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ARTICLE OPEN

Development and testing of a polygenic risk score for breast
cancer aggressiveness
Yiwey Shieh 1✉, Jacquelyn Roger 2, Christina Yau 3, Denise M. Wolf4, Gillian L. Hirst 3, Lamorna Brown Swigart 4,
Scott Huntsman5, Donglei Hu 5, Jovia L. Nierenberg5,6, Pooja Middha 5, Rachel S. Heise 1, Yushu Shi1, Linda Kachuri7,
Qianqian Zhu 8, Song Yao 9, Christine B. Ambrosone 9, Marilyn L. Kwan 10, Bette J. Caan10, John S. Witte 7,
Lawrence H. Kushi 10, Laura van ‘T Veer 4, Laura J. Esserman 3 and Elad Ziv 5

Aggressive breast cancers portend a poor prognosis, but current polygenic risk scores (PRSs) for breast cancer do not reliably
predict aggressive cancers. Aggressiveness can be effectively recapitulated using tumor gene expression profiling. Thus, we sought
to develop a PRS for the risk of recurrence score weighted on proliferation (ROR-P), an established prognostic signature. Using 2363
breast cancers with tumor gene expression data and single nucleotide polymorphism (SNP) genotypes, we examined the
associations between ROR-P and known breast cancer susceptibility SNPs using linear regression models. We constructed PRSs
based on varying p-value thresholds and selected the optimal PRS based on model r2 in 5-fold cross-validation. We then used Cox
proportional hazards regression to test the ROR-P PRS’s association with breast cancer-specific survival in two independent cohorts
totaling 10,196 breast cancers and 785 events. In meta-analysis of these cohorts, higher ROR-P PRS was associated with worse
survival, HR per SD= 1.13 (95% CI 1.06–1.21, p= 4.0 × 10–4). The ROR-P PRS had a similar magnitude of effect on survival as a
comparator PRS for estrogen receptor (ER)-negative versus positive cancer risk (PRSER-/ER+). Furthermore, its effect was minimally
attenuated when adjusted for PRSER-/ER+, suggesting that the ROR-P PRS provides additional prognostic information beyond ER
status. In summary, we used integrated analysis of germline SNP and tumor gene expression data to construct a PRS associated
with aggressive tumor biology and worse survival. These findings could potentially enhance risk stratification for breast cancer
screening and prevention.

npj Precision Oncology            (2023) 7:42 ; https://doi.org/10.1038/s41698-023-00382-z

INTRODUCTION
Polygenic risk scores (PRSs) have emerged as promising tools for
breast cancer risk prediction. Over 200 single nucleotide
polymorphisms (SNPs) associated with breast cancer risk have
been identified1. Though the effects of individual SNPs are weak,
PRSs representing the cumulative effects of multiple SNPs can
stratify breast cancer risk on a population level2 and improve the
performance of clinical breast cancer risk prediction models3,4.
Ongoing prospective trials are testing the ability of the PRS to
inform decision-making around breast cancer screening and
prevention5–7.
Current breast cancer PRSs have limited ability to account for

the biological heterogeneity of breast cancer. This is a critical
limitation since breast cancer encompasses a variety of subtypes
ranging from indolent to aggressive, with the latter defined as
having increased proliferation or metastatic potential and poor
prognosis8. However, case-only analyses have found that PRSs for
overall breast cancer risk are associated with more favorable
clinicopathologic9 and prognostic features10, as well as lower risk
of interval versus screen-detected cancer11,12. Efforts to fit PRSs to
subtypes of breast cancer have focused on estrogen receptor (ER)
status given that ER-negative breast cancers tend to be more
proliferative and are associated with earlier risk of relapse2,13.
However, aggressive cancers can encompass ER-negative and ER-

positive subtypes. For instance, ER-positive cancers are commonly
divided into luminal A (low-grade) and B (high-grade) subtypes
with the latter having worse prognosis14.
Beyond ER status, aggressiveness can be measured using tumor

prognostic signatures, which integrate the expression levels of
multiple genes to calculate prognostic scores that guide treatment
decision-making8,15,16. In this analysis, we selected the risk of
recurrence score weighted on proliferation (ROR-P), which is
based on the expression of 50 genes included in the Prediction
Analysis of Microarray 50 (PAM50) signature. PAM50 classifies
tumors by intrinsic subtype (luminal A, luminal B, HER2-enriched,
basal-like, and normal-like). ROR-P is calculated by adding the
subtype-centroid correlation coefficients for each subtype,
weighted by their association with recurrence, to the weighted
expression levels of 11 proliferation genes17,18. ROR-P is contin-
uous (though categorical cutoffs are used for clinical decision-
making) and has stronger prognostic value than traditional
markers such as ER status, grade, and Ki-6717,19.
Prior studies have examined the associations between germline

genetics and ROR-P using a transcriptome-wide association study
approach20. However, no studies have attempted to develop a PRS
for ROR-P or other gene expression-based signature of aggres-
siveness. We hypothesized that some known breast cancer
susceptibility SNPs are positively correlated with ROR-P, whereas
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others are negatively correlated, and these differential associa-
tions can be used to construct a PRS for ROR-P. We therefore
sought to construct the ROR-P PRS in datasets with germline SNP
genotypes and tumor gene expression. To evaluate whether the
ROR-P PRS was associated with aggressive tumors with worse
prognosis, we examined its association with breast cancer-specific
survival in two independent cohorts.

