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Abstract

Immune reconstitution following hematopoietic stem cell transplantation (HCT) beyond one year 

is not completely understood. Many transplant recipients who are free of graft versus host disease 

(GVHD) and not receiving any immunosuppression more than a year after transplant seem to be 

able to mount appropriate immune responses to common pathogens and respond adequately to 

immunizations. However, two large registry studies over the last two decades seem to indicate that 

infection is a significant cause of late mortality in some patients, even in the absence of 

concomitant GVHD. Research on this topic is particularly challenging for several reasons. First, 

there are not enough long term follow-up clinics able to measure even basic immune parameters 

late after HCT. Second, the correlation between laboratory measurements of immune function and 

infections is not well known. Third, accurate documentation of infectious episodes is notoriously 

difficult. Finally, it is unclear what measures can be implemented to improve the immune response 

in a clinically relevant way. A combination of long-term multicenter prospective studies that 

collect detailed infectious data and store samples as well as a national or multi-national registry of 

clinically significant infections (e.g., vaccine-preventable severe infections, opportunistic 

infections) could begin to address our knowledge gaps. Obtaining samples for laboratory 

evaluation of the immune system should be both calendar driven and eventdriven. Attention to 

detail and standardization of practices regarding prophylaxis, diagnosis and definitions of 

infections would be of paramount importance to obtain clean, reliable data. Laboratory studies 

should specifically address the neogenesis, maturation and exhaustion of the adaptive immune 

system and in particular how these are influenced by persistent alloreactivity, inflammation and 

viral infection. Ideally, some of these long-term prospective studies would collect information on 

long-term changes in the gut microbiome and their influence on immunity. Regarding 

enhancement of immune function, prospective measurement of the response to vaccines late after 

HCT in a variety of clinical settings should be undertaken to better understand the benefit as well 

as the limitations of immunizations. The role of intravenous immunoglobulin is still not well 

defined, and studies to address it should be encouraged.

Keywords

immune reconstitution; late infections; immunization; intravenous immunoglobulin

Introduction

The National Institutes of Health Blood and Marrow Transplantation Late Effects Initiative, 

comprised of pediatric and adult HCT health care providers, administrators, researchers, 

advocates and survivors across federal and non-federal groups and sponsored by the 

National Cancer Institute and National Heart, Lung and Blood Institute, aims to identify 

knowledge gaps, develop practice recommendations and formulate important research 

questions to improve transplant survivor monitoring and management (cite commentary). 
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The Immune Dysfunction and Pathobiology Working Group, established as one of 6 

working groups within this initiative, convened in September 2015 with the goal of 

providing recommendations for immune function and infection control in the field of HCT 

survivorship. The working group focused on identifying trends in late infections, describing 

immune reconstitution in the lab and reviewing interventions to improve immune function in 

HCT survivorship studies. These findings and recommendations for research were presented 

at a public meeting in June 2016, including over 150 participants with expertise across HCT 

survivorship. The findings were revised based on audience comments and are presented 

here.

A major goal after allogeneic hematopoietic stem cell transplantation (HCT) is to achieve 

optimal immune reconstitution, which we define operationally (in the case of allogeneic 

HCT) as: the restoration of functional pathogen-specific immunity and establishment of 
anticancer immunity in the absence of immune dysregulation (e.g., GVHD and/or HCT-

associated autoimmunity). Late after transplant (i.e., > 1 year) variable degrees of of 

immune recovery are observed in different patients, and the data are limited.

This paper will review what is currently known about immune function late after HCT, 

identify knowledge gaps and propose research priorities to fill those gaps, with an emphasis 

on what is arguably the most important function of the immune system: protection against 

infection.

Section 1. Late infections after Hematopoietic Stem Cell Transplantation 

(HCT)

Historically, infection is one of the 3 leading causes of death after HCT (along with relapse 

and graft versus host disease (GVHD)) 1. Most infections occur during the first year and 

different types of infectious syndromes predominate at various times 2, 3. Multiple factors 

influence the pace of immune recovery and the risk for and type of infectious complications. 

These factors include patient age, underlying disease, antecedent immunosuppressive state, 

prior infections, conditioning regimen, type of donor, degree of match, stem cell source, 

immunosuppressive regimen used to prevent GVHD, anti-infective practice, the occurrence 

of post-transplant GVHD and viral infections, and use of certain post-transplant therapies to 

prevent disease relapse that alter immune recovery 4–8 (Table 1).

By one year, immune reconstitution is well underway for many HCT recipients 15. However, 

some immunologic deficits are detectable in many patients using sensitive immunologic 

assays at 1–2 years, and even beyond 10 years 16, 17. Patients with GVHD or CMV infection 

or recipients of HLA mismatched donors frequently have delayed, incomplete, or 

dysregulated immune reconstitution. Chronic GVHD is associated with multiple deficits in 

different arms of immunity and many types of protective responses are dysregulated 1819–21. 

Late infections are common complications and causes of death in patients with persistently 

active GVHD 22. Functional asplenia has been reported to predispose to rapidly developing 

sepsis from S. pneumoniae, that can lead to mortality among GVHD patients 20. Older 

studies suggested the use of unrelated donors (with or without GVHD) was also associated 

with an increase in late infections 22, 23, although many of those patients were likely 
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mismatched since low resolution typing methods were in use then. In the absence of active 

GVHD, persistently low CD4 counts and persistently low immunoglobulin levels have been 

associated with the risk for late infectious morbidity 2, 24.

