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Abstract 

 
In this paper, we study the antecedents of moments of 

particularly successful learning while students use a Cognitive 

Tutor for geometry. Students used the Cognitive Tutor as part 

of their regular classroom activities and data was collected 

automatically. Learning moments were operationalized as 

when the probability that the student just learned was 

extremely high, as determined by a probabilistic model: the 

moment-by-moment learning model. The results indicate that 

while self-explanation is weakly predictive of learning 

moments, contextual guessing and several other factors are 

even better predictors of learning moments. These results 

suggest that unexpected events in student behavior may be 

good predictors of changes in knowledge.   

 

Keywords: Moment-by-Moment Learning; Intelligent 

Tutoring System; Educational Data Mining; Robust Learning 

 

In the process of learning a skill, a learner goes from not 

knowing the skill, and being unable to demonstrate it, to 

knowing the skill in a fashion that allows them to 

demonstrate it. The development of a skill can occur in 

several fashions; in particular, learning can occur rapidly or 

gradually over time. In some cases, learning takes the form 

of a sudden  insight, or a "eureka" moment, where the 

learner gains understanding of a concept in a brief moment. 

The question of how insight occurs during learning has been 

an enduring question in Cognitive Science (as discussed in 

Chu & MacGregor, 2011). There has been considerable 

research on insight, across decades and in recent years. 

Much of this research has involved insight problems, which 

are designed to be solved in a moment of insight after 

sustained effort (Schooler, Ohlsson, & Brooks, 1993). These 

problems typically are highly difficult, require a single 

insight, and have only one correct answer. Insight problems 

can be a useful instrument to study insight in a controlled, 

replicable fashion. They have allowed researchers to learn a 

considerable amount about insight, such as the 

incompatibility between verbalizing thoughts and solving 

insight problems (Schooler, Ohlsson, & Brooks, 1993), the 

ways that external stimuli can facilitate insight (Slepian, 

Weisbuch, Rutchick, Newman, & Ambady, 2010), and how 

increased cognitive load can disrupt insight (De Dreu, 

Nijstad, Baas, Wolsink, & Roskes, 2012). 

A criticism of this literature, however, is that insight 

problems in laboratory settings may not be representative of 

how “eureka moments” manifest in authentic learning 

situations (Bowden, Jung-Beeman, Fleck, & Kounios, 

2005). The focus on laboratory research on insight problems 

allows for greater control and facilitates research, given that 

eureka moments are relatively rare during real-world 

learning situations. However, if the properties of insight in 

authentic learning are different—if real-world insight 

involves problems substantially different than “insight 

problems”, and if problem-solving manifests differently in 

real-world contexts, where help and various types of 

learning support are often available—then the findings of 

laboratory insight research may not translate to 

understanding real-world insight during learning (Bowden 

et al., 2005). 

Therefore, it is important for research to examine insight 

in real-world environments. In this work, we begin to 

address this need by attempting to examine insight in an 

intelligent tutoring system—an authentic learning 

environment.  Insight is a difficult construct to measure. In 

this paper, we operationalize insight as the probability that 

the student just learned, according to a Bayesian Model that 

detects sudden shifts from incorrect to correct performance. 

This operationalization is open to question as a measure of 

insight, as it is less straightforward than traditional 

laboratory measures of insight. It may capture the 

culmination of a student’s thinking that leads to a qualitative 

and rapid change in performance, rather than the true 

“eureka” experience.  However, this measure has the benefit 

of being feasible to use to study the phenomenon of insight 

(or simply moments of rapid learning) in authentic learning 

contexts and tasks.  

We base this work on two recent developments that have 

made it more feasible to study insight in real-world learning 

environments. First, the increasing availability of very large 

data sets from online learning environments, in particular 
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intelligent tutoring systems that reify each of the steps of 

solving a specific problem (Koedinger & Corbett, 2006), 

allow us to find many examples of moments of rapid 

learning. Second, the recent advent of models that attempt to 

explicitly identify how much learning is occurring moment-

by-moment (Baker, Goldstein, & Heffernan, 2011) provides 

a new opportunity to identify situations where unusually 

rapid learning occurred and study what differentiated these 

situations from other situations where less learning 

occurred. In addition, the longitudinal and intensive nature 

of this data allows us to not just study what was occurring in 

those moments of enhanced learning, but also what occurred 

in the moments leading up to them. As such, for the present 

study, we combined these two resources to try to better 

understand what factors precede and are associated with 

insight.   