RESULTS
Study characteristics
We developed the ROR-P PRS using 2363 breast cancers from
three studies: The Cancer Genome Atlas (TCGA)21, Molecular
Taxonomy of Breast Cancer International Consortium (METAB-
RIC)22, and Investigation of Serial Studies to Predict Your
Therapeutic Response with Imaging And molecular analysis 2
(I-SPY 2 TRIAL)23 (Fig. 1, Supplementary Table 1, Supplementary
Fig. 1). Most of the participants in these studies were Non-Hispanic
White; METABRIC did not report race or ethnicity but predomi-
nantly included White participants because recruitment occurred
in the United Kingdom and Canada22 (Table 1). Cancers from I-SPY
2 were diagnosed at younger ages and more likely to be ROR-P
High and classified as Basal intrinsic subtype. This reflects the
trial’s inclusion criteria, which is limited to locally advanced,
molecularly high-risk cancers as defined by gene expression
profiling and/or clinicopathologic features23.

We calculated the ROR-P PRS and tested its associations with
survival and tumor characteristics in two studies containing
prospective follow-up of breast cancer patients, the UK Biobank
and the Pathways Study (Fig. 1, Supplementary Table 2). Limited
breast cancer characteristics were available for UK Biobank, but
age at diagnosis and event rate were comparable across studies,
with the Pathways Study having a longer duration of follow-up
(Supplementary Table 3). Our analysis of UK Biobank included
7427 breast cancer cases and 544 breast cancer-specific deaths
during a median follow-up time of 6.4 (interquartile range 3.7–9.1)
years. The Pathways Study included 2769 cancers with 241 breast
cancer-specific deaths during a median follow-up time of 10.7
(interquartile range 8.2–12.3) years. Tumors in Pathways were
predominantly ER-positive, human epidermal growth factor
receptor 2 (HER2)-negative, and Grade 1 or 2.

Development of the ROR-P PRS
Using pooled data from TCGA, METABRIC, and the I-SPY 2 TRIAL,
we evaluated the case-case associations of 226 breast cancer
susceptibility SNPs and ROR-P (Supplementary Table 4). Based on
these associations, we constructed PRSs using varying p-value
thresholds and identified a 76-SNP PRS as having the best
performance, with a model r2 of 0.049 in 5-fold cross-validation
(Fig. 2a, Supplementary Table 5). For 51 of 76 SNPs in the ROR-P
PRS, the breast cancer risk allele, as annotated by the original
GWAS, was associated with lower ROR-P (Supplementary Table 6,

Fig. 1 Study design. We developed a polygenic risk score (PRS) for the risk of recurrence score weighted on proliferation (ROR-P) using
pooled data from three studies: The Cancer Genome Atlas (TCGA), Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC), and Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging And molecular analysis 2 (I-SPY 2 TRIAL).
We used these datasets to evaluate the performance of PRS constructed using varying p-value thresholds and to calculate the effect sizes of
the SNPs included in the PRS with optimal performance (cross-validated r2). We then calculated the ROR-P PRS in breast cancer patients from
two independent datasets, the UK Biobank and the Pathways Study. In Pathways, we performed external validation of the ROR-P PRS by
examining its association with measured ROR-P in tumors with available gene expression profiling data. We then tested the associations
between the ROR-P PRS and breast cancer-specific survival in UK Biobank and the Pathways Study and performed meta-analysis of the results.
In parallel, we generated a PRS for the case-case risk of estrogen receptor (ER)-negative versus ER-positive breast cancer using summary
statistics from the Breast Cancer Association Consortium (BCAC) and evaluated its association with breast cancer-specific survival.
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Fig. 2b), which is consistent with the observation that the PRS for
overall breast cancer risk is associated with better survival10. Six of
76 SNPs in our final ROR-P PRS had nominally significant
associations with ROR-P, though none met significance after
Bonferroni correction. The nominally significant SNP with the
strongest positive association with ROR-P, rs67397200 (ABHD8 in
19p13.11), was discovered in GWAS for ER-negative cancer13 and
is associated with increased case-case risk of luminal B and triple
negative intrinsic-like subtypes, and decreased risk of luminal A
subtype24. The nominally significant SNP with the strongest
negative association, rs537626 (LINC01488 in 11q13.3), was
discovered in GWAS for early onset breast cancer25, although
the region has also been implicated in increased risk of ER-positive
cancer in an admixture mapping study of African-American
women26.

External validation of ROR-P PRS
We performed external validation of the ROR-P PRS in a nested
subset of 484 tumors from the Pathways Study that had
undergone gene expression profiling27 (Supplementary Fig. 2).
The ROR-P PRS was weakly correlated with measured ROR-P, with
a Pearson correlation coefficient of 0.094 (p= 0.038) (Fig. 3a). We
also examined associations between the ROR-P PRS and tumor
clinicopathologic features (Fig. 3b). Higher ROR-P PRS was
associated with ER-negative status, odds ratio per standard
deviation increment (OR per S.D.) of 1.12 (95% CI 1.01–1.25,
p= 0.034), but not HER2 status or grade. Higher ROR-P PRS was
also associated with increased odds of basal versus luminal A
intrinsic-like subtype, as defined by receptor status and grade (OR
per S.D. = 1.20, 95% CI 1.05–1.36, p= 0.006).

