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Chronic effects of traumatic brain injury on the corticothalamic circuit 

Stephanie Holden 

Abstract 

Traumatic brain injury (TBI) affects 69 million people worldwide each year and is associated with 

many adverse health outcomes. But we still don’t fully understand which cells or circuits in the 

brain are chronically disrupted by TBI, or how to prevent or treat these outcomes. TBI-related 

health outcomes likely reflect secondary injuries that arise over the long term as consequences 

of the initial impact. In Chapters 2 and 3, we investigate the secondary injury processes that 

develop in the corticothalamic circuit, using a mouse model of mild injury that only directly injures 

the cortex. In Chapter 2, we identify which intrinsic, synaptic, and bulk cortical properties in the 

peri-injured cortex and the functionally connected thalamus are chronically altered by TBI, using 

electrophysiological recordings approaches. We also explore the role of the C1q complement 

pathway in TBI, and we find that blocking C1q reduces inflammation and neuronal loss in the 

corticothalamic circuit. In Chapter 3, we test the chronic effects of a novel small molecule 

therapeutic that reprograms astrocyte transcriptional states on outcomes such as inflammation 

and seizure susceptibility after TBI. In Chapter 4, we explore the fundamental properties of 

working memory, a cognitive function that involves the prefrontal cortex. Working memory is one 

of many cognitive functions known to be disrupted in TBI but before we study this function in the 

context of disease, we first dive into the basic intrinsic properties of neurons that underlie working 

memory. Studying the cellular and circuit mechanisms of both basic cognitive functions such as 

working memory and chronic disease processes such as TBI will help to identify new targets and 

therapeutic treatments for TBI-related health outcomes. 
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Chapter 1 : Introduction 

Traumatic brain injury 

Traumatic brain injury (TBI) can be caused by any bump, blow, or jolt to the head that disrupts 

normal brain function, and affects about 69 million people worldwide each year (Dewan et al., 

2018). Falls are the most common cause of TBI, particularly in older adults and young children. 

Other high-risk groups include military personnel and athletes, who may incur TBIs from vehicle 

collisions, sports injuries, and combat injuries (Broglio et al., 2017). TBI severity is commonly 

described as mild, moderate, or severe, based on a number of factors including duration of loss 

of consciousness and brain imaging results. 

Severe TBIs can lead to life-long disability or death. In fact, TBIs contribute to about 30% of all 

injury-related deaths in the United States (Taylor et al., 2017). Severe TBI can affect all aspects 

of an individual’s life, including relationships, the ability to work or study, doing household tasks, 

driving, or participating in other daily activities (Thurman et al., 1999). Concussions, on the other 

hand, are typically considered to be mild TBIs, and are characterized by little to no loss of 

consciousness or post-traumatic amnesia. Mild TBIs can still result in physical symptoms like 

headaches, dizziness, confusion, slurred speech, and difficulty with concentration, sleep, and 

sensory processing (Prince and Bruhns, 2017), but symptoms often resolve within a few days to 

weeks. However, one major challenge in understanding the long-term effects of mild TBIs is that 

epidemiological studies often gather data based on hospital admissions, but many people who 

suffer from mild TBI do not seek hospitalization. 

TBI is also a risk factor for other diseases including stroke, epilepsies like Lennox-Gastaut 

Syndrome and post-traumatic epilepsy (Asadi-Pooya 2017, Kim et al., 2018), and for later 

development of neurodegenerative diseases and dementia (Wilson et al., 2017). Most of these 

symptoms and adverse health outcomes develop months or years after TBI and are likely caused 
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by indirect secondary injuries, which are long-term consequences of the initial impact (Simon et 

al., 2017). Because the primary injury is essentially irreversible, understanding the timing, 

mechanisms, and location of secondary injuries in the brain are crucial for preventing or treating 

disability following TBI. 

