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Abstract 
Traffic surveillance systems provide the data used by Intelligent Transportation Systems 
(ITS). The disadvantages of inductive loop detectors have led to the search for a reliable 
and cost-effective alternative system. This report summarizes a three-year research 
project in the prototype design, analysis and performance of wireless sensor networks for 
traffic surveillance, using both acoustic and magnetic sensors.   
 
A robust real-time vehicle detection algorithm for both signals is developed. Magnetic 
sensors turned out to be superior, achieving detection rates above 97% in the field, and 
led to the abandonment of further research using acoustic sensors.  
 
Vehicle classification and reidentification schemes for low-cost, low-power platforms 
with very limited computation resources are developed and tested.  The vehicle 
classification algorithms require orders of magnitude fewer computation resources while 
achieving correct classification rates comparable to the best of all published vehicle 
classification schemes in tests with a large database, including 800 trucks.  The algorithm 
for vehicle reidentification is tested on a limited left-turn reidentification experiment.  
The result is encouraging, but much more work is needed. 
 
The flexibility, easy of installation, remote maintenance, low cost and high accuracy of 
wireless sensor networks will lead to their ubiquitous deployment and thereby provide the 
fine-grained vehicle detection required to implement effective traffic monitoring and 
control.   
 
Wireless sensor networks are ‘future proof’.  Additional modalities, such as temperature, 
moisture, and pollutant sensing, can be incorporated in the same node or in separate 
nodes to monitor other aspects of the traffic system.  The wireless communication 
network can be used to communicate with vehicles to provide another path to ‘vehicle-
infrastructure integration’. 
 
This report is a modified version of the doctoral dissertation of Sing-Yiu Cheung. 
        
Keywords:  Traffic surveillance, vehicle detection, vehicle classification, vehicle 
reidentification, wireless sensors, advanced traffic management system
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Executive Summary 
Traffic surveillance technologies provide the data used by other ITS systems.  Real-time 
measurements of traffic count, occupancy and speed are used in traffic control and 
performance measurement systems; vehicle ‘signatures’ are used for vehicle classification 
and reidentification.   The disadvantages of inductive loop signatures prompted a three-year 
research project in the prototype design, analysis and performance of wireless sensor 
networks for traffic surveillance, using both acoustic and magnetic sensors.   This report 
summarizes that research effort. 
 
Chapter 1 provides a summary of the uses of data in a variety of ITS applications. 
 
Chapter 2 reviews traffic surveillance technologies and the motivation for using wireless 
sensor networks.  Surveillance technologies can be classified into three categories: 
intrusive, non-intrusive and off-roadway technologies.   Section 2.1.1 introduces several 
state-of-the-art technologies in each of these categories; and section 2.1.2 compares them in 
terms of data type availability, system performance, and cost. 
 
Chapter 3 defines Wireless Sensor Network (WSN) as a network of small sensor nodes 
(SN) communicating among themselves via radio in order to sense the physical world. A 
WSN combines distributed sensing, computation and wireless communication 
technologies. Advances in sensor, processor, communication and power technologies make 
it possible to monitor temperature, sound, vibration, pressure, motion or pollutants on a 
large scale using a spatially distributed WSN (from tens to thousands of sensor nodes). The 
chapter describes the architecture and components of a WSN, how it can be used for traffic 
surveillance, the corresponding hardware and software specifications of the prototypes that 
were developed, as well as the communication protocols and lifetime analysis. 
 
Chapter 4 is devoted to the basic problem of vehicle detection—the first stage in the 
surveillance system—which determines the final performance of all dependent 
applications. Analyses of acoustic and magnetic sensor signals that can potentially be used 
in sensor nodes are presented. An efficient and robust real-time detection algorithm, called 
Adaptive Threshold Detection Algorithm is studied in section 4.3. Experimental results are 
presented in section 4.4. 
 
Chapter 5 is devoted to vehicle classification—the process of classification of a vehicle 
signature in a specific format into a pre-defined set of vehicle classes (e.g. passenger 
vehicle or truck).  Section 5.1 compares state-of-the-art classification systems in terms of 
their underlying technology, performance, and suitability for large scale deployment.  
Characteristics of magnetic vehicle signatures are studied in section 5.2. Data processing 
and classification schemes for a platform with very limited computation resources are 
presented in section 5.3. Experimental results and analysis are presented in section 5.4. 
 
Chapter 6 is devoted to vehicle reidentification—the process of matching the detections of 
a vehicle at different locations.  A system with a high correct reidentification rate can be 
used to estimate travel time, travel time variability, section density and origin/destination 
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demand.  Section 6.1 reviews state-of-the-art technologies for reidentification.  The 
proposed data processing and Max-Of-Max (MOM) reidentification scheme are provided 
in section 6.2. The corresponding experimental analysis and results are presented in section 
6.3. 
 
Chapter 7 introduces the concept of a multi-function wireless surveillance system by 
adding other sensing modalities to the traffic surveillance.  It explores how the wireless 
communication capability of the surveillance system also allows it to talk to other ITS 
systems.  This provides an additional pathway to Vehicle-Infrastructure Integration (VII). 
 
Chapter 8 summarizes the contributions of this research project and outlines several 
directions of future development of wireless sensor networks. 
 
The success of this project led to the founding of the VC-funded company, Sensys 
Networks, Inc., to design, manufacture and market wireless magnetic sensor vehicle 
detection systems for traffic applications.  The later experiments on vehicle classification 
and reidentification reported here used equipment made by Sensys.  (Disclosure: Varaiya is 
a member of the Board of Directors of Sensys.) 
 
This report is a modified version of the doctoral dissertation of Sing-Yiu Cheung.  
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Ch.1 Introduction  

Increasing traffic congestion is a critical problem. Between 1980 and 1998, vehicle miles 
traveled increased 72% in the U.S. while the number of lane miles increased only 1% 
[7.20]. The 2005 Urban Mobility Report [1.1] shows that the total cost of congestion for 
the 85 U.S. urban areas is estimated to be 65 billion dollars per year, from 3.5 billion hours 
of delay and 5.7 billion gallons of excess fuel consumption. In order to prevent the 
congestion problem from getting worse, the U.S. government initiated the Federal 
Intelligent Transportation System (ITS) program in 1991 for the development and 
deployment of advanced technologies for maximizing the traffic capacity and minimizing 
the delay. The current pace of improvement is not sufficient to keep pace with even a slow 
growth in the traffic demands in most major urban areas.  
 
ITS subsystems for traveler information, freeway and arterial management, emergency 
management, and parking management, increasingly rely on monitoring of real-time traffic 
network conditions [section 7.1]. Traditional transportation management divisions such as 
transportation planning and pavement maintenance also need the associated traffic data. 
For instance, the Traffic Management Center (TMC) can optimize the cycle time of traffic 
lights based on queue lengths [section 7.1]. Travelers can use this information to plan their 
activities and routes. There is a great need for advanced surveillance capabilities to promote 
the rapid deployment of ITS strategies. Since the quality of traffic data influences the 
proper functions of the ITS systems, the data collected must be plentiful, diverse, and 
accurate, which presents a serious challenge to the traffic surveillance industry [section 
2.1.1].  
 
Most conventional traffic surveillance systems use intrusive sensors, which include 
inductive loop detectors [1.2] [1.3], micro-loop probes, pneumatic road tubes, piezoelectric 
cables and other weigh-in-motion sensors [section 2.1.1]. They are chosen because of their 
high accuracy for vehicle detection (> 97%). For maximizing the benefits from all these 
ITS technologies, there must be a large scale deployment of traffic controls on all major 
freeways and local streets [1.1]. Therefore, real-time traffic information at all these sites is 
required. However, serious disruption of traffic is induced by the installation and 
maintenance of surveillance system, which leads to a relative high cost on the level of ten 
thousand dollars per intersection [section 2.1.2]. Therefore, these systems are too costly for 
large scale deployment.  
 
In the 2005 Urban Mobility report [1.1], the benefits from the implementation of four ITS 
technologies are studied: traffic signal coordination, arterial street access management, 
freeway entrance ramp metering and freeway incident management. The benefits are 
estimated to be 336 million hours of delay reduction and $5.6 billion in congestion savings 
for the 85 urban areas in 2003. If these technologies were deployed on all the major roads, 
an estimated 613 million hours of delay and more than $10.2 billion would be saved. 
However, the large scale deployment of ITS technologies is discouraged by the high life-
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cycle cost [section 2.1.3] and large traffic delay caused by the installation of inductive loop 
detectors.   
 
In this research project, wireless sensor networks were developed and implemented as a 
traffic surveillance system with detection accuracy as good as that of inductive loop 
detectors [section 4.4]. They offer a very attractive alternative to inductive loops for traffic 
surveillance. The sensor networks have a much higher configuration flexibility, which 
makes the system scalable and deployable everywhere in the traffic network. The 
availability of these data opens up new opportunities for intelligent traffic operations and 
control [Ch. 7]. With a much lower system life-cycle cost than inductive loop, video and 
radar detector systems [section 2.1.2], sensor networks are cost-effective for large scale 
deployment. They may transform the traffic surveillance and control industry [Ch. 7]. 
 
A multi-function wireless surveillance system could be developed by adding other sensing 
modalities to the traffic surveillance systems. An important modality for sensing road 
conditions is presented in section 7.2.1. The wireless communication capability of the 
surveillance system also allows it to talk to other ITS systems. Since the sensor nodes are 
located on the pavement, the networks can be a very useful tool in the Vehicle-
Infrastructure Integration (VII) framework. Wireless communication can be used to 
exchange information between different systems and extend the vehicle-infrastructure 
communication range. Its applications to VII are presented in section 7.2.2. 
 
The proposed wireless sensor networks have the potential to revolutionize the traffic 
surveillance and control industry into one that is scalable and deployable everywhere in the 
traffic network. A summary of contributions of this research project is presented in section 
8.1. Several potential future developments of this system are presented in section 8.2, 
including energy harvesting, installation-in-motion, multi-function networks and real-time 
implementation. 
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Ch. 2 Background and Motivation 

For a better understanding of the background of this project, several common traffic 
surveillance technologies are studied in section 2.1. The motivations for using wireless 
sensor networks for traffic surveillance are provided in section 2.2. 
 
2.1 Review of Traffic Surveillance Technologies 
Traffic surveillance technologies provide the data for Intelligent Transportation Systems 
(ITS). Surveillance technologies are updated constantly to provide historical and real-time 
data of traffic count, speed, classification and re-identification. No single surveillance 
system is best for all applications. Each has its own limitations, specializations, and 
capabilities.  
 
The mechanisms and characteristics of several common traffic surveillance technologies 
are reviewed in section 2.1.1. Comparisons of their data type availability, system 
performance, and cost are presented in section 2.1.2. 
 
2.1.1 Mechanisms of Different Surveillance Technologies 
Surveillance technologies can be classified as intrusive, non-intrusive and off-roadway 
technologies. Intrusive traffic sensors are installed within or across the pavement. Non-
intrusive sensors can be installed above or on the side of roads with minimum disruption to 
traffic flow. Off-roadway technologies do not need any specific equipment to be installed at 
the test site. In this section, several common technologies in each of these categories are 
studied. 
 
2.1.1.1 Intrusive Technologies 
Intrusive technologies refer to those that require installation directly onto the pavements, in 
saw-cut, holes or tunneling under the surfaces. Drawbacks include the disruption of traffic 
for installation and repair, failures induced by poor road conditions, and system 
reinstallation caused by road repairs or resurfaces. Examples include inductive loop, 
pneumatic road tube, piezoelectric cable, and weigh-in-motion system. 
 
Inductive Loop 
Inductive loop detector is the most common vehicle detector used in the traffic surveillance 
industry. Its basic setup is shown in Fig. 2.1.1.1.1. During operation, the wire loop is 
excited with a signal of frequency ranging from 10 to 50 kHz. When a vehicle (or any 
metallic object) stops or passes over the loop, the inductance of the loop is reduced and a 
change in oscillator frequency is induced. If this change in frequency exceeds a pre-defined 
threshold, a signal will be sent to the controller indicating the detection of a vehicle. A 
speed estimate is obtained by using a loop pair or using a single loop with some statistical 
algorithm [2.3, 2.4]. Classification is supported with newer versions of detector cards that 
can extract the raw inductive signature at a high sampling rate [section 5]. 
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Fig. 2.1.1.1.1 Basic setup for an inductive loop detector [2.1] 

 
Inductive loop is already a mature technology. It is well recognized as the industrial 
standard because of its high detection accuracy (e.g. >97%) [2.2]. However, its biggest 
disadvantage is that it causes serious traffic disruption during installation and repair. This 
makes the installation and maintenance cost very experience in term of traffic delay. The 
loop wire is also subjected to stresses of traffic and temperature, making its failure rate 
relatively high. Advanced algorithms were developed to identify bad detectors based on 
volume and occupancy measurements [2.5].  Nevertheless, broken detectors are seldom 
replaced because this is intrusive. Therefore, alternative detectors that can give the same 
accuracy level with minimum traffic disruption are being actively researched, which is also 
the main motivation of this research project. 
 
Pneumatic Tube 
Pneumatic tube is installed by sticking a long rubber tube on the pavement surface, 
perpendicular to the traffic flow direction. When a vehicle’s wheels pass over the 
pneumatic tube, a pulse of air pressure is transferred along the tube. An electrical signal is 
triggered to represent the detection of an axle (vehicle) when the pulse of air pressure 
closes an air switch [2.6]. Because of its quick installation and low power usage, it is 
commonly used for short-term study of traffic counting and classification by axle count and 
spacing. Because of its simple hardware configuration, the installation and maintenance 
cost are relatively low [section 2.1.2]. Drawbacks include inaccurate axle counting when 
truck and bus volumes are high; the sensitivity of the air switch (for detection) is 
temperature dependent; and the unavoidable wear off of the rubber tube requires frequent 
maintenance. Therefore, a pneumatic tube is seldom used for long-term surveillance. 
 
Piezoelectric Sensor 
Similar to inductive loop, piezoelectric sensor is installed by embedding it under the 
pavement. It is constructed by a specially processed material (quartz) that will generate a 
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voltage when subjected to mechanical impact or vibration. The voltage magnitude is 
proportional to the force or weight of the vehicle. Since the voltage is only generated when 
the applied force is changing, the measurement will decay to zero if the vehicle stays on the 
sensor [2.6]. Besides vehicle detection, classification is done by axle count, spacing and 
weight. Because of its capability of weight estimation, it is commonly used as part of a 
weigh-in-motion system. Its drawbacks are similar to those of inductive loop, including 
disruption of traffic for installation and repair, failures caused by traffic stress and 
resurfacing, and sensitivity dependence on temperature and vehicle speed. An example of 
piezoelectric sensor setup (LINEAS) [2.7] is shown in Fig. 2.1.1.1.2. 
 

 
Fig. 2.1.1.1.2 Example of piezoelectric sensor setup (LINEAS) [2.7] 

 
Weigh-In-Motion (WIM) System 
WIM system is used to estimate a vehicle’s gross weight when its wheels pass over the 
sensors [2.6, 2.8]. It is used to increase the capacity of a station that monitors the weight of 
trucks on a freeway. Such a weight control is important because overweight trucks 
deteriorate pavements. It can also be used for vehicle detection and classification by 
number of axles and spacing.  
 
The primary WIM technologies are piezoelectric, bending plate, load cell, capacitance mat 
and fiber optic. Their mechanisms operate as follows: 
i, The mechanism of piezoelectric sensor is studied in last section.  
ii, The bending plate has strain gauges attached underside, that generates a signal 
proportional to the deflection of the plate when it is under a load. The dynamic load of the 
vehicle, as well as the static load is estimated from this signal and the calibration 
parameters. 
iii,  The load cell sensor contains a small amount of hydraulic fluid that causes a pressure 
transducer to generate a signal proportional to the load. It is one of the most accurate but 
also the most expensive WIM system [2.6]. 
iv, Capacitance mat is made by two or more metal plates that act as capacitor terminals. 
The distance between these plates decreases when a vehicle passes over the mat, inducing 
an increase in capacitance. This also alters the resonant frequency of the mat, and the 
change is transformed into a signal proportional to the axle weight.  
v, The fiber optic WIM sensor is installed by sticking a thin tube on the pavement’s 
surface. When a vehicle’s wheel passes over the tube, the optical fibers are perturbed (e.g. 
bends, micro-bends, change in refractive index and dimension). These perturbations are 
measured by intrinsic or extrinsic sensing devices [2.2, 2.9]. It is getting more and more 
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popular in WIM applications because of its low cost, high accuracy, and immunity from 
electromagnetic interference. 
 
2.1.1.2 Non-Intrusive Technologies 
Non-intrusive technologies do not need any installation on or under the pavement, so that 
the installation and repair of such a system can be done without disrupting the traffic. The 
detectors are usually setup on the roadside, or at an overhead position. Examples of this 
type of technology include microwave radar, infrared, Video Image Processing (VIP), 
ultrasonic and passive acoustic array. 
 
Microwave Radar 
Radar – an acronym for RAdio Detection And Ranging [2.10], is a system that uses radio 
waves to detect, determine the direction, distance and speed of some target objects. 
Microwave refers to a wavelength between 1 to 30 cm and corresponding frequency 1 to 30 
GHz. A typical setup for a microwave radar system is shown in Fig. 2.1.1.2.1 

 
Fig. 2.1.1.2.1 Setup for a microwave radar system [2.6] 

 
There are two types of microwave radar:  
i, Continuous Wave (CW) Doppler radar [2.11] transmits a signal with constant frequency. 
When a vehicle passes the detection zone, a shift in the frequency is induced in the 
reflected signal (Doppler Effect). The detection and speed estimate of this moving vehicle 
can be measured from such a frequency shift. However, this type of radar cannot detect 
motionless vehicles. 
ii, Frequency-Modulated Continuous Wave (FMCW) radar transmits a signal with 
constantly changing frequency. The time difference in transmitting and receiving a signal is 
used to determine the distance between the receiver and the target vehicle, as well as 
determining its present. Motionless vehicle can be detected. However, a pair of detection 
zones is needed for a speed estimate. 
 
The main advantage of microwave radar is that the system performance is not affected by 
any weather change. The drawback is that CW Doppler radar cannot detect motionless 
vehicle unless an auxiliary device is equipped [2.6]. 
 
Infrared-Based System 
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Infrared (IR) radiation is electromagnetic radiation with wavelength longer than that of 
visible light but shorter than that of radio waves. Common systems for traffic surveillance 
use IR ranging from 100 to 105 GHz. There are two types of IR-based system, active and 
passive: 
i, An active IR system emits low-energy radiation from light-emitting diodes or high-
energy one by laser diodes. The time difference between transmit and receive of the 
reflected signal from the detection zone is measured. A shorter return time represent the 
presence of a vehicle. Speed estimate is obtained by transmitting two or more IR signals 
onto different positions in the detection zone. Fig. 2.1.1.2.2 shows a simple setup for such a 
system. 

 

Fig. 2.1.1.2.2 Simple setup for an active infrared vehicle 

detection system [2.6] 

 
ii, A passive IR system relies on the radiation emitted from vehicles and road surfaces 
(Gray body emission). In fact, any object with a temperature higher than the absolute zero 
(-273.15oC) emits radiation in the far IR part of the electromagnetic spectrum depending on 
the object’s surface temperature, size and structure. Non-imaging systems use one or 
several energy-sensitive elements on a focal plane that gather energy from the detection 
zone. Imaging systems (e.g. Charge-Coupled Device (CCD) cameras), use two-
dimensional arrays of energy-sensitive elements to reconstruct the pixel-resolution details 
from the imaged area [2.6]. Vehicles in the detection zone are detected by monitoring the 
change in the IR radiation received. The magnitude of signal from a target vehicle is 
proportional to the product of an emissivity difference term (between the road and the 
vehicle), and a temperature difference term (between the road surface and the atmosphere). 
Fig. 2.1.1.2.3 shows the pictures of two side-mounted passive IR systems. 
 

 
Fig. 2.1.1.2.3 Pictures of two passive IR systems: IR 254 by ASIM Technologies Ltd. [2.12] 

and PIR-1 by Siemens Energy and Automation, Inc. [2.13] 
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Besides traffic counts, multi-channel and multi-zone IR systems provide speed estimates as 
well as vehicle lengths for classification. The main advantage of an IR system is its 
feasibility of transmitting multiple beams for multi-zone detection in a single detector unit. 
The drawback is that its performance is greatly affected by the environment: confusing 
signal from sunlight, IR energy is absorbed or scattered by atmospheric particulates, fog, 
rain and snow [2.14]. 
   
Video Image Processing (VIP) 
A VIP system includes one or several video cameras, microprocessor-based equipment for 
digitizing and processing the imagery, computer and software for analyzing the images to 
extract traffic data. In general, vehicle detection is done by monitoring the changes between 
successive video frames. A simple approach is to analyze the variations in the gray levels 
of the black-and-white pixel groups induced by vehicles passing the detection zone [2.6].  
 
There are three types of VIP systems: tripline, closed-loop tracking and data association 
tracking [2.16, 2.6]. 
i, Tripline systems monitor changes in pixels caused by a vehicle relative to an empty 
detection zone. Images are analyzed by surface-based or grid-based algorithms, which 
identify edge features of vehicle or classify squares on a fixed grid into moving, stopped or 
no vehicle respectively. 
ii, Closed-loop tracking systems continuously track vehicles through the camera’s field of 
view, by validating multiple detections of the same vehicle along a track. 
iii, Data association tracking systems track a particular vehicle or group of vehicles by 
extracting connected areas of pixels.  
 

 
Fig. 2.1.1.2.4 Flow diagram of a typical VIP system for vehicle detection, classification 

and tracking [2.15] 

 
The flow diagram of a typical VIP system is shown in Fig. 2.1.1.2.4. Images captured by 
the cameras are usually digitized by a microprocessor card and stored into a computer. 
Vehicle detections are conducted on a series of images. Image segmentation is used to 
divide the image area into smaller regions where features can be better extracted. The 
extracted features are used for classification and tracking. With the tracking results, vehicle 
trajectories of identified vehicles can be obtained, which can be used to provide lane 
changing and origins/destinations statistics. 
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The performance of a VIP system is affected by many environmental factors, such as 
lighting condition (daylight or vehicle headlight), shadow and snow. Many different image 
processing algorithms are proposed to improve and maintain accuracy level under non-
ideal environmental conditions. One of the popular approaches is using artificial neural 
network [2.17]. The detection accuracy of a modern VIP system is high. Combined results 
for clear and inclement weather show vehicle detection and speed estimate accuracies of a 
correctly calibrated VIP system is greater than 95% [2.18]. 
 
The disadvantages of VIP systems include performance greatly affected by inclement 
weather; false detection caused by vehicle’s shadows projected onto adjacent lanes; camera 
vibration caused by strong wind; and the requirement of a high mounting setup for the 
cameras (up to 60 feet height). The installation and equipment cost is relative high [section 
2.1.2] and the system is only cost effective if many detection zones are required within the 
field of view of the camera. 
 
Ultrasonic System 
Ultrasonic refers to those high frequency sound waves that are beyond a human’s audible 
range; waves of frequency between 25 and 50 kHz are commonly used. Its principle 
mechanism is similar to that of microwave radar. Sound pulses are transmitted and the 
reflected pulses are received, and the distance from the receiver to the road or vehicle 
surfaces is measured according to the wave travel time. If a distance smaller than that to the 
background road surface is measured, the presence of a vehicle is declared. Speed estimate 
is obtained by deploying multiple detection zones.  
 

 

Fig. 2.1.1.2.5 Picture of a typical ultrasonic system setup: Lane King 

by NOVAX Industries Corp [2.19]. 

 
The picture of a typical ultrasonic system is shown in Fig. 2.1.1.2.5. Constant frequency 
ultrasonic systems that measure speed using Doppler principle are also available on the 
market. However, they are much more expensive than the pulse models and therefore 
rarely used. The disadvantage of ultrasonic system is that its performance is affected by 
temperature change and air turbulence. Some modern models do have temperature 
compensation built in. 
 
Passive Acoustic System 
Passive acoustic systems measure the acoustic energy or audible sounds produced by a 
variety of sources within a vehicle. The overall sound energy level increases when a 
vehicle passes the detection zone. Besides vehicle detection and speed estimate by a pair of 
detection zones, classification can be done by applying pattern matching and neural 
network on the acoustic signatures [2.20]. 
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Fig. 2.1.1.2.6 Picture of a multi-lane passive acoustic system: 

SmarTek SAS-1 [2.21] 

 
The picture of a multi-lane passive acoustic system, SmarTek SAS-1 [2.21], is shown in 
Fig. 2.1.1.2.6. It uses a fully populated microphone array and adaptive spatial processing to 
form multiple detection zones. It can monitor up to 7 lanes if the device is mounted over 
the center of the roadway, and 5 lanes when mounted on the side. This multi-lane design is 
a great advantage for highway deployment as 5-7 dual loops setup can be replaced by a 
single device. Drawbacks include performance affected by temperature and detection 
accuracy drops with slow moving vehicles. 
 
 
2.1.1.3 Off-Roadway Technologies 
Off-Roadway Technologies refer to those that do not need any hardware to be setup under 
the pavement or on the roadside. It includes probe vehicle technologies with Global 
Positioning System (GPS) and mobile phones; Automatic Vehicle Identification (AVI); and 
remote sensing technologies that make use of images from aircraft or satellite [2.2]. 
 
Probe Vehicles with Global Positioning System (GPS) 
GPS is a satellite navigation system originally developed by the United States Department 
of Defense, officially named NAVSTAR GPS in 1978 [2.22]. A constellation of more than 
24 GPS satellites broadcasts precise timing radio signals to GPS receivers. The location 
and speed is calculated by the multilateration technique that accurately computes the time 
difference of arrival (TDOA) of a signal transmitted from three or more synchronized 
transmitters. The system is available for free uses in civilian application as a public good.  
 
For traffic surveillance, probe vehicles equipped with GPS receivers are driven through the 
traffic sections of interest. Their position and speed information determined from the GPS 
is transmitted back to the Traffic Management Center (TMC) for travel time and section 
speed analysis [2.23]. A sample configuration of a GPS-based probe vehicle system is 
shown in Fig. 2.1.1.3.1 [6.6]. Drawbacks include lack of point traffic statistics at a fix 
location, and the fact that system coverage is limited by the number of probe vehicles. 
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Fig. 2.1.1.3.1 Sample configuration of a GPS-based probe vehicle system [6.6] 

 
Probe Vehicles with Mobile Phones 
The localization technique [2.30] is similar to that of a GPS system, with the satellites 
replaced by phone antenna base stations, and GPS receivers replaced by mobile phones. 
Because of the high penetration rate of mobile phones, at least one mobile phone can be 
found in a traveling vehicle. For traffic surveillance, either active reporting by volunteer 
drivers or passive mobile phones localization can be applied. Depending on the density of 
mobile phone antenna stations, the accuracy of such a localization technique can be as good 
as a hundred meters in urban areas, but as poor as 30 km in suburban areas [2.24]. A high 
percentage of coverage on main arterials can be achieved if this system is deployed in a 
national scale. Unfortunately, privacy concerns are raised by the public about unauthorized 
use of information which makes it not suitable for large scale deployment. 
 
