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Encoding of speech 
in convolutional layers 
and the brain stem based 
on language experience
Gašper Beguš 1*, Alan Zhou 2 & T. Christina Zhao 3,4

Comparing artificial neural networks with outputs of neuroimaging techniques has recently seen 
substantial advances in (computer) vision and text-based language models. Here, we propose 
a framework to compare biological and artificial neural computations of spoken language 
representations and propose several new challenges to this paradigm. The proposed technique is 
based on a similar principle that underlies electroencephalography (EEG): averaging of neural (artificial 
or biological) activity across neurons in the time domain, and allows to compare encoding of any 
acoustic property in the brain and in intermediate convolutional layers of an artificial neural network. 
Our approach allows a direct comparison of responses to a phonetic property in the brain and in deep 
neural networks that requires no linear transformations between the signals. We argue that the 
brain stem response (cABR) and the response in intermediate convolutional layers to the exact same 
stimulus are highly similar without applying any transformations, and we quantify this observation. 
The proposed technique not only reveals similarities, but also allows for analysis of the encoding 
of actual acoustic properties in the two signals: we compare peak latency (i) in cABR relative to the 
stimulus in the brain stem and in (ii) intermediate convolutional layers relative to the input/output in 
deep convolutional networks. We also examine and compare the effect of prior language exposure 
on the peak latency in cABR and in intermediate convolutional layers. Substantial similarities in peak 
latency encoding between the human brain and intermediate convolutional networks emerge based 
on results from eight trained networks (including a replication experiment). The proposed technique 
can be used to compare encoding between the human brain and intermediate convolutional layers for 
any acoustic property and for other neuroimaging techniques.

Many aspects of artificial neural networks (ANNs) are biologically inspired and have equivalents in the human 
brain. To be sure, ANNs also diverge from biology in many  respects1–4. Despite the differences, it is reasonable 
to compare computations and representations in deep neural networks and the brain. Among the architectures 
highly influenced by brain processing in the visual domain are convolutional neural networks (CNNs)5–10. Com-
paring biological and artificial neural computation has twofold implications. On the one hand, the comparison 
has the potential to shed light on how ANNs encode representations internally relative to the brain and how 
learning biases in humans and ANNs differ. On the other hand, computational models allow us to simulate brain 
processes (such as speech) and test hypotheses that are not possible to test in the human brain. Such simula-
tions can bring insights for how language gets acquired and encoded in the brain. For example, we can test what 
properties of speech (both in terms of behavioral and neural data) emerge when models have no articulatory 
biases compared to models with articulatory information, or when models have no language-specific mecha-
nisms compared to models with language-specific biases. Such simulations can help us better understand which 
properties of language are domain specific vs. domain general, and which properties emerge from articulatory 
or cognitive factors (“Limitations of comparison between brains and deep neural networks” section).

The majority of work comparing the brain and ANNs is performed on the visual domain, with substantially 
less work comparing ANNs to brain responses to linguistic stimuli. Most existing comparison studies in the 
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linguistic domain focus on text-trained models and supervised models, and focus on correlations. Here, we 
outline a technique that parallels biological and artificial neural encoding of specific acoustic phonetic features 
by analyzing ANN models trained on raw speech in a fully unsupervised manner. We introduce the GAN 
 architecture11 to the brain-ANN comparison literature.

GANs are uniquely appropriate for modeling speech  acquisition12,13. Crucially, GANs need to learn to gen-
erate output from noise by imitation/imagination in a fully unsupervised manner. The main characteristic of 
the architecture are two networks, the Generator and the Discriminator, that are trained in a minimax  game11, 
in which the Discriminator attempts to distinguish real data and outputs from the Generator, and the Genera-
tor learns to generate realistic outputs given only feedback from the Discriminator (summary in Fig. 2). It has 
been shown that this process results in the ability to encode linguistic information (e.g. lexical and sublexi-
cal representations) into raw speech in a fully unsupervised  manner13 as well as in the ability to learn highly 
complex morphophonological  rules14 both locally and non-locally15. In other words, linguistically meaningful 
representations (such as words and prefixes) self-emerge in the GAN architecture when the models are trained 
on raw speech. Evidence for several hallmarks of symbolic-like representations emerges in GANs: discretized 
(disentangled) representations, a causal relationship between the latent space and generated outputs, and near-
categoricity of desired  outputs13,14. Crucially, GANs are the only architecture where the network that generates 
data never directly accesses the training data (as is the case for other deep learning models such as autoencoders 
or text-based transformers). GANs have to learn to generate innovative and interpretable outputs from noise by 
generating data such that another network fails to distinguish between real and generated data. Such a setting 
mimics one of the more prominent features of language—productivity16—as well as the fact that humans need 
to learn to control articulators during speech acquisition without directly observing many of the articulators 
(such as the tongue dorsum and the larynx) in their primary linguistic  data17.

Prior work. A substantial amount of work exists on paralleling brain imaging with artificial neural networks 
in the visual  domain7,9,18–24 and relatively fewer works exist in the language or in the speech domain (most works 
focus on text-based language  models25–27). Kell et al.28 parallel fMRI recordings with a supervised speech and 
music recognition model trained on waveforms, while Millet and  King29 parallel fMRI recordings with ASR 
models trained on spectrograms. The  comparisons28,29 reveal parallels in neural encoding between ANNs and 
the brain, but are based on a linear regression estimates between the two sets of signals. They also focus on cor-
relations, and do not directly compare individual acoustic properties without linear transformations. While the 
approach to ANN-brain comparison that uses linear transformations between the signals can operate with more 
complex data (such as in Kell et al.  28), transformation also decreases the interpretability of the comparison. 
Huang et al. 30 examine a measurement of surprisal in a supervised (CNN) classifier, and correlate the metric to 
an EEG signal reduced in dimensionality. Donhauser and  Baillet31 train a predictive ANN model and use it to 
quantify the brain’s response to surprisal during speech processing. Koumura et al.32 focus on amplitude modu-
lation of auditory stimuli (not only of speech). Their model is trained on raw waveforms, but the analysis focuses 
on individual units in deep convolutional networks. They analyze synchrony and average activity for each unit 
and analyze them across convolutional layers. All their models are fully supervised classifiers (thus modeling 
only perception) and do not focus on linguistically meaningful representations, but on acoustic phonetic prop-
erties of speech and audition in general. Smith et al.33 argue for parallels in human binaural detection and deep 
neural networks (variational autoencoders or VAEs). They model pure tones rather than speech and focus on 
binaural detection. Khatami and Escabí34 operate with hierarchical spiking neural networks on cochleograms 
using supervised training and parallel the resulting model with the hierarchical organization of the human audi-
tory system. Magnuson et al.35 compare a classifier (based on long short-term memory or LSTM) trained on spec-
trograms to electrocorticography (ECoG) data. Most of these proposals focus on correlations, similarity scores, 
or linear transformations between ANN and brain representations. The speech datasets in all studies except 
in Millet and  King29 are limited to one language—English from TIMIT or from other corpora. Saddler et al.36 
compare supervised deep convolutional networks for F0 classification with models of the auditory nerve, but not 
with actual brain imaging data. All these frameworks use supervised classification networks for their compari-
son. In the “Goals and new challenges” section, we outline how our model differs from these existing proposals.

Harwath and  Glass37 propose a visualization technique for the DAVEnet  model38 that involves summation—
they operate with L2 norm values of individual filter activations, but they do not operate with the production 
(decoder) aspect of the networks and operate with spectrograms instead of waveforms. Their visualizations do 
not offer sufficiently high temporal resolution for comparison with the cABR signal (e.g. for vocalic periods). 
Their proposal additionally requires a PCA analysis for a comparison of intermediate convolutional layers with 
linguistically meaningful units. Their model does, however, show, that peak timing in intermediate convolutional 
layers correspond to segment boundaries (not vocalic peaks) in TIMIT.