Thus, the risk of late infection for patients with ongoing GVHD and prolonged 

immunosuppressive therapy remains substantial. In contrast, in most patients without GVHD 

the incidence of life-threatening infection is much lower and continues to decline with 

passing time after transplant.

Two large retrospective CIBMTR studies have investigated late deaths (defined as beyond 2 

years) of allogeneic HCT survivors. The first one, with more than 6,000 two-year survivors 

and a median follow-up of 6.6 years, estimated a risk of death from infection in the absence 

of GVHD of approximately 6% 25. Half of the infections were bacterial. A similar study ten 

years later of more than 10,000 two-year survivors with a median follow-up of 9 years 

estimated that 10–20% of all deaths were caused by infection in the absence of active 

GVHD 26. Proportions of deaths due to infection were similar in all major categories of 

diseases for which the transplant was performed. Generally, the risk of infectious death 

decreased over time after transplant, less after ten years compared to 2–4 years. 

Unfortunately, this kind of large retrospective registry study lacks the capability to capture 

and analyze fine details regarding specific infections and risk factors.

In some small retrospective studies, pneumonia appeared to be the predominant type of late 

serious infection 21, 22, 27. For example, in a small single-center study, two-thirds of 

infectious deaths were due to pneumonia, and a pathogen was detectable in 57% of 

pneumonias with Aspergillus and CMV predominating 21. Concomitant GVHD was present 

in many of the patients with infection in such reports, limiting our ability to determine rates 

of infections in the absence of GVHD. Other risk factors were CMV infection, mismatched 

or unrelated donor grafts, and use of TBI 21. Older reports noted the importance of late 

varicella-zoster virus infection 22, but today with routine prolonged acyclovir prophylaxis 

this is much less common except in patients with persistent GVHD 28. Limitations of these 

older studies include small numbers, unique center-specific transplant practices, varying 

follow-up practices, and different case mix that might affect both types and frequency of 

infection as well as risk factors. In a preliminary (unpublished) analysis of CIBMTR 

survivors who died from late infection, antecedent GVHD had occurred in most, suggesting 

persistent immune deficits after recovery from GVHD. This study is ongoing.

Persistent viral infections often lead to additional clinically important complications late 

after HCT. Persistent immune deficits after CMV infection can confer susceptibility to other 

infectious pathogens. Of note, non-relapse mortality in patients with early CMV infection 

continued to increase beyond one year in a large CIBMTR analysis, with infection being a 

major cause of death, suggesting that there may be long-lasting immune deficits after CMV 

infection that predispose patients to later infection 12, 13. Other viral infections also may lead 

to complications late after transplant. Viral hepatitis either before or early after transplant 

may be associated with late complications. Flares of hepatocellular injury can occur at the 

time of tapering of immunosuppressive therapy due to deleterious immune responses to viral 

replication. Chronic infection can also result in complications such as chronic active 
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hepatitis, cirrhosis, or hepatocellular carcinoma more than 10 years after transplant 29. 

Improved screening of blood and transplant donors, use of the hepatitis B vaccine, and the 

use of hepatitis B antivirals and the recent introduction of potent hepatitis C antivirals have 

resulted in a lessening of the risk for late hepatitis complications. Recent recognition of 

HPV-associated gynecologic and head and neck carcinomas has led to calls for consideration 

of the HPV vaccine for prevention 30–32. It is possible that other late viral associated 

complications will be identified with the increasing number of recipients surviving beyond 

10 years and the identification of new viral pathogens and their associations with transplant 

complications.

The variability in the reporting of infectious disease data in the HCT population has several 

causes. First, the definition of infectious syndromes is complex, and changes as new 

diagnostic assays are developed. Important distinctions may be missed by transplant 

clinicians and data managers who are not familiar with the most current definitions. Second, 

there is no standardization between centers in the application of infectious disease diagnostic 

algorithms and variability of anti-infective practices, with some centers relying heavily on 

prophylaxis or empiric anti-infective therapies, while other centers pursue infectious disease 

diagnoses aggressively. Such variability may lead to confounding due to ascertainment bias. 

Third, the variability late after HCT is even greater. Clinical care of the HCT survivor after 

one year is not typically performed by many transplant centers, particularly in the U.S. 

Community practices, to which these patients have returned, may not find it important to 

capture detailed infection data in clinic encounters. In many cases aggressive diagnostic 

testing is not used or even possible and empirical therapy for suspected or presumptive 

therapies predominates. This is confounded moreover by inconsistent availability of 

knowledgeable personnel to collect follow-up data. The variability in the quality of such data 

is substantial and leads to even greater ascertainment bias. The net effect of these limitations 

is that audits of infection data reports frequently find errors in under-reporting of infectious 

events and in some cases over-reporting due to lack of use of standardized definitions. 8, 33

Key research priorities and recommendations

1. A long-term, multicenter prospective study of late infectious events after HCT is 

highly desirable. One-year HCT survivors should be enrolled and followed up to 

5 years to determine the incidence of serious infection, types of pathogens, the 

risk factors, and the immunologic correlates. The sample size should be large 

enough to capture important differences between key variables that influence 

infection risk. To provide valid, actionable information we recommend the 

following:

a. only centers with enough commitment and resourced to provide high 

quality infection data should participate

b. standardized definitions of infection events should be applied

c. standardization of the anti-infective practices and diagnostic approaches 

should be implemented

d. standardized follow-up protocols should be used
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e. audits of data should be performed.

f. Samples should be collected for immunologic correlate testing to allow 

analysis of both clinical and immunological risk factors.

