomass

accumulation in changing nutrient environments.

In order to have a chance to understand physiology in dynamic nutrient environ-

ments we will study well-defined and reproducible transitions. Thus we seek a dynamic

nutrient environment with initial and final conditions in steady state exponential growth.

1.3.1 Diauxie and carbon downshift

Diauxie, the canonical growth transition, is the biphasic growth pattern observed

when an organism is grown on a pair of carbon sources [29]. The culture exhibits two

periods of exponential growth separated by a lag period. An example growth curve for

a diauxie transition is shown in Figure 1.3. We here distinguish two different kinds of

diauxie: hard diauxie and soft diauxie (or ’“carbon downshift”).

Hard diauxie is characterized by strict inhibition of the metabolism of one of

the carbon sources in the first growth phase. Each period of exponential growth then

corresponds to exclusive utilization of a single carbon source [30]. The glucose-glycerol

diauxie growth curve in Figure 1.3 is an example of hard diauxie. Initially glucose and

glycerol are both present. OD600 increases exponentially and glucose, the preferred

carbon source, is consumed. Once glucose is exhausted a characteristic lag is observed

as the culture adapts to the new nutrient condition (growth on glycerol as the sole carbon

source). Eventually the culture reaches a new steady state growth condition.

Soft diauxie (or “carbon downshift”) is characterized by simultaneous usage of

both carbon sources in the initial growth phase. OD600 increases exponentially during

this phase until one of the carbon sources is depleted. The disappearance of this carbon

source results in a sudden decrease in the total cellular carbon influx. The characteristic
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Figure 1.3: Glucose-glycerol diauxie. Wild-type E. coli NCM3722 is grown at 37◦C in

minimal medium with glucose and glycerol. The growth curve exhibits the characteristic

diauxie lag. The data is reported in Table 7.3

diauxic lag occurs as the cells adapt to the new environment (growth on a single carbon

source).

In diauxie the initial and final growth states are well-defined (steady state bal-

anced growth). Diauxie is also the best known and best studied example of a dynamic

nutrient environment. However, diauxie is a complicated kinetic process. The culture is

initially in a steady state, but once one carbon source is exhausted the cells are suddenly

in a carbon-poor condition. As the cells adapt to the new environment they metabo-

lize the new carbon source and leave the carbon-poor state as they transition to their

final steady state. So in diauxie the culture experiences two transitions: first a drop

in carbon quality as one carbon source is exhausted and then an increase in carbon

quality as the cell adjusts its metabolism. In addition, the intermediate carbon-poor

state is very poorly understood. We note here that in carbon downshift the intermediate

carbon-poor state is less severe than for hard diauxie. This relieves one of the difficulties

of understanding the diauxie growth transition. In Chapter 5 we will explore carbon

downshifts, but we first seek a simpler dynamic growth environment before expanding

to more complicated transitions.
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1.3.2 Carbon upshift

We deem the dynamic nutrient condition at the core of this work “carbon up-

shift”. E. coli is cultured at 37◦C in minimal medium with a single carbon source.

During steady state exponential growth a second carbon source is added to the medium

and both carbon sources are in surplus for the rest of the experiment. The second carbon

source allows faster growth so that the culture transitions from slower to faster growth.

Carbon upshifts are simple dynamic nutrient environments. They involve only

a single transition from one steady state growth condition to another. All nutrients are

always in surplus so that there are no intermediate nutrient-poor states. The transition

from slower to faster growth results from the addition of just a single compound. In

the literature it is common to add a cocktail of many compounds [31], which signifi-

cantly complicates understanding. The simplicity of carbon upshifts provides a minimal

model system for the study of the kinetics of mass accumulation in dynamic nutrient

environments.

Aside from being a nice model system for the study of dynamic nutrient environ-

ments, carbon upshifts have practical importance. Carbon upshifts should be ubiquitous

in nature and understanding how bacteria adapt has clear implications for fitness; faster

adaptation is fitter, all other things being equal.

1.4 Acknowledgments
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Chapter 2

Kinetics of mass accumulation

throughout carbon upshift

2.1 Introduction

In this chapter I describe general observations about the kinetics of mass accu-

mulation throughout carbon upshift. I first describe our experimental setup.

2.2 Flowcell

To study the kinetics of mass accumulation requires precise, accurate observa-

tions with good temporal resolution for many hours. To meet these requirements we

constructed the experimental setup in Fig. 2.1 to measure OD600 continuously. E. coli

is cultured in a shaking Erlenmeyer flask. A peristaltic pump is used to pump the culture

from the flask to a flowcell cuvette and back to the flask. The OD600 of the culture in

the cuvette is measured continuously. The entire device is kept in an incubator at 37◦C.

A typical growth curve for wild-type E. coli K-12 in steady state balanced growth

in the flowcell device is plotted in Fig. 2.2. The OD600 is exponential in time (solid black

points). The data points are barely visible behind the fitted exponential curve (red

line). The observed growth rate (0.89 h−1) is comparable to batch culture observations

(λglucose =0.88 h−1). We generally observe the same growth rate in the flowcell device

as in batch culture, providing confidence that the experimental setup is not influencing

11
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Figure 2.1: A cartoon of the flowcell device setup. The entire setup is contained in

an incubator held at 37◦C. E. coli is cultured in a shaking (250rpm) Erlenmeyer flask.

A peristaltic pump is used to pump the culture from the flask to a flowcell cuvette and

back. While in the flowcell cuvette a spectrophotometer measures OD600.

our results.

2.3 OD600 throughout carbon upshift

A typical growth curve throughout carbon upshift is shown in Fig. 2.3. We define

time relative to the time at which the new carbon source is added so that t = 0 is the

moment of addition. Before upshift (t < 0) the culture is in steady state exponential

growth on the single carbon source mannose and thus follows the exponential curve

plotted in red. At t = 0 the second carbon source lactose is added to the culture so that

for t > 0 the culture adjusts to a new, faster steady state exponential growth rate and

thus increases faster than the red curve.
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Figure 2.2: Steady state growth on glucose in the flowcell device. NCM3722 in steady

state balanced growth on glucose in the flowcell device.

2.4 Growth rate relaxes on a long timescale

The raw growth curve does not nicely convey how the bacteria adjust to the

new nutrient condition. Typically the steady state growth rate, defined as the slope

of the logarithm of biomass, is used to quantify the rate of mass accumulation. Here,

we generalize the growth rate concept to kinetic situations and define the instantaneous

growth rate as the local slope of the logarithm of total protein mass (M)

λ ≡ d

dt
ln[M ] (2.1)

We take OD600 as a measure of total protein and note that OD600 is a good proxy for

total protein independent of nutrient conditions (see Fig. S14 in [14]). Growth rate as

defined here is a useful quantity because it captures the exponential rate of growth. In

steady state, growth is exponential and thus growth rate is constant. Carbon upshift

experiments start with a culture in steady state balanced growth with initial growth rate

(λi) and add a new carbon source and the culture adjusts to a new, faster steady state

growth rate (λf ). Thus a plot of growth rate is constant before upshift and eventually

reaches a new, higher constant value.

A typical plot of growth rate throughout carbon upshift is shown in Fig. 2.4.

Each point is the growth rate calculated using Eq. (2.1) over a rolling 2 minute time

window. The known steady state initial and final growth rates are shown (red and
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Figure 2.3: Growth curve for mannose add lactose upshift in the flowcell device. Growth

curve for wild-type NCM3722 cells for mannose add lactose upshift. Black points are

OD600 data. The red curve is an exponential fit to the portion of the growth curve

on mannose alone. The observed growth rate (0.4 h−1) is the same as batch culture

observations.

green, respectively). Before carbon upshift the culture is in balanced growth and the

instantaneous growth rate is constant in time with the known initial steady state growth

rate λi =0.4 h−1. After the first ≈30min the growth rate of the culture has increased

halfway to the final growth rate. Suddenly the growth rate begins increasing with a

slower timescale and it takes more than an hour to increase half of the remaining growth

rate difference. Surprisingly, growth rate is still increasing an hour and a half after

carbon upshift. This long timescale behavior is not specific to this carbon upshift, as

will be seen later. Sufficiently long after carbon upshift, the growth rate must reach the

constant final steady state growth rate λf .

To observe that the cultures eventually reach the final steady state exponential

growth rate requires observation for much longer times. To accomplish this we must

serially dilute the culture throughout growth to prevent saturation. Figure 2.5 shows

the growth rate of a succinate add gluconate culture over much longer times (up to

5 h) after upshift. At the moment of upshift, growth rate increases about halfway from

the initial steady state growth rate (λi =0.45 h−1) to the final steady state growth

rate (λf =0.88 h−1). After this growth rate continues to relax but with a much slower

timescale. Growth rate does not reach the final steady state growth rate until about 2 h
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Figure 2.4: Growth rate for mannose add lactose upshift in the flowcell device. Growth

rate plotted versus time for wild-type NCM3722 cells for mannose add lactose upshift.

Black points are growth rate data. The red curve shows the steady state growth rate

for cultures on mannose alone. The green curve shows the steady state growth rate for

cultures on the combination of mannose and lactose.

after upshift. Growth rate remains fixed at the final steady state growth rate for the

indefinite future.

2.5 Flux relaxes on a fast timescale

We have thus far observed OD, which reflects the amount of biomass, and ob-

served that it does not give much insight into the kinetics of mass accumulation through-

out carbon upshift. We also observed growth rate, which measures the rate of exponential

accumulation of biomass, and found that after carbon upshift, growth rate increases to-

wards its final value quickly at first and then slows down and reaches the constant final

growth rate only after several doublings.

To further probe the kinetics of mass accumulation we look directly at the rate

of biomass accumulation. The protein synthesis flux, or flux for short, is the rate of

accumulation of total protein mass

J ≡ d

dt
[M ]. (2.2)

We again note that we take OD600 as a measure of total protein (OD600 is a good proxy
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Figure 2.5: Long time growth rate for succinate add gluconate upshift. Wild-type

NCM3722 cells were grown in minimal medium at 37◦C with 1 mM IPTG and 0.4%

succinate as the sole carbon source. At time zero gluconate was added to a final concen-

tration of 20 mM. Culture saturation was avoided by serial dilution into a fresh, identical

culture. The original culture was grown from -2.5h to 2h, the second culture from 1.3h to

3.3h, and the final culture from 3h to 4.7h. The raw OD600 data is reported in Table 7.4.

Black points are growth rate calculated from two consecutive OD600 measurements. The

red dashed line indicates the steady state growth rate of the initial culture before upshift.

The green solid line indicates the steady state growth rate of the culture after upshift.

for total protein independent of nutrient conditions; see Fig. S14 in [14]).

In steady state, protein mass increases exponentially in time with rate equal

to the growth rate. Thus the protein synthesis flux, which is the production rate of

protein, also increases exponentially in time with rate equal to the growth rate. In

carbon upshift experiments the culture is initially in steady state growth and thus the

flux grows exponentially with the initial growth rate. Eventually, the culture reaches a

new, faster steady state growth rate and thus the flux also grows exponentially in time

with the same rate.

A typical plot of flux throughout carbon upshift is shown in Fig. 2.6. Each point

is flux calculated using Eq. (2.2) over a rolling 2 minute time window. The known

steady state flux curves for the initial and final steady states are shown (red and green,

respectively). Before carbon upshift, the culture is in steady state growth and the flux

grows exponentially with rate equal to the initial growth rate λi =0.4 h−1. During the

first ≈30min the flux increases very quickly. Next the flux increases exponentially in
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Figure 2.6: Flux for mannose add lactose upshift in the flowcell device. Flux plotted

versus time for wild-type NCM3722 cells for mannose add lactose upshift. Black points

are growth rate data. The red curve shows the flux for steady state growth on man-

nose alone. The green curve shows the flux for cultures growing in steady state on the

combination of mannose and lactose.

time with rate equal to the final growth rate λf =0.95 h−1. The flux continues to grow

exponentially with rate λf indefinitely as long as the proper conditions are maintained.

Thus, unlike growth rate, flux reaches its final steady state behavior quickly (≈30min)

after carbon upshift. We will see later that this quick relaxation of flux to the final

steady state behavior is general.

We wish to observe cultures for long times after upshift. To accomplish this

we must serially dilute the culture throughout growth to prevent saturation. Figure 2.7

shows the growth rate of a succinate add gluconate culture over much longer times (up to

5 h) after upshift. Before upshift the flux grows with exponential rate equal to the initial

steady state growth rate (λi =0.45 h−1). At the moment of upshift, flux increases very

quickly so that it appears to have a jump within the time precision of our batch culture

measurements. Beginning soon afterwards, flux increases exponentially with rate equal

to the final steady state growth rate (λf =0.88 h−1). This continues for the duration of

observation.

The kinetics of flux throughout carbon upshift is relatively simple. Flux increases

exponentially before upshift because the culture is in steady state. Flux increases in a

nontrivial manner just after carbon upshift, but after ≈30min increases exponentially
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Figure 2.7: Long time flux for succinate add gluconate upshift. Wild-type NCM3722

cells were grown in minimal medium at 37◦C with 1 mM IPTG and 0.4% succinate as

the sole carbon source. At time zero gluconate was added to a final concentration of

20 mM. Culture saturation was avoided by serial dilution into a fresh, identical culture.

The original culture was grown from -2.5h to 2h, the second culture from 1.3h to 3.3h,

and the final culture from 3h to 4.7h. The raw OD600 data is reported in Table 7.4.