Animal models of TBI are especially useful for studying the biomechanical, cellular, and molecular 

aspects of TBI that cannot be addressed in a clinical setting, as well as for developing novel 

therapeutic interventions (Bramlett et al., 2007, Chen et al., 2009, Ma et al., 2019, Marklund et 

al., 2012, Pierce et al., 1998, Shear et al., 2009, Xiong et al., 2014, Zhu et al., 2019). Specifically, 

rodents are often used for TBI research due to factors like cost, size, and standardized outcome 

measurements. The most common TBI models are controlled cortical impact (CCI), fluid 

percussion injury (FPI), weight drop injury, and blast injury (Carbonell et al., 1998, Smith et al., 

2005, Xiong et al., 2014, Ma et al., 2019, Wang et al., 2011). Each model has its own strengths 

and weaknesses (Table 1.1 adapted from Xiong et al., 2014), but for our studies we selected 

the CCI model, which uses an electromagnetic device to impact the exposed dura through a 

craniotomy. The major advantage of CCI is its high reproducibility, because mechanical 

parameters including depth, dwell time, and speed of the impact are easily controlled, and 

because the craniotomy reduces variability that may be caused by skull thickness. CCI is also 

known to reproduce many pathophysiological and cognitive deficits observed in humans with TBI 

(Table 1.2 adapted from Xiong et al., 2014, Lee et al., 2019, Ma et al., 2019, Washington et al., 

2012). 

The cortico-thalamo-cortical circuit 

The cortex is often the site of primary injury because it sits directly beneath the skull, and is an 

integrated part of many larger circuits, including the cortico-thalamo-cortical loop. This loop is 

composed of reciprocally connected excitatory thalamocortical (TC) and corticothalamic (CT) 
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pathways. Glutamatergic TC neurons of the relay nuclei have reciprocal connections with (1) 

glutamatergic CT neurons in functionally related areas of the cortex, and (2) inhibitory GABAergic 

neurons in the thalamic reticular nucleus (nRT) (Houser et al., 1980). The nRT also receives 

glutamatergic projections from the cortex (Cruikshank et al., 2010; Destexhe et al., 1998, Paz et 

al., 2011) (Figure 1.1). Through these connections, the thalamus generates and propagates 

rhythmic activity to the cortex (Destexhe et al., 1998, Fernandez et al., 2018, Pinault and 

Deschȇnes, 1992, Rovó et al., 2014, Timofeev and Chauvette., 2011). 

Cortical and TC neurons excite nRT neurons, leading to the inhibition of TC neurons (Figure 1.1). 

This is followed by post-inhibitory rebound bursts of action potentials in TC neurons (mediated by 

T-type Ca2+ channels) that, in turn, re-excite nRT neurons. This alternation of nRT and TC neuron 

bursting generates rhythmic activity that can be seen in electroencephalography (EEG) 

recordings of normal individuals during non-REM sleep (Huguenard and McCormick, 2007). 

These sleep spindles, among the best-described thalamocortical rhythms, are intermittent 10–15 

Hz oscillations lasting one to three seconds (Beenhakker and Huguenard, 2009, Huguenard and 

McCormick, 2007, Timofeev and Steriade. 1996, Wang and Rinzel, 1993). Because TC neurons 

can then propagate this oscillatory activity to cortical neurons, spindle activity can be relatively 

generalized. For example, simultaneous recordings in the thalamus and cortex of cats revealed 

a high correlation between thalamic activity and cortical spindles (Andersen et al., 1967). Also, in 

vitro thalamic slice preparations can sustain robust spindle-like network activity (Huntsman et al., 

1999, Jacobsen et al., 2001). These data support a role for the thalamus in generating and 

propagating rhythmic activity to the cortex to mediate network oscillations associated with normal 

functions (e.g., sleep). 

Although it is not acutely injured in most mild TBI cases, the thalamus experiences secondary 

injury presumably induced via its connections with the damaged cerebral cortex (Antón-Bolaños 

et al., 2018; Auladell et al., 2000; Beenhakker and Huguenard, 2009; Blakemore and Molnár, 
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1990; Paz and Huguenard, 2015). Structural changes in the thalamus have been implicated in a 

number of long-term health outcomes after TBI, including fatigue and cognitive dysfunction 

(Grossman et al., 2012; Grossman and Inglese, 2016), and patients with TBI display secondary 

and chronic neurodegeneration and inflammation in thalamic nuclei (Ross and Ebner, 1990; Scott 

et al., 2015). 

Inflammation in TBI 

Chronic neuroinflammation, which is characterized by the activation of glial cells, leukocyte 

recruitment, and upregulation and secretion of cytokines and chemokines, is a common feature 

of both primary and secondary injury stages (Morganti-Kossmann et al., 2001, Simon et al., 2017). 

