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ABSTRACT 

The solution of the differential equation describing the equilib-

rium meniscus in a vertical right circular cylinder is obtained over 

the entire range of contact angles and Bond numbers (dimensionless 

ratios of gravitational to capilla!y forces) for which a stable meniscus 

exists. The first few terms of the asymptotic series valid for Bond 

numbers of small and large magnitude are given, and the numerical 

solution for intermediate values is computed. The behavior of the 

solution as a function of contact angle and Bond number is depected 

graphically. 



-1- UCRL-18112 

1. Introduc tion 

A few years "ago White and Tallmadge (1965) ca}culated the shape 

of static menisci on the outside of a vertical right circular cylinder for 

a perfectly wetting fluid (zero-degree contact angle). The correspond-

ing problem for static menisci inside a cylinder for both zero and more 

general contact angles has stimulated interest for many years-early 

references date back as far as Laplace (1805). Rayleigh (1916) gave ex

pressions for the asymptotic solutions for very small and very large cyl

inders, primarily for zero-degree contact angle; and Bashford & Adams 

(1883) and Runge (1895) performed some of their early work in the nu

merical solution of differential equations by calculating meniscus shapes. 

In recent years the advent of space exploration and the accompanying in

terest in low-gravity environme.nts have revived the study of these shapes. 

Reynolds & Satterlee (1966) give additional information on the solution of 

the interior meniscus problem which includes graphs depicting stability 

a~d some of the geometric properties of the interfaces over a large range 

of parameters. A number of other authors have also studied aspects of 

this problem recently, and most of their work can be found listed in the 

bibliographies of Habip (1965), Lockheed (1967), and Reynolds & Satterlee. 

The purpose of this paper is to complete the description of the 

equilibriw;n meniscus in a vertical right circular cylinder for all values 

of the two basic parameters, the contact angle between the meniscus and 

the cylinder wall and the Bond number (a dimensionless parameter that is 

the ratio of gravitational to capillary forces). Asymptotic solutions along 

with their range of validity are derived for small and large magnitudes of 
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the Bond number and the numerical solution is obtained for intermediate 

values. The range of validity of the asymptotic solutions is found by 

comparison with the numerical solution, and the dependence of the solu~ 

tion on contact angle and Bond number is depicted graphically. Conditions 

for meniscus stability are also discussed. The attempt to make the re-

suIts presented here complete will necessitate presentation of some re-

suIts that overlap those presented by others elsewhere. The reader is 

referred to Reynolds &: Satterlee for a discussion of the relevant back-

ground material. 

2. Mathematical Description 

The equilibrium free surfa,ce of a liquid inside a vertical cylinder 

of circular cros s section (Fig. 1) satisfies the differential equation 

1 d 
r dr 

df(r) 
r dr 

1+e1~r9T72 
with the boundary conditions 

and 

df(r) = 0 
dr 

df(r.) = cot B 
dr 

- Bf(r) - X. = 0, 0 < r < 1,' 

at r = 0 

at r = 1. 

( 1) 

(2a) 

(2b) 

-. . 2 
The quantities f, r, B, and X. are dimensionless, where B = paa /er is 

the Bond number with p the liquid density, a the vertical acceleration I 

field (positive downward), a the radius of the cylinder, and er the sur-

face tension; ar is the radial distance from the axis; af(r) is the height 

of the surface at a point r; and B is the given contact angle between the 

surface and the cylinder wall. Let the origin of the coordinate system 
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be at the center of the free surface, that is, apply the additional bourtd-

ary condition 

f(O) = 0; (3) 

then the unknown parameter >.. is twice the mean curvature of the sur-

face at r = 0, or, what is the same thing, twice the curvature of fer) at 

r = O. The parameter>" is related to the pressure difference across 

the surface by >.. = a(PO - PL)/u, where PO is the pressure outside the 

liquid and PL is the pressure in the liquid at r = 0 just below the inter

face. Since (1) and (2) are invariant with respect to the transformation 

I = f + h, >.. = >.. - Bh, 

the height of the meniscus center in a capillary tube above the free plane 

level of a reservoir in which the tube is immersed for B > 0 is h = a >../B. 