2. There is a growing recognition of the important role of the gut microbiome on 

the host immunity. Studies have identified associations between changes in the 

microbiota early after HCT on early infectious complications, GVHD, 

transplant-related mortality, and relapse 34–36. However, there are no studies on 

how long-lasting such early patterns of microbiota are on both late microbiota 

and late infection risk. Thus, a second research priority would be a prospective 

study to examine the association of early and late microbiota changes after HCT 

and the association of such changes with late infections and immunity. Such a 

study could be incorporated into the prospective study of late infections 

described above.

3. Knowledge about the occurrence of certain specific late infections after HCT is 

lacking. For example, the effectiveness of consensus infection control guidelines 

on infection is of great interest. Are centers adhering to the vaccine guidelines; 

are they effective in reducing infection; what are the barriers that impede 

effectiveness? A third research priority is to create a registry of vaccine-

preventable and other rare infectious diseases (e.g., late aspergillosis or 

Pneumocystis pneumonia). Case identification should be annotated with key 

information about risk factors, immunologic parameters and information about 

vaccination.

Section 2. Immune Reconstitution in the Laboratory

Functional Immune recovery after HCT depends on persistence of adoptively transferred 

mature donor immune cells present in the graft, and neogenesis of cells derived from donor 

hematopoietic progenitor cells (HPC). 37, 38 Early immune recovery following HCT has 

been studied by quantifying white cell subsets. Early immune recovery proceeds in the 

following order: NK cells, B cells, CD8 T cells first, followed later by CD4 T cells, plasma 

cells and dendritic cells. Detailed analyses of lymphocyte subset recovery and thymic 

function early after transplant have been published but beyond the first post-transplant year 

the data are limited. Despite normal white blood cell numbers, some HCT patients do not 

possess normal functional immunity. Methods to determine presence of absence of 

functional immunity have not been validated, even if CD4 lymphocyte numbers or 

CD4/CD8 ratios are sometimes considered appropriate surrogate markers 39. Validated 

measures of immune function after HCT are urgently needed. Such methods could 

eventually guide infection prevention strategies after HCT.

Multiple factors have an impact on the immune parameters that can be measured in the 

laboratory. Table 2 highlights some of the relevant findings and others will be discussed in 

the subsections dedicated to T and B cell function. The key point is the dearth of data about 

immune function late after HSCT.
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T cell immune reconstitution

Pathobiology of late immune dysregulation—Impaired thymopoiesis, lymphopenia 

and antigen exposure all contribute to TCR repertoire dysregulation 47. Memory skewing of 

the T cell response and associated impairment of T cell repertoire diversity has been 

associated with poor control of chronic viral infection 48 and impaired anticancer 

immunity 49. Late memory CD8+ T cells are less able to produce IL-2 in association with 

other cytokines. 50

Measures of T cell immune reconstitution—The types of assays currently available 

to assess T cell immune reconstitution include enumeration of CD4+ and CD8+ T cells. T 

cell subset analyses by flow cytometry (naïve, memory, and effector) are performed 

primarily in the research setting. Furthermore, assessment of thymopoiesis and recent 

thymic emigrants (by TRECs and phenotyping), TCR repertoire analysis or sequencing, and 

antigen-specific functional assays including response to vaccines are also not routinely used 

in clinical settings.

Naive, central and effector memory and stem cell memory T cells may be enumerated by 

their expression of CD45 isoforms (e.g., CD45RA) in combination with maturation and 

homing markers (CCR7, CD31, CD103, CD27, CD62L, CD28, CD95 and CD57). Other 

critical T cell subsets include CD8+ memory stem cells (CD8+CD161hi) 51, regulatory T 

cells (CD4+CD25hiCD127lowFOXP3+) 5253, and T helper 17 cells 54.

Estimation of TCR repertoire diversity historically used indirect methods like TCR Vβ 
repertoire analysis by microfluorimetry 55 or assessment of skewing within individual Vβ 
regions by TCRβ “Spectratyping.” 56, 57 However, rapid evolution of the efficiency and cost 

of next generation sequencing technologies now allows direct assessment of repertoire 

diversity within surface marker-sorted T cell subsets or HLA-peptide multimer-sorted 

subsets of antigen-specific CD8+ T cells.58–60

Several antigen-specific T cell functional assays are available for evaluating virus-specific 

responses, for example, to CMV 61–63, EBV 64, aspergillus 65, as well as to tumor antigens 

like Wilms’ tumor 1 (WT1) and proteinase-3 66). The relevant assays include cytokine flow 

cytometry 61, ELISPOT 67, and HLA-peptide tetramer staining 63, 68. Cytokine secretion, 

measured by flow or ELISPOT, elicited CD4+ and CD8+ T cell responses to peptide 

antigens 69, proteins 61, or cells 70 can be detected 71.

Clinical correlates of measured T cell reconstitution—Some studies have found an 

association between early immune reconstitution and clinically relevant endpoints. Survival 

was better in children whose CD3+CD8+ counts rose to >5th percentile of age-matched 

normal levels during the first year compared to children who never attained these levels 44. 