To do this, we first distilled a range of features of the data 

for situations where unusually rapid learning occurred in an 

online learning environment, as well as  for the situations 

and student actions preceding those situations. Though our 

approach was a bottom-up data mining approach (cf. Baker 

& Yacef, 2009), we distilled these features with specific 

candidate hypotheses in mind.  

One particularly important candidate hypothesis  involved 

self-explanation. Self-explanation is a self-directed, 

constructive activity that occurs when a student generates 

explanations during learning (Conati & VanLehn, 

1999;Hausmann, Nokes, VanLehn, & Gershman, 2009). 

Self-explanation can involve attempting to understand 

worked examples (Conati & VanLehn, 1999; Shih, 

Koedinger, & Scheines, 2008), or attempting to understand 

feedback (Baker, Gowda, & Corbett, 2011). While self-

explaining instructional content, students develop an 

understanding of complex phenomena, actively construct 

knowledge, and make knowledge personally meaningful 

(Jordan, Makatchev, & VanLehn, 2003; Roy & Chi, 2005). 

Self-explanation has been shown to promote deeper 

processing and more robust learning (Hausmann, Nokes, 

VanLehn, & Gershman, 2009; Roy & Chi, 2005).   Self-

explanation’s positive effects arise in part because it can 

expose a student’s misconceptions about a concept (Roy & 

Chi, 2005) and the gaps in the student’s knowledge 

(VanLehn & Jones, 1993). We believe that some of the way 

that self-explanation may promote robust learning in real-

world situations is through promoting "eureka" moments.    

Several other candidate hypotheses were also considered. 

These hypotheses are in line with past evidence from the 

cognitive and learning sciences that suggest that these 

specific factors are associated with positive learning 

outcomes in online learning settings. In particular, we 

examined the relationships between learning moments and 

receiving “bug” messages (which inform a student if they 

have a common misconception), and between learning 

moments and utilizing online help systems. Each of these 

experiences (and how students react to them) has been 

previously shown to be associated with robust learning, and 

insights are one way that this might occur (Baker, Gowda, 

& Corbett, 2011).   

Finally, we also examined contextual guessing behaviors.  

Guessing is not mentioned in the literature as being 

associated with robust learning, but we felt that it was worth 

examining because it is a behavior that only occurs before 

learning moments. Additionally, guessing is measured as 

part of many knowledge modeling frameworks, such 

Bayesian Knowledge Tracing (described below), but is 

typically unexamined. 

 

Method 
 

Learning Environment 
 

We studied learning moments within the context of 

Cognitive Tutor Geometry (CTG), a computer learning 

environment that promotes learning by doing, currently used 

by tens of thousands of students a year (Koedinger & 

Corbett, 2006).  In CTG, students individually solve 

mathematics problems, which are broken down into the 

series of steps needed to solve them.  As a student works 

through a problem, a running cognitive model assesses 

whether the student’s answers map to correct understanding 

or to a known misconception (Anderson, Corbett, 

Koedinger, & Pelletier, 1995).  If the student inputs an 

incorrect answer, the answer turns red.  If the student’s 

answer also indicates a known misconception (called a 

“bug”), the student is given a message about their error.  

An important feature of CTG is that students need to input 

both an answer and a justification for that answer, in the 

form of a geometric principle. Students can enter their 

justification either by typing the name of the geometric 

principle next to their answer or by choosing the geometric 

principle from a Glossary, which contains a list of theorems 

and definitions that are relevant to the lesson as well as 

illustrations and short examples demonstrating those 

theorems and definitions (Aleven & Koedinger, 2002).  In 

addition to being used for justifying problems steps, the 

Glossary also acts as a reference for students to use to help 

them solve the problems (Aleven & Koedinger, 2002).   