Observe that the solution to (i), (2), and (3) for a nonwettingfluid . 
('If/2 < e ~ 'If) can be obtained directly from that for a wetting fluid 

(O ~ e < 'If/2) by replacing f by -f, >.. by - >.., and e by ('If- e). Thus it is 

necessary to obtain the solution only for a wetting fluid, which is the 

case considered in the remainder of the paper. For the case in which 

e = 'If/2, the solution is, of course, the trivial one of the flat interface 

fer) == 0, for which>" = O. 

It is convenient to have (1), (2), and (3) also expressed in para

metric form in terms of the parameter ~ = tan- 1{df/dr), the angle be-

tween the surface and the horizontal. The equations are 

simp ~ _ 
D ' d~ -

cos!Jl 
D o <~ < 'If/2-e, 

where D = Bf - (sin~)/ r + >.., with the boundary conditions 

f(~) = r(l\J) = 0 at ~ = 0 

(4) 

(5 ) 
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and 

r(~) = 1 at ~ = TT/2 - e. (6) 

Equation (1) can also be written in terms of the parameter ~ as 

1 d. dll, simI) 
- - (r sln~) - Bf - A = cos~ .:=;:r, + - Bf - A = O. r dr dr r 

(7) 

The quantity cos~ d~/dr is the curvature of fer), and (sin~)/r is the other 

principal curvature of the free surface. Notice that the denominator D 

in (4) is jus t the curvature of f( r). 

The only solutions to the above equations that are considered here 

are those that are stable and physically realizable. It can be shown that 

these solutions are characterized as follows for ° < e < TT/2. First, . 

A is positive. Second (a): For B > 0, the curvature of fer) increases 

monotonically from its value of 'A/2 at r = 0 to its maximal value at 

the wall, and hence f, r, and ~ also increase montonically from the 

center to the wall. There are other solutions which ~ JOp back on them-

selves one or more times between r = 0 and the wall and satisfy the 

boundary conditions (to ,"vithin multiples of 2TT), but these are, in general, . 

unstable and not physically realizable. (b): For B < 0, the curvature 

of fer) decreases monotonically from its value of 'A/2 at r = ° to its 

minimal nonnegative value at the wall, and hence f, r, and ~ increase 

monotonically from the center to the wa~1. For each contact angle there 

is a critical (negative) value of B, B (e), which is the least value of 
cr 

B for which ·such a solution ~s pos sible. For values of B less than B 
cr 

there are undulating solutions of (4) satisfying the boundary conditions, 

but computational results indicate that these are unstable (see Sec. 6); 

the solution, fer), for the critical value of B has the property that its 
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curvature decreases to zero at the wall. 

3. Asymptotic Solution for Small B 

The asymptotic solution of (4), (5), and (6) for IB !«'i,can be ob-

tained by a formal perturbation expansion in powers of B by letting 

f(ljJ) = fO(ljJ) + Bfi (ljJ) + O(B2), 

r(ljJ) = r 0 (yj) + Br 1 (ljJ) + O(B2), (8) 

and A = A 
0 + BAi + O(B2) 

as B approaches zero. * SubstitUtion into (4) yields the zero-order 

equations 

df . dr 
o _ sinp 0 = 

dljJ - AO· (sinljJ)!r
O

' dljJ 

The solution, subject 'to the boundary conditions (5) and (6) with subscript 

zero on the variables,is the spherical segment 

fO = 2 (1 - cos ljJ)/X.O = secB( 1 • cosljJ}, 
0~ljJ~TT/2 -8 

,r 0 = 2 (sinljJ);i.O = secB sinljJ (9) 

AO = 2 cosB. 

This is the solution for zero Bond number (zero gravity). 

Using the above zero-order solution, one then obtains the equations 

for the first-order quantities, 

dfi 3 2 
dijJ = -sinljJ [r1 cscljJ+sec 8(1-cosljJ}+A

i 
sec e], 

dr1 3 2 
dljJ = -cosljJ[r

1 
cscljJ+ sec, B(1-cosljJ)+A

i 
sec e], 0<ljJ<TT/2-B. 