 
Automatic Vehicle Identification (AVI) 
AVI refers to the technology that use roadside antennae to read the identification number of 
transponders equipped on probe vehicles. The section travel time can be determined if the 
probe vehicle travel through more than one antenna station. This technology is primarily 
used in electronic toll collection. However, the limited number of AVI antenna stations 
restricts data collection capability, so the system is usually used for long range travel time 
estimate only [6.6]. 
 
Remote Sensing 
Remote sensing refers to the technologies that collect traffic information without direct 
communication or physical contract with the vehicles or roads. Basically, high-resolution 
imagery from aircraft or satellite is used to extract traffic information like traffic count and 
speed. In [2.25], a satellite was used to monitor a traffic network and the collected data 
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were used to improve the Annual Average Daily Traffic (AADT) accuracy. Again, the 
system coverage is limited by the availability of the aircrafts and satellites.  
 
2.1.2 Comparison of Different Surveillance Technologies 
In this section different surveillance technologies are compared in terms of their data type 
availability, system performance and system cost. The comparison is based on the results of 
many experimental evaluation cases summarized in [2.2, 2.6, 2.14]. The extracted results 
are presented below: 
 
Data Type 
Technology Data Type 
  Count Speed Classification Occupancy Presence
Intrusive      
 Inductive Loop Y Y Y Y Y 
 pneumatic road tube Y Y Y N N 
 piezoelectric cable Y Y Y N N 
Non-Intrusive      
 WIM system Y Y Y N N 
 Microwave Radar      
 CW Doppler Y Y Y Y N 
 FMCW Y Y Y Y Y 
 Infrared      
 Active Y Y Y N N 
 Passive Y Y Y Y Y 
 Video Image Processing Y Y Y Y Y 
 Ultrasonic  Y N N N Y 
 Passive Acoustic Y Y Y Y Y 
Wireless Sensor Network      
 Magnetometer Y Y Y Y Y 

Y: available, N: not available 
Table 2.1.2.1 Data type available in different surveillance technologies [2.2] 

 
Count, speed, classification, occupancy and presence are the basic data types obtained from 
traffic surveillance. Table 2.1.2.1 [2.2] shows the availability of these data types in 
different technologies. Traffic count is available in all the technologies studied. Speed 
measurement usually requires a dual-detection-zone configuration with synchronized time 
and fixed separation. For system with a single detection zone (i.e. a single inductive loop), 
a rough speed estimate is obtained by assuming the vehicle length to be a fixed value. 
Doppler-based technology can be used to provide speed estimate with a single sensor. 
However, it cannot provide presence data as it does not response to motionless vehicles.  
Vehicle type classification data is usually obtained by analyzing the detected vehicle 
lengths, heights, number of axles and spacing [section 5.1]. Other data types like section 
travel time and origin/destination matrix are not directly available in most detection 
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systems. Remote sensing and reidentification systems [Ch. 6] are used to obtain this type of 
information. 
 
System Performance 
System Mounting Error [%] Sources 
   Count Speed  
Inductive Loop     
 Saw-cut Pavement 0.1-3 1.2-3.3 MNDOT[2.26] 
Pneumatic Road tube     
  Pavement 0.92-30  SDDOT[2.27] 
Microwave Radar     
 TDN 30 Overhead 2.5-13.8 1 MNDOT[2.28] 
 RTMS Overhead 2 7.9 MNDOT[2.28] 
Active Infrared     
 Autosense II Overhead 0.7 5.8 MNDOT[2.26] 
Passive Infrared     
 ASIM IR 254 Overhead 10 10.8 MNDOT[2.26] 
Video Image Processing     
 Autoscope solo Side-fire 5 8 MNDOT[2.26] 
 Autoscope solo Overhead 5 2.5-7 MNDOT[2.26] 
Ultrasonic     
 Lane King Overhead 1.2  MNDOT[2.28] 
Passive Acoustic     
 SAS-I Side-fire 8-16 4.8-6.3 MNDOT[2.26] 
Wireless Sensor Networks     
 VSN240 Pavement 1-3  [section 4.4] 

Table 2.1.2.2 Error rate of different surveillance technologies in field tests [2.2] 

 
System performance statistics of surveillance products provided by vendors are usually 
exaggerated, as they trend to use ideal conditions for the evaluation. On the other hand, the 
real-life performance of these technologies was studied in many academic researches [2.26, 
2.27, 2.28]. Among these field tests conducted under real world environment, some of the 
count and speed accuracy results were extracted from [2.2] and presented in Table 2.1.2.2. 
 
Inductive loop detector is one of the most accurate count detectors. In [2.26], it gave an 
error rate of 0.1-3% for counting vehicles in a one-hour period on the freeway. The 
corresponding speed difference between the loop data and probe vehicle data was 1.2-
3.3%. In section 4.4, experimental field tests show that the proposed wireless sensor 
networks give an error rate of 1-3%, which is comparable to that of inductive loop detector. 
 
The system performance may change under the influence of uncontrollable environmental 
conditions. As noted in section 2.1.1, different technologies are affected by different 
environmental conditions. A summary of environmental factors that affect the performance 
of different surveillance technologies is shown in Table 2.1.2.3 [2.2]. 
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Technology Environmental Factor 

 Penetration Wind Temperature Lighting 
High traffic 
flow 

Intrusive 
 Inductive Loop   Y   

 Pneumatic Road Tube   Y  Y 

 Piezoelectric Cable   Y   

Non-Intrusive 
 Microwave Radar      

 CW Doppler     Y 

 FMCW      
 Infrared      
 Active Y     
 Passive      
 Video Image Processing Y Y Y Y  
 Ultrasonic       
 Passive Acoustic Y  Y  Y 
Wireless Sensor Network 
 Magnetometer   Y   

Y: Affected 
Table 2.1.2.3 Environmental factors that affect the performance of different surveillance 

technologies [2.2] 

 
System Cost 
A cost comparison between different surveillance technologies should include device cost, 
installation and maintenance cost. The system cost depends on the configurations and 
requirements of specific application. In this analysis, a typical vehicle count and speed 
estimate application deployed on freeway is considered: monitoring three lanes in each of 
the traveling directions. For example, two inductive loops are placed in each of the six 
lanes, the device and installation cost is 12x750=$9000. The annualized life-cycle cost is 
calculated according to Eq. 2.1.2.1. Taking data sources from [2.2], the life-cycle costs of 
different surveillance systems are presented in Table 2.1.2.4. 

 
          (Eq. 2.1.2.1) 

OY = System lifetime in year, i = interest rate (0.04 is used)  
 
Technology Device Installation Maintenance Lifetime Life-Cycle 
  Cost [$] Cost [$] Cost [$ / yr] [yr] Cost [$] 
Inductive Loop      
 Saw-cut 12x750=9000 <- Included 700 10 1810 
Microwave Radar      
 TDN 30 6x995=5970 3200 600 7 2130 
 RTMS 2x3300=6600 400 200 7 1370 
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Active Infrared      
 Autosense II 6x6000=36000 3200 600 7 7130 
Passive Infrared      
 ASIM IR 254 6x700=4200 1200 600 7 1500 
Video Image 
Processing      
 Autoscope solo 2x4900=9800 1000 400 10 1730 
Ultrasonic      
 TC 30 2x735=1470 400 200 7 510 
Passive Acoustic      
 SAS-I 2x3500=7000 800 400 7 1700 
Wireless Sensor Networks     
 VSN240 450x12=5400 200 200 10 890 

Table 2.1.2.4 Estimated life-cycle costs of a typical freeway application [2.2] 

 
With this typical freeway application, the life-cycle cost of a set of 12 inductive loops is 
$1810. If a set of 12 VSN240 sensor nodes is used to replace the system, the life-cycle cost 
can be cut by half and drop down to $890. This life-cycle cost analysis does not include the 
traffic delay cost caused by disrupting the traffic during installation and maintenance. The 
motivation for using such a wireless sensor networks for traffic surveillance is described in 
the next section. 
 
2.2 Motivation for Using Wireless Sensor Networks 
The increasing traffic congestion is a growing problem in many countries. The 2005 Urban 
Mobility Report [1.1] shows that the total cost of congestion for 85 U.S. urban areas is 
estimated to be 65 billion dollars per year, which come from 3.5 billion hours of delay and 
5.7 billion gallons of excess fuel consumed. Besides building new roads and bridges to ease 
congestion, Intelligent Transportation Systems (ITS) seek to maximize the capacity of 
existing traffic networks and minimize the associated delay.  
 
Accurate and reliable real-time traffic data from surveillance systems is essential for the 
efficient and successful execution of all ITS systems. For example, traveler information 
system, freeway and arterial management systems, emergency management and parking 
management rely on the coverage and accuracy of the real-time traffic information [2.31]. 
In order to maximize the benefits from all these ITS technologies, a large scale deployment 
of traffic controls on all major freeways and local streets must be under taken. Therefore, 
real-time traffic information at all these sites is required. This presents a serious challenge 
to the surveillance industry. 
 
Because of the highly intrusive characteristic of inductive loop detectors, the quest for 
researching a reliable and cost-effective alternative system, which can provide traffic data 
at the same accuracy level as inductive loop systems, while minimizing the disruption 
during installation and maintenance, has been underway for some time. The motivation of 
developing wireless sensor networks based surveillance system is to provide a direct 
replacement for the inductive loop systems, and extend the coverage of ITS applications 
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over all the freeways and local intersections. Such a large scale deployment has the 
potential to revolutionize the traffic surveillance and control industry. 
 
Flexibility 
Wireless sensor networks have a high level of flexibility in their deployment configuration. 
Since the sensor nodes can be placed virtually anywhere on the road as long as they are 
within communication range, customized configurations can be adopted for different 
applications and environments. This unique characteristic is a big advantage over all other 
surveillance technologies.  
 
Multi-Functional 
A multi-functions wireless surveillance system [section 7.2] can be developed by adding 
other sensing modalities to the existing sensor node platforms. Temperature sensors can be 
added to detect ice and snow; humidity sensors can be added to detect rain and fog; 
accelerometers can be added to monitor structures of bridge and pavement. This multi-
functional characteristic further extends the possibility of more advanced ITS applications. 
 
Wireless Communication Capability 
Research on safety control by inter-vehicle communication (IVC) and road-to-vehicle 
communication (RVC) [2.32] is being actively conducted. The sensor nodes can be used to 
extend the communication networks of IVC and RVC by simply using the standard 
protocol, IEEE 802.11p [2.33] and Dedicated Short Range Communications (DSRC) 
[7.28]. This feature is extremely useful in enhancing the safety control at intersections, 
where traffic lights and warning signs can be controlled in advance. 
 
Besides all these valuable characteristics, prototypes of the wireless sensor networks also 
demonstrate that its detection accuracy [section 4.4] is as high as that of inductive loop 
detectors. Vehicle classification [Ch. 5] and reidentification [Ch. 6] can also be achieved 
using the same hardware platform. These promising results give us a strong reason for 
investing more resources on the research and development of wireless sensor networks for 
traffic surveillance. 
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Ch. 3 Wireless Sensor Networks  

A Wireless Sensor Network (WSN) [3.1] is a network of small sensor nodes (SN) 
communicating among themselves using wireless communication, to sense the physical 
world. It combines distributed sensing, computation and wireless communication 
technologies. Conditions such as temperature, sound, vibration, pressure, motion or 
pollutants could be monitored on a large scale using a spatially distributed WSN (from tens 
to thousands of nodes). Because of its variety in function and flexibility in deployment, 
numerous potential applications could be developed using WSN. 
 
WSN has gained a significant amount of public attention in recent years. MIT’s 
Technology Review magazine in 2003 [3.2] picked WSN as one of ten technologies that 
will change the world. Thanks to the revolution in sensor, processor, communication and 
power technologies, sensor nodes can now be integrated into a small millimeter-cubic size 
at low cost [3.3]. Such technology advances push WSN into a new era as it is now flexible 
and cost-effective to be deployed on a large scale. 
 
In this chapter, we discuss the architecture and components of a WSN, how it could be 
used in the traffic surveillance industry, and the corresponding hardware and software 
specifications of the prototypes that were developed, as well as the communication 
protocols and lifetime analysis. 
 
3.1 Architecture and Components 

 
Fig 3.1.1 A sample wireless sensor network layout for traffic surveillance 

 
The physical architecture of a wireless sensor network consists of a number of Sensor 
Nodes (SN) and a single Access Point (AP). The AP has superior computation resources, 
enhanced radio communication and unlimited power supply. In general, some 
environmental conditions are measured by the sensor nodes deployed with a spatial density 
and at a sampling rate specified by the application. The raw sensor signals are first 
processed by the processor in the sensor node to extract some useful information. The 
output of this initial sensor node-based processing is transmitted to the access point either 
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through a direct communication with the access point or a multi-hop communication across 
other sensor nodes. Eventually, the access point processes the data collected from all the 
sensors in the network to extract more information, places this information into some 
meaningful format and sends it to the end user or some other control system. 
 
In the traffic surveillance application, magnetic sensors placed at known locations on the 
pavement obtain the magnetic ‘signature’ of vehicles traveling over the sensors. The 
signals are processed through a vehicle detection algorithm by the sensor nodes, detection 
events are then generated and transmitted to the access point. Having collected the event 
data from these synchronized sensor nodes, the access point can then calculate the counts, 
occupancy and speed of the monitored traffic. Finally, this real time traffic information is 
passed to the Traffic Management Center (TMC) or to the local control unit for 
applications like traffic monitoring and signal control. Details of the vehicle detection 
algorithm are provided in Ch. 4. 
 
A sensor node is comprised of four components: sensors, processor (microcontroller), 
radio, and power source. Some features of these components of sensor networks are 
discussed in the following section. 
 
3.1.1 Sensor 
A sensor is a transducer that transforms some physical process into an electrical signal, 
which can be measured by a digital processor. Many sensors can provide information of 
interest for traffic surveillance, such as temperature, humidity, pollutant, vibration 
(accelerometer), photonic (lighting condition), acoustic and magnetic sensors. It is possible 
to provide a detailed picture of the road conditions and traffic flow with a combination of 
these sensors.  
 
Thanks to advances in MEMS (Micro-Electro-Mechanical System) technology [3.4], it is 
now possible to integrate many sensors into a single, small integrated circuit board (the size 
of a quarter) with a very low power consumption and at a relative low cost. The power 
consumption of the sensor could be as low as 1mA@3V [3.5] with 0.1% duty cycle, which 
contributes a negligible fraction of the total power consumption A lifetime analysis of the 
system is presented in section 3.3.3. These new generation of MEMS sensors have opened 
the door to many sensor network applications that were not feasible in the past. For 
example, WSN have been developed for environmental applications like habitat 
monitoring, animal tracking and forest-fire detection [3.6, 3.7]. 
 
3.1.2 Processor (microcontroller) 
A microcontroller is a computer-on-a-chip used to control electronic devices. It is a type of 
microprocessor emphasizing self-sufficiency and cost-effectiveness, in contrast to a 
general-purpose microprocessor. All the processing units, memory, analog-to-digital 
converter, digital I/O interface and peripherals are integrated onto a single integrated 
circuit. This integration drastically reduces the number of chips, the amount of wiring and 
PCB space that is needed. 
 



 29

Most micro-controllers used on a sensor node are Digital Signal Processors (DSPs) [3.8]. 
They are responsible for sampling and converting the analog electric signal from the 
sensors into a digital format, and carry out the necessary data processing and radio 
communication control. 
 
Sleep Mode 
An important feature of a microcontroller for sensor networks is its sleep mode 
characteristic. Since the microcontroller is expected to be in sleep mode (idle) 99.9% of the 
time, its sleep mode power consumption and wake-up time become critical parameters of 
the system. Sleep mode current consumption varies between 1 uA and 50 uA [3.9], and the 
wake-up time varies between 6 us and 10ms across controller families. The faster the wake-
up time, the quicker the controller can enter and leave its sleep mode, so that the sleep 
mode can be used at a higher frequency to increase the responsiveness of the sensor node, 
without a large increase in the power consumption. 
 
3.1.3 Radio 
The radio plays a critical role in the lifetime of a sensor node, because the overall power 
consumption is dominated by the energy cost of radio communication. Typically, more 
than 90% of the energy consumed in the node is accounted for by the radio transceiver 
[3.10]. The energy consumed in transmission and in reception are comparable in the low 
power radios that are commonly used in a sensor node. This implies that the duration of 
both transmission and reception are important concerns in designing a communication 
protocol, which should aim at minimizing the power consumption, thereby maximizing the 
sensor node lifetime. This topic is further discussed in the communication protocol and 
lifetime analysis section of this chapter. 
 
The relationship between the received power and the transmission distance follows a power 
law with an exponent between -3 and -4 [3.11]. The communication range is also affected 
by the sensitivity of the receiver, and the gain and efficiency of antenna. Typical receiver 
sensitivities are between -85 and -110 dBm. When transmitting at 0 dBm, a receiver 
sensitivity of -85 dBm will result in an outdoor free space range of 25-50 meters. This 
communication setting is an important design factor in determining how many nodes are 
needed to meet the application’s need and maximizing system lifetime. 
 
3.1.4 Power Source 
The lifetime of a WSN directly depends on its power source. In fact, the energy constraint 
is a dominant factor of system design trade-offs for small embedded sensor devices. The 
scaling down in size and cost of microcontroller and sensor has outpaced that of a battery. 
This makes the power source account for a growing portion of the cost of a WSN. 
This cost is further magnified by the maintenance cost of replacing or recharging the 
batteries on a regular basis. This implies that no single power source will suffice for all 
applications, and the choice of a power source needs to be included in the system design. 
 
Zinc-based batteries have high energy density but high leakage, so they are only good for 
use in short-duration applications. Lithium batteries offer higher energy density with fewer 
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memory effects1, but the drawback is that they require longer recharge times. The newly 
developed polymer-based batteries [3.13] have excellent energy density with flexible form 
factor, but they are relatively expensive (e.g. $20 / 1500mAh). Another developing battery 
technology is the micro fuel cell [3.12], which has 10 times larger energy density than the 
commonly used alkaline battery. Lastly, we note that there is active research aimed at 
collecting renewable energy from wind or solar panels. Table 3.1.4.1 below gives a 
summary of the energy ratings of different types of batteries [3.1]. 
 
Battery types: Alkaline Zinc-air Lithium Fuel Cell Solar (outdoor) 

Units: J/cm3 mW/cm2 

Energy ratings: 1190 3780 2880 8900 15 

Table 3.1.4.1 Energy rating of different power sources [3.1] 
 
3.2 Hardware and Software Specifications 
 

 

                                                 
1 Memory effect refers to the limitation in recharging if the batter is not completely discharged first. 
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Fig. 3.2.1 Pictures of first generation prototype of the sensor node: TrafficDot 

 
Fig. 3.2.1 above shows the first generation prototype of the sensor node, called TrafficDot. 
It was designed as a sensor node prototype for traffic surveillance research, and manually 
built with the assistance of Tom Oberheim. The basic components include: two magnetic 
sensors (HMC1051Z [3.14]), a microcontroller with integrated radio (MICA2DOT [3.15]), 
a battery (TL-5135 [3.16]) and a protective cover (SmartStud [3.17]) made of a high impact 
polycarbonate and designed to be placed on the road pavement. 
 
Even though this first prototype does not have full functionality, it shows a very promising 
future in the application of wireless sensor networks on traffic surveillance. Moreover, it 
identified important directions for improving the design and development of the second and 
third generation prototypes, which eventually resulted in a commercial product [3.18]. 
Most of the data presented in this report were generated from these sensor node prototypes. 
In this section, we will discuss their hardware and software specifications, and provide a 
picture of the experimental sensor network that was developed. 
 
3.2.1  Magnetic Sensor 
Since almost all vehicles have significant amounts of ferrous metals in their chassis (iron, 
steel, nickel, cobalt, etc.), the magnetic field disturbance created by a vehicle is sufficient to 
be detected by a magnetic sensor, which makes it a good candidate for detecting vehicles2. 
Potential vehicle detection applications that could use these magnetic sensors include 
traffic surveillance, railroad crossing control, parking lot space monitoring and automatic 
gate opening. 

                                                 
2 Magnetic sensors will not detect bicycles made of composite material or pedestrians. 
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Fig 3.2.1.1 The disturbance of Earth’s magnetic flux lines by a vehicle 

 
Fig. 3.2.1.1 gives a pictorial representation of the disturbance of the magnetic flux lines 
when the Earth's magnetic field penetrates a vehicle. The earth’s magnetic field strength is 
roughly equal to a half-gauss in magnetic flux density [3.19], so a low field and high 
sensitivity magnetic sensor is needed to measure the disturbance. One type of these low 
field magnetic sensors is the magneto-resistive sensor, which is very suitable for use in a 
sensor node because of its small size. Magneto-resistive sensor can be further classified 
into Anisotropic Magneto-Resistive (AMR) and Giant Magneto-Resistive (GMR) types. 
An AMR sensor is directional, which means it only provides an amplitude response to the 
magnetic field along its sensitive axis, whereas a GMR sensor has little directionality.  
 
AMR Sensors 
For traffic surveillance, it is essential to isolate one vehicle’s magnetic signal from the 
signals from vehicles in different lanes and travel direction. So an AMR sensor is a much 
better choice for use in the sensor node. Basically, the AMR sensor is a Wheatstone bridge 
device as shown in Fig 3.2.1.2 [3.19]. It is made out of a nickel-iron (Permalloy) thin-film 
deposited on a silicon wafer and patterned as a resistive strip element. In the presence of a 
magnetic field, a change in the bridge resistive elements causes a corresponding change in 
voltage across the bridge outputs. These resistive elements are aligned together to have a 
common sensitive axis that will provide positive voltage change with magnetic fields 
increasing in the sensitive direction. 
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Fig 3.2.1.2 AMR Sensor Bridge Fig 3.2.1.3 Honeywell HMC1051Z magnetic sensor 

 
Honeywell HMC1051Z 
The AMR sensor Honeywell HMC1051Z [3.14] was used in the sensor node prototype 
because of its high sensitivity (1.0 mV/V/gauss), small size (10x4x1.5 mm) and low power 
consumption (5mA when sampling).  
 
Characteristics Min Typical Max Units 

Operating temperature -40  125 °C 

Field Range -6  +6 gauss 

Sensitivity 0.8 1.0 1.2 mV/V/gauss 

Resolution  120  µ gauss 

Bandwidth  5  MHz 

Table 3.2.1.1 Summary of characteristics of HMC1051Z 

 
One drawback of HMC1051Z is that it requires a high set/reset current (0.1 ~ 0.5A) [3.14] 
to be driven through the bridge periodically, in order to maintain its high sensitivity. This 
not only increases the power consumption, but also puts limits on the choice of a battery 
since most low power batteries are not designed to deliver such a large current. More 
detailed analysis of the magnetic signal for vehicle detection is provided in Ch. 4. 
 
3.2.2 MICA2DOT (MRP510CA) 
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Fig 3.2.2.1 Quarter-size Crossbow MICA2DOT (MPR510CA) 

 

 
Fig 3.2.2.2 Block diagram of Crossbow MICA2DOT (MPR510CA) 

 
MICA2DOT (MPR510CA) [3.15] is a wireless sensor networks product manufactured by 
Crossbow Technology, and originally designed and developed under the TinyOS project 
[3.20] in UC Berkeley. It was designed to be a sensor node deployment platform for 
embedded wireless sensor networks. Being the third generation of its family, it has all the 
necessary components (processor, I/O interface, radio and memory) integrated into a 
quarter-sized (25mm) form factor. Because of its small size, it is also known as "Mote". Its 
low-power processor (Atmel ATmega128L [3.23]), low-power radio (Chipcon CC1000 
[3.24]) and flexible operating system (TinyOS [3.20]) allows this base platform to be easily 
connected to other compatible sensor or data acquisition modules. Moreover, a base station 
could be setup quickly by connecting a MICA2DOT to a PC, and forward the 
communication data to any desired program or interface. As a result, it was used in our 
sensor node prototype design. A summary of its characteristics is given in the following 
table. 
 

Characteristics Value Remarks 

Processor Performance 

Program Flash Memory  128K bytes   

Measurement (Serial) Flash  512K bytes  >100,000 Measurements  

Serial Communications  UART  0-3V transmission levels  
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Analog to Digital Converter  10 bit ADC  6 channel, 0-3V input  

Other Interfaces  DIO  9 channels  

Current Draw  8 mA  Active mode  

 < 15 µA  Sleep mode  

 

Multi-Channel Radio 

Center Frequency  433 MHz  ISM bands  

Data Rate  38.4 Kbaud  Manchester encoded  

RF Power  -20 to + 10 dBm  Programmable, typical  

Receive Sensitivity  -101 dBm  Typical, analog RSSI  

Outdoor Range  1000 ft  1/4 Wave dipole, line of sight  

Current Draw  25 mA  Transmit with maximum 

power  

 8 mA  Receive  

 < 1 µA  Sleep  

Table 3.2.2.1 Summary of characteristics of MICA2DOT (MPR510CA) 

 
TinyOS 
MICA2DOT can be programmed using TinyOS [3.20], which is an open-source operating 
system designed for wireless sensor networks implementation. It features a component-
based architecture such that only a minimal amount of modification of the main 
programming codes is needed when switching between hardware components (e.g. 
different sensors, communication protocols, etc.). This key feature enables rapid innovation 
and implementation of different applications while minimizing code size as required by the 
severe memory constraints inherent in the sensor nodes. With the open-source component 
library for TinyOS, all the programming codes for sensor drivers, data acquisition tools and 
network protocols could be further refined to suit a custom application's configuration.  
 
Another key feature of TinyOS is its event-driven execution architecture. It allows a sensor 
node to remain in the sleep mode until an event is trigged by the physical world interface or 
the processor itself. This feature makes the sensor network system more flexible in 
handling the sensor interface and in scheduling efficient communication. As a result, fine-
grained power management can be implemented according to the application's system 
properties. 
 
In addition to the Crossbow Sensor Motes family, TinyOS has been ported to over a dozen 
platforms and many sensor boards. Open-source libraries are also available for simulating 
the TinyOS system in a complete sensor network. A wide community uses it to develop 
and test various algorithms and protocols of sensor network communication. Lastly, 
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because of its open-source nature, several groups are actively contributing code to the 
sourceforge site, making TinyOS more stable while expanding its functionality. 
 