Black points are flux calculated from two consecutive OD600 measurements. The data

is stitched together to correct for dilution into sequential cultures. The red dashed line

indicates the flux of the initial steady state culture conditions before upshift. The green

solid line indicates the flux of the final steady state culture conditions after upshift.

with rate equal to the growth rate of the final steady state condition. In Chapter 3 we

will base our model of carbon upshift on flux because of its relatively simple kinetics.

2.6 Resolving the growth rate - flux paradox

Growth rate and flux appear to have contradictory behavior. Flux has simple

kinetics and quickly adjusts to its final behavior. However, growth rate does not quickly

reach its final value and instead continues to increase slowly for several generations.

How can it be that the rate of mass increase (flux) is in its final state, but the

exponential rate of mass increase (growth rate) does not reach its final state for several

generations? In this section I resolve this apparent paradox by starting with a simple

assumption. I will later derive the assumption from our model in Section 3.4.3.

Suppose that some time after carbon upshift protein mass increases as the sum
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of a constant term and a term that grows exponentially with the final growth rate

M(t) = A+Beλf t (2.3)

for some constants A and B. Then flux as defined in Eq. (2.2) grows exponentially

J(t) = Bλfe
λf t. (2.4)

But growth rate as defined in Eq. (2.1) is slowly increasing in time with the form

λ(t) = λf
1

1 + (A/B) e−λf t
(2.5)

and only reaches λf after several generations. The simple assumption in Equation (2.3)

produces the apparently contradictory observations of flux and growth rate shortly after

carbon upshift.

That protein mass should take the form hypothesized in Equation (2.3) is not

intuitive. We will derive the form from our model in Section 3.4.3, but will provide here

a brief discussion about how such a form arises. The biomass consists of an exponentially

growing term and a constant term. The exponentially growing term is expected because

bacteria in a good environment grow exponentially. The constant term represents protein

mass that is not growing. These proteins were produced in the initial growth condition,

but are no longer produced in the final growth condition. These proteins are useless for

growth in the new condition and are no longer being produced. Instead, these proteins

are simply diluted away by cell growth.
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Chapter 3

A simple analytical model of

carbon upshift

3.1 Introduction

In this chapter we develop and solve our quantitative model of carbon upshift.

The model is able to capture the fast increase of flux observed on the timescale of several

minutes (see Figure 2.6) as well as the slow relaxation of growth rate over much longer

timescales (see Figure 2.4) so that the entire growth curve is explained. The model is

conceptually simple and analytically solvable. We do not attempt to capture the details

of metabolic changes below the timescale of several minutes and are thus alleviated from

explicitly considering the complex molecular details of underlying regulations. Instead,

we only use the steady state growth observations (ribosome line and catabolic line) and

the known topology of the regulatory interactions. At most there is only a single free

parameter.

3.2 Model derivation

3.2.1 Qualitative description of the model

Figure 3.1 provides a cartoon summary of the structure of the model. Carbon en-

ters metabolism at the left and eventually leaves as protein biomass at the right. Carbon

20
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Figure 3.1: Cartoon summary of the carbon upshift model. We take a coarse-grained

view of metabolism, focusing on the biosynthesis of protein (red) from the carbon in-

flux (blue). Carbon enters the metabolism at the left by the activity of appropriate

catabolic enzymes. The total carbon flux is composed of the flux of both carbon sources.

Moving from left to right, the carbon is converted into various metabolites (e.g. car-

bon precursors, amino acids, charged tRNAs) depicted in green. The charged tRNAs

are incorporated into proteins by the ribosomes. These proteins include ribosomal and

catabolic proteins.

influx is catalyzed by the uptake systems specific to the two carbon sources present. The

two uptake systems are regulated only by general catabolic control (via cAMP-CRP,

which responds to the total carbon flux) and the sugar-specific auto-regulation. The

carbon influx is balanced with outflux to protein by a time-dependent ribosome activity.

The ribosomes are regulated in response to the availability of precursors (e.g. charged

tRNA).

3.2.2 Quantitative formulation of the model

The rate of increase of protein mass M is, by definition, the total protein synthesis

flux JR

JR ≡ dM

dt
. (3.1)

Protein synthesis is given by

d

dt
MR = χR(t) · JR(t), (3.2)

d

dt
MC1 = HC1(t) · χC(t) · JR(t), (3.3)

d

dt
MC2 = HC2(t) · χC(t) · JR(t). (3.4)
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The catabolic proteins (MC1 and MC2) are the rate-limiting enzymes for the catabolic in-

flux of the carbon sources C1 and C2, respectively. All protein synthesis is a result of the

action of ribosomes, composed of the ribosomal proteins (MR). χR(t) and χC(t) are the

fraction of total protein synthesis devoted to ribosomal proteins and catabolic enzymes,

respectively, and summarize the regulation of these proteins. HC1(t) and HC2(t) are the

sugar-specific regulatory functions (e.g. the transcriptional repression of the lac operon

by LacI) and capture the fraction of catabolic protein synthesis devoted the enzymes

MC1 and MC2, respectively. Carbon source C1 is always present so HC1(t) = hC1 is

constant for all time. To capture the expression of the rate-limiting enzyme responsible

for the catabolism of carbon source C2, HC2(t) increases from an initial constant value

to hC2 at the time zero (when C2 is added to the medium).

3.2.3 Ribosome regulatory function

Mechanistically, χR(t) is set by a number of factors, with a major one being

the tRNA charging level (which modulates the synthesis of ppGpp) [32]. To keep the

description contained within the essential dynamical variables introduced above, we note

that the tRNA charging level is reflected in the translational activity, defined as

γ ≡ JR
MR

. (3.5)

We then make the Ansatz that χR(t) depends on time only through γ(t), i.e.,

χR(t) = fR(γ(t)). (3.6)

To find the form of the function fR(γ), our strategy is to use the steady state

experimental knowledge of the ribosomal mass fraction, φR ≡ MR/M . First we define

the instantaneous growth rate

λ(t) ≡ d

dt
ln(M) =

1

M

dM

dt
. (3.7)

Next, using Eqs. (3.1) and (3.2) and the definitions of φR and λ(t), we write the
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evolution equation for φR(t),

d

dt
φR = λ(t) · [χR(t) − φR] (3.8)

which gives in steady state

φ∗R = χ∗R = fR(γ∗), (3.9)

where we use asterisks to denote the steady-state values. Empirically, φ∗R follows a linear

relation with the steady-state growth rate, λ∗, as described above in Section 1.2.1,

φ∗R = φR,min + λ∗/γmax (3.10)

Furthermore, from the definitions Eqs. (3.1), (3.5), and (3.6)

λ(t) =
JR
M

= γ(t) · φR(t), (3.11)

which in steady state is

λ∗ = γ∗ · φ∗R. (3.12)

Using Eq. (3.12) in Eq. (3.10) and solving for φ∗R, we finally obtain

fR(γ∗) = φ∗R =
φR,min

1 − γ∗/γmax
. (3.13)

It will be useful to express the medium-independent constant φR,min in terms of other

dynamical variables. In the final steady state growth condition with growth rate λ∗ = λf

and translational activity γ∗ = γf , we find from Eqs. (3.10) and (3.12)

φR,min =
λf
γf

(
1 −

γf
γmax

)
(3.14)

and rewrite Eq. (3.13)

fR (γ∗) = φ∗R =
λf
γf

(
1 − γf/γmax

1 − γ∗/γmax

)
. (3.15)
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3.2.4 Catabolic regulatory function

We now take the same strategy to determine χC(t). Mechanistically, χC(t) is set

by carbon precursors, whose levels mirror the levels of amino acids and thus the level of

tRNA charging, with the latter reflected in the translational activity γ. We make the

ansatz that χC(t) depends on time only through γ(t), i.e.,

χC(t) = fC(γ(t)). (3.16)

Next, we write the evolution equation for the mass fraction of one of the catabolic

enzymes φC ≡MC1/M using Eqs. (3.1) and (3.3) and the definition of λ(t) from Eq. (3.7)

d

dt
φC1 = λ(t) · [hC1(t)χC(t) − φC1], (3.17)

which gives in steady state

χ∗C = fC(γ∗) = φ∗C1/hC1. (3.18)

We consider catabolic enzymes that are activated by cAMP-Crp so that we know

empirically that under carbon limited conditions φ∗C1 follows a linear relation with the

steady-state growth rate

φ∗C1 = hC1(1 − λ∗/λC), (3.19)

as described above in Section 1.2.3. Using the steady state growth rate from Eq. (3.12)

and φ∗R from Eq. (3.15) in Eq. (3.19),

fC(γ∗) =
φ∗C1

hC1
= 1 −

λf
λC

γ∗

γf

(
1 − γf/γmax

1 − γ∗/γmax

)
. (3.20)

Finally, we have the forms of χR(t) and χC(t),

χR(t) = fR(γ(t)) =
λf
γf

(
1 − γf/γmax

1 − γ(t)/γmax

)
, (3.21)

χC(t) = fC(γ(t)) = 1 −
λf
λC

γ(t)

γf

(
1 − γf/γmax

1 − γ(t)/γmax

)
= 1 − γ(t)

λC
χR(t). (3.22)
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3.2.5 The central differential equation

Catabolic proteins determine the carbon flux

JC(t) = KC1(t)MC1 +KC2(t)MC2. (3.23)

KC1(t) and KC2(t) are the catabolic rate functions, with KC1(t) = kC1 constant for all

time, and KC2(t) jumping from 0 to constant kC2 at t = 0 with the addition of carbon

source C2. When carbon source C2 becomes available at t = 0 the carbon influx JC

jumps instantaneously to a new value determined by the product of kC2 and the initial

condition MC2(t = 0). Flux changes on a much faster timescale than protein mass,

and thus we assume instantaneous flux balance to prevent the buildup of intermediate

metabolites, i.e.,

J(t) ≡ JR(t) = JC(t), (3.24)

where we have absorbed the constant carbon efficiency c0, relating the carbon and protein

flux, into the catabolic rate constants [28].

Equations (3.1) - (3.5) and (3.21) - (3.24) completely define the dynam-

ics of the growth transition. These equations can be further simplified: using

Eqs. (3.3), (3.4), (3.23), and (3.24), we get for t > 0

d

dt
J =

1

T
χC(t) · J(t), (3.25)

with

T ≡ 1

hC1kC1 + hC2kC2
. (3.26)

Expressing the above in terms of γ(t) defined in Eq. (3.5) and using also Eq. (3.2), we

get
d

dt
γ = γ(t)

[
1

T
χC(t) − γ(t)χR(t)

]
, (3.27)

a closed equation for γ(t). From its solution, we can obtain MR(t) from Eq. (3.2), or

equivalently,
d

dt
ln (MR) = χR(t) · γ(t). (3.28)

The flux JR(t) is finally obtained from γ(t) and MR(t) via Eq. (3.5), and the growth



26

curve M(t) is obtained from JR(t) via Eq. (3.1).

3.2.6 Translational activity at the instant of upshift

Solution of the model amounts to solving the differential equation for transla-

tional activity Eq. (3.27). The kinetics of translational activity are then used to solve

for all of the other observables as already described.

All of the upshift observables can be expressed in terms of only steady state

observables and the initial condition of the differential equation for translational activity.

This initial condition is defined by γ0, the translational activity at the instant of upshift.

Translational activity, by definition (Eq. (3.5)), is the ratio of flux and ribosomal protein

mass. In many cases the flux and ribosomal mass are the same in the instant of upshift

as they were in the previous instant so that the translational activity at the instant of

upshift is equal to the translational activity of the initial steady state growth condition

(γ0 = γi).

If the added carbon source is immediately taken up by the cell the translational

activity at the instant of upshift exceeds the translational activity of the initial steady

state condition. Using the definition of γ in Eq. (3.5) and the flux balance assumption

Eq. (3.24)

γ0 = γi +
∆JC,0
MR,0

, (3.29)

where ∆JC,0 is the additional carbon flux at the instant of upshift and MR,0 ≡MR(t = 0)

is the mass of ribosomal protein at the moment of upshift. The value of MR,0 is known

from steady state measurements of ribosome abundance. Equivalently, since catabolic

proteins determine carbon flux,

γ0 = γi +
kC2MC2(t = 0)

MR,0
. (3.30)

Thus the translational activity at the instant of upshift is determined by the carbon flux,

or equivalently the abundance of the relevant catabolic proteins, at the instant of upshift.

If the cell cannot immediately metabolize the new carbon source at the instant of upshift,

γ0 = γi and the translational activity is continuous at the moment of upshift. However,

if the cell immediately utilizes the added carbon source at the instant of upshift, γ0 > γi
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and the translational activity is discontinuous at t = 0.

3.3 Comparison to the Instantaneous Rates model

Now that the model has been completely defined, we compare our model to the

model developed by Bremer and Dennis [31]. Their model makes quantitative predictions

about the kinetics of protein synthesis throughout a nutritional upshift from minimal

medium to broth (rich medium). The model assumes, based on observations, that the

exponential rate of ribosome synthesis immediately changes from the initial steady state

growth rate to the final steady state growth rate at the instant of upshift. Addition-

ally, they take the translational activity to change instantaneously from the initial to

the final steady state value at the instant of upshift. Using only these two features,

the model is capable of making quantitative predictions of the kinetics of protein mass

accumulation. Because of the instantaneous jump in the rates we refer to the model as

the “Instantaneous Rates” (IR) model.