Goals and new challenges. This paper proposes some crucial new approaches and guidelines to the com-
parison of how deep neural networks and the brain represent spoken language. First, we compare brain data 
to fully unsupervised models where linguistically meaningful representations need to self-emerge. Language 
acquisition is predominantly unsupervised with only some limited aspects of acquisition being implicitly or 
explicitly supervised (such as negative  feedback39,40). Rather than analyzing pre-trained models, we also custom-
train the networks on controlled data which allows for more interpretable results and a more direct comparison 
with human experiments. For example, we can train the network on the same speech process that is tested in the 
brain-imaging experiment (such as aspiration of stops) or test encoding in ANNs using the exact same stimulus 
that is tested in brain-imaging experiment. Smaller training datasets also more closely resemble language acqui-
sition in initial stages when the number of lexical items is highly  limited41.
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Second, our models and visualization techniques capture both the production and perception component 
in human speech (equivalent to the encoding and decoding, two central concepts in cognitive  science42), while 
most existing proposals exclusively focus on the perception component. We conduct a comparison between 
brain and ANN data from both the Generator network that simulates speech production (synthesis, decoding) 
and the Discriminator network that simulates speech perception (classification, encoding). For modeling the 
production element, we propose a procedure for comparing ANNs with the brain data where the model’s internal 
elements (latent space) are chosen such that the model’s generated output and the stimulus in the neuroimaging 
experiment are maximally similar (“Peak latency: the generator” section; to force similarity we use techniques 
in Lipton and  Tripathi43 and Keyes et al.44). For modeling the perception element, we feed the Discriminator 
network the actual stimulus (“Peak latency: the discriminator with the stimulus” section) as well as the outputs of 
the Generator that are forced to resemble the stimulus (“Peak latency: the discriminator with generated outputs” 
section). The production and perception in human speech are highly  interconnected45, which is why modeling 
both principles is desired when comparing brains and ANNs.

Third, instead of focusing on correlations or linear transformations between signals in neuroimaging experi-
ments and values of internal layers in deep neural networks, we focus on comparing actual acoustic features 
across the two systems directly, with no transformations. We argue that the two signals are highly similar even 
without any transformations. We analyze peak latency in both the cABR and in deep convolutional neural 
networks. This is a measurable acoustic property, is directly comparable, and requires no computation of cor-
relations or any linear transformations/regressions between signals. Comparing acoustic properties rather than 
correlations is more interpretable: correlations can arise even in untrained models and are generally problematic 
to analyze and interpret.

Fourth, most of the existing proposals focus on correlating brain responses and outputs of neural networks 
in a single language. Monolingual comparisons primarily model acoustic encoding of speech signal and do not 
provide information on encoding of phonological contrasts across languages. By training the networks on two 
languages with a different encoding of a phonetic property (as confirmed by brain experiments), we not only test 
the encoding of acoustic properties, but also of phonetic features that constitute phonological contrasts: the dis-
tinction between voiceless stops (such as [t]) and voiced stops (such as [d]) in English and Spanish. Probing how 
phonological (meaning-distinguishing) contrasts are encoded in the brain and in deep neural network trained 
on speech can yield new information on encoding of linguistically meaningful units across the two systems.

Fifth, we propose a technique to compare EEG signals to intermediate representations in deep neural networks 
(for a comparison between EEG signals and ANNs in the visual domain, see Greene and  Hansen22; for speech, 
see Huang et al.30). Unlike other neuroimaging techniques (e.g. fMRI or ECoG), EEG is minimally invasive while 
providing high temporal resolution, which is crucial for examining temporally dynamic speech encoding. This 
should allow a large-scale comparison between deep neural networks and the brain not only for those phonetic 
properties investigated in this paper, but for any other acoustic property.

Finally, we argue that earlier layers in deep neural networks correspond to earlier stages of speech processing 
in the brain. For this reason, we focus on the complex auditory brainstem response (cABR), a potential that can 
robustly reflect sensory encoding of auditory signals in early stages of auditory  processing46. Comparing cABRs 
and deep networks is, to our knowledge, new in the paradigm of comparing deep learning and the brain. Unlike 
other imaging techniques (such as fMRI or ECoG), cABR is one of the few brain imaging techniques that allows 
recording of the brain stem regions and captures the earliest stages of speech processing. Recent evidence suggests 
that several acoustic properties that result in phonological contrasts are encoded already in the brain  stem47,48.

To achieve these goals, we compare outputs of the cABR  experiment47 to ANN representations in intermediate 
layers closest to the stimulus (the fourth/first convolutional layer out of five total layers) in the production/percep-
tion network, respectively. The networks are trained in a Generative Adversarial Network  framework11, where the 
Generator network learns to produce speech from some random latent distribution and the Discriminator learns 
to distinguish real from generated samples. In other words, the Generator needs to learn to produce speech-like 
units in a fully unsupervised way—it never actually accesses real data, but rather needs to trick another network 
by producing real-looking data outputs. This unsupervised learning process based on imitation/imagination, 
where the networks learn to generate data from noise based only on unlabeled data, closely resembles language 
 acquisition12. We train the networks on sound sequences that are acoustically similar to the stimulus in the 
cABR experiments and are sliced from two corpora—one on English  (TIMIT49) and one on Spanish  (DIMEx50), 
simulating the monolingual English and Spanish subjects in the cABR experiment.

We propose a new technique for comparing neuroimaging data and outputs of deep neural networks. To 
analyze internal representations of the network that simulates production of speech, we force the Generator to 
output sounds that closely resemble the stimulus used in the cABR experiment. To analyze internal representa-
tions of the network that simulates perception of speech, we feed these generated outputs as well as the actual 
stimulus used in the brain experiment to the Discriminator network. Using the visualization techniques proposed 
in Beguš and  Zhou51,52, we can analyze any acoustic property of speech in internal convolutional layers in either 
the Generator (simulating speech production) or the Discriminator network (simulating speech perception). 
The comparison is then performed between (i) the generated outputs/stimulus in deep neural networks, and 
corresponding values in the second-to-last convolutional layer in the Generator/the first convolutional layer in 
the Discriminator and (ii) the stimulus played to subjects during the experiment and averaged cABR recording 
in the brain stem. We argue that this technique yields interpretable results—we can take any acoustic property 
with frequencies below the limit for cABRs and compare its encoding in the brain and in the artificial neural 
networks. To test how language experience alters representations in the brain and in artificial neural networks, 
we perform the comparisons on monolingual subjects of two languages in the neuroimaging experiment and 
deep learning models trained on the same two languages.
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The results in this paper suggest that brain stem (cABR) responses and responses in the intermediate con-
volutional layers to the exact same stimulus are highly similar and that peak latency differs in similar ways in 
the brain stem and in deep convolutional neural networks depending on which languages subjects/models are 
exposed to. To avoid idiosyncrasies in the models, we replicate the experiment and test encoding of both the 
actual stimulus and generated data. Results are consistent across sets of generated outputs and averaged stimulus 
inputs from four independently trained models.

Limitations of comparison between brains and deep neural networks. Comparing representa-
tions and computations in the human brain and deep learning models is a complex task. The goal of this paper 
is not to argue that human speech processing operates exactly as in deep convolutional networks (for a general 
discussion, see Guest and  Martin53). We do, however, argue that computations and encodings are similar in 
interpretable ways between the biological and artificial neural signals and that they result from similar underly-
ing mechanisms (“Causes of similarities” section). These similarities set the basis for further modeling work that 
has the potential to offer insights both into how humans acquire and process speech as well as into how deep 
learning models learn internal representations.