3.2.3 Battery  
It is an important task to choose a suitable battery that will fit the sensor nodes and 
applications since its performance directly determines the lifetime of a sensor node, as well 
as the whole network system. It is even more critical for the TrafficDot prototype as it must 
be fitted into a small space limited by a special protective container, as well as providing 
reasonable power over its lifetime while periodically supplying the set/reset current (0.1 ~ 
0.5A) [3.19] for the magnetic sensor HMC1051Z. 
 
Lithium Battery 
After researching the available battery products, it was found that a Lithium battery 
outperforms the commonly used Alkaline battery in every way. A Lithium battery not only 
produces three times more energy density than its alkaline counterpart [3.1], it also 
provides a more consistent output voltage and allows higher maximum current to be drawn. 
In view of this, Lithium battery finds application in many long-life, critical devices, such as 
cardiac pacemakers, which are designed to last more than 15 years. Below is a table of a 
comparison of their characteristics.  
 
 Lithium Alkaline 

Energy Density 900 Wh/L (@3.3V) 320 Wh/L (@1.2V) 

Operating Temperature -55° C to +200° C -20° C to +54° C 

Nominal Voltage 3.9 V ~ 3.6 V  1.5 V  

Watt Hours (D size cell) 59.0  22.5  

Table 3.2.3.1 Comparison of characteristics of Lithium and Alkaline batteries 

 
The term "lithium battery" actually refers to a family of different chemistries, comprising 
many types of cathodes and electrolytes. One type of lithium cell having a large energy 
density is the lithium-thionyl chloride cell. In this cell, a liquid mixture of thionyl chloride 
and lithium tetrachloroaluminate acts as the cathode and electrolyte respectively. It can 
provide extremely high currents and can discharge very rapidly when short-circuited. 
Although this is useful in applications where high currents are required, a too-rapid 
discharge of a lithium battery can result in overheating of the battery, or even in an 
explosion. Lithium-thionyl chloride batteries are especially capable of this type of 
discharge, so consumer batteries of this type usually incorporate over-current or thermal 
protection in order to prevent explosion. 
 
TADIRAN Lithium Battery TL-5135 
The Lithium Thionyl Chloride battery TL-5135 [3.16] manufactured by TADIRAN was 
chosen for the TrafficDot prototype. It was picked mainly because of its high power 
capacity (1.7Ah) and its stable discharge characteristic even when supplying power at a 
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relative high current. Below is a summary of its characteristics and a plot of its discharge 
voltage at different current levels. 
 
Nominal capacity @ 0.5 mA 1.7 Ah 

Rated voltage 3.6 V 

Size ∅32 x 10 mm 

Weight 21.5g 

Operating temperature -55ºC to +85ºC 

Table 3.2.3.2 Summary of characteristics of TADIRAN Lithium Battery TL-5135 

 

 
Fig 3.2.3.1 Discharge characteristic of TL-5135 at different current levels 

 
3.2.4 SmartStud Container 
Since the TrafficDot sensor node has to be placed on the pavement, a heavy duty container 
is needed to protect it against the impact of vehicles. Instead of designing a new container, 
we tried to adopt pavement markers available on the market and searched for one with 
enough space to house all the sensor node components. These requirements were met by 
the SmartStud System [3.17] from a New Zealand based company that manufactures LED 
pavement marker systems. 
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Fig 3.2.4.1 Pictures of SmartStud containers 

 
The SmartStud container was originally designed to house a circuit for flashing LED on a 
pavement. The design left enough space for fitting all the sensor node components inside. 
The shell material is a Bayer high impact polycarbonate that can withstand 9 kN of weight 
so as to satisfy the industrial standards for placing it on the road. 
 
3.2.5 Sensys Networks, Inc. 
The first generation TrafficDot prototype was tested in controlled areas such as the 
Richmond Field Station (RFS) of PATH, as well as in urban traffic around the campus. 
Even through a loss in data communication was experienced, caused by the attenuation of 
the radio signal from some moving vehicles, it demonstrated the potential and promising 
future of deploying such a wireless sensor networks for traffic surveillance. Pravin Varaiya 
found it an opportune time to commercialize this product and co-founded a company with 
Amine Haoui and Robert Kavaler called Sensys Networks, Inc. [3.18]. As a result, new 
prototypes of sensor node and access point were designed and developed in a more 
professional approach.  

 
Fig 3.2.5.1 Second prototype generation of TrafficDot 

 

 
Fig 3.2.5.2 Third prototype generation of TrafficDot 
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(VSN240-s) (VSN240-f) (AP240-e) (RP240-b) 

Fig 3.2.5.3 VSN240 family products manufactured by Sensys Networks  

 
The Sensys Networks’ VSN240 family shown above is a family of sensor nodes (SN) and 
access point (AP) designed specifically for use in traffic surveillance. VSN240-s is the 
commercial version of TrafficDot with three-axis magnetic sensors HMC1051Z. VSN240-f 
is a flush-mount counterpart of VSN240-s which can be installed under the pavement. 
AP240-e is the access point that can provide a one-hop communication with the sensor 
nodes within a range of 50m, and up to 96 sensor nodes can communicate with it on a 
single radio channel. Moreover, the collected data can be transferred through an ethernet 
port or wirelessly using GPRS [3.21] or CDMA [3.22]. RP240-b Repeater is a standalone, 
solar or line-powered device that extends the radius of coverage of a VDS240 wireless 
vehicle detection installation by up to 1,000ft from the AP240-e. 
 
A large database of three dimensional magnetic signatures of vehicles has been collected, 
with the help of these high quality sensor network products. They provide an invaluable 
source of data for detailed analysis. Below is a summary of the characteristics of the 
VSN240 family products. 
 
Microcontroller 66MHz 5272 Coldfire processor 

RF Specification IEEE 802.15.4 standard compliant 

16 Channels in 2.4 - 2.48 GHz ISM band 

Communication range 50m with AP240 at a height of 8m 

35m with AP240 at a height of 6m 

25m with AP240 at a height of 4m 

1000ft between RP240 and AP240 

Expected lifetime 7 - 10 years (depending on application) 

Operating temperature -40C to 85C 

Table 3.2.5.1 Summary of characteristics of the VSN240 family products 

 
3.3 Communication Protocols and Lifetime Analysis 
In a sensor node, more than 90% of the battery energy is consumed by the radio [3.10]. The 
network’s communication protocol, which determines how the radios are operated, has a 
decisive influence on the system lifetime. In this section, the Sensys’ Nanopower [3.18] 
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and PEDAMACS [3.10] communication protocols are discussed in 3.3.1 and 3.3.2 
respectively. The corresponding lifetime analysis is presented in 3.3.3. 
 
3.3.1 Sensys’ Nanopower Protocol 
Existing Medium Access Control (MAC) protocols fall into one of two categories: random 
access schemes and Time Division Multiple Access (TDMA) schemes [3.25]. Random 
access schemes have the advantage of accommodating unpredictable need to transmit data. 
But a large portion of power is wasted by a node in idle listening, in overhearing packets 
that are not destined for it, and in collisions during packets transmission. Enhancements 
like SMAC [3.26] and PAMAS [3.27] were proposed to save power up to a factor of ten by 
reducing the radio active time, at a cost of considerable increase in hardware complexity. 
 
The TDMA schemes are more power efficient on the other hand. The sensor nodes remain 
in an inactive state that consumes almost no power, until it is time for their allocated 
communication slot. However, general TDMA schemes do not take advantage of the fact 
that all data from sensor nodes is destined for a single access point (AP). So some 
communication power is wasted in distributing synchronization overhead [3.28]. 
 
The Sensys’ Nanopower protocol [3.18] is a TDMA scheme designed to meet both the 
periodic communication and power saving requirements. It assumes that all the sensor 
nodes can reach either the AP or a repeater node in one hop, and all the repeater nodes can 
reach the AP in one hop. The AP, with its unlimited power supply, can communicate with 
all the sensor and repeater nodes in one hop. The simple communication link structure of 
this protocol is shown in Fig. 3.3.1.1. 

 
Fig. 3.3.1.1 Communication links structure of Sensys’ Nanopower protocol 

 
The communication protocol can be summarized as follows: 
i, All the sensor and repeater nodes are configured with a pre-assigned radio channel and a 
communication time slot before installation. 
ii, A synchronization message is send by the AP periodically with a random back off time, 
so all the reachable nodes can catch this message eventually. 
iii, The radios of all the synchronized sensor nodes will wake up during its assigned time 
slot for two-way communication, and quickly switch back to sleep mode afterward. 
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iv, The repeater nodes are configured with the time slots of a multiple number of sensor 
nodes, so that they can wake up at the right time to collect data from these sensor nodes and 
transmit the data back to the AP at their own time slots. 
v, After data processing is done at the AP, useful traffic data are transmitted to the Traffic 
Management Center (TMC) for further traffic controls. 
 
The exclusion of multi-hop communication between sensor nodes greatly simplifies the 
protocol. The drawback is that the network coverage is limited by the maximum 
communication range between the AP and repeater nodes (e.g. 1000’). For the 
implementation of a traffic surveillance station, this coverage is more than enough in most 
cases. Using this Nanopower protocol with the VSN240 sensor network hardware family 
manufactured by Sensys Networks [3.18], it is claimed that a system lifetime of 10 years 
can be achieved for a typical vehicle detection application.  
 
3.3.2 PEDAMACS 
PEDAMACS (Power Efficient and Delay Aware Medium Access Protocol for Sensor 
Networks) [3.10] is a TDMA scheme that extends the single-hop structure to a multi-hop 
network. Unlike Sensys’ Nanopower protocol [section 3.3.1] which requires the network 
configuration to be setup manually, the network topology is discovered by PEDAMACS 
automatically. The main assumption is that the AP has to be powerful enough to 
communicate with all the sensor nodes in one hop. However, multi-hop communication is 
used for data transmitted from sensor nodes to AP. A simple communication links structure 
of this protocol is shown in Fig. 3.3.2.1. 

 
Fig. 3.3.2.1 Communication links structure of PEDAMACS 

 
The protocol applies to a network in which sensor nodes periodically generate data to be 
transmitted to the AP. The protocol operates in four phases: topology learning, topology 
collection, scheduling, and adjustment: 
i, In the topology learning phase, each node identifies its (local) topology, i.e. its neighbors, 
interferers, and its parent node in the routing tree rooted at the AP obtained according to 
some routing metric.  
ii, In the topology collection phase, each node sends its local topology information to the 
AP so, at the end of this phase, the AP knows the full network topology.  
iii, At the beginning of the scheduling phase, the AP broadcasts a schedule. Each node then 
follows the schedule, and sleeps during time slots when it is not scheduled to transmit a 
packet or to listen for one.  
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iv, The adjustment phase is triggered as necessary to learn the local topology information 
that was not discovered during the topology learning phase or to discover changes. 
 
The determination of the schedule based on the topology of the network at the AP is 
performed according to the PEDAMACS scheduling algorithm [3.10]. The scheduling 
algorithm should ideally minimize the delay—the time needed for data from all nodes to 
reach the AP. However, this optimization problem is NP-complete. Instead, PEDAMACS 
uses a polynomial-time scheduling algorithm which guarantees a delay proportional to the 
number of packets in the sensor network to be transferred to the AP in each period. The 
algorithm assigns a group of non-conflicting nodes to transmit in each time slot, in such a 
way that the data packets generated at each node reaches the AP by the end of the 
scheduling frame. A comparison of the delay in different communication protocols with 
different number of sensor nodes is shown in Fig. 3.3.2.2 [3.10]. 

 
Fig. 3.3.2.2 Comparison of data transmission delay in different communication protocols 

[3.10] 

 
Although the protocol is designed for the situation in which every sensor node periodically 
generates data to be transmitted to one AP, the PEDAMACS framework is flexible enough 
to be generalized in many ways. It can be extended to networks with event-driven data 
generation, multiple APs, as well as handling sensor nodes that are outside the range of a 
single hop from the AP. This allows the protocol to be deployed in different applications of 
traffic surveillance. The lifetime analysis of PEDAMACS is presented in the next section.  
 
3.3.3 Lifetime Analysis 
The lifetime analysis of different communication protocols was conducted by simulating a 
typical wireless sensor network using TOSSIM [3.29] –a sensor network simulation 
framework developed in the TinyOS project [3.20]. The following network configuration 
was adopted in the simulation: 50 kbps transmission rate, 128Hz sampling rate, 2 minute 
packet generation period, 2200 mAh@3V power supply from a pair of AA batteries. Power 
consumption of basic operations in MICA sensor nodes [3.30] shown in Table 3.3.3.1 was 
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used for calculating the system lifetime. Six communication protocols shown in Table 
3.3.3.2 were tested in the simulation. 
 
Operation Power Consumption 
transmitting one packet 0.92mJ 

receiving one packet 0.69mJ 

listening to channel 29.71mJ/sec 

operating radio in sleep mode 15�J/sec 

sampling sensor 1.5�J/sample 

Table 3.3.3.1 Power consumption of basic operations in MICA sensor node [3.30] 

 
Index Protocol 
P1 PEDAMACS 

P2 Implicit random 

P3 IEEE 802.11, random access scheme with explicit acknowledgements 

P4 SMAC [3.26] with 50% duty cycle 

P5 SMAC [3.26] with 10% duty cycle 

Table 3.3.3.2 Communication protocols tested in the TOSSIM simulations 

 
The simulated system lifetimes for different number of sensor nodes are shown in Fig. 
3.3.3.1. The lifetime of random access schemes (P2, P3) is about 10 days, whereas the one 
of P5 increases up to 60 days. On the other hand, PEDAMACS gives a lifetime of about 
1200 days. The reason for the dramatic difference is clearly shown in Fig. 3.3.3.2, which 
compares the power consumed by these schemes in different operations for a 60-sensor 
node network (y-axis is presented in log scale). 
 
The primary cause of the difference in lifetimes is in the total energy consumed by the 
radio in ‘listening’ and ‘reception’ operations. P5 can decrease this energy by a factor of 10 
whereas PEDAMACS decreases it by a factor of more than 1,000. The difference in 
lifetimes also arises from the differences in amount of energy spent in transmission due to 
retransmissions and reception because of the ‘overhearing effect’: In random access 
schemes, when one node transmits a packet, all neighboring nodes receive it whereas only 
the parent of that node receives it in PEDAMACS. 
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Fig. 3.3.3.1 Simulated system lifetime for different number of sensor nodes with different 

communication protocols [3.10] 

 

 
Fig. 3.3.3.2 Simulated power consumptions in different operations for a 60-sensor nodes 

network with different communication protocols [3.10] 

In order to make such a sensor network competitive with the inductive loop detectors 
which have a lifetime of ~10 years [Ch.2], the lifetime of the PEDAMACS network can be 
further increased by using extra repeater nodes in conjunction with energy efficient routing 
that balances the energy consumption on multiple paths. In [3.31], this is formulated as a 
linear programming problem, by restricting the locations where the repeater nodes may be 
placed on a square lattice. Given the location of sensor nodes, the optimal locations of 
repeater nodes together with the optimal energy provided to them can be determined. The 
simulation results of a simple example are shown in Fig. 3.3.3.3. Using extra repeater 
nodes in the network allows the transmission range to be reduced from 40ft to 20ft, and 
making one unit of battery energy to be enough to achieve the target 10-year lifetime. 
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(a) Sensor nodes with 40ft transmission 

range 

 
(b) Using repeater nodes with 20ft 

transmission range 

Fig. 3.3.3.3 Simulated battery energy required for achieving 10-year system lifetime [3.31] 
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Ch. 4 Vehicle Detection by Wireless 
Sensor Networks 

Traffic surveillance starts with the capability to detect the presence of a vehicle. Based on 
such detection, statistics like vehicle counts, traffic flow speed and occupancy are 
calculated. The quality of the vehicle detection determines the performance of all the 
dependent applications. In this chapter, signal analyses of two types of sensors, acoustic 
and magnetic, which can potentially be used in sensor nodes are discussed in section 4.1 
and 4.2. An efficient and robust real-time detection algorithm for these sensor signals, 
called Adaptive Threshold Detection Algorithm [4.1] is studied in section 4.3. Finally, the 
experimental results and analysis of such a vehicle detection system are presented in 
section 4.4. 
 
4.1 Acoustic Signal Analysis 
At the early stage of this research project, the feasibility of using an acoustic sensor for 
vehicle detection was studied (jointly with Jiagen Ding).  In this section, the acoustic sensor 
used and corresponding signal processing are discussed. 
4.1.1 Acoustic Sensor 

  

 

Fig. 4.1.1.1 Pictures of MICA2, MICA2DOT and sensor board MTS310 (Left to Right) 

 
The sensor node used for this analysis was MICA2 [4.2] with sensor board MTS310 [4.3]. 
MICA2 is another sensor node platform in the same Crossbow Mote family as 
MICA2DOT [3.15] discussed in Ch. 3. Both MICA2 and MICA2DOT have the same 
characteristic but different form factors.  
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Fig. 4.1.1.2 Schematic of a condenser 

microphone 

 

 

Fig. 4.1.1.3 Frequency response of WM-

62A 

 
The acoustic sensor on the sensor board MTS310 is a Panasonic WM-62A microphone 
[4.5], which is an omni-directional condenser type microphone with frequency response 
shown in Fig. 4.1.1.3. The schematic of a typical condenser microphone [4.6] is shown in 
Fig.4.1.1.2. It includes a stretched metal diaphragm that forms one plate of a capacitor. A 
metal disk placed close to the diaphragm acts as a back-plate. A stable DC voltage is 
applied across the plates through a high resistance to keep electrical charges on the plates. 
When a sound wave excites the diaphragm, the capacitance between the two plates varies 
according to the variation in the sound pressure. The change in the capacitance generates an 
output proportional to the sound pressure, which is at an ultra low-frequency pressure 
variation. A high-frequency voltage (carrier) is applied across the plates and the acoustic 
sensor output signal is the modulated carrier. Fig. 4.1.1.4 shows an example of a vehicle 
acoustic signal collected from this condenser microphone. 

 
Fig. 4.1.1.4  Example of vehicle acoustic signal collected from the condenser 

microphone 

 
4.1.2 Background Noise 
To better understand vehicle acoustic signals in the frequency domain, experiments were 
conducted in the Richmond Field Station (RFS) with an omni-microphone (Radio Shack 33 
− 3025A) connected to a laptop computer sampling at 11 kHz with 8-bit resolution. Short-
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Time Fast Fourier Transform (SFFT) [4.7] analysis was conducted on the acoustic data 
collected under different conditions. The N-point SFFT in the discrete domain is defined as  

       
 (Eq. 4.1.2.1) 
x(n) is the signal for analysis and w(n) is the window function. Popular window functions 
include rectangular and hamming windows. SFFT can be interpreted as a sequence of 
discrete time Fourier Transforms as the window w(n – m) slides along the signals [4.8]. In 
the following SFFT analysis, a hamming window is used. 

 
(a)  Background signal with vehicle engine 

turned off 

(b) Engine signal with microphone located 

near exhaust 

 
(c) Moving vehicle signal with microphone 

located at side of road 
(d)    Moving vehicle signal  with vehicle at a 

higher speed 

Fig. 4.1.2.1 Plots of vehicle acoustic signals from a Mazda 626 in frequency domain  

 
The results of SFFT analysis on the acoustic signals of a Mazda 626 are shown in Fig. 
4.1.2.1 above. Fig.4.1.2.1(a) shows the background acoustic signal in frequency domain, 
with the vehicle remaining stationary and engine turned off. Similar experiments were 
conducted at a number of different test locations. It was observed that the magnitude of the 
background noise depends on the environment and level of wind. However, the background 
noise stays below 500 Hz. Fig.4.1.2.1(b)(c)(d) show the vehicle acoustic signal in the 
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frequency domain under different situations. It was found that the acoustic signal of most 
passenger vehicles stayed below 5000Hz in the frequency domain.  
 
4.1.3 Signal Processing 

  
Fig. 4.1.3.1 Block diagram of the signal processing for the acoustic data 

 
According to the SFFT results, a band-pass filter from 500Hz to 5000Hz was designed to 
filter out the background noise. Fig. 4.1.3.2 demonstrates how the band-pass filter 
successfully filtered out the background and kept the noise at a small level. The band-pass 
filter output s(k) is squared and decimated, such that it is transformed into an energy 
distribution signal e(k). It is related to s(k) by: 
   e(k) =[s(Nk)]2    where N is the decimating rate  
 (Eq. 4.1.3.1) 
 

 
Fig. 4.1.3.2 Example of background acoustic in time domain before (left) and after (right) 

band-pass filtering [4.1] 

 
Since the energy signal e(k) can still be jerky,  a smoothing filter is introduced. A low-pass 
FIR filter [4.9] is used for the smoothing because of its linear phase and inherent stability. 
The key design parameters for this low-pass FIR filters are the -3dB cutoff frequency (ωp), 
the stop band frequency (ωs) and the stop band attenuation gain. Fig. 4.1.3.3 shows the 
magnitude response of the FIR filter being used. At the end, the smoothed energy signal 
f(k) is passed to the detection algorithm [section 4.3] for detection decision making. Fig. 
4.1.3.4 shows a sample vehicle acoustic signal from a traveling Mazda 626 at different 
processing steps. 
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Fig. 4.1.3.3 Magnitude response of the FIR filter  

 
Fig. 4.1.3.4 Vehicle acoustic signal from a traveling Mazda 626 at different processing 

steps [4.1] 

 
4.2 Magnetic Signal Analysis 
4.2.1 Simulation 

 
Fig. 4.2.1.1 Basic concept of using a magnetic sensor for detecting vehicle 
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As noted in Ch.3, the AMR magnetic sensor [3.14] detects the distortions of the Earth’s 
field which is uniform over a wide area on the scale of kilometers. Depending on the 
composition of the ferrous material inside a vehicle, its size and orientation, different 
magnetic signatures are induced by vehicles with different configurations and shapes. Such 
distortions caused by a large ferrous object like a vehicle can be modeled as a composite of 
many dipole magnets [3.19].  Maxwell’s equations govern electromagnetism. A reduced 
form of Maxwell’s equations, the magnetostatic equations (Eq. 4.2.1.1), is sufficient to 
describe the interaction in our simulation: 

            (Eq. 4.2.1.1) 
B is the magnetic flux density, J is the current density, µ0 is the permeability of air and µr is 
the relative permeability of the medium. The magnetostatic equations are valid only if all 
the electric charge densities are constant and the currents are steady, so that the electric and 
magnetic fields are static. Since the magnetic field is changing slowly when a vehicle 
passes, it can be simulated by the magnetostatic equations. 
 

 

 

  (Eq. 4.2.1.1) 

Fig. 4.2.1.2 Magnetic field distribution of a dipole magnet and its corresponding equation 

 
Fig. 4.2.1.2 shows the magnetic field strength (B) distribution in 3D space of an ideal 
dipole magnet, given by the equation on its right. A simulation of the magnetic vehicle 
signature was conducted according to the experimental configuration shown in Fig. 4.2.1.3. 
The vehicle was simulated as a plate array of point-source dipole magnets. The simulated 
magnetic signature of such a vehicle with a 3 –axes magnetic sensor located at the side of 
lane, traveling from x- to x+ direction as shown in Fig. 4.2.1.4(a). On the other hand, 
experimental results conducted under similar configuration can be found in Fig. 4.2.1.5(b). 
A Ford Taurus was used as the test vehicle, with magnetic sensor sampling at 64Hz for 
each of the axis. Even though the magnitude levels and units between the two plots are 
different because the simulation did not account for the magnetic properties of the test 
vehicle, the simulated patterns are in agreement with the experimental measurements. 
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Fig. 4.2.1.3 Experimental configuration for the magnetic vehicle signature simulation  

 

 
(a) Simulation 

 
(b) Experimental measurements 

Fig. 4.2.1.4 Magnetic signature of a vehicle traveling from x- to x+ with the magnetic 

sensor located at the side of lane 

 
4.2.2 Drifting of Magnetic Measurements 
It is known that the measurements from HMC1051Z magnetic sensor [3.14] are affected by 
temperature. This could be an issue for traffic surveillance as the temperature on the 
pavement can change a lot in the course of a day. Therefore, an experiment was carried out 
to study the effect of direct sunlight on the sensor node’s magnetic measurements. 

   
Fig. 4.2.2.1 Experimental setup for studying the effect of direct sun light on magnetic 

measurements 
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(a) X-axis (b) Y-axis 

 
(c) Z-axis 

Fig. 4.2.2.2 Magnetic measurements from 

the “direct sunlight effect on magnetic 

measurements” experiment, at an open area 

next to Soda Hall  

 
The experimental setup (Fig. 4.2.2.1) was simple: a sensor node was placed in an open area 
next to Soda Hall where there is sufficient direct sun light. This experiment was conducted 
at noon in March 08, 2005, with temperature at ~60F. A total of 45 minutes of 3-axes raw 
magnetic measurements were collected. The sensor node was under direct sunlight for the 
first 15 minutes. A shadow over the sensor node was created manually with an umbrella 
2m above the ground for the next 15 minutes. The shadow was removed and the sensor 
node was under direct sunlight again for the last 15 minutes. The X, Y and Z-axis 
measurements are shown in Fig. 4.2.2.2.  
 
The Z-axis measurements show a very clear linear drift.  The magnetic reading decreased 
from 1287 to 1279 during the first 15 minutes under sun light, then went back up to 2182 in 
the 15 minutes of shade and decreased again to 1286 in the last 15 minutes of sunlight 
exposure. The Y-axis measurements show a similar behavior but in the opposite direction. 
The X-axis measurements remained pretty much the same during the experiment. This up-
and-down drifting behavior of the Z and Y-axis measurements clearly demonstrated the 
effect of sun light (temperature) on the magnetic sensor.  
 
Another experiment was carried out to study this drift on a day long basis. A sensor node 
was placed on the ground of the backyard of an apartment (Derby Street, Berkeley, CA 
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94705), where directly sunlight is not reachable most of the time. 24 hours of 
measurements were recorded starting from 5pm of March 05, 2005. Plots of measurements 
are presented in Fig. 4.2.2.3. The results agree with the “direct sunlight effect” experiment 
with the Z-axis reading going up slowly as the temperature decreased from 5pm to 7am., 
and vice versa during 7am to 2pm. There was a relative sharp charge in all the 3-axes 
measurements at 3pm, when there is a sudden exposure of direct sunlight. To summarize, 
the effect of temperature change on magnetic measurement being unavoidable, it should be 
accounted for in the design of the vehicle detection algorithm. 
 