Comparison with our model reveals that the two models are identical if the rate

γ (the translational activity) instantaneously jumps from initial to the final steady state

value at the instant of upshift. In our model the rates are instead determined by the

relative values of the nutrient influx and protein outflux. Although the models are

identical in this particular situation, in general the models give quantitatively different

predictions. However, it is also worth mentioning here that our model is approximately

equivalent to the IR model if the final steady state growth rate is close to the intercept

of the catabolic line (λf ≈ λC). This is because, as will be discussed in Section 3.4.1, the

kinetics of the translational activity γ are very fast when the final growth rate is close to

the intercept of the catabolic line so that the change in the rates is nearly instantaneous.

Throughout this chapter we will check that our results match the predictions of the IR

model in these two regimes.

Our model offers several advantages over the IR model. The IR model implicitly

assumes the the cells know about the final growth state at the instant of upshift. In

our model the regulatory functions guide the cell to its final steady state using only

knowledge of the present. The IR model does not explicitly consider catabolic (or other
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metabolic) proteins; our model provides quantitative predictions of the expression of

catabolic proteins.

There are two situations in which our model is identical to the IR model and in

both cases there is an explanation of why the rates quickly jump to their final values.

The first case is when the translational activity instantly jumps to the final steady state

value at the instant of upshift. In our model this only happens when the cell already

has the proteins responsible for the metabolism of the added nutrient (see Eq. (3.30)).

The other case is when the final steady state growth rate is close to the intercept of the

catabolic line. Being near the intercept of the catabolic line means that there is very

little expression of catabolic genes. Thus the cell does not need to make many catabolic

proteins to produce the requisite carbon flux. The cell makes the catabolic proteins very

quickly so all of the rates quickly relax to the final steady state values.

3.4 Model solution

3.4.1 Kinetics of translational activity

We now solve for the kinetics of translational activity. Substituting Eqs. (3.21)

and (3.22) in Eq. (3.27) we solve for the steady state and discover

T =
1

λf

(
1 −

λf
λC

)
. (3.31)

We rearrange Eq. (3.27) using Eqs. (3.21), (3.22) and (3.31) to find the form

dγ

dt
=

1

T
f(γ) (3.32)

with the forcing function f(γ)

f(γ) ≡ γ

(
1 − γ/γf

1 − γ/γmax

)
. (3.33)

Figure 3.2 shows the forcing function for an upshift with final growth rate 1.0 h−1. The

corresponding potential function U(γ) ≡ −
γ∫
f(γ′)dγ′ is also plotted. The translational

activity γ has only one stable fixed point in the domain 0 ≤ γ ≤ γmax. The stable
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Figure 3.2: Translational activity forcing function and corresponding potential func-

tion. The solution of the forcing function f(γ) (a) and the corresponding potential

function U(γ) (b) for an upshift with final growth rate 1.0 h−1.

fixed point is the final translational activity γf . Since Eq. (3.32) is first-order and has

only one stable fixed point, the solution always monotonically approaches that point

(i.e. no overshooting and no oscillations) [33]. Thus, throughout carbon upshift, the

translational activity always monotonically approaches the final translational activity.

We rearrange Eq. (3.32) using Eq. (3.33)

dt = dγ
T

γ(t)

(
1 − γ(t)/γmax

1 − γ(t)/γf

)
(3.34)

and integrate to find

t = T ln

[(
γ(t)

γ0

)(
1 − γ0/γf

1 − γ(t)/γf

)1−γf/γmax
]
. (3.35)

Figure 3.3 demonstrates the kinetics of γ(t) for an upshift with initial growth

rate 0.4 h−1 and final growth rate 1.0 h−1 and γ0 =2.8 h−1. Before upshift, the culture

is in steady state exponential growth and γ is constant. The upshift occurs at t =

0 and there is an immediate jump to γ0. The translational activity then relaxes to

γf as described by Eq. (3.35). The translational activity approaches the final value

asymptotically and almost all of the change occurs for t <0.2h=12min, a short timescale

compared to bacterial growth.

To determine the explicit time dependence just after upshift, we Taylor expand
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Figure 3.3: Exact solution of translational activity throughout upshift. The solution of

translational activity γ(t) for an upshift with initial growth rate 0.4 h−1 and final growth

rate 1.0 h−1 and γ0 =2.8 h−1.

Eq. (3.35) about γ ≈ γ0 and t ≈ 0 and find that the translational activity is linear in

time

γ(t ≈ 0) ≈ γ0 + γ′0t (3.36)

with slope

γ′0 ≡
γ0
T

(
1 − γ0/γf

1 − γ0/γmax

)
. (3.37)

The translational activity instantly heads in the direction of the final value; γ′0 > 0 for

γ0 < γf and vice versa.

To examine the long time behavior of the translational activity, we Taylor expand

Eq. (3.35) about γ(t � 0) ≈ γf and find that the translational activity exponentially

approaches the final value

γ(t� 0) = γf − (γf − γ0)

(
γf
γ0

) 1
1−γf /γmax

e
− t
T (1−γf /γmax) . (3.38)

In the IR model the translational activity is assumed to jump instantaneously

from its initial value to its final steady state value at the moment of upshift. Obvi-

ously then the models are identical for γ0 = γf . Note that the timescale of relaxation

of translational activity in both regimes scales with T according to Eqs. (3.36)-(3.38).

From Eq. (3.31) T ≈ 0 when λf ≈ λC . Thus when the final steady state growth rate

approached the intercept of the catabolic line, the timescale of translational activity

relaxation approaches zero. For fast enough final growth rate, the relaxation of transla-
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tional activity is essentially instantaneous and our model gives the same result as the IR

model.

3.4.2 Kinetics of protein synthesis flux

Before upshift, the cells are in steady state exponential growth and protein syn-

thesis flux (or flux, for short) grows exponentially with the initial growth rate λi

J(t < 0) = Ji,0e
λit, (3.39)

or equivalently

ln (J(t < 0)) = λit+ ln (Ji,0) , (3.40)

with flux just before upshift

Ji,0 ≡MR,0γi. (3.41)

At the moment of upshift, translational activity jumps to the initial condition

value γ0 and according to Eq. (3.5) flux instantly jumps to its new value

J(t = 0) = MR,0γ0 = Ji,0
γ0
γi
. (3.42)

To determine the kinetics of flux after upshift, we integrate Eq. (3.28) directly

using Eq. (3.34) to substitute for dt to find

MR(γ) = MR,0

(
1 − γ0/γf

1 − γ(t)/γf

)(1−λf/λC)(1−γf/γmax)

(3.43)

and

JR(γ) = MR,0γ(t)

(
1 − γ0/γf

1 − γ(t)/γf

)(1−λf/λC)(1−γf/γmax)

. (3.44)

We simplify the expression for J by using Eq. (3.35) in Eq. (3.44)

JR(t) = Ji,0

(
γ0
γi

)(
γ(t)

γ0

)λf/λC
eλf t, (3.45)



32

−0.5 0 0.5 1
0.2

0.3

0.5

1

2

t (h)
J
 (

g
/h

)

Figure 3.4: Exact solution of flux throughout upshift. The solution of J(t) from the

model for an upshift with initial growth rate 0.4 h−1 and final growth rate 1.0 h−1 and

γ0 =2.8 h−1. Soon after upshift, flux J grows exponentially with rate equal to the final

growth rate.

or equivalently,

ln [J(t)] = λf t+
λf
λC

ln

[
γ(t)

γ0

]
+ ln

[
Ji,0

γ0
γi

]
. (3.46)

Figure 3.4 demonstrates the kinetics of J(t) for an upshift with initial growth

rate 0.4 h−1 and final growth rate 1.0 h−1 and γ0 =2.8 h−1 (the same upshift as Figure 3.3

for γ(t)). Before upshift, the culture is in steady state exponential growth and J grows

with the initial growth rate. The upshift occurs at t = 0 and there is an immediate jump

due to the discontinuity in γ. Flux grows with final growth rate after γ has stopped

changing significantly (for t >0.2h=12min as above), but initially grows more quickly.

To understand the behavior of flux just after upshift, we use Eq. (3.36) in

Eq. (3.46) and Taylor expand near t ≈ 0 to find that flux increases exponentially

ln [J(t ≈ 0)] ≈ λf

(
1 +

γ′0
γ0λC

)
t+ ln

[
Ji,0

γ0
γi

]
. (3.47)

Typically γ0 < γf so that γ is increasing (γ′0 > 0) and, from Eq. (3.47), flux initially

increases faster than λf . However, if γ0 > γf , γ is decreasing and flux initially increases

slower than γf .

Sufficiently long after upshift, γ(t� 0) ≈ γf and, from Eq. (3.46), the flux grows

with rate λf

ln [J(t� 0)] ≈ λf t+ ln [Ji,0] + ln [D] (3.48)
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with constant asymptotic flux discontinuity

D ≡ γ0
γi

(
γf
γ0

) λf
λC

. (3.49)

If flux is observed at a coarse level only the asymptotic behaviors are apparent and

Eqs. (3.40) and (3.48) describe its kinetics. Then the flux has an apparent discontinuity

at t = 0. The asymptotic flux discontinuity D measures the apparent discontinuity. D

is not a real discontinuity because the short time kinetics deviate from this long time

approximation. However, D is an easily observable number that summarizes the upshift

and is influenced by the short time kinetics.

Bremer and Dennis IR Model predicts an analogous flux discontinuity

DIR =
γf
γi
. (3.50)

If γ0 = γf , the our model is mathematically equivalent to the IR Model and D(γ0 =

γf ) = DIR. For fast final growth rate we also observe D(λf ≈ λC) ≈ DIR, as expected.

3.4.3 Kinetics of protein mass

Before upshift, total protein mass grows exponentially with the initial growth

rate M(t < 0) = M0e
λit , where M0 ≡ M(t = 0) is the protein mass at the moment of

upshift. We note that the mass of ribosomes and total protein at the instant of upshift

are known from steady state measurements MR,0/M0 = φ∗R(λ∗ = λi) .

To determine the behavior of the growth curve M(t) after the upshift, we use

J(t) from Eq. (3.44) and dt from Eq. (3.34) to integrate Eq. (3.1) directly. The result is

simplified using T from Eq. (3.31)

M(γ(t)) =M0

(
1 −

λiγf
λfγi

(
1 + TλCγ0/γmax

1 + TλCγf/γmax

))
(3.51)

+M0
λiγf
λfγi

(
1 + TλCγ(t)/γmax

1 + TλCγf/γmax

)(
γf − γ0
γf − γ(t)

)(
1−

λf
λC

)(
1−

γf
γmax

)
.

Note that the first term is constant and all of the time dependence manifests itself in

the second term.
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Figure 3.5: Exact solution of protein mass throughout upshift. The solution of protein

mass M(t) from the model for an upshift with initial growth rate 0.4 h−1 and final growth

rate 1.0 h−1 and γ0 =2.8 h−1. The exact solution of the model is the solid blue curve.

The dashed red curve is an extrapolation of the final steady state behavior.

We rewrite M using Eq. (3.35)

M(t) =M0

(
1 −

λiγf
λfγi

(
1 + TλCγ0/γmax

1 + TλCγf/γmax

))
(3.52)

+M0
λiγf
λfγi

(
1 + TλCγ(t)/γmax

1 + TλCγf/γmax

)(
γ0
γ(t)

)(1−λf/λC)
eλf t,

and again M(t) is the sum of a constant and another term containing all of the time

dependence.

Figure 3.5 demonstrates the kinetics of M(t) (blue) for an upshift with initial

growth rate 0.4 h−1 and final growth rate 1.0 h−1 and γ0 =2.8 h−1 (the same upshift as

in the figures above). Before upshift, the culture is in steady state exponential growth

and M grows with the initial growth rate. The upshift occurs at t = 0 and protein mass

gradually increases its rate of growth. An extrapolation of the long time behavior of

M with exponential rate equal to the final growth rate is shown as a red dashed curve.

Comparing to the behavior of protein mass, it is clear that the culture is not growing

with the final growth rate even as long as 2h after upshift.

3.4.4 Protein mass kinetics are related to the proteome composition

The above equations do not provide much insight into the meaning of the large

constants in M(t), but we know that at sufficiently long times the behavior of M(t)
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should be simple. We combine Eqs. (3.1) and (3.5)

dM = γMRdt (3.53)

and integrate from t = 0 to t = τ

M(t = τ) −M0 =

∫ τ

t′=0
γ(t′)MR(t′)dt′. (3.54)

We choose τ such that γ(t > τ) ≈ γf (i.e. γ is no longer changing significantly). Then

M(t > τ) −M0 ≈
∫ τ

t′=0
γ(t′)MR(t′)dt′ + γf

∫ t

t′=τ
MR(t′)dt′. (3.55)

We can integrate the second term by first calculating MR from Eq. (3.28) using the

steady state relationships in Eqs. (3.9) and (3.12) to simplify the result

MR(t > τ) = MR(t = τ)eλf (t−τ). (3.56)

We substitute Eqs. (3.54) and (3.56) in Eq. (3.55) and find

M(t > τ) ≈M(t = τ)

(
1 − φR(t = τ)

φR,f

)
+M(t = τ)

φR(t = τ)

φR,f
eλf (t−τ), (3.57)

where the constant φR,f is the ribosomal mass fraction in the final steady state growth

condition. At sufficiently long times protein has the expected exponentially growing

term, but also has a constant term! Protein mass accumulates by the activity of ribo-

somes so it makes sense that protein grows exponentially and proportional to the mass

fraction of ribosomes. The non-growing term is proportional to the deficit of ribosomal

mass fraction relative to the final ribosomal mass fraction, i.e. the mass fraction that

will be ribosomal in the final steady state but is not ribosomal yet. This mass fraction

is made up of proteins that had higher expression in the past than they have in the final

steady state. Thus the constant term is the result of proteins that are left over from the

culture’s history but are unwanted in the final state. These proteins are diluted away by

exponential growth so that they are negligible in the final steady state.

