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CHAPTER EIGHT
Phylogenetic Approaches
to Natural Product Structure
Prediction
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Abstract
Phylogenetics is the study of the evolutionary relatedness among groups of organisms.
Molecular phylogenetics uses sequence data to infer these relationships for both organ-
isms and the genes they maintain. With the large amount of publicly available sequence
data, phylogenetic inference has become increasingly important in all fields of biology.
In the case of natural product research, phylogenetic relationships are proving to be highly
informative in terms of delineating the architecture and function of the genes involved in
secondary metabolite biosynthesis. Polyketide synthases and nonribosomal peptide
synthetases provide model examples in which individual domain phylogenies display dif-
ferent predictive capacities, resolving features ranging from substrate specificity to struc-
tural motifs associatedwith the finalmetabolic product. This chapter provides examples in
161
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which phylogeny has proven effective in terms of predicting functional or structural
aspects of secondary metabolism. The basics of how to build a reliable phylogenetic
tree are explained along with information about programs and tools that can be used
for this purpose. Furthermore, it introduces the Natural Product Domain Seeker, a recently
developed Web tool that employs phylogenetic logic to classify ketosynthase and con-
densation domains based on established enzyme architecture and biochemical function.
1. INTRODUCTION
1.1. A short introduction to phylogeny

All life on earth is united by a shared evolutionary history. Phylogenetics is

the study of that history based on the principles of common ancestry and

descent. In the premolecular age, organismal phylogenies were generally

created based on morphological character states. With the advent of

DNA sequencing, molecular phylogenetics has become the standard for

inferring evolutionary relationships. In general, molecular methods are

considered far superior since the actions of evolution are ultimately reflected

in genetic sequences. The analysis of DNA and protein sequences also pro-

vides unprecedented opportunities to infer gene phylogenies, which in

many cases may not be congruent with the phylogenies of the organisms

in which the genes reside. These incongruences can be due to different rates

of gene evolution and, more dramatically, to the process of horizontal gene

transfer (HGT), which is now widely recognized as a major force driving

bacterial evolution (Ochman, Lerat, & Daubin, 2005).

With the enormous advances being made in next generation sequencing

technologies, the analysis of DNA and amino acid sequence data, loosely

defined as bioinformatics, has become increasingly important in all fields

of biology (Mak, 2010). In natural product research, bioinformatic tools

have been developed for a variety of applications including the in silico anal-

ysis of secondary metabolite biosynthetic gene clusters and the small mole-

cules they produce. Online tools such as the nonribosomal peptide

synthetases (NRPS)/polyketide synthases (PKS) database (Yadav, Gokhale,

& Mohanty, 2009), NP searcher (Li, Ung, Zajkowski, Garneau-Tsodikova,

& Sherman, 2009), and antiSMASH (Medema et al., 2011) have made bio-

synthetic gene analysis highly accessible. Many of these tools have been

reviewed (Bachmann & Ravel, 2009) and will not be discussed in detail

here. In general, they are based on the identification of DNA and amino acid

sequence similarities and the assumption that these similarities imply similar
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Figure 8.1 Phylogenetic trees. Molecular phylogenetic analyses are usually displayed in
the form of trees. Examples include (A) a rooted rectangular tree or (B) an unrooted
radial tree. Both maximum likelihood trees were generated using MEGA.
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function. An additional approach is to put sequences into an evolutionary

context using phylogenetic methods. The advantage of this approach is that

similar sequences can have a diversity of functions that can be resolved based

on evolutionary relationships (Eisen, 1998).

Phylogenetic analyses are usually displayed graphically in so-called phyloge-

netic trees, where each branch of the tree represents one organism or gene

(Fig. 8.1). Contemporary phylogenetic concepts were first developed in the

1960s and 1970s (O’Malley & Koonin, 2011) and, with the introduction of

DNA sequence data, revolutionized our understanding of microbial evolution

and systematics (Woese, 1987). In natural products chemistry, “species trees”

based on phylogenetic markers have mainly been used to provide a more accu-

rate identificationof the sourceorganismand, in somecases, todrawcorrelations

between taxonomy and secondary metabolite production (Engene et al.,

2011; Jensen, 2010; Larsen, Smedsgaard, Nielsen, Hansen, & Frisvad, 2005).

During the past decade, the applications of molecular phylogeny have grown

exponentially. Phylogeny is now routinely used to improve functional

predictions, and “phylogenomics” has been adopted to trace the history of

functional change (Eisen, 1998; Eisen & Fraser, 2003). The increased use

of phylogenetics in natural product research has provided remarkable new

insight into the evolution of the extraordinarily large and complex genes and

gene pathways responsible for secondary metabolite biosynthesis.