 
(a) X-axis 

 
(b) Y-axis 

 
(c) Z-axis 

Fig. 4.2.2.3 Magnetic measurements from 

the “day-long temperature change effect on 

magnetic measurements” experiment 
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4.2.3 Signal Processing 
The magnetic sensor is reliable.  It has 1 bit of sensor noise out of a 10-bit signal resolution. 
So no extra signal processing step is necessary to reduce the noise, unlike in the case of 
acoustic signals. Since the frequent up-and-down fluctuation of the magnetic signal is not a 
desirable characteristic for the vehicle detection algorithm, a smoothing filter, which takes 
a running average of the signal, is used to smooth out the signal. The running average is 
given by  

  (Eq. 4.2.3.1) 
r(k) is the raw signal and M is the pre-defined running average buffer size. The plots of the 
raw magnetic signal and the output of the smoothing filter for the same vehicle sample are 
shown in Fig. 4.2.3.1.  
 

(a) Raw magnetic signal (b) Magnetic signal with running average 

Fig. 4.2.3.1 3-axes magnetic signature of a sample vehicle 

 
4.3 Vehicle Detection Algorithm 
Since this traffic surveillance system envisions a large scale deployment, the vehicle 
detection algorithm has to be sufficiently robust to provide accurate detection in different 
working environments. Moreover, it has to be computationally simple to be implementable 
with the limited capability of the sensor node’s processor. With these two objectives in 
mind, an ad-hoc vehicle detection algorithm named Adaptive Threshold Detection 
Algorithm (ATDA) was designed for detecting vehicles in moving traffic, based on the 
magnetic signal. This algorithm turns out to be usable for the acoustic signal as well. 
Moreover, a modified version of ATDA can be used for detecting stationary vehicles in a 
parking lot. The details of these algorithms are discussed next. 
 
4.3.1 Adaptive Threshold Detection Algorithm (ATDA) 
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Fig. 4.3.1.1 A very simple vehicle signature of the Z-axis magnetic signal 

The main reason for using a threshold detection approach instead of other statistical 
algorithms is to reduce the computational requirement of the detection algorithm so that it 
can be implemented on the sensor node’s processor and generate detection results in real 
time. This could be easily done with a fixed threshold detection algorithm if all the vehicle 
signatures were as simple as the one shown in Fig.4.3.1.1. Unfortunately, the vehicle 
signature patterns can be much more complicated than that shown in Fig.4.2.3.1, which 
together with the drift discussed in section 4.2.2, make it difficult to design a simple 
detection algorithm. These considerations led to the Adaptive Threshold Detection 
Algorithm (ATDA). Whose block diagram is shown in Fig. 4.3.1.2.  The Detection State 
Machine is shown in Fig. 4.1.3.3. 
 

 
Fig. 4.3.1.2 Block diagram of the Adaptive Threshold Detection Algorithm 

 
Adaptive Base-line 
Even through there is an uncontrollable drift in the magnetic signal, the rate of the drift is 
quite small—on the order 1 measuring unit per minute, depending on the sensor node 
prototype being used. This implies that the drift has a negligible effect on the detection of a 
moving vehicle whose signature is about 1 second in duration. In order to account for the 
drift in the long term, an adaptive baseline is setup to track the background magnetic 
reading, which is used to determine the adaptive threshold level for the detection state 
machine. The adaptive baseline for each of the three magnetic axes is given by the 
following equations: 
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          (Eq. 4.3.1.1) 

 
          (Eq. 4.3.1.2) 
B(k) is the adaptive baseline, α is the forgetting factor, a(k) is the smoothed magnetic data, 
s(k) is the state of the detection state machine, sbuf is the buffer size of s(k) and the subscript 
i represents one of the three axes. With this equation, the adaptive baseline is only updated 
by the magnetic reading when there is no signal fluctuation and no vehicle is detected 
within a certain period of time. The updating is slow with a forgetting factor of 0.05 to 
ensure that only the background magnetic signal is accounted for the adaptive baseline. 
 
With this adaptive baseline, an “Over Threshold” Boolean flag is generated according to 
Eq. 4.3.1.2, and h(k) is the corresponding threshold level. From analysis of the empirical 
magnetic signal of an urban traffic stream, we know that there is a chance that a stop-and-
go vehicle stays on top of a sensor node with its Z-axis measurements below the threshold 
level. In order to avoid double-counting such a vehicle, the x-axis measurements are also 
introduced into the decision of T(k) when the state machine is in its “Event_Detected” 
state. This effectively filters out the double-counting error as it is very unlikely that both 
the Z and X-axis measurements are below the threshold when a vehicle is present. Z-axis 
magnetic measurements are used as the major source for vehicle detection because of its 
localized characteristic, so that it can isolate detections from vehicle in adjacent lanes. 
 
Detection State Machine 



 58

 
Fig. 4.1.3.3 State diagram of the ad-hoc state machine designed for ATDA 

 
The “Over Threshold” Boolean flag is passed to an ad-hoc state machine as shown in Fig. 
4.1.3.3 above. Its main objective is to filter out spurious signals that are not caused by a 
vehicle and to output binary detection flag without calling any complicated statistical 
function. The following section is a walkthrough of this state machine’s logical flow. 
S1  “Init_Base_Line” 
Assuming there is no vehicle near the sensor node when it is being reset. It will go into 
state S1 and start initializing the baseline with the environmental measurements.  
S2  “On_Base_Line” 
After a pre-defined initializing time (namely, 3s), it will jump to the state S2 where the 
baseline is updated adaptively. It will jump to state S3 when a Z-axis measurement larger 
than the adaptive threshold is recorded. The potential up-time of this event is saved for later 
use in case this is a valid vehicle detection event. 
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S3  “Counting_Over_Threshold” 
It was found that a vehicle signature produces a successive sequence of “True” in T(k) and 
this state is used to track such a sequence. If there is any “False” reading from T(k), it will 
immediately jump to state S4. Otherwise, if the number of successive T(k) = “True” has 
reached a critical value, it will jump to state S5. 
S4  “Counting_Below_Threshold” 
 Within this state, it will jump back to state S2 after the number of successive T(k) = 
“False” has reached a critical value. In order not to lose a potential vehicle detection, it will 
jump back to the state S3 again in case there is any T(k) = “True” reading. 
S5  “Event_Detected” 
Staying in this state implies the magnetic fluctuation is strong as the vehicle is still 
traveling over the sensor node. As discussed earlier in the generation of T(k), it is now 
determined by both the Z and X-axis data in this state. The down-time of this detection 
event will be updated up to the last T(k) = “True” reading. A complete vehicle detection 
event ends if the number of successive T(k) = “False” has reached a critical value and it 
will jump back to S2 and wait for another detection cycle. Moreover, in case there is any 
error in setting up the baseline and threshold causing the state machine to stay in this 
detected state for an unreasonably long period of time, a failsafe mechanism was 
introduced. Such a situation is identified by the detected timer when it exceeds a pre-
defined value of longest reasonable detected time. It will jump back to S1 and reset the 
whole state machine. 
 
Finally, the detection flag d(k) is generated according to the output state of this state 
machine. At a finer scale, the change in detection flag occurs within 10 measurements, i.e. 
in less than 0.1s immediately after the magnetic frontier of the vehicle crosses the sensor. 
Thus the detection can be reported within 0.1s to the controller which is a requirement for a 
traffic detection system at an intersection [4.10]. This computationally simple detection 
algorithm can be executed in the senor node. The detector cards used with the loop 
detector, which perform a similar vehicle detection function, are no longer needed. The 
performance of this ATDT is discussed in a later section of this chapter.  
 
4.3.2 Speed and Magnetic Length Estimation  
Speed Estimation by a Sensor Node Pair 
The common practice for speed estimation using a single inductive loop detector is to 
assume a fixed, pre-defined magnetic vehicle length (e.g. 5 m) and calculate the speed from 
VfixedLenght = Lfixed / Toccupancy (Eq. 4.3.2.1). So the accuracy of the speed estimate depends on 
the difference between the actual vehicle length and the pre-defined one. More accurate 
estimation can be obtained using dual inductive loops or other road side sensors like radar 
and microwave. With a pair of sensor nodes, speed can be estimated in a manner similar to 
dual inductive loops. 
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Fig. 4.3.2.1 Example of speed estimation by a pair of sensor node 

 
Fig. 4.3.2.1 shows an example of speed estimation of one vehicle by a pair of synchronized 
sensor nodes. (“Synchronized” nodes mean that their clocks are synchronized.) Node A and 
B were placed on the middle of a lane with a known separation of 6 feet along the traveling 
direction. Assuming the vehicle has negligible lateral offset and acceleration within these 6 
feet, the vehicle signature measured by node A should be identical to the one measured by 
node B. Moreover, the detection flag should change virtually at the same point within the 
vehicle signature. As a result, the time difference between A and B at which the detection 
flags change is the travel time across the separation distance. The vehicle speed and their 
magnetic lengths are estimated by the following equations: 

  (Eq. 4.3.2.2) 
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t is time, v is speed, D is distance and L is magnetic length. The ‘up’ and ‘down’ subscripts 
refer to the change in the detection flag from 0 to 1 and from 1 to 0 respectively. Please be 
reminded that the magnetic length is usually longer than its physical length depending on 
the metallic composition of the vehicle.  
 
If there is a small difference in sensitivity between nodes A and B, a difference in the 
amplitude of the vehicle signatures is induced. This will violate the presumption that the 
detection flag will change virtually at the same point within the vehicle signature. The node 
with a higher sensitivity will have a longer toccupancy  Assuming that this sensitivity 
difference affects the timing of ∆tup and ∆tdown to the same level but in opposite direction, 
its effect can be eliminated theoretically according to the following equations, in which  
and   are the corresponding changes in time with the sensitivity effect ε. 

 
          (Eq. 4.3.2.3) 
The major remaining errors are due to the synchronization error between the node pair 
clocks and the estimation errors caused by the finite sampling rate and the node separation. 
In fact, there is a tradeoff between accuracy of the speed estimate and the power 
consumption needed for more accurate synchronization and higher sampling rate. Please 
refer to section 3.3 for a discussion of time synchronization of the wireless sensor 
networks. 
 
Median Speed Estimation by a Single Sensor Node 
If the speed of each individual vehicle is not required for a specific traffic control 
application, a statistical estimate of the traffic flow speed can be obtained by a single sensor 
node. Following the argument of Coifman et al [4.11], assume that vehicles in a platoon 
have a similar speed Vplatoon. If there are N vehicles in this platoon, the (N+1) unknowns 
L1,… LN and Vplatoon should satisfy N equations: 

    (Eq. 4.3.2.4) 
As shown in [4.11], if the probability distribution of the magnetic length, p(L), and toccupancy 
are known, a maximum likelihood estimate of Vplatoon can be calculated. A robust, 
alternative estimate of Vplatoon and L is given by 

    (Eq.4.3.2.5) 

 and  are the median magnetic length and median occupancy time respectively. 
Statistically, it was found that the standard deviation σ of a 10-point (i.e. N = 10) median 
speed estimate is 2.5 mph. This implies that with a probability of 0.95, the speed estimate 
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error is less than 2 σ or 5 mph. The experimental results of such an analysis are discussed in 
the next section. 
4.4 Experimental Results and Analysis 
Several experiments focusing on vehicle detection, speed and magnetic length estimation 
are discussed in this section: in section 4.4.1 (dataset D1), preliminary results of vehicle 
detection by acoustic sensors are shown; in section 4.4.2 (dataset D2), the extraction of 
different traffic information from a single sensor node is studied; in section 4.4.3 (dataset 
D3), the experimental results of speed and magnetic length estimation from a sensor node 
pair are discussed; in section 4.4.4 (dataset D4), the experimental results of speed 
estimation are compared with video-based estimation; in section 4.4.5 (dataset D5), field 
test data are used to compare inductive loop detectors and magnetic sensor nodes. 
 
4.4.1 Experiments with Acoustic Sensors (Dataset D1) 
This section presents vehicle detection results based on the acoustic signal, and with the 
signal processing and ATDA implemented on a laptop computer. The acoustic signal is 
sampled at 11 kHz. The system was not implemented on the sensor node because it lacked 
the computation capability needed for the signal processing discussed in section 4.1.3. 
However, an FPGA chip can be used to implement the signal processing design and work 
with directly with the sensor node [4.12]. 
 
Fig. 4.4.1.1 shows the results of a real time vehicle detection experiment by acoustic signal, 
conducted on the side of a lane in local traffic. 7 out of 7 vehicles were detected 
successfully with the ground truth recorded manually. In order to test the robustness of the 
detection algorithm with a limited acoustic database, the data set collected from Richmond 
Field Station, Berkeley Marina Parking Lot and a local intersection on Hearst were mixed 
in random order to create a ‘new’ data set for testing. The corresponding results are 
summarized in Table 4.4.1.1, and give an error in vehicle counts below 7% in all off-line 
tests. 

 
Fig. 4.4.1.1 Results of a real time vehicle detection experiment by acoustic signal 

 
Case number Ground truth  Detection result  Error in Vehicle Counts 
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 (# of vehicles)  (# of vehicles)  % 

 

1 63 60 4.76 

2 63 61 3.17 

3 63 64 1.59 

4 63 67 6.35 

5 63 64 1.59 

Table 4.4.1.1 Results of off-line testing with randomly mixed acoustic signal 

 
Although these preliminary results are based on a very small data pool, they do suggest that 
acoustic sensors data could be processed so as to meet a vehicle count error rate under 5 
percent, which would be necessary to be considered as a viable alternative to loops. 
 
4.4.2 A Single Sensor Node Experiment in Local Traffic 
(Dataset D2) 

 
Fig. 4.4.2.0 Layout of the experimental site of the single magnetic sensor node experiment 

at Hearst Avenue (dataset D2) 

 
One sensor node sampling at 128Hz was placed in the middle of a lane on Hearst Avenue, 
Berkeley, CA, at February 23, 2004, 8-9 pm.  The setup was located on a section right after 
a traffic light-controlled intersection. Ground truth was established by a visual count. A 
total of 332 vehicles were observed, with the following distribution:  
 

Type Passenger SUV Van Pickup Bus Motorcycle

Counts 248 48 18 9 4 5 

Table 4.4.2.1 Distribution of vehicle types  
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Fig. 4.4.2.1 Arrival time of vehicles during first 10 minutes in dataset D2 

 
Detections were generated at real time by the magnetic sensor node without any post-
processing. A total of 330 out of 332 (99%) vehicles were detected.  The two undetected 
vehicles were motorcycles, so all non-motorcycle vehicles are detected.  Three motorcycles 
that passed near the node were detected, so placing more nodes laterally will ensure 
motorcycle detection. In fact, more information can be extracted because each vehicle is 
individually measured. Fig. 4.4.2.1 shows a plot of vehicle arrival time during the first 10 
minutes. The arrivals are bunched together into ‘platoons’ formed by the clearing of a 
queue behind the traffic signal during each green phase.  Successive platoons are one 
minute apart, which agrees with the cycle time of the traffic signal.  The variability in 
platoon size implies that the queue is cleared during each green phase and so one may 
deduce that the traffic is not saturated. Typical signal control detection systems do not 
measure traffic downstream of a signal.  But this figure shows that such measurements can 
reveal how well the signal plan is adapted to the traffic demand.   
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Fig. 4.4.2.2 Vehicle speed estimated by the 5-point and 11-point median approach in 

dataset D2 

 

 
Fig. 4.4.2.3 Headway against arrival time of vehicle in dataset D2 

 
As discussed in section 4.3.2, speed can be estimated with a single sensor node using the 
median speed approach. Taking the parameter values suggested in [4.11],  = 5m, N = 11 
was used and N = 5 was chosen for comparison. Fig. 4.4.2.2 displays the corresponding 
results.  The 11-point estimate is smoother than the 5-point estimate, as expected. In the 
experiment, the traffic flow was 330 vehicle/hr.  Hence the passage of 11 vehicles takes 
about 2 minutes, so the 11-point estimate corresponds to a 2-min average.  Under a heavier 
traffic flow, say 2,000 vehicle/hr, this will be a 20-second average.  
 
The data also give the inter-vehicle headway by subtracting the up-time (arrival) of a 
vehicle from the downtime (departure) of the preceding vehicle.  Fig. 4.4.2.3 plots the 
headway in seconds for the first 10 minutes. Grouped headway with large separation is 
clearly observed, which is caused by the departure of platoons created by the traffic signal. 
Applying Eq.4.3.2.5, gives an estimate of magnetic lengths whose empirical distribution is 
shown in Fig. 4.4.2.4. 
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Fig. 4.4.2.4 Distribution of estimated magnetic length in dataset D2 

 
 
4.4.3 Sensor Node Pair Experiment in Local Traffic (Dataset 
D3) 

 
Fig.4.4.3.1 Z-axis measurements of a vehicle running over nodes at 16 mph 

 
Fig. 4.4.3.1 shows the setup for a simple node pair experiment with nodes separated by 6.5 
[inches]. With a sampling rate of 256 Hz, the speed estimated with the node pair method is 
15.76 mph in this example, in agreement with the reference speed of 16mph from the GPS 
speed measurement on the vehicle. A real time traffic experiment was conducted with a 
similar configuration as in the example above. A one-hour long data trace was collected at 
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a location similar to that in the previous Hearst Avenue experiment, with a sampling rate of 
128 Hz and a node separation of 1.5 m. A total of 333 vehicles were counted manually 
during the test period. A summary of the experimental results is shown in Table 4.4.3.1. 
Over 97% of vehicles are detected by both nodes. Fig. 4.4.3.2 shows the distribution of 
estimated speed by the conventional fixed effective length approach. 

 
Table 4.4.3.1 Summary of experiment result in dataset D3 

 

 
Fig. 4.4.3.2 Distribution of estimated speed by the conventional fixed effective length 

approach in dataset D3 

 
For estimating speed with the node pair approach, those samples with unaligned “up” and 
“down” time pairs between nodes A and B were dropped. Samples are sometimes 
unaligned because of the error caused by synchronization and sampling resolution (These 
problem are fixed in the new Sensys sensor nodes [3.18]). A total of 238 (71%) valid 
detection pairs are identified. The resulting estimated speed and magnetic vehicle length 
distributions are shown in Fig. 4.4.3.3. Fig. 4.4.3.4 compares the distributions of estimated 
speed obtained from the fixed effective length approach and the node pair approach. The 
estimates do agree with each other and a reasonable distribution is observed except for a 
small number of exceptional cases with extremely high speed and short estimated magnetic 
length. Fig. 4.4.3.5 can be used to compare the distributions of the estimated vehicle 
magnetic length and of vehicle types observed during the test. Although we do not have the 
ground truth for the vehicle length in this test, the estimated distribution of vehicle length 
does agree with the vehicle type distribution. 
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Fig. 4.4.3.3 Distribution of estimated speed and magnetic vehicle length by the node pair 

approach in dataset D3 

 

 
Fig. 4.4.3.4 Comparison between the distribution of estimated speed from the fixed 

effective length approach and node pair approach in dataset D3 
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Fig. 4.4.3.5 Comparison between the distribution of the estimated vehicle magnetic length 

and that of vehicle types observed in dataset D3 

 
 
4.4.4 Speed Estimation Comparison with Video (dataset D4) 

 

Fig. 4.4.4.1 Picture of the experimental setup 

for dataset D4 

 

 
In this experiment, two sensor nodes were placed six feet apart on Hearst Avenue. Two 
cones were placed 22.6’ apart on the site to be used as landmarks for video processing. The 
speeds estimated by the sensor node pair and by the video were compared.  

 
Table 4.4.4.1 Comparison of estimated speeds from a sensor node pair and video in dataset 

D4 
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Fig. 4.4.4.2 Comparison of speeds determined by two sensor nodes and video in dataset D4 

 
Summary statistics of the speeds estimated by the two methods are shown in Table 4.4.4.1 
above. The scatter plot of the two speed estimates is shown in Fig. 4.4.4.2. The overall 
statistics of the estimates from the two methods agree with each other. Since the sampling 
rate of the magnetometer is 128Hz while the video frame rate is only 30Hz, the video 
estimates are less accurate and have a positive bias, even though the landmarks for the 
video are much further apart than the sensor nodes.  
 
4.4.5 Vehicle Detection Comparison with Inductive Loop 
Detectors (Dataset D5) 
 
Magnetic Sensor VS Inductive Loop 
As discussed in section 3.2.1, the magnetic sensor HMC1051Z [3.14] is a passive device 
that measures the strength and direction of the Earth’s magnetic field. By contrast, the 
inductive loop is an active device: a 6’ by 6’ copper loop is excited by a 20 kHz voltage in 
order to creating a magnetic field [4.13]. Conducting material passing over the loop lowers 
the inductance and the change in inductance is measured by an electrical detector card used 
with the loops. Special high scan-rate detector cards used for vehicle classification sample 
the inductance at 140Hz.  
 
Another difference stems from the fact that the magnetic sensor node measures a highly 
localized change.  As the vehicle travels over the sensor, it records the changes in the fields 
caused by different parts of the vehicle.  By contrast, the 6’ by 6’ standard loop geometry 
results in the “integration of the inductive signature over the traversal distance”, which can 
remove distinctive features from the inductive signature [4.14]. So the standard loop is not 
ideal for vehicle classification.  Fig. 4.4.5.1 reproduces the inductive loop signatures of a 
pickup truck and a passenger car.  A comparison with Fig. 4.3.2.1 clearly shows that the 
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magnetic sensor node measurement provide much more detail than an inductive loop 
signature. 

 
Fig. 4.4.5.1 Inductive loop signature from a pickup truck (left) and a passenger car (right): 

Source [4.15] 

 
Detection Performance Comparison 

 
Fig. 4.4.5.2 Picture of the experimental setup for dataset D5 

An experiment was conducted on Oct 6, 2004 on a local traffic lane of Martin Luther King 
Way (MLK) in downtown Berkeley from 1:20pm to 3:20pm (119min). A Sensys sensor 
node [3.18] was placed on the pavement in the middle of an inductive loop located at a 
section before a traffic light-controlled T-intersection. With help from the City of Berkeley, 
real time data were collected from both detection systems for detailed analysis. Moreover, 
video of the traffic was captured to be used as the source for ground truth. 
 
  # Detections Correct counts [%] 

      

Video  791   100 

       

Inductive loop 904   114.2857 
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Sensor node 791+7-7 = 791 791-14 = 777  98.23009 

       

 over-counting 7    

  Adj. lane   4  

  Double counted  2  

  Packet loss  1  

 under-counting 7    

  Level of measurements not high enough 3  

  Changing lane / Not along middle of lane 2  

  Motorcycle  1  

  Packet loss  1  

Table 4.4.5.1 Summary of vehicle detection results of dataset D5 

The vehicle detection results are summarized in Table 4.4.5.1. A total of 791 vehicles were 
observed in the recorded video. 904 detection events were generated by the inductive loop 
detector, which over-counted by 14%. This can be explained by the fact that this loop 
detector was used as a presence detector instead of a traffic counter, so it may not be well 
calibrated for counting vehicles. Since the traffic is quite heavy at MLK, a large number of 
stop-and-go cases were observed. This could be the main source of error for double 
counting by the loop detector. 

 
Fig. 4.4.5.3 Correlation of occupancy time for individual detections between the sensor 

node and loop detector in dataset D5 

 
On the other hand, the sensor node shows a virtually 100% correct detection of the overall 
vehicle counts. But if we examine the detection of individual vehicles, 7 over-counting and 



 73

7 under-counting instances were identified. The causes of these errors are also summarized 
in the Table 4.4.5.1. Even after subtracting these 14 cases, a very high successful detection 
rate of 98.2% was achieved. A plot of the correlation of occupancy time between the sensor 
node and loop detector is shown in Fig. 4.4.5.3. An overall correlation coefficient of 0.67 
was obtained. This is caused by the difference in zone of detection as discussed at the 
beginning of this section. With this promising result from an urban traffic intersection with 
heavy traffic flow, one may confidently predict that such a robust wireless sensor network 
can detect vehicles and estimate speeds as well as a highly calibrated inductive loop 
detector. 
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Ch. 5 Vehicle Classification by Wireless 
Sensor Networks 

Vehicle classification refers to the process and methodology to classify a vehicle signature 
in a specific format into a pre-defined vehicle class (e.g. passenger vehicle or truck). It is an 
important source of information for transportation design and management that can be used 
for many purposes. In pavement design and management, pavement life is estimated 
according to the distribution of vehicle types running over it, and this distribution may be 
used to schedule re-surfacing. In traffic safety research and implementation, the distribution 
of trucks in traffic is a critical design factor, because of its significantly lower speed and 
large size. In traffic control, signal priority can be given to vehicles classified as bus or an 
emergency vehicle. The distribution of vehicle types also provides valuable data analysis 
input to the prediction of highways capacity, assessment of the effectiveness of traffic 
legislation, automatic toll collection, weight enforcement strategies and environmental 
impact studies. 
 
As with vehicle detection, a number of technologies were developed for classification. 
Vision-based, inductive loop, microwave, piezo-electric and acoustic-based classification 
technologies are the common ones in use nowadays [section 2.1]. Vision-based 
classification can achieve a correct classification rate higher than 90% [5.1]. The major 
limitation of vision-based classification is that the system’s performance is greatly affected 
by the environmental and lighting conditions. Classification stations with highly calibrated 
inductive loops are also in use [5.7] [5.8]. However, the infrastructure and maintenance 
costs of such a vehicle classification station are high. This makes deployment of such a 
system economical only at particular sites of interest, such as a toll plaza. On the other 
hand, vehicle classification by wireless sensor networks provides a much more flexible 
deployment configuration, making the system portable and, once again, scalable for large 
scale deployment. 
 
In this chapter, the current classification technologies are first reviewed in section 5.1. The 
characteristics of magnetic vehicle signatures are studied in section 5.2. The data 
processing and classification schemes for a platform with limited computation resources 
are discussed in section 5.3. And the experimental results and analysis are presented in 
section 5.4. 
 
5.1 Review of Classification Technologies 
Vehicle classification refers to the process and methodology to classify a vehicle signature 
in a specific format into a pre-defined vehicle class (e.g. passenger vehicle or truck). Using 
the inductive loop system as an example, the inductive signatures and magnetic lengths of a 
training dataset with known vehicle classes are provided to the classifier for training and 
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calibration. The trained classifier is then used to give the vehicle class estimates of new 
incoming data samples.  
 
A classification system is evaluated by providing a testing dataset with known vehicle 
classes to the trained classifier and see how accurate it can classify in each of the classes. 
The statistical performance is affected by the size of data pool, the distribution of vehicle 
classes among these dataset, and the classification scheme used. Therefore, correct 
classification rate weighted by its class sizes is more a representative performance index for 
comparing different classification systems. 

  (Eq. 5.1.1) 
 
Various classification schemes are tailored to the needs of different transportation 
applications. The most well-known is the 13-class Federal Highway Administration 
(FHWA) scheme shown in Table 5.1.1. It reflects the main concern of most transportation 
applications: commercial vehicles. The number of axles is an important distinguishing 
factor in the scheme. Most other schemes are derived by aggregating the FHWA scheme 
into one with fewer classes and less emphasis on trucks and other commercial vehicles. 
 