However, most attempts to improve post-TBI cognitive outcomes with broad anti-inflammatory 

agents have failed (Russo and McGavern, 2016, Simon et al., 2017). This failure likely reflects 

the fact that different inflammatory pathways may play protective and pathogenic roles at different 

times (Orme et al., 2015, Figure 1.2 adapted from Simon et al., 2017). 

In Chapters 2 and 3, I describe my work on the role of the thalamus in TBI. This work is based on 

the fundamental hypothesis that the thalamus is an important site of secondary injury because of 

its reciprocal connections with the cortex. During my thesis, I expanded upon TBI studies that 

have characterized pathology and hyperexcitability in the cortex. To understand how cortical injury 

could cause secondary injury in the thalamus, I optimized CCI parameters to directly injure only 

the cortex without affecting subcortical structures, then used electrophysiological approaches to 

investigate how cellular and synaptic properties across the entire cortico-thalamo-cortical circuit 

were altered by TBI. I also investigated whether one particular inflammatory pathway, the C1q 

complement pathway, is necessary for neuronal loss and chronic inflammation in TBI. Finally, I 

tested whether small molecule therapeutics could alter TBI pathophysiologies such as seizure 

susceptibility and neuroinflammation. 
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Persistent neural activity in working memory 

In addition to studying the mechanisms of cellular and circuit excitability in disease, we are also 

interested in fundamental principles that underlie neural excitability in normal cognition. The 

prefrontal cortex (PFC) plays an important role in higher cognitive functions including working 

memory, which involves both the short-term storage and the manipulation of information 

(Courtney et al., 1998, Funahashi 2017). Working memory is known to be disrupted in TBI (Hamm 

et al., 1996, McDowell et al., 1997), but we need to know the basic mechanisms of working 

memory before we can study it in the context of disease. In Chapter 4, I describe my use of whole-

cell patch-clamp recordings and computational modeling to investigate the intrinsic properties of 

neurons that display persistent activity, which is a neural correlate of working memory. 
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Figures 

 

Figure 1.1. Diagram of the corticothalamic circuit. 

Black shapes and arrows represent glutamatergic neurons and projections. Red shapes and 
connections represent GABAergic neurons and projections. CT = corticothalamic neurons, nRT 
= reticular thalamic nucleus, TC = thalamocortical neurons, VB = ventrobasal thalamus. 
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Figure 1.2. Time course of inflammatory processes after traumatic brain injury. Adapted 
from Simon et al., 2017. 
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Table 1.1. Strengths and weaknesses of commonly used animal models of TBI. Adapted 
from Xiong et al., 2013.
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Table 1.2. Major pathological features of animal models of TBI that are seen in human 
TBI. Adapted from Xiong et al., 2013
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Chapter 2 : Complement factor C1q mediates chronic neuron loss and inflammation post-

brain injury 

Abstract 

While traumatic brain injury (TBI) acutely disrupts the cortex, most TBI-related disabilities reflect 

secondary injuries that accrue over time. The thalamus is a likely site of secondary damage 

because of its reciprocal connections with the cortex. Using a mouse model of cortical injury that 

does not directly damage subcortical structures, we found a chronic increase in C1q expression 

specifically in the corticothalamic circuit. Increased C1q expression co-localized with neuron loss 

and chronic inflammation, and correlated with altered cortical rhythms. Blocking C1q counteracted 

most of these outcomes, suggesting that C1q is a disease modifier in TBI. Since the 

corticothalamic circuit is important for sensory processing, attention, cognition, and sleep, all of 

which can be impaired by TBI, this circuit could be a new target for treating TBI-related disabilities. 
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Introduction 

Traumatic brain injury (TBI) affects about 69 million people worldwide every year (Dewan et al., 

2018) and can lead to cognitive dysfunction, difficulty with sensory processing, sleep disruption, 

and the development of epilepsy. Most of these adverse health outcomes develop months or 

years after TBI and are caused by indirect secondary injuries that result in long-term 

consequences of the initial impact (Mckee and Daneshvar, 2015). Because the primary injury is 

essentially irreversible, understanding where, when, and how secondary injuries develop is crucial 

for preventing or treating disability following TBI.  