CTG also has context-sensitive multi-step hints, which are 

tailored to the exact problem step the student is working on.   

A student who requests a hint first receives a conceptual 

hint, and can then request further hints, which become more 

and more specific until the student is given the answer.  

As students work through problems in a specific 

curricular area, the system uses Bayesian Knowledge-

Tracing (Corbett & Anderson, 1995), or BKT, to estimate 

which skills the student knows and which skills the student 

is having difficulty with. BKT is a commonly-used student 

modeling algorithm that infers the probability of student 

knowledge at a given time based on the student’s history of 

correct and incorrect answers and help requests. BKT also 

empirically determines the probability  that the student got 

the answer correct without having the necessary knowledge 

(called the guess probability) and the probability that the 
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student got the answer incorrect even though they had the 

knowledge (called the slip probability). CTG then uses these 

estimates to give each student problems that are relevant to 

the skills that he or she is having difficulty with.   

CTG material is structured into independent lessons that 

each cover a set of related skills and concepts, such as 

parallel and perpendicular lines, similarity, congruence, 

volume and surface areas, and vectors.  Year-long courses 

are composed of sequences of lessons, where later lessons 

build upon knowledge from previous lessons.  Log files are 

automatically collected while the students use the software 

over the course of the year. 

 

Participants 
 

The data set used in this research comes from the LearnLab 

DataShop data repository (Koedinger, Stamper, Leber, & 

Skogsholm, 2013). Data was collected from 102 students at 

a high school in rural Western Pennsylvania.  The students 

used CTG across the course of the entire school year, 

approximately two days a week, as part of their regular 

mathematics curriculum.  Students in this school are 98% 

Caucasian.  While this is typical for rural schools in this 

region, it is higher than the state average (73% Caucasian). 

There are approximately 16 students per teacher in the 

school, which is about the same as the state average (15 

students per teacher). Additionally, 28% of students in the 

school qualified for free or reduced lunch, which is slightly 

less than the state average (33%).  In this school, 69% of 

students were rated proficient or higher on the math section 

of the PSSA standardized exam, which is approximately 

equal to the state average (72%). The students were 

approximately balanced in terms of gender.  

Students made 683,285 total transactions with the system 

(a transaction is defined as any action that the student 

makes, such as attempting to enter a problem step or asking 

for help), within 509,854 total problem steps, for an average 

of 1.34 transactions per problem step.  There was an average 

of 6698.87 transactions per student, an average of 10845.79 

transactions per lesson across all students, and an average of 

106.33 transactions per lesson per student. There was an 

average of 4998.57 problem steps per student, an average of 

8092.92 problem steps per lesson across all students, and an 

average of 79.34 problem steps per lesson per student. 

 

Measuring Moment-by-Moment Learning 
 

We computed the probability that a student learned in a 

specific problem step using the moment-by-moment 

learning model, also referred to as P(J), the probability that 

the student Just learned (Baker, Goldstein, & Heffernan, 

2011). A high P(J) value indicates that there was a high 

probability that the student learned during the associated 

problem step. The full mathematical equations for the P(J) 

model are given in Baker, Goldstein, & Heffernan (2011), 

but we summarize the process here. 

The calculation of P(J) builds upon BKT and is a two-

step process. First, we generate an initial value for each 

problem step that represents the probability that the student 

learned a knowledge component or skill on that specific 

problem step. The assignment of these values is based on 

the idea that learning is indicated when a student does not 

know a skill at one point, but then starts performing 

correctly afterwards. These initial probabilities are 

generated using a combination of predictions of current 

student knowledge from BKT and data on future 

correctness, integrated using Bayes’ Theorem. Thus, the 

calculation uses evidence from both past and future data to 

assess the probability that learning occurred at a specific 

time.   