Class code Description 

1 Motorcycles 

2 Passenger cars 

3 Other 4-tire, 2-axle, single-unit vehicles 

4 Buses 

5 6-tire, 2-axle, single-unit trucks 

6 3-axle, single-unit trucks 

7 4 or more axle, single-unit trucks 

8 4 or less axle, single-trailer trucks 

9 5-axle, single-trailer trucks 

10 6 or more axle, single-trailer trucks 

11 5 or less axle, multi-trailer trucks 

12 6-axle, multi-trailer trucks 

13 7 or more axle, multi-trailer trucks 

Table 5.1.1 13-Class FHWA Classification Scheme 

 
Vision-based, inductive loop, microwave, piezo-electric, and acoustic-based are some of 
the existing classification technologies in use [section 2.1]. The two most commonly used 
classification systems, vision-based and inductive loop signature, are discussed in the 
following sections. 
 
5.1.1 Vehicle Classification by Vision-Based System 
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Despite the large amount of research on vehicle detection and tracking by vision, there has 
been relatively little work done in the field of vehicle classification. Given the wide variety 
of shapes and sizes of vehicles within a single category alone, it is difficult to categorize 
vehicles using simple parameters. Moreover, the presence of occlusions, shadows, camera 
noise, changes in lighting and weather conditions are still challenging problems that need to 
be solved. 
Reference Features Methodology Classes Sample 

Sizes 
Classification 
Rate 

[5.1]  

Wei, et al. 

Ground 

segmentation, 

background 

subtraction, 

quantization 

Artificial 

neural 

network 

Heavy 

vehicle, Small 

car, 

Motorcycle 

(3) 

Training: 227 

Testing: 200 

Heavy vehicle 

(98.5%) 

Small car 

(96.92%) 

Motorcycle 

(91.94%) 

[5.2]  

S. Gupte, et 

al. 

Vehicle 

dimensions 

Parameters 

matching 

Passenger & 

Non-

passenger 

vehicles (2) 

Training: 100 

Testing: 20 

min of 

freeway traffic 

90% were 

tracked, 70% 

of the tracked 

vehicles are 

correctly 

classified 

[5.3] 

D. Koller, et 

al. 

Parameterized 

3D models 

Decision 

functions 

Sedan & 

Hatchback (2) 

Training: 

unspecified 

Testing: 3 

All the 3 

presented 

cases are 

correct 

[5.5] 

G. D. 

Sullivan, et 

al. 

 

Wire-frame 3D 

models 

Hyporeport 

generation, 

tracking & 

verification 

Passenger & 

Van (2) 

Training: 

unspecified 

Testing: 54 

96% correct 

[5.6] 

Yuan, et al. 

Perspective 

projections, 

dimension 

profiles 

k-Nearest 

Neighbor, 

heuristics 

Passenger, 

Van, Pickup, 

Bus, Truck 

(5) 

Training: 50 

Testing: 280 

91% correct 

Table 5.1.1.1 Summary of pervious researches on vision-based vehicle classification 

 
In a simple single camera system, a vehicle may be categorized according to its length and 
height according to its two dimensional image. In [5.2], such a system is described. The 
vehicle images are first separated from the background by a segmentation process. In order 
to tackle the occlusion that occurs when one moving vehicle masks another at the same 



 77

time, individual vehicle tracking is done based on the image sequences. The vehicle 
parameters are recovered from the 2-D projections of the tracked vehicle. Based on the 
extracted parameters (mainly length and height), vehicles are being classified. The 
experiments conducted in [5.2] with such a system shows a successful classification rate of 
70% for classifying the vehicles into two classes (passenger and non-passenger). 
 
An object classification approach that uses parameterized three-dimensional models is 
described in [5.3]. A generic sedan model, represented by a 3D polyhedral model described 
by 12 length parameters, is used to cover the different shapes of road vehicles. Moreover, 
the University of Reading has done extensive work in three-dimensional tracking and 
classification using model matching methods [5.4]. Three-dimensional wire-frame models 
of various types of vehicles (e.g., sedans, hatchbacks, wagons, etc.) were developed. 
Projections of these models were compared to features extracted from the image. Real-time 
classification performance is achieved by a simplified version of the model-based tracking 
approach that uses orthographic approximations [5.5], a classification rate of 96% is 
achieved for classifying 54 vehicles into two classes (passenger and van)3. Besides using 
the dimensional parameters, other methodologies like k-Nearest Neighbor [5.6] and 
artificial neural network [5.1] are also being used. Both experiments in [5.6] and [5.1] show 
a classification rate of over 90%. 
 
5.1.2 Vehicle Classification by Inductive Loop Signature 
Conventionally, inductive loop detector cards operate in a detection mode, which only 
provide the up and down times of the vehicle detection event. However, new detector cards 
are being manufactured with the capability to output the raw inductive loop measurements, 
known as the vehicle inductive signature. This signature is the result of the net decrease in 
the inductance when a vehicle’s conducting part passes over the magnetic field generated 
by the inductive loop. 
 
Reference Features Methodology Classes Sample 

Sizes 
Classification 
Rate 

Decision tree Table 

5.1.2.3 

(7) 

Training: 150 

Testing: 150 

Overall rate is 

90% 

[5.7] 

Sun, et al. 

Lengths, 

magnitude and 

moments of 

inductive 

signatures 

SOFM Table 

5.1.2.4 

(4) 

Training: 26 

Testing: 137 

80% 

[5.8] Pursula, 

et al. 

Inductive 

signatures 

SOFM, learning 

vector, 

quantization 

Table 

5.1.2.2 

(7) 

Training: 663 

Testing: 737 

96.2% 

Table 5.1.2.1 Summary of research on inductive loop-based vehicle classification 

                                                 
3 Training sample size is unspecified in the reference 
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Class code  Description  

1  Car or van  

2  Truck  

3  Bus  

4  Truck with semi-trailer  

5  Truck with trailer  

6  Car with trailer  

7  Car with mobile home  

Table 5.1.2.2 Seven-class scheme used by Pursula and Pikkarainen [5.8] 

Vehicle classification was done based on this inductive signature together with other 
parameters obtained from the inductive loop detector. Pursula and Pikkarainen [5.8] used 
the seven class scheme in Table 5.1.2.2 for classification using double inductive loop 
signatures. Inductive loops of the size 3 x 2 meters were used in an array configuration for 
better accuracy. Self-Organizing Feature Map (SOFM) [5.9] was used with the inductive 
signature as inputs. A SOFM is an Artificial Neural Network (ANN) that forms clusters of 
neurons which reflect similarities in the input vector. A correct classification rate of 80% 
was achieved with the training set. In addition to the SOFM, length windows and Learning 
Vector Quantization (LVQ) [5.10] were also applied. The resultant correct classification 
rate was 96.2% out of 737 vehicles. 
 
Class code  Description  

1  Car, minivan, sports, station, wagon  

2  SUV, pickup truck  

3  Van, full-size pickup truck 

4  Limo 

5  2-axle truck 

6  Vehicle with trailer, bus 

7  Truck with more than 2 axles 

Table 5.1.2.3 Seven-class scheme used by Sun [5.7] 

 
Class Code Description 

1  passenger car, minivan, sports car, station wagon  

2  SUV, full-size truck, pickup  

3  van, limousine  
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4  cargo truck, vehicle with trailers, bus, and truck with >2 axles  

Table 5.1.2.4 Four-class scheme used by Sun [5.7] 

In [5.7], Sun studied the use of existing infrastructure of loop detectors for vehicle 
classification with two distinct methods. The seven-class scheme shown in Table 5.1.2.4 
was used for the first method because it targets at vehicle classes that are not differentiable 
with current techniques based on axle counting. Its first method uses a heuristic 
discriminant algorithm for classification and multi-objective optimization for training the 
heuristic algorithm. Feature vectors obtained by processing inductive signatures are used as 
inputs into the classification algorithm. Three different heuristic algorithms were developed 
and yielded an overall classification rate of 90%. Its second method uses Self-Organizing 
Feature Maps (SOFM) [5.9] with the inductive signature as input. An overall classification 
rate of 80% was achieved out of 137 samples with the four-class scheme shown in Table 
5.1.2.4. 
5.2 Magnetic Signature Analysis 
As discussed in section 4.4.5, the magnetic signature generated by the magnetic sensor 
HMC1051Z [3.14] provides much more detail than an inductive loop signature. Such a 
difference in details level is clearly shown by comparing Fig. 4.2.3.1 and Fig. 4.4.5.1. In 
this section, a number of characteristics of the magnetic signature that are related to vehicle 
classification are studied. 
 
5.2.1 Directional Characteristics 
The magnetic sensor measures the Earth’s magnetic field, which has different inclination 
angles in different geographical locations. Since the Earth’s magnetic field is uniform over 
the surface in the scale of kilometer, vehicle signatures of the same vehicle measured at 
adjacent locations in the same traveling direction are expected to be the same. A simple 
experiment was conducted to confirm this characteristic in Richmond Field Station (RFS) 
at 08-25-2004 with a Toyota SR5. Two sensor nodes separated by 6 ft were placed in the 
middle of a lane. The magnetic signatures of the test vehicle from this two sensor nodes 
show a correlation coefficient of 0.99. This implies that they are virtually the same. A plot 
of the Z-axis measurements is shown in Fig. 5.2.1.1 below. 
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Fig. 5.2.1.1 Z-axis measurements of two nodes with a vehicle traveling in the same 

direction 

However, the Earth’s magnetic field line is not perpendicular to the ground surface except 
at the poles. Therefore, if the same vehicle is being measured when it is traveling in 
different directions, its magnetic signatures will be slightly different. In principle, with a 
known magnetic field inclination angle, the magnetic signatures can be normalized with 
respect to the direction of travel. However, the calculation required is too computationally 
expensive which is against the implementation objective of this research project. 
Fortunately, the Earth’s magnetic field line angle is ~65 degree from the ground in 
California [5.11]. This makes the directional difference in signatures not too significant 
when the difference in traveling direction is small.  
 
Another experiment was conducted to demonstrate this characteristic. Seven sensor nodes 
were placed side by side along a line perpendicular to the direction of travel. An array of 
sensor nodes is used to minimize the lateral offset effect in this experiment. Two test 
vehicles {Toyota Corolla 1989, Ford Taurus 1996} were driven over the sensor nodes in 
three different directions {straight, ~20 degree towards right, ~20 degree towards left}. 

 

Fig. 5.2.1.2 Experimental setup for the 

magnetic signatures directional 

characteristic demonstration 
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          (Eq. 5.2.1.1) 
The maximum products of the 3-axis correlation coefficients (Eq.5.2.1.1) among the seven 
sensor nodes in different runs are shown in Table 5.2.1.1 below. Excepting one case, the 
maximum product of correlation coefficients of the same test vehicle with ~20 degree of 
directional difference is still higher than 0.9. This makes the signatures acceptable for 
classification in California, as long as the difference of their traveling direction is less than 
20 degree.  
 

 Run A Run B Max Correlation coeff. 

    (X*Y*Z) 

Toyota Corolla (1989) Straight01 Straight02 0.946837292 

  Straight03 0.994854323 

  Heading Right 01 0.99555328 

  Heading Right 02 0.983367722 

  Heading Right 03 0.947829884 

  Heading Left 01 0.96826485 

  Heading Left 02 0.845703555 

  Heading Left 03 0.970848939 

    

Ford Taurus (1996) Straight01 Straight02 0.981689296 

  Heading Right 01 0.979513794 

  Heading Right 02 0.990692302 

  Heading Right 03 0.945619636 

  Heading Left 01 0.919551962 

  Heading Left 02 0.963439395 

  Heading Left 03 0.972325325 

    

 Corolla Taurus  

Corolla vs Taurus Straight01 Straight01 0.639722913 

  Heading Right 01 0.67434743 

  Heading Left 01 0.654170352 

Table 5.2.1.1 Maximum of the product of the 3-axis correlation coefficients among the 

seven sensor nodes in different runs in a directional characteristic experiment 
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5.2.2 Lateral Offset Characteristics 
As one goes from the front to the rear of a vehicle, the measured magnetic field varies 
significantly, depending on the lateral offset of the measurement.  To explore the 
magnitude of this variation, a set of magnetic measurements was taken for a Ford Taurus 
1996 with dimension 16 x 5 ft and 8” clearance. Three-second averaged measurements 
were taken at the grid positions shown in Fig. 5.2.2.1 below. The corresponding results are 
shown in Fig. 5.2.2.2. 
 

 
 

Fig. 5.2.2.1 Experimental layout (left) for the two dimensional magnetic measurement of a 

Ford Taurus 1996 (right) 

 

(a) Z-axis measurements, view 01 
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(b) Z-axis measurements, view 02 

 

(c) X-axis measurements, view 01 
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(d) X-axis measurements, view 02 

Fig. 5.2.2.2 Two-dimensional magnetic measurements of a Ford Taurus 

 
Let x denote longitudinal and y denote lateral position, with y=0 corresponding to the 
centerline.  From the plots above one may draw two conclusions.  First, the magnetic field 
shows a rough lateral symmetry: the field at (x,y) is similar to the field at (x,-y).  The 
bilateral symmetry is a consequence of the symmetry of the vehicle’s mass distribution 
which is necessary for mechanical balance.    
 
More importantly, however, the magnetic field as a function of x for different lateral offsets 
y can be completely different. An experiment was designed to demonstrate this 
characteristic with the setup shown in Fig. 5.2.2.3. Two sensor nodes were placed with a 
fixed offset distance from the middle of lane in opposite direction. The magnetic signature 
of a test vehicle {Toyota SR5} was recorded while it was traveling in both directions 
{right-to-left, left-to-right}.  

 

Fig. 5.2.2.3 Experimental setup for a lateral offset experiment 
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(a1) No offset,  traveling from right to left (a2) No offset,  traveling from left to right 

 

(b1) 10 cm offset, from right to left (b2) 10 cm offset, from left to right 

 

(c1) 20 cm offset, from right to left 

 

(c2) 20 cm offset, from left to right 
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(d1) 30 cm offset, from right to left 

 

(d2) 30 cm offset, from left to right 

Fig. 5.2.2.4 Z-axis measurements of a Toyota SR5 with sensor nodes placed at positions with 

opposite lateral offset from the middle of lane 

 
The corresponding Z-axis measurements are shown in Fig. 5.2.2.4. It is evident that there is 
a large difference between the signatures form nodes A and B even at the small offset of 10 
cm. Such a characteristic poses a challenging problem for vehicle classification because it 
is difficult to keep a vehicle traveling with the same lateral offset at different sites. A 
simple solution would be to use an array of sensor nodes and pick the data pair with the 
highest correlation coefficient as the sample for classification. More details of this 
approach are discussed in section 5.3. 
 
5.2.3 Magnetic Signature Examples 
In this section, examples of vehicle magnetic signature from different classes of vehicle are 
presented. For better readability, the smoothed signal as described in section 4.2 was 
plotted. The Y-axis measurement is omitted as it is usually corrupted by the magnetic 
signals from vehicles traveling in adjacent lanes. These data were collected at an 
intersection on Hearst Ave., Berkeley, CA, with the sensor node placed in the middle of the 
lane. The signatures are plots of magnetic measurements [unit] against time [s] without any 
normalization. Plots in the same row represent measurements of different magnetic axes. 
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Fig. 5.2.3.1 Magnetic signatures of two Honda passenger vehicles 

 
Fig. 5.2.3.2 Magnetic signatures of two Volkswagen passenger vehicles 
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Fig. 5.2.3.3 Magnetic signatures of two Toyota passenger vehicles 

 
Fig. 5.2.3.4 Magnetic signatures of four SUVs 
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Fig. 5.2.3.5 Magnetic signatures of four Vans 

 

     
Fig. 5.2.3.6 Magnetic signature of a long bus 
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Fig. 5.2.3.7 Magnetic signatures of four pickup trucks 

 

 
Fig. 5.2.3.8 Magnetic signatures of a two-axle truck 

 
By visual inspection alone one can observe distinguishable magnetic signature patterns 
among different classes from these examples. The problem is to extract these patterns from 
the signatures using a classification algorithm that can be executed in real-time and which, 
at the same time, is simple enough to be implemented within the power constraints of a 
wireless sensor networks. The proposed data processing and classification schemes are 
discussed in detail in the following sections. 
 
5.3 Data Processing and Classification Schemes 
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One can estimate the fraction of traffic due to long vehicles (trucks) and short vehicles 
(passenger cars) from 30-second average single loop measurements of occupancy and 
counts or volume [5.12][5.13]. The key idea is to this.  Recall that  

  
speed
lengthflowOccupancy ×=   

So, knowing occupancy, flow and speed, one can estimate the average length l.  If trucks 
have a known average length of l1 and passenger cars have a known average length of l2, 
then the fraction p of trucks can be estimated from the relation 

.)1( 21 lppll −+=  
 
However, this idea will not work if there are three or more vehicle classes or if 
classification of individual vehicles is needed.  In these cases one requires finer 
measurement. As discussed in section 5.1, conventional classification approaches either 
involve extensive computation or require a large amount of communication between the 
sensor nodes and base station, both of which are undesirable for the implementation on a 
wireless sensor network with its limited computational resources and energy for 
communication. 
 
With this in mind, new data processing and classification schemas were developed aimed at 
using the wireless sensor network as a deployment platform. A block diagram of the data 
processing components for vehicle classification is shown in Fig. 5.3.1 below. The signal 
“Pre-processing” and “Vehicle Detection” components have already been discussed in 
Chapter 4.  
 
With the help of the detection flags, the “Vehicle Signature Extraction” component extracts 
the signature of vehicle i xi, from a buffer of the raw signal. Because vehicles have unequal 
lengths and may travel over the magnetic sensor with different speeds, the vehicle 
signatures will have unequal size (number of samples).  The “Transformation” component 
connects the signature xi, of size ni into a data format ti of fixed vector size N.  Next, a 
principal component analysis is performed to compresses the signature ti to pi. Finally, 
classifiers are applied to generate the classified vehicle class (yi). Each of these processing 
steps is discussed in detail in the following sections. 
 

 
Fig. 5.3.1 Block diagram of the process flow of vehicle classification 
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5.3.1 Vehicle Signature Extraction 
The vehicle signature extraction process is straightforward. The smoothed signal a(k) is 
first stored in a time-stamped buffer. Once a detection event is committed by the vehicle 
detection algorithm, the signature of vehicle i xi, is extracted from the time-stamped buffer 
with a time window between {up-time – pre-defined extension} and {down-time + pre-
defined extension}: 

   
          (Eq. 5.3.1.1) 
The pre-defined extension is a parameter that represents a small time window (e.g. 0.2s) 
that one would like to include in addition to the detected event time window, in case signals 
with small amplitude are not caught by the detection events. 
 
5.3.2 Transformation into Average-Bar and Hill-Pattern 
The vehicle signatures can have a large and unequal sample vector size ni. For vehicle 
length ranging from 5 to 20 meters and speed ranging from 2 to 25 m/s, the detection event 
duration will range from 0.2 to 10s. With a sampling rate of 128 Hz for each magnetic axis, 
the resultant sample vector size ranges from 75 to 3840 samples. 
 
Conventionally, the magnitude of the data samples is normalized to 0 mean, magnitude 
between {-1, 1} [5.28], and re-sampled to a fixed size M (e.g. M = (75+3840)/2 = 1958). 
However, this step is computationally expensive, on the order of the vector size (ni) since 
interpolation processes have to be done between all sample points. The resulting vector of 
size M is still so large that its transmission would consume too much power. According to 
the analysis in section 5.2, instead of a very detailed signature with all tiny tips, a smooth 
pattern of the “peak” and “valley” is already good enough for a reasonable classification. 
Therefore, two transformations, called “Average-Bar” and “Hill-Pattern,” are designed to 
convert the vehicle signatures of variable vector size (ni) into one with fixed vector size 
(N): 

    
  
          (Eq. 5.3.2.1) 
These two transformations are computationally simple enough to be implemented in a 
sensor node.  The resulting small vector size (N) (e.g. 20) makes radio transmission of the 
transformed data (ti) feasible from the viewpoint of power consumption. This permits the 
base station to collect and centralize all the transformed signatures for further classification 
processing. These two transformation processes are discussed in this section. Their 
classification performance and experimental results are presented in section 5.4. 
 
5.3.2.1 Average-Bar (AB) 
Average-Bar (AB) is a transformation process designed to trim down the vector size (ni) of 
vehicle signature (xi) into one with small and fixed vector size (N), while retaining enough 
pattern information in the transformed data (ti) for further classification. The idea is simple.  
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We take a signature vector of size ni, group the samples into N sub-vectors and replace each 
of them by its average value.  More precisely, the Average-Bar transformation process is: 
i, Consider the signature (xi) with time window K(i) 

      
          (Eq. 5.3.2.1.1) 
ii, Time window K(i) is divided into N sections 

   
          (Eq. 5.3.2.1.2) 
iii, The transformed data (tAverageBar(i)) with vector size N is given by 
 

  
          (Eq. 5.3.2.1.3) 
Whereas a(q) is a smoothed signal of the signature. Fig. 5.3.2.1.1 below shows three 
examples of the Average-Bar transformation from the vehicle signature of three 2-axle 
trucks (FWHA class 5). Signatures of 5 to 8 s and sample vector size 640 to 1024 for each 
magnetic axis were transformed to a fixed vector size of 20. 

(a)  
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(b)  

(c)  

Fig. 5.3.2.1.1 Three examples of the Average-Bar transformation from vehicle signatures 

of three 2-axle trucks (FWHA class 5). 

 
iv, Depending on the classification scheme, it can be further normalized to one with 
magnitude between [-1, 1] 
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      (Eq. 5.3.2.1.4) 
 
Fig. 5.3.2.1.2 shows an example of the Average-Bar transformation with magnitude 
normalization. Observe that the Average-Bar pattern of the same vehicle traveling at 
different (constant) speeds is the same. Thus speed information of the vehicle is not 
necessary for Average-Bar processing. This is a significant advantage over other re-
sampling techniques that require speed normalization, in which case two sensors are 
needed to obtain speed and so the re-sampling cannot be done locally within a sensor node.  
Secondly, as will be seen in section 5.4, we find that N = 10 or N=20 is sufficient for 
purposes of classification.  This is a significant reduction from the original signatures 
which can have average size of 1,000 samples.   

 
Fig. 5.3.2.1.2 Example of the Average-Bar transformation with normalized magnitude 

 
 
5.3.2.2 Hill-Pattern 
Hill-Pattern (HP) is a transformation process designed to dramatically compress the vehicle 
signature into a three-valued {+1, 0, -1} signal, while keeping the minimum essential 
amount of pattern information needed for classification. This numerically simple 
transformation packs the signal into a highly compressed one, and makes the classification 
computationally cheap, power efficient and executable in real time. It is very surprising that 
although almost all of the information in the original signature is dropped by the Hill-
Pattern procedure, the classification results remain at a reasonable level with such a simple 
algorithm. The construction of the Hill-Pattern process is described next while its 
corresponding classification performance is discussed in section 5.4. 
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Intuitively, the Hill-Pattern process extracts the pattern of “peaks” and “valleys” exhibited 
by the smoothed vehicle signature (xi). A peak is a local maximum and a valley is a local 
minimum of the signal xi.  Thresholds have to be employed to avoid tiny fluctuations in the 
signal from contributing to a peak or valley. The precise steps in the Hill-Pattern process 
are as follows. 
 
i, The rate of change of the signal is first transformed into an intermediate ternary or {+1, 0, 
-1}-valued signal according to some pre-defined threshold levels 

        
          (Eq. 5.3.2.2.1) 
ii, An ad-hoc state machine is used to filter out peaks and valleys (local maxima and 
minima)  with small amplitude or short duration. The state diagram is shown in Fig. 
5.3.2.2.1. Unless the amplitude and duration of a hill pattern is large enough, the last hill 
pattern value will be adopted. Therefore, all the small and short hill pattern can be filtered 
out. 
iii, In the example shown in Fig. 5.3.2.2.2, the resultant hill-pattern 2-bit array is [+1 -1 +1 
-1]. 
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Fig. 5.3.2.2.1 State diagram of the ad-hoc state machine designed to filter out hill patterns 

with small amplitude or short duration 
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Fig. 5.3.2.2.2 Example of the hill pattern transformation process, [+1 -1 +1 -1] 

 

(a)  

(b)  
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(c)  

Fig. 5.3.2.2.3 Three examples of the Average-Bar transformation from vehicle signatures 

of three 2-axle trucks (FWHA class 5). 

 
5.3.3 Principal Component Analysis 
With the Average-Bar and Hill-Pattern transformation processes discussed above, the 
vehicle signature is now a vector of size at most 20 for each magnetic axis. However, a 
combined dimension of 60 may still be too large to be presented directly to a classifier with 
limited computation power. In view of this, the Principal Component Analysis (PCA) is 
used to further trim down the signature’s dimension. 
 
The PCA, also known as Karhunen-Loeve (KL) method [5.14], provides a principled way 
to reduce the dimension of the data. It is a linear transformation that transforms data vectors 
to a new coordinate system such that the greatest variance by any projection of the data 
comes to lie on the first coordinate, the second greatest variance on the second coordinate, 
and so on. It is used to reduce the dimension in a dataset while retaining those 
characteristics of the dataset that most contribute to its variance. It is used frequently in 
speech data compression and image analysis [5.15]. The objective of PCA is to find a set of 
n mutually orthogonal vectors {e1 e2 … en}, such that e1 is the direction in the original data 
with maximum variance; e2 is the one with the second largest, and so on. This orthogonal 
set {e1 e2 … en} is called the set of principal components, and it is used as the basis for the 
coordinate transformation that gives an alternative representation of the data.  
 
Let X be the matrix whose rows are the row vectors {x1’,  x2’, … xm’} of the target data set, 
with data size (m) and dimensionality (n). The covariance matrix C of the data is  
  mC = X’X       (Eq. 5.3.3.1) 
The first principal component e1 is the solution of: 

    (Eq. 5.3.3.2) 
Similarly, e2 is obtained by searching for the maximum of e’Ce in the subspace orthogonal 
to e1, and so on. The resultant principal components {e1 e2 … en} are also the eigenvectors 
of the covariance matrix C with the n largest eigenvalues and the variance in these 
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directions are given by the corresponding eigenvalues. One way to find the principal 
components is through Singular Value Decomposition (SVD) [5.16]. Recall that the SVD 
of X is 
  X = USV’,       (Eq. 5.3.3.3) 
in which U, V are orthogonal matrices and S is diagonal. The columns of U are called left 
singular vectors (uj), the rows of V are called right singular vectors (vj) and the diagonal 
values of S are called the singular values (sj). The ordering of the singular vectors is 
determined by high-to-low sorting of singular values, with the highest singular value in the 
upper left index of the S matrix. The covariance matrix C can be written as: 
  C = X’X = VS2V’      (Eq. 5.3.3.4) 
As a result, the eigenvectors (principal components) and eigenvalues (variances in 
corresponding direction) of C are given by the right singular vectors vj and sj

2. Linear 
transformation on the data can be done with these principal components, giving: 

     (Eq.5.3.3.5) 
This new representation is useful because it allow us to reduce the dimensionality 
according to the magnitude of the corresponding variances. Suppose the dimension is 
reduced by projecting the data up to the first J principal components only. The fraction of 
variance that is retained in the J principal components is 

         (Eq. 5.3.3.6) 
Where λ are the eigenvalues of S. The performance of PCA on the vehicle signature dataset 
is studied in section 5.4. 
 