Similarly in adults, early reconstitution of CD3+ and CD8+ T cells correlated with improved 

progression-free survival (PFS) 45. Not surprisingly, impaired vaccine responses were 

associated with delayed T immune recovery 72. In this study, of mostly young adults, 

vaccine responses to PnCRM7 and HIB tested at a median of 13 months post-HCT were 

better among those who had achieved CD4+ T cells >200/μL and IgG levels >500 mg/dL 72. 
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Overall, higher levels of circulating CD4+CD45RA cells correlated with improved 

PNCRM7 response 72.

Studies of functional assessments of CMV-specific T cells have primarily been performed in 

the early post-HCT interval, leading to incomplete understanding of why persistent deficits 

in CMV-specific immunity lead to viral reactivation in nearly a third of HCT recipients. In a 

large (n=269) single institution study examining the incidence of late CMV reactivation 

following allogeneic HCT, the incidence of late reactivation was 31% and was more likely to 

occur in patients with prior or ongoing GVHD, in recipients of mismatched or unrelated 

donors, and in individuals transplanted for a lymphoid diagnosis 73. In contrast to studies of 

CMV- and EBV-specific T cell immunity, little is known about functional immunity to other 

herpesviruses important in HCT recipients, including HSV, VZV and HHV-6, some of which 

contribute to late morbidity and mortality in a subset of HCT recipients.

At 2 years post-HCT a CD4+ and CD8+ T cell defect was observed involving naive, 

terminally differentiated, memory and competent cells 74. At 5 years post-HCT, another 

study showed that low numbers of CD4+ and CD4+CD45RA+ T cells and reversed 

CD4/CD8 ratios persisted; CD4+CD45RA+ T cell numbers were low despite the absence of 

cGVHD at 2 years 41.

In a study of patients who were beyond 10 years post-HCT and no longer taking 

immunosuppressive medication (with one exception), CD4+ and CD8+ T cell blood counts 

were not significantly different from those enumerated using donor samples that were 

cryopreserved at transplant. However, compared with donors, recipients had significantly 

fewer naive T cells, fewer CD4+ central memory cells, more effector CD8+ cells, and more 

regulatory T cells 16. No clinical correlates were reported.

T cell reconstitution has been shown to be affected by the combined effects of GVHD 

prophylaxis and treatment, and acute and cGVHD itself 75, 76. CD4+ T cell reconstitution is 

impacted by the use of T-cell depletion and GVHD 72. At 2 years post-HCT, the number of 

CD4+ CD29+ T cells was higher in recipients with extensive cGVHD suggesting that 

cGVHD affected T cell immune reconstitution 41. In another study chronic GVHD did not 

influence CD8+ T cell recovery, while naive CD4+ subsets were strongly affected 74.

T cell immune reconstitution following autologous HCT—The timing of T cell 

reconstitution differs between autologous and allogeneic HCT, with some studies showing 

more prolonged CD4 lymphopenia after autologous HCT.75 Renewed thymopoiesis is 

possible in adults >30 years old, but decreases with increasing age. 77 In a study of 

autologous HCT for breast cancer, TREC numbers correlated positively with naïve T cell 

recovery and TCR repertoire diversification. Naïve T cells were evident by 100 days after 

autologous HCT for myeloma; thymic function fully recovered by 2 years, was age 

dependent and positively correlated with naive T-cell recovery and TCR repertoire 

diversity 43. In another study, prolonged total and naïve CD4+ T cell lymphopenia persisted 

until 2 years after autologous HCT 75. After autologous HCT, T cell recovery predicted OS 

and PFS in patients with hematologic malignancies and breast cancer 78.
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In contrast to the allogeneic HCT setting, fewer detailed studies of functional immune 

reconstitution have been performed in autologous HCT recipients, likely due to the lower 

incidence of infections associated with deficits in cell mediated immunity (e.g., CMV). 

However, even for infections occurring relatively frequently in autologous HCT recipients 

(e.g., reactivations of HSV, VZV), little is known about the pace or quality of functional T 

cell recovery.

Regulatory T cell immune reconstitution—The development and maintenance of 

immune tolerance after HCT requires the balanced reconstitution of “conventional” effector 

CD4+ (Tcons), tolerizing CD4+ regulatory T cells (Tregs) and CD8+ T cells, which may 

also be important in the pathogenesis of cGVHD 79. Very limited data exist about Treg 

recovery beyond one year after HCT. As noted in one study, at 10 years after HCT recipients 

had significantly more Tregs compared to donors 16. One study with 2 years of follow-up 

showed that Tregs and Tcons recover at similar pace and slower than CD8 T cells, and were 

predominantly of central and effector memory phenotype 80. Thymic Treg production was 

very limited within the first two years in contrast to the production of naïve Tcons and CD8 

T cells. Early recovery of naïve Tregs and Tcons correlated with the development of chronic 

GVHD particularly if there was an imbalance of Tcons over Tregs 80. Low telomerase 

activity in Tregs has been associated with severe chronic GVHD after allo-HCT 81. Lastly, 

the use of autologous HCT to treat autoimmune diseases via tolerance induction is thought 

to depend on increased Treg TCR diversification 82. Another T cell population whose role is 

less understood in HCT, are the IL-10 producing TR1 cells 83 Moreover, other potentially 

important regulatory populations include regulatory B cells, NK cells, and 

macrophages 83, 84858687. Their role in immune reconstitution and responses to exogenous 

stimuli late after HCT is poorly understood.