This chapter provides a short overview of the applications of phyloge-

netics in natural product research. The aims are to demonstrate the tremen-

dous predictive powers of these methods in terms of identifying common

biosynthetic capabilities and new biosynthetic paradigms. It is not intended
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to be a comprehensive review of phylogenetic methods or theory as pro-

vided elsewhere(Salemi & Vandamme, 2003; Schmitt & Barker, 2009).

Instead, the goals are to provide a brief introduction on how to build and

interpret a reliable phylogenetic tree. This is followed by a discussion of

select bioinformatic tools with a focus on the Natural Product Domain

Seeker (NaPDoS), which can be used to classify biosynthetic genes based

on their phylogenetic relationships.

1.2. The biosynthetic logic of secondary metabolism
Two of the most common enzyme families associated with natural product

biosynthesis are PKSs andNRPSs. These genes are responsible for the biosyn-

thesis of themajority of bioactivemicrobial metabolites identified today. Poly-

ketide and nonribosomal peptide biosynthetic pathways are multienzyme

complexes that sequentially construct natural products in an assembly line pro-

cess from carboxylic acid and amino acid building blocks, respectively

(Hertweck, 2009; Marahiel, Stachelhaus, & Mootz, 1997). They consist of

multiple domains that are responsible for the activation, thiolation (T),

condensation (C), and modification of the individual monomers that are

incorporated into the final product. In certain PKS classes and most

NRPSs, these domains occur in multimodular architectures, resulting in

single genes that can exceed 40 kb, making them among the largest

bacterial genes known. The evolutionary history of these domains and

modules can be highly complex, revealing rapid rates of evolution through

recombination, gene duplication, and HGT (Jenke-Kodama & Dittmann,

2005; Jenke-Kodama, Sandmann, Muller, & Dittmann, 2005).

1.2.1 Polyketide synthases
Polyketides are polymers of acetate and other simple carboxylic acids.

Despite the simplicity of these building blocks, they display remarkable

levels of structural diversity due to the combinatorial nature of the assembly

line process and frequent postassembly modifications (Fischbach & Walsh,

2006). Many well-known antibiotics including erythromycin and tetracy-

cline are polyketides, as are the dinoflagellate polyethers, which are among

the largest secondary metabolites known (Kellmann, Stuken, Orr, Svendsen,

& Jakobsen, 2010). PKSs are highly diverse and widespread having been

detected in bacteria, fungi, plants, and various eukaryotic genomes, however

they are best known as bacterial secondary metabolites. Their sporadic tax-

onomic distributions and known propensity for HGT makes their evolu-

tionary histories especially interesting (Jenke-Kodama et al., 2005).



165Phylogenetic Approaches to Natural Product Structure Prediction
PKS genes are generally too large and complex for meaningful phylo-

genetic analysis; however, individual domain phylogenies are remarkably

informative. While T domains are generally too short for analysis, the

elongation or ketosynthase (KS) domains have proven highly predictive

of pathway associations and enzyme architecture ( Jenke-Kodama et al.,

2005; Moffitt & Neilan, 2003; Nguyen et al., 2008; Ridley, Lee, &

Khosla, 2008). On the other hand, the substrate activating or

acyltransferase (AT) domains clade based on substrate specificity and can

be used to predict the incorporation of malonyl- or methylmalonyl-

CoA into the growing polyketide chain. Of the three optional

reductive domains, ketoreductase phylogeny can be used to predict the

stereochemistry of the resulting hydroxyl group (Jenke-Kodama,

Börner, & Dittmann, 2006). Finally, the phylogeny of thioesterase

domains, which cleave the polyketide product from the carrier protein,

can be used to predict if this product will be linear or cyclic. KS

domains are the most conserved and form an essential part of each PKS

gene cluster. These domains have been used to fingerprint PKS genes

from individual strains (Edlund, Loesgen, Fenical, & Jensen, 2011) and

environmental DNA (Wawrik et al., 2007). KS phylogeny has even

been used to predict secondary metabolite diversity (Foerstner, Doerks,

Creevey, Doerks, & Bork, 2008; Metsa-Ketela et al., 1999), structures

(Freel, Nam, Fenical, & Jensen, 2011; Gontang, Gaudencio, Fenical, &

Jensen, 2010), and the evolutionary processes that generate new

structural diversity (Freel et al., 2011)

PKS genes are broadly divided into three types (PKSI-III) (Shen, 2003).

These types are clearly resolved in a KS-based phylogenetic tree (Fig. 8.2)

and reveal the close evolutionary history they share with fatty acid synthases

(Jenke-Kodama et al., 2005). Type I PKSs are the most diverse and generally

encode all catalytic domains on a single protein that acts iteratively or in a

modular fashion. Iterative acting type I PKSs in fungi evolved independently

from the iterative type I PKSs observed in bacteria (Kroken, Glass, Taylor,

Yoder, & Turgeon, 2003) and can be further divided into reductive and

nonreductive clades (Yadav et al., 2009). Remarkably, KS phylogeny can

be used to identify at least eight well-supported type I PKS clades, each

of which represents a distinct enzyme architecture or biochemical function

(Ziemert et al., 2012). One of these clades comprises the iterative acting type

I PKSs that are responsible for the biosynthesis of enediynes. This is one of

the most biologically active classes of natural products yet to be discovered

and includes the potent anticancer agent calicheamicin. More detailed
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Figure 8.2 Ketosynthase domain phylogeny. The three PKS types (I–III) are clearly
resolved in this KS phylogenetic tree as is their close relationship to various FAS (fab)
genes. Sequences classified as KS III form a distinct lineage that is involved in the
initiation of aromatic polyketide biosynthesis. This maximum likelihood tree was gen-
erated with PhyML using a manually curated alignment generated with muscle.
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phylogenetic analyses of this clade distinguish between genes that produce

9- or 10-membered core enediyne ring structures (Liu et al., 2003).

Type I KS domain phylogeny reveals another well-supported clade com-

prising modular PKSs that lack integrated AT domains. In these “trans-AT”

PKSs, the AT catalytic activity is generally complemented by a freestanding

enzyme (Nguyen et al., 2008). Trans-AT PKSs evolved by extensive HGT

and maintain considerably greater modular diversity than the cis-AT group.

Whereas the close cladding of cis-AT KS domains can be used to predict the

production of similar compounds (Gontang et al., 2010), trans-AT KS

phylogeny can be used to predict substrate specificity (Nguyen et al.,

2008). This was a surprising finding, given that substrate specificity can

be inferred from AT domain phylogeny in cis-AT PKSs.

Iterative acting type II PKSs encode each catalytic site on a distinct protein.

Typical type II PKSs encode two distinct KS domains: KSa, which catalyzes

the condensation reaction, and KSb, also known as the chain length factor,

which determines the number of iterative condensation steps that occur.

These type II KS subclasses form two distinct phylogenetic lineages within

the larger type II KS clade. Finer level phylogenetic relationships within

the KSa clade correspond to the structural classes of the metabolites produced
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and can be used to distinguish between spore pigments, antracyclines,

tetracyclines, and angucyclines, among others (Metsa-Ketela et al., 2002).

TheKS phylogenetic tree reveals another distinct clade that has been called

KS III (Fig. 8.2). These sequences are most closely related to FabH proteins,

which are involved in fatty acid biosynthesis. KS III domains are involved in

the initiation of aromatic polyketide biosynthesis and can incorporate unusual

PKS starter units (Xu, Schenk, & Hertweck, 2007). Recently, a new type of

KS III domain was discovered in the cervimycin biosynthetic pathway

(Bretschneider et al., 2011). Phylogenetic analysis of the CerJ KS domain po-

sitioned it between the known KS III domains and ATs, suggesting it may

have a new biochemical function. It was subsequently demonstrated that this

KS domain is not involved in a typical Claisen condensation reaction but in-

stead transfers activated malonyl units onto a sugar residue. A final KS clade

comprises sequences derived from type III PKSs (Moore & Hopke, 2001).

This family of multifunctional enzymes includes chalcone and stilbene

synthases andwas originally considered to be specific for plants before bacterial

homologues were discovered (Moore et al., 2002).

1.2.2 Nonribosomal peptide synthetases
NRPSs are multimodular enzymes that are structurally similar to type I

modular PKSs. Like PKSs, they are generally found clustered in operons that

include genes associated with transport, resistance, posttranslational modifi-

cation, and other functions required for the effective use of the natural prod-

uct. NRPSs produce small peptides by condensing activated amino acids

onto a growing peptide chain that is bound as a thioester to the enzyme

(Fischbach & Walsh, 2006). NRPS genes have only been detected in

prokaryotes and fungi (Bushley & Turgeon, 2010), where they are respon-

sible for the biosynthesis of a variety of well-known bioactive compounds

including penicillin and vancomycin. The minimal domain requirements

of a typical NRPS module consist of an adenylation (A) domain that is re-

sponsible for substrate specificity and activation, a T domain that covalently

tethers the substrate to the enzyme via a thioester bond, and a C domain that

catalyzes peptide bond formation between the substrate and the growing

peptide chain. Peptide modifying domains responsible for amino acid meth-

ylation or cyclization are sometimes observed and create additional structural

diversity.

NRPS domain phylogenies are complex and reflect different evolution-

ary paradigms. C and A domains are the largest and most conserved and have

been shown to evolve independently in the same pathway (Fewer et al., 2007).
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A major bioinformatic breakthrough was made with the discovery that the

amino acids lining the A domain binding pocket are highly predictive of the

amino acid substrate that is incorporated into the growing peptide

(Stachelhaus, Mootz, & Marahiel, 1999). This discovery made it possible

to use bioinformatics to predict the amino acid sequences of NRPS-derived

peptides (Challis, Ravel, & Townsend, 2000). While A domain amino acid

specificity can be resolved phyogenetically when limited to the eight amino

acids in the binding pocket, these signatures are obscured when the larger

(180–200 aa) domain sequences are considered (Challis et al., 2000). None-

theless, A domain phylogenies have proven highly informative in that they

tend to reveal clades that correspond to the gene in which they reside, making

structural predictions of unknownNRPSs possible when compared to exper-

imentally characterized biosynthetic pathways (Cramer et al., 2006). In addi-

tion, A domains associated with the biosynthesis of hybrid PKS/NRPS genes

or with the incorporation ofN-methylated amino acids and dioxypiperazines

can be resolved (Cramer et al., 2006). A recent A domain phylogenomic study

in fungi revealed two major clades representing the more ancient mono/

bimodular NRPSs and the more recently evolved multimodular NRPSs

(Bushley & Turgeon, 2010). These authors suggested that the rapid evolution

of multimodular NRPS A domains reflect niche-specific adaptations.

C domain phylogeny clearly reflects the stereochemistry of the amino

acids that are added to the growing peptide chain or other functional features

of the enzyme. Six characteristic clades have been identified (Rausch, Hoof,

Weber, Wohlleben, & Huson, 2007). These include LCL domains, which

catalyze peptide bond formation between two L-amino acids, DCL domains,

which condense an L-amino acid to a growing peptide ending with a

D-amino acid, and starter C domains, which acylate the first amino acid with

a b-hydroxy-carboxylic acid. In addition, cyclization domains catalyze both

peptide bond formation and the subsequent cyclization of cysteine, serine,

or threonine residues; epimerization (E) domains switch the chirality of the

last amino acid in the growing peptide generally from L to D; and dual E/C

domains catalyze both E and C reactions.

1.2.3 More examples
Phylogenetics is yielding useful information in the analysis of virtually all

classes of biosynthetic enzymes. For example, terpenes are assembled from

five-carbon isoprene units, which can subsequently be attached to other

compound classes via prenyltransferases (PTases) (Heide, 2009). PTases have

been divided into three major classes: isoprenyl pyrophosphate synthases
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(IPPSs), protein PTases, and aromatic PTases. The evolutionary relation-

ships of aromatic PTases containing a PT-barrel fold suggest that fungal

and bacterial enzymes share a common ancestry (Bonitz, Alva, Saleh,

Lupas, & Heide, 2011). The DMATS family of fungal indole PTases

catalyzes, among others, the prenylation of ergot alkaloids. Although no

significant sequence similarity is detected between the fungal and bacterial

enzymes, a sensitive analytical method called HHsearch (Soding, Biegert, &

Lupas, 2005) revealed clear homology (Bonitz et al., 2011). No common

ancestry could be detected between membrane-bound PTases, which are

mostly involved in primary metabolism, and the soluble PT-barrel con-

taining PTases associated with secondary metabolite biosynthesis, suggesting

the evolution of multiple prenylation mechanisms in nature.

Ribosomally produced peptides (RPs) represent a class of secondary me-

tabolites that is receiving increased attention. Bacteriocins represent one well-

studied group of RPs and include the microcins of Escherichia coli and the

lantibiotics of Gram-positive bacteria (Jack & Jung, 2000). Most bacteriocins

contain a characteristic N-terminal leader sequence that is cleaved concomi-

tantwith translocationacross themembrane (Michiels,Dirix,Vanderleyden,&

Xi, 2001). Phylogenetic analysis of the peptidase domain revealed a clear dis-

tinction betweenGram-positive andGram-negative bacteria and a clade com-

prising cyanobacteria (Dirix et al., 2004). The colicins represent a family of

RPs that can be divided into two different evolutionary lineages based on their

mode of action (Riley &Wertz, 2002). Other RPs include the cyanobactins,

which are widespread among cyanobacteria (Leikoski, Fewer, & Sivonen,

2009; Schmidt et al., 2005; Sudek, Haygood, Youssef, & Schmidt, 2006;

Ziemert et al., 2008). Recent phylogenetic analyses could distinguish four

different cyanobactin clades that can be linked to structural features of the

compounds. In addition, a phylogenetic model was created to predict the

products of orphan RP gene clusters (Donia & Schmidt, 2011). As shown

in the examples above, phylogeny is increasingly being used to make

effective predictions of secondary metabolite gene function.

2. WORKING WITH SEQUENCE DATA

2.1. Assembling the dataset

The general steps required for a phylogenetic analysis are outlined in Fig. 8.3.

The first step is to find sequences that are homologous to the gene of interest.

This is a crucial but often undervalued part of the analysis. Distinguishing

homologs, that is, sequences that share a common ancestry, from sequences
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that share a random level of similarity is challenging but can be overcome by

setting a conservative similarity threshold. Although there are exceptions,

sequence similarities should generally be higher than 25% for proteins and

60% for DNA to produce meaningful phylogenies. It can also be helpful

to select one or more sequences to function as out-groups. These should

be homologous sequences that are more distantly related to all other se-

quences in the analysis than they are to each other. Out-groups are used

to root the tree and help infer the direction of evolution. However, it

can be difficult to find an appropriate out-group, as it implies the evolution-

ary context of the gene of interest is known.Midpoint rooting or creating an

unrooted tree makes the selection of an out-group unnecessary.

The easiest way to find sequences of interest is to perform a database sea-

rch. Public sequence databases such as the National Center for Biotechnology
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Information (NCBI) allow keyword and sequence similarity searches. The

most popular search algorithm is the Basic Local Alignment Search Tool

(BLAST) (Table 8.1), which can accommodate nucleotide or protein

sequences and identifies local regionsof similarity and their statistical significance
Table 8.1 Select bioinformatic programs
Application Program Source

Similarity

searches

BLAST http://blast.ncbi.nlm.nih.gov/Blast.cgi

HMMER http://hmmer.janelia.org/

Multiple

alignments

ClustalX http://www.clustal.org/

Muscle http://www.drive5.com/muscle/

Alignment

editing

BioEdit http://www.mbio.ncsu.edu/bioedit/bioedit.

html

Mesquite http://mesquiteproject.org/mesquite/

mesquite.html

Model-testing jMODELTEST http://darwin.uvigo.es/software/jmodeltest.

html

PROTTEST http://darwin.uvigo.es/software/prottest.html

Generating trees PAUP* http://paup.csit.fsu.edu/

Phylip http://evolution.genetics.washington.edu/

phylip.html

BioNJ http://www.atgc-montpellier.fr/bionj/

TREE-

PUZZLE

http://www.tree-puzzle.de/

PhyML http://www.atgc-montpellier.fr/phyml/

MrBayes http://mrbayes.sourceforge.net/

Tree display Figtree http://tree.bio.ed.ac.uk/software/figtree/

Treeview http://taxonomy.zoology.gla.ac.uk/rod/

treeview.html

Multipurpose MEGA http://www.megasoftware.net/

Seaview http://pbil.univ-lyon1.fr/software/seaview.

html

Geneious http://www.geneious.com/

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://hmmer.janelia.org/
http://www.clustal.org/
http://www.drive5.com/muscle/
http://www.mbio.ncsu.edu/bioedit/bioedit.html
http://www.mbio.ncsu.edu/bioedit/bioedit.html
http://mesquiteproject.org/mesquite/mesquite.html
http://mesquiteproject.org/mesquite/mesquite.html
http://darwin.uvigo.es/software/jmodeltest.html
http://darwin.uvigo.es/software/jmodeltest.html
http://darwin.uvigo.es/software/prottest.html
http://paup.csit.fsu.edu/
http://evolution.genetics.washington.edu/phylip.html
http://evolution.genetics.washington.edu/phylip.html
http://www.atgc-montpellier.fr/bionj/
http://www.tree-puzzle.de/
http://www.atgc-montpellier.fr/phyml/
http://mrbayes.sourceforge.net/
http://tree.bio.ed.ac.uk/software/figtree/
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://www.megasoftware.net/
http://pbil.univ-lyon1.fr/software/seaview.html
http://pbil.univ-lyon1.fr/software/seaview.html
http://www.geneious.com/
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(Altschul et al., 1997). TheBLAST tool provides a table of significant alignment

hits that can be downloaded and used for further analyses. For protein searches,

BLAST also offers the option of a position-specific iterative BLAST (PSI-

BLAST) that creates a more sensitive profile for weak but biologically relevant

sequence similarities (Altschul et al., 1997). For amoredetailed reviewofhowto

use BLAST to find homologous sequences, see Ladunga (2002).

In general, protein sequence similarity searches are more sensitive and

therefore preferred to nucleic acid searches. However, if the protein of in-

terest contains different functional domains, as in type I PKS and NRPSs,

a comparison of the complete protein may not be very informative relative

to independent domain analyses. A slightly different but potentially more

sensitive approach to homolog searching is to use a Hidden-Markov-Model

(HMM). HMMs are probabilistic models used to create sensitive protein

family profiles that can be used to screen genomes or databases for homol-

ogous sequences (Finn, Clements, & Eddy, 2011).
2.2. Creating alignments
Before running a phylogenetic analysis, it is important to make sure that

homologous sites are compared. This is accomplished by creating an align-

ment in which each sequence is assigned a separate row and homologous

positions in different sequences aligned in columns. Generating an accurate

alignment is easier when the sequences are similar and becomes more diffi-

cult when diverse or repetitive sequences are analyzed. A variety of software

packages are available to perform multiple alignments including ClustalX

(Thompson, Gibson, Plewniak, Jeanmougin, & Higgins, 1997) and Muscle

(Edgar, 2004; Table 8.1). ClustalX belongs to the older class of programs in

which sequences are progressively aligned starting with the most similar

sequences. Newer programs such as Muscle work iteratively and are consid-

ered to be more accurate since they reoptimize the initial alignment. An

additional approach uses HMMs (Section 2.1) to generate alignments

(Finn et al., 2011). The HMMER software can be used for both sequence

alignment and the detection of sequence similarity. As with BLAST

searches, amino acid sequence alignments are generally easier to generate

and less ambiguous than nucleic acid alignments.

Depending on the alignment program, there might be various options

and parameters to select. One important option is to choose a protein or

DNA weight matrix. These are empirically based models of how likely it

is that one amino acid or nucleotide changes into another. Another option
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is the gap penalty, which regulates the number of gaps that are allowed in the

alignment. It is important to explore these options and test what impact they

have on the alignment, as it is the foundation of all analyses that follow.
2.3. Editing the alignment
Once an alignment has been created, manual curation is highly rec-

ommended to maximize accuracy and avoid artifacts. Truncated sequences

should be deleted and longer sequences shortened so that all are equal in

length. Highly variable regions can be masked as they may not be phyloge-

netically informative. Likewise, gaps increase the risk of misalignment,

which can result in inaccurate trees. However, variable regions can provide

important phylogenetic information so they are best interpreted on a case-

by-case basis. For proteins, knowledge about active sites and structure can

be taken into consideration when editing the alignment. If it is not clear

whether regions are important for the analysis, it is recommended to test

different alignments by generating preliminary trees. There are also auto-

mated methods such as AltAVisT (Morgenstern, Goel, Sczyrba, & Dress,

2003) and gblocks (Talavera & Castresana, 2007) that perform alignment

sensitivity tests and eliminate poorly aligned and divergent regions. How-

ever, these methods should never replace a careful manual inspection of the

alignment. Free software programs that can be used to edit alignments in-

clude Bioedit, Mesquite (Maddison & Maddison, 2009), and Seaview

(Gouy, Guindon, & Gascuel, 2010; Table 8.1). These programs can also

be used to convert the alignments into the different formats needed for

phylogenetic analysis.
2.4. Model tests
Generating a phylogenetic tree with maximum likelihood (ML) or Bayes-

ian methods is based on statistical models. Although it is important to test

different parameters to determine the robustness of a tree, it is also impor-

tant to identify which model best fits the data. One popular program is

ProtTest (Abascal, Zardoya, & Posada, 2005; Table 8.1), which calculates

likelihood values using different models and estimates the optimal

parameters for the subsequent tree calculation. Models of nucleotide sub-

stitution can be calculated with the jmodeltest software (Posada, 2008).

Model testing and alignment editing are not essential steps in generating

phylogenetic trees, but both are recommended to improve accuracy and

branch support.
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2.5. Generating phylogenetic trees
It is important to keep in mind that the “true” tree cannot be identified and

that phylogeny is a statistical estimation of the most likely evolutionary

relationships of the sequences. This is why it is called phylogenetic inference

and why it is important to use more than one method to test the consistency

of the results and the robustness of the trees. There are four major methods to

generate phylogenetic trees from amino acid or nucleotide sequences. The

fastest method for most alignments is neighbor-joining (NJ) (Saitou & Nei,

1987). It is the most commonly used distance-based method and calculates a

distance matrix for all pairs of sequences in the alignment. It then builds a

tree based on the minimum-evolution criterion and the distance relation-

ships. Since it is relatively fast, NJ is widely used to produce preliminary trees

and as a starting point for other model-based methods. However, other

methods should always be used to support the results. A variety of software

packages are available that provide NJ analysis such as BioNJ (Gascuel,

1997), PAUP* (http://paup.csit.fsu.edu/), MEGA (Tamura et al., 2011),

and PHYLIP (Felsenstein, 2005; Table 8.1).

A method that also uses the minimum-evolution criterion is maximum

parsimony (MP). However, MP and the following methods introduced here

differ fundamentally from distance methods in that they calculate the opti-

mal tree from a diversity of possible trees. Among these “tree searching”

methods, Parsimony is known to be the most intuitive because it detects

the tree that requires the fewest number of changes in the data. However,

with larger datasets, the number of possibilities increases exponentially as do

the computational demands. Furthermore, MP often calculates multiple

trees that are equally parsimonious and therefore a comparison with other

treeing methods is recommended. Commonly used software to generate

MP trees is PAUP*, but packages such as PHYLIP (Felsenstein, 2005)

can also be used.

Statistical methods based on specific models of evolution includeML and

Bayesian analyses. ML calculates the probability of a tree, given certain

parameters, and produces a tree with the highest likelihood score. Bayesian

approaches are similar in that likelihood scores are calculated; however,

instead of looking for one tree, the best set of trees is calculated. Posterior

probabilities are then calculated using the Markov chain Monte Carlo algo-

rithm, which results in a collection of trees that can be summarized in a

consensus tree (Larget & Simon, 1999). Both treeing methods demandmore

computational power than MP and distance methods but are thought to be

http://paup.csit.fsu.edu/
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more accurate. ML methods are implemented in the programs TREE-

PUZZLE (Schmidt, Strimmer, Vingron, & vonHaeseler, 2002) and PhyML

(Guindon & Gascuel, 2003), which was especially developed to deal with

larger datasets. The Bayesian method is implemented in a program called

MrBayes (Huelsenbeck & Ronquist, 2001).

Independent of which phylogenetic method is used, it is important to

estimate the reliability of a given tree. The most common statistical method

applied to phylogenetic trees is bootstrapping, which randomly samples with

replacement the columns in the alignment and generates new trees using the

same parameters. Bootstrap values represent the percentage of trees that pos-

sess each specific node. While bootstrap values can be statistically biased,

values >75% are generally considered significant. Bayesian methods have

the advantage that they provide posterior probabilities that identify the per-

cent each clade occurs among all trees sampled. ML methods also offer the

option to perform the Approximate LikelihoodRatio Test, which is derived

from the likelihood score of each branch that is calculated during the tree

search. These methods have the advantage that they require almost no

additional computational time.

Finally, trees need to be visualized. Free and easy to use programs include

Treeview and Figtree (Table 8.1). The type of tree generated depends on the

data and objectives; however, published trees should display a scale bar and

some method of statistical support. For more detailed information about

phylogenetic analyses, we refer to other sources (Hall, 2007; Salemi &

Vandamme, 2003).
2.6. Bioinformatic programs
Many of the specialized software packages described above perform one step

in the phylogenetic analysis. Alternative packages perform multiple steps and

include a user-friendly graphical interface. Free examples include MEGA

(Tamura et al., 2011) and Seaview (Gouy et al., 2010), which generate both

sequence alignments and phylogenetic trees (Table 8.1). Geneious is a more

general bioinformatic software package that includes alignment algorithms

and phylogenetic analyses (Drummond et al., 2011); however, it must be pur-

chased. A useful program that allows complete phylogenetic analyses on a

Web server is the phylogeny.fr platform (http://www.phylogeny.fr/). This

program was developed to produce robust trees even by those with no expe-

rience in phylogeny (Dereeper et al., 2008). It also offers useful options for

more experienced users and does not require software to be downloaded.

http://www.phylogeny.fr/
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However, this program is not applicable for larger datasets, nomodel testing is

available, and bootstrapping is limited to 100 replicates. Nonetheless, the pipe-

line is perfect to test datasets, generate preliminary trees, and compare different

phylogenetic methods.

3. NaPDoS
3.1. Scope of NaDoS

NaPDoS (http://napdos.ucsd.edu/) is a recently released, Web-based

bioinformatic tool that uses phylogenetic information to predict the class

and, in some cases, structure of the natural products produced by bacterial

PKS and NRPS genes. It can detect and extract KS and C domains from

DNA and amino acid sequences derived from PCR products, genes, whole

or draft genomes, and metagenomic data. NaPDoS classifies these sequences

based on the phylogenetic relationships of more than 200 KS and C refer-

ence sequences. ThisWeb-tool provides a rapid method to evaluate the bio-

synthetic richness and novelty of individual bacterial strains, communities,

or environments and offers a rational guide to identify known secondary

metabolites (dereplicate) and facilitate the discovery of new compounds

and mechanistic biochemistry.
3.2. How NaPDoS works
The bioinformatic pipeline employed by NaPDoS includes HMM and

BLAST searches and is constructed to be fast and flexible. NaPDoS first

detects and excises KS or C domains from the query sequences. In a second

step, these sequences are BLASTed against a reference database of experi-

mentally characterized KS and C domains and assigned an initial classifica-

tion that defines enzyme architecture or biochemical function. The third

step generates a profile alignment by incorporating the sequences into a

carefully curated reference alignment generated from all known biochemical

classes of KS and C domains. This alignment is then used to create a phy-

logenetic tree, which is manually interpreted to establish a final classification

for each sequence. Trimmed and aligned sequences can then be downloaded

for subsequent analysis.

The NaPDoS Web site includes a detailed tutorial. A graphical interface

indicates where to upload query sequences and a clickable SEEK button to

run the analyses. Advanced options for BLAST and HMM search parameters

are available, but the default settings should work well for most data.

http://napdos.ucsd.edu/
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A preliminary output table provides the coordinates for any KS or C domains

detected and their top BLAST hits, e-values, and alignment lengths. Informa-

tion describing the biosynthetic pathways associated with the top BLAST hits

is provided for comparative purposes.

It should be emphasized that the initial BLAST-based classifications

provided by NaPDoS are preliminary and may not reflect the phylogenetic

position of the query sequences, especially in cases where the sequence sim-

ilarities are low. In general, KS or C domains derived from the same pathway

often share �90% amino acid sequence identity. In cases where a query

sequence shares this level of identity with a reference sequence, it can be

predicted that the pathway from which the sequence was derived has a high

probability of producing compounds in the same structural class, as has been

demonstrated previously (Edlund et al., 2011; Gontang et al., 2010). For

domains that share <90% identity to the top NaPDoS match, an NCBI

BLAST search is highly recommended as the NaPDoS database is

not comprehensive. If the results of this search do not yield a top

match that shares �90% identity, then it should be anticipated that the

pathway has not been experimentally characterized and that the product

may be new.

To generate final KS or C domain classifications, they should be inserted

into the NaPDoS reference alignment along with select NCBI BLAST

matches. The trimmed alignment can then be used by NaPDoS to build

a ML tree in which the query sequences are indicated in red, or a Newick

file, which can be opened with a user-chosen tree-viewing program. This

tree can then be manually interpreted to determine the phylogenetic rela-

tionship of the query sequences relative to the NaPDoS classification system.

In cases where a query sequence does not clade with any of the reference

sequences, it may be associated with a new biochemical mechanism or en-

zyme architecture. For example, a group of C domains that clades outside of

the eight functional types identified in NaPDoS appears to be associated

with the condensation and subsequent dehydration of serine to dehydro-

alanine (Ziemert et al., 2012).

4. CONCLUSIONS AND FUTURE DIRECTIONS

Increased access to DNA sequencing has created a need for new bio-
informatic tools that can be used to analyze and interpret the large volumes

of sequence data that are now publically available. In the case of natural

products research, these tools are increasingly being used to facilitate the
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discovery process. Phylogenetics provides a platform to generate biosyn-

thetic hypotheses that can facilitate the discovery of new biochemistry, as

functional differences are almost always reflected in phylogenetic trees.

Tools such as NaPDoS can help provide a logical guide to the identification

of organisms or environments that present the greatest potential for natural

product discovery. These predictive capabilities will continue to increase as

more biosynthetic pathways are characterized. Sequence-based approaches

are providing a new paradigm that promises to increase the rate and

efficiency with which natural products are discovered and insight into the

evolutionary processes that have generated the extraordinary levels of struc-

tural diversity observed among secondary metabolites.
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