5.3.4 Classifiers 
Following Fig. 5.3.1, the transformation and PCA processes convert the original signature 
xi into the signature pi.  Finally, a classifier makes the classification decision based on pi.  
Thus a classifier is a function that assigns to pi a vehicle class yi.  This assignment may be 
correct or incorrect.  The performance of a classifier is summarized by the fraction of 
vehicle signatures that are correctly assigned.    
 
Typically, a classifier is selected from a parameterized set of functions.  The parameter is 
set to a value at which the function correctly classifies a set of training signatures.  (A 
training set is simply a set of signatures each of which is labeled with its correct class.)  
Evidently the larger is the parameterized set of potential classifiers, the larger needs to be 
the training set.  This may lead to a classifier that is computationally intensive. 
 
The proposed solution is to have the classifier running on a powerful computational 
platform, connected to the base station with simplified signatures (Average-Bar or Hill-
Pattern with Principal Component Analysis) collected from the sensor nodes. The 
algorithms of three classifiers are studied in this section. They are: k-Nearest Neighbor (k-
NN), Support Vector Machine (SVM) and Direct Hill-Pattern Matching. 
 
5.3.4.1 k-Nearest Neighbor (k-NN) 
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k-Nearest Neighbor (k-NN) [5.17][5.18] classification algorithm, is one of the simplest, 
yet very powerful, classification methods. It is based on the assumption that data samples 
that are close in the instance space belong to the same class. Therefore, an unseen instance 
should be classified as the majority class of its k nearest neighbors in the training dataset.  
The training phase of the algorithm consists in storing the feature vectors and class labels 
of the training samples. In the actual classification phase, the same features as before are 
computed for the test sample (whose class is not known). By default, Euclidean distance is 
used as a measurement of distance between the test sample and the training samples. A 
summary of some common distance calculation methods is shown in Table 5.3.4.1.1 
below. 
 

(a) Euclidean distance 
 

(b) Sum of absolute differences 
 

(c) Correlation  

(d) Hamming (for binary data) 
 

Table 5.3.4.1.1 Summary of distance calculation methods for k-NN (where i is the index of 

the vector elements) 

Distances from the new test sample to all samples in the training dataset are computed and 
the k closest samples are selected. By default, the new point is predicted to belong to the 
majority class within the set. A summary of some common decision making rules is shown 
in Table 5.3.4.1.2.  
 
(a) Nearest Majority rule with nearest point tie-break 

(b) Random Majority rule with random point tie-break 

(c) Consensus Assign “Not classified” unless all the neighbors are in the same class 

Table 5.3.4.1.2 Summary of the decision making rules for k-NN 

 
Because of the uneven distribution of number of training sample in each of the vehicle 
class, a modified decision making rule is used:  
i, After calculating the distances between a test sample and all the training samples, k 
training samples with nearest distance (d) and class (c) are chosen into set K 
  K∈{(d1, c1) (d2, c2) … (dk, ck)}    (Eq. 5.3.4.1.1) 
ii, Distance (d) is corrected by a factor according to its class (c) 

   (Eq. 5.3.4.1.2) 
The correction factor increases the distance to classes with a higher proportion in the 
training samples. 
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iii, If minimum corrected distance rule is used, the class of the sample with the minimum 
corrected distance is assigned to the test sample, with majority tie-break 

      (Eq. 5.3.4.1.3) 
iv, If average corrected distance rule is used, the class with the minimum average corrected 
distance is assigned to the test sample, with majority tie-break 

    (Eq. 5.3.4.1.4) 
 
The best choice of k depends upon the data. Generally, a larger value of k reduces the 
effect of noise on the classification, but makes boundaries between classes less distinct. 
Theoretically, k can be selected by parameter optimization using cross-validation. The 
special case that the class is predicted to be the class of the closest training sample (i.e. 
when k = 1) is called the nearest neighbor algorithm. k = 5 was adopted in the experiments 
in section 5.4. 
 
Bayesian error rate is the minimum achievable error given the distribution of the data, so it 
often acts as an evaluation parameter. Suppose, the distribution of x is known, the Bayesian 
error for classifying a test sample into class C is given by 

   (Eq.5.3.4.1.5) 
The nearest neighbor algorithm has some strong consistency results. As the amount of data 
approaches infinity, the algorithm is guaranteed to yield an error rate lower bounded by the 
Bayesian error rate and upper bounded by twice the Bayesian error rate [5.19].   

     (Eq. 5.3.4.1.6) 
 
The k-NN algorithm is easy to implement, but it is computationally intensive, especially 
when the size of the training dataset grows. Many schemes that seek to reduce the number 
of distances actually computed have been proposed over the years. Some schemes involve 
partitioning the feature space, and only computing distances within specific nearby 
volumes [5.20].  
 
5.3.4.2 Support Vector Machine (SVM) 
Maximum-Margin Hyperplane 
Support Vector Machine (SVM) was first introduced in 1992 by B.E. Boser [5.21]. It is a 
set of supervised learning methods used for classification and regression. It became popular 
because of its success in handwritten digit recognition [5.22]. Its concept is based on a 
binary linear classification problem. Consider a task of classifying some data (x∈Rn) into 
two classes that can be separated linearly. The problem is to determine whether a 
hyperplane exists that can separate the data points of that two classes. Fig. 5.3.4.2.1 shows 
an example of hyperplane in a binary classification problem. 
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Fig. 5.3.4.2.1 Example of hyperplane in 

a binary classification problem 

Fig. 5.3.4.2.2 Example demonstrating the 

maximum-margin hyperplane concept 

 
The hyperplane should be chosen in such a way that the distance between the closest data 
points from both classes is maximized. This critical distance is called margin (m), and the 
corresponding hyperplane is called maximum-margin hyperplane. Fig. 5.3.4.2.2, shows an 
example demonstrating the maximum-margin hyperplane concept. The maximum-margin 
hyperplane can be found by the following procedure: 
i, Let {x1, …,xn} be the dataset, and let yi ∈ {1, -1} be the class label of xi 
ii, The hyperplane should classify all points correctly: 

        (Eq. 5.3.4.2.1) 
iii, The margin (m) is given by 

         (Eq. 5.3.4.2.2) 
iv, The maximum-margin hyperplane can be found by solving this constrained optimization 
problem  

   
          (Eq. 5.3.4.2.3) 
v, This turns out to be a Quadratic Programming (QP) optimization problem 

Lagrangian 
 (Eq. 5.3.4.2.4) 

where α is the Lagrange multiplier.      

 
The parameters of the maximum-margin hyperplane are derived by solving this QP 
optimization problem. There exist several specialized algorithms for quickly solving the 
QP problem that arises from SVM. The most common method for solving the QP problem 
is Platt's Sequential Minimal Optimization (SMO) algorithm [5.23]. 
 
Soft Margin Hyperplane 
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A modified maximum margin idea that allows for mislabeled examples is suggested by 
Corinna Cortes and Vapnik [5.24]. If there exists no hyperplane that can split all the data 
correctly, the Soft Margin method will choose a hyperplane that splits the data as cleanly as 
possible, while still maximizing the distance to the nearest cleanly split data. An example 
demonstrating the soft margin concept is shown in Fig. 5.3.4.2.3, with error measurement 

. 

 
Fig. 5.3.4.2.3 Example demonstrating the soft margin hyperplane concept 

The optimization problem becomes 
   
    
      
where C is a tradeoff parameter between error and margin 

   

   
       (Eq. 5.3.4.2.5) 
It is very similar to the hard margin case, except that there is now an upper bound C on αi. 
 
Non-linear SVM Classifier 
An extension of SVM to non-linear classification was suggested by Bernhard Boser, 
Isabelle Guyon and Vapnik [5.25]. The key idea is to transform the input space (x∈Rn) into 
a feature space (x∈Rf) with higher dimension (f > n) by a transformation function φ(.), so 
that linear operations can be applied.  

 
Fig. 5.3.4.2.4 Transformation of input space into the feature space 
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However, the computation in the feature space can be costly because of its high dimension. 
The Kernel trick is applied to avoid the explicit mapping, by replacing the inner product 
xi

Txj with the kernel function [5.26] 
      (Eq. 5.3.4.2.6) 
There are several choices of the kernel function that define different notions of similarity. 
The one used in this research project is the Radial Basis Function (RBF) kernel (Eq. 
5.3.4.2.7). It is popular because it is numerically stable (maps all values to [0 1]) and 
approximates the linear kernel within certain ranges: 

      (Eq. 5.3.4.2.7) 
 
Multi-class SVM Classifier 
A direct solution of the multi-class problem using a single SVM formulation is usually 
avoided because of the complexity. Instead, a combination of several binary SVM 
classifiers is used to solve a multi-class problem with the one-versus-rest or one-versus-one 
approach. 
 
Consider a classification problem with (m) classes. The one-versus-rest approach designs a 
binary classifier for each class, assigning the target class with class index +1 and all the 
other classes with -1. A new sample is tested against all the m classifiers. If more than one 
of them gives classification results of +1, it will be assigned to the one with maximum 
distance from its hyperplane. The one-versus-one approach applies a binary classifier to 
each pair of the distance classes. A new sample is tested against all m(m-1)/2 classifiers. 
Each of the classification result counts as one vote for the corresponding class. In the end, 
the sample is assigned to the class with maximum number of votes. According to [5.27], 
the performance of these two approaches is competitive. 
 
5.3.4.3 Direct Hill-Pattern Matching 
This computationally extremely simple classifier is designed in such a way as to implement 
the whole classification process within a sensor node. Again, there is a tradeoff between 
classification performance and simplicity of the algorithm. The main data input is the 3-bit 
hill-pattern array discussed in section 5.3.2.2. It is virtually a table-looks-up classifier once 
the training phase is done. The algorithm is as follows: 
 
i, With a training dataset of N classes comprising m samples {(hx1, hy1, hz1, c1), …(hxm, hym, 
hzm, cm)}, the counts of a specific hill-pattern array belonging to each class are recorded: 
hxi, hyi, hzi are the hill-pattern arrays of X, Y and Z-axis respectively, and ci is the 
corresponding correct class. 
    
          (Eq. 5.3.4.3.1) 
ii, A probability distribution of different classes of each hill-pattern array is calculated 
according to the counts in step (i). 

   (Eq. 5.3.4.3.2) 
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iii, When a set of testing hill-pattern arrays {hxi, hyi, hzi} is given, a combined probability 
distribution is calculated according to the product of its probability distributions in different 
axes. And the class with the maximum combined probability will be assigned to the test 
sample.  
 
  

    (Eq. 5.3.4.3.3) 
iv, In case a new hill-pattern array (hnew) is presented, it will be fitted to its closest hill-
pattern array according the following algorithm: 
   
 (hnew,I) and (hi,I) are constructed by adding elements to the shorter array in a way 
that the number of matching elements is maximized. 

   
 (hnew,D) and (hi,D) are constructed by deleting elements from the longer array in a 
way that the number of matching elements is maximized. 
   
  The closest hill-pattern array is identified as the one with a minimum 
overall factor. 

   
          (Eq. 5.3.4.3.4) 
The performance of this simple classifier counts on a rich training dataset to provide a good 
enough hill-pattern arrays statistics database. It may not be the best in terms of correct 
classification rate, but it is simple enough to be implemented by the microprocessor in the 
sensor node in real time. Its experimental results and analysis are presented in the next 
section. 
 
5.4 Experimental Results and Analysis 
A number of experiments focusing on vehicle classification are discussed in this section: 
5.4.1 discusses the FHWA class scheme used in the classification experiments. 5.4.2 
(Dataset C1) presents the results of a preliminary experiment aimed at testing the feasibility 
of using Hill-Pattern for classification.  5.4.3 (Dataset C2) presents the classification results 
of 256 trucks using Hill-Pattern with a direct matching classifier. 5.4.4 (Dataset C3) 
presents the classification results of 839 vehicles with different combination of 
transformations and classifiers. 5.4.5 (Dataset C4) presents the classification results of 864 
trucks using magnetic lengths for a two-level classification. 
 
5.4.1 FHWA Classification Schemes 
Various classification schemes are tailored to the needs of different transportation 
applications. The most well-known is the 13-class Federal Highway Administration 
(FHWA) scheme shown in Table 5.4.1.1. It reflects the main concern of most 
transportation applications: commercial vehicles. The number of axles is an important 
distinguishing factor in the scheme. Most other schemes are derived by aggregating the 
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FHWA scheme into fewer classes, with less emphasis on trucks and other commercial 
vehicles. 

 
Table 5.4.1.1 13-classes FHWA classification scheme 

 
The classification of trucks is of particular interest in many applications. Trucks and other 
oversized vehicles have distinctly different performance characteristics from passenger 
vehicles. They travel at a slower speeds, occupy more road space, induce more damage to 
the pavements, require longer braking distance and time, and are sometimes lane-restricted. 
In terms of traffic flow considerations, an accurate measurement of trucks on the road will 
lead to more accurate modeling and simulation of the traffic. In terms of pavement 
management, the truck information is useful in the design of new pavement and the life 
time analysis of the existing pavement. Therefore, the classification experiments discussed 
below is mainly focused on trucks. 
 
5.4.2 Preliminary Hill-Pattern Classification (Dataset C1) 
This section presents the results of a preliminary Hill-Pattern classification experiment. The 
objective is to study the feasibility of using the simple Hill-Pattern arrays [section 5.3.2.2] 
in classification. The magnetic signatures of 37 vehicles (Dataset C1) were collected by a 
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single dual-axis (Z and X) sensor node, sampling at 64 Hz for each of the axis. The 
distribution of vehicle classes in dataset C1 is shown in Table 5.4.2.1. Hill-Patterns of 
signatures were generated as discussed in section 5.3.2.2. And the direct hill-pattern 
matching classifier discussed in section 5.3.4.3 is used for classification. 
 
Class Passenger (P) SUV Van Pickup-Truck Bus 

Observed 15 7 5 7 3 

Table 5.4.2.1 Distribution of vehicle classes in dataset C1 

 
Fig. 5.4.2.1 displays the signatures and hill patterns of four passenger vehicles (P).  There 
are six plots per vehicle.  The top row shows the magnetic signatures of Z and X-axis 
(along direction of travel).  The second row shows the corresponding hill patterns.  All the 
passenger vehicle cases shown in Fig. 5.4.2.1 give a single “peak” pattern in the Z-axis 
measurements, resulting in a hill-pattern array of {+1, -1}. Similarly, a “valley” followed 
by a “peak” pattern is shown in the X-axis measurements, resulting in a hill-pattern array of 
{-1, +1, -1}. These extracted common hill-pattern arrays were used with the direct 
matching classifier. The third row gives the outcome of the classifier, which classifies the 
signature into seven classes defined in Table 5.4.2.2.  All the cases in Fig. 5.4.2.1 are 
correctly classified. 

 
Fig. 5.4.2.1 Vehicle signatures and hill-patterns of four passenger vehicles in dataset C1 
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Fig. 5.4.2.2 displays the signatures, hill patterns and classifications of four SUVs. Except 
for the bottom left case, the Z and X-axis hill-pattern arrays of all the other three cases are 
different from those of passenger vehicles. These hill-pattern arrays are {-1. +1. -1} and 
{+1, -1, +1, -1} respectively. However, the bottom left case is misclassified as a passenger 
vehicle, because its initial negative slope of the Z-axis measurements is too small in 
magnitude to cross the threshold, and an initial positive slope in X-axis measurements is 
missing. It is possible that this SUV has a different build from others, making its signature 
similar to that of a passenger vehicle. If this kind of SUV is longer than passenger vehicles 
in general, using magnetic length as a classification feature might lead to a correct 
classification. 
 

 
Fig. 5.4.2.2 Vehicle signatures and hill-patterns of four SUVs in dataset C1 

 
Fig. 5.4.2.3 displays the signatures, hill patterns and classifications of four Vans.  Three out 
of four cases are correctly classified.  The common hill-pattern arrays of Vans are {+1, -1, 
+1, -1} and {-1, +1, -1} for Z and X-axis respectively. The Z-axis measurements of the 
misclassified case do have two peaks, but the magnitude of the first one is too small to 
cross the threshold.  Again, incorporation of magnetic length might have helped.   
 

X 
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Fig. 5.4.2.3 Vehicle signatures and hill-patterns of four Vans in dataset C1 

 
The confusion matrix of different classification schemes with full dataset training is shown 
in Table 5.4.2.2. and 5.4.2.3. Using the 7-classes scheme defined in Table 5.4.2.2, 24 out of 
37 vehicles (63%) are correctly classified.  A FHWA-based scheme is indicated in Table 
5.4.2.3, with passenger vehicles and SUVs belong to FHWA class 2, Vans and pickup 
truck belong to FHWA class 3 and buses belongs to FHWA class 4. 31 out of 37 vehicles 
(83%) are correctly classified in terms of this FHWA-based scheme.

X 
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 Classified as 

Observed 
P SUV Van Bus Pickup 

Van or 
Pickup

 P                  15 11 4     

SUV              7 3 4     

Van               5 1  1   3 

Bus                3    3   

Pickup           7 

 

4 1   2  

Table 5.4.2.2 Confusion matrix of dataset C1 classification with a 7-class scheme 

 
  Classified as 

Observed  FWHA-2 FWHA-3 FWHA-4 

FWHA-2  (P+SUV)                  22  22   

FWHA-3 (Van + Pickup)         12  6 6  

FWHA-4 (Bus)                         3    3 

Table 5.4.2.3 Confusion matrix of dataset C1 classification with a FHWA based scheme 

 
Although the sample size of this dataset (C1) is too small to make any firm judgment, 
promising results were shown by the hill-pattern technique. A reasonable classification rate 
is achieved by using a simple classifier based on the signatures from a single sensor node. 
Even though the data in this experiment were generated off-line, the real time 
implementation of such a simple algorithm is quite feasible.  
 

5.4.3 Hill-Pattern Classification of 256 Trucks (Dataset C2) 
As discussed in section 5.4.1, the classification of trucks is of special interest in many 
applications. A four-hour trace of 3-axis magnetic measurements sampling at 128Hz for 
each axis was recorded at a weigh-in-motion station on I-880 in Fremont, CA on Dec 21st, 
2004. The signatures of 256 trucks were collected with speed and magnetic length 
estimations obtained by a sensor node pair as described in chapter 4. Ground truth of the 
vehicle classes was extracted manually from the recorded video. A total of five different 
classes of truck were found in dataset C2. The distribution of vehicle classes and estimated 
magnetic lengths is shown in Table 5.4.3.1. 
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  Estimated Magnetic Length [m] 

FWHA Class Counts 
 

Mean Min Max Std 

 

5 131 11.11 6.29 30.54 3.23 

6 14 12.48 8.69 21.94 3.34 

8 30 18.48 12.02 25.81 4.53 

9 68 22.35 7.01 56.41 6.32 

11 22 

 

21.04 5.64 29.48 5.53 

Table 5.4.3.1 Distribution of vehicle classes and estimated magnetic lengths of dataset C2 

 
Hill-Patterns of signatures were generated as discussed in section 5.3.2.2. And the Direct 
Hill-Pattern Matching classifier discussed in section 5.3.4.3 was used for classification. Fig. 
5.4.3.1 displays the signatures and hill patterns of two FHWA class-5 trucks, and Fig. 
5.4.3.2 displays those of two FHWA class-9 trucks.  There are six plots per vehicle. The 
left column shows the magnetic signals from each of the three axes. The right column 
shows the corresponding hill-patterns. 
 

(a) (b) 

Fig. 5.4.3.1 Magnetic signatures and Hill-Patterns of two FHWA class-5 trucks in dataset C2
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(a) (b) 

Fig. 5.4.3.2 Magnetic signatures and Hill-Patterns of two FHWA class-9 trucks in dataset C2

 
Table 5.4.3.2 shows the confusion matrix of hill-pattern classification with full dataset 
training from all the three-axis data. A correct classification is declared if a test sample is 
classified as its observed class. Surprisingly, even if the magnetic length is not used, a 
classification rate of 80% is reached. Table 5.4.3.3 shows the correct classification rates 
when different features are applied. When the magnetic length is used to separate samples 
between FHWA classes {5, 6} from {8, 9, 11}, the classification rate is boosted to 82.64%. 
However, when only 200 samples are used for training and 65 for testing, the classification 
rate drops to 61.5%. When 165 samples are used for training and 100 for testing, the 
classification rate is only 54.0%. The degraded performance is expected since the 
performance of this simple direct matching classifier depends heavily on a rich set of 
statistics from the training database. The classification rate of Hill-Pattern Classification is 
expected to reach 80% if a large and evenly distributed training dataset is provided. 
 

 
[Counts] Classified as Sum Correct % 

5 6 8 9 11   Observed 
FWHA Index   

5 95 26 8 2 0 131 72.52 

6 2 12 0 0 0 14 85.71 

8 2 3 25 0 0 30 83.33 

9 1 0 4 60 3 68 88.24 

11 0 0 2 0 20 22 90.91 

 

 

 Overall 

 

265 80.00 
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[%] Classified as 

5 6 8 9 11 Observed 
FWHA Index  

5 72.52 19.85 6.11 1.53 0.00 

6 14.29 85.71 0.00 0.00 0.00 

8 6.67 10.00 83.33 0.00 0.00 

9 1.47 0.00 5.88 88.24 4.41 

11 

 

0.00 0.00 9.09 0.00 90.91 

Table 5.4.3.2 Confusion matrix of the Hill-Pattern Classification for dataset C2 without using 

magnetic length 

 

Features  Overall Correct Classification % 

Hill-Pattern X and Magnetic Length  53.21 

Hill-Pattern Y and Magnetic Length 62.64 

Hill-Pattern Z and Magnetic Length  59.25 

Hill-Pattern XYZ  80.00 

Hill-Pattern XYZ and Magnetic Length  82.64 

Hill-Pattern XYZ with  
200 samples for training, 65 for testing 

61.50 

Hill-Pattern XYZ with  
165 samples for training, 100 for testing

54.00 

Table 5.4.3.3 Overall correct classification rates of Hill-Pattern Classification with 

different features applied on dataset C2 

 
5.4.4 k-NN and SVM Classification of 839 Vehicles (Dataset C3) 
In this experiment, another set of magnetic measurements sampling at 128Hz was recorded 
at the same weigh-in-motion station as the one in section 5.4.3. A total of 839 vehicle 
signatures were extracted from dataset C3. Again, ground truth of the vehicle classes was 
extracted manually from the recorded video. The distribution of vehicle classes in dataset 
C3 is shown in Table 5.4.4.1. 

FHWA Class 2 5 6 8 9 11 Total

# 85 359 45 83 194 73 
 

839 

Table 5.4.4.1 Distribution of vehicle classes in dataset C3 
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The objective of this experiment is to compare the performance of different classifiers with 
different transformations on data. Three different binary classification schemes were used 
in order to make the results clearer and easily comparable. Both the Average-Bar and Hill-
Pattern transformations were applied to this dataset with a vector size of 20 for each of the 
axis. The three-axis samples were stacked into a long vector with size of 60. Principal 
Component Analysis (PCA) was applied to the transformed data with three different 
variance drops {0, 0.001, 0.01}. The corresponding dimensions of the average-bar and hill-
pattern data were reduced to {60, 58, 40} and {60, 35, 21} respectively. 50% of samples in 
each of these classes were randomly picked from this compressed dataset for training. The 
reminding 50% of samples were used as test data. This cross-validated dataset was passed 
to the k-NN and SVM classifiers as discussed in section 5.3. 12 different sets of 
classification result were generated from these dataset and classifier combinations. This 
whole cross-validation and classification process was repeated 10 times and the averaged 
results are presented in the following section. 
 
5.4.4.1 Classification of FHWA Class-2 against 5, 6, 8, 9, 11 
Due to the loss of X and Y-axis magnetic data in some of the passenger vehicle samples, 
only Z-axis data were used for classifying FHWA class-2 against 5, 6, 8, 9, 11. The 
distribution of training and testing data is shown in Table 5.4.4.1.1. A summary of the 
classification results is shown in Table 5.4.4.1.2. A maximum classification rate of 0.97 
was achieved by using k-NN with k = 5 on the Average-Bar data without PCA 
compression. The corresponding confusion matrix is shown in Table 5.4.4.1.3. 
 
 FWHA 2 FWHA 5 6 8 9 11 

Training 43 377 

Test 42 377 

Total 85 754 

Table 5.4.4.1.1 Distribution of data for classifying FHWA class-2 against 5, 6, 8, 9, 11 
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 Variance drop in PCA 

 0 0.001 0.01 

SVM on Average-Bar Data    

Reduced Dimension 20.00 20.00 13.00 

Average Correct Rate 0.87 0.87 0.80 

Training Correct Rate 1.00 1.00 1.00 

k-NN on Average-Bar Data    

Reduced Dimension 20.00 20.00 13.00 

Average Correct Rate 0.97 0.97 0.97 

Training Correct Rate 0.98 0.98 0.98 

SVM on Hill-Pattern Data    

Reduced Dimension 20.00 16.00 11.00 

Average Correct Rate 0.88 0.88 0.88 

Training Correct Rate 0.92 0.92 0.92 

k-NN on Hill-Pattern Data    

Reduced Dimension 20.00 16.00 12.00 

Average Correct Rate 0.91 0.91 0.91 

Training Correct Rate 

 

0.91 

 

0.91 

 

0.91 

Table 5.4.4.1.2 Summary of results for classifying FHWA class-2 against 5, 6, 8, 9, 11 

using Z-axis data only 

 
[%] Classified as Counts 

Observed Class 2 5,6,8,9,11  

2 0.97 0.03 42 

5,6,8,9,11 0.03 0.97 377 

Avg. Counts 52.3 366.7  

Table 5.4.4.1.3 Confusion matrix of k-NN on Average-Bar data for classifying FHWA 

class-2 against 5, 6, 8, 9, 11 
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5.4.4.2 Classification of FHWA Class-5 against 6, 8, 9, 11 
The three-axis magnetic data were used for classifying FHWA class-5 against 6, 8, 9, 11. 
The distribution of training and testing data is shown in Table 5.4.4.2.1. A summary of the 
classification results is shown in Table 5.4.4.2.2. A maximum classification rate of 0.80 
was achieved by using k-NN on the Average-Bar data with the three different PCA 
variance drops {0, 0.001, 0.01}. The confusion matrix for the 0.01 variance case drop is 
shown in Table 5.4.4.2.3. 
 