It is possible for the transient ribosome expression to be large enough that the
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ribosomal mass fraction transiently exceeds the final steady state value. In this case

the non-growing term is negative. The surplus of ribosome mass fraction comes with

the cost; there is a deficit of the mass fraction of some other proteins. Thus a constant

negative term is the result of proteins that were not expressed highly enough in the past,

but are wanted in the final steady state.

3.4.5 Upshift kinetics are approximated by an effective lag time

This analysis provides insight about the meaning of the terms describing protein

at long times, but does not provide the quantitative behavior because of the presence

of M(t = τ). To provide a quantitative form we use Eq. (3.52) sufficiently long after

upshift when γ(t� 0) ≈ γf is constant to find

M(t� 0) = M0

(
1 −

λiγf
λfγi

(
1 + TλC

γ0
γmax

1 + TλC
γf
γmax

))
+M0

λiγf
λfγi

(
γ0
γf

)(1−
λf
λC

)

eλf t, (3.58)

which is of the same form as Eq. (3.57), i.e. the sum of a constant term and a term that

grows exponentially with rate λf . At even longer times the constant term is negligible

and

M(t�� 0) = M0
λiγ0
λfγi

(
γf
γ0

)λf/λC
eλf t, (3.59)

or equivalently,

M(t�� 0) = M0D
λi
λf
eλf t. (3.60)

This behavior is plotted in red in the figure for M(t) above.

Sufficiently long after upshift, M(t) grows exponentially with final growth rate

as in Eq. (3.59). We define the lag time tlag such that we can rewrite this exponential

in the form

M(t�� 0) = M0e
λf (t−tlag). (3.61)

For the upshift in the figure above, the lag time is approximately 0.5h. This is visible as

the offset between the behavior of M (blue solid curve) and the extrapolation of the long

time behavior (red dashed curve) in Figure 3.5. Like the asymptotic flux discontinuity D,

the lag time tlag provides a metric that summarizes the upshift. We find using Eqs. (3.59)
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and (3.61)

tlag =
1

λf
ln

[
λf
λi

γi
γ0

(
γ0
γf

)λf/λC]
, (3.62)

or equivalently using the definition of D in Eq. (3.49),

tlag =
1

λf
ln

[
λf
λi

1

D

]
. (3.63)

We compare to the lag time predicted by the IR Model

tlag,IR =
1

λf
ln

[
λf
λi

γi
γf

]
=

1

λf
ln

[
λf
λi

1

DIR

]
. (3.64)

If γ0 = γf , our model is mathematically equivalent to the IR Model and tlag = tlag,IR.

For fast final growth rate λf ≈ λC , the lag time of the two models is approximately the

same tlag ≈ tlag,IR.

3.4.6 Kinetics of growth rate

We calculate the exact form of the growth rate λ using its definition Eq. (3.7)

and Eqs. (3.44) and (3.51)

λ (γ(t)) = λf

(
γ(t)
γf

)(
1−γ0/γf
1−γ(t)/γf

)(1−λf/λC)(1−γf/γmax)(
γiλf
γfλi

)
−
(

1+TλCγ0/γmax

1+TλCγf/γmax

)
+
(
1+TλCγ(t)/γmax

1+TλCγf/γmax

)(
1−γ0/γf
1−γ(t)/γf

)(1− λf
λC

)(
1−

γf
γmax

)
. (3.65)

Figure 3.6 demonstrates the kinetics of growth rate λ for an upshift with initial

growth rate 0.4 h−1 and final growth rate 1.0 h−1 and γ0 =2.8 h−1. Before upshift, the

culture is in steady state exponential growth and growth rate is constant at λi=0.4 h−1.

The upshift occurs at time zero and, because of the immediate jump in translational

activity, growth rate immediately jumps to λ = λiγ0/γi. The growth rate then relaxes

to λf as described by Eq. (3.65). The growth rate approaches the final steady state

growth rate asymptotically over the course of several hours.

At long enough times that the translational activity has settled to its final value,

we calculate the exact form for the instantaneous growth rate λ using the definition of
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Figure 3.6: Exact solution of growth rate throughout upshift. The solution of λ(t) from

the model for an upshift with initial growth rate 0.4 h−1 and final growth rate 1.0 h−1

and γ0 =2.8 h−1.

growth rate Eq. (3.7) and the exact form of M(t� 0) in Eq. (3.58)

λ(t� 0) =
λf

1 +
(
γf
γ0

)(1− λf
λC

)
(
λfγi
λiγf

−
(

1+TλC
γ0

γmax

1+TλC
γf
γmax

))
e−λf t

. (3.66)

We also calculate a more simple and intuitive form like we did above for M(t).

From Eq. (3.57), M(t) has a simple form at long enough times and combining with

Eq. (3.7),

λ(t > τ) ≈ λf
1

1 + [φR,f/φR(t = τ) − 1] e−λf (t−τ)
. (3.67)

Instantaneous growth rate has a long timescale relaxation with rate λf . Typically, instan-

taneous growth rate asymptotically approaches λf from below. However, if ribosomal

production overshoots enough the ribosomal mass fraction transiently exceeds the final

value and instantaneous growth rate overshoots the final value (i.e. λ > λf )!

3.4.7 Kinetics of ribosomal proteins

Before upshift the culture is in steady state exponential growth and ribosomal

proteins grow exponentially with the initial steady state growth rate

MR(t < 0) = MR,0e
λit. (3.68)



39

−0.5 0 0.5 1
0.1

0.2

0.3

0.4

0.5

t (h)
M

R
 (

g
)

Figure 3.7: Exact solution of ribosomal protein mass throughout upshift. The solution

of MR(t) from the model for an upshift with initial growth rate 0.4 h−1 and final growth

rate 1.0 h−1 and γ0 =2.8 h−1.

The kinetics of ribosomal protein mass after upshift was already calculated as

a function of the translational activity in Eq. (3.43). We simplify the expression using

Eq. (3.35)

MR(t) = MR,0

(
γ0
γ(t)

)1−λf/λC
eλf t. (3.69)

Figure 3.7 demonstrates the kinetics of ribosomal protein mass MR(t) for an

upshift with initial growth rate 0.4 h−1 and final growth rate 1.0 h−1 and γ0 =2.8 h−1

(the same upshift that we have been discussing in the other sections). Before upshift, the

culture is in steady state exponential growth and the ribosomal protein mass grows with

the initial growth rate. The upshift occurs at t = 0 and over a short time the production

rate of ribosomes changes. Quickly after upshift the production rate of ribosomal proteins

reaches its final value and ribosomal protein mass grows exponentially with rate equal

to the final steady state growth rate.

Sufficiently long after upshift the translational activity has reached its final steady

state value (γ(t� 0) ≈ γf ) and

MR(t� 0) = MR,0

(
γ0
γf

)1−λf/λC
eλf t. (3.70)

If ribosomes are observed at a coarse level only the asymptotic behaviors are apparent

and Eqs. (3.68) and (3.70) describe the kinetics. It has long been observed for other

types of nutrient upshifts that the stable RNA, which is a proxy for ribosome abundance,
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abruptly becomes exponential with rate equal to the final growth rate [34] [31].

3.4.8 Kinetics of catabolic proteins

Before upshift the culture is in steady state exponential growth and the catabolic

proteins accumulate exponentially with the initial growth rate

MC1(t < 0) = MC1,0e
λit, (3.71)

where MC1,0 is the mass of catabolic protein MC1 at time zero.

To determine the kinetics of the catabolic protein MC1 after upshift we integrate

Eq. (3.3) directly using Eq. (3.22) to substitute for χC , Eq. (3.44) to substitute for J ,

and Eq. (3.34) to substitute for dt

MC1(γ) = MC1,0 − h1Ji,0T
γ0
γi

+ h1Ji,0T

(
γ(t)

γi

)(
1 − γ0/γf

1 − γ(t)/γf

)(1−γf/γmax)(1−λf/λC)
.

(3.72)

We simplify the expression using Eq. (3.44)

MC1(t) = MC1,0 + h1T

(
J(t) − γ0

γi
Ji,0

)
. (3.73)

The equations describing the accumulation of MC1 and MC2 are identical so

MC2(t) = MC2,0 + h2T

(
J(t) − γ0

γi
Ji,0

)
. (3.74)

Figure 3.8 demonstrates the kinetics of catabolic protein mass MC1(t) for an

upshift with initial growth rate 0.4 h−1 and final growth rate 1.0 h−1 and γ0 =2.8 h−1 (the

same upshift that we have been discussing in the other sections). Here we have chosen

hC1=1 for all time. Before upshift, the culture is in steady state exponential growth

and the catabolic protein mass grows with the initial growth rate. The upshift occurs at

t = 0 and over a short time the production rate of catabolic proteins changes. Quickly

after upshift the production rate of catabolic proteins reaches its final value. Because the

production rate of catabolic proteins decreases throughout carbon upshift, the amount

of MC1 does not grow exponentially immediately, even though its production rate is
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Figure 3.8: Exact solution of catabolic protein mass throughout upshift. The solution

of MC1(t) from the model for an upshift with initial growth rate 0.4 h−1 and final growth

rate 1.0 h−1 and γ0 =2.8 h−1. Here we have chosen hC1=1 for all time.

constant. The catabolic protein amount MC1 eventually grows exponentially with rate

equal to the final steady state growth rate, but only after a period of apparent transient

repression.

Bremer and Dennis’ IR model does not consider the expression of catabolic pro-

teins. The IR model assumes that the production rate of ribosomes and the translational

activity instantly jump to their new values at the instant of upshift without explicitly

considering the expression of the proteins needed to provide flux to the ribosomes. An

important contribution of our model is that it also explicitly considers the expression of

upstream metabolic proteins.

3.4.9 Solution for very high initial carbon flux

Note that in the above calculations no limit is placed on the translational activity

and if the carbon flux is too high at the instant of upshift, the translational activity can

transiently increase to unbounded levels. In reality something other than carbon (e.g.

nitrogen) that has not been explicitly considered in the model, would become limiting so

that the translational activity reaches a maximum value. In this section we develop an

ad hoc method to deal with this problem within the existing model. Our method is to

limit the translational activity so that it does not exceed a maximal value. We note that

the considerations developed in this section are only needed in extreme conditions and

only apply to one upshift of wild-type cells in this document. A proper understanding
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of the behavior in such extreme conditions is outside the scope of this work and stands

out as a possible future direction.

In steady state growth if carbon flux is not growth limiting, the growth rate is

λC [14] and the translational activity, using Eq. (3.12), is

γC ≡ λC
φR
∗ (λ = λC)

. (3.75)

We take γC to be the maximum translational activity during carbon upshift.

The existence of a maximum translational activity means that the protein syn-

thesis flux J = γMR also has a maximum and the cell cannot process all of the flux

that the catabolic enzymes are capable of producing, defined as JC,0. We hypothesize

that flux is balanced as before and excess carbon flux leaks out of the cell, or carbon

influx decreases so that it does not exceed ribosomal flux. Mechanistically, carbon flux

could be limited by inducer exclusion whereby intermediate metabolites accumulate and

inhibit the activity of the upstream catabolic enzymes so that flux is balanced with all

ribosomes working with maximum activity [35]. Within the model this could be imple-

mented by dynamically setting the values of KC1(t) and KC2(t) in Eq. (3.23) to keep

flux balanced.

During this initial phase after upshift, the ribosomes work with activity that is

constant in time γ = γC and the regulation functions, from Eqs. (3.21) and (3.22), are

also constant

χR (γ = γC) = λC/γC , (3.76)

χC (γ = γC) = 0. (3.77)

From Eqs. (3.77), (3.3) and (3.4), the catabolic enzymes do not increase during

this time and thus the maximal carbon flux JC,0 does not increase. Flux increases via

ribosome accumulation until time τC when the ribosome amount has increased enough to

process the maximal carbon flux with all ribosomes working at maximum translational

activity

MR(t = τC) = JC,0/γC . (3.78)

From Eqs. (3.2) and (3.76), ribosome mass grows exponentially at maximal rate while
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the translational activity is maximal

MR(t 6 τC) = MR,0e
λCt. (3.79)

Combining Eqs. (3.78) and (3.79), this continues until

τC =
1

λC
ln

[
JC,0

γCMR,0

]
. (3.80)

For t > τC , there are enough ribosomes to balance all of the flux that the catabolic

enzymes are capable of producing. Then the translational activity relaxes from the

maximal value (γC) to the final steady state value (γf ) according to Eq. (3.27).
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Chapter 4

The simple model captures the

kinetics of carbon upshift

4.1 Kinetic data

4.1.1 Mannose add lactose upshift

Wild-type NCM3722 cells were grown in N-C- medium with 0.4% mannose as

the sole carbon source. At time zero 0.4% lactose was added to the culture. The model

captures the kinetics this mannose add lactose upshift. The expression of the lac operon

requires the presence of lactose so its expression is negligible before the addition of lactose

to the medium. Since metabolism of lactose requires LacZ, lactose cannot be metabolized

immediately upon its addition to the medium and there is no discontinuity in flux or

translational activity. More precisely, we take MC2(t = 0) = 0 so that γ0 = γi (from

Eq. (3.30)) and there are no free parameters in the model. The only inputs to the model

that are specific for this upshift are the steady state growth rate on 0.4% mannose alone

(λi =0.4 h−1) and the steady state growth rate of the final condition (λf =0.95 h−1).