Second, these initial probabilities are then used as inputs 

to a model that infers the probability of learning at a specific 

problem step based only on past data.  This model uses a 

broader feature set (e.g., response time, use of help, the type 

of interface widget, and the student’s problem-solving 

history with the tutor), but uses no data from the future. In 

this way, we create a model that can be used either at run-

time or retrospectively to assess the probability that a 

knowledge component is learned at a specific practice 

opportunity. This process also “smoothes” model 

predictions, reducing the degree to which extreme 

probability values are obtained by chance. This prediction 

smoothing  is useful because it  makes the predictions more 

stable and reliable and, in turn, allows us to examine the 

predictions more closely. 

 

Data Analysis 
 

To examine insight, we compared two sub-sets of the data – 

the data associated with the top 1% of P(J) values, treated as 

rapid learning moments, and the data associated with the 

remaining 99% of P(J) values, treated as non-rapid learning 

moments. This 99/1 split is a somewhat arbitrary 

designation; it is hard to say if this is too liberal or too 

conservative. It is possible that not all P(J) values in the top 

1% are indicative of learning moments.  However, moments 

in the top 1% are definitely more likely to be rapid learning 

moments than those in the top 50%, for instance.  

In order to examine the predictors of these moments, we 

looked at the preceding problem step on the same skill for 

each rapid and non-rapid learning moment. Depending on 

the design of the lesson, the antecedent problem step of the 

same skill could have immediately preceded the moment or  

been separated from the moment by several minutes, or 

even a few days. Each antecedent problem step consisted of 

one or more student actions, such as asking for help or 

inputting a response. To create features (discussed below) at 

the grain-size of problem steps, we averaged the data across 

all student actions in each individual problem step to create 

a single value per feature per problem step. 

The top 1% of P(J) values was determined using all 

509,854 P(J) measurements in the data set. However, not all 
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problem steps had an antecedent problem step.  Problem 

steps were only included in the analysis if they had an 

antecedent problem step on the same skill. This produced a 

set of 3996 problem steps with a P(J) in the top 1% and a 

comparison set of 467701 problem steps with a lower P(J). 

In order to better understand the situations in which 

insights occur, we used features of the antecedent problem 

steps of rapid and non-rapid learning moments to develop a 

set of prediction models that attempt to infer whether a 

problem step will be a rapid learning moment. Specifically, 

we built a set of step regression models (linear regression 

with a step function; not the same as step-wise regression), 

using RapidMiner 4.6 (Mierswa et al., 2006). Step 

regression models are a method for predicting binary data. 

In this case, we used them to predict whether an antecedent 

problem step preceded a rapid learning moment or not. Step 

regression models postulate that there are sharp disjunctions 

between the values of a variable. They have been successful 

in many educational data mining problems, and seem 

particularly appropriate in this case, as we are trying to infer 

a sharp disjunction in student learning and performance. In 

this study, we created one model per potential feature in 

order to understand the range of features that predict insight. 

 

Potential Predictors of Insight 
 

We distilled a set of features that were potential predictors 

of insight from the logs of students' interactions with the 

Cognitive Tutor. These features were quantitative or binary 

descriptors of key aspects of each problem step and were 

hypothesized to be associated with the construct of interest, 

insight. As discussed above, these features were computed 

using data from the problem step preceding each rapid or 

non-rapid learning moment.  

One of the candidate features we examined was self-

explanation. This type of large-scale log data is analyzed 

retrospectively. Therefore, it was not possible to directly 

measure whether students were engaging in self-

explanation. Instead, we adopted the operationalization used 

by Baker, Gowda, and Corbett (2011). They suggested 

looking for when students pause after receiving a bug 

message or pause after asking for help. Previous research 

suggests that long pauses in these situations may indicate 

self-explanation (Shih, Koedinger, & Scheines, 2008). We 

specifically looked for pauses that were at least 10 seconds 

long. The cutoff of 10 seconds was chosen because this 

amount of time indicates that the learner was probably doing 

something other than just making the next action in the 

system. These pauses can contain other behaviors, such as 

off-task behavior (typically 80 seconds or longer – Baker, 

2007) or talking to the teacher, but are likely to contain a 

substantial proportion of self-explanation behavior. 