 FWHA 5 FWHA 6 8 9 11 

Training 180 198 

Test 179 197 

Total 359 395 

Table 5.4.4.2.1 Distribution of data for classifying FHWA class-5 against 6, 8, 9, 11 

 
 Variance drop in PCA 

 0 0.001 0.01 

SVM on Average-Bar Data    

Reduced Dimension 60.00 60.00 40.00 
Average Correct Rate 0.75 0.74 0.74 
Training Correct Rate 1.00 1.00 1.00 

k-NN on Average-Bar Data    

Reduced Dimension 60.00 60.00 40.00 
Average Correct Rate 0.80 0.80 0.80 
Training Correct Rate 0.86 0.87 0.87 

SVM on Hill-Pattern Data    

Reduced Dimension 60.00 35.00 21.00 
Average Correct Rate 0.69 0.67 0.65 
Training Correct Rate 0.95 0.95 0.95 

k-NN on Hill-Pattern Data    

Reduced Dimension 60.00 36.00 21.00 
Average Correct Rate 0.70 0.70 0.71 
Training Correct Rate 

 

0.78 

 

0.79 

 

0.80 
Table 5.4.4.2.2 Summary of results for classifying FHWA class-5 against 6, 8, 9, 11 
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[%] Classified as Counts 

Observed Class 5 6,8,9,11  

5 0.91 0.09 179 

6,8,9,11 0.30 0.70 197 

Avg. Counts 222.2 153.8  

Table 5.4.4.2.3 Confusion matrix of k-NN on Average-Bar data with 0.01 variance drop of 

PCA for classifying FHWA class-5 against 6, 8, 9, 11 

 

5.4.4.3 Classification of FHWA Class-9 against 6, 8, 11 
The three-axis magnetic data were used for classifying FHWA class-9 against 6, 8, 11. The 
distribution of training and testing data is shown in Table 5.4.4.3.1. A summary of the 
classification results is shown in Table 5.4.4.3.2. A maximum classification rate of 0.71 
was achieved by using k-NN on the Average-Bar data with PCA of 0.01 variance drops. 
The confusion matrix of it is shown in Table 5.4.4.3.3. 
 
 FWHA 9 FWHA 6 8 11 

Training 97 101 

Test 97 100 

Total 194 201 

Table 5.4.4.3.1 Distribution of data for classifying FHWA class-9 against 6, 8, 11 

 
 Variance drop in PCA 

 0 0.001 0.01 

SVM on Average-Bar Data    

Reduced Dimension 60.00 60.00 40.00 
Average Correct Rate 0.66 0.65 0.65 
Training Correct Rate 1.00 1.00 1.00 

k-NN on Average-Bar Data    
Reduced Dimension 60.00 60.00 43.00 

Average Correct Rate 0.69 0.68 0.71 
Training Correct Rate 0.79 0.78 0.78 

SVM on Hill-Pattern Data    
Reduced Dimension 60.00 37.00 22.00 

Average Correct Rate 0.57 0.58 0.58 
Training Correct Rate 

 

0.99 

 

0.99 

 

0.99 
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k-NN on Hill-Pattern Data    
Reduced Dimension 60.00 36.00 22.00 

Average Correct Rate 0.57 0.57 0.58 
Training Correct Rate 

 

0.70 

 

0.70 

 

0.71 
Table 5.4.4.3.2 Summary of results for classifying FHWA class-9 against 6, 8, 11 

 
[%] Classified as Counts 

Observed Class 9 6,8,11  

9 0.58 0.42 97 

6, 8, 11 0.22 0.78 100 

Avg. Counts 77.9 119.1  

Table 5.4.4.3.3 Confusion matrix of k-NN on Average-Bar data with 0.01 variance drop of 

PCA for classifying FHWA class-9 against 6, 8, 11 

 

To summarize, datasets with Average-Bar transformation give roughly 10% better 
classification rate than that with Hill-Pattern. Even through a large portion of the original 
information is dropped in this 3-bit Hill-Pattern signal, a reasonable level of classification 
rate was achieved {0.91, 0.71, 0.58} in different datasets. The results indicate that this 
simple and efficient transformation algorithm has a high potential in applications which 
need a highly compressed vehicle magnetic signature. 
 
For datasets with Average-Bar transformation, the k-NN classifier gives a 3-10% better 
classification rate than that using SVM. The performances of k-NN and SVM are close for 
datasets with Hill-Pattern transformation. This is due to the large variation in different 
vehicle signatures, making the nonlinearity of the datasets high and degrading the 
performance of a SVM classifier.  
 
5.4.5 Classification of 864 Trucks with Magnetic Length 
(Dataset C4) 
In this experiment, another set of magnetic measurements sampling at 128Hz was recorded 
at the same weigh-in-motion station as in section 5.4.3. A total of 864 truck signatures were 
extracted from dataset C4 with speed and magnetic length estimates. Ground truth of the 
vehicle classes was extracted manually from the recorded video. The distribution of vehicle 
classes in dataset C4 is shown in Table 5.4.5.1. 

FWHA Class 5 6 8 9 11 Total 

# 
 

435 47 106 236 40 864 

Table 5.4.5.1 Distribution of vehicle classes in dataset C4 
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The objective of this experiment is to test the use of magnetic length in classifying trucks. 
Two sets of classification processes were applied to dataset C4. The first scheme used the 
same techniques as discussed in section 5.4.4 without using magnetic length estimates. The 
second scheme used two levels of classification. The first level used magnetic length 
estimates to separate FHWA class {5, 6} from {8, 9, 11}. The second level further 
classified the separated groups into its own class. The results are presented in the following 
section. 
 
5.4.5.1 Single-Level Classification W/O Using Magnetic Length 
Similar to section 5.4.4, different transformations and classifiers were used with the dataset. 
A variance drop of 0.01 in PCA (dimension reduced from 60 to 40) was used throughout 
this experiment. The classification results are summarized in Table 5.4.5.1.1. 

 FHWA Classes 

 
5 vs 6 vs 8 vs 9 vs 

11 
5 6 vs 8 9 11 

SVM on Average-Bar Data   

Average Correct Rate 0.41 0.68 

Training Correct Rate 1.00 1.00 

k-NN on Average-Bar Data   

Average Correct Rate 0.64 0.85 

Training Correct Rate 0.81 0.89 

SVM on Hill-Pattern Data   

Average Correct Rate 0.48 0.72 

Training Correct Rate 0.94 0.97 

k-NN on Hill-Pattern Data   

Average Correct Rate 0.60 0.77 

Training Correct Rate 

 

0.72 

 

0.83 

Table 5.4.5.1.1 Summary of classification results of a single-level classification on dataset 

C4 without using magnetic length. 

 
[%] Classified as Counts 

Observed Class 5 6 8 9 11  

5 0.84 0.07 0.05 0.03 0.01 217 

6 0.60 0.23 0.06 0.11 0.00 23 

8 0.42 0.03 0.22 0.29 0.04 53 

9 

 

0.18 0.03 0.17 0.55 0.08 
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11 0.07 0.02 0.07 0.36 0.49 20 

Avg. Counts 

 

241.6 24.7 44.5 97.6 22.6 

 

 

Table 5.4.5.1.2 Confusion matrix of k-NN on Average-Bar data of dataset C4 for 

classifying FHWA class {5 vs 6 vs 8 vs 9 vs 11} without using magnetic length 

For the classification of FHWA classes {5 vs 6 vs 8 vs 9 vs 11}, the highest classification 
rate is 0.64 using k-NN on the Average-Bar data. The corresponding confusion matrix is 
shown in Table 5.4.5.1.2. The main confusion is in the classification of class {5 vs 6 vs 8} 
and {9 vs 11}. 60% and 42% of class 6 and 8 samples respectively are classified as class 5; 
and 36% of class 11 samples are classified as class 9. This is caused by the small sample 
sizes of classes 6 and 11 (see Table 5.4.5.1). Even through a correction factor 

 was introduced to account for the unbalanced dataset, the database is 
still under-trained in those classes with a small sample size. 
 
5.4.5.2 Two Levels of Classification with the Use of Magnetic Length 
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Fig. 5.4.5.2.1 Distribution of estimated magnetic lengths of dataset C4 

 
 FHWA Classes 

Magnetic Length [m] 5 6 8 9 11 

Mean 10.35 11.22 17.89 20.79 21.43 

Std 3.21 3.36 6.31 6.11 5.41 

Table 5.4.5.2.1 Statistics of estimated magnetic lengths of dataset C4 
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[%] Classified as Counts 

Observed Class 5,6 8, 9, 11  

5,6 0.94 0.06 241 

8, 9, 11 0.20 0.80 191 

Avg. Counts 264.3 167.7  

Table 5.4.5.2.2 Confusion matrix from using estimated magnetic lengths of dataset C4 for 

classifying FHWA class {5, 6} vs {8, 9, 11} 

 
The first level of classification used the estimated magnetic lengths to separate FHWA 
class {5, 6} from {8, 9, 11}. The distribution of estimated magnetic lengths of dataset C4 is 
shown in Fig. 5.4.5.2.1., and summary statistics are given in Table 5.4.5.2.1. According to 
the statistical analysis, a cut-off length of Lcutoff = 15.4[m] was used to separation the two 
groups. 
 

 (Eq.5.4.5.2.1) 
A classification rate of 0.88 was achieved by magnetic length alone for this first level. The 
confusion matrix is shown in Table 5.4.5.2.2.  
 
The second level further classified the groups from the first level into separated class with 
Average-Bar transformation and k-NN classifier. The confusion matrix of this second level 
classification is presented in Table 5.4.5.2.3 below.  
 
[%] Classified as Counts

Observed Class 5 6 Others  

5 0.92 0.08 0.00 204.6 

6 0.85 0.15 0.00 22.3 

Others 0.91 0.09 0.00 37.4 

Avg. Counts 242.1 22.2 0  

 
[%] Classified as Counts

Observed Class 8 9 11 Others  

8 0.43 0.50 0.07 0.00 30.3 

9 0.24 0.64 0.12 0.00 104.7 

11 0.13 0.40 0.47 0.00 18.6 

Others 0.42 0.49 0.09 0.00 14.1 

Avg. Counts 46.2 96.3 25.2 0  



 123

Table 5.4.5.2.3 Confusion matrix of the second level classification of dataset C4 for 

classifying FHWA class {5 vs 6} and {8 vs 9 vs 11} 

 
FWHA Classes  Avg. Classification 

Rate 5 6 8 9 11 Overall 

 

Single-Level (5.4.5.1) 0.84 0.23 0.22 0.55 0.49 0.64 

 

Two-Level (5.4.5.2) 0.92 0.15 0.43 0.64 0.47 0.65 

Table 5.4.5.2.4 Comparison of the classification rates between single-level and two-level 

classification in dataset C4 

 
A comparison of the classification rates between the single-level and two-level 
classification is shown in Table 5.4.5.2.4. The under-trained dataset problem discussed in 
section 5.4.5.1 also arises in this two-level classification. Because of this defect in the 
dataset, the use of magnetic length is not able to boost the classification rate as expected. 
The result is a similar overall classification rate of 0.65. 
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Ch. 6 Vehicle Reidentification by 
Wireless Sensor Networks 

Vehicle reidentification is the process of matching the detection of a vehicle at different 
locations. This allows tracking of vehicles from point to point along a road network. A 
single detector station measures traffic parameters such as speed and occupancy at a 
specific location. These measurements are assumed to be representative of the traffic 
beyond the station’s location. However, this assumption may not be valid when the traffic 
becomes congested. The limitation of point data raised interest in vehicle reidentification, 
which can provide section measurements including travel time, travel time variability, 
section density and origin/destination demand [6.1]. 
 
Section travel time and density are useful parameters for traffic planning, control and 
management. The traffic parameters obtained from vehicle reidentification can be used in 
evaluating the performance of traffic systems and serve as inputs to advanced 
transportation management and information systems (ATMIS) [6.2]. 
 
In this chapter, current technologies for section measurements and reidentification are 
reviewed in section 6.1. The proposed data processing and Max-Of-Max (MOM) 
reidentification scheme are discussed in section 6.2. The corresponding experimental 
analysis and results are presented in section 6.3. 
 
6.1 Review of Section Measurement and Reidentification 
Technologies 
Common vehicle detection technologies include inductive loop, video, infrared, ultrasonic, 
microwave, acoustic, magnetic, road tube and piezoelectric [Ch. 2]. Most of the time, only 
point measurements such as vehicle count, point speed and occupancy are generated by 
these detection systems. In fact, however, more information, including the raw vehicle 
signature, can be extracted from these systems for the purpose of section measurements and 
vehicle reidentification. 
 
Since point measurements are the predominant source of traffic information, one class of 
techniques has been developed to estimate section travel time from these measurements.  
Instead of reidentifying vehicles individually, the data are applied to a stochastic traffic-
flow model to generate a statistical estimate of the travel time. The model in [6.3] assumes 
that vehicles arriving at an upstream point during a given interval of time have a common 
probability distribution of travel times to a downstream point. And the travel time 
distribution is estimated by an approximate relationship between flow, occupancy and 
speed. In [6.4], average travel time was estimated by using the cross-correlation analysis 
of traffic flow data. 
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Vehicle reidentification techniques are used to generate traffic section measurements. It is 
accomplished by matching signatures of individual vehicles or platoons [6.5]. Common 
technologies include license plate matching [6.6], laser-based [6.7] or radar-based [6.8] 
systems that give vehicle lengths and profiles, weigh-in-motion (WIM) systems [6.9] that 
give axle profiles and video-based system [6.10, 6.11] that use image processing to extract 
lengths, profiles and colors of vehicles. 
 
Reference Methodology Data Results 

[6.6] Turner S. 

et al. 

License plate matching 

by video with OCR 

32 hrs of video 

90,000 vehicles 

75% of the license 

plates are matched 

[6.7] Cheng H. 

et al. 

Vehicle profiles 

matching by laser-

based system 

Not available Not available 

[6.8] 

Urazghildiiev 

I.R., et al. 

Vehicle height profiles 

matching by microwave 

radar 

1709 vehicles 98% are correctly 

classified into 5 

classes 

[6.10] 

MacCarley, 

C.A. et al. 

Video-bases vehicle 

signature tracking 

17 minutes of video 

243 vehicles 

False-positive: 7.1% 

False-negative: 11.8% 

[6.15] Ritchie, 

S.G., et al. 

Feature extraction from 

inductive signatures 

140 vehicles 

50% for training 

50% for testing 

97% matching rate 

Table 6.1.1 Summary of pervious researches on vehicle re-identification 

 
Traditional inductive loop detectors are designed to focus on the vehicle detection task. 
New detector cards were introduced to provide inductive signatures for vehicle 
classification and reidentification. Since inductive loops are still the dominant surveillance 
system in the industry, using the existing infrastructure for vehicle reidentification is cost 
effective. Previous studies [6.12, 6.13, 6.14] show that vehicle reidentification can be done 
using the inductive signatures that give lengths and profiles of vehicles. However, the 
standard 6’ square configuration of the loops induces a smoothing effect on the signature 
that removes distinctive features from it. A newly designed inductive loop with a long and 
thin geometry, called the blade sensor [6.15] partly overcomes the smoothing effect. Using 
the blade sensor with a high-scanning-speed detector card, detailed inductive loop 
signatures can be obtained with the resolution of the HMC1051Z magnetic sensor [Ch. 3]. 
These detailed inductive signatures, provide a higher identification rate [6.15]. 
 
There are systems that can obtain section measurements without using a fixed surveillance 
station [section 2.1]. These systems employ in-vehicle beacons that allow system-wide 
tracking of such vehicles, which include Global Positioning System (GPS) [6.16], RFID-
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based Automatic Vehicle Identification (AVI) [6.17], cellular telecommunication [6.18], 
toll tags, other in-vehicles tracking beacons and the associated infrastructure for collecting 
the position of the vehicles. Nevertheless, privacy concerns may prevent their large scale 
deployment. So vehicle reidentification systems that track vehicles anonymously are 
preferred. 
6.2 Data Processing and Reidentification Schemes 
Detailed magnetic signature examples collected from an array of sensor nodes are 
presented in section 6.2.1. Some of their characteristics related to reidentification are 
presented. The proposed Max-Of-Max (MOM) reidentification scheme used on the 
correlation coefficient of Average-Bar data is presented in section 6.2.2.  
 
6.2.1 Magnetic Signature Array Examples 
In order to get a more detailed picture of the magnetic signature of vehicles, an experiment 
was conducted to collect signatures from an array of 7 sensor nodes, sampling at 128Hz on 
each of the 3 axes. They were placed in a line perpendicular to the direction of travel, with 
a separation of 6” from each other. The layout of sensor nodes is shown in Fig. 6.2.1.1. 
Signatures of 7 test vehicles are presented and a list of the test vehicle models is shown in 
Table 6.2.1.1. 

 
Fig. 6.2.1.1 The layout of 7 sensor nodes used for 

collecting magnetic signature array examples 

 
 Models Picture 

(a) Buick Le Sabre 97 

(b) Another signature sample from the same vehicle in (a) 

(c) Buick Le Sabre 97, a second vehicle in the same model as (a) 
 

(d) Toyota Corolla 89 
 

(e) LandRover Range Rover 96 
 

(f) Ford Taurus 96 
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(g) Ford Taurus 2000 
 

(h) Ford WindStar (Van) 
 

Table 6.2.1.1 List of the test vehicle models used for collecting magnetic signature array 

examples  

The magnetic signatures are transformed into the Average-Bar format [section 5.3.2]. The 
transformed data from each of the 7 sensor nodes are combined into a single color plot, 
with the horizontal axis as the sensor node index, 1 to 7, and the vertical axis as the 
Average-Bar index, 1 to 20. The results are shown in Fig. 6.2.1.2 below: 
 

(a) (b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

(g) 

 
(h) 

Fig. 6.2.1.2 Color plots of Average-Bar data of magnetic signature array examples 

 
(a) and (b) are two samples collected from the same vehicle (Buick Le Sabre 97). The 
maximum combined correlation coefficient [section 6.2.2, 6.3] of the 3-axis signatures 
between them is 0.99. This high value demonstrates that the magnetic signature of a vehicle 
from an array of sensor nodes is reproducible. 
 
(b) and (c) are two samples collected from two different vehicles of the same model (Buick 
Le Sabre 97). The maximum combined correlation coefficient of the 3-axis signatures 
between them is only 0.78, which is much smaller than the typical level for the same 
vehicle (0.9) [section 6.2.2, 6.3]. This demonstrates an important characteristic that 
vehicles of the same model do not necessarily give identical magnetic signature. The 
change in signatures can be explained by the differences in hardware settings and 
equipments in the vehicles. This implies that vehicles in the same model and color which 
cannot be distinguished by video and other length-based reidentification systems might be 
distinguished by their magnetic signatures. 
 
These examples also re-confirm the lateral offset characteristic noted in section 5.2.2, 
namely that the magnetic distribution is not laterally symmetric in general. It also justifies 
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the use of an array of sensor nodes to account for the difference in lateral offset of when 
vehicles go through different surveillance stations. 
 
6.2.2 Max-Of-Max (MOM) Reidentification Scheme 
Similar to the classification schemes discussion in Ch.5, the reidentification scheme 
proposed in this section is aimed at using the wireless sensor networks as a deployment 
platform. Again, in order to minimize the communication load on the sensor nodes and 
maximize the system lifetime, the same transformation processes described in section 5.3 
are used for the reidentification system. Since the Average-Bar transformation gives the 
best performance in the experiments so far, this data format is used in the following 
analysis. 
 
The proposed Max-Of-Max (MOM) scheme uses the Average-Bar data from all the senor 
nodes in the array. The maximum combined correlation coefficients of the 3-axis signatures 
among different sensor nodes are calculated. The maximum one among different signature 
sets within a certain time window will be found. If this maximum correlation coefficient is 
larger than a pre-defined threshold value, a positive reidentification result is issued. The 
detailed algorithms of this scheme are presented as follow: 
 
i, The signature set (Si) of vehicle (i) includes all the 3-axis Average-Bar transformed data 
(Bi,j) from the (M) sensor nodes in the array 

       (Eq. 6.2.2.1) 
ii, Signature sets (S) collected from station (A) at time (t) are stored in database (DA) 

       (Eq. 6.2.2.2) 
iii, When a signature set (SBk) of vehicle (k) is collected from station (B) at time (tBk), a 
time window (TABk) is calculated according to the travel distance between (A) and (B) with 
a reasonable speed range (e.g. 5 to 80 mph). This represents the time window of vehicles 
detected at station A that can reach station B at time (tBk) 

        (Eq. 6.2.2.3) 
iv, Signature sets are extracted from database (DA) according to the time window (TABk) 

      
          (Eq. 6.2.2.4) 
v, The maximum combined correlation coefficient (Cmax) between (SBk) and DA(TABk) is 
calculated by comparing the products of correlation coefficients of each of the 3-axis data 
between (SBk) and each of the signature sets in DA(TABk). corr(b1, b2) is a function that will 
return the correlation coefficient of two vectors (b1, b2) 
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          (Eq. 6.2.2.5) 
vi, If (Cmax) is higher than a pre-defined threshold value (Cthreshold), the vehicle (k) is 
declared to be reidentified by the system as vehicle (i) in database (DA), and not 
reidentified otherwise 

 
          (Eq. 6.2.2.6) 
vii, If more than one vehicle give a maximum combined coefficient that is very close to 
(Cmax), and higher than (Cthreshold), the one with a larger sum over the combined coefficients 
in its signature set will be taken. 

 
          (Eq. 6.2.2.7) 
 
A drawback of this scheme is that the generation of correlation coefficients is 
computationally expensive, with processing time on the order of (N2). This is another 
reason for using the Average-Bar data, which is helpful in reducing the computational 
burden. An experimental evaluation of this reidentification scheme is presented in the next 
section. 
6.3 Experimental Analysis and Results 
In section 6.3.1, a preliminary reidentification experiment (dataset R1) that involves 7 test 
vehicles is presented. In section 6.3.2, the analysis and results of a reidentification 
experiment (dataset R2) on left-turning vehicles are presented. 
 
6.3.1 Preliminary Reidentification of 7 Test Vehicles (dataset 
R1) 
This experiment is aimed at testing the feasibility of using Average-Bar data [section 5.3.2] 
of the magnetic signatures with the proposed MOM reidentification scheme [section 6.2.2]. 
The signature examples presented in section 6.2.1 were also generated from this 
experiment conducted in Richmond Field Station at July 12th, 2005. An array of 7 sensor 
nodes was placed in a line perpendicular to the direction of travel, with a separation of 6” 
from each other. A photo of the experimental setup for the nodes is shown in Fig. 6.2.1.1. 
A list of the test vehicle models is shown in Table 6.2.1.1. 
 
Each test vehicle was driven over the sensor nodes 5 times, with a different lateral offset 
intentionally added by the driver. The transformed data from each of the 7 sensor nodes are 
combined into a single color plot, with the horizontal axis as the sensor node index from 1 
to 7 and the vertical axis as the Average-Bar index from 1 to 20. The color plots of all 5 
runs of test vehicle (g) (Ford Taurus 2000) are shown in Fig. 6.3.1.1 below. Although the 
signatures from individual node may look different in different runs because of the change 
in lateral offset; the overall signatures shown in the color plots are similar. Among the data 
from test vehicle (g), an average maximum combined correlation coefficient of 0.93 is 
obtained. 
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(Run 1) (Run 2) 

 
(Run 3) (Run 4) 

 
(Run 5) 

Fig. 6.3.1.1 Color plots of Average-Bar data 

of magnetic signature from test vehicle (g) 

(Ford Taurus 2000) in dataset R1 

 
Using the 35 collected signatures, a reidentification analysis was simulated by taking one 
signature at a time as the target test sample, and comparing it against a dataset of 7 
signatures with one from each test vehicle, with (Cthreshold) = 0.9. All possible combinations 
within the database were tested with the reidentification scheme described in section 6.2.2. 
A summary of the results is shown in Table 6.3.1.1.  
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Correct Reidentification Rate [%] Target 

Vehicle corr(X) corr(Y) corr(Z) corr(X*Y*Z) 

 

(a) 100.0 71.2 100.0 100.0 

(b) 100.0 91.8 94.1 100.0 

(c ) 82.8 79.3 79.3 93.0 

(d) 100.0 83.2 98.0 100.0 

(e) 100.0 100.0 100.0 100.0 

(f) 100.0 100.0 100.0 100.0 

(g) 79.2 98.2 70.1 99.0 

Avg 94.6 89.1 91.6 98.9 

Table 6.3.1.1 Summary of reidentification results in dataset R1 

 
An average reidentification rate of 98.9% is achieved with a database of these 7 test 
vehicles when all the 3-axis data are used. Although the sample size is small, this 
promising result demonstrates the feasibility of using the Average-Bar data [section 5.3.2] 
with the proposed scheme [section 6.2.2] on wireless sensor networks for reidentification. 
 
6.3.2 Reidentification of Left-Turning Vehicles (dataset R2) 
The information about traffic flow between origin/destination (O/D) pairs is essential for 
efficient traffic planning and control [6.19]. Reidentification systems can be used for 
estimating the O/D matrix. However, because of high installation and maintenance costs, 
they are seldom used for urban traffic. This experiment is aimed at demonstrating how the 
wireless sensor networks can be used to reidentify left-turning vehicles at a local 
intersection, so that the turn ratio can be derived and used in O/D matrix estimation [6.20]. 
 
This experiment was also conducted in Richmond Field Station (RFS) on March 9, 2006. 
Two arrays of 7 sensor nodes, sampling at 128Hz on each of the 3 axes, were placed in a 
line perpendicular to the direction of travel. One was located at the end of a straight section 
(station A); another one was located at the beginning of a straight section after a left turn 
from station A (station B). Photos of the experimental setup are shown in Fig. 6.3.2.1. The 
sensor nodes were placed in such a way that no right-turning vehicles would drive over the 
nodes at station B. Only straight-passing and left-turning vehicles are considered in the 
analysis. 
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Fig. 6.3.2.1 Experimental setup for the left-turning reidentification experiment (R2) 
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Fig. 6.3.2.2 Maximum combined correlation coefficient of all the left turning cases in R2 

 
Ground truth of the experiment was obtained by manual observation. A total of 80 vehicles 
were recorded at the test site in 4 hours. 10-Average-Bar transformation was applied on 
these data. A plot of the maximum combined correlation coefficient (Cmax) of all the left-
turning cases is shown in Fig. 6.3.2.2. According to the distribution of the (Cmax), a value of 
0.56 was used for (Cthreshold) in the reidentification scheme [section 6.2.2]. This threshold 
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value is relatively small compared to 0.9 used in experiment R1. It is justified by the fact 
that some difference in the magnetic signatures is induced by the change in travel direction 
[section 5.2.1] after turning left. Since the traffic flow at the test site is low (20 veh/hr), a 
“time window” of last 5 vehicles at station (A) is used for (TABk). The reidentification 
results are summarized in Table 6.3.2.1. 
 