B cell immune reconstitution

Translational studies have led to a greater appreciation of post-HCT B-cell deficiencies and 

clinical determinants of B-cell recovery kinetics, including alloreactivity. Recovery of 

functional immune cells after autologous HCT has been likened to fetal ontogeny, requiring 

re-encounter of the new donor immune system to microbes over many years. Most patients 

after autologous HCT eventually regain functional immunity. By contrast, functional 

immune recovery in the presence of alloantigen is a lifelong process, especially when 

immune tolerance is not achieved (i.e., in cGVHD).

The paucity of IgD-negative post-GC cells and CD27+ B cells and a ‘fetal-like’ B cell 

compartment may persist for years. B cell dysregulation results in auto- and allo-antibody 

production, which is more profound in cGVHD patients.88–90 Despite the clinical 

importance of these phenomena, the recovery of late B-cell function remains underexplored.

Hypogamaglobulinemia after HCT is associated with dramatically increased infection risk, 

including encapsulated organisms and viruses. 87, 91 Collectively, published data support the 

notion that patients with and without cGVHD achieve varying states of B-cell immune 

function and are variably immune tolerant, analogous to genetic immunodeficiency 
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patients.92, 93 However, what molecular mechanisms account for persistent B cell 

dysfunction late after HCT remain largely unexplored.

The inability to mount a proper B-cell response to microbial insult after HCT has been 

associated with a paucity of memory B cell responses in the first 2 years after HCT 94, 95. 

Flow cytometric analyses of blood in patients after allogeneic HCT and autologous HCT 

have afforded detailed enumeration of B-cell subsets with functional correlates in the 

healthy setting that can be defined by cell surface marker criteria in both autologous and 

allogeneic HCT patients 96. Persistently low numbers of CD27+ memory B cells 97, 98, 

IgDLo, post-germinal center (GC) B cells 99 and immaturity of the B Cell Receptor (BCR) 

repertoire 100 suggest a failure of B cells to undergo key maturation steps including somatic 

hypermutation. In murine GVHD splenic atrophy and destruction of secondary lymphoid 

organs is evident and likely immune-mediated although limitatioins of tissue access make 

this difficult to study directly in humans 101–104. Abnormal ex vivo B cell responses have 

been attributed to steroid therapy 105, mitogen defects 106, 107, T-dependent IgG defects 108, 

B-cell activation signaling 109 and Ig-switching defects 110. Rare antigen-experienced B cell 

subsets are capable of constitutive IgG secretion but HCT patients are known to have poor 

recall responses to vaccination.97, 111 HCT patients, especially those with cGVHD are 

unable to produce functional high affinity antibodies.

Factors contributing to long-term B cell functional aberrations after HCT remain largely 

unknown because, with few exceptions, most studies examine antibody and B cell responses 

within the first 2 years after HCT. One early study showed that patients (followed for nearly 

5 years after HCT) who had been in vivo challenged with phage and pneumococcal antigen 

recovered normal primary and secondary antibody responses recovered if they did not have 

cGVHD.112 Another study of patients followed for a median of 6.5 years after allogeneic 

HCT showed progressive loss of antibodies to measles, mumps and rubella over time, with 

most previously vaccinated patients becoming seronegative by 5 years.113 A European study 

of patients receiving the pneumococcal vaccine after HCT revealed that even in the absence 

of GVHD, IgG responses several years after primary vaccination were not durable.114 

Ongoing susceptibility of patients, especially those with cGVHD to encapsulated organisms 

suggests that splenic B cell dysfunction may persist for years. Long-term reconstitution 

deficits and plasma Ig levels were determined in a study in which HCT patients with and 

without cGVHD were examined together. Low B cell numbers and low functional response 

to tetanus toxin were associated with increased infections at 6 years post HCT.15

While ex vivo assays have shown that B cells are constitutively activated in cGVHD,115, 116 

B lymphopenia and humoral immune deficiency are distinctive characteristics of 

cGVHD.117–120. Studies have characterized the composition of the peripheral blood B cell 

compartment and have begun to characterize factors leading to altered B cell homeostasis 

after HCT.104, 121 While functional anti-microbial antibodies are often persistently absent 

and HCT patients are hypogammaglobulinemic, cGVHD, is paradoxically associated with 

high titers of allo- and autoantibody.88, 89 In this regard, cGVHD patients appear to be 

similar to patients with common variable immune deficiency (CVID) given their common 

propensity toward B cell autoreactivity in the face of profound humoral immune 

deficiency.89, 122 A preponderance of CD21LoCD27-B cells has been found to be associated 
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with infectious complications 97 suggesting that typical antimicrobial GC reactions do not 

occur. Muted B cell responses to microbial pattern recognition receptors like 

lipopolysaccharide (LPS) potentially contribute to this GVHD-associated immune 

deficiency.123 Evidence suggests that similar immunodeficiency states are associated with 

variable levels of immune tolerance and autoimmunity.124–126

Reconstitution of innate immunity

Almost all studies evaluating innate immune populations (natural killer (NK) cells, invariant 

NKT cells, dendritic cells, macrophages, neutrophils, eosinophils, platelets, and monocytes.) 

have focused on immune constitution under one year after transplantation with the 

assumption that these populations normalize not only in numbers but function as well. Only 

a single study has shown that low early counts (up to day 180) of innate populations such as 

basophils, eosinophils, macrophages, and monocytes, may be associated with post-HCT 

infection risk after 1 year but the study is limited by very small numbers.87 The few 

remaining studies have focused only on NK cells and shown that factors such as ATG, 

alemtuzumab 127, 128 can delay their immune reconstitution but the impact after 1 year, if 

any, is unknown. Interestingly, late EBV infection may impact innate immunity inducing 

hemophagocytic lymphohistiocytosis.129 Studies of the late recovery of innate immune 

responses and their interaction with T and B cell populations are warranted.