Eighteen other features were distilled as well, such as 

guessing behaviors and the number of actions it took the 

student to achieve a correct answer, the latter of which may 

indicate that students are making many mistakes and/or are 

asking for a lot of help.  All of the features distilled 

represent theoretically-justified hypotheses for factors that 

may lead to learning moments.  Furthermore, these features 

all represent unique, though potentially correlated, actions 

and occurrences within the Cognitive Tutor. While a 

description of all of the features is out of the scope of this 

paper, six are listed in Table 1 to highlight the most relevant 

findings.   

 

Metrics Used 
 

We evaluated each of the models using cross-validation. In 

cross-validation, models are repeatedly built on a subset of 

the data, and tested on an unseen subset. In this analysis, we 

cross-validated at the student-level (e.g. the same student 

was not represented in both the training and test folds), 

using 6 folds. Cross-validation is an alternative to statistical 

significance testing that is theoretically equivalent to the 

Bayesian Information Criterion (BIC) (Raftery, 1995).   

The goodness of each model was determined using A’, a 

metric mathematically identical to the Wilcoxon statistic 

and to AUC, the “Area Under [the ROC] Curve” (Hanley & 

McNeil, 1982). A’ is the probability that if a detector 

compares a problem step preceding a rapid learning moment 

to a problem step that is not, it will correctly identify which 

is which.  A model with an A’ of 0.5 performs at chance and 

a model with an A’ of 1.0 performs perfectly. In this study, 

A’ was calculated using custom code that can be found at 

http://www.columbia.edu/~rsb2162/computeAPrime.zip. 

This custom code avoids the computational errors that are 

seen in A' implementations that compute the integral of the 

curve. Cohen’s Kappa (1960) is another goodness metric 

that is often used for models of this type. However, due to 

the extreme imbalance between the number of cases in the 

comparison groups, it was not appropriate for this data. 

Along with the A' values, we also calculated the means 

and standard deviations of each feature for each group.  

These values, in general, represent the approximate 

proportion of the times that the action associated with the 

feature occurred.  However, because the unit of analysis is 

problem steps and not all individual actions are treated 

equally, labeling these as proportions is not quite accurate.  

Additionally, some means and standard deviations, such as 

the number of actions in a problem step, represented 

average counts instead of proportions. 

 

Results 
 

In line with our initial hypothesis, students about to have a 

moment of rapid learning were more likely to self-explain 

bug messages and hints (M = 0.120, SD = 0.248) than 

students not about to have a moment of rapid learning (M = 

0.018, SD = 0.107).  However, self-explanation was only 

weakly predictive of rapid learning moments (A' = 0.578). 

Other features were more predictive.       

Contextual guessing, calculated using the model from 

Baker, Corbett, & Aleven (2008) and defined as having a 
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high probability of getting an answer correct due to guessing 

rather than knowing the skill, was the strongest predictor of 

rapid learning moments (A’ = 0.709). Students who were 

about to have a moment of rapid learning were more likely 

to contextually guess (M = 0.100, SD = 0.128) than students 

not about to have a moment of rapid learning (M = 0.022, 

SD = 0.071).  This indicates that guessing may help students 

learn when they do not understand a skill. Alternatively, it 

may indicate that students appear to guess when they have 

developed an understanding that is partially correct and only 

succeed intermittently.  

 

Table 1: A’ values for a subset of the features 
Feature A’ 

Low Probability of Knowing Before Answering and High 
Probability of Guessing 

0.709 

Probability of Knowing Before Answering 0.706 

Number of Actions in the Problem Step 0.639 

Receiving a Bug Message 0.626 

Time > 10 Seconds and Previous Action Help or Bug 0.578 

Asking for Help 0.539 

 

The probability of knowing the skill before answering (A’ 

= 0.706) was also more predictive of rapid learning 

moments that self-explanation.  Students who had a lower 

probability of knowing the skill before completing an action 

were more likely to have a moment of rapid learning (M = 

0.674, SD = 0.357) than those with a higher probability of 

knowing the skill before completing an action (M = 0.889, 

SD = 0.250). This makes sense, as a student cannot have a 

learning moment if they already know the skill.   