 

 Observed Correctly reidentified  Correct % 

64 46  71.9 

False Positive 7 Left-Turning 
 

False Negative 11 
 

Straight-Passing 16 12 75.0 

Total 80 58 
 

72.5 

Table 6.3.2.1 Summary of reidentification results in dataset R2 

 
An overall reidentification rate of 72.5% is achieved in this test. Again, although a sample 
size of 80 is small, this positive result demonstrates the potential of large scale deployment 
of reidentification systems on freeway and urban area by wireless sensor networks. 
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Ch. 7 Evolution of Intelligent 
Transportation System 

The proposed wireless sensor networks have the potential to revolutionize the whole traffic 
surveillance and control industry into one that is scalable and deployable everywhere in 
traffic networks. Its feasibility for large scale deployment can impact the associated 
Intelligent Transportation System (ITS) in many applications. In this chapter, the impacts 
of using such a surveillance system on a large scale are provided in section 7.1. And the 
possibility of extending the sensor networks into a multi-function wireless surveillance 
system is studied in section 7.2. 
 
7.1 Impact of Large Scale Deployment 
In 2005 Urban Mobility Report [1.1], the benefits from the implementation of four ITS 
technologies are studied: traffic signal coordination, arterial street access management, 
freeway ramp metering and incident management. The benefits are estimated to be 336 
million hours of delay reduction and $5.6 billion in congestion savings for the 85 urban 
areas in 2003. If these technologies were deployed on all the major roads, an estimated 613 
million hours of delay and more than $10.2 billion would be saved. 
 
However, the large scale deployment of ITS technologies is discouraged by the high life-
cycle cost [section 2.1.3] and large traffic delay caused by the installation of inductive loop 
detectors. The proposed wireless sensor networks provide the same functionalities as 
inductive loop systems, but at a much lower cost and delay. Its wireless capability and 
configuration flexibility [section 2.2] give extra advantages to the large scale deployment 
of many ITS systems. Examples of traffic signal control, on-ramp metering and parking 
management are provided in this section. 
 
7.1.1 Traffic Signal Control 
The objective of a signal control system is to minimize the delay experienced by vehicles 
traveling through a network of intersections by manipulating the traffic signal plans. A 
summary of recent advancements in traffic signal control is provided in [7.1, 7.2]. Using 
ITS technologies, new strategies have been developed to address dilemma zone [7.2] 
problems of signalized intersections. These strategies can be described as follows: 
i, Detection Control System (DCS) [7.3] monitors approaching traffic of an intersection 
and minimizes the number of vehicles that will fall into the dilemma zone, by controlling 
the end time of the green phase. Besides speed estimate, classification is needed to identify 
approaching large trucks and apply the corresponding controls. 
ii, Platoon Identification and Accommodation (PIA) system [7.4] estimates the length and 
time of arrival of approaching platoons. The traffic signals are optimized to allow them to 
pass the intersection smoothly. 
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iii, Advanced Warning of End of Green System (AWEGS) [7.5] provides advance warning 
for end of green to drivers by flashing beacons located about 700 feet upstream of the 
intersection. A picture of such a beacon is shown in Fig. 7.1.1.1. 
 

 Fig. 7.1.1.1 Picture of a flashing beacon for end of green warning [7.6] 

 
Advance vehicle detection is the most critical component for the implementation of all 
these signal control strategies. For a high-speed approach, advanced detection is required at 
800 to 1000 feet upstream of the intersection, as well as the speed and classification of 
vehicles at real-time. If inductive loop detectors are used, the cost of setting up a 
communication link between the traffic signal controller and the upstream detection station 
is estimated to be $15,000 [7.6] for a two lanes approaches. Such an expensive data 
transmission cost significantly reduces the benefit-to-cost ratio of these systems.  
 
On the other hand, the proposed wireless sensor networks virtually add no extra cost for the 
data transmission as wireless communication capability is already built-in. Taking 
advantage of the relatively low life-cycle cost [section 2.1.2] of this surveillance system, 
the signal control systems can be cost-effective enough to be deployed at all the 
intersections of major arterials to maximize the traffic network capacity. A typical 
configuration of such a system is shown in Fig. 7.1.1.2 [7.7]. 
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Fig. 7.1.1.2 Typical configuration of wireless sensor networks (VSN240) for advance 

detection at an intersection [7.7] 

 
7.1.2 On-Ramp Metering 
On-ramp meters regulate the flow of traffic on freeway entrance ramps using traffic signals. 
They are designed to create more space between entering vehicles so those vehicles do not 
disrupt the main stream traffic flow. The number of entering vehicles for short distance 
trips is also reduced, as the drivers are encouraged to use the local streets to avoid the ramp 
wait time [7.8]. It has been reported that on-ramp metering was able to reduce delay by 102 
million person-hours in 2003, approximately 5% of the congestion delay on freeways 
where ramp metering was in effect [1.1]. Because of its high effectiveness, it has been 
widely deploy and recommended to the Federal Highway Administration as an essential 
tool to address the congestion problem [7.9].  

 
Fig. 7.1.2.1 Typical configuration of an on-ramp metering system with inductive loop 

detectors [7.10] 
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Whenever the on-ramp demand exceeds the metering rate, a queue will form in front of the 
signal. The on-ramp storage capacity is usually limited. If the queen length exceeds this 
capacity, it will spill into connected streets and interfere with the local traffic. A typical 
configuration of on-ramp metering system with inductive loop detectors is shown in Fig. 
7.1.2.1. The current practice to regulate the queue length is to adjust the metering rate if 
detections are trigged from the queue detectors. However, this scheme leads to oscillatory 
behavior and under-utilization of on-ramp storage capacities [7.11, 7.12].  
 
The proposed wireless sensor networks can be used instead of the inductive loops to bring 
down the transmission cost to virtually zero [section 7.1.1]. Multiple sensor nodes can be 
placed along the on-ramp’s storage lanes to provide multiple detection zones for the 
system. This flexible configuration allows the queue length to be monitored at the desirable 
resolutions of the control strategies. The on-ramp metering system can also communicate 
with the surveillance system on the freeway and the traffic light control system near by 
over the same wireless networks. Such a large scale deployment framework allows global 
optimized control strategies [7.13] to be designed and implemented. 
 
7.1.3 Parking Guidance and Information System (PGIS) 
Parking is a universal problem in most metropolitan areas that already suffer from heavy 
traffic congestion and air quality degradation. Limited parking space and the lack of 
information on parking availability make the parking search time unreasonably long. This 
undesirable parking search traffic leads to additional congestion, air pollution and driver 
frustration. Increasing parking space is discouraged by the limited land space and its high 
cost in urban area. Therefore, Parking Guidance and Information System (PGIS) [7.14] is 
introduced to minimize the parking search traffic.  
 
PGIS has been implemented in several European and Japanese [7.14] cities since 1970s. 
Early systems provide parking availability information on Variable Message Signs (VMS) 
by counting the number of vehicles entering and leaving the facilities with inductive loops. 
Recent systems provide real-time information of number of opening by monitoring the 
occupied spaces. Available sensor technologies include inductive loops, video image 
processing, ultrasonic, infrared and microwave [7.15, section 2.1]. Besides VMS, the 
information is delivered via mobile phones, radio, internet and in-vehicle navigation 
systems.  
 
PGIS is usually deployed at transit stations to encourage the use of public transits [7.16]. A 
significant relationship between transit usage and parking spaces was suggested by research 
[7.17]. The system can also be used to the deliver additional information like transit 
departure time and traffic incidents. PGIS is used to provide exact location of open parking 
slots in large parking facilities (e.g. airport) [7.18]. These parking management applications 
require surveillance systems with a large coverage of detection zones. Video Image 
Processing (VIP) systems [section 2.1] meet the requirements except that they are greatly 
affected by the environmental and lighting conditions.  They are subjected to changing 
environment in outdoor parking lots and poor lighting condition in indoor parking facilities.  
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On the other hand, wireless sensor networks can fit into any kind of parking facilities with 
sensor nodes that can be placed anywhere. The simple installation structure and procedure 
makes the implementation scalable, which is an important issue when thousands of sensor 
nodes are used. Its wireless communication capability also allows it to provide detailed 
parking guidance to in-vehicle navigation system in the future. Because of a relatively low-
activity of parking detection is needed, the system life cycle can be dramatically increased 
to 30-40 years and decreases the life-cycle cost [section 2.1.3] accordingly. A typical 
configuration of wireless sensor networks for parking monitoring is shown in Fig. 7.1.3.1 
[7.19]. 

 

Fig. 7.1.3.1 Typical configuration of 

wireless sensor networks (VDS240) for 

parking monitoring [7.19] 

 
7.1.4  Work Zone Management 
Between 1980 and 1998, vehicle miles traveled increased 72% while the number of lane 
miles increased only 1% [7.20]. In order to match this traffic growth, there is an urgent 
need for the construction and rehabilitation of roadways. However, these work zones cause 
congestion and safety problems. It is reported that more than 800 fatalities and 37,000 
injuries are caused by the work zones in U.S. every year [7.21]. Therefore, ITS 
technologies are applied in large scale work zones to let vehicles travel through and around 
the zones more safely and efficiently.  
 
Traffic surveillance systems are used to monitor traffic in real-time. The traffic condition 
and lanes closure information are delivered to the public via VMS, mobile phones and 
internet. Travelers can adjust their routes to avoid congestion or delay. Safety is also 
enhanced by providing advance notices of slowed or stopped traffic. The use of ITS in 
work zones is proven to be successful [7.21] and has been included in the National ITS 
Program Plan. 
 
Video Image Processing (VIP) systems are often used to monitor the traffic around the 
work zones as it provides video images for manual observation and incidents detection. 
However, the use of VIP systems brings the capital cost to a high level. In a case studied in 
[7.21], $2.4 million was spent to setup VIP systems at a work zone in Lansing, Michigan. 
Considering the life-cycle cost of the proposed wireless sensor networks is roughly half of 
that of a VIP system, $1.2 million could be saved if the sensor networks were used [7.21]. 
Typical work zones seldom last longer than 5 years, which is only half of the sensor 
networks’ life-time. This implies the sensor nodes can be reused at another work zone after 
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recharging. This huge cost reduction in the surveillance system makes the work zones 
management cost effective enough to be deployed at all work zones no matter what size the 
construction project is. 
 
7.2 Multi-Functions Wireless Surveillance System 
Multi-functions wireless surveillance systems can be developed by adding other sensing 
modalities to the traffic surveillance systems. An important one is the modality for sensing 
road conditions which is presented in section 7.2.1. The wireless communication capability 
of the sensor networks also allows it to talk to other ITS systems. Since the sensor nodes 
are located on the pavement, the networks can be a very useful tool in the Vehicle-
Infrastructure Integration (VII) framework. It can be used to exchange information between 
different systems and extend the vehicle-infrastructure communication range. Its 
applications in VII are presented in section 7.2.2. 
 
7.2.1 Road Conditions Sensing Modality 
There were over 1.4 million road conditions-related crashes in 2001, causing over 615,000 
injured, over 6,900 dead and over 1 billion hours delay [7.25, 7.26]. The monitoring of 
adverse weather and road conditions in real-time is essential for safety enhancement and 
roadway maintenance [7.22].  
 
The detection of water, ice, snow, fog and lighting conditions can be used to determine 
whether the visibility, weather and road conditions are safe for driving. Warnings of 
potential hazard (e.g. icing on bridges) can be given to drivers via VMS, in-vehicle 
navigation system or other media. This safety enhancement is especially useful when the 
conditions are not obvious to the drivers (e.g. poor lighting conditions, black ice). Traffic 
signal controls [section 7.1.1] can be adjusted according to the change in road conditions. 
This information is also used in roadway maintenance to determine the type and extent of 
surface treatments needed for keeping the roadway drivable.  
 
According to the experience from Minnesota [7.23], such systems improve traffic safety, 
enlarge roads capacity and allow an effective planning of future investment. National 
surface transportation weather observing and forecasting system (Clarus) [7.25] has been 
initialized by the Federal Highway Administration (FHWA) to implement road conditions 
monitoring system nationwide. 
 
State-of-the-art sensor technologies [3.4] are ready for these applications. For example, a 
micro-sensors board designed for weather monitoring is developed under the TinyOS 
project [section 3.2], known as the MICA weather board MTS400 [7.23]. It includes 
sensors for measuring temperature (ice and snow), humidity (rain and fog), light intensity 
(lighting condition) and air pressure. In addition, acoustic sensors can be used to estimate 
wind speed and accelerometers can be used to estimate weight of vehicles. All of these 
sensors are integrated into a board with the size of a name card. A picture of MTS400 is 
shown in Fig. 7.2.1.1 [7.24]. This sensor board is designed to be used with MICA sensor 
nodes family [section 3.2.2], and it can be integrated into Sensys’ sensor nodes [section 
3.2.5] easily. 
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Fig. 7.2.1.1 Picture of MICA weather board MTS400 

manufactured by Crossbow [7.24] 

 
The power consumption of this additional sensing modality is relative small as the 
sampling frequency can be as low as once every 15 minutes. Its effect on the system 
lifetime can be further minimized by using a number of sensor nodes at the same site to 
take care of the tasks alternatively, or by using an extra node to concentrate on monitoring 
the road conditions. This plug-and-play feature allows additional sensing modalities to be 
added to the wireless sensor networks surveillance system without modifying the system 
framework. Therefore, deployments of different sensing capabilities can be customized 
according to specific applications and locations. 
 
7.2.2 Vehicle-Infrastructure Integration (VII) 
Half of the 43,000 deaths that occur each year in U.S. result from vehicles entering or 
leaving the freeway, and traveling unsafely through intersections [7.27]. Aimed at 
minimizing these accidents, and the associated traffic delay and cost, the U.S. Department 
of Transportation (USDOT) has proposed the VII initiative. It studies the development of a 
nationwide wireless communication infrastructure that allows vehicle-vehicle and vehicle-
infrastructure communications. With the push from the government, it is foreseen that 
every car manufactured in US will be equipped with a standardized wireless 
communication device and a GPS unit for integrating with the VII infrastructures within 10 
years. The Dedicated Short Range Communications (DSRC) protocol is adopted as the 
standard. Radio spectrum at 5.9 GHz is specifically allocated for the use of DSRC [7.28]. 
 
Vehicles with communication capability can serve as anonymous probe vehicles for 
collecting traffic information and road conditions [section 2.1.1.3]. The data can be fused 
with the existing surveillance database and enhances the real-time traffic control [section 
7.1]. Traffic accidents are prevented by warning the drivers when their vehicles are 
entering an intersection unsafely or when they are running dangerously close to other 
vehicles. A good example of such applications is Intersection Decision Support [7.29], 
which activates left-turn warning signs if other vehicles are approaching the intersection 
from the opposite direction, so that Left Turn Across Path/Opposite Direction (LTAP/OD) 
and Left Turn Across Path/Lateral Direction (LTAP/LD) crashes can be avoided [7.29]. A 
typical system configuration of IDS is shown in Fig. 7.2.2.1 [7.29]. 
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Fig. 7.2.2.1 Typical system configuration of Intersection Decision Support (IDS) [7.29] 

 
The proposed wireless sensor networks can be used with VII in two ways: 
i, Once VII is deployed in a nationwide sense, the road will be filled with a mixture of 
vehicles and infrastructures with and without communication capability. The sensor 
networks can provide surveillance support to the system for vehicles and infrastructures 
that do not have the communication capability. This allows the associated ITS applications 
to be used independent of the VII penetration rate. 
ii, The sensor networks can also adopt the standardized DSRC protocol so that they can be 
used to extend the range of vehicle-vehicle and vehicle-infrastructure communications, by 
acting as repeater nodes. This mixed system lowers down the deployment cost by 
minimizing the need for building new infrastructure along the side of road. This makes the 
systems cost efficient enough to be deployed in large scale, especially for applications that 
need advance detection [section 7.1.1]. 
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Ch. 8 Conclusion 

Between 1980 and 1998, vehicle miles traveled increased 72% while the number of lane 
miles increased only 1% [7.20]. The current pace of improvement in transportation system 
is not sufficient to keep up with even a slow growth in the traffic demands in most major 
urban areas. There is a great need for advanced surveillance capabilities to complement the 
rapid deployment of ITS strategies. Because of the highly intrusive characteristic of 
inductive loop detectors, the quest for researching a reliable and cost-effective alternative 
system, which can provide traffic data at the same accuracy level as inductive loop systems, 
has been underway for some time.  
 
This report describes the design and development of a novel wireless sensor networks 
based traffic surveillance system, which has a detection accuracy comparable to that of 
well-maintained inductive loop detectors [section 4.4]. It offers a very attractive alternative 
to inductive loops for traffic surveillance. The sensor networks have a much higher 
configuration flexibility, which allows the system to be scalable and deployable 
everywhere in the traffic networks. The availability of these data opens up new 
opportunities for intelligent traffic operations and control [Ch. 7]. Having a lower system 
life-cycle cost than inductive loop, video and radar detector systems [section 2.1.2], the 
sensor networks are cost-effective enough for large scale deployment.  
 
Total coverage of surveillance does not need to stay in the simulation stage anymore. The 
proposed wireless sensor networks have the potential to revolutionize the whole traffic 
surveillance and control industry [Ch. 7]. A summary of contributions from this research 
project is presented in section 8.1. And several potential future developments of this system 
are provided in section 8.2. 
 
8.1 Summary of Contributions 
For maximizing the benefits from all the ITS technologies, a large scale deployment of 
traffic controls on all major freeways and local streets would be an essential step to be 
taken [1.1]. Therefore, real-time traffic information at all these sites is required. In this 
research project, wireless sensor networks were developed and tested as a traffic 
surveillance system with detection accuracy as good as that of inductive loop detectors 
[section 4.4]. With such a flexible and cost-effective surveillance system [section 2.2], 
large scale deployment of ITS technologies can be achieved. 
 
The first generation of sensor node prototype designed in this project was named 
TrafficDot [section 3.2]. Its basic components include two magnetic sensors (HMC1051Z 
[3.14]), a microcontroller with integrated radio (MICA2DOT [3.15]), a battery (TL-5135 
[3.16]) and a protective cover (SmartStud [3.17]) made by high impact polycarbonate and 
designed to be placed on pavement. Even though this very first prototype does not have 
complete functionality, it shows a very promising future in the application of wireless 
sensor networks on traffic surveillance. It also provided important directions for improving 
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the design and development of second and third generation prototypes, which eventually 
became commercialized [3.18]. 
 
Traffic surveillance starts with detecting the presence of a vehicle. This very first stage in 
the surveillance system determines the final performance of all the dependent applications. 
Signals from magnetic and acoustic sensors are analyzed for designing detection algorithm 
[section 4.1, 4.2]. An efficient and robust real-time detection algorithm for these sensors, 
called Adaptive Threshold Detection Algorithm (ATDA) [4.1] was developed. A correct 
detection rate higher than 98% (777 / 791) was achieved in a real-time test (D5) [section 
4.4.5] conducted at a local intersection, while the inductive loops detectors gave a 14% 
over-counts in the same test. 
 
Vehicle classification is an important source of information for transportation design and 
management. However, conventional classification approaches either involve extensive 
computation or require a high volume of communication flow between the sensor nodes 
and base station, which are undesirable for the implementation on wireless sensor networks 
with limited computation resources and high power consumption in communication.  
 
Vehicle magnetic signatures were collected and analyzed for designing new classification 
schemes aimed at a platform with very limited computation resources [section 5.3]. Novel 
transformation processes, Average-Bars and Hill-Patterns [section 5.3.2], are proposed to 
transform the vehicle signature into a highly compressed format with fixed size. After 
principal component analysis, the data is classified by k-Nearest Neighbor (k-NN), Support 
Vector Machine (SVM) and direct hill-pattern matching [section 5.3.4]. A classification 
rate of 85% was achieved with a dataset of 864 trucks with the use of k-NN classifier on 
Average-Bars data for classifying FHWA class {5, 6} (3-or-less-axle) vs {8, 9, 11} (4-or-
more-axle). The overall classification rate was 65% for classifying FHWA class {5 vs 6 vs 
8 vs 9 vs 11} [section 5.4.5]. This simple classification scheme can be used to classify 
passenger vehicles from trucks, and 3-or-less-axle trucks from 4-or-more-axle trucks. 
  
The limitation of point data raised interest in vehicle reidentification, which provides 
section measurements including travel time, travel time variability, section density and 
origin/destination demand [section 6.1]. These data are essential parameters for effective 
traffic planning, control and managements. A Max-Of-Max (MOM) reidentification 
scheme using the Average-Bas data is proposed [section 6.2]. A reidentification rate of 
72.5% (58 / 80) was achieved in a left-turning reidentification test (dataset R2) [section 
6.3]. This demonstrated that the reidentification system is portable and deployable for 
different applications. 
 
Large scale deployment of ITS technologies is discouraged by the high life-cycle cost 
[section 2.1.3] and huge traffic delay caused by the installation of inductive loop detectors. 
The proposed wireless sensor networks provide the same functionality as inductive loop 
systems, but at a much lower cost and delay. Its wireless capability and configuration 
flexibility [section 2.2] give extra advantages to the large scale deployment of many ITS 
systems, such as traffic signal control, on-ramp metering and parking management [section 
7.1]. 
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8.2 Future Developments 
The proposed wireless sensor networks are extremely flexible platforms that can be fitted 
into all kinds of ITS applications. For each of these applications, there exist many different 
extensions of the system that can enhance the performance or provide new functionality. 
Four potential future developments are suggested below: energy harvesting, installation-in-
motion, multi-function networks and real-time implementations. 
 
Energy Harvesting 
The lifetime of Wireless Sensor Networks (WSN) directly depends on its power source. In 
fact, the energy constraint is a dominant factor of system design trade-offs for small 
embedded sensor devices. The scaling down in size and cost of microcontroller and sensor 
has outpaced that of a battery. This makes the power source account for a growing 
proportion of the cost of WSN. This cost is further magnified by the maintenance cost for 
either replacing or recharging the batteries on a regular basis.  
 

Harvesting Technology Power Density 

Solar cells (outdoors with sunlight) 15 mW / cm2 

Piezoelectric (shoe inserts) 330 µW / cm2 

Vibration (microwave oven) 116 µW / cm2 

Thermoelectric (10oC gradient) 40 µW / cm2 

Acoustic (100 dB) 960 nW / cm2 

Table 8.2.1 Power densities of harvesting technologies [8.1] 

 
Fortunately, a promising technique to forestall this energy problem is emerging: energy 
harvesting from the environment. Making use of the energy sources ubiquitous to the 
operating space of the WSN raises the possibility of unlimited lifetime. Table 8.2.1 shows 
the power density of different harvesting technologies [8.1]. Among the wide variety of 
harvesting modalities, solar energy harvesting through photo-voltaic conversion provides 
the highest power density - 15 mW/cm2 in sunlight. However, the design of such a module 
involves complex interactions of several factors, such as energy availability, solar cells 
characteristics, storage chemistry and capacity, and power supply requirements of specific 
applications. For maximizing the energy efficiency of WSN with energy harvesting, battery 
aware system design [8.2] and harvesting aware power management [8.3] are introduced. 
Deploying a wireless surveillance system with energy harvesting modalities can further 
extend its lifetime and reduce its life-cycle cost [section 2.1.2]. This makes the system even 
more attractive among all traffic surveillance technologies. 
 
Installation-In-Motion 
Even using the surface mounting type sensor nodes [section 3.2.5], an unavoidable short 
pavement-installation time (about 10 min) will still be needed, which involves the blocking 
of associated traffic. This short pavement-installation time is acceptable by allocating the 
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work after mid-night when the traffic load is light. Nevertheless, this minimum level of 
traffic disruption is still a big disadvantage of the system, especially for planning a large 
scale deployment. Therefore, installation-in-motion approach is a potential solution that 
worth to spend more resources to research on. For example, a customized truck can be 
designed and built to automate the pavement-installation processes while it is traveling. A 
GPS system can be used to identify pre-defined locations for the installation of sensor 
nodes. Specially designed robotic system can be used to carry out the mechanical mounting 
processes in such a short time that the whole installation can be completed while the truck 
is traveling at normal speed, inducing no traffic disruption at all. This installation-in-motion 
approach also makes the deployment more systematic and scalable. This is a big advantage 
for the system, especially for planning a nationwide deployment. 
 
Multi-Functions Networks 
Multi-functions wireless surveillance networks can be developed by adding other sensing 
modalities to the traffic surveillance systems. An important one is the modality for sensing 
road conditions [section 7.2.1]. The plug-and-play feature of sensor networks allows 
sensing modalities to be added to the surveillance system without modifying its framework. 
Therefore, deployments of different sensing capabilities can be customized according to 
specific applications and locations. The wireless communication capability of the sensor 
networks also allows it to talk to other ITS systems. Since the sensor nodes are located on 
the pavement, the networks can be a very useful tool in the Vehicle-Infrastructure 
Integration (VII) framework. It can be used to exchange information between different 
systems and extend the vehicle-infrastructure communication range [section 7.2.2].  
 
Real-Time Implementations 
The vehicle classification [Ch.5] and reidentification [Ch.6] algorithms are designed to be 
implemented on the wireless sensor networks which have a limited computation power and 
high communication power cost. However, all these algorithms have not been implemented 
on the sensor nodes yet, the processing being handled offline by Matlab so far.  It is time to 
upgrade Sensys’ VDS240 sensor nodes family to include real-time classification and 
reidentification modalities. This requires programming work on the sensor nodes’ 
firmware, as well as the user-end control software. Once a full system of the wireless 
sensor networks is commercialized with all the detection, classification and reidentification 
modalities, it will be a very competitive product in the traffic surveillance industry. The 
market will no longer be dominated by inductive loop detectors. 
 
Eventually, massive traffic surveillance networks will be setup for the deployments of ITS 
technologies on all the freeways, arteries and local intersections. Countless lives, time and 
money will be saved by advanced traffic controls [Ch.7]. Another page in the history of 
transportation system will be written, with the title “New Era of ITS Deployment”. 
Keeping this promising future in mind, there is no doubt that more resources should be 
invested in the research and development of traffic surveillance systems and associated ITS 
applications.  
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