The result of the model is plotted with the mannose add lactose data in Fig. 4.1.

Here we discuss the theoretical prediction of the translational activity which

helps illuminate the kinetics of mass accumulation discussed next. Translational activity

could be measured directly by measuring the protein production rate and taking the

ratio with total ribosome mass. Throughout carbon upshift, translational activity has

44
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Figure 4.1: Mannose add lactose upshift. Wild-type NCM3722 cells were grown in 0.4%

mannose. At time zero, 0.4% lactose was added. The translational activity, OD600, flux,

and growth rate are plotted as a function of time. The blue curves are the result of the

model. The black data points are the data.
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three regimes. In the first regime translational activity is constant during steady state

growth on mannose (before the addition of lactose). During the second regime from the

moment of lactose addition until ≈30min later, the translational activity increases and

quickly approaches the translational activity of the final steady state condition. In the

third regime the translational activity has reached its final steady state value.

Comparison of the total protein mass M of the model and the OD600 data reveals

very good agreement. We look deeper into the data by taking derivatives.

Protein synthesis flux exhibits three regimes due to the three regimes of transla-

tional activity. Of course, protein synthesis flux is the product of translational activity

and the mass of ribosomes. Before upshift, in the first regime, flux grows exponentially

with rate equal to the steady state growth rate on mannose alone (λi =0.4 h−1). In

this regime translational activity is constant and ribosome mass increases exponentially

with λi. In the second regime immediately after upshift, flux increases quickly over a

short time. In this regime the translational activity is increasing and the production

rate of ribosomes is increasing. The slow down in the rate of increase of flux coincides

with the translational activity reaching its final value. In the final regime, flux grows

exponentially with rate equal to the final steady state growth rate λf =0.95 h−1. Dur-

ing this time the translational activity is constant and the mass of ribosomes increases

exponentially with the final steady state growth rate.

Growth rate exhibits the same three regimes. In the first regime the culture

is in steady state growth on mannose as the sole carbon source and the growth rate

is constant. In the second regime the flux increases quickly and the growth rate also

increases quickly. In the third regime the growth rate very slowly approaches the final

steady state growth rate.

Thus the model is able to capture the kinetics of mass accumulation throughout

the mannose add lactose upshift without a fit parameter. The only inputs to the model

for this specific carbon upshift are the values of the steady state growth rates before and

after the upshift.

In addition to the kinetics of mass accumulation, the model predicts the expres-

sion of the catabolic enzymes. The expression of the lac operon is measured directly

by enzymatic assay of LacZ and compared to the model’s prediction in Figure 4.2. The
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Figure 4.2: LacZ throughout the mannose add lactose upshift. Wild-type NCM3722

cells were grown in 0.4% mannose. At time zero, 0.4% lactose was added. LacZ was

measured using an activity assay (black points). The blue curve is the result of the

model. The raw LacZ data is presented in Table 7.5

model is able to capture the expression of LacZ. The only additional knowledge required

is the expression of LacZ in steady state, which sets the proportionality factor of the

y-axis.

4.1.2 Mannose add succinate upshift

NQ354 (∆lacI ) was grown in N-C- medium with 0.1% mannose as the sole carbon

source. At time zero 0.4% succinate was added to the culture. The model captures the

kinetics of the mannose add succinate upshift by using the initial translational activity

at the moment of its addition as a fit parameter (Fig. 4.3, blue solid curves). Succinate is

known to be immediately taken up by E. coli when growing on glycolytic carbon sources

[14]. The only other inputs to the model that are specific for this upshift are the steady

state growth rate on 0.4% mannose alone (λi =0.19 h−1) and the steady state growth rate

of the final condition (λf =0.66 h−1). For comparison the result of the model assuming

that there is no immediate succinate flux at the instant of upshift is also plotted (Fig. 4.3,

red dashed curves).

In order to capture the kinetics of upshift, translational activity is discontinuous

at the instant of upshift. The initial succinate flux is so high that the translational

activity jumps higher than the final steady state value. The translational activity relaxes

down to the final steady state value on a timescale of ≈30min.

The model’s prediction of total protein mass agrees well with the measured
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Figure 4.3: Mannose add succinate upshift. NQ354 (∆lacI ) cells were grown in 0.1%

mannose. At time zero, 0.4% succinate was added. The translational activity, OD600,

flux, and growth rate are plotted as a function of time. The data is plotted as black

points. The blue curves are the result of the model using γ0 as a fit parameter. The red

dashed curves are the result of the model that assumes there is no succinate flux at the

instant of its addition γ0 = γi.
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OD600. The model that assumes no succinate flux at the instant of addition predicts

that protein mass increases slower than the observed OD600.

Protein synthesis flux grows exponentially with the initial growth rate before the

addition of succinate. When succinate is added flux increases immediately. Uptake of

the added succinate must be immediate. Indeed, our model captures the kinetics of flux

if we assume that the cell has some ability to uptake succinate at the instant of upshift

and is unable to capture the kinetics otherwise. After the initial jump in flux, the rate

of flux increase slows down as the translational activity decreases. As the translational

activity reaches its final steady state value, flux increases exponentially with rate equal

to the final steady state growth rate.

Growth rate is also captured by the model. The large increase in flux just after

succinate addition is also observed as a roughly two fold increase in growth rate within

the first few minutes after upshift. The model captures this nicely, as well as the ensuing

slow relaxation to the final steady state growth rate.

Thus the model is able to capture the kinetics of mass accumulation throughout

the mannose add succinate upshift. If the initial succinate flux is not accounted for,

the model predicts slower kinetics of mass accumulation and is not consistent with the

observations (red dashed curves in Figure 4.3).

In addition to the kinetics of mass accumulation, the model predicts the ex-

pression of catabolic enzymes. We cannot easily measure the expression of mannose

or succinate enzymes so we instead use LacZ as a reporter of the expression of cAMP-

dependent catabolic proteins. We use strain NQ354 (∆lacI ) so that LacZ is expressed

in the absence of lactose. Fig. 4.4 shows our observations along with the predictions of

the model. The model captures the expression of LacZ throughout the upshift.

4.1.3 Mannose add OAA upshift.

NQ354 (∆lacI ) cells were grown with 0.1% mannose as the sole carbon source.

At time zero, 20mM OAA (oxaloacetic acid) was added. The flowcell data (black points)

is plotted in Figure 4.5 along with the result of the model with γ0 = γi (red dashed

curve) and with γ0 used as a fit parameter (blue solid curve).

The increase in flux at the instant of OAA addition is very large; flux increases
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Figure 4.4: Mannose add succinate LacZ. NQ354 (∆lacI ) cells were grown in 0.1%

mannose. At time zero, 0.4% succinate was added. The LacZ activity is plotted as a

function of time (black points; data in Table 7.6). The blue curve is the result of the

model using γ0 as a fit parameter. The red dashed curve is the result of the model that

assumes there is no succinate flux at the instant of its addition γ0 = γi.

roughly three fold in a matter of minutes. The kinetics of mass accumulation are only

captured if the initial flux at the instant of upshift is used as a fit parameter. The sudden

increase in flux is so large that the translational activity jumps to the maximum value

allowed by the model. The translational activity remains maximal for several minutes

before relaxing to the final steady state value.

The flux kinetics are well captured by the model. At the moment of upshift, flux

immediately jumps to a high value with the translational activity. Flux then grows at a

rate faster than the final steady state exponential rate because the translational activity

is higher than in the final steady state and the ribosomes are predicted to accumulate at

a rate higher than the final steady state rate (since their production rate is slaved to the

translational activity in the model). Once the ribosome amount has increased enough

relative to the carbon influx, the translational activity relaxes down to its final steady

state value. After this the flux grows exponentially with rate equal to the final steady

state growth rate.

The model also captures the kinetics of growth rate throughout the mannose add

OAA upshift. The large increase in flux at the moment of upshift causes growth rate

to increase a factor of three in just a few minutes. Thirty minutes later OD600 and

flux have increased significantly, but growth rate has not increased. This is because the

increasing translational capacity from having a higher ribosomal mass fraction is nearly
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Figure 4.5: Mannose add OAA upshift. NQ354 (∆lacI ) cells were grown in 0.1%

mannose. At time zero, 20mM OAA was added. The translational activity, OD600,

flux, and growth rate are plotted as a function of time. The data is plotted as black

points. The blue curves are the result of the model using γ0 as a fit parameter. The

red dashed curves are the result of the model that assumes there is no OAA flux at

the instant of its addition γ0 = γi. The model uses the initial and final growth rates

λi =0.22 h−1 and λf =0.97 h−1, respectively.
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Figure 4.6: Mannose add glucose upshift. Wild-type NCM3722 cells were grown in 0.4%

mannose. At time zero, 0.4% glucose was added. The translational activity, OD600, flux,

and growth rate are plotted as a function of time. The data is plotted as black points.

The blue curves are the result of the model using γ0 as a fit parameter. The red dashed

curves are the result of the model that assumes there is no glucose flux at the instant of

its addition γ0 = γi.

balanced by the decrease in translational activity.

4.1.4 Mannose add glucose upshift.

Wild-type NCM3722 cells were grown in 0.4% mannose. At time zero, 0.4%

glucose was added. Flowcell data (black points), the model using the initial glucose flux

as a fit parameter (blue solid curve), and model assuming no initial glucose flux (red

dashed curve) are plotted in Figure 4.6.

Initially the culture is in steady state exponential growth on 0.4% mannose as

the sole carbon source. OD600 and flux increase exponentially with rate equal to the

initial steady state growth rate; growth rate is constant at this value. Growth rate and
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flux increase very quickly at the instant of glucose addition, implying that the uptake

of glucose must be immediate. Using the initial glucose flux as a fit parameter we find

excellent agreement with our model. Just after upshift, flux initially increases more

quickly than it does in final steady state. The ribosome amount cannot change much on

this timescale so the translational activity increases to balance flux. As the translational

activity relaxes to its final steady state value, flux grows exponentially with the final

steady state growth rate and growth rate asymptotically approaches its final steady

state value.

4.1.5 Mannose add glycerol upshift.

Wild-type NCM3722 cells were grown in 100 µM IPTG and 0.4% mannose. At

time zero, 0.4% glycerol was added. Figure 4.7 shows flowcell data (black points) along

with the result of the model using the initial glycerol flux as a fit parameter (blue solid

curves). For reference the model result assuming that glycerol cannot immediately be

incorporated by the cell is shown as red dashed curves.

For this upshift the model is again able to capture the kinetics of mass accumu-

lation. The model suggests that glycerol is able to be taken up by the cell immediately

upon being added to the culture. This is consistent with the large increase in flux

and growth rate just after the addition of glycerol. About 30min after the upshift the

rate of flux increase slows down and increases exponentially with rate equal to the final

steady state growth rate. Growth rate also increases at a slower rate and asymptotically

approaches the final steady state growth rate.
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Figure 4.7: Mannose add glycerol upshift. Wild-type NCM3722 cells were grown in

100 µM IPTG and 0.4% mannose. At time zero, 0.4% glycerol was added. The transla-

tional activity, OD600, flux, and growth rate are plotted as a function of time. The data

is plotted as black points. The blue curves are the result of the model using γ0 as a fit

parameter. The red dashed curves are the result of the model that assumes there is no

glycerol flux at the instant of its addition γ0 = γi.
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4.2 Direct titration of flux at the instant of upshift

We have thus far observed that the model is capable of reproducing kinetic data

if we use the initial carbon uptake at the instant of addition as a fit parameter. To

directly test the effect of varying levels of initial carbon uptake on the kinetics of mass

accumulation, we constructed a strain with inducible expression of the succinate trans-

porter. We repeat the mannose add succinate upshift that was studied above, but now

with various levels of initial succinate uptake set synthetically. We find novel, interest-

ing upshift kinetics and find that our model reproduces the kinetics of upshift using the

initial carbon uptake as a fit parameter.

Strain NQ530 has the native dctA promoter replaced with the inducible promoter

Pu [36]. The Pu promoter requires activation by the transcription factor XylR so we

drive the xylR gene with the synthetic lac promoter PLlac-O1 (a promoter that is repressed

by LacI but does not need Crp-cAMP for activation) at the attB chromosomal site.

We use 100 µM IPTG is used to induce expression of XylR. The transcription factor

XylR requires activation by an inducer to activate the Pu promoter. We use various

concentrations of the inducer 3-methylbenzyl alcohol (3MBA) to induce various levels of

DctA expression.

We culture strain NQ530 in minimal medium with 0.1%mannose as the sole

carbon source. To titrate the level of DctA expression, we use 100 µM IPTG to induce

XylR and various concentrations (0, 32, 64 µM) of the inducer 3MBA. During steady

state balanced growth in these conditions, succinate is added to a final concentration

of 20 mM. Thus the bacteria experience a carbon upshift with various uptake levels at

the instant of upshift. At the moment of upshift, we also add 3MBA in the appropriate

amount so that all cultures have the same final concentration of 64 µM and thus also

have the same final growth rate.

There is a sudden increase in flux just after upshift. The size of the increase

correlates with the expression of DctA at the moment of upshift. This makes intuitive

sense and confirms our hypothesis that increasing the uptake rate of the upshift carbon

affects the kinetics of mass accumulation after upshift. Not long after upshift, flux

increases exponentially with rate equal to the final growth rate so that the flux of each

culture is parallel. The cultures that had higher flux at the moment of upshift always
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(a) (b)

Figure 4.8: Direct titration of initial carbon flux. NQ530 cells were grown in 0.1%man-

nose with 100 µM IPTG and 0, 32, or 64 µM 3MBA (red, green, blue points, respectively).