For example, our models are closer to reality than most existing models because the learning is fully unsuper-
vised, the models are trained on raw speech which requires no preabstraction or feature  extraction12,14, and the 
CNN architecture is biologically inspired and in many ways  realistic54,55. The models, however, still feature several 
unrealistic properties (beside  backpropagation55). First, our models are trained exclusively on adult directed 
speech and do not include any visual information. While most models including ours disregard the visual com-
ponent in language acquisition, unsupervised models still resemble human speech acquisition more closely than 
supervised models trained for automatic speech recognition or acoustic scene classification tasks. Additionally, 
we train the networks on a subset of syllables that are possible in English and Spanish (“Data” section).

Second, we use one-dimensional CNNs for the ANN-brain comparison because of their high temporal 
resolution. Other architectures that better capture the temporal aspect of speech processing (such as recurrent 
neural networks like LSTMs would require windowing and thus likely lose the very high temporal resolution 
required for the short peak latency differences observed in the brain, especially if spectral transformations are 
required). While CNNs lack a sequential structure, they have been shown to replicate temporal effects in speech 
(such as locality  preference15).

Finally, the models do not operate directly with articulatory data (as they generate acoustic data rather than 
representations of the vocal tract), while humans acquire the ability to produce speech with articulators. While 
these limitations are undesired because they make models less realistic, they can also be advantageous from a 
cognitive modeling perspective. A long-standing debate in linguistics and speech science concerns whether 
typological tendencies in speech patterns across the world’s languages result from articulatory pressures and 
transmission of language in space and time, or from cognitive  biases56–61. Another major debate in linguistics 
assesses which properties of language are domain-specific and innate and which can be explained by domain-
general cognitive  principles62. Modeling speech processing in deep neural networks that contain no articulatory 
representations and no language-specific elements allow us to test which linguistically meaningful representations 
can emerge even if the models lack these properties. Such modeling can help us understand how human language 
is affected by cognitive, domain-general, and articulatory pressures. Combining the technique proposed in this 
paper with the Articulation GAN  model17 that introduces articulatory representations to GANs, will additionally 
allow us to test how articulation influences learning of linguistic representations not only behaviorally, but also 
with respect to artificial and biological neural computation.

cABR experiment
The complex auditory brain stem response (cABR) reflects the early sensory encoding of complex sounds along 
the auditory pathway and can be measured with a 3-electrode setup using  EEG46. The cABR generally contains an 
onset component, corresponding to transient changes in acoustics (e.g. stop consonant) as well as a frequency-
following-response component (FFR), corresponding to periodic portions of the sound (e.g. tone, vowel). In 
recent decades, there has been a growing literature on characteristics of cABR. Few studies that focused on 
speech perception have demonstrated evidence in support of important speech perception phenomena at the 
cABR level. For example, native Mandarin speakers demonstrated FFR that tracks the pitch of the lexical tones 
better than English speakers, demonstrating that the language experiential effect can be observed at the encod-
ing  stage63. The directional asymmetry phenomenon in speech perception was also observed in FFR to  vowels48. 
Further, the cABR and behavioral perception of stop consonants are highly correlated, demonstrating the cABR’s 
behavioral relevance in speech perception. Finally, both behavioral perception and cABR are modulated by 
language  background47.

The cABR data used in this paper comes from the previously published dataset in Zhao and  Kulh47. The 
experiment measured the cABR when native English and Spanish subjects listened to a synthesized syllable, 
which was identified as /ba/ by English speakers and /pa/ by Spanish speakers. Data from a total of 15 Spanish 
and 14 English monolingual speakers were included in the analysis.

The stimulus. The stimulus is a CV syllable with a vowel /a/. The bilabial stop consonant has a Voice-Onset-
Time (VOT) of +10ms and was synthesized by Klatt synthesizer in Praat  software64. The syllable with 0ms VOT 
was first synthesized with a 2ms noise burst and vowel /a/. The fundamental frequency of the vowel /a/ began 
at 95Hz and ended at 90Hz. The silent gap (10ms) was then added after the initial noise burst to create syllables 
with the positive VOT. The waveform and spectrogram of the stimulus are shown in Fig. 1a. The duration of the 
syllable is 100ms. Critically, monolingual English speakers identified the stimulus as /ba/ whereas native Spanish 
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speakers identified the stimulus as /pa/, as reported in a previous behavioral  experiment47. Individuals’ cABR 
(localized in Fig. 1a) were calculated by averaging across all available trials after standard preprocessing and trial 
rejection. Averaged values are visualized in Fig. 1c. Further, the group-level cABR can be visualized by averag-
ing over all subjects. The monolingual English group and the native Spanish group are represented in Fig. 1d–h.

cABR data acquisition. The details of the recording methods can be found in Zhao and  Kuhl47. Specifi-
cally, the cABR reported here is recorded using a traditional set-up of 3-EEG channels (i.e., CZ electrode on a 
10-20 system, ground electrode on the forehead and the reference electrode on the right  earlobe46). Two blocks 
of recordings (3000 trials per block) were completed for each participant where trials were alternating in polari-
ties.

a b

d

f

c

h

g i
j

English Spanish

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

0.00 0.05 0.10 0.15 0.200.00 0.05 0.10 0.15 0.20

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

0.0
0.5

Time (s)

Am
p 

(μ
V)

EEG-cABR data for 
individual subjects

English
Spanish

0 250 500 750 1000

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Sample

Am
p 

(μ
V)

Averaged EEG-cABR data 
for English and Spanish

e

-0.2

-0.1

0.0

0.1

0.2

0.3

200 400 600
Sample

Am
p 

(μ
V) Language

English
Spanish

Averaged EEG-cABR data for 
English and Spanish (zoomed)

-0.2

-0.1

0.0

0.1

0.2

0.3

200 225 250 275 300
Sample

Am
p 

( μ
V) Language

English
Spanish

Averaged  EEG-cABR data for 
Engl. and Spa. (zoomed to Peak 2)

-0.5

0.0

0.5

1.0

0 250 500 750
Sample

Am
p 

(μ
V)

/A
m

pl
itu

de
ID

Stimulus
EEG

Stimulus (+10ms) and 
superimposed English EEG-cABR data

-0.5

0.0

0.5

1.0

100 200 300 400
Sample

Am
p 

(μ
V)

/A
m

pl
itu

de

ID
Stimulus
EEG

Stimulus (+10ms) and superimposed 
English EEG-cABR data (zoomed)

-0.1

0.0

0.1

0.2

0.048 0.049 0.050 0.051 0.052
Time (s)

Am
p 

(μ
V) Language

English
Spanish

GAMM estimates of 
EEG-cABR data for peak 2

-0.1

0.0

0.1

0.049 0.050 0.051
Time (s)

Am
p 

(μ
V)

GAMM estimates of the difference 
in EEG-cABR data for peak 2

-0.5

0.0

0.5

1.0

0 1000 2000 3000 4000 5000
Sample

Am
pl

itu
de

Stimulus

0

1000

2000

3000

4000

0.000 0.025 0.050 0.075 0.100
Time (s)

Fr
eq

ue
nc

y 
(H

z)