* Expanding not only f and r but also A results in a solution that is some-
what more convenient to use than the one Rayleigh obtained by expanding 
only f and r. 
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The solution, subject to the appropriate first-order boundary conditions, 

(5) with subscript one. and, instead of (6),; 

at ~ = rr/2 - 0, 

is 

f = sec 311 C .! + cos~ _ cos2~ +.! 1 (1+cos4J) _ A II 1-COS*] 
1. u t 6 2 3 3 og 2 1 cOSu 2 ' 

3 11 [1.. 1_cos
3

ljJ A1. ll' ] ( ) r 1 = -sec u2" smljJ - 3 sinljJ + T cOSu slnljJ , 10 

A 1 = - sec 0 + ( 2/3) sec 
3 

0 ( 1- sin 
3

0 ) . 

Substitution of (9) and (10) into (8) then gives the desired asym.ptotic solu

tion. The magnitude of B up to which this solution for small IB I remains 

sufficiently accurate is discussed in Sec. 6. 

Expressions f<;>rthe surface area and volume valid for small IB I 
can be obtained by using the above solutions for f and r. The surface 

area. S, of the equilibrium free surface is 

rr/2-0 

S = S dr 
2rr r dljJ s e cljJ dljJ, 

o 

which for small IB I becomes 

S = 2" (1- sina) sec 
3 

a {COBa - B[~ f + seca (f- sinal/Z) + O( B2)} . 

The volume. V, of liquid between the horizontal plane z = 0 and the free 

surface is 

rr/2-0 

v=S 
o 

dr 
2rr r f dljJ dljJ, 

which for small IB I is 

\ 
! 
!-

, 

t 
I t, 
f' I. 
f 

f 
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v =" {- ~i + B sec 5 0 [- (4/3' +(3/2) • i 'cosO) cosZO + (i- sinO)/3 .' . . 

+ (5/3.+ Ai cosO)( 1- sin
3

0) - (2/3)cos
2

0 (1 +sin
2

0)+ (1/3)cos 20 log({HsinO)/t) ] 

+ O(BZ)}, 

4. Asymptotic Solution for Large B 

Since B , the critical value of B less than which a stable free 
cr 

surface does not exist, is a negative number of only moderate magnitude 

for all contact angles (see Reynolds &: Satterlee, Fig. 11.23, p. 408), it 

is not necessary to consider an asymptotic solution for negative values 

of B of large magnitude .. The asymptotic solution developed here is 

for large positive values of H, only. 

The asymptotic solution for B »1 is found by using a boundary-

layer technique. One assumes that there is a central core region cover

ing most of the cylinder in which df/dr = tan\jJ is small, and a boundary-

layer region near the wall in which \jJ increases rapidly to its given 

boundary value. Matching the core and boundary-layer solutions in the 

transition zone between them determines the value of the constant, A. 

In the core region (\jJ « 1), the solution is most easily found from 

(i), which for small \jJ becomes 

1 d 
rdr 

c c 
( 11) 

where the subscript c denotes the core region. The solution, subject 

to (2a) and (3), is 

( 12) 
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from which the relationship between r, and l\J" is found to be 
c 

where 10 and Ii are modified Bessel functions of order zero and one, 

respectively. 

The solution in the boundary-layer region is obt.:ined by first 

estimating the boundary-layer thickness, which is assumed to be of the 

order of B-m , where m is a positive exponent to be determined. That 

is, let x be the boundary-layer variable, where 

m 
x = B (1 - r) ( 13) 

is of order one in the boundary layer. Then substitution into (7) yields 

m ~ sinl\J' 
B co sl\J + - Bf - h. = O. dx -m 

1-B x 
(14) 

In order that l\J = tan -1 (~~) = - B
m 

tan -1 ~) be of order one in the bound

-m * ary layer, it is necessary that f be of order B . The quantity m 

is determined by requiring that the dominant capillary term-the first 

term in (14), which is the one due to the curvature of f(r)-and thegrav-

itational term, the third term in (14), be of the same order. This yields 

the relationship 

so that tJ::1e proper choice for m is m = 1/2. 

~c 

It is as sumed, of course, that the given contact angle e requires that l\J 

be of order one at the boundary. If e is close to Tr/2, then a boundary-

layer solution is not necessary, and the core solution may be used all the 

way to the wall. 

l 
. f 

f , 

. f 
L 
f 
1 

" I, 
t 

" 

i 

J 

r , 

I' 

I 
I-
I 

Ii 
[' 
i 
I 

I 

I 
: ' 
i 
! , 
I' 

• i 

I 
f 
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One thus seeks a solution in the boundary-layer region of the form 

2 3 
fb (lfJ) = € F 1 (lfJ) + € F 2 (lfJ) + 0 ( € ), ( 15 a) 

2 3 
rb(lfJ) = 1 -€ x

1
(lfJ) - € x 2 (lfJ) + O(€ ), (1Sb) 

where € = B- 1/ 2 is the expansion parameter and fb(lfJ) and rb(lfJ) are the 

solutions for f(lfJ) and r(lfJ), respectively, in the boundary layer. The ex

pansion is carried out to €2 so that the terms up to order B- 1 are included, 

in a sense paralleling (8), the expansion for small IB I, where terms up to 

order B are included. The appropriate boundary conditions are the ones 

corresponding to (6), 

at lfJ = tr/2 - 0, ( 16) 

and, in addition, the ones that outside the boundary layer fb approach 

zero with lfJ, 

at lfJ = O~ ( 17) 

In obtaining the solution it is assumed that X. is negligible in comparison 

with terms of order one, an assumption that is verified after the solution 

is found. 

Substituting (15) into (4) yields the first-order equations (terms 

of order €) 

sinl}! 
F ' 

1 

The solution, subject to the conditions (16) and (17), is 

F 1 = 2 sin(lfJ/2), 

xi = log [tan(lfJ 1/ 4 )/tan(lfJ/4 )] + 2cos(lfJ
1

/ 2)-2 cos(l\J/2), 
(18) 
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where l/J 1 is t4.e value of l\J at the wall, 

l\J 1 = Tr/2 - 8. 

2 
The second-order equations (terms of order € ) are 

= -
• 2l\J sln 
F2 

1 

(19) 

where F 1 is given by (18). The solution, subject to conditions (16) and 

(17), is 

F2 = 2 1-COS
3(i/2) 

3' sin(l\J 2) , 

2 . 2 l/J 1 1 l/J 1 -1 1 tan(l/J 1/4 ) 
3' Sln -2- - 6(1 + cos T) + 2 log tan(l\J/4) (20) 

Equations (18) and (20), when substituted into (15), then give the desired 

boundary-layer solution. 

The value of X. appearing in the solution is evaluated by matching 

the core and boundary-layer solutions in the region of transition between 

the two, that is, far enough from the wall so thatl\J is of order €, but 

close enough so that (1- r)« 1. In terms of the expansion parameter 

€ the core solution (12) in the transition region is 

In this region r is close to one, so that the Bessel function in the above 
c 

expression may be approximated by its asymptotic expansion for large 

t 

t 

I: 

I 
I 
i 

I-
I. 
I 

! 

II 
! 
i; 
! 
I. 

I 
i 

. I 
i! 
I: 

i' 
, ! 

I 

! . 
~ . 
i 
! 
f 

! 
I: 
! ' 
! 
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argument to yield 

2 exp(r c/€) [ ] 
f = € ~ 1/2 : 1 + 8~c + O(€2) . 
c (2Tr r / €) 

c 

(21) 

The asymptotic expression for the boundary-layer solution in the 

transition region is found by using the forms that (18) and (20) take for 

small l\J, 

-2 
xi = - log(l\J/4) + log tan(l\J 1/4 ) + 2 cos(l\J 1/2) - 2 + O(l\J ), 

F 2 = l\J/2 + O(l\J3), 

x 2 = - (1/2) log(l\J/4) - (2/3) sin
2

(l\J 1/2) 
1 . 2 

- (1/6)[ 1+cos(l\J1/2)]- + (1/2) log tan(l\J1/4) + 1/12+ O(l\J ). 

Substituting these equations into (15) and taking l\J to be the same order 

as € yield 

(22a) 

and 

€ -* l\J 1. l\J 1 
1 - rb(l\J) = €(1+ Z)(-log 4 + log tan 4' -2 €(1-cosT) 

. 2 [ 1 2 2 l\J 1 1 l\J 1 - 1] 2 
+€ 12-'3 sin T-6(1+cosT) ... +o(€). (22b) 

Note that the remainder term in (22b) is evidently of the form O(€3logl\J), 

for which for l\J = O(€) is 0 (€2), but larger than O(€3). In the transition 

region 1- rb(l\J) is O( € log E), and the error in (1Sb) increases to 

O(€3 log €) from its value of O(€3) in the boundary layer. 
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Exponentiation of (22b) yields 

Substitution of this equation into (22a) and simplifying yield 

[ 
1-rb(l\J) [19 l\J 1 2 2l\J1 1 l\J 1 -1]' } 

fb(~) =4E 1+ 2 + E 12 - cosT - 3' sin T - 6(1+cosT) + O(E) 

[ 
1-rb(l\J) l\J 1 l\J 1 ] 

·exp - E + log tanT - 2(1-cosT) • 

The core solution (21) may now be matched to the above boundary-

layer solution by setting r = rb and equating f to f
b

. The result, c c ' 

after the relation [1 - rb(l\J)] = O(E log E} has been used to expand (21) 

as 

is the expression for >.., 

where 

).0 = 4(2,,) 1/2 tan (<\I /4) exp { -2 [1- coslP /2)]} 

and 

(23) 

Examination of (23) shows it to be consistent with the assumption made 

previously that >.. is small compared with terlTIS of order one. 
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The asymptotic expressions for -large B for the surface area S 

of the equilibdum. free surface and the volume V of liquid between the 

horizontal plane z = 0 and the free surface are then found to be 

and 

5. Numerical Solution 

3 + O(€ }. 

The solutions for large B and for values of B near zero can be 

found by using the asymptotic expressions given in the previous sections. 

For intermediate values of B it is necessary to numerically solve the 

boundary-value problem describing the free surface. This is accom

lished here by using the initial-value, or shooting, method {see Fox 1962}. 

Equation {4} is integrated, using (5) and a guessed value, of A. as initial 

conditions, until I!J = -rr/2 - 0, at which point the right-hand boundary condi-

Hon (6) is, in general, not satisfied. The value of X, is then adjusted, by 

using Newton's method, .and the process repeated until (6) is satisfied to the 

desired accuracy. The specific equation used to correct X, is 

A. =x,-
n+1 n 

}..=x, 
n 

where X, denotes the nth approximation to x'; the value of a r/a A. is 
n 

obtained by simultaneously integrating the equations obtained by differ-

entiating (4) with respect to x', 
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a a f 
1fl1i (ax.) = -

along with (4). subject to the initial conditions 

ar =2..i. = 0 15"1. a x. at IjJ = O. 

The numerical integration was carried out by using ZAM, a 

. Radiation Laboratory computer library subroutine, which employs a 

variable-step size fourth-order Adams-Moulton method. To start the 

integration at r = O. the presence of the (sinljJ)/r term in the differential 

equations requires that an asym.ptotic solution be used. The asymptotic 

solution for small y; for B ~ 0 is given by (11); for B < 0 it is 

-1 { 1/2}' f=-X.B 1-J
O

[(-B) ,r] 

IjJ = >"(_B)-1/2 J [(_B)1/2 r]. 
1 

(24) 

These asymptotic solutions are us ed for ljJup to a value of less than 0.1 

degree, at which point the numerical integration is begun. 

The determination of the critical Bond number and the corre-

sponding numerical integration for f and r require special attention, 

since the' choice of IjJ as the independent variable does not permit the 

integration to be carried out all the way to the wall, when the denomina-

tor D of (4) vanishes. The integration is accomplished by letting D be 

the independent variable. once it becomes small, and then continuing the 

integration of 

I 
i 

·l 
! 
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~~ = B sinl\J + (c~~~7 r)[ (sinl\JI r) - D] 

and (25) 

dr COSt' 
dD = B sinl\J + (cosl\J r)[(sinl\J/r) - D] 

until D = O. The solution is then rescaled so that r = 1 at the right-

hand end point, and the shooting method correction on ~ determined to 

make l\J = rr/2 - e when D = 0, rather than to make r = 1 when 

l\J = rr/2 - e. 

6. Results and Conclusions 

The solution properties are depicted in Figs. 2 through 5, where 

f(rr/2 - e), the height of the free s~rface at the wall; S, the area of the 

free surface; V, the volume of liquid between the free surface and the 

plane z = 0; and x., twice the mean curvature of the free surface at 

r = 0, are displayed, respectively. The solid portions of the curves 

depict the asymptotic solutions obtained for large and small Bond nurn-

bers, and the dashed portions depict the numerical solutions calculated 

for intermediate Bond numbers. The heavy dots show the actual nurner-

ical values calculated- the dashed curves are faired between them. The 

curves are plotted on a log-log scale. 

The accuracy of the num'erical solutions was checked by observing 

the effect' of varying the mesh size, varying the value of l\J up to which 

(24) is used, and varying the value of D beyond which (25) is used, and 

by comparison with the closed-form solution for zero gravity. The nu-

merical values of f, S, V, and x., from which the figures are prepared, 

were concluded to be accurate to at least six significant digits; the values 
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of B were determined to three digits. Comparison of the numerica.l cr 

solutions with those given by the asymptotic formulas showed that the 

asymptotic solution for small B, (8), may be used for IB I:::; 0.1 and 

the asymptotic solution for large B, (12) and (15). may be used for 

B = €~ 100 with a relative error in each case of less than 1% in 

f( Tr/2 - 8), S, V, or A.. 

The curves ih figures 2-5 terminate at their left-hand extrem-

ities at the critical Bond number. B (8), for which the curvature of f 
cr 

decreases to zero at the wall. These values of B are the same as 
cr 

those given by Reynolds & Satterlee (fig. 11.23, p. 408) to within their 

accuracy for the critical value of B at which the meniscus shape ceases 

to provide a stable configuration of minimum energy. Computational 

evidence is thus provided that the equivalence of the critical value of B 

at which a stable equilibrium surface is no longer pos sible and that at 

which the curvature of f just vanishes at the wall, which is the case for 

a two-dimensional channel (Concus, 1963, 1964), holds for the cylinder 

also. 

Figures 6, 7, and 8 depict the diametral cros s section of the 

equilibrium free surface as a function of B for 8 = 0, 30, and 60 deg.' 

The curves are displaced vertically so that they all have mean height 

zero and, correspond to the same volume of liquid. 

.. 
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Figure Captions 

Fig. 1. Physical configuration. 

Fig. 2. f( 1T /2 - 9), Menis cus height at the cylinde r wall, vs. B, Bond 

number. The curves in order from top to bottom are for con-

tact angles 9 = 0, 10, 20, 30, 40, 50, 60, 70, and SO degrees. 

Fig. 3. S, Meniscus area, vs. B, Bond number. The curves in order 

from top to bottom are for contact angles 9=0, 10,20,30, 

40, 50, 60, and SO degrees. 

Fig. 4. V, Volume between the meniscus and the plane z = 0, vs. B, 

Bond number. The curves in order from top to bottom are for 

contact angles 9 = 0, 20, 30, 40, 50, 60, 70, and SO degrees. 

Fig. 5. x., Twice the mean curvature at the meniscus vertex, vs. B, 

Bond number. The curves in order from top to bottom are for 

contact angles 9 = 0, 20, 30, 40, 50, 60, 70, and SO degrees. 

Fig. 6. Menisci for contact angle e = 0 deg. The curves in .order from 

the flattest to the most arched at the center are for Bond numb-

bers B = 1000, 100, 10, 1, 0, and B = - 0.S42. cr 

Fig. 7. Menisci for contact angle 9 = 30 deg. The curves in order from 

the flattest to the most arched at the center are for Bond num-

bers B = 1000, 100, 10, 1, 0, and B = - 2.03. . cr 

Fig. S. ,Menisci for contact angle 9 = 60 deg. The curves in order from 

the flattest to the most arched at the center are for Bond num-

bers B = 1000, 100, 10, 1, 0, and B = - 3.02. cr 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com
mlSSlon, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

8. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 