The cortex is often the site of primary injury because it sits directly beneath the skull, and is an 

integrated part of many larger circuits, including the cortico-thalamo-cortical loop. This circuit is 

important for sensory processing, attention, cognition, and sleep, all of which can be impaired by 

TBI (Briggs and Usrey, 2008, Wimmer et al., 2015, Yingling and Skinner, 1976). The thalamus 

itself, though not acutely injured in most TBI cases, experiences secondary injury, presumably 

because of its long-range reciprocal connections with the cerebral cortex (Antón-Bolaños et al., 

2018; Auladell et al., 2000; Beenhakker and Huguenard, 2009; Blakemore and Molnár, 1990; Paz 

and Huguenard, 2015). Structural changes in the thalamus have been implicated in a number of 

long-term TBI-related health outcomes, including fatigue and cognitive dysfunction (Grossman et 

al., 2012; Grossman and Inglese, 2016), and patients with TBI display secondary and chronic 

neurodegeneration and inflammation in thalamic nuclei (Ross and Ebner, 1990; Scott et al., 

2015).  

Chronic neuroinflammation is a common feature of secondary injury sites (Simon et al., 2017). 

But most attempts to improve post-TBI cognitive outcomes with broad anti-inflammatory agents 

have failed (Russo and McGavern, 2016; Simon et al., 2017), likely because there are many 

inflammatory pathways that play both protective and pathogenic roles at different times (Orme et 

al., 2015). A potential mediator of post-TBI inflammation and injury is the complement pathway, 
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which is activated in the peri-injury area of brain lesions in both humans and rodents (Bellander 

et al., 2001; Krukowski et al., 2018; You et al., 2007). Complement activation contributes to 

inflammation and neurotoxicity in central nervous system injury and is increased in human brains 

afflicted with injury, epilepsy, and Alzheimer’s disease (Bellander et al., 2001; Hammad et al., 

2018; Hong et al., 2016; Lui et al., 2016; Wyatt et al., 2017). Aberrant activation of C1q, the 

initiating molecule of the classical complement cascade, can trigger elimination of functioning 

synapses and contribute to the progression of neurodegenerative disease (Cho, 2019). On the 

other hand, C1q is involved in normal synapse pruning during development (Stevens et al., 2007) 

and the complement system plays an important part in brain homeostasis by clearing cellular 

debris and protecting the central nervous system from infection (Hammad et al., 2018).  

Here, we investigated the role of classical complement protein C1q in post-TBI impairment of the 

corticothalamic circuit, with a particular emphasis on the timing and location of C1q expression. 

We used a mouse model of mild TBI, and monitored neurophysiological changes in the 

corticothalamic circuit via cellular electrophysiology and wireless cortical recordings in freely 

behaving mice up to four months post-TBI. 
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Results 

Secondary C1q expression coincides with chronic inflammation, neurodegeneration, and 

synaptic dysfunction in the thalamus 

To determine the secondary, long-term effects of TBI, we induced a mild cortical impact injury to 

the right primary somatosensory cortex (S1) of adult mice (Figure 2.1A), and assessed the impact 

on their brains three weeks later. This period corresponds to the latent phase in humans, when 

the brain is undergoing adaptive and maladaptive changes (Ding et al., 2016). We determined 

neuron count and gliotic inflammation in the corticothalamic circuit by immunofluorescent staining 

of coronal brain sections with markers of neurons (NeuN) and of glial inflammation (C1q, 

complement pathway; GFAP, astrocytes; Iba1, microglia/macrophages) (Figure 2.1C-E). Three 

weeks post-surgery, TBI mice had significantly higher GFAP, C1q, and Iba1 expression in the 

peri-TBI S1 cortex, the functionally connected ventrobasal thalamus (VB), and the reticular 

thalamic nucleus (nRT) than sham mice (Figure 2.1B-E). Inflammation occurred within 24 hours 

after injury in the cortex, while the functionally connected nRT and VB displayed glial changes 

around five days later (not shown), suggesting secondary thalamic inflammation. We also saw 

increased expression of similar inflammatory markers in thalamic tissue from human TBI patients, 

confirming that thalamic inflammation is a consequence of TBI in humans too (Figure 2.S1). We 

conclude that a chronic inflammatory process, secondary to the injury and characterized by C1q 

expression, occurs in the thalamus. 