Association of ROR-P PRS with breast cancer-specific survival
In UK Biobank, we first evaluated the association between a PRS
for overall breast cancer risk (PRSoverallBC) and breast cancer-
specific survival. We hypothesized that since prior studies have
shown that the overall breast cancer PRS is associated with
favorable characteristics in breast cancer patients10, then higher
overall breast cancer PRS among cases would be associated with
more favorable survival. As expected, PRSoverallBC was inversely
associated with breast cancer mortality, with a hazard ratio per
standard deviation (HR per S.D.) of 0.86 (95% CI 0.78–0.94,
p= 0.019). In Kaplan–Meier analyses, the bottom tertile of the PRS,
corresponding with the lowest risk of developing breast cancer,
was associated with worst survival (Fig. 4).
We next calculated the ROR-P PRS in the UK Biobank and the

Pathways Study (Fig. S3) and examined the respective associations
with breast cancer-specific survival in each study. We expected
higher ROR-P PRS to be associated with more aggressive cancers
and thus shorter breast cancer-specific survival. In UK Biobank, 66
of 76 SNPs were available for inclusion in the ROR-P PRS. In a Cox
proportional hazards regression model adjusted for genetic
ancestry, higher ROR-P PRS was associated with worse breast
cancer-specific survival (HR per S.D. = 1.13, 95% CI 1.04–1.23,
p= 0.005) (Fig. 5, Supplementary Table 8). Global calibration of the
ancestry-adjusted ROR-P PRS in the UK Biobank was acceptable
(Gronnesby-Borgan test statistic = 6.17, p= 0.72) (Supplementary
Fig. 4).
In Pathways, 61 of 76 SNPs were available for the PRS. Higher

ROR-P PRS was similarly associated with worse survival (HR per
S.D. = 1.14, 95% CI 1.01–1.29, p= 0.04) (Fig. 5, Supplementary
Table 8). In a random-effects meta-analysis of the results from UK
Biobank and Pathways, the ROR-P PRS was associated with worse
survival (summary HR per S.D. = 1.13, 95% CI 1.06–1.21,
p= 4.0 × 10−4). No evidence of heterogeneity was found between
studies.
Similarly, in Kaplan–Meier analysis of UK Biobank data, the

bottom tertile of the ROR-P PRS (corresponding to the lowest
predicted ROR-P) was associated with better survival compared with
the top and middle tertiles (log-rank chi-squared test statistic = 8.4,
p= 0.015) (Fig. 6a). In contrast, the difference in survival between
tertiles in the Pathways Study did not reach statistical significance
(log-rank chi-squared = 2.4, p= 0.3) (Fig. 6b).
In the Pathways Study, we constructed additional models

adjusting for patient-level, tumor, and treatment covariates
(Supplementary Table 7). The effect size of the ROR-P PRS did
not change with adjustment for age at diagnosis and body mass
index. However, its effect was attenuated after including stage at
diagnosis (HR per S.D. = 1.10, 95% CI 0.97–1.25, p= 0.13).
Including treatment covariates in addition to stage did not
substantively change the results. As expected, including measured
ROR-P and the ROR-P PRS in the same model attenuated the
latter’s effect. Similar results were seen when invasive breast

Table 1. Characteristics of studies used in development of ROR-P PRS.

TCGA METABRIC I-SPY 2
TRIAL

Characteristic N= 953 N= 496 N= 914

Age at diagnosis in years, median
(IQR)

58 (49, 68) 62 (52, 73) 49 (41, 57)

Race, n (%)a

White 652 (75%) 733 (80%)

Black/African-American 160 (18%) 102 (11%)

Asian 55 (6.3%) 63 (6.9%)

Other 1 (0.1%) 16 (1.8%)

Unknown 85

Ethnicity, n (%)a

Hispanic/Latina 32 (4.0%) 112 (12%)

Non-Hispanic/Latina 764 (96%) 802 (88%)

Unknown 157

Estrogen receptor status, n (%)b

Negative 224 (24%) 93 (19%) 410 (45%)

Positive 729 (76%) 403 (81%) 504 (55%)

HER2 status, n (%)b

Negative 512 (78%) 112 (78%) 680 (74%)

Positive 148 (22%) 31 (22%) 234 (26%)

Unknownc 293 353

Intrinsic subtype call, n (%)

Basal 172 (18%) 57 (11%) 374 (41%)

Her2 72 (7.6%) 74 (15%) 136 (15%)

LumA 493 (52%) 132 (27%) 171 (19%)

LumB 180 (19%) 147 (30%) 211 (23%)

Normal 36 (3.8%) 86 (17%) 22 (2.4%)

ROR-P, median (IQR) 32 (8, 50) 41 (29, 51) 46 (34, 58)

ROR-P Group, n (%)

Low 266 (28%) 47 (9.5%) 42 (4.6%)

Medium 488 (51%) 340 (69%) 550 (60%)

High 199 (21%) 109 (22%) 322 (35%)

HER2 human epidermal growth factor receptor 2, IQR interquartile range,
I-SPY 2 TRIAL Investigation of Serial Studies to Predict Your Therapeutic
Response with Imaging And molecular analysis 2, METABRIC Molecular
Taxonomy of Breast Cancer International Consortium, ROR-P risk of
recurrence score weighted on proliferation, TCGA The Cancer Genome
Atlas.
aDistributions by race and ethnicity are not available for METABRIC.
bDetermined by immunohistochemistry.
cIncludes cases with indeterminate or equivocal HER2 status on
immunohistochemistry.
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cancer recurrence was used as the outcome in Cox proportional
hazards models.

Evaluation of joint effects with ER-negative PRS and
differential effects by ER status
Given the observed association between the ROR-P PRS and ER-
negative status as well as the inclusion of ER signaling pathway
genes in the ROR-P gene set, we considered the possibility that
our ROR-P PRS was recapitulating ER status. Thus, we constructed
a comparable PRS for the case-case risk of ER-negative versus ER-
positive cancer (PRSER-/ER+) and tested for collinearity and
overlapping effects with the ROR-P PRS. In Pathways, we
confirmed that the PRSER-/ER+ was associated with increased risk
of ER-negative versus ER-positive cancer (OR per S.D. = 1.38, 95%
CI 1.26–1.52, p= 3.1 × 10−11) (Supplementary Fig. 5).
In the UK Biobank, higher PRSER-/ER+ was associated with worse

breast cancer-specific survival (HR per S.D. = 1.15, 95% CI
1.07–1.23, p= 6.8 × 10–5) (Fig. 5). Kaplan–Meier analysis showed
that the bottom tertile of PRSER-/ER+, corresponding to lowest
relative risk of ER-negative versus ER-positive cancer, was
associated with more favorable survival (Fig. 6c). In Pathways,
there was a similar directional association that did not reach
statistical significance (HR per S.D. = 1.12, 95% CI 1.00–1.26,
p= 0.057) (Figs. 5, 6d, Supplementary Table 7). Meta-analysis of
the UK Biobank and Pathways results showed comparable effect
sizes between the PRSER-/ER+ and ROR-P PRS (Fig. 5, Supplemen-
tary Table 8).
We then examined the correlation and joint effects between ROR-

P PRS and PRSER-/ER+. There was a modest correlation between the
ROR-P PRS and PRSER-/ER+ in UK Biobank and Pathways, Pearson
correlation coefficient 0.27, p < 2.2 × 10−16, and 0.34, p < 2.2 × 10−16,
respectively (Supplementary Fig. 6). In joint models including both
ROR-P PRS and PRSER-/ER+, the effect size of the ROR-P PRS was
mildly attenuated (Supplementary Table 8, Fig. 5). However, the
effect of the ROR-P PRS remained statistically significant in meta-
analysis of results from both studies (HR per S.D. = 1.10, 95% CI
1.02–1.18, p= 0.014).
To confirm that our ROR-P PRS was not solely recapitulating ER

status, we performed additional analyses in the Pathways Study
accounting for tumor ER status. Adjusting the ROR-P PRS for ER
status led to a mild attenuation of the ROR-P PRS’s effect similar in
magnitude to what was observed for the PRSER-/ER+ (Supplemen-
tary Table 7). Slight differences in the distributions of the ROR-P

PRS were seen in ER-positive versus ER-negative cancers
(Supplementary Fig. 7, Panel A), with the ROR-P PRS having a
stronger effect in ER-positive cancers compared with ER-negative
cancers (HR per S.D. = 1.23, 95% CI 1.06–1.43, p= 0.006 versus HR
per S.D. = 0.87, 95% CI 0.67–1.12, p= 0.27) (Supplementary Fig. 7,
Panel B). Taken together, these results strongly suggest the ROR-P
PRS contains largely independent information from ER status.

DISCUSSION
We used associations between breast cancer susceptibility SNPs
and tumor gene expression to construct a case-only PRS for ROR-
P. The ROR-P PRS was modestly predictive of ROR-P in our
development dataset and in an external dataset comprised of
tumors from the Pathways Study with measured ROR-P. In survival
analysis, higher ROR-P PRS was associated with worse breast
cancer-specific survival, with nearly identical effects observed in
the UK Biobank and Pathways Study and HR per S.D. of 1.13 (95%
CI 1.06–1.21) in meta-analysis. In contrast, higher PRSoverallBC was
associated with better survival in the UK Biobank, which is
consistent with the results of a large study including nearly
100,000 women with breast cancer10. Thus, the associations of the
ROR-P PRS and PRSER-/ER+ with worse survival suggest that it is
possible to reconfigure PRS to predict aggressive tumors with
worse prognosis.
Our findings begin to address an important limitation of current

breast cancer PRSs: their preferential associations with less
aggressive phenotypes. We decided to fit our PRS to ROR-P, a
gene expression-based phenotype, for several reasons. First,
standard clinicopathologic markers such as ER status are imperfect
proxies for aggressiveness18,28. ER-positive cancers display hetero-
geneous biology and can be divided into luminal A and B
subtypes representing low-grade (more indolent) and high-grade
(more aggressive) disease, respectively. In addition, among
molecularly high-risk hormone receptor-positive/HER2- tumors,
up to a third are classified as basal29. Second, traditional subtyping
schemes do not reflect the continuous nature of traits such as
receptor expression levels, proliferation, or metastatic potential.
Third, aggressiveness is determined by the effects of multiple
signaling pathways. For these reasons, continuous, multi-gene
signatures such as ROR-P may better recapitulate complex,
multidimensional traits such as aggressiveness. Prior studies have
shown that ROR-P has greater prognostic value than receptor
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Fig. 2 Development of the polygenic risk score for the risk of recurrence score weighted on proliferation (ROR-P PRS). a We performed
5-fold cross-validation to identify the optimal p-value threshold for including single nucleotide polymorphisms (SNPs) in the ROR-P PRS. The r2
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status, grade, and proliferation markers such as Ki6717. Fourth,
ROR-P has been shown to be heritable20, making it an attractive
candidate for fitting PRS.
Our targeted approach to PRS building is novel and represents a

proof of concept that known breast cancer susceptibility SNPs can
be used to fit PRSs to breast cancer aggressiveness. We focused
the selection of SNPs for our PRS on variants already known to be
associated with breast cancer due to limited power in our datasets
for agnostic testing of genome-wide associations with ROR-P and
other prognostic features. However, genetic susceptibility to
aggressiveness may be influenced by variants outside of those
discovered in GWAS for overall breast cancer risk. Prior studies
have estimated the heritability of ROR-P to be 13–21% in White
women20, though it remains to be seen how much of the
heritability is explained by known breast cancer susceptibility
SNPs versus other common variants. As larger datasets containing
germline SNPs and tumor gene expression become increasingly
available, it should become feasible to examine a larger pool of
candidate SNPs and additional prognostic signatures. With
increasing sample size, the use of alternative methods for PRS
building such as lasso or elastic net regression2,30,31 may also
improve prediction. Prognosis may be determined by host factors
such as tumor immune microenvironment, and such features
could also be used to fit PRS given the role of the germline in
shaping immune response32.
We also note that a PRS representing the case-case risk of ER-

negative versus ER-positive cancer was associated with survival.
We included the PRSER-/ER+ as a “positive control” given that ER
status has been consistently shown to be prognostic. Whereas the
ROR-P PRS and PRSER-/ER+ had comparable magnitudes of
association with survival, the more notable finding was the
minimal attenuation of the ROR-P PRS’s effects when included in a
joint model with PRSER-/ER+. Moreover, the ROR-P PRS had
differential associations by ER status with survival, with a stronger
effect seen in ER-positive versus ER-negative cancers. This result
requires further validation but may reflect the greater hetero-
geneity in proliferation in ER-positive as opposed to ER-negative
cancers, which tend to be more uniformly high-grade. Taken
together, our findings suggest that ROR-P PRS captures largely
independent prognostic information from ER status, mirroring the
composition of the PAM50/ROR-P gene set which includes genes

from the estrogen receptor pathway, in addition to genes from
multiple others.
A secondary goal of our study was to characterize associations

between known breast cancer susceptibility SNPs and ROR-P. The
finding that some SNPs are associated with ROR-P is consistent
with those of prior studies showing that many of the breast cancer
susceptibility SNPs are differentially associated with intrinsic-like
subtypes24,33. Intrinsic-like subtyping uses immunohistochemical
ER, PR and HER2 status plus histologic grade to recapitulate the
intrinsic subtypes defined by PAM50, from which ROR-P is
derived18. Given the moderate correlation between immunohis-
tochemical and expression-based subtyping34, we expected to see
associations between individual breast cancer SNPs and ROR-P.
Our finding of an inverse association between the risk allele and
ROR-P for most SNPs adds to the evidence that SNPs discovered in
overall breast cancer GWAS are preferentially associated with less
aggressive biology12.
One strength of this study is our ability to leverage several

datasets containing paired germline SNP-tumor gene expression.
In particular, the inclusion of samples from the I-SPY 2 TRIAL,
which is restricted to molecularly high-risk cancers, allowed us to
enrich our PRS development set for aggressive tumors. ROR-P is a
widely available signature with strong prognostic value; in one
head-to-head comparison, the risk of recurrence (ROR) score was
among the highest performing signatures for early and late
distant recurrence35. Another strength of our study is the use of
two independent cohorts to demonstrate the association between
ROR-P PRS and survival. We also performed extensive analyses to
account for confounding of the ROR-P PRS effect by ER status.
There are several limitations to our study. First, tumor gene

expression signatures do not account for spatial or temporal
heterogeneity and have imperfect prognostic performance. ROR-P
has moderate discrimination for early and late recurrence, with
c-statistics of 0.76 and 0.64, respectively35. It is possible that fitting
the PRS to different prognostic signatures may yield PRSs with
stronger associations with prognosis, though these differences
would likely be small given the relatively high concordance
(approximately 80%) between prognostic signatures36. Second,
the sample size of our PRS development dataset limited the
precision of our effect size estimates for SNPs in our PRS. Thus, the
ROR-P PRS may contain some SNPs representing “noise.” Further
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refinement of the ROR-P PRS in larger datasets is needed, though
we are encouraged that the ROR-P PRS displayed consistent
effects in both independent validation datasets. Third, our
validation was done in breast cancer cases from the UK Biobank
and Pathways Study, two studies with fundamentally different
designs. Whereas UK Biobank is a population-wide biobanking
initiative, Pathways is a breast cancer-specific study that recruited
consecutive cases from a single healthcare system in the U.S. The
contrasting study designs, settings, and enrollment strategies
provide unique strengths and limitations. The robustness of our
findings is strengthened by the observation of similar effects
across these datasets (considering the smaller sample size of
Pathways). However, the UK Biobank did not contain information
on breast cancer stage, pathologic features, or treatment, thus
limiting our ability to examine the contributions of other
determinants of survival and replicate the associations we
observed in Pathways between the ROR-P PRS and tumor
characteristics. Though we adjusted for confounding by ancestry,
it is difficult to rule out residual confounding from other factors,
given that we observed a mild attenuation of the ROR-P PRS’s
effect in Pathways after accounting for stage and treatment.
Fourth, there was limited diversity in the datasets used for ROR-P
PRS development and testing. The UK Biobank, despite containing
large numbers of breast cancer cases and events, had limited
racial and ethnic diversity. Consequently, we restricted Pathways
to self-identified White women (representing ~70% of the study
population) for comparability with UK Biobank. Given the
disproportionate burden of aggressive cancers in Black/African
American women37 and Latinas38, further work is needed to
evaluate and optimize the performance of the ROR-P PRS in
diverse populations.
We believe that the potential clinical utility of the ROR-P PRS

could lie in enhancing risk stratification for screening and
prevention. Ongoing trials of risk-based screening are using

models for overall breast cancer risk to assign screening
recommendations5, but these models do not account for the risk
of developing aggressive cancer. Aggressive cancers are over-
represented in younger women, including those younger than the
starting age for initiating screening recommended by current
clinical guidelines. Thus, the ROR-P PRS, PRSER-/ER+, and similar PRS
could be tested as modifiers to established risk models,
particularly to identify women who should be offered screening
at an earlier age, at shorter intervals, or using high-sensitivity
modalities such as magnetic resonance imaging. Women at
elevated risk of aggressive cancers may be ideal candidates for
prevention and interception trials. In addition, it has been
suggested that PRS predictive of cancer-related death may be
more valuable than PRS for overall risk in selecting individuals
with the greatest net benefit from screening—particularly for
cancers (such as breast and prostate) where overdiagnosis is
common39.
Our work represents a first step toward the prediction of

phenotype-specific breast cancer risk. Future studies should seek
to refine the methods used to construct PRS for aggressiveness
and evaluate the performance of these PRSs in diverse popula-
tions with larger numbers of non-White individuals. Since PRS
development and testing were done using a case-only design,
further work is needed to examine case-control associations and
to test the performance (e.g., discrimination, calibration, net
reclassification improvement) of PRSs in predicting aggressive,
poor-prognosis cancers on a population basis. Concurrent efforts
should seek to refine the understanding of how the germline
contributes to gene expression and other somatic features, and
how these relationships shape tumor aggressiveness. Such
analyses should become increasingly feasible with the growing
availability of integrated datasets containing germline and
somatic genomic data.
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METHODS
Study population
The PRS development phase of our study included invasive breast
cancers from three datasets with paired germline SNP-tumor gene
expression data: the Cancer Genome Atlas (TCGA)21, a publicly
available pan-cancer atlas; Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC)22, a breast cancer genomic
profiling study, and the Investigation of Serial Studies to Predict
Your Therapeutic Response with Imaging And moLecular analysis
2 (I-SPY 2) TRIAL (NCT01042379)23 (Supplementary Table 1). The
I-SPY 2 TRIAL is an ongoing clinical trial comparing multiple novel
therapeutic agents for neoadjuvant treatment of locally advanced
breast cancer. All cancers in I-SPY 2 must be considered
molecularly high-risk according to clinicopathologic data or results
of the MammaPrint prognostic signature;40 as a result, all tumors
undergo gene expression profiling. Cases were included in our
analysis based on the following criteria: In TCGA, we included
invasive breast cancers (n= 953); samples corresponding to the
primary tumor were included while those corresponding to
recurrences or normal tissue were excluded. In METABRIC, we
included cases with available SNP genotyping data (n= 496). In
I-SPY 2, genotyping has been completed for the first 1400 cases; of
these, a subset had available ROR-P calls (n= 914).
To test the association between ROR-P PRS and clinical

outcomes, we analyzed participants from two studies containing
longitudinal follow-up of women diagnosed with breast cancer,
the UK Biobank and the Pathways Study (Supplementary Table 2).
UK Biobank is a population-based cohort that enrolled individuals
aged 40–69 years across the UK between 2006 and 2010, with
cancer diagnoses and deaths ascertained from national regis-
tries41. To identify women with breast cancer, we used Interna-
tional Classification of Diseases (ICD) codes: ICD-9 (175, 1740, 1741,
1742, 1743, 1744, 1745, 1746, 1748, 1749, and 2330) and ICD-10
(C500, C501, C502, C503, C504, C505, C506, C508, C509, D050,
D051, D057, and D059). We converted all codes to ICD-10-CM,
then ICD-0-3, using Surveillance, Epidemiology, and Endpoints
Registry (SEER) conversion tables. We then linked these ICD codes
to SEER site recodes (2008). The SEER site recode 26000 was used
for breast cancer. We defined breast cancer-related deaths as

those for which breast cancer was indicated as contributing to the
death (ICD-10 code C509). For non-censored individuals, the date
of last follow-up was December 31, 2019. Given the ICD codes
used to identify breast cancer patients included those pertaining
to invasive and in situ disease, we created indicator variables for
these categories. We restricted our analysis to self-identified
British White women with incident invasive breast cancer
(n= 7427) to mitigate potential biases related to survivorship
and temporal treatment trends. Incident cancers were those with
a diagnosis date occurring after the date of UK Biobank
enrollment.
The Pathways Study is a longitudinal cohort of women

diagnosed with breast cancer at Kaiser Permanente Northern
California. Participants included women aged 21 years and older
with a first diagnosis of invasive breast cancer between 2006 and
201342. Data on treatment, recurrence, and death were ascer-
tained from the Kaiser Permanente Northern California Cancer
Registry, as well as electronic medical records. Imputed genotype
data was available for 3973 of 4377 total participants. For
comparability with UK Biobank, we included participants with
compete clinical and genetic data who were of self-reported
White race (n= 2769)43.
The pooled analysis described in this manuscript was approved

by the Biomedical Research Alliance of New York.

Genotyping
We performed SNP genotyping using array-based methods and
imputed genotypes to population-based references (Supplemen-
tary Tables 1, 2). We estimated genetic ancestry by generating the
first 10 principal components (PCs) based on genotyped markers
using Plink (version 1.9). SNPs with >5% missingness were
excluded. SNPs with <5% missingness were randomly assigned
a genotype weighted on the distribution of genotypes calculated
by the Hardy–Weinberg equation. This calculation used allele
frequencies for the respective SNP among individuals without
missing genotypes.
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Fig. 5 Associations between polygenic risk scores and breast cancer-specific survival. Cox proportional hazards models were constructed
for: the polygenic risk score weighted on risk of recurrence (ROR-P PRS), the polygenic risk score for risk of estrogen-negative versus positive
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studies using random effects meta-analysis.
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Tumor gene expression
Tumor gene expression was measured on the platforms detailed in
Supplementary Table 1. ROR-P is the composite of ROR-S, the linear
combination of PAM50 subtype-centroid correlations, and a
proliferation score calculated from an 11-gene subset of the
PAM50 gene set. To generate ROR-P calls, we first performed batch
correction of raw gene expression levels (R package comBAT)44. For
genes with multiple probes, we collapsed expression levels to the
mean across all probes for the gene. Performing PAM50/ROR-P
calls on a batch of tumors requires the target dataset to have a
similar distribution of ER-positive and ER-negative cases to the
original PAM50 training set. To address this “population assump-
tion,” we created a subsample including all ER-negative cancers
plus an equal number of randomly selected ER-positive cases. We
repeated the subsampling procedure 1000 times and calculated for
each repetition the median expression of each PAM50 gene. For
each gene, we calculated the median of the 1000 medians and
subtracted it from the collapsed expression levels. We then used
these normalized expression levels to calculate ROR-P as previously
described18. Briefly, the Spearman rank correlation between the
individual genes in the PAM50 set and each subtype centroid was
calculated for each sample with the subtype assignment based on
the highest subtype-centroid correlation. The subtype-centroid
correlations were then used to calculate ROR-P using Eq. 1:

RORP ¼ �0:001´ Basalþ 0:7 ´Her2� 0:95 ´ LumA

þ 0:49 ´ LumBþ 0:34 ´ Prolif
(1)

where Prolif represents the average normalized expression
estimates of an 11-gene proliferation index.

Construction of PRS for ROR-P
We tested 226 candidate SNPs with genome-wide significant
associations (p < 5 × 10−8) in prior genome-wide association
studies (GWAS) of overall breast cancer susceptibility1,45,46, or a
related phenotype such as ER-negative13,47 or intrinsic-like
subtype33, age of onset25, or prognosis/survival48–52 (Supplemen-
tary Table 4). We identified candidate SNPs and obtained
summary statistics from the Breast Cancer Association Consortium
(BCAC)1, accessed at https://bcac.ccge.medschl.cam.ac.uk/
bcacdata/oncoarray/oncoarray-and-combined-summary-result/
gwas-summary-results-breast-cancer-risk-2017, and the GWAS
Catalog53. We started with 271 SNPs and performed linkage
disequilibrium (LD) clumping using LDLink (R package LDlinkR)54.
Within pairs of SNPs in LD (r2 ≥ 0.2 in European populations), we
kept the SNP with the lower published p-value for association with
breast cancer susceptibility. After LD pruning, 226 SNPs remained.
To address potential confounding, we constructed the linear

regression model in Eq. 2 within pooled TCGA, METABRIC, and
I-SPY 2 data:

RORP ¼ PC1þ PC2¼ þ PC10þ study indicator variable (2)

We then regressed the model residual against each individual SNP
and obtained the β coefficients and p-values for each association.
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Fig. 6 Associations between polygenic risk scores for the risk of recurrence score weighted on proliferation (ROR-P PRS) and risk of
estrogen-negative versus positive breast cancer (PRSER-/ER+) versus breast cancer-specific survival. Kaplan–Meier plots of tertiles of the
ROR-P PRS in a the UK Biobank and b the Pathways Study. Kaplan–Meier plots of tertiles of the PRSER-/ER+ in c the UK Biobank and d the
Pathways Study. p-values for the log-rank test are shown.
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To identify the best-performing model for ROR-P, we con-
structed PRSs according to varying p-value thresholds (0.1–0.6) for
SNP inclusion. We used 5-fold cross-validation (R package caret)55

to estimate the r2 of each PRS against the residual in the leave-out
subset. We repeated this process 10 times. After identifying the p-
value threshold with the highest r2, we included in our PRS all
SNPs with a p-value below this threshold. Finally, we obtained
within the overall dataset the coefficients of SNP associations with
ROR-P, adjusted for genetic ancestry and an indicator variable
for study.
To calculate the ROR-P PRS in UK Biobank and Pathways, we

applied the SNP coefficients derived from our PRS development
set to the genotype data, coded as risk allele dosage. Specifically,
the PRS was calculated as shown in Eq. 3:

PRS ¼ β1x1 þ β2x2 þ ¼ þ βkxk ¼ þ βnxn (3)

where βk is the per-allele linear regression coefficient for ROR-P
associated with SNP k, xk is the genotype coded as number of risk
alleles present, and n is the total number of SNPs in the PRS.

Construction of PRS for overall and ER-specific cancer risk
We generated two comparator PRSs and tested their associations
with breast cancer-specific survival: (1) a 274-SNP PRS for overall
risk of breast cancer (UK Biobank only), PRSoverallBC; and (2) a 205-
SNP PRS representing the case-case risk of developing ER-negative
versus ER-positive disease, PRSER-/ER+. PRSoverallBC was derived
from a published 313-SNP PRS for overall breast cancer2. In UK
Biobank, we were able to retrieve genotypes for 274 of the 313
SNPs in the PRS. The candidate SNPs for the PRSER-/ER+ were the
same 271 SNPs considered for inclusion in the ROR-P PRS. The
effect sizes of the SNPs were taken from summary statistics for
associations with ER-negative and ER-positive breast cancer, as
reported in the BCAC iCOGs and OncoArray studies (https://
gwas.mrcieu.ac.uk/, ieu-a-1127 and ieu-a-1128, respectively)56. We
used the β coefficients calculated from meta-analysis of these
studies. Given the β coefficients for ER-negative and ER-positive
cancers were derived from case-control comparisons with the
same control group, we subtracted the β coefficient for ER-
positive cancer from the β coefficient for ER-negative cancer2 to
obtain the case-case β coefficient for ER-negative versus ER-
positive risk. Summary statistics were available for 237 SNPs. After
LD pruning, 205 SNPs remained, of which 193 had available
genotypes in UK Biobank and 189 had available genotypes in the
Pathways Study. We calculated the PRS using a previously
described method3,57. In this calculation, the PRS represents the
product of the likelihood ratios across each SNP in the PRS, with
the likelihood ratio calculated based on the effect size of the risk
allele and the risk allele frequency. For PRSoverallBC, the effect sizes
were the published odds ratios from the meta-analyzed BCAC
iCOGs and OncoArray studies described above. For PRSER-/ER+, the
effect size was the exponent of the case-case β coefficient for ER-
negative versus ER-positive risk. We used risk allele frequencies
from the European (EUR) population in 1000 Genomes.

Statistical analysis
As a form of external validation, we examined associations
between ROR-P PRS and tumor features such as ER status,
HER2 status, histologic grade, and intrinsic-like subtype in the
Pathways Study. For binary features such as ER and HER status, we
used t-tests to compare mean ROR-P PRS between categories. We
also constructed logistic regression models adjusted for genetic
ancestry principal components 1–10 (PC1-PC10). For categorical
outcomes with three or more categories, such as grade and
intrinsic-like subtype, we used analysis of variance (ANOVA) tests
and constructed multinomial logistic regression models adjusted
for genetic ancestry. We also estimated the correlation between
ROR-P PRS and actual ROR-P using the Pearson correlation

coefficient in the subset of tumors that had undergone gene
expression profiling.
To confirm past findings that a PRS representing overall breast

cancer risk was associated with improved survival, we first
performed survival analysis of PRSoverallBC in the UK Biobank. We
constructed a Cox proportional hazards regression model with
PRSoverallBC as the predictor and genetic ancestry PC1-PC10 as
covariates. We normalized PRSoverallBC to the mean and standard
deviation among cases. We also used Kaplan–Meier survival
analysis (R packages survival and survminer)58 to examine the
association between tertiles of PRSoverallBC and breast cancer-
specific survival and tested for differences between tertiles using
log-rank tests.
To examine the respective associations between ROR-P PRS and

PRSER-/ER+ and breast cancer-specific survival in UK Biobank and
Pathways, we constructed Cox proportional hazards models for
each PRS, with adjustment for genetic ancestry as above. We
normalized the ROR-P PRS to the mean and log-normalized the
PRSER-/ER+. We also performed Kaplan–Meier survival analysis
using tertiles of the ROR-P PRS and PRSER-/ER+. To examine joint
effects between ROR-P PRS and PRSER-/ER+, we calculated the
Pearson correlation coefficient between the two PRSs. We also
constructed Cox proportional hazards models including terms for
ROR-P PRS and PRSER-/ER+. To synthesize the results of Cox
proportional hazards models from UK Biobank and Pathways, we
performed random-effects meta-analysis using a restricted max-
imum likelihood estimator (R package metafor)59. We evaluated
for heterogeneity between studies using Cochran’s Q test and
calculated the I2 index.
We evaluated calibration of the Cox model containing ancestry-

adjusted ROR-P PRS using the UK Biobank data. We obtained bias-
corrected estimates of predicted versus observed breast cancer-
specific survival at 5 years using boostrapping with 200 repeats (R
package rms). We compared the predicted survival probabilities
for 10 evenly divided strata of risk versus the Kaplan–Meier
“observed” estimates for each stratum. We also performed the
Gronnesby-Borgan goodness-of-fit test for the Cox model (R
package survMisc).
In Pathways, we built additional nested ROR-P PRS models

adjusted for the following combinations of covariates: age at
diagnosis and body mass index (Model 2); age at diagnosis, body
mass index, and stage at diagnosis (Model 3); age at diagnosis,
body mass index, stage at diagnosis, and binary variables
corresponding to receipt of the following treatments: radiation
therapy, chemotherapy, trastuzumab, and hormone therapy
(Model 4); measured ROR-P (Model 5); and ER status (Model 6).
Lastly, we constructed nested models containing ROR-P PRS and
the same combinations of covariates as Models 2–6 but using
invasive breast cancer recurrence as the outcome. We also
examined differential effects of the ROR-P PRS by ER status by
constructing separate Cox proportional hazards models for ER-
positive and ER-negative cancers.
All statistical tests were two-sided with α = 0.05. Analyses were

done using R version 4.1.2 (R Foundation, Vienna, Austria).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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