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SUMMARY

Plant responses to environmental change are mediated via changes in cellular metabolomes. However, <5%

of signals obtained from liquid chromatography tandem mass spectrometry (LC-MS/MS) can be identified,

limiting our understanding of how metabolomes change under biotic/abiotic stress. To address this chal-

lenge, we performed untargeted LC-MS/MS of leaves, roots, and other organs of Brachypodium distachyon

(Poaceae) under 17 organ–condition combinations, including copper deficiency, heat stress, low phosphate,

and arbuscular mycorrhizal symbiosis. We found that both leaf and root metabolomes were significantly

affected by the growth medium. Leaf metabolomes were more diverse than root metabolomes, but the lat-

ter were more specialized and more responsive to environmental change. We found that 1 week of copper

deficiency shielded the root, but not the leaf metabolome, from perturbation due to heat stress. Machine

learning (ML)-based analysis annotated approximately 81% of the fragmented peaks versus approximately

6% using spectral matches alone. We performed one of the most extensive validations of ML-based peak

annotations in plants using thousands of authentic standards, and analyzed approximately 37% of the anno-

tated peaks based on these assessments. Analyzing responsiveness of each predicted metabolite class to

environmental change revealed significant perturbations of glycerophospholipids, sphingolipids, and flavo-

noids. Co-accumulation analysis further identified condition-specific biomarkers. To make these results

accessible, we developed a visualization platform on the Bio-Analytic Resource for Plant Biology website

(https://bar.utoronto.ca/efp_brachypodium_metabolites/cgi-bin/efpWeb.cgi), where perturbed metabolite

classes can be readily visualized. Overall, our study illustrates how emerging chemoinformatic methods can

be applied to reveal novel insights into the dynamic plant metabolome and stress adaptation.

Keywords: computational biology, metabolomics, mass spectrometry, abiotic stress, mycorrhizal symbiosis,

Brachypodium.

Linked article: This paper is the subject of a Research Highlight article. To view this Research Highlight article

visit https://doi.org/10.1111/tpj.16243.

INTRODUCTION

The central dogma of molecular biology extends from

genes to transcripts to proteins. These proteins, however,

exert an effect on the phenotype eventually through alter-

ing metabolites. Agronomically important traits such as

yield, nutritional quality, flavor characteristics, and stress

� 2023 The Authors.
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response are all controlled by underlying metabolic path-

ways. A revolution in sequencing over the past decade has

provided unparalleled insights into the transcriptomic and

epigenomic perturbations due to genotypic and environmental

changes, yet the global metabolome largely remains a

black box, primarily due to our inability to identify com-

pounds from metabolomics data (Chaleckis et al., 2019;

Salem et al., 2020). It is estimated that over a million com-

pounds are produced across the plant kingdom (Afendi

et al., 2012), with individual plants producing thousands of

metabolites (Fernie, 2007). However, <5% of these signals

can be annotated using spectral matching (da Silva & Dor-

restein, 2015). Thus, patterns of global metabolomic

changes still remain unknown despite the importance

metabolites have to plant fitness and human society.

To assess metabolomic changes due to genetic varia-

tion, developmental progression, and environmental

changes, gas chromatography mass spectrometry (GC-MS)

and liquid chromatography mass spectrometry (LC-MS)

remain the workhorse approaches, with LC-MS typically

detecting a much broader set of the metabolome.

Although diverse algorithmic innovations have aided in

metabolome assessments (Brouard et al., 2016; Dührkop

et al., 2019; Schymanski et al., 2017; Tsugawa et al., 2016),

LC-MS peaks are primarily annotated using MS/MS spec-

tral matching with entries from public databases (Guijas

et al., 2018; Horai et al., 2010; Wang et al., 2016), referred

to as ‘Level 2’ annotations based on Metabolomics Stan-

dards Initiative (MSI) guidelines (Sumner et al., 2007).

While correct predictions are indeed obtained in this man-

ner, plant-derived compounds are underrepresented in

public databases (Fukushima & Kusano, 2013; Shahaf

et al., 2016), which results in incorrect hits among the lim-

ited numbers of compounds identified. Partly due to this

limitation, many LC-MS-based studies are targeted or

semi-targeted, and end up analyzing a small but identifi-

able portion of the metabolome (Bromke et al., 2015; Itkin

et al., 2013; Okazaki et al., 2013; Šimura et al., 2018; Tohge

et al., 2016). This strategy produces robust insights, but

global shifts in the metabolome and their genetic drivers

cannot be assessed via targeted studies. Identifying such

patterns can provide novel insights into metabolic plastic-

ity and plant responses to stress conditions, which are

important for addressing challenges of agricultural produc-

tivity due to climate change, overpopulation, and degrad-

ing soil quality.

In recent years, two important resources have emerged

for the analysis of global untargeted tandem LC-MS (LC-

MS/MS) data. First, the machine learning (ML)-based tool

CANOPUS (Dührkop et al., 2021) enables prediction of

metabolite structural classes based on the MS/MS spectrum

(an MSI Level 3 annotation), providing novel insights into

the metabolome composition. For example, even if specific

compounds are not identified, recognizing that ‘flavonoids’

increase in abundance under UV stress provides significant

biological insights into the plant’s stress response. Second,

independent of compound annotation, approaches adapted

from information theory can inform about the gross and/or

specific shifts in plant metabolomes (Li et al., 2020; Zu et al.,

2020). In this study, we combine these two approaches with

co-accumulation analysis to illuminate global changes in

plant metabolomes under different conditions.

Specifically, we assessed the metabolome of Brachy-

podium distachyon (Brachypodium) under different condi-

tions (Figure 1). Brachypodium is a model C3 grass species

in the Poaceae family that shared a common ancestor with

rice (Oryza sativa) approximately 50 million years ago and

Triticeae (wheat [Triticum aestivum], barley [Hordeum

Replicated samples
Plants per replicate

5
12

5
20

6
5

Organs sampled Leaves, Roots Leaves, Roots Leaves, Spikelets,
Culms

     = Hydroponics 
Growth Conditions

     = Symbiosis 
Growth Conditions

     = Standard 
Growth Conditions

Day0: Seeds 
germinated

Day30: Split into 
NoCopper and 
Regular Copper 
(Control)

Day37: Sample 
NoCopper, Control 

Day37:Heat stress

Day38: Sample Heat, 
HeatNoCopper

Day15: To soil-1, 
split into Spore, 
SporeW, Regular 
Phosphate (Con-
trol) 

Day43: All 
plants 
sampledDay15: To soil-2

Day9: To 
hydroponics 
medium

0 5 15

Week No.

Day0: Seeds 
germinated

Day0: Seeds 
germinated

0 1 2 3 4 5 6 7 14

3.5 months: All 
plants sampled

Figure 1. Timeline and schematic of the experimental design. The number of samples, the number of plants per replicate, and the organs sampled for each set

of growth conditions are shown, along with the timeline of important events such as treatment induction and harvesting. Divergent growth and stress condi-

tions were chosen to induce variability in metabolic profiles. Days are counted post-germination. Soil-1 and soil-2 refer to different soil mixes. The germination

protocol for hydroponics seeds was distinct from the germination protocol for the other growth conditions (see Methods S1).
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vulgare]) approximately 35 million years ago (Charles

et al., 2009). The short stature of Brachypodium and its fast

growth cycle make the species a convenient model for

understanding not only Poaceae biology but also for bio-

fuel research (Brkljacic et al., 2011; Douché et al., 2013; Le

Bris et al., 2019; Marriott et al., 2014). The main goals of

this study were to: (i) assess Brachypodium’s metabolomic

reconfigurations across different organs and environmen-

tal conditions, (ii) identify the metabolite classes most per-

turbed by different stresses, (iii) discover condition-specific

metabolites that may serve as stress biomarkers, and (iv)

establish a platform for visualization of the global metabo-

lome changes. Towards these goals, we first performed

LC-MS/MS from 17 different organ–condition combina-

tions, including agriculturally relevant conditions such as

copper deficiency, heat stress, low phosphate, and arbus-

cular mycorrhizal symbiosis (AMS). We used CANOPUS

and information theory-derived metrics to compare control

versus test metabolomes across different organs and to

characterize additional metabolome changes through

co-accumulation modules and biomarker detection. Finally,

these changes were visualized using a novel representation

on the Bio-Analytic Resource for Plant Biology (BAR) web-

site (available at: https://bar.utoronto.ca/efp_brachypodium_

metabolites/cgi-bin/efpWeb.cgi). Overall, our findings help

illuminate a much larger proportion of the metabolome

captured by LC-MS methods and provide new insights on

metabolic perturbations in Brachypodium under different

conditions.