Spectrogram of the stimulus

Figure 1.  (a) Synthesized stimulus used in the cABR experiment with a spectrogram (0–4000 Hz). This 
stimulus is also used in the computational experiments when the Generator is forced to output data with the 
objective to minimize the distance between generated data and the stimulus. The stimulus is played to subjects 
in the experiment. (b) The figure illustrates the dipole location of the onset peaks recorded during the cABR 
experiment for one speaker as localized in Zhao and  Kuhl47 (magenta = peak 1, cyan = peak 2). The location 
suggests the recorded brain activity is indeed localized in the brain stem. Figure in (c) shows cABR recordings 
averaged for each subject across the 3000 trials. (d) Individual subjects’ recordings are averaged for each 
language (with shades that indicate which parts are zoomed in in the following figures). Peak 2 is circled in red. 
(e) Zoomed cABR data for English and Spanish showing that most peaks (with the exception of peak 2) are 
almost perfectly aligned across the two languages. (f) Zoomed peak 2 showing peak latency differences between 
English and Spanish. Figure in (h) superficially parallels the stimulus with the cABR data. The brain signal in the 
experiment is manually delayed relative to the stimulus; for illustration, we manually aligned the two time-series 
by approximately aligning the burst of the stimulus and the first peak of the cABR data. Shaded part indicates 
the area zoomed in (g). (i) Predicted values of a Generalized Additive Mixed Model with Amplitude in µ V 
across time and the two languages (English vs. Spanish). For more details about the model, see Supplementary 
Table S2 and “A new statistical analysis” section. (j) Difference smooth between English and Spanish cABR 
data. The area on the time scale (x-axis) in which the difference smooth’s confidence interval do not cross zero 
indicates significant difference in the cABR signal between the two languages.
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A new statistical analysis. Zhao and  Kuhl47 show that peak latency timing differs significantly for peak 2 
between English and Spanish subjects using independent t-test. To analyze data with non-linear regression we 
fit the data averaged for each subject to Generalized Additive Mixed Models  (GAMMs65) with the Amplitude 
of EEG-cABR in µV  as the dependent variable and language (treatment-coded with English as level) as para-
metric term, a smooth for time, by-language difference smooth for time, and by-speaker random smooths as 
well as correction for autocorrelation (Fig. 1i). The estimates of the model are in Supplementary Table S2. Even 
with random smooths included, the model features high degrees of autocorrelation. A significant difference does 
not arise for all windows of analysis likely due to autocorrelation, but for a given window (from 240th to 260th 
sample), the difference smooth in Fig. 1j suggests a significant difference in trajectory of the Amplitude between 
English and Spanish monolinguals in Peak 2 ( F = 2.70, p = 0.015).

Results and interpretation of the cABR experiment. In summary, results from the cABR experiment 
demonstrated a robust effect of language background on the peak 2 latency of the cABR onset response. Particu-
larly, the latency of peak 2, corresponding to the encoding of the onset of voicing, is significantly later in native 
Spanish speakers compared to the monolingual English speakers. Critically, the peak 2 latency was directly 
related to perception of the speech  sound47. These suggest that the effect of language experience is reflected at 
very early stages of auditory processing, namely the auditory brain stem.

Computational experiments
Model. We used the WaveGAN  model66 (a  DCGAN11,67 adaptation for audio) in our computational experi-
ments. WaveGAN is a 1D deep convolutional generative adversarial model that operates directly on the wave-
form itself. The Generator G uses 1D transpose convolutions to upsample from the latent space z, while the 
Discriminator D uses traditional 1D convolutions to compute scores that assist in predicting the Wasserstein 
distance between the training distribution x and the distribution of generated outputs G(z)68. The architecture 
is outlined in Fig. 2.

WaveGAN itself does not contain any visualization techniques. For analyzing and visualization of intermediate 
convolutional layers, we use a visualization technique for the Generator’s51 and the classifier’s internal  layers52 
(which has almost identical structure to the Discriminator). In Beguš and  Zhou51,52, we argue that averaging over 
feature maps after ReLU activation yields a highly interpretable time series data for each convolutional layer that 
summarizes what acoustic properties are encoded at which layer.

For these experiments, we set z to be a 100-dimensional vector (following the WaveGAN  proposal66), which 
the Generator projects into a 2D tensor that is passed through 5 transpose convolutional layers, ending in an 
audio output of 16,384 samples. The Discriminator similarly is composed of 5 (traditional) convolutional layers, 

Latent space

How real?
(Wasserstein distance)

Generated data

Rea
l d
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W
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Figure 2.  WaveGAN  architecture66 (based on  DCGAN67) used in training. The training data were taken from 
TIMIT and DIMEx as described in the “Data” section.
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with a hidden layer at the end that outputs the Wasserstein metric. No optimization was done over the number 
of convolutional layers nor any other part of the model or training configuration; we took the default 5-layer 
configuration of WaveGAN/DCGAN with a 16,384 sample  output66,67. The choice of the number of convolutional 
layers does not substantially alter the encoding of acoustic features across  layers51. The Discriminator also makes 
use of a process called phase  shuffle66, which applies random perturbations to the phase of each layers’ activa-
tions to prevent the Discriminator from accessing periodic artifacts characteristic of transpose convolutions.

Data. Spanish training data was taken from the DIMEx100  corpus50. This dataset consists of audio recordings 
of 5010 sentences in Mexican Spanish, recorded from 100 speakers mostly from around Mexico City. The dataset 
is balanced in gender and represents primarily the Mexico City variety of  Spanish50. English training data was 
taken from the TIMIT speech  corpus49. The TIMIT dataset contains recordings of 6300 sentences of American 
English, spread across 8 dialects and 630  speakers49.

For the purposes of training, we slice the first syllable from words that begin with a voiced or voiceless stop. 
Specifically, we slice sequences of the form #CV, where # represents a word boundary, C represents a voiced or 
voiceless stop, and V represents a vowel. For both English and Spanish, the voiceless stops consist of [p, t, k] 
and the voiced stops consist of [b, d, g]. The number of sequences beginning with each stop in both datasets are 
shown in Table 1. The relative frequencies of phonemes differ across TIMIT and DIMEx datasets. Overall, the 
proportions of voiceless vs. voiced are similar across TIMIT and DIMEx: in Spanish, 10381 are voiceless, and 
9978 are voiced; in English, 4929 are voiceless, and 4992 are voiced. The proportion of voicing, however, can 
vary substantially in individual places of articulation. For example, [p] is more frequently represented than [b] in 
DIMEx (3015 vs. 1477), but less frequently in TIMIT (1018 vs. 1789). Asymmetries in training data can induce 
bias in models, although it is questionable whether place of articulation asymmetries can crucially alter the results 
as the primary effect of an unbalanced corpus should be in the proportion of voiced vs. voiceless consonants in 
the models output and not in how voicing is represented. However, the same biases can be at play in the human 
cABR experiment as well: phoneme frequency asymmetries in the actual speech data can affect human responses 
to stimuli. For this reason, during training, we aim to replicate human language acquisition as closely as pos-
sible, which is why we keep the naturalistic data distribution from the corpora unaltered. During the test phase 
(experimental phase), we strictly control the input by testing the network either on exactly the same stimulus 
[ba] as used in the cABR experiment or on a close approximation of only the syllable [ba].

Training. We trained the DIMEx100 model for approximately 38,649 steps, after which mode collapse was 
observed. To match the two models in the number of steps, we trained the TIMIT model for 40,730 steps. To 
replicate the results and to control for idiosyncracies of individual models, we trained one additional TIMIT and 
one additional DIMEx100 model (for 41,818 and 39,417 steps, respectively).

Generating outputs that approximate the stimulus. In order to test the stimuli against the Genera-
tor network, we use latent vector recovery  techniques43,44 to find the latent variables that result in outputs closest 
to the stimuli. We then generate outputs using these latent variables and analyze each layer of the network given 
that latent space. This is a novel approach to paralleling representations in deep neural decoder networks and 
brain imaging outputs: the model’s internal representations are chosen such that the generated output maximally 
resembles the stimulus in the brain experiment. Norman-Haignere and  McDermott69 propose a somewhat simi-
lar procedure, where outputs of the brain experiments are paralleled with synthetic stimuli “designed to yield 
the same responses as the natural stimulus”69. In our case, the directionality of forced input is reversed: we seek 
internal representations that result in maximal matching between the actual stimulus and the model’s output.

We use gradient descent with stochastic  clipping43, on the mean absolute error of the spectrogram of the 
stimulus and the spectrogram of the generated  output44. We sample many random latent vectors uniformly for 
consistency, and optimize using the ADAM optimizer with learning rate of 1e−2, first moment decay of 0.9, and 
second moment decay of 0.99. We optimize for 10,000 steps, after which the majority of outputs converge. We 
adapt the objective function from Keyes et al. 44 (listed below, where G is the generator network, S takes an audio 
signal to a spectrogram, and s is the target stimulus):

As the Generator generates a fixed-length output, we must zero-pad the target stimulus before performing loss 
computations. Interestingly, while all training samples were simply right-padded to the desired dimension, we 
found that introducing varying amounts of left-padding had differing results on the quality of the generation. 
The DIMEx100 model, in particular, is extremely sensitive to the left pad, creating nonsense forced outputs 
with a left pad of 0 samples and creating much closer outputs with a left pad of 1000 samples. The TIMIT model 
is much less sensitive to the pad, and generates fairly close samples with a left pad of anything from 0 to 1000 

(1)min
z∗

||S (s)−S (G(z∗))||1

Table 1.  Counts of sequences beginning with each stop for each corpus.

p t k b d g Voiceless Voiced % Voiced

TIMIT 1018 1799 2112 1789 2530 673 4929 4992 50.3

DIMEx100 3015 1808 5558 1477 8023 478 10,381 9978 49.0
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samples. This difference may be due to differences in the slice distribution of the two corpora, but for the sake 
of consistency we used a left pad of 1000 samples for both models.

Procedure. The visualization technique in Beguš and  Zhou51,52 allows us to test acoustic representations of 
intermediate convolutional layers of both the Generator that mimics the production principle in speech and the 
Discriminator that mimics the perception principle. Here, we compare the outputs of the proposed technique to 
outputs of brain imaging experiments.

The relationship between the stimulus played to the subjects in the cABR experiment and the amplitude of the 
cABR recording is paralleled to the relationship between the generated outputs forced to resemble the stimulus 
and the fourth (second to last) convolutional layer in the Generator network.

To extract interpretable data from intermediate convolutional layers in the computational experiment, we 
force the Generator to output #CV syllables that most closely resemble the stimulus used in the cABR experiment 
(Fig. 1a), as described in the “Generating outputs that approximate the stimulus” section.

The Generator mimics the production aspect of speech. The cABR experiment, however, tests encoding of a 
phonological contrast in the perception task. For this reason, we also test the relationship between the input to 
the Discriminator (that mimics speech perception) and its corresponding first convolutional layer.

The inputs to the Discriminator are two fold: first we feed the Discriminator the raw waveform of the actual 
stimulus used during the brain experiment (Fig. 1a). This means that the CNN and the brain during the actual 
experiment are tested on the exact same data. This experiment reveals a high degree of similarities between the 
signals even when no transformations are performed. However, this experiment only yields one observation per 
trained model (four total) which prevents an inferential statistical analysis. To test learned representations in the 
Discriminator further and to increase variability of its representations, we also feed it the Generator’s outputs 
forced to resemble the stimulus (according to the “Generating outputs that approximate the stimulus” section).

The fourth and first convolutional layers, respectively, are analyzed by averaging over all feature maps after 
ReLU or Leaky ReLU  activations51,52. This results in a time series t for each Convolutional layer as in (2) from 
Beguš and  Zhou52.

The cABR experiment suggest that peak 2 latency differs significantly between English and Spanish  speakers47. 
To test encoding of the same acoustic property in intermediate convolutional layers, we measure peak latency 
timing between amplitude peaks in output/input and amplitude peaks in the second to last or first convolutional 
layer (Conv4 or Conv1) in the Generator and Discriminator networks, respectively.

To extract peak timing in each layer, we first generate 20 Generator outputs per model that are forced to 
resemble the stimulus (according to the “Generating outputs that approximate the stimulus” section). In three 
outputs of the first and the second TIMIT replication we were unable to identify the periodic structure, which is 
why they were removed from the analysis. A total of 74 forced outputs were thus created (2 replications of TIMIT- 
and DIMEx-trained models each). For each generated output, we obtain the corresponding representations in 
the fourth (immediately following) convolutional layer (Conv4) as described in the “Generating outputs that 
approximate the stimulus” section by averaging over all feature maps. This yields time-series data. The generated 
outputs and the time-series data from the fourth convolutional layers (upsampled) are then annotated for vocalic 
periods. Peak timing for each vocalic period is obtained in  Praat64 with parabolic interpolation. Because the val-
ues of the fourth convolutional layer can only be positive due to the ReLU transformation, we also take absolute 
values of the waveforms for the comparison. It appears that the preceding convolutional layers closely follow 
amplitude changes in the output layer. Converting waveforms into absolute values is necessary in order to capture 
peak activity of negative values as well as positive values of waveforms (ReLU can only be positive). This step 
also reduces general acoustic effects of different recording conditions of the two corpora (TIMIT and DIMEx).

Peak latency ( �tn ) was calculated as a difference in timing between the peak of absolute values of the output 
( tnout ) and the peak of the fourth convolutional layer ( tnconv4 ) in the Generator.

The burst is annotated as the 0th period and every consecutive period as the nth period. The burst is not saliently 
present in all outputs. A total of 51 bursts (=0th period) were included in the analysis.

To test peak latency in the Discriminator network, we feed the Discriminator the actual stimulus as well as 
the same 74 generated outputs from the Generator forced to resemble the stimulus. Peak latency in the Discrimi-
nator was calculated as a difference in timing between the absolute value of peak of the input and the peak of 
the first (immediately following) convolutional layer. The same annotations as for output-Conv4 analysis in the 
Generator were used to extract peak timing from the forced generated outputs and the first convolutional layer 
(Conv1) in the Discriminator network (according to (3)).

Results
Similarities in encoding. First, we observe that the cABR signal and the output of the fourth/first convolu-
tional layers are highly similar. The computational experiment that most closely resembles the cABR experiment 
is when the Discriminator gets the actual stimulus as the input. Figure 3 parallels the cABR response averaged 
across subjects and the response in the first convolutional layer of the Discriminator averaged across replica-
tions. The two modalities show almost exactly the same response to the stimulus with highly similar shapes of 
periods.

(2)t =
1

�C�

�C�∑

i=1

Ci

(3)�tn = tnout − tnconv4
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To quantify this observation, we perform dynamic time warping (DTW) on the two time series aligned at the 
peak of the burst and compute Pearson’s product-moment correlation (r) between the two time-series when the 
convolutional signal is increased 33.3-times or 50-times, decreased such that silence reaches 0, and downsampled 
with linear interpolation (to match the sampling of the cABR signal). For the period between the peak of English 
burst to the 130th millisecond, the correlation coefficient for English is r = 0.74 and Spanish r = 0.77 . At the 
individual period level, the correlation is even higher. For example, between the 80th and 100th milliseconds 
which captures 2 periods, the correlation coefficient for English is r = 0.90 and Spanish r = 0.82.

The technique to parallel biological and artificial neural responses to spoken language inputs allows us to go 
beyond comparing the two signals in terms of correlations and allows us to analyze encoding of actual acoustic 
properties. We focus on peak latency because it has been shown in cABR experiments that English and Spanish 
monolinguals differ significantly in this  property47.

Visualizations of raw peak latency timing in the Generator and the two Discriminator experiments (in 
Figs. 3, 4g,h, 5, 6g,h) suggest that there is a consistent timing difference between the TIMIT-trained models 
(English) and the DIMEx-trained models (Spanish). The peak latency ( �tn ) is more negative in the Spanish-
trained models compared the English-trained models in a few periods. In other words, the peak activity in the 
Spanish-trained models occurs later compared to the English-trained models, which is consistent with the results 
of the brain experiment. This observation is consistent in both the Generator and the Discriminator as well as 
across replications.

Peak latency: the generator. Peak timing in the TIMIT-trained models precedes peak timing in the 
DIMEx-trained models when tested in the Generator network. This parallels the cABR experiment, where the 
peak timing of English speakers precedes the peak timing of Spanish speakers. To test the significance of the 
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Figure 3.  (a) Values of the English cABR experiment averaged across subjects (blue) and values of the first 
convolutional layer in the TIMIT-trained model (Conv1 TIMIT) averaged across replications when the 
Discriminator gets the actual stimulus as the input (red). The two time series are aligned such that the peaks 
corresponding to the burst have the same timing. The values of the Conv1 signal are increased 50-times for 
comparison. (b) Values of the Spanish cABR experiment averaged across subjects (blue) and values of the 
first convolutional layer in the DIMEx-trained model (Conv1 DIMEx) averaged across replications when the 
Discriminator gets the actual stimulus as the input (red). The two time series are aligned such that the peaks 
corresponding to the burst have the same timing. The values of the Conv1 signal are increased 50-times for 
comparison.
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peak latency differences in the Generator, we fit the data from the 74 forced outputs (“Procedure” section) to 
a linear regression model with the peak latency timing as the dependent variable and three predictors: lan-
guage, nth period, and replication with all two-way and three-way interactions.

The language predictor has two levels (English and Spanish) and is treatment-coded with English as the 
reference level. The nth period predictor has 13 levels (for each period and the burst) and is treatment-coded 
with 1st period as the reference level. Periods above the 12th period are discarded from the analysis due to a 
small number of attestations (see Figs. 4 and 6). replication is sum-coded with two levels (first and second).

Estimates of the model are given in Supplementary Table S3 and Fig. 4i. While only peak 2 timing differs 
significantly between English and Spanish in the cABR experiment, we analyze peak timing for all periods in 
order to examine similarities and differences between the CNN and cABR signals. Pairwise comparisons in 
Table 2 reveal that peak timing does not differ significantly for the burst (0th period) and the first period, but 
the difference becomes significant for 2nd, 4th, 5th, and 7th periods (see all estimates in Table 2). If we adjust 
pairwise comparisons with False Discovery Rate (FDR) adjustment, only differences for the 4th, and 5th period 
are significant (p-value for the 2nd period is 0.0501). A subset of peak latency differences are significant in 
individual replications too (See Supplementary Fig. S5). For example, in the second replication, peak latency 
is significantly different in the 1st period ( β = 0.0012, df = 517, t = 2.890, p = 0.03 with FDR adjustment).

Figure 4.  (a) The structure of the Generator network with five convolutional  layers66. The fourth convolutional 
layer (Conv4; second to last) is color-coded with purple. (b) All 64 individual feature maps for a single output 
forced to closely resemble the stimulus from the fourth convolutional layer (Conv4) after ReLU (upsampled). (c) 
One Spanish output (in green) forced to resemble the stimulus with the corresponding values from the fourth 
convolutional layer (Conv4) averaged over all feature maps. The plot illustrates peak latency between output and 
Conv4 for the burst and each vocalic period. (d) A zoomed version of (c) focusing on four vocalic periods. (e) 
One English output (in green) forced to resemble the stimulus with the corresponding values from the fourth 
convolutional layer (Conv4) averaged over all feature maps. The plot illustrates peak latency between output 
and Conv4 for the burst and each vocalic period. (f) A zoomed version of (e) focusing on four vocalic periods. 
(g) Raw peak latency timing (output peak time - Conv4 peak time) for burst (=0) and each nth vocalic period 
across the two conditions (English vs. Spanish). Periods above the 12th period are rare and are discarded from 
the statistical analysis due to a small number of attestations. The data is pooled across the two replications. 
(h) Raw peak latency timing across the replications (first and second replication) and two conditions 
(English and Spanish). (i) Linear regression estimates for the peak latency timing between the two conditions 
(English vs. Spanish). Periods above the 12th period are discarded from the analysis due to a small number of 
attestations. The data is pooled across the two replications.
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Peak latency: the discriminator with the stimulus. To analyze peak latency in the Discriminator net-
work, we first feed the Discriminator network the raw waveform of the stimulus used in the brain experiment. 
Using the averaging technique (in Eq. 2) on the first convolutional layer (Conv1), we get one corresponding time 
series data per each model (four total: TIMIT1, TIMIT2, DIMEx1, DIMEx2). We can parallel these time-series 
data and analyze the timing of peak activity per period in each model. In Fig. 5, we averaged values across rep-
lications in a similar way as we averaged values over the subjects in the cABR experiment in Fig. 1. The results 
suggests that in the first period, the peak activity in the English-trained model precedes the Spanish-trained 
model, parallel to the brain activity in peak 1 of the cABR experiment. Averaged peak timing in the English-
trained model precedes the Spanish-trained model also in peaks 2, 4, 6, and 7. Even the magnitude of this effect 
is similar across the cABR and convolutional signals: in cABR, the English peak precedes the Spanish peak by 
0.9 ms; in the convolutional layers of the Discriminator, the peak in the TIMIT-trained model precedes the peak 
in the DIMEx-trained model by 0.5 ms.

Paralleling the Discriminator’s responses to the actual stimulus approximates the brain experiment most 
closely. This approach, however, does not allow for inferential statistical tests on the distributions due to the 
small number of obtained samples. In order to analyze learned representations of the Discriminator’s internal 
convolutional layers and perform inferential statistical tests on the distributions, we also feed the Discriminator 
the outputs from the Generator forced to resemble the stimulus (according to the procedure described in the 
“Generating outputs that approximate the stimulus” section).

Peak latency: the discriminator with generated outputs. To test the significance of peak latency 
differences in the Discriminator network when it is fed the Generator’s forced outputs, we perform the same 
statistical procedure as described in the “Peak latency: the Generator” section. The peak latency ( �tn ) for the 
nth period in the Discriminator is calculated as the difference between the absolute peak timing of the input and 
peak timing of the first convolutional layer (Conv1) for each period. The model in Fig. 6i and Supplementary 
Table  S4 includes language, nth period, and replication (coded as in  the “Peak latency: the generator” 
section) and all interactions as predictors and the peak latency timing as the dependent variable. The pairwise 
comparisons are in Table 3. Peak latency for the burst (=0th period) does not differ significantly across the two 
languages. The difference is significant for the 3rd and the 6th period. (also when tested with FDR correction). 
The 6th period in the Discriminator is the only period in which peak latency timing is significant in the opposite 
direction than all the other trends in the Generator and the Discriminator. A subset of peak latency differences 
are significant in individual replications too (See Supplementary Fig. S6).

The magnitude of the effect of language is similar across the cABR and convolutional layer signals. In the 
cABR signal, the peak 2 timing difference between English and Spanish monolinguals is 0.9 ms. In the experi-
ments with generated data on the Generator and the Discriminator (“Peak latency: the generator” and “Peak 
latency: the discriminator with generated outputs” sections), the peak latency (output—Conv1) differs between 
TIMIT-trained and DIMEx-trained models in the range from 0.6 to 1.3 ms (for those results that are significant).