Key research priorities and recommendations

The difficulties of conducting detailed immunologic studies late after HCT were already 

mentioned. Additionally, the quality of registry data, while typically reliable for survival and 

relapse, is less robust related to reporting of infectious events in the late post-transplant 

interval.

Immune cell intrinsic and extrinsic pathways responsible for prolonged immune deficiency 

after HCT remain unknown. Immune function assays that determine infection risk have not 

been validated. The ability to understand immune dysregulation that persists into the late 

post-HCT interval will depend on prospective correlative sample collection that continues 

beyond one year, and the correlation of phenotypic and functional data with clinical data 

regarding late infection events, the presence of ongoing GVHD and the incidence and 

competing risks of mortality. The development of patient immunologic profiles with 

calendar and event driven collection of samples, including serum and PBMC, and clinical 

data should be encouraged to facilitate a better understanding of the determinants of late 

immune recovery. We recommend the following research priorities:

1. Studies that identify late dysfunctional adaptive immunity and probe the 

molecular mechanisms underlying it in the presence and absence of cGVHD.

2. Studies that address adaptive immune system neogenesis, maturation and 

exhaustion. In particular, it is important for us to understand how these processes 

are influenced by persistent alloreactivity, inflammation and viral infection.

3. Studies to assess late functional pathogen-specific T and B cell responses (to 

bacterial vaccines as well as viral antigens) as well as to pathogens not 

historically assessed in published studies (e.g., VZV, HSV, HHV-6). These 
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studies should aim to identify what factors that are associated with poor 

responses.

The detailed prospective study suggested in section 1 should include assessments at 1, 2 and 

5 years post-HCT that addresses adaptive immune system cell neogenesis, maturation and 

exhaustion in the context of alloantigen activation and viral infection. Consideration should 

be given to event-driven storage of samples for future analysis.

Section 3. Interventions to improve immune function

This section will focus on the active generation of immune responses by vaccination and the 

passive transference of immunity with immunoglobulin (IVIG). Adoptive cellular 

immunotherapy will be addressed only briefly. We discuss what is known and areas that 

need study. The potential for intervention on the microbiome and its effects on late 

immunity, an area of the utmost interest, as mentioned earlier, is not yet known and will not 

be discussed 137.

Vaccination post HCT is accepted as a basic principle of improving the immune 

response. 112 While international guidelines recommend the administration of killed 

organism vaccines as early as 3–6 months post-transplant, 3, 138 implementation of 

vaccination schedules remains variable.139

Passive transfer of immunity with IVIG provides short-term protection against infection. 

IVIG may be given to treat active infections or to prevent infection 140–142143–145146. In 

addition, there are times when IVIG products are used as adjunctive therapy for infections 

that are out of control 140, 147, 148. Hypogammaglobulinemia on its own is a potential 

indication for IVIG replacement, although the threshold for repletion differs from center to 

center, perhaps most commonly < 400 mg/dL 149. The published evidence on the benefits of 

IVIG is non-conclusive. The lower rates of relevant CMV related endpoints identified by 

early controlled single center studies and supported by meta-analyses did not translate onto 

improved overall survival, maybe in part due to increase in sinusoidal obstruction syndrome 

(SOS) 150, 151152153, 154155. Use of IVIG products is not without its problems, and overuse 

may impair long-term humoral recovery after BMT 156. Moreover, studies of its use late 

after HCT have not been conducted.

Current knowledge gaps

Vaccinations—There are many gaps in our understanding of the development of post-

HCT active immunity through vaccination due to a lack of standardization and/or adequate 

studies (see Table 4). The former originates from the fact that vaccination protocols vary 

among centers as well as from country to country. The latter has occurred because 

systematic vaccination studies in large enough cohorts that address different stem cell 

sources, variations in HLA-match, conditioning regimens and GVHD activity, have not been 

a recent area of funded research except for a few vaccines under development in which the 

sponsor desired to have data that included HCT recipients.
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Passive Immunity with Immunoglobulin—There are several knowledge gaps in the 

use of immunoglobulin after HCT. In particular, the relevance of older randomized studies 

and meta-analyses data regarding the risks of SOS and benefits of IVIG therapy is an open 

question given the current practices of more universal liver prophylaxis with 

ursodeoxycholic acid and busulfan therapeutic dose monitoring. The most recent meta-

analyses still focus on myeloablative conditioning and matched sibling HCT without any 

focus on unrelated or haploidentical donors, cord or peripheral blood graft sources, or 

reduced intensity conditioning 155, 157.

There is no strong evidence regarding the IgG level at which replacement IVIG should be 

administered,3 and practices vary. The experience from the patients who underwent 

allogeneic HCT for primary immunodeficiency disease (PID) may provide some 

guidance.158 Serum trough IgG levels are higher among PID patients when higher IVIG 

replacement doses are given, and the risk for pneumonia is lower.159 IVIG replacement may 

be stopped once GVHD has resolved, immunosuppressive therapy has been discontinued, 

trough IgG levels are >600 mg/dL, and there is evidence of Ig-class switched B cells. 

However, specific antibody responses are followed. Correlative studies have not been 

performed for adults. Whether or not such observations are applicable for patients 

transplanted for other diseases has not been studied.

IVIG half-life varies widely from 1 to 10 days among HCT recipients, versus 18 to 23 days 

among healthy controls.160–162 Active infections can accelerate immunoglobulin catabolism 

which necessitates dose adjustments to maintain target IgG levels 162. So, knowledge gaps 

include defining the optimal frequency for measuring IgG levels after HCT, as well as the 

specific indications for its administration (severe hypogammaglobulinemia versus specific 

infections). In addition, if immunoglobulin products are used, which are the safest products 

and what is the most cost-effective way of administering them?

Adoptive cellular immunotherapy—Adoptive cellular immunotherapy has emerged as 

a promising strategy for the control of otherwise untreatable viral infections. Proof-of-

concept trials show that this approach is safe and well tolerated 163. Remaining issues 

include determining the best source of obtaining virus-specific cells (donor related or third-

party 164). This technique has the potential to revolutionize the management of refractory 

viral infections after HCT. Only a few transplant centers have the capability to prepare the 

cell products, a gap that is well-recognized, and these have rarely been studied in the late 

period post-HCT.

Key research priorities and recommendations

There are a number of recommendations that can be made with respect to these three 

categories of interventions and which could become more favorable with future contextual 

studies, cost-effective utilization and ease of implementation in the future:

1. A retrospective study from a small number of centers of basic numeric immune 

reconstitution markers correlated with vaccine responses might shed some light 

on standardizing thresholds for initiating vaccination for the current portfolio of 

transplant types.
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2. Prospective multicenter clinical trials are needed to both define and address the 

knowledge gaps in achieving active immunity after vaccination in the 

aforementioned comprehensive range of posttransplant scenarios (Table 4). Key 

study variables will include: harmonized vaccine schedules (including start 

times), clinical variables, and harmonization of calendar driven vaccine specific 

titers. These data will provide the evidence to support development of a schedule 

of required and optional vaccines with guidelines for administration of and 

monitoring of success (and failure) in the prevention of infection.

3. Regarding passive transfer of immunity we would like to gain knowledge 

regarding the current practice of IVIG therapy, perhaps through the use of online 

surveys. The surveys could start with a relatively small number of centers, with 

all types of transplants, to determine the range of practice and rates of infections 

and use the data to guide development of a study to determine what dose 

schedules provide protection from infection.
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Table 1

Selected Factors that influence late infections after HCT

Factor References

Age Higher incidence of late fungal infections in older patients 9

Preparative regimen Fewer early infections with non-myeloablative (NMA) vs myeloablative conditioning 
(MAC) Higher infection rate with total body irradiation (TBI)

5, 10

T cell depletion More CMV and Aspergillus seen with T cell depletion in MUD 7

Peripheral blood (PBSC) vs bone 
marrow (BM)

Higher incidence of infection over 2 years with BM 8

Alternative donors High incidence of infection in recipients of mismatched unrelated donor (MMUD) and 
umbilical cord blood (UCB)

11

Chronic graft versus host disease 
(cGVHD)

In many studies cGVHD turns out to be the only independent risk factor for severe 
infection

107

CMV infection CMV seropositivity and reactivation has been associated with delayed immune 
reconstitution and increased infectious mortality

10, 12, 13

Post-HCT rituximab Patients treated with pre-emptive rituximab for EBV reactivation had increased late 
infections

14
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Table 2

Determinants of late immune recovery after HCT:

Factor Study Characteristics, time 
period, subject numbers

Findings in Children Findings in Adults Reference

Age ≥18 months, n=71, T-cell 
depletion, related or URD

Majority had normal 
numbers by 6–12 months

Majority had CD4 < 200/ul for 12–
18 months.

40

≥5 years
Chronic GVHD and age affect 
immune reconstitution

Low CD4+ CD45RA+ T cells up to 
5 years. The number of CD4+ 
CD45RA+ cells in 10–19- year old 
patients > 40– 49-year-old patients

41

18–36 months Majority T-cell 
depleted

No data TRECSs recovered during the 
second year in adults.

42

Source of graft 
and TCD

CD34+ selected vs 
unmanipulated

≥ 2 years, n=40, Autologous, 
Multiple Myeloma, 
unmanipulated or CD34+ 
selected

At 2 years, No difference in CD4 
and CD8 numbers; in the CD34-
selected group, TRECs > than both 
baseline TRECs and unselected 
group-TRECs

43

T cell depletion 18–36 months
Majority T-cell depleted 
(127/158)

TREC from T cell depleted 
catch up at 9 months (all 
ages) as high as healthy 
controls

TREC from T cell depleted catch up 
at 9 months (all ages) as high as 
healthy controls; no later 
observations

42

PBMC vs. CD34+ 
vs BM

13–18 months
n=32
Higher numbers of Long-term 
survivors (>12 Months-4y) 
among patients with CD8+ above 
5th and the 50th percentile of 
age-matched normal levels.