RESULTS

Experimental design and pre-processing of metabolome

data

Brachypodium plants were grown to different ages and

under different growth conditions with the goal of produc-

ing significant metabolome perturbations. Roots, leaves

(young and mature combined), and in some cases, culms

and spikelets were sampled. Overall, 17 organ–condition
combinations were sampled, with plants grown across

three major regimens: hydroponics (Hydro), AMS (Sym),

and tissue (Tis) (Figure 1, Figure S1). Hydro treatments

consisted of regular Cu (Control), Cu deficiency (NoCop-

per), heat stress (Heat), and heat stress under Cu deficiency

(HeatNoCopper). The Sym treatments consisted of plants

grown with regular amounts of phosphate fertilization

(Control), low phosphate-treated plants inoculated with a

wash solution of Rhizophagus irregularis spore growth

medium (SporeW, not containing any spores, i.e., mock

treatment), and low phosphate-treated plants inoculated

with R. irregularis spores (Spore). The Tis regimen

involved growing plants in regular soil until maturity;

leaves, culms, and spikelets were sampled in this regime.

The effectiveness of the copper deficiency treatment and

presence of colonization were verified through reverse

transcriptase-PCR (RT-PCR) of copper deficiency and fungal

symbiosis marker genes, respectively (Figure S2). All sam-

ples were analyzed via LC-MS/MS in both positive and

negative mode to obtain a comprehensive snapshot of

their metabolome and to determine common versus differ-

ent patterns in each mode.

After peak deconvolution and alignment, peak values

were filtered using a sequence of steps (Figures S3 and

S4). To enable comparisons between different LC-MS runs,

we first tested five different data normalization approaches

(File S1) and selected variance-stabilized normalization

(VSN) as the most appropriate based on its performance

(Table S1; File S1). Data imputation was also performed to

fill in values lost due to Orbitrap LC-MS detection limits. To

ensure that either step does not alter the overall underlying

data structure, we first determined the effect of performing

imputation before versus after normalization using a

dummy dataset where actual peak areas were randomly

replaced by zeros. The degree of error in normalization–
imputation and imputation–normalization was quantified.

Overall, both normalization orders had almost identical

errors (Figure S5). Thus, given precedence (Chong et al.,

2019; Mock et al., 2018), we first imputed peak areas using

k-nearest neighbor and normalized the imputed areas

using VSN for further downstream analyses. The final

peaks also had very low influence of in-source fragments

(Methods S1), and therefore their quality was considered

good for downstream analyses (also see Discussion).

VSN maximized correlations among replicates while

maintaining low correlations between different treatment

groups (File S2). The aboveground organs were found to

have more peaks as well as a higher total peak abundance

than the roots (Figure S6; File S3). The largest numbers of

metabolite signals in both organs were observed in Sym

samples, indicating that growth media also influenced the

Brachypodium metabolome. The high numbers of peaks

seen in the Sym Spore root samples likely include metabo-

lites of fungal origin. Correlations between leaf and root

and between control and treatment were lower than among

replicates (File S2), putatively identifying two other axes of

metabolomic divergence between samples, namely organs

and conditions. To investigate these further, we first per-

formed a global assessment of similarities and differences

between the metabolomes under different conditions.

The root metabolome is less diverse but more specialized

and more perturbed than the leaf metabolome

Using the normalized, imputed datasets, we quantified the

impact of each stress on the root and leaf metabolomes.

Principal component analysis (PCA) identified the organs

and the growth media as stronger drivers of metabolic var-

iation in our samples than the stresses. While PC1, explain-

ing 46.88 and 45.6% of the metabolic variation between

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), 114, 463–481
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samples in positive and negative mode, respectively, was

indicative of organ-wise differences, PC2 (12.97 and

13.77%, respectively) revealed a substantial impact of the

growth medium (soil type, hydroponics) on both root and

leaf metabolomes (Figure S7). PCA as well as hierarchical

clustering (Figures S8 and S9) validated close clustering of

replicate samples and highlighted a set-wise impact of

stresses. For the Hydro set, NoCopper clustered with Con-

trol in both leaves and roots, while for the Sym set,

SporeW was the more impactful condition for leaves and

Spore for the roots. HeatNoCopper clustered closer to

Heat than NoCopper in both roots and leaves, indicating

that the majority of metabolomic differences in this com-

bined stress was due to heat stress. When PCAs were dif-

ferentiated by organs (Figure S7b,c,e,f), the effect of

different stresses could be observed. Overall, the leaf

metabolomes appeared less impacted by the stresses than

root metabolomes.

To further quantify the impact of each stress on the

overall sampled metabolome, we used two information

theory-based measures – diversity (H) and specialization (δ,
measuring uniqueness/differentiation) – as well as the Rel-

ative Distance Plasticity Index (RDPI, measuring overall

perturbation including up- and downregulation; see Experi-

mental Procedures and Li et al., 2020 for explanation of

metrics). We first assessed the metabolome differences in

non-stress conditions. More peaks as well as more unifor-

mity in the peak areas can increase diversity; thus, given

leaves consistently have more peaks than roots, culms,

and spikelets (Figure S6), their diversity is the highest (Fig-

ure 2a,b; Figure S10a,c). However, roots and spikelets are

more metabolically specialized. The degree of specializa-

tion and to some extent diversity were clearly dependent

on the growth medium and stress (Figure 2a,b; Figure

S10). Roots were more specialized in the hydroponic

medium (except Sym Spore root) but leaf metabolomes

were more specialized in the soil and sand:gravel growth

media (Figure S10b,d). Intriguingly, the observation of

spikelets having high specialization is congruent with a

similar observation in Nicotiana attenuata anthers (Li, Heil-

ing, et al., 2016), indicating that the metabolic uniqueness

of the reproductive tissues may be a conserved trait across

monocots and dicots.

Although differences in specialization and diversity

among leaf metabolomes were low, many stresses elicited

statistically significant changes (Kolmogorov–Smirnov [KS]

test, Table S2). Overall, the stresses appeared to disrupt

foliar metabolism far less than that of the roots – especially

for leaves from hydroponically grown plants – as indicated

by tight clustering of leaf stresses with their controls. In

positive mode (Figure 2a), specialization cleanly separated

out leaf samples into their growth conditions, but this was

not seen in negative mode (Figure 2b), and in both ioniza-

tion modes, leaf samples had relatively low specialization.

Taken together with the relatively low RDPI values

observed for leaf samples (Figure 2c,d), these results indi-

cate that the leaf metabolome is more robust/less respon-

sive to tested environmental changes than the root

metabolome.

In contrast, the specialization and RDPI of roots were

significantly influenced by stress. In both ionization modes,

we found that roots had higher RDPIs (i.e., greater metabo-

lome perturbation) than leaves (except for SporeW, in

which leaves had similar RDPIs to roots in negative mode)

(Figure 2c,d). Hydro roots had a higher baseline (Control)

specialization than Sym (Figure S10b,d), indicating the

presence of peaks specific to the hydroponics experimental

regimen. However, in both ionization modes, Heat roots

and Spore roots had the highest specialization and RDPI.

Specialization is a sum of the ‘degree of specificity’ of each

metabolite signal across the different conditions; thus,

high specialization in Heat and Spore indicates a greater

representation of metabolites that are uniquely changing

under these conditions alone. Interestingly, specialization

of the HeatNoCopper roots was similar to that of Control

roots (Figure 2a,b), while its RDPI was intermediate

between those of NoCopper and Heat (Figure 2c,d). These

observations suggest that the impact of heat stress on the

global root metabolome was less drastic under copper

deficiency, which was contradictory to our expectation that

HeatNoCopper roots would show a greater perturbation

than Heat roots given a combination of two stresses (see

Discussion).

To obtain a more granular understanding of the over-

all induced metabolites, differentially accumulated peaks

(DAPs) were estimated in each condition based on false

discovery rate (FDR)-corrected P-values and fold change

criteria (see Methods S1; File S4). The pattern of differen-

tial accumulation was similar between positive and nega-

tive modes (Figure 2e,f). We found that HeatNoCopper and

Heat had a high number of DAPs primarily in the roots

(Figure 2e,f; Figures S11–S13) mirroring the RDPI metric.