Peak latency differences are consistently significant between Spanish-trained and English-trained models even 
if waveforms are not converted into absolute values (Supplementary Materials Section 2). In such case, however, 
the Spanish-trained models show more positive peak latency timing. Nevertheless, the fact that significant results 
persist even in tests that do not include absolute values suggests that there are robust differences in peak latency 
timing in the second-to-last convolutional layers between Spanish and English-trained models that persist even 
with different analytical choices.

Table 2.  Pairwise contrasts in peak timing difference between English and Spanish (despite significant 
interactions pooled across replications) in the Generator network (with emmeans  package70). The burst is 
marked by the 0th period. The 12th period is not estimated due to lack of data.

Contrast nth period Estimate SE df t.ratio p value

English–Spanish 0 (= burst) 0.0001 0.0003 517 0.35 0.727

English–Spanish 1 0.0004 0.0003 517 1.59 0.113

English–Spanish 2 0.0007 0.0003 517 2.53 0.012

English–Spanish 3 0.0004 0.0003 517 1.53 0.126

English–Spanish 4 0.0010 0.0003 517 3.41 0.001

English–Spanish 5 0.0013 0.0003 517 4.62 0.000

English–Spanish 6 − 0.0005 0.0003 517 − 1.41 0.159

English–Spanish 7 0.0009 0.0004 517 2.11 0.035

English–Spanish 8 0.0002 0.0006 517 0.36 0.721

English–Spanish 9 − 0.0001 0.0009 517 − 0.12 0.903

English–Spanish 10 − 0.0014 0.0011 517 − 1.31 0.192

English–Spanish 11 0.0010 0.0012 517 0.88 0.382
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Discussion
The paper presents an interpretable technique that allows paralleling biological and artificial neural represen-
tations and computations in spoken language. The results of the proposed technique suggest that the speech 
input is represented in a highly similar way in biological and artificial neural signals and that peak latency in 
intermediate activations in English-trained and Spanish-trained deep convolutional networks differ in similar 
ways as the peak latency in the cABR signal of English and Spanish speakers.

Similarities. Paralleling the response of intermediate convolutional layers with the brain stem’s response 
to the exact same stimulus reveals a high degree of similarities between the two signals. The shapes of periods 
responding to the two signals are almost identical and they also match in timing. These similarities arise without 
any transformations between the signals. To our knowledge, the cABR and convolutional layer response to the 
same syllable are the most similar brain and ANN signals reported thus far that require no linear transforma-
tions.

To move beyond comparing similarities, we also analyze differences in encoding of specific phonetic proper-
ties between the biological and artificial neural signals. Peak latency has long been a focus of cABR  studies47,71,72. 
Zhao and  Kuhl47 argue that peak 2 latency differs significantly based on language experience, where the two 

Figure 5.  (a) Values of the first convolutional layer (Conv1) when the stimulus used in the brain experiment is 
the input to the Discriminator network. The figure shows averaged values across two replications of each model 
(DIMEx-trained or Spanish and TIMIT-trained or English). Values of the TIMIT outputs were increased by + 
0.0025 on the y-axis to facilitate the comparison between signals. (b) Averaged values of the first convolutional 
layer (Conv1) when the stimulus used in the brain experiment is the input to the Discriminator network, 
zoomed in to the first period. Values of the TIMIT outputs were increased by + 0.0025 on the y-axis to facilitate 
the comparison between signals. (c) Individual values for each model (TIMIT1, TIMIT2, DIMEx1, DIMEx2) 
of the first convolutional layer (Conv1) when the stimulus used in the brain experiment is the input to the 
Discriminator network. (d) Individual values for each model (TIMIT1, TIMIT2, DIMEx1, DIMEx2) of the first 
convolutional layer (Conv1) when the stimulus used in the brain experiment is the input to the Discriminator 
network, zoomed in to the first period.
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different languages (Spanish and English) have substantially different encoding of a phonetic property which 
is correlated to the perception of the sound across individuals: voiceless (e.g. [ta]) vs. voiced (e.g. [da]) sounds. 
This suggests that phonetic features that represent a phonological contrast in language can be encoded early in 
the auditory pathway—already in the brain stem.

Peak latency is an interpretable feature that can be analyzed with standard acoustic methods in deep convo-
lutional networks. We analyze peak latency encoding with a technique for visualization of intermediate convolu-
tional  layers51,52 that uses summation to identify peak activity in intermediate convolutional layers relative to the 
input/output. Because encoding of VOT duration in the form of peak latency appears to be present already at the 
brain stem level (based on the cABR experiment), we conduct the comparison of peak latency on the immediately 
preceding—second-to-final—convolutional layer relative to the input/output and parallel this information to 
the cABR signal in the brain stem relative to the stimulus.

The results of the computational experiment suggest that peak amplitude timing of the second to last convolu-
tional layer relative to the speech input/output do not differ significantly for the burst, but do differ significantly 
for consecutive vocalic periods based on the language of training data: English (with long VOT encoding of 
voicing in stops) and Spanish (without long VOT encoding of voicing stops). The difference in timing of peaks 
(peak timing in audio input/output minus peak timing of second-to-last convolutional layer per each vocalic 

Figure 6.  (a) The structure of the Discriminator network with five convolutional  layers66. The first 
convolutional layer (Conv1) is color-coded with purple. (b) All 64 individual feature maps for a single input 
(the Generator’s forced output) from the first convolutional layer (Conv1) after Leaky ReLU. (c) One Spanish 
input (in blue) from the Generator’s forced output with the corresponding values from the first convolutional 
layer (Conv1) averaged over all feature maps. The plot illustrates peak latency between input and Conv1 for the 
burst and each vocalic period. (d) A zoomed version of (c) focusing on four vocalic periods. (e) One English 
input (in blue) from the Generator’s forced output with the corresponding values from the first convolutional 
layer (Conv1) averaged over all feature maps. The plot illustrates peak latency between input and Conv1 for the 
burst and each vocalic period. (f) A zoomed version of (e) focusing on five vocalic periods. (g) Raw peak latency 
timing (input peak time - Conv1 peak time) for burst (=0) and each nth vocalic period across the two conditions 
(English vs. Spanish). Periods above the 12th period are rare and are discarded from the statistical analysis due 
to a small number of attestations. The data is pooled across the two replications. (h) Raw peak latency timing 
across the replications (first and second replication) and two conditions (English and Spanish). (i) Linear 
regression estimates for the peak latency timing between the two conditions (English vs. Spanish). Periods above 
the 12th period are discarded from the analysis due to a small number of attestations. The data is pooled across 
the two replications.
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period) is significantly more negative in Spanish-trained model compared to the English trained model for sev-
eral periods following the burst. The difference is significant both in the Generator (the production principle) 
as well as in the Discriminator (the perception principle). The peak latency also operates in the same direction 
across the two replications (in eight models total) with only one exception, which suggests the results are not an 
idiosyncratic property of individual models.

The results suggest that a highly interpretable acoustic property—peak latency—that indicates peak activity 
in the brain stem and in the intermediate convolutional layer relative to the stimulus/input/output based on a 
common operation, summation/averaging of the signal, is encoded in similar ways both in the earlier intermedi-
ate convolutional layers and the cABR signal. The encoding is similar both in the direction of latency (English 
peaks precede Spanish peaks) as well as in magnitude (0.9 ms in cABR vs. 0.5–1.3 ms in convolutional layers).

The only notable difference between the cABR experiment and the convolutional layers is that only the first 
period differs significantly in the cABR experiment, while multiple periods have significant peak timing dif-
ferences in the convolutional layers (beginning with the second period in the Generator). It is possible that the 
subsequent periods in convolutional layers show significant peak timing differences because their signals are 
substantially stronger (higher amplitudes) compared to the first period. Noise in the output can have a more 
substantial effect on the results when signal-to-noise ratio is low, i.e. in the first period in the convolutional layers.

A more conservative conclusion based on the results is that encoding of speech signal, and more specifically, 
of peak timing, can in general differ according to the language exposure (English vs. Spanish) in similar ways 
between the intermediate convolutional layers and the brain stem. Under this interpretation, it is possible that the 
similarities observed between cABR and convolutional layers have different underlying causes. For example, it is 
possible that peak latency in cABR is caused by VOT differences, while peak latency in the convolutional layers 
is caused by general vocalic encoding that differs across languages. Even in such a case, the conclusion that the 
cABR and convolutional layers response to the speech signal in highly similar ways remains. There is always a 
possibility that similarities in peak latency encoding are due to linguistically irrelevant artifacts. This option is, 
however, less likely for two reasons. First, we at least partially control for artifacts by comparing absolute values 
of waveforms. Second, the degree of general similarity in untransformed biological and artificial neural signals 
(CNN vs. cABR) is so high that it is reasonable to assume that similarities in more specific encodings are real 
and not epiphenomenal. The general similarity between signals (Fig. 3) cannot have resulted from artifacts in 
the signals.

Under a less conservative reading of the results, the difference in VOT encoding causes the peak latency dif-
ferences both in the brain stem and in convolutional layers. Peak latency for burst is not significant neither in 
the brain nor in the intermediate convolutional layers, while subsequent periods show a significant difference 
in timing in both modalities. The magnitude of the timing as well as the direction of differences are the same 
across both modalities.

Causes of similarities. The results in this paper raise a question of what properties of deep convolutional 
networks and the cABR signal cause the similarities in encoding of an acoustic phonetic property. The main 
mechanism behind the technique for analyzing acoustic properties in intermediate convolutional layers is a 
simple averaging of activations across individual feature maps (in Eq. 2). The second to last convolutional layer 
(Conv4 in the Generator and Conv1 in the Discriminator) has 64 filters which result in 64 feature maps for each 
input/output. Individual feature maps offer limited interpretability, but a simple averaged sum over all feature 
maps after ReLU or Leaky ReLU activation offers highly interpretable time series  data51,52.

Similar to this proposed computational technique, cABR data represents a summation of neural activity in 
the brain stem (and potentially also from other non-subcortical sources)73,74. The basic principle for obtaining 
the signal in both the brain stem and intermediate convolutional layers is thus similar: averaging of individual 
neural activity (biological and artificial) across the time domain.

Table 3.  Pairwise contrasts in peak timing difference between English and Spanish (despite significant 
interactions pooled across replications) in the Discriminator network (with emmeans  package70). The burst is 
marked by the 0th period. The 12th period is not estimated due to lack of data.

Contrast nth period Estimate SE df t.ratio p value

English–Spanish 0 (=burst) − 0.0000 0.0002 517 − 0.00 0.999

English–Spanish 1 0.0000 0.0002 517 0.05 0.960

English–Spanish 2 − 0.0003 0.0002 517 − 1.63 0.103

English–Spanish 3 0.0006 0.0002 517 3.24 0.001

English–Spanish 4 0.0000 0.0002 517 0.10 0.923

English–Spanish 5 0.0001 0.0002 517 0.74 0.462

English–Spanish 6 − 0.0008 0.0002 517 − 3.81 0.000

English–Spanish 7 − 0.0001 0.0003 517 − 0.31 0.756

English–Spanish 8 0.0000 0.0004 517 0.03 0.977

English–Spanish 9 − 0.0001 0.0006 517 − 0.11 0.913

English–Spanish 10 − 0.0011 0.0007 517 − 1.61 0.108

English–Spanish 11 0.0009 0.0007 517 1.28 0.203
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Based on these similarities, it is reasonable to assume that both signals represent at least superficially similar 
computations. Input signals in deep convolutional networks get transformed into spikes in individual feature 
maps by learned filters. Summing and averaging over these spikes indicates the areas in the layers with most 
activity and provides an interpretable representation of the input/output. Similarly, the cABR signal summarizes 
peaks of neural activity as a response to the amplitude of the input stimulus.

The main advantage of these results is interpretability: the similarities in encoding are established by directly 
comparing individual acoustic features rather than performing linear transformations or correlation analyses. 
Our models are trained in a fully unsupervised manner in the GAN setting, where the Generator needs to learn 
to produce speech data not by replicating the input (as is the case in most models such as VAEs), but by imita-
tion (producing data such that another network cannot distinguish it from real data). In the learning process, 
the networks generate innovative  data13, which means the models feature one of the more prominent features 
of language—productivity75. We test encoding of an acoustic property in networks that mimic both the produc-
tion and perception principles and we test a phonetic property that encodes a phonological contrast (voiced 
vs. voiceless) in two languages.

Based on the common mechanism of averaging over neural activity in both signals, we can compare what 
other acoustic properties are encoded in second-to-last convolutional layers and in the brain stem. A detailed 
comparison of encoding of other acoustic properties is left for future work, but a test of which properties are 
encoded in both signals reveals several common properties. cABR signals have been shown to represent acoustic 
 properties71,72,76 such as periodicity and the fundamental frequency (F0), lower frequency formants (e.g. F1, per-
haps also  F277), “acoustic onsets” such as burst, and “frequency transitions”76. Beguš and  Zhou51,52 have shown that 
the same acoustic properties are encoded in the second to last convolutional layer as well based on a quantitative 
analysis of which acoustic properties are encoded in which convolutional layer. The following properties have 
been shown to be robustly encoded in the second to last convolutional layer: periodicity and F0 together with F0 
transitions, low frequency formant structure (F1 and F2), burst, and timing of individual  segments51,52. Figures 1, 
3, 4 and 6 illustrate the similarities between the signal from intermediate convolutional layers (obtained by the 
proposed technique in Beguš and  Zhou51,52) and the cABR signal. Later convolutional layers do not encode all 
these acoustic  properties51,52. This suggests that many acoustic properties are encoded with frequency-following 
encoding only in the earlier layers of neural processing—both in the brain and in deep neural networks: F0, 
burst, timing, and low frequency formant structure. These parallels provide grounds for further explorations of 
how individual phonetic fearures are encoded in biological and artificial neural networks.

Conclusion and future directions
This paper presents a technique for comparing cABR neuroimaging of the brain stem with intermediate con-
volutional layers in deep neural networks. Both signals are based on summing and averaging of neural activity: 
either of electrical activity in the brain stem or of values in individual feature maps in convolutional layers. We 
argue that averaging over feature maps in deep convolutional networks parallels cABR recording in the brain 
because it summarizes areas in the convolutional layers with highest activity relative to the input/output. cABRs 
and second to last convolutional layers encode similar acoustic properties. Encoding of phonetic information is 
tested with cABR experiments on subjects of two different languages and with deep neural networks trained on 
these two languages. The results reveal that the two signals are highly similar without any transformations and 
that encoding of phonetic features that result in phonological contrasts differ in similar ways in the brain stem 
and in intermediate convolutional layers between the two tested languages.

These results provide grounds for comparison of several other acoustic properties using the proposed frame-
work, which are left for future work. Both intermediate convolutional layers and cABR signal represent several 
acoustic properties. World’s languages use various acoustic features to encode linguistically meaningful pho-
nological contrasts. Testing these learned representations across different acoustic properties and languages 
should yield further information on similarities and differences in artificial and biological neural computation 
on speech data.

Data availability
Data and checkpoints of trained models are available at: https:// doi. org/ 10. 17605/ OSF. IO/ ZDB52. Data from 
Zhao and  Kuhl47 can be accessed at https:// osf. io/ 6fwxd/.
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