At time zero 20 mM succinate is added to the cultures. Simultaneously, 3MBA is added

so that all cultures have the same final concentration of 64 µM. We plot the observed

flux and growth rate. The raw OD600 data is available in Table 7.7.

maintain their advantage. The model (plotted as curves with the same color scheme as

the points) is able to capture the flux of all cultures by using the initial carbon flux as

a fit parameter.

Growth rate, like flux, has a quick increase at the moment of upshift that cor-

relates with the expression level of DctA. Amazingly, growth rate overshoots the final

steady state value for the highest levels of DctA expression. Growth rate slowly relaxes

down to the steady state value, but the relaxation takes hours. The slow downward re-

laxation of growth rate is reminiscent of the slow upward relaxation in a typical upshift.

Our simple model reproduces the kinetics of growth rate, including the overshoot of the

final steady state growth rate.

We briefly discuss how it is possible for the growth rate to overshoot the final

steady state value. When we discussed the long timescale of growth rate relaxation

from below we noted that it results from the presence of unwanted proteins left over

from the cell’s history. When growth rate overshoots the final value, it means that

the cell transiently uses its mass more efficiently for cell growth than it does in the

final steady state. The model suggests that this is because the cell has transiently

accumulated a higher ribosomal mass fraction than the final steady state (φR(t) > φR,f ).

The high ribosomal mass fraction comes at the cost of the mass fraction of other (non-

flux-producing) proteins. This happens as a result of the high initial carbon flux. To
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handle the high flux, the cell produces so many ribosomes that the ribosomal mass

fraction exceeds the final steady state mass fraction.
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Chapter 5

Extension of the simple analytical

model to carbon downshift

5.1 Introduction

In this chapter we extend the model developed for carbon upshift in Chapter 3

to the realm of carbon downshifts. We consider “carbon downshifts” in which E. coli is

cultured in minimal medium in the presence of two simultaneously used carbon sources at

37◦C. The concentration of one of the carbon sources is chosen such that it is exhausted

by cell growth. Then the culture transitions from steady state balanced growth on the

combination of two carbon source to a new steady state balanced growth on only one of

those carbon sources. The final steady state growth rate is slower than the initial steady

state growth rate.

5.2 Model

Here we derive our model for carbon downshift. The model is analagous to the

carbon upshift model developed in Chapter 3.

As in Eq. (3.1), protein synthesis flux is defined as the rate of increase of protein

mass

JR ≡ dM

dt
. (5.1)
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Protein synthesis is again given by

d

dt
MR = χR(t) · JR(t), (5.2)

d

dt
MC1 = HC1(t) · χC(t) · JR(t), (5.3)

d

dt
MC2 = HC2(t) · χC(t) · JR(t), (5.4)

as in Eqs. (3.2)-(3.4). χR(t) and χC(t) summarize the regulation of ribosomal proteins

(MR) and the catabolic enzymes (MC1 and MC2), respectively. HC1(t) and HC2(t) are

the self-regulatory functions. We consider carbon downshifts where carbon source C1 is

exhausted by cell growth. We take HC1(t) = hC1 constant for all time and HC2(t) = hC2

constant for all time. The values of the constants are not important as they can be

absorbed into kC1 and kC2 below.

As before, to keep the description contained within the essential dynamical vari-

ables introduced above, we define translational activity as

γ ≡ JR
MR

, (5.5)

and note that it reflects the levels of tRNA charging and carbon precursors.

We again make the Ansatz that χR(t) and χC(t) depend on time only through

γ(t) so that

χR(t) = fR(γ(t)) =
λf
γf

(
1 − γf/γmax

1 − γ(t)/γmax

)
, (5.6)

χC(t) = fC(γ(t)) = 1 −
λf
λC

γ(t)

γf

(
1 − γf/γmax

1 − γ(t)/γmax

)
= 1 − γ(t)

λC
χR(t). (5.7)

Catabolic proteins determine the carbon flux

JC(t) = KC1(t)MC1 +KC2(t)MC2. (5.8)

KC1(t) and KC2(t) are the catabolic rate functions. C2 is present in saturating con-

centrations for all time so KC2(t) = kC2 is constant for all time. C1 is depleted by

cell growth so its concentration decreases in time and its catabolic rate function is a
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Michaelis function of C1 concentration

KC1(t) = kC1
[C1](t)

km,C1 + [C1](t)
, (5.9)

with rate constant kC1, Michaelis constant km,C1, and time-dependent C1 concentration

[C1](t). The concentration of C1 in the medium decreases as a result of metabolic flux

d

dt
[C1] = −KC1(t)MC1(t). (5.10)

Flux changes on a much faster timescale than protein mass, and thus we assume instan-

taneous flux balance to prevent the buildup of intermediate metabolites, i.e.,

J(t) ≡ JR(t) = JC(t). (5.11)

Equations (5.1)-(5.11) completely define the dynamics of carbon downshift. The

equations are more complicated than those for carbon upshift and they do not simplify

as nicely. However, the equations are easily numerically integrated to obtain the kinetics

of the growth transition.

5.3 The model simplifies after complete carbon exhaustion

Carbon C1 is completely depleted after time τC1

[C1](t > τC1) = 0 (5.12)

and the model simplifies greatly. The content of this section only considers this simplified

regime. Then, from Eqs. (5.9) and (5.8), C1 no longer contributes to flux so that

JC(t > τC1) = kC2MC2. (5.13)
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Using the definition of translational activity in Eq. (5.5), the flux in Eq. (5.13), and

protein synthesis kinetics in Eqs. (5.2) and (5.4) we find

d

dt
γ = γ(t) [hC2kC2χC(t) − γ(t)χR(t)] (t > τC1), (5.14)

a closed equation for γ(t). Equation (5.14) is of the same form as the differential equation

Eq. (3.27) for translational activity in carbon upshift. From the solution for γ(t), we can

obtain MR(t) from Eq. (5.2), or equivalently,

d

dt
ln (MR) = χR(t) · γ(t). (5.15)

The flux JR(t) is finally obtained from γ(t) and MR(t) via Eq. (5.5), and the growth

curve M(t) is obtained from JR(t) via Eq. (5.1).

We solve Eq. (5.14) in steady state using Eqs. (5.6) and (5.7) to find the constraint

T−1d ≡ hC2kC2 =
λf

1 − λf/λC
, (5.16)

where, as above, λf is the final steady state growth rate and this downshift-affiliated

timescale is defined to be Td.

We rearrange Eq. (5.14) using Eqs. (5.6), (5.7) and (5.16)

dt = dγ
Td
γ(t)

(
1 − γ(t)/γmax

1 − γ(t)/γf

)
(5.17)

and integrate from time tτC1 to time t to find

t = τC1 + Td ln

[(
γ(t)

γτC1

)(
1 − γτC1/γf
1 − γ(t)/γf

)1−γf/γmax
]
, (5.18)

where γτC1 is the value of the translational activity at t = τC1.

We integrate Eq. (5.14) directly using Eq. (5.17) to find

MR(γ) = MR,τC1

(
1 − γτC1/γf
1 − γ(t)/γf

)(1−λf/λC)(1−γf/γmax)

, (5.19)
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where MR,τC1 ≡MR(t = τC1). Then, from Eq. (5.5),

J(γ) = MR,τC1γ(t)

(
1 − γτC1/γf
1 − γ(t)/γf

)(1−λf/λC)(1−γf/γmax)

. (5.20)

We simplify these expressions using Eq. (5.18) and find

MR(t) = MR,τC1

(
γτC1

γ(t)

)1−λf/λC
eλf (t−τC1) (5.21)

and

J(t) = JτC1

(
γ(t)

γτC1

)λf/λC
eλf (t−τC1), (5.22)

where

JτC1 ≡ J(t = τC1) = γτC1MR,τC1 (5.23)

in accordance with Eq. (5.5). We determine the kinetics of the growth curve M(t) by

integrating Eq. (5.1) directly using Eqs. (5.17) and (5.20) and simplify the result using

Eq. (5.16)

M(γ(t)) =MτC1 −MR,τC1

(
γf
λf

)(
1 + TdλCγτC1/γmax

1 + TdλCγf/γmax

)
(5.24)

+MR,τC1

(
γf
λf

)(
1 + TdλCγ(t)/γmax

1 + TdλCγf/γmax

)(
1 − γτC1/γf
1 − γ(t)/γf

)(
1−

λf
λC

)(
1−

γf
γmax

)
,

where MτC1 is the total protein mass at the time when C1 is exhausted.

We calculate the exact form of the growth rate λ using its definition Eq. (3.7)

and Eqs. (5.20) and (5.24)

λ (γ(t)) = λf

(
γ(t)
γf

)(
1−γτC1/γf
1−γ(t)/γf

)(1−λf/λC)(1−γf/γmax)(
MτC1
MR,τC1

)(
λf
γf

)
−
(
1+TdλCγτC1/γmax

1+TdλCγf/γmax

)
+
(
1+TdλCγ(t)/γmax

1+TdλCγf/γmax

)(
1−γτC1/γf
1−γ(t)/γf

)(1− λf
λC

)(
1−

γf
γmax

)
. (5.25)

These calculations reveal the exact solutions of flux, protein mass, and growth

rate throughout downshift after one of the original carbon sources has been completely

exhausted. Note that C10 and km,C1 do not appear. Instead, the solutions require
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the values of translational activity, total ribosome mass, and total protein mass at the

time when C1 is completely exhausted, which are determined by C10 and km,C1. For

carbon upshift, the “initial conditions” (at the moment of upshift) of these parameters

were known from the initial steady state condition and the mass of upshift. For car-

bon downshift, this does not strictly apply because the cell responds to the decreasing

concentration of the carbon source that is being exhausted. However, the values can be

computed by calculating the exact solution of the full model. In addition, if km,C1 is

small relative to the initial C1 concentration, the change in carbon concentration hap-

pens very quickly so that the cell does not have much time to respond. In this case the

“initial conditions” are approximately equal to the initial steady state values.

Once carbon C1 is completely depleted, the kinetics of translational activity are

of the same form as for carbon upshift transitions (compare Equations (5.18) and (3.35)).

The kinetics of protein synthesis flux are also the same for the two transitions (compare

Equations (5.20) and (3.44)). However, the proteome composition is different for these

two types of transitions, and thus the fraction of the proteome contributing to growth

is different. Thus the kinetics of protein mass and of instantaneous growth rate are

different for carbon downshift and carbon upshift.

5.4 Downshift kinetic data

In this section we explore the kinetics of carbon downshift. We compare our ob-

servations to the numerical solution of the full downshift model developed in Section 5.2.

Numerical solution of the model requires four parameters specific to each downshift: the

initial steady state growth rate λi, the final steady state growth rate λf , the initial con-

centration of the carbon that is depleted C10 (and the carbon yield relating this carbon

concentration to the amount of biomass produced), and the Michaelis constant of the

rate-limiting enzyme responsible for the metabolism of the depleted carbon km,C1. The

known initial carbon concentration C10 sets the OD600 at which the downshift occurs.

The Michaelis constant km,C1 determines how quick the downshift is and influences how

much the various quantities (e.g. flux, growth rate) decrease as the carbon is exhausted.

kmC1 is the only parameter that cannot be measured and we thus use it as a fit parame-
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Figure 5.1: Pyruvate with OAA depletion downshift. NQ354 (∆lacI ) cells were grown

in the combination of OAA and pyruvate. OAA concentration was chosen such that

OAA was exhausted during growth. The translational activity, OD600, flux, and growth

rate are plotted as a function of time. The blue curves are the result of the model. The

black data points are the data.

ter. As noted in Section 5.3, the kinetics of growth recovery after C1 exhaustion do not

depend on C10 or km,C1.

5.4.1 Pyruvate with OAA depletion

NQ354 (∆lacI ) cells were grown in the combination of OAA and pyruvate. OAA

concentration was chosen such that OAA was exhausted during growth. The model is

able to capture the kinetics of this pyruvate with OAA depletion downshift. The kinetic

data (black points) and the result of the model (blue curves) are shown in Figure 5.1.

The inputs to the model are the initial growth rate λi=0.88 h−1, the final growth rate

λf=0.66 h−1, the initial OAA concentration 0.095 OD600, and the Michaelis constant of
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the rate-limiting OAA catabolic enzyme km,C1=0.005 OD600. The exact OAA concen-

tration in mM at the time of downshift is unknown because in solution OAA unstable

and spontaneously decarboxylates to pyruvate [37].

Initially the culture is in steady state exponential growth. OD and flux increase

exponentially with rate equal to the steady state growth rate; growth rate is constant

in time and also equal to the steady state growth rate. During this time translational

activity is constant at the steady state value of the initial culture. At OD600 ≈ 0.2

OAA is exhausted and the exponential growth of OD600 is interrupted by a lag followed

by a slower rate of increase. The depletion of OAA causes influx of OAA to decrease.

As a result protein synthesis flux decreases, deviating from its exponentially increasing

behavior. The ribosomal protein mass does not significantly change during this time and

the translational activity decreases along with flux. During this time the growth rate

decreases from λi= 0.88 h−1 to about 0.5 h−1, reflecting a decrease in flux of about 50%.

Protein synthesis flux quickly begins increasing again as pyruvate flux takes over

as the dominant carbon flux. The translational activity begins to increase as well, but is

below the final steady state value. Thus the cell has a high catabolic protein synthesis

rate and a small ribosomal protein synthesis rate, relative to the final steady state. Since

the cell is able to invest a higher fraction of protein synthesis towards the flux-limiting

catabolic proteins, flux transiently increases more quickly than the final steady state

growth rate. As the stoichiometry of the flux producing catabolic enzymes and the

flux consuming ribosomal proteins reaches the final steady state levels, the translational

activity relaxes to its final steady state value and flux grows exponentially with the final

steady state growth rate. Likewise, growth rate stabilizes at its constant final steady

state value.

5.4.2 Pyruvate with gluconate depletion

Wild-type NCM3722 cells were grown in the presence of 1mM IPTG with 20mM

pyruvate and 5.6mM gluconate as the only carbon sources. Pyruvate is always present

in saturating concentrations, but gluconate is exhausted just before the OD600 reaches

0.2. The model is able to capture the kinetics of this pyruvate with gluconate depletion

carbon downshift. The kinetic data (black points) and the result of the model (blue
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Figure 5.2: Pyruvate with gluconate depletion downshift. Wild-type NCM3722 cells

were grown in the presence of 1mM IPTG. The only carbon sources are 20mM pyruvate

and 5.6mM gluconate. Pyruvate is always metabolized by the culture, but gluconate is

exhausted during growth and the culture transitions to slower growth. The translational

activity, OD600, flux, and growth rate are plotted as a function of time. The blue curves

are the result of the model. The black data points are the data. The OD600 data is

available in Table 7.8.

curves) are shown in Figure 5.2. Here the data was taken by hand in batch culture.

The derivatives (flux and growth rate) were calculated as the slope of a best-fit line over

a sliding window of three consecutive OD600 measurements. The inputs to the model

are the initial growth rate λi=1.01 h−1, the final growth rate λf=0.7 h−1, the initial

gluconate concentration (0.11 OD600), and the Michaelis constant of the rate-limiting

gluconate catabolic enzyme km,C1=0.007 OD600.

Initially the culture is in steady state exponential growth on the combination

of pyruvate and gluconate. OD and flux increase exponentially with rate equal to the

initial steady state growth rate. Growth rate is constant in time and also equal to the
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steady state growth rate. During this time translational activity is constant at the steady

state value of the initial culture. Before OD600 reaches 0.2, gluconate is exhausted and

the exponential growth of OD600 is interrupted by a lag followed by a slower rate of

increase. Protein synthesis flux decreases, deviating from its exponentially increasing

behavior. The ribosomal protein mass does not significantly change during this time

and the translational activity decreases along with flux. During this time the growth

rate decreases from λi= 1.01 h−1 to about 0.4 h−1, reflecting a decrease in flux of about

40%.

Protein synthesis flux quickly begins increasing again as pyruvate flux takes over

as the dominant carbon flux. The translational activity begins to increase as well, but is

below the final steady state value. Thus the cell has a high catabolic protein synthesis

rate and a small ribosomal protein synthesis rate, relative to the final steady state. Since

the cell is able to invest a higher fraction of protein synthesis towards the flux-limiting

catabolic proteins, flux transiently increases more quickly than the final steady state

growth rate. As the stoichiometry of the flux producing catabolic enzymes and the

flux consuming ribosomal proteins reaches the final steady state levels, the translational

activity relaxes to its final steady state value and flux grows exponentially with the final

steady state growth rate. Likewise, growth rate stabilizes at its constant final steady

state value.

5.4.3 Succinate with gluconate depletion

Wild-type NCM3722 cells were grown in the presence of 1mM IPTG with 20mM

succinate and 5.6mM gluconate as the only carbon sources. Succinate is always present

in saturating concentrations, but gluconate is exhausted just after the OD600 reaches

0.1. Gluconate is exhausted at a lower OD600 in this downshift than in the pyruvate with

gluconate depletion downshift because gluconate makes up a higher fraction of the total

carbon flux when the culture is grown on the combination of succinate and gluconate.

The model is able to capture the kinetics of this succinate with gluconate depletion

carbon downshift. The kinetic data (black points) and the result of the model (blue

curves) are shown in Figure 5.3. Here the data was taken by hand in batch culture.

The derivatives (flux and growth rate) were calculated as the slope of a best-fit line
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Figure 5.3: Succinate with gluconate depletion downshift. Wild-type NCM3722 cells

were grown in the presence of 1mM IPTG with 20mM succinate and 5.6mM gluconate

as carbon sources. Succinate is always present and metabolized by the culture, but

gluconate is exhausted during growth and the culture transitions to slower growth. The

translational activity, OD600, flux, and growth rate are plotted as a function of time.

The blue curves are the result of the model. The black data points are the data. The

raw OD600 data is reported in Table 7.9.

over a sliding window of three consecutive OD600 measurements. The inputs to the

model are the initial growth rate λi=0.90 h−1, the final growth rate λf=0.46 h−1, the

initial gluconate concentration (0.085 OD600), and the Michaelis constant of the rate-

limiting gluconate catabolic enzyme km,C1=0.007 OD600 (the same value used for the

other pyruvate with gluconate depletion downshift).

Initially the culture is in steady state exponential growth on the combination

of succinate and gluconate. OD and flux increase exponentially with rate equal to the

initial steady state growth rate. Growth rate is constant in time and also equal to the

steady state growth rate. During this time translational activity is constant at the steady
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state value of the initial culture. Just after OD600 reaches 0.1, gluconate is exhausted

and the exponential growth of OD600 is interrupted by a lag followed by a slower rate

of increase. Protein synthesis flux decreases, deviating from its exponentially increasing

behavior. The ribosomal protein mass does not significantly change during this time and

the translational activity decreases along with flux. During this time the growth rate

decreases from λi= 0.90 h−1 to about 0.3 h−1, reflecting a decrease in flux of about a

third.

Protein synthesis flux quickly begins increasing again as succinate flux takes over

as the dominant carbon flux. The translational activity begins to increase as well, but is

below the final steady state value. Thus the cell has a high catabolic protein synthesis

rate and a small ribosomal protein synthesis rate, relative to the final steady state. Since

the cell is able to invest a higher fraction of protein synthesis towards the flux-limiting

catabolic proteins, flux transiently increases more quickly than the final steady state

growth rate. As the stoichiometry of the flux producing catabolic enzymes and the

flux consuming ribosomal proteins reaches the final steady state levels, the translational

activity relaxes to its final steady state value and flux grows exponentially with the final

steady state growth rate. Likewise, growth rate stabilizes at its constant final steady

state value.

5.4.4 Succinate with glucose depletion

Wild-type NCM3722 cells were grown in the presence of 0.4% succinate and

0.5mM glucose as the only carbon sources. Succinate is always present in saturating

concentrations, but glucose is exhausted at about 0.1 OD600. The model is able to cap-

ture the kinetics of this succinate with glucose depletion carbon downshift. The kinetic

data (black points) and the result of the model (blue curves) are shown in Figure 5.4.

Here the data was taken by hand in batch culture. The derivatives (flux and growth rate)

were calculated as the slope of a best-fit line over a sliding window of three consecutive

OD600 measurements. The inputs to the model are the initial growth rate λi=1.08 h−1,

the final growth rate λf=0.66 h−1, the initial glucose concentration (0.07 OD600), and

the Michaelis constant of the rate-limiting glucose catabolic enzyme km,C1=0.002 OD600.

Initially the culture is in steady state exponential growth on the combination
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Figure 5.4: Succinate with glucose depletion downshift. Wild-type NCM3722 cells were

grown on 0.4% succinate and 0.5mM glucose as the only carbon sources. Succinate is

always present and metabolized by the culture, but glucose is exhausted during growth

and the culture transitions to slower growth. The translational activity, OD600, flux,

and growth rate are plotted as a function of time. The blue curves are the result of

the model. The black data points are the data. The raw OD600 data is reported in

Table 7.10.
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of succinate and glucose. OD and flux increase exponentially with rate equal to the

initial steady state growth rate. Growth rate is constant in time and also equal to

the steady state growth rate. During this time translational activity is constant at the

steady state value of the initial culture. At about 0.1 OD600, glucose is exhausted and

the exponential growth of OD600 is interrupted by a lag followed by a slower rate of

increase. Protein synthesis flux decreases, deviating from its exponentially increasing

behavior. The ribosomal protein mass does not significantly change during this time

and the translational activity decreases along with flux.

Protein synthesis flux quickly begins increasing again as succinate flux takes over

as the dominant carbon flux. The translational activity begins to increase as well, but is

below the final steady state value. Thus the cell has a high catabolic protein synthesis

rate and a small ribosomal protein synthesis rate, relative to the final steady state. Since

the cell is able to invest a higher fraction of protein synthesis towards the flux-limiting

catabolic proteins, flux transiently increases more quickly than the final steady state

growth rate. As the stoichiometry of the flux producing catabolic enzymes and the

flux consuming ribosomal proteins reaches the final steady state levels, the translational

activity relaxes to its final steady state value and flux grows exponentially with the final

steady state growth rate. Likewise, growth rate stabilizes at its constant final steady

state value.
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Chapter 6

Outlook

6.1 Lessons from this study

In this dissertation we are able to quantitatively predict the kinetics of bacterial

mass accumulation throughout growth transitions using only observations from steady

state growth and the known topology of regulatory interactions. The model does not

include the complex molecular details of the underlying regulation. This demonstrates

the power of this top-down physiological approach to describe bacterial physiology, even

outside of steady state growth.

Our simple model provides a consistent framework that can reproduce some

surprising observations of gene expression reported in the literature. We predict that if

the initial nutrient flux is high enough just after upshift, the cell devotes a higher fraction

of protein synthesis to ribosomes than it does in the final steady state. Schaechter and

coworkers observed that for some nutrient upshifts of Salmonella typhimurium the RNA

synthesis rate, which reflects the synthesis rate of ribosomes, is transiently higher than

the rate in the final steady state condition [34]. We also predict that for these upshifts the

cell expresses catabolic proteins at a rate lower than in the final steady state and can even

completely suppress their expression transiently. This complete suppression of catabolic

proteins was observed for carbon upshifts in E. coli in [14]. This coordinated regulation

of the flux-producing catabolic enzymes and the flux-consuming ribosomes results in

very fast relaxation of the fractional synthesis rate of ribosomal proteins. Indeed, the

rate of synthesis of ribosomal protein normalized by the total protein synthesis rate in E.
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coli increases from its initial value to its final value in just a few minutes after a carbon

upshift [38] [39].

Our report provides new insights about the bacterial growth rate. In steady state

growth, the growth rate quantifies the rate at which all cellular constituents increase and

thus is the most basic quantity describing the state of the cell [3]. Remarkably, despite the

immense complexity of the underlying regulatory networks, in steady state the growth

rate is the primary determinant of the macromolecular composition of the bacterial cell

[6] [9] [14]. However, throughout growth transitions, we find that while protein synthesis

rates relax on a timescale of minutes, growth rate relaxes over the course of hours. Thus

during excursions from steady state growth, even those as gentle as carbon upshift, the

relationships between growth rate and macromolecular composition (or macromolecular

synthesis rates) are not upheld. We predict that macromolecular synthesis rates are

instead correlated with the translational activity. In this sense it may seem that the

growth rate does not have the same importance as in steady state growth. We even find

that in some situations the growth rate exceeds the steady state growth rate afforded

by the medium for several hours, suggesting that in steady state the cell grows at a rate

slower than it is capable of. However, the growth rate of the final condition is still a

measure of the quality of the new growth condition and manifests itself well before the

final growth rate is reached (e.g. as the rate of increase of protein synthesis rate).

Our study also suggests a tradeoff between the steady state growth rate and the

ability of the bacterial cell to adjust to changing growth conditions. In our model the

translational activity adapts to balance flux throughout carbon upshift. At slower growth

the translational activity is especially low because the ribosome amount is nonzero at

zero growth rate and there are many more ribosomes than necessary to keep up with

the protein synthesis rate. This facilitates faster carbon upshift since the activity of

ribosomes can easily increase in response to increased substrate concentration. However,

it means that more ribosomes are produced than are necessary for the required protein

synthesis in steady state. The extra ribosomes can be considered unnecessary protein

and come at the expense of the steady state growth rate as described in [9].
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6.2 Remaining questions and future directions

We have predicted the kinetics of protein mass accumulation throughout carbon

upshift and downshift. To get a deeper physiological understanding we plan to extend the

presented study. Our model also predicts the expression of ribosomal proteins without

any additional fit parameters. Measuring ribosome expression will provide a deeper

exploration of the quantitative predictions of the model. Although the measurement of

OD600 throughout these growth transitions allows for high temporal precision, we also

plan to directly measure total protein amount to avoid effects related to cell size and

other factors influencing spectrometry. Combining the observations of total protein and

ribosome amount will also provide a direct measure of the translational activity, which

is central to our understanding.

In our model we are able to avoid explicitly keeping track of the kinetics of reg-

ulatory metabolites because we have a handle on the translational activity, which is

also determined by the metabolites. As a result we developed a model that captures

the kinetics of mass accumulation throughout carbon upshift that is simple and analyti-

cally solvable with only a single unknown parameter. The effectiveness of our approach

warrants exploring its usefulness in the study of other complex or poorly characterized

systems. In particular other types of bacterial growth transitions may benefit from our

approach. Nitrogen, phosphate, osmolarity, antibiotics, temperature and many other

changing conditions may benefit from similar phenomenological models.

Within the context of carbon shifts there are still remaining questions about the

fluxes of other nutrients. For the shifts we studied we did not need to explicitly consider

that other nutrients (e.g. nitrogen) may be limiting. More extreme upshifts would likely

require such considerations and would provide insight about the regulation of the limiting

enzymes.

In our study we also discovered that too much carbon flux inhibits growth (data

not shown). Adding lactose, succinate, or glycerol to cultures that have a high expression

of the relevant catabolic enzymes (i.e. the lac, dctA, and glp operons) was found to inhibit

growth rather than facilitate it. The mechanism of these growth inhibitions is not fully

understood and it will be interesting to explore this further.

The cell produces the enzymes responsible for the metabolism of some carbon
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sources before they are present in the medium and are thus immediately able to utilize

these carbon sources at the instant they are added to the medium [14] [40]. Production

of these proteins is useless in the absence of their substrates and is a waste of cellular

resources that results in a decrease in the growth rate. The observation that this is true

for different carbon sources to varying degrees suggests that the cell is programmed to

expect the appearance of particular carbon sources over others. Careful quantitative

study of the upshift kinetics of various carbon sources may provide insight about the

natural environment of E. coli.
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Chapter 7

Additional information

7.1 Experimental procedures

Growth medium: All growth media used in this study were based on N-C-

minimal medium [41], which contains K2SO4 (1 g), K2HPO4·3H2O (17.7 g), KH2PO4

(4.7 g), MgSO4·7H2O (0.1 g), and NaCl (2.5 g) in one liter, and is supplemented with

20 mM NH4Cl and various carbon sources. IPTG was added to media when necessary

to fully induce the native lacZ operon or PLlac-O1 promoter driving XylR.

Growth: Each experiment was carried out in three steps: seed culture in LB

broth, pre-culture and experimental culture in identical N-C- minimal medium. For seed

culture, one colony from fresh LB agar plate was inoculated into liquid LB and cultured

at 37◦C with shaking. Then depending on the specific growth rate in each condition, cells

in various cultures were diluted to different densities in identical N-C- minimal medium,

and cultured in 37◦C shaking at 250rpm overnight (pre-culture), so that the overnight

culture was kept in exponential growth for at least 3 doublings. Cells from the overnight

pre-culture was then diluted to OD600 = 0.005-0.04 in identical pre-warmed minimal

medium, and cultured in 37◦C shaking at 250rpm (experimental culture).

Batch culture growth: All batch culture growth was performed in a 37◦C

water bath shaker shaking at 250 rpm. The culture volume was either 5 ml in 20

mm × 150 mm test tubes or 25 ml in 125 ml flasks. Throughout growth, 200 µl cell

culture was collected in a Sterna Sub-Micro Cuvette for OD600 measurement using a

ThermoScientific Genesys 20 Spectrophotometer.
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Flowcell culture growth: All flowcell culture growth was performed in a 37◦C

air incubator. The culture volume was 25 ml in 125 ml flasks and was kept shaking at

250 rpm. A peristaltic pump was used to circulate the culture through a flowcell cuvette

and back to the flask. OD600 was measured once per second using a ThermoScientific

Genesys 20 Spectrophotometer connected to a computer with a serial cable. The pump

was cycled between on and off states (typically 25 seconds on and 15 seconds off) because

the OD600 data was found to have much more uncertainty while the pump was on.

Strains: The strains used in this study are derived from E. coli K12 strain

NCM3722 [42] [43] and are summarized in Table 7.1.

Chromosomal Pu-dctA fusion: Because the activation of Pu promoter needs the

XylR protein, we started with the strain NQ386 (from [14]) in which a synthetic lacZ

promoter PLlac-O1 [44] (a promoter that is repressed by LacI but does not need Crp-

cAMP for activation) drives xylR at the attB site. A DNA fragment containing the

Pu promoter (-1 bp to -178 bp relative to the transcriptional start site) was amplified

by PCR from a Pu promoter containing plasmid pEZ9 [36], then inserted into the SalI

and BamHI sites of plasmid pKD13, producing plasmid pKDPu. Using this plasmid

as a template, the region containing the km gene and Pu promoter was PCR amplified

and integrated into the chromosome of E. coli strain NQ351 in front of dctA (-1 to

-182bp relative to translational start site) by using the λ Red system [45]. The km-Pu-

dctA construct in NQ351 was transferred into strain NQ386 containing PLlac-O1 by P1

transduction, resulting in strain NQ530.

β-galactosidase assay: Samples (0.5mL culture) were collected during

growth. LacZ assay samples were immediately added to an equal volume of the

freshly prepared Z-buffer (in 1 L: 8.52 g Na2HPO4, 5.5 g NaH2PO4·H2O, 0.75 g KCl

and 0.25 g MgSO4·7H2O, pH adjusted to 7.0; with 0.004% (w/v) SDS and 40 mM

β-mercaptoethanol) with 100 µl chloroform. Cells were immediately disrupted by

vortexing. After all the samples were collected, they were briefly vortexed a second

time. After 5-10 minutes at room temperature to settle the chloroform, the lysates were

optionally diluted (typically 1:20) into 50:50 mixture of Z-Buffer and media. 200 µL

was then added to a 96-well plate. Immediately prior to reading in GENiosPro (Tecan)

plate reader, 40 µl of 4 mg/mL ortho-Nitrophenyl-β-galactoside in 0.1 M phosphate
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buffer (pH=7.0) was added to each well. The plate reader was set to read absorbance

at a wavelength of 420 nm every minute for 60 to 120 minutes at 28◦C.

7.2 Tables

Table 7.1: Strains used in this study.

Strain Genotype Description

NCM3722 wild-type E. coli K12 strain parent strain for all strains

used here

NQ354 ∆lacI laci -null

NQ530 attB ::PLlac-O1-xylR,

PdctA::km-Pu

titratable DctA

NQ351 pKD46 NCM3722 with pKD46 plas-

mid

NQ386 attB ::PLlac-O1-xylR xylR expression strain

Table 7.2: Parameter values used in the model. The model requires the knowledge of

three parameters obtained from the steady state growth relationships. Here we report

the values used, which were obtained from a best fit.

Parameter Value

φR,min 0.0714

γmax 4.65 h−1

λC 1.2 h−1
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Table 7.3: Glucose-glycerol diauxie data. Wild-type E. coli NCM3722 is grown at 37◦C

in minimal medium with glucose and glycerol. These data are plotted in Figure 1.3

Time (h) OD600

-1.6333 0.076

-1.2167 0.112

-0.88333 0.155

-0.61667 0.199

-0.41667 0.241

-0.26667 0.277

-0.16667 0.303

-0.1 0.323

0 0.353

0.1 0.36

0.21667 0.359

0.35 0.357

0.48333 0.362

0.61667 0.372

0.75 0.392

0.86667 0.419

1 0.45

1.1167 0.492

1.2333 0.536

1.3333 0.582

1.4667 0.64

1.6333 0.714

1.8167 0.807
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Table 7.4: Long time batch culture data for the succinate add gluconate upshift. Wild-

type NCM3722 cells were grown in minimal medium at 37◦C with 1 mM IPTG and

0.4% succinate as the sole carbon source. At time zero gluconate was added to a final

concentration of 20 mM. Culture saturation was avoided by serial dilution into a fresh,

identical culture. The OD600 data for the 3 overlapping cultures is reported here.

Culture1 Culture2 Culture3

Time af-

ter upshift

(h)

OD600 Time af-

ter upshift

(h)

OD600 Time af-

ter upshift

(h)

OD600

-2.48 0.035 1.32 0.058 3.07 0.06

-2.1 0.043 1.65 0.077 3.4 0.081

-1.75 0.048 1.98 0.101 3.73 0.107

-1.43 0.054 2.32 0.135 4.07 0.147

-1.1 0.063 2.65 0.182 4.4 0.199

-0.77 0.073 2.98 0.247 4.73 0.272

-0.43 0.084 3.32 0.331 0 0

-0.1 0.098

0.07 0.101

0.23 0.111

0.4 0.127

0.57 0.137

0.9 0.173

1.23 0.222

1.57 0.288

1.9 0.375
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Table 7.5: LacZ throughout the mannose add lactose upshift. Wild-type NCM3722

cells were grown in 0.4% mannose. At time zero, 0.4% lactose was added. LacZ was

measured using an activity assay.

Time after up-

shift (h)

LacZ activity

(U/mL)

0 14.4396

0.033333 13.1519

0.066667 12.7725

0.1 21.2493

0.13333 34.2047

0.18333 60.5316

0.21667 58.2895

0.25 65.014

0.28333 81.2374

0.31667 86.8812

0.35 105.487

0.38333 103.918

0.41667 110.134

0.45 114.594

0.48333 130.426

0.56667 142.025

0.65 119.703

0.81667 163.684

0.98333 225.435

1.25 352.007

1.4333 479.576

1.5 453.6248

1.7333 548.439

1.9 788.2434
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Table 7.6: Mannose add succinate LacZ. NQ354 (∆lacI ) cells were grown in 0.1%

mannose. At time zero, 0.4% succinate was added. Here we report the LacZ activity.

Time after up-

shift (h)

LacZ activity

(U/mL)

Time after up-

shift continued

(h)

LacZ activ-

ity continued

(U/mL)

-1.9583 2580.21 0.475 3969.75

-1.025 3192.26 0.525 4078.93

-0.85833 3031.33 0.60833 3902.23

-0.69167 3191.98 0.69167 4065.72

-0.525 3192.82 0.775 4254.39

-0.35833 3340.74 0.85833 4285.28

-0.19167 3336.92 0.94167 4649.34

-0.025 3586.27 1.025 4546.31

0.0083333 3785.93 1.1083 4564.47

0.041667 3709.75 1.1917 4586.45

0.075 3598.63 1.275 4838.76

0.10833 3735.86 1.375 4914.16

0.14167 3368.36 1.4417 5265.28

0.175 3823.08 1.525 5370.65

0.225 3764.28 1.6083 5371.35

0.275 3749.86 1.6583 5644.11

0.325 3803.73 1.6917 5396.67

0.375 3762.25 1.725 5829.98

0.425 3886.25 1.7583 5798.18
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Table 7.7: Upshift with direct titration of the initial carbon flux. NQ530 cells were

grown in 0.1%mannose with 100 µM IPTG and 0, 32, or 64 µM 3MBA, as labeled in this

table. At time zero succinate is added to 20 mM and 3MBA is added to 64 µM. Here we

report the raw OD600 data.

Time after upshift (h) 0 µM 32 µM 64µM

-2.6917 0.042 0.041 0.039

-2.325 0.047 0.046 0.044

-1.325 0.06 0.057 0.056

-0.79167 0.069 0.067 0.065

-0.0083333 0.084 0.08 0.076

0.15833 0.084 0.081 0.076

0.325 0.089 0.09 0.081

0.475 0.093 0.096 0.089

0.625 0.099 0.104 0.098

0.775 0.106 0.115 0.111

0.925 0.114 0.12 0.12

1.075 0.122 0.13 0.131

1.225 0.13 0.138 0.143

1.375 0.138 0.148 0.156

1.525 0.147 0.157 0.171

1.675 0.157 0.169 0.188

1.825 0.171 0.183 0.203

1.975 0.179 0.196 0.221

2.125 0.19 0.209 0.241

2.275 0.205 0.225 0.261

2.425 0.216 0.241 0.282

2.575 0.24 0.259 0.299

2.725 0.248 0.278 0.317

2.875 0.265 0.296 0.343

3.025 0.284 0.317 0.367

Continued on next page
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Table 7.7: Upshift with direct titration of the initial carbon flux, Continued.

Time after upshift (h) 0 µM 32 µM 64µM

3.175 0.303 0.341 0.397

3.325 0.326 0.364 0.428

3.475 0.345 0.389 0.455

3.625 0.368 0.418 0.488

Table 7.8: Pyruvate with gluconate depletion data. Wild-type NCM3722 cells were

grown in the presence of 1mM IPTG. The only carbon sources are 20mM pyruvate and

5.6mM gluconate. The raw OD600 data is reported here.

Time (h) OD600

1.03 0.04

1.23 0.05

1.45 0.061

1.67 0.076

1.83 0.091

2 0.106

2.17 0.125

2.33 0.147

2.5 0.159

2.67 0.17

2.83 0.185

3 0.201

3.17 0.225

3.33 0.253

3.5 0.285

3.75 0.339

4 0.401

4.25 0.472

4.5 0.555
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Table 7.9: Succinate with gluconate depletion data. Wild-type NCM3722 cells were

grown in the presence of 1mM IPTG with 20mM succinate and 5.6mM gluconate as

carbon sources. The raw OD600 data is reported here.

Time (h) OD600

1.03 0.038

1.23 0.045

1.45 0.055

1.67 0.067

1.83 0.078

2 0.09

2.17 0.101

2.33 0.11

2.5 0.117

2.67 0.124

2.83 0.131

3 0.138

3.17 0.146

3.33 0.155

3.5 0.165

3.75 0.183

4 0.205

4.25 0.227

4.5 0.25

4.83 0.282

5.17 0.322

5.5 0.367
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Table 7.10: Succinate with glucose depletion data. Wild-type NCM3722 cells were

grown on 0.4% succinate and 0.5mM glucose as the only carbon sources. The raw

OD600 data is reported here.

Time (h) OD600

1.03 0.036

1.23 0.043

1.45 0.053

1.67 0.065

1.83 0.076

2 0.089

2.17 0.103

2.33 0.113

2.5 0.117

2.67 0.121

2.83 0.126

3 0.132

3.17 0.138

3.33 0.145

3.5 0.15

3.75 0.159

4 0.172

4.25 0.189

4.5 0.205

4.83 0.23

5.17 0.257

5.5 0.293

5.83 0.328
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