Over 200 metabolites were also perturbed under AMS in

positive as well as negative mode; however, many of these

metabolites could be of fungal origin. Heat and Spore

roots had both the highest numbers of DAPs and unique

DAPs, consistent with the finding that they have high RDPI

and the highest specialization.

Validation of the structural annotation tool CANOPUS

using orthogonal approaches

The above analyses revealed global patterns of change in

the Brachypodium metabolome under changing environ-

ments. We next sought to understand shifts in specific

metabolite classes. While untargeted LC-MS is the method

of choice for detecting a diverse range of metabolites,

identifying these peaks is a major challenge. We initially

performed spectral matching using public databases, yet,

� 2023 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
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Figure 2. Comparison of metabolomic perturbations among conditions. (a, b) Diversity versus specialization per condition, with organs depicted as different

shapes and conditions as different colors. Annotations are added onto these plots for ease of interpretation. (c, d) RDPI per stress condition. (e, f) Upset plots of
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as expected, this provided structural information for only a

small percentage of queried metabolites (6.1% in positive

mode, 5.2% in negative mode). Such low degree of identifi-

cation precludes assessment of how the broader metabo-

lome is changing under the tested conditions. Thus, to

annotate a broader proportion of the detected metabolites,

we utilized CANOPUS, a deep learning-based method in

the SIRIUS4 software which provides database-free predic-

tions of metabolite structural classes corresponding to the

MSI Level 3 identifications (Sumner et al., 2007). CANOPUS

classifies compounds into the multilabel and hierarchical

ChemOnt ontology (Djoumbou Feunang et al., 2016),

which is similar to the Gene Ontology (GO) for genes (The

Gene Ontology Consortium, 2019). As ChemOnt is multila-

bel, peaks may receive multiple annotations at each level;

however, the classifications we report are of each peak’s

largest substructure. Of the 3582 and 2996 fragmented

peaks in positive and negative mode, 2931 (82%) and 2409

(80%) were annotated by CANOPUS at the Superclass level

with posterior probability > 0.5 (Figure S14). Of the 26

Superclasses existing for organic compounds, 14 and 12

were represented in the positive and negative mode data,

respectively (Files S5 and S6) before additional filtering,

with lipids and lipid-like molecules having the most peaks

in both ionization modes.

Given CANOPUS is a relatively new predictive

method, we extensively assessed the accuracy of these

annotations using four independent approaches: (i) using

the aforementioned spectral matches with public data-

bases, (ii) assessing co-clustering in MS/MS molecular net-

works, (iii) comparing CANOPUS predictions with lipid

predictions from MS-DIAL, and (iv) assessing CANOPUS

predictions of thousands of authentic standards run on the

same instrument.

First, for each compound identified via spectral data-

base hits, we compared their ChemOnt classes to CANO-

PUS’ predictions (File S7a–c). At each level, we calculated

misannotations as the percent of peaks identified using

spectral matches that were not given the same annotation

by CANOPUS. At the Superclass level, we observed good

correspondence between CANOPUS classifications and

database identifications in both modes. The median

CANOPUS misannotation rates at the Class level, when

considering correct Classes as determined by ClassyFire,

were 54.4 and 28.2% in positive and negative mode (File

S7a–c), respectively, indicating that overall CANOPUS pre-

dicted Classes well for negative mode only. For example,

of the 15 compounds in negative mode that were identified

as ‘flavonoids’ via database searches and also had a

CANOPUS Class annotation, 13 (86.7%) were correctly

called ‘flavonoids’ by CANOPUS (File S7). This proportion

was only 46.7% in positive mode, although 86.7% were

assigned to the correct Superclass (‘phenylpropanoids and

polyketides’). In positive mode, the most frequently

misannotated Classes were glycerophospholipids (GPs;

65.57% of CANOPUS-predicted GPs were misannotated)

and phenols (73.68% misannotated), again most of the

misannotations being within the same Superclass (70 and

50%, respectively). The decrease in agreement between

positive mode Superclasses and Classes is largely due to

the high misclassification rate of GPs and their high pres-

ence (24%) in the identified positive mode compounds.

However, these results indicated that CANOPUS predic-

tions on negative mode data were more accurate than pos-

itive mode data. We further observed that when

discrepancies occurred, it was often due to CANOPUS

labeling compounds based upon substructures that are

present in the molecule but not representative of the whole

compound, e.g., labeling 1-palmitoylglycerol as a fatty acyl

instead of a glycerolipid, or GPs as fatty acyls/sphingoli-

pids, suggesting that despite misclassification, CANOPUS

was identifying common substructures from MS/MS data

(File S7a,b).

We also used MS/MS molecular networking to cluster

compounds with similar fragmentation patterns. We then

mapped identifications and CANOPUS Superclasses onto

this network (Figure 3, Files S8 and S9). Some CANOPUS

Superclasses tended to form tight subnetworks, e.g., 236

out of the 240 CANOPUS-annotated GPs in the negative

mode network were clustered together (File S9), along with

all the database-identified GPs. In the positive mode net-

work, we observed two clusters for GPs – one for peaks

identified as glycerophosphocholines/glycerophosphoser-

ines and another for peaks identified as glyceropho-

sphoethanolamines (subnetworks 1 and 2, respectively, in

Figure 3, File S8). For other subnetworks (3, 4, and 5; Fig-

ure 3), there was good agreement between CANOPUS and

identified compound class predictions (File S8).

As a third validation strategy, we compared CANO-

PUS results to predictions of the MS-DIAL lipidomics anal-

ysis pipeline (Tsugawa et al., 2020). We limited this

analysis to only metabolites that were (i) predicted by

CANOPUS to be in the ‘lipids and lipid-like molecules’

Superclass and (ii) given a lipid class by MS-DIAL – in

order to limit the false positive annotations that may arise

when considering a ‘metabolomics’ experiment as ‘lipido-

mics’. Overall, the Classes of 75.7 and 48.1% of the high

confidence MS-DIAL annotated lipids were correctly pre-

dicted in negative and positive mode, respectively (File

S7d–f), supporting the above results. There was greater

variation at the individual Class level – likely due to insuffi-

cient sample size – with GPs and sphingolipids having high

rates of correct classification in negative mode (File S7f).

Finally, we also assessed whether CANOPUS predicts

correct Classes of a large set of authentic standards (3885

in positive mode, 2743 in negative mode) that were run on

the same instrument as our dataset, but were not used for

training CANOPUS (Methods S1). As the true Classes of

� 2023 The Authors.
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these standards are definitively known, we calculated the

precision, recall, and F1 score of CANOPUS predictions

(see Methods S1). In both modes, on average, only approx-

imately one third of classes with at least five instances had

F1 scores of ≥0.6 (File S7f–i). In both modes, Classes such

as flavonoids, prenol lipids, steroids, purine and pyrimi-

dine nucleotides, phenylpropanoid acids, and pyrimidine

nucleosides passed the F1 score filter. Among well-

represented classes (≥10 instances), (i) we find flavonoids

to have very similar scores across both ionization modes

and (ii) we find several classes (including steroids,

pyridines, and prenol lipids, among others) to have large

performance increases (F1 ≥ 0.15 higher) in positive mode

(File S7i,j). Finally, we identified 11 classes (including Phe-

nols, Benzene and derivatives, and coumarins and deriva-

tives) that achieved high F1 scores (>0.7) in CANOPUS’

training yet received low F1 scores (<0.5) in both ion

modes in our analysis, highlighting the importance of this

validation with the gold standard dataset.