As hypothesized, another feature associated with rapid 

learning moments was receiving a bug message, though this 

feature was only weakly associated (A’ = 0.584).  Students 

about to have a rapid learning moment were more likely to 

receive a bug message (M = 0.168, SD = 0.312) than 

students not about to have a rapid learning moment (M = 

0.053, SD = 0.192). This suggests that the feedback present 

in the bug messages helped the students learn the skill – a 

positive impact for that aspect of the Cognitive Tutor’s 

design. It is surprising that bug messages were not more 

predictive of learning moments though. A more detailed 

examination of bug messages may clarify these results.  

However, contrary to our hypothesis, asking for help was 

not very predictive of rapid learning moments (A’ = 0.539).  

Given that help seeking behavior is commonly considered to 

be good for learning, this is a surprising result. It may 

indicate that the help being given was only intermittently 

useful or that students were abusing the help. However, this 

result requires a more thorough investigation before we can 

make any conclusions with confidence. 

Finally, the number of actions it took a student to get the 

correct answer to a problem step was also predictive of 

rapid learning moments (A' = 0.639).  Students about to 

have a rapid learning moment tended to make more attempts 

before getting the correct answer (M = 2.199, SD = 2.376) 

than students who were not about to have a rapid learning 

moment (M = 1.347, SD = 1.557). This implies that 

persisting in working on a difficult problem is associated 

with moments of rapid learning.  

 

Discussion and Conclusions 
 

In this research, we looked to understand when insight 

occurs within real-world learning contexts by studying  

large quantities of log files from students using an 

Intelligent Tutoring System.  Specifically, we used the 

probability that a student had just learned as an indicator of 

whether insight occurred and compared rapid learning 

moments (i.e., insights) to non-rapid learning moments (i.e., 

non-insights) in terms of a variety of features.  It is our hope 

that this research is a first step towards being able to 

accurately study "eureka" moments in authentic learning 

environments. 

In line with this, these results should be seen as opening 

up new hypotheses rather than conclusively confirming 

them. As is true of all measures developed using data 

mining and knowledge engineering, our operationalizations 

are imperfect. For the purposes of this study, we have drawn 

from previous literature to operationalize these constructs as 

accurately as possible.  However, it is difficult to verify the 

degree to which our operationalizations fully capture these 

constructs.  

Despite this limitation, clear findings emerge from this 

analysis. We initially hypothesized that self-explanation 

would lead to rapid learning moments, and this hypothesis 

was weakly supported by the results. Other successful 

predictors of moments of rapid learning included the 

probability of knowing the skill, the number of actions it 

took to complete the problem step, and receiving a bug 

message.  

However, contextual guessing was the most strongly 

associated with rapid learning moments.  This is interesting 

because guessing is typically assumed to be associated with 

behaviors that have negative effects on learning, such as 

gaming the system (Baker, Corbett, Roll, & Koedinger, 

2008). Guessing is an event that occurs unexpectedly. This 

may mean that unexpected events are good indicators of 

rapid changes in knowledge.  Alternatively, it might mean 

that the differences between unexpected events and rapid 

changes in knowledge are hard to discriminate. 

For these reasons, future work should focus on clarifying 

the relationships between rapid learning moments and their 

antecedents at a finer grain size, especially examining 

unexpected events such as contextual guessing. Future work 

should also further examine how closely P(J) values relate 

to insight. One way to approach this may be to distill 

features that have been shown to be associated with insight 

(e.g., not verbalizing thoughts, minimized cognitive load) 

and to see how these features associate with P(J) values. In 

this way, we can better understand the factors that lead 
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students to experience insight, better understand how to 

design online learning to facilitate learning moments, and 

help fulfill Anderson’s (1993) vision for intelligent tutoring 

systems as both a way to transform education and a platform 

for Cognitive Science research.  
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