No difference in 
CD4+CD45RA+ and CD
+CD45RA+ between the 3 
groups after 13–18 months

44

Cord Blood Dual UCB vs MSD vs MUD
n=95

No difference in T cell numbers at 1 
year

45

Preparative 
regimen RIC vs 
MA, NMA, RIC

NMA vs MA-ASCT
n=66

No difference in T cell numbers at 1 
year

46
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Table 3

Measurement of Immune Function Late after HCT

Test What is evaluated What we have learned about 
Outcomes from use of the test

References

ALC Early lymphoid recovery ALC > .2 × 
10(9) cells/L

Higher OS and PFS 130, 37

Donor:recipient chimerism (whole blood) Availability of donor cells

T cell phenotyping for CD3/CD4/CD8 Anti-viral and fungal immunity Early reconstitution of CD4+ CD8+ 

T cells correlated with overall 
survival (OS), non- relapse 
mortality. and improved 
progression- free survival (PFS).

131

B cell phenotyping for CD19+ B cells Ability to respond to vaccines

NK phenotyping for CD56+ and CD16+ NK 
cells

Early viral immunity

Immunoglobulin IgG, IgA, IgM General B cell functional 
reconstitution

Specific antibody evaluations
Tetanus
Diphtheria
Pertussis Measles, Mumps
Rubella

Memory T and B cell function post 
HCT

132

RBC pit counts Splenic function Decreased immunity of 
encapsulated organisms can result 
in rapid overwhelming sepsis

133–135

Specific response to neoantigens

• HPV - peptide

• Pneumococcus–polysaccharide

Ability of Naïve T cells and B cell to 
respond to an antigen

132, 136

Dendritic cell phenotyping Overall evaluation of immune 
function

Higher numbers of myeloid DC 
associated with improved PFS

45, 87

Donor:recipient chimerism (T cell, B cells, 
myeloid, and dendritic cell)

More complete evaluation of donor 
immunity

If incomplete myeloid chimerism, 
can affect T and B cell repertoire. 
Incomplete B cell chimerism can 
affect immune repsonses to viral 
antigens

Tregs and TR1 cells, Bregs, NKregs Evaluation of regulatory function Associated with immune tolerance 
and suppression of GvHD

83, 848586

Memory/CM/EM T cells

Allergy testing if donor has known allergies Evaluation of transfer of allergies 
from the donor

Significant allergies can be 
transferred to recipients from 
donors resulting and severe 
reactions

87
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Table 4

Vaccination Strategy

Goal Current variables Recommendation

Vaccination is universal: What vaccines can be given when still receiving 
immunosuppression?

The effects of GVHD and use of corticosteroids and ATG 
remain unclear

How do post-HCT therapies like anti-B cell 
monoclonal antibodies, CAR-T cells, tyrosine 
kinase inhibitors, proteasome inhibitors affect 
ability to respond to vaccines?

These variables need to be included in the clinically 
annotated data that will accompany proposed immune 
reconstitution studies.

Do vaccine responses need to be measured 
routinely or can responses be assumed?

Future vaccine studies need to incorporate post-vaccination 
titers so that if responses are shown to be near universal 
then practice guidelines could assume protection without 
measuring responses or identify subgroups in which it is 
important.

Can pediatric combination vaccines (e.g. Pediarix 
= DTaP/IPV/HepB) be used conveniently and cost-
effectively in adults

Among centers with good research infrastructure that give 
Pediarix versus separate Tdap/Td/Td, IPV and Hep B, it 
could be beneficial to retrospectively compare the response 
rates.

Functional (i.e chronic GVHD) and/or surgical 
asplenia

Try to move from a pragmatic schedule that starts with 
conjugate vaccines (Hib, PCV13, MCV4) by studying 
vaccine responses in this important high-risk subgroup.

Killed organism How early post-HCT can a successful immune 
response be obtained from vaccination? Data 
supporting early vaccination is strongest for the 
conjugate vaccines in matched sibling BMT 
without significant hypogammaglobulinemia or 
severe chronic GVHD

Studies have not adequately addressed different stem cell 
sources, variations in HLA-match, conditioning regimens 
and GVHD activity, hypogammaglobulinemia and this 
needs to be studied prospectively.

Should seasonal influenza vaccination differ from 
other vaccination policy; specifically how early 
after HCT can flu shots be given? One study found 
2 doses of flu vaccine (vs. standard 1 dose) did not 
enhance response and, response rates were double 
among recipients > 1 y vs <1 y post-HCT 165.

Consensus guidelines advise giving the flu shot from 6 
months post-HCT and to giving earlier during influenza 
outbreaks but evidence to support these recommendations is 
lacking. Additional studies are needed to confirm that post- 
HCT recipients do not benefit from 2 shots or higher dose 
influenza vaccine. Quadrivalent versus high-dose trivalent 
needs to be studied.

Do CD4, CD19 cell counts, IgG, IgA and IgM 
levels or IViG therapy influence administration of 
vaccines? Receiving IVIG for 
hypogammaglobulinemia might be a surrogate for 
delayed immune reconstitution.

We need to study how levels of basic numeric immune 
reconstitution (CD4, CD19, IgG, IgA, IgM) influence when 
to vaccinate because existing guidelines don’t adequately 
address this for the wide range of HCT scenarios.

Select live organism 
vaccines

When should MMR, or Varicella vaccine be 
given?

There is only scant evidence to support consensus 
guidelines that advise at least 2 years post-HCT and long 
enough off immunosuppressive therapy that resumption of 
immunosuppression is unlikely.
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