These results suggest that the accuracy of CANOPUS

predictions is dependent on the mode of ionization, com-

pound class, and perhaps specific instrumentation. Thus,

Figure 3. Molecular networking of peaks in positive mode. Network nodes represent peaks detected in positive mode (in any condition/organ), and edges con-

nect nodes that have a pairwise cosine score of >0.7. Large nodes with a red border signify identified peaks. Nodes and identifications (text) are colored with

their CANOPUS-annotated Superclass. The number of times each identification occurs in a subnetwork is indicated in italics. Asterisks (*) denote an identifica-

tion spanning multiple lines. The dashed line in subnetwork 2 separates the majority-glycerolipid section of the subnetwork from the majority-

phosphoethanolamine section. Superclass names in legend are shortened for representational purposes. OrgP, organophosphates; Polyketides, phenylpropa-

noids and polyketides; PC, phosphocholine; L, lyso; DAG, diacylglycerol; TAG, triacylglycerol; PE, phosphoethanolamine; MAG, monoacylglycerol.
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for downstream analyses, we eliminated Classes deemed

‘bad’ (File S7i,j), i.e., with at least five standards and F1

scores of <0.6. Classes deemed ‘Unknown’ had less than

five authentic standard instances; however, some of them,

i.e., GPs and sphingolipids, showed good validation perfor-

mance using MS-DIAL lipidomics and/or MS/MS network

analysis. Due to this reason, ‘Unknown’ Classes were

included in later analyses. Of the 2763 (positive) and 2314

(negative) peaks annotated at the Class level in our dataset,

these criteria led us to using only 1353 (49%) and 1107

(48%), respectively, of the peaks for final analyses, which

corresponds to approximately 38% of the fragmented

peaks in each mode. We primarily show results of negative

mode below due to its greater conformity across all four

validation approaches, but also analyze filtered CANOPUS

annotations of positive mode data in the Supplementary

Material.

Compound class annotation reveals an important role of

lipids in the induced stress response

Using filtered CANOPUS annotations, we sought to deter-

mine (i) how different chemical classes were perturbed

under the applied stresses and (ii) whether the relevance

of a class to a stress or organ could be quantified. The

RDPI metric summarizes both up- and downregulation of

all metabolites in a given class, and thus is a useful metric

to assess a Class’ overall perturbation in a given stress

(Figures S15 and S16; File S10). The RDPI distributions of

flavonoids were similar to those of the overall metabolome

– with roots appearing more inducible than leaves and

with Heat, HeatNoCopper, and Spore treatments eliciting

the largest metabolome changes. However, some Classes

– including lignans and lipids such as GPs, sphingolipids,

and steroids – deviated from this overall trend.

Although the RDPI is a useful metric for quantifying

gross metabolomic changes, information on whether

peaks are upregulated or depleted under stress conditions

is lost. Another issue is that our criteria for calling DAPs

are stringent, thus high RDPI does not necessarily translate

to more DAPs. Lastly, the RDPI metric for a Class with 1000

metabolites versus 10 metabolites can appear the same,

confounding the true extent of a metabolite Class’ impor-

tance in a condition. To address these issues, we identified

Classes that were, on average, highly accumulated or

depleted in a stress (see Experimental Procedures), and

plotted the abundance changes of individual peaks in

those Classes (Figure 4, and Figure S17a). Many Classes

had expected changes in abundance, which corroborates

this methodology. For example, in spore-treated samples,

GPs decreased (leaves) while prenol lipids and sphingoli-

pids generally increased (roots) (Figure 4), consistent with

their importance in membrane remodeling and signaling

during interactions between plants and arbuscular mycor-

rhizal fungi (Macabuhay et al., 2022; Wewer et al., 2014). In

Cu-deficient plants, GPs showed up- and downregulation

in roots and leaves, respectively, while sphingolipids were

upregulated in the roots. An increase in root sphingolipids

was also seen in heat-stressed roots. A previous study

showed that perturbation of sphingolipid biosynthesis in

the roots influences the leaf ionome including Cu (Chao

et al., 2011), and thus, sphingolipids may play consequen-

tial roles in both Cu deficiency and heat stress.

Other Classes showed unexpected changes. Although

flavonoids are antioxidants, more flavonoid peaks were

depleted rather than upregulated in the roots under multi-

ple stresses (Figure 4a). Multiple Classes possess outliers

present on both sides of the distribution, e.g., sphingolipids

in Spore leaves, suggesting that peaks within the same

structural Class are not necessarily co-regulated. For each

condition, we identified Classes that were enriched among

the stress-responsive metabolites (Fisher exact test, FDR-

adjusted P < 0.05). Only GPs and sphingolipids were

enriched in any condition (Figure 4a), suggesting that the

lipidome is the most stress-responsive portion of the meta-

bolome, possibly resulting from changes in cellular mem-

branes and signaling pathways.

Finally, we assessed if the differing impacts of heat

stress versus HeatNoCopper stress on the root metabo-

lome were fueled by differential regulation of a particular

Class. When considering only Classes with good perfor-

mance as validated by Joint Genome Institute (JGI) stan-

dards above, we find similar proportions of Classes in the

up- and downregulated peaks under each stress (Figure

S18). However, Heat appeared to affect a structurally

broader portion of the metabolome than HeatNoCopper,

as determined by mapping DAPs onto an MS/MS network

(Figure 4b, Figures S19 and S20). Many of the heat-specific

DAPs were tightly clustered but did not receive CANOPUS

annotations, suggesting that specific yet unknown routes

of metabolism may be perturbed differently under these

stresses.

Co-accumulated peaks have diverse structural classes, and

peaks within a class rarely co-accumulate

As many classes showed broad changes in response to a

stress, we next assessed the diversity of structural classes

among groups of correlated peaks as determined using

weighted gene coexpression network analysis (WGCNA)

(Langfelder & Horvath, 2008) (Figure 5a and Figures S21

and S22). WGCNA provides a complimentary approach to

assign functional hypotheses to metabolite classes under

stresses, as it simultaneously assesses all conditions and

classes. We found that most co-accumulation modules

contained peaks with high abundance in roots and low in

leaves, or vice versa, again highlighting organs as primary

drivers for metabolic diversity. One module (‘cyan’) identi-

fied 16 peaks specifically accumulated in Sym Spore roots

(Figure S22), four of which were annotated as

� 2023 The Authors.
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The Plant Journal, (2023), 114, 463–481

470 Elizabeth H. Mahood et al.

 1365313x, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tpj.16160, W

iley O
nline L

ibrary on [08/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



sphingolipids, again independently suggesting the impor-

tance of sphingolipids in AMS. Other modules contained

peaks with more varied accumulation patterns. For

example, the ‘turquoise’ module identified peaks that were

either specifically accumulated in hydroponics roots or

excluded from them (Figure 5a). The ‘gray60’ module

Figure 4. Charting stress-induced shifts of molecular classes, negative mode. (a) Abundance changes of peaks in response to stress. Each stress depicts Classes

that were the most upregulated (Class name in yellow) or downregulated (Class name in purple), on average. For a Class to be plotted, its average value must

be greater than the 70th percentile (yellow Classes) or lower than the 30th percentile (purple Classes) of all stress-induced peak area changes. Individual metabo-

lites are plotted as circles, outliers are shown as +. Red asterisks (*) denote enrichment of a Class among the stress-induced metabolites in a condition. Classes

that validated well with authentic standard data are underlined and those that did not validate well are not shown (see Methods S1). (b) MS/MS networking of

all peaks in negative mode. Each node represents a peak, node fill color represents CANOPUS classifications. Only Classes that validated well with authentic

standard data and only the largest connected network are shown. The full network is shown in Figure S20. Large nodes are peaks that are differentially accumu-

lated in the roots under heat stress (teal overlay), HeatNoCopper stress (gold overlay), or both (both colors). Edges were drawn between nodes if their pairwise

cosine similarity was >0.7. Ellipses mark network regions perturbed primarily under heat stress but not as much under HeatNoCopper stress.

� 2023 The Authors.
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(Figure S22) grouped peaks abundant in leaves but

excluded from all roots except those experiencing AMS.

These may represent foliar metabolites that undergo trans-

port to the roots and play a role in symbiosis. A more

detailed analysis of these peaks can reveal novel insights

into the biochemistry of Brachypodium abiotic and biotic

responses.

A majority of WGCNA modules contained multiple

Classes, and four out of 18 modules were enriched in

at least one Class (Fisher’s exact test, FDR-adjusted
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Figure 5. Characterizing metabolite co-abundance, negative mode. (a) WGCNA topography overlap matrix, depicting correlations among peaks placed into sig-
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P < 0.05). Some metabolite classes, such as flavonoids

(negative mode) and prenol lipids/fatty acyls (positive

mode), were enriched in multiple modules with differing

abundance patterns (Figures S21 and S22). Flavonoids

were enriched in modules with higher accumulation in

leaves than roots despite flavonoids being overall highly

perturbed (had high RDPIs) in roots but not in leaves

(Figures S15 and S16). These results point to differing

regulation of individual metabolite classes in roots ver-

sus leaves. Additionally, of the seven Classes enriched

across all modules, in either positive or negative mode,

six were lipids, further highlighting their functional

relevance.

To determine if ‘Class’ is too broad a level for co-

regulation and if more evidence for co-regulation is found

at the ‘Subclass’ or ‘Level 5’ level, the average pairwise

Spearman correlation among accumulations of peaks in

the same Class, Subclass, or Level 5 category (Figure 5b

and Figure S17c) was compared to the average correlation

among randomly drawn peaks. At each hierarchy level, a

minority of classes had average correlation ≥ 0.5 (15, 19,

and 32%, respectively), and most classes had correlation

close to random. Notably, at each level of the hierarchy,

several classes were unusually large, with >60 members,

raising the possibility of low structural similarity within

each class. Thus, we asked whether class size and struc-

tural similarity within class contribute to average class cor-

relation (referred to as co-abundance, see Methods S1 for

calculation). Correlations between average class co-

abundance and average class cosine score were usually

positive (Figures S23 and S24), suggesting greater structural

similarity within a class translates to greater co-abundance.

Correlations between class size and co-abundance/cosine

score were 0 or negative, highlighting the importance of

more specific class definitions. We note that overall, these

metrics explained only a very low (approximately 10% or

lower) proportion of variance.

Taken together, these results indicate that while some

classes (e.g., flavonoids and their subclasses) may repre-

sent groups of co-regulated peaks, this is likely not the

case for most classes. This may reflect the specificity of

underlying metabolic and regulatory pathways, which may

significantly increase concentrations of specific individual

metabolites of a structural class. These results also suggest

that utilizing the multilabel nature of the chemical ontology

could be a better approach for finding peaks belonging to

coordinated routes of metabolism rather than using single

classes.

Analysis of specific metabolites and biomarker detection

Our dataset provides a unique opportunity to analyze the

accumulation patterns of known metabolites, as well as

find biomarkers, i.e., peaks that accumulate highly (not

necessarily specifically; see Methods S1) in one condition/

organ. We selected salicylic acid (SA), abscisic acid (ABA),

and naringenin for analysis as they were identified by

GNPS with match scores of ≥0.89 (the Classes of ABA and

naringenin were additionally correctly annotated by CANO-

PUS), and may be of relevance in the studied conditions.

We further validated these identifications by uncovering

their major fragments from the literature and public reposi-

tories and checking for matching fragments in our queries

(Table S3). SA is known to accumulate in roots under AMS

(Zhang et al., 2013) and, in some species, under heat (Hara

et al., 2012). We found that SA accumulated (but not signif-

icantly increased) in AMS roots, and was mildly but signifi-

cantly increased in Heat roots (t-test, P < 0.05) (Figure

S25). In contrast, ABA levels highly increased in AMS roots

and in Heat and HeatNoCopper leaves (t-test, P < 0.05).

Finally, for naringenin, mean decreases were observed in

roots for all conditions (significant decreases seen in Heat

and AMS; t-test, P < 0.05), corroborating our observations

of decreases in the broader flavonoid Class.

We also found that the numbers of biomarkers

detected in each condition resembled the overall RDPI dis-

tribution – roots typically have more biomarkers than their

foliar counterparts, and Spore roots and Heat roots have

the highest numbers of biomarkers (Figure 5c and Figure

S17d; File S11). A large proportion of biomarkers were

lipids (70% of annotated biomarkers in negative mode and

80% in positive mode). We found 11-carboxyblumenol C

glucoside to be a foliar biomarker for AMS, corroborating

previously published data (Wang, Schäfer, et al., 2018)

(Figure S26a), and discovered other peaks that shared frag-

ments (Figure S26b). We also detected a peak specific to

Spore leaf and not present in AMS roots, which shares no

fragment peaks with blumenol C and was classified by

CANOPUS as a 50-deoxyribonucleoside (Figure S26c), sug-

gesting that AMS induces other foliar-specific routes of

metabolism.

Visualizing metabolite class importance using the BAR

platform

In order to make the data described herein more easily

accessible to the scientific community, these data were

integrated into the BAR website as a novel electronic Fluo-

rescent Pictograph (eFP) browser (available for testing at:

https://bar.utoronto.ca/efp_brachypodium_metabolites/cgi-

bin/efpWeb.cgi). CANOPUS Classes surviving validation

experiments with at least five members in both positive

and negative modes were included in this eFP browser.

This eFP browser has two viewing options. With the Rela-

tive viewing option, the changes of metabolite Class levels

across conditions can be readily observed (Figure 6) as the

average change in normalized peak area under a condition.

With the Absolute viewing option, the average normalized

peak areas are plotted per organ and condition. Besides

showing how the Class changes in abundance across
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conditions, the Absolute view option also provides infor-

mation about which ionization mode best illustrates

changes experienced in that Class. Notably, for some Clas-

ses (e.g., furanoid lignans) we observe different changes in

abundance across ionization modes. While this may be

due to CANOPUS peak misannotations, especially for posi-

tive mode, it may also reflect different subclasses being

detected in different ionization modes. This finding has

implications for targeted comparative metabolomics stud-

ies, as results obtained in one ionization mode may not

necessarily hold in the other. By establishing our eFP

browser, we seek to enable the community to draw further

conclusions from our existing results and facilitate the

design of future comparative metabolomics and down-

stream validation studies.

DISCUSSION

While recent improvements in LC-MS hardware have gen-

erated impressive advancements in metabolite detection,

associating the thousands of metabolites detected in each

species with biological processes remains an open chal-

lenge (Chaleckis et al., 2019). In this study, using three

complementary approaches – information theory, ML-

based analysis, and co-accumulation clustering – for LC-

MS data, we performed a more comprehensive analysis of

metabolome perturbations of B. distachyon under different

environmental conditions. We performed extensive quality

control steps to account for peaks with poor peak shapes,

noise, low intensity peaks, in-source fragments, and

adducts; however, it is possible that some of the remaining

peaks also include cluster ions, unexpected adducts,

solvent-derived ions, and other in-source fragments. It is

also possible that these factors may affect CANOPUS pre-

dictions more in one mode versus another. Nonetheless,

we do not expect these unusual forms to affect one sample

substantially more than the other and we primarily base

our inferences using high-confidence CANOPUS predic-

tions from negative mode; therefore, the overall inferences

obtained in this study are likely to be robust.

When applying information theory-based measures to

the global metabolome, we found that roots are, on the

whole, more stress-responsive than leaves, despite leaves

having a more expansive and complex metabolome. The

finding that leaves have consistently more peaks than

roots may be due to biological or technical/processing rea-

sons, as root harvesting required a washing/drying step to

remove the attached soil particles, which may have also

removed epidermal metabolites. While the increased num-

ber of peaks in foliar samples directly contributes to their

increased diversity, the finding that leaf metabolomes are

less perturbed than roots under the studied stresses is

intriguing. While this may partly be a consequence of the

experimental design, previous studies have also found

roots to be more impacted than leaves under a variety of

stresses, including heat (Giri et al., 2017) and salinity

(López-Cristoffanini et al., 2021). Notably, drought stress –
not included in our study – appears to be an exception in

which leaves are more impacted than roots (Gargallo-

Garriga et al., 2014), indicating that the greater metabolic

plasticity of the roots is not universal. These results may

again be due to technical considerations, as peaks with m/

z > 800 were not detected, thereby excluding cuticular

waxes, which are stress-responsive (Baker, 1974; Kan et al.,

2022; Wang, Tian, et al., 2018). Additionally, highly polar

and highly non-polar compounds were excluded from our

data. Both roots and leaves contain such compounds, and

therefore it is unclear how results would differ with these

compounds included.

Our analyses revealed that the combined HeatNoCop-

per stress was less disruptive to the root metabolome than

the Heat stress alone, suggesting that 1 week of Cu defi-

ciency primed the roots for subsequent protection against

heat stress. Another interpretation is that critical heat

response mechanisms were not activated in the roots after

a week of Cu deficiency, which could therefore have other

long-term impacts. Since the recovery of these plants after

stress was not studied, it is not possible to ascertain which

interpretation is correct. However, these results reveal an

intriguing interplay between heat stress and Cu deficiency.

In Arabidopsis, such an interplay is suggested through

shared aspects of heat and Cu deficiency responses. For

example, Cu deficiency triggers accumulation of ferric

superoxide dismutase 1 to account for reduced activity of

Cu/Zn superoxide dismutases (Abdel-Ghany & Pilon, 2008).

This shift may help protect the roots against reactive

oxygen species produced during later heat shock and pro-

vide resilience to photosynthesis, which requires Cu.

Recent evidence has also suggested that SPL7, a master

regulator of the response to Cu deficiency (Yamasaki et al.,

2009), may upregulate miR156 under Cu deficiency (Perea-

Garcı́a et al., 2021). In Arabidopsis, miR156 is induced after

an initial heat stress event and provides heat shock mem-

ory, as plants lacking miR156 showed decreased growth

and survival after subsequent heat events (Stief et al.,

2014). As miR156 is also induced in wheat after heat stress

(Xin et al., 2010) and several miRNAs are known to have

different induction patterns in different tissues (Sunkar

et al., 2012), we hypothesize that miR156 upregulation

under Cu deficiency helps prime Brachypodium roots for

heat stress. Another candidate is miR398a, which we find

to be upregulated under Cu deficiency (Figure S2) and

which is also involved in the heat stress response (Schul-

ten & Krämer, 2018). We also found that sphingolipids,

which are associated with both temperature response and

ionome regulation (Chao et al., 2011; Huby et al., 2020;

Sun et al., 2022), are upregulated in NoCopper, Heat, and

HeatNoCopper roots (Figure 4). This finding suggests a

role for Cu deficiency-induced sphingolipids in protecting
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Brachypodium roots against the impact of transitional

heat stress. Future mechanistic studies can help test these

hypotheses.

We combined CANOPUS – a tool for structurally anno-

tating peaks – with information theory-based and related

measures to analyze more specific metabolome

Figure 6. Visualizing stress-induced changes in class abundance. In relative mode of the eFP browser (shown here for flavonoids), the log2(fold change) values

in average Class abundance between a condition and its control are plotted. The consistent decreases among stressed roots are again seen.
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perturbations. While ML-based tools for peak identification

are likely the next frontier in mass spectrometry data ana-

lyses, crucial third-party validations of the tools are lack-

ing. Our study provides one of the most extensive,

multipronged validations of CANOPUS on plant datasets,

revealing different factors that may affect machine learning

performance. After validation, we used CANOPUS to

uncover extensive metabolic modulations comprising lipi-

domic perturbations and alterations of phenylpropanoid

pathway products such as lignans and flavonoids. We find

lipids, on the whole, to be highly stress-responsive, with

glycerolipids, GPs, sphingolipids, and fatty acyls having

high perturbations under several conditions, yet a limita-

tion of this methodology is that it cannot detect changes in

lipid acyl chain composition. However, these Class-level

perturbations may be a result of changes in membrane

composition (known to occur under heat [Higashi & Saito,

2019] and low P stress [Nakamura, 2013]) and/or produc-

tion of lipid signaling molecules, such as oxylipins (Ali &

Baek, 2020) and sphingolipids (Berkey et al., 2012). Under

AMS specifically, certain fatty acyls, sphingolipids, and

GPs are known to be produced (Bravo et al., 2017; Moore

et al., 2021; Wewer et al., 2014), and while this is indeed

reflected in our data (File S10) we also found that prenol

lipids were highly altered under AMS, suggesting that

AMS has wide-reaching effects on the Brachypodium lipi-

dome. We unexpectedly found that several flavonoids

decreased in the roots in response to all conditions except

low P – a finding also observed by a focused assessment

of naringenin. The validity of CANOPUS flavonoid predic-

tions is not only confirmed in this study but was also previ-

ously confirmed in sweet potato (Ipomoea batatas)

flavonoids and anthocyanins via comparison with MS/MS

networking (Bennett et al., 2021). In general, flavonoids are

known to accumulate under several stresses (Ferdinando

et al., 2012), yet the wholescale labeling of all flavonoids

as antioxidants has been questioned (Agati et al., 2020).

Previous studies have additionally found disordered regu-

lation of flavonoid biosynthesis, at the level of either indi-

vidual flavonoids/flavonoid biosynthetic genes (Wu et al.,

2020) or post-transcriptional regulation of flavonoid bio-

synthesis (Cui et al., 2019). These observations reveal a

need for a deeper investigation of roles of specific flavo-

noids and/or their metabolic reprogramming under stress.

We further found that WGCNA, a tool commonly used in

RNA-seq studies, is effective at uncovering peaks with sim-

ilar abundance patterns, which are potentially in the same

routes of metabolism. Our study was also able to detect

biomarkers, which can reveal novel insights into condition-

specific activations of metabolic pathways.

In conclusion, we found that information theory-based

metrics and chemical class predictions are effective tools

to analyze comparative metabolomics data. Our results

reveal a very dynamic plant metabolome influenced by

multiple environmental and developmental factors. As

more untargeted LC-MS/MS studies are performed, com-

parative analyses of these datasets may reveal common

patterns and the core stress response across groups of

plant species. The overall workflow described here can

enable a more streamlined analysis of such untargeted

datasets. Nonetheless, it is important to carefully validate

the ML-based annotations prior to using them for

metabolome-wide analyses, given their variable perfor-

mance based on instrumentation, mode of ionization, and

specific metabolite classes. Visualizing metabolomic data

using the eFP browser may reveal hidden spatial differ-

ences in metabolome perturbations not easily discernible

otherwise, and guide the design of targeted studies. For

example, this visualization can be a useful tool to identify a

better mode of ionization for molecules of interest as well

as reveal metabolite classes to be assessed via targeted

analyses. Our study shows that data-intensive analytical

methods are useful resources for gleaning novel biological

insights from untargeted metabolomics studies in plants.

EXPERIMENTAL PROCEDURES

Plant growth conditions and harvesting

Brachypodium distachyon Bd-21 seeds for plants used in the Sym
and Tis experiments were sterilized in 10% (v/v) household bleach
containing 0.005% (v/v) Tween-20 for 7 min, thoroughly washed
five times in sterile water, and germinated in Petri dishes on moist
Whatman filter paper in the dark at 4°C for 7 days and at room
temperature for an additional 3 days. Germinated seedlings were
incubated for an additional 3–5 days under constant light while
maintaining constant humidity. The germination protocol for
plants used in the Hydro experiment was performed as outlined
previously (Sheng et al., 2021). Additional details about plant
growth conditions are described in Methods S1. After the growth
period, harvesting of all plant material took place between noon
and 3:00 pm to maintain circadian profiles of genes and metabo-
lites. All samples were stored at −80°C until further processing.
We verified the efficacy of the Cu deficiency and AMS conditions
using RT-PCR of previously known condition-specific genes (Rah-
mati Ishka & Vatamaniuk, 2020) (Methods S1).

Metabolite extraction and sample preparation

All plant material was rough ground over liquid nitrogen using
scissors to enable equal and homogenous separation for RNA and
metabolite extraction. All samples were further subjected to bead
homogenization using a mixer mill (Retsch, Haan, Germany) at 30
bpm with 1-min intervals in 2-ml reaction tubes containing four
2.3-mm chrome steel beads. Ground samples were lyophilized
overnight. Sample fresh weights (200 mg leaves, 550 mg roots,
150 mg spikelets and culms) were determined to ensure 50 mg of
dry weight for all tissues. Samples were ground again in the bead
homogenizer for 10 min and centrifuged at 14 000 g for 10 min in
order to collect all powdered sample at the bottom of the tube.
Metabolites were extracted using a mixture of acetonitrile, isopro-
panol, and water (ratio of 2:2:1) containing 0.1% (v/v) formic acid
and 30 μM of three internal standards (Telmisartan, propyl-4-
hydroxy-benzoate, and kanamycin). After solvent addition, sam-
ples were vortexed several times over a period of 15 min to
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facilitate extraction. After centrifugation for 10 min at 16 000 g to
remove particulates, the samples were transferred into amber
HPLC vials and stored at −80°C until LC-MS/MS analysis. Samples
were shipped to the JGI on dry ice for LC-MS/MS analysis, where
LC-MS/MS was performed using an Agilent 1290 Infinity LC sys-
tem (Agilent, Santa Clara, CA, USA) coupled to a Thermo QExac-
tive HF orbitrap mass spectrometer (Thermo Scientific, San Jose,
CA, USA). Additional details are provided in Methods S1.

Metabolomic data filtering, normalization, and imputation

All RAW files were converted to mzML format using ProteoWizard
v 3.0.7230. TICs were made for all files of a given polarity using
XCMS (Mahieu et al., 2016) (Figure S3). All files of a given mode
(positive or negative) were then imported into MS-DIAL v4.48
(Tsugawa et al., 2020) for peak deconvolution and alignment.
Parameter files for positive and negative mode usage are supplied
(File S12). The peak areas of the internal standards Telmisartan
and propyl-4-hydroxy-benzoate were manually checked to deter-
mine consistency across samples. For each polarity, MS-DIAL out-
puts a quantitative alignment file, displaying the peak areas of all
metabolites in all samples, and a Mascot Generic Format (mgf) file
of all fragmented metabolites. Detected metabolites were filtered,
imputed, and normalized using a custom R script (developed in R
v4.0.4) (R Core Team, 2020), available on GitHub (https://github.
com/lizmahood/brachy_metabolomics) as described in Figure S4.
Metabolites eluting out at 90 sec or earlier were removed as the
total ion current observed at the beginning of runs was high
enough that accurate quantification of metabolite values could not
be ensured (Figure S3). Imputation was performed with the R
package impute and VSN was performed with the R package vsn
(Huber et al., 2002). Normalization scheme was chosen using
NOREVA (Li, Tang, et al., 2016), followed by identification of differ-
entially accumulated metabolites, both of which are described in
more detail in Methods S1.

Peak annotation with CANOPUS

The mgf format MS-DIAL output files were filtered to remove
adducts and peaks detected in Blank samples using an in-house
python script (https://github.com/lizmahood/brachy_metabolomics).
The CANOPUS module (Dührkop et al., 2021) included in the SIR-
IUS4 v4.9.8 software suite (Dührkop et al., 2019) was used to anno-
tate singly charged peaks with their probable structural classes, as
defined in the multilabel ChemOnt ontology (Djoumbou Feunang
et al., 2016). The Zodiac module (Ludwig et al., 2020) was addition-
ally used to improve each peak’s predicted molecular formula
(which CANOPUS uses for annotation). For each compound,
CANOPUS predicts the ‘Parent Class’ – the class of the largest sub-
structure in the molecule – and outputs the probability that the pre-
dicted Parent Class is correct, based upon its training data. Other
predictions are made at different hierarchies of the ontology
(Superclass, Subclass, etc.). Any annotation with prediction proba-
bility < 0.5 was not considered in downstream analyses. Addition-
ally, if a classification was discarded for not meeting this
probability threshold, each subsequent prediction (at more specific
hierarchies) was removed as well, regardless of their prediction
probabilities.

Peak identification with GNPS and MS-DIAL

The ‘All Public MS/MS’ msp files provided by MS-DIAL (http://
prime.psc.riken.jp/compms/msdial/main.html#MSP) were used for
identification. To remove false positive identifications, we
imposed a threshold of >0.8 for both the Dot Product and Reverse

Dot Product scores between the query and database match.
Feature-based molecular networking through GNPS (Nothias
et al., 2020) workflow v28.2 was additionally used for peak identifi-
cation. Spectral database libraries included those publicly avail-
able in GNPS, as well as the NIST 17 library, which was kindly
provided by JGI. All parameters for molecular networking were
kept at default values except precursor ion mass tolerance (0.01
Da), library search min matched peaks (3), top results to report per
query (20), score threshold (0.4), and maximum analog search
mass difference (200). We again imposed a threshold of >0.8 for
the match score between the query and database match, and only
considered the top match per query.

To compare annotations between peak identifications and
CANOPUS, InChIs of identified compounds were converted to
InChI-Keys through the chembl_ikey python module (https://
github.com/mnowotka/chembl_ikey), and structural classifications
were obtained with ClassyFire Batch (https://cfb.fiehnlab.ucdavis.
edu/).

MS/MS molecular networking

MS-FINDER v3.44 (Tsugawa et al., 2016) was used to perform
molecular networking using the filtered mgf files, with the follow-
ing parameters: mass tolerance 0.01, relative abundance cutoff
5%, MS/MS similarity cutoff 70%, and RT tolerance 100. The
Superclass of each peak and the conditions in which each peak
was identified as differentially abundant were added to the node
file. The edge file and this augmented node file were imported
into Cytoscape v.3.8.0 (Su et al., 2014) for figure generation using
the Prefuse Force Directed Layout.

Estimating information theory-based measures

The following information theory-based metrics were calculated
for our dataset as described previously (Li et al., 2020): Hj (the
Shannon entropy/metabolomic profile diversity), Si (metabolomic
specificity), and δj (metabolome specialization index). The RDPI,
as calculated for all peaks in each stress condition, was also deter-
mined as described previously (Valladares et al., 2006). The RDPI
calculation was applied to the entire metabolome, and then
applied separately to each compound class (for compound classes
with at least five peaks classified into them).

The RDPI formula was amended in order to determine if a
class is up- or downregulated under a stress. Briefly, for each
condition–control pair of samples, a distribution of the abundance
changes of all peaks was made, and the mean change in peak
abundance was calculated per class. Let dij → i0 j0 represent the peak
area changes to all peaks i common to a condition–control pair
(j → j’). The mean value of the peak area change for each com-
pound class was computed as ∑ dij ! di 0j 0

� �
=n, where n is the

number of peaks per class. For each condition, these per-class
mean values were compared to the overall distribution of dij → i0 j0

across all metabolite peaks to determine the percentile of the per-
class value with respect to the peak area changes of all compared
metabolites. For the purposes of plotting in Figure 4, the classes
with percentiles of >70 (large average increase in abundance)
or <30 (large average decrease in abundance) and at least five
members were identified, and up to five classes with the highest/
lowest percentiles were plotted.

Weighted correlation network analysis construction and

module analysis

Using the Weighted Correlation Network Analysis (WGCNA) R
package (Langfelder & Horvath, 2008), an unsigned adjacency
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network was made from the normalized area of all fragmented
peaks. The soft powers were 129 and 131 in positive mode and
negative mode, as these were the lowest values achieving an R2

value of at least 0.8. Hierarchical clustering via the hclust function
was performed using method = ‘average’. The minimum module
size was 10. All peaks that failed to be assigned to a module were
discarded, and the remaining peaks were re-clustered into a den-
drogram and visualized alongside their topography overlap
matrix. The CANOPUS class of all peaks in each significant mod-
ule was determined. Each class (except ‘None’, containing unclas-
sified peaks) was analyzed for enrichment in a particular module if
there were at least five members in the module. Enrichment was
calculated using a Fisher’s exact test with all fragmented peaks as
the background population.

Visualizing CANOPUS class abundance on the BAR

platform

Briefly, an input image was generated representing the experi-
ments described in this paper. The eFP browser code (Winter
et al., 2007) was then modified in several ways to be able to dis-
play CANOPUS data. First, the color scheme was modified from
the default yellow-red color scheme of the original eFP browser to
make a visual distinction between the metabolite data being dis-
played in the modified version and transcript data displayed in the
original browser. Second, because CANOPUS data have a lower
dispersion, we introduced a possibility of setting a minimum
value for the color scale other than zero. Last, CANOPUS classes
with at least five members in both positive and negative ionization
modes were included in this eFP browser, and were databased in
such a way that the data from the two modes could be retrieved
separately. CANOPUS data may be freely explored at https://bar.
utoronto.ca/efp_brachypodium_metabolites/cgi-bin/efpWeb.cgi.
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File S1. Raw results of different normalization schemes on our LC-
MS/MS data using NOREVA. NEG and POS refer to negative and
positive mode data, respectively. Based on comparison of differ-
ent metrics, VSN was chosen as the normalization approach given
it resulted in the highest purity of K-means clusters and the most
intergroup separation in the principal component analysis.

File S2. Replicate correlations (determined by Pearson’s r) after all
filtering and normalization steps.

File S3. Normalized peak area and CANOPUS annotations. All
peaks passing the filtering and normalization steps are included in
this file. Outlier samples have been detected and removed. High
confidence (posterior probability > 50%) CANOPUS annotations
for fragmented, singly charged peaks are included. Peaks that
received no annotations are labeled as ‘None’, together with
annotations with posterior probability ≤ 50%.

File S4. Quantification, metadata, and CANOPUS annotations of
differentially accumulated peaks (DAPs). Each peak’s Alignment ID
corresponds with its Alignment ID in File S3. Average abundance
values of 0.01 indicate no detection. ‘normalized_fc’ shows the
fold change calculated using normalized peak abundances (see
Experimental Procedures), whereas ‘original_fc’ shows the fold
change of peak abundancies calculated just prior to normalization.

File S5. CANOPUS annotations in positive mode.

File S6. CANOPUS annotations in negative mode.

File S7. Correspondence between peaks identified using spectral
matches and their class predictions using CANOPUS. 1Identified
using spectral matches with public repositories. 2Annotated using
CANOPUS. 3Percentage of the identified and annotated peaks with
matching class definitions. Definitions of the identified peaks were
obtained using ClassyFire.

File S8. Cytoscape format MS/MS network file containing nodes
labeled with their CANOPUS Class and Superclass annotations.
Data is for negative mode only.

File S9. Cytoscape format MS/MS network file containing nodes
labeled with their CANOPUS Class and Superclass annotations.
Data is for positive mode only.

File S10. Average change in peak area and average RDPI per Class,
under each condition. The ChangePercentile shows what percent
of peaks had a smaller (or more negative) change in peak area

� 2023 The Authors.
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than each Class. This was calculated independently for each con-
dition (see Experimental Procedures for calculation details).

File S11. Condition – enriched metabolites (biomarkers) found in
each condition. Alignment ID corresponds with the Alignment ID
for each metabolite in File S3. Fold changes of >1000 occur when
the respective metabolite is not present in any other condition.

File S12. Parameter settings for MS-DIAL in negative and positive
modes.

Figure S1. Experimental design and set-up of the three subexperi-
ments conducted.

Figure S2. Reverse transcriptase (RT) PCR and quantitative RT-PCR
for validation of Cu and AMS treatments.

Figure S3. Total ion chromatograms for all samples.

Figure S4. Flow chart of the procedure developed to quantify
metabolites.

Figure S5. RMSE between two values and imputed values under
two imputation–normalization orders.

Figure S6. Total peak area and peak numbers per sample.

Figure S7. Principal component analysis of all samples surviving
the filtering process.

Figure S8. Replicate dendograms. All non-outlier positive samples
were clustered using a distance matrix of 1 – pairwise Pearson’s
correlation. Samples were clustered based on filtered and normal-
ized metabolite values.

Figure S9. Replicate dendograms. All non-outlier negative sam-
ples were clustered using a distance matrix of 1 – pairwise Pear-
son’s correlation. Samples were clustered based on filtered and
normalized metabolite values.

Figure S10. Diversity and specialization per condition. Bars repre-
sent the mean of each metric per condition, and error bars show
the standard deviation across all replicates remaining after outlier
removal. (a) and (b) show the diversity and specialization in posi-
tive mode, while (c) and (d) show them in negative mode.

Figure S11. Full UpSet plots showing intersections of differentially
accumulated peaks (DAPs) in all sets of conditions. DAPs include
both up- and downregulated peaks. (a) includes peaks detected in
positive mode and (b) includes peaks detected in negative mode.
The vertical bar charts (showing DAP intersections) show the
numbers of DAPs found in each intersection of conditions/organs,
as outlined by the combination of dots underneath the bar.

Figure S12. Volcano plots of differentially accumulated peaks in
negative mode.

Figure S13. Volcano plots of differentially accumulated peaks in
positive mode.

Figure S14. Ratio of compounds annotated at different levels of the
ChemOnt ontology. (a) Positive mode. (b) Negative mode. Non-fil-
tered bars represent all compound classifications. Filtered bars rep-
resent only those classifications with posterior probabilities of >0.5.
Figure S15. RDPI per CANOPUS Class, positive mode. Each dot
represents the RDPI between one replicate in a particular stress
and its control. ‘None’ represents metabolites that received no
CANOPUS Class-level annotation. Classes that validated well with
authentic standard data are underlined and those that did not vali-
date well are not shown (see Methods S1).

Figure S16. RDPI per CANOPUS Class, negative mode. Each dot
represents the RDPI between one replicate in a particular stress
and its control. ‘None’ represents metabolites that received no
CANOPUS Class-level annotation. Classes that validated well with
authentic standard data are underlined and those that did not vali-
date well are not shown (see Methods S1).

Figure S17. Charting stress-induced shifts of molecular classes.

Figure S18. Distribution of classes among DAPs in roots under
heat stress and HeatNoCopper stress. Only Classes that validated
well with authentic standards (see Methods S1) are shown. The
percentage of peaks in each Class is shown, and the number of
peaks in each Class is plotted on/above the bars. (a, b) Positive
mode. (c, d) Negative mode. (a, c) Upregulated peaks in each
stress. (b, d) Downregulated peaks.

Figure S19. MS/MS networking of peaks in positive mode.

Figure S20. MS/MS networking of peaks in negative mode.

Figure S21. Normalized expression and CANOPUS classifications
of peaks in significant WGCNA modules, positive mode.

Figure S22. Normalized expression and CANOPUS classifications
of peaks in significant WGCNA modules, negative mode.

Figure S23. Relationship between average Spearman correlation,
average cosine score, and number of peaks in each category at
the Class, Subclass, and Level 5 levels. All plots are for peaks in
positive mode. The ‘corr’ on each plot is the Pearson correlation
between the variable pair. Classes that validated poorly using
authentic standards (see Methods S1), as well as the Subclasses
and Level 5 annotations within such classes, are not plotted.

Figure S24. Relationship between average Spearman correlation,
average cosine score, and number of peaks in each category at
the Class, Subclass, and Level 5 levels. All plots are for peaks in
negative mode. The ‘corr’ on each plot is the Pearson correlation
between the variable pair. Classes that validated poorly using
authentic standards (see Methods S1), as well as the Subclasses
and Level 5 annotations within such classes, are not plotted.

Figure S25. Normalized abundance values for salicylic acid, absci-
sic acid, and naringenin across all organs and conditions. Metabo-
lites were identified through a database search (using GNPS, see
Experimental Procedures).

Figure S26. Substructures of foliar biomarkers of symbiosis. (a)
11-Carboxyblumenol C 9-O-glucoside was identified to Level 2.
Characteristic ‘blumenol’ fragment peaks are shown in green and
orange. (b) Unknown compound with no accumulation in Sym
Spore roots yet containing two characteristic ‘blumenol’ fragment
peaks. (c) Unknown compound lacking any ‘blumenol’ fragment
peaks. Asterisks signify foliar symbiosis biomarkers, and each
compound’s ID corresponds with its Alignment ID in File S3.

Table S1. Coefficients for different normalization methods. Purity
of k-means clustering denotes the normalization method’s effect
on differential metabolic analysis, while the relative weighted con-
sistency reports the method’s consistency between identified
markers among different datasets.

Table S2. P-values of Kolmogorov–Smirnov tests of diversity and
specialization distributions. Each Kolmogorov–Smirnov test com-
pared the distributions between a stress and its respective control.
Significant P-values (<0.05) indicate that the specialization or
diversity values between the stress and control arise from differ-
ent distributions. All P-values are two-sided.

Table S3. Comparison of observed MS/MS fragments with data-
base spectra.

Table S4. List of primers used for reverse transcriptase (RT)-PCR
and quantitative RT-PCR.

Methods S1. Supplementary methods.
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Douché, T., Clemente, H.S., Burlat, V., Roujol, D., Valot, B., Zivy, M. et al.

(2013) Brachypodium distachyon as a model plant toward improved bio-

fuel crops: search for secreted proteins involved in biogenesis and disas-

sembly of cell wall polymers. Proteomics, 13, 2438–2454.
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Wang, M., Schäfer, M., Li, D., Halitschke, R., Dong, C., McGale, E. et al.

(2018) Blumenols as shoot markers of root symbiosis with arbuscular

mycorrhizal fungi. eLife, 7, e37093.

Wang, Z., Tian, X., Zhao, Q., Liu, Z., Li, X., Ren, Y. et al. (2018) The E3 ligase

DROUGHT HYPERSENSITIVE negatively regulates cuticular wax biosyn-

thesis by promoting the degradation of transcription factor ROC4 in rice.

The Plant Cell, 30, 228–244.
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