Glial inflammation was associated with significant neuronal loss in the thalamic region, particularly 

in the nRT (Figure 2.1D-E, Figure 2.2A), which receives the majority of its glutamatergic inputs 

from the cortex (Destexhe et al., 1998; Golshani et al., 2001). The nRT of TBI mice had 

significantly fewer neurons than sham mice, particularly in the region of the nRT that receives 

most of its excitatory inputs from the injured somatosensory cortex (Bourassa et al., 1995; 

Destexhe et al., 1998; Golshani et al., 2001; Lam and Sherman, 2011) (Figure 2.2B-C). This 
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result suggests that the inflammation, which may be initiated by retrograde axonal degeneration, 

follows the long-range, corticothalamic circuit, and marks its two ends: the injured cortex and the 

connected thalamus. 

To test whether C1q might mark functional damage in this circuit, we performed whole-cell patch-

clamp recordings in the cortex and thalamus in brain slices at chronic stages of TBI (three to six 

weeks). We recorded layer-5 pyramidal neurons and fast-spiking GABAergic interneurons in the 

peri-TBI S1 cortex, glutamatergic neurons in the VB, and GABAergic neurons in the nRT. The 

neurons’ intrinsic membrane electrical properties and the spontaneous excitatory and inhibitory 

postsynaptic current (sEPSC and sIPSC) properties were similar between sham and TBI mice in 

both the peri-TBI cortex and the VB thalamus (see Table 2.S1 for details). However, in the nRT, 

TBI led to a reduction in the frequency of sIPSCs (Figure 2.2D-E). Furthermore, nRT sEPSCs 

were smaller in amplitude, and trended toward a lower frequency (Figure 2.2F-G). 

Immunofluorescence staining for GFP in Thy1-GCaMP6f mice, a marker of neuronal calcium 

levels in corticothalamic neurons, revealed reduced corticothalamic fluorescence in the thalamus 

after TBI (Figure 2.2H-I), suggesting that this circuit is indeed impaired.  

We conclude that the major long-term effect of TBI on corticothalamic circuits involves disruption 

of synaptic transmission in the nRT, which coincides with increased C1q expression, reduced 

cortical inputs, and local neuronal loss. In contrast, neurons in the peri-TBI cortex and the VB 

appear normal at chronic stages post-TBI (Table 2.S1), suggesting that inflammation - in 

particular, increased C1q expression - in these regions is not associated with long-term 

dysfunction in neuronal excitability or synaptic function. 

Blocking C1q function reduces chronic glial inflammation and neuron loss 

Increased C1q expression persisted four months post-TBI (Figure 2.S2A-S2B). To test C1q’s 

causal involvement in the inflammation and neuronal loss observed three weeks post-TBI, we 

used an antibody that specifically binds to C1q and blocks its downstream activity (Lansita et al., 

2017). Mice were given i.p. injections of the C1q antibody or a mouse IgG1 isotype control 24 
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hours after TBI or sham surgery, followed by twice weekly treatments for three weeks (see 

methods for more details).  

TBI mice treated with the anti-C1q antibody showed a strong reduction in inflammation and 

reduced neuronal loss (Figure 2.3A-C) relative to control-treated TBI mice, and on average had 

the same number of nRT neurons as antibody-treated sham mice (Figure 2.3C). TBI mice treated 

with the control still showed inflammation and neuron loss three weeks after TBI (Figure 2.3). As 

an alternative approach to the antibody treatment, we repeated the study using C1q -/- mice and 

found that TBI C1q -/- mice also exhibited reduced chronic inflammation and reduced neuron loss 

in the nRT (Figure 2.S3).  

To confirm presence and effects of the anti-C1q antibody in the brain, we measured free drug, 

free and total C1q, C1s, and albumin levels in naïve, sham and TBI brains after two doses of 

control or antibody treatment (Figure S4). In plasma from the treated mice, free anti-C1q antibody 

was observed in both sham and TBI mice treated with the drug (Figure S4A). In agreement, we 

found that total C1q protein was undetectable in drug-treated animals using an assay that is not 

affected by free drug. These results suggest that drug-bound C1q is fully cleared from the 

circulation. Free anti-C1q antibody was observed in treated sham and TBI mice: 0.4-8.6 ug/ml in 

the ipsilateral side and 0.09-3.8 ug/ml in the contralateral side. The sham and TBI injuries led to 

a significant increase in ipsilateral C1q and small increase in contralateral C1q in untreated mice. 

In the anti-C1q treated sham and TBI mice, total C1q levels were significantly reduced in the 

ipsilateral side and showed trends of reduction in the contralateral side. Measurable levels of free 

anti-C1q antibody were observed, suggesting that C1q was fully saturated, but not fully cleared 

as in the periphery.  

These outcomes indicate that C1q may lead to inflammation and neuron loss in TBI, and that 

blocking C1q reduces these deleterious effects. 
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TBI leads to long-term changes in cortical states and excitability in freely behaving mice 

We next investigated the longitudinal impact of mild TBI, using brain rhythms as a readout of 

corticothalamic circuit function in vivo. To this end, we implanted chronic wireless 

electrocorticographic (ECoG) devices into sham and TBI mice during the craniotomy/TBI 

induction surgery, returned mice to their home cages for chronic recording, and analyzed changes 

in ECoG power over time (Figure 2.4A-H). We observed a chronic increase in broadband power 

in TBI during both light epochs (Figure 2.4C-H) and dark epochs (data not shown).  

Given that severe TBI has been shown to lead to epileptogenesis over time (Bolkvadze and 

Pitkänen, 2012; Bragin et al., 2016), we investigated whether mild TBI also resulted in 

epileptogenesis. We quantified different types of epileptic activities including epileptiform spikes, 

epileptic discharges, spike-and-wave discharges, and spontaneous focal or generalized seizures 

at 24 hours and three weeks post-TBI using previously reported classification (Bolkvadze and 

Pitkänen, 2012; Bragin et al., 2016). In the first 24 hours, 3 out of 16 TBI mice, but none of the 8 

sham mice, showed generalized tonic-clonic seizures (GTCSs, Table 2.S2). None of the mice 

showed GTCSs at later time points (up to three weeks) (Table 2.S2). However, at three weeks 

post-TBI, we saw more epileptiform spikes in TBI mice (n=9) than in sham mice (n=5), suggesting 

an increase in excitability (Table 2.S2). Similarly, in another recording setup using simultaneous 

ECoG and multi-unit thalamic recordings, we observed that TBI mice have spontaneous 

epileptiform events that include synchronized thalamic bursting and increased normalized theta 

power, as early as one week and up to three weeks post-TBI (Figure 2.S5). 

Anti-C1q antibody may have modest effects on chronic cortical states in mice with TBI 

To determine whether blocking C1q could rescue changes in cortical states, we treated mice with 

the anti-C1q antibody or isotype control for five weeks, starting 24 hours post-TBI, while 

maintaining ECoG recordings for up to 9-15 weeks post-TBI (Figure 2.5A, Figure 2.S6). While 

the ECoG spectral features were similar within the first week of anti-C1q antibody or control 

treatment (Figure 2.5B-C, Figure 2.S6B), analysis of the combined cohorts show that the anti-



24 
 

C1q group trended toward reduced power across most frequency bands at three weeks (Figure 

2.5D-E, Figure 2.S6C). 

Notably, epileptiform activities were not affected by the anti-C1q antibody (Table 2.S2). Three 

weeks post-TBI, we saw no GTCSs and no differences in the frequency of epileptic events 

between control-treated and antibody-treated TBI mice (Table 2.S2).  
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Discussion 

In this study, we set out to understand the role of the C1q pathway in post-TBI secondary injury 

to the corticothalamic circuit in a mechanistically tractable and highly reproducible mouse model 

of cortical injury. This model allows us to identify factors such as therapeutic windows, 

inflammatory phenotypes, and degree of secondary damage, which have been postulated to be 

important for designing targeted approaches in the treatment of post-TBI outcomes (Simon et al., 

2017).  

Our study pioneers the use of electrophysiological approaches to study the entire somatosensory 

corticothalamic circuit after TBI. One powerful tool we employ is chronic ECoG recordings to study 

the progression of post-traumatic epileptogenesis and changes in cortical rhythms up to four 

months post TBI. Using electrophysiological approaches at the cellular and circuit levels, we show 

that TBI alters the synaptic properties of nRT neurons and is associated with increased C1q 

accumulation that might mediate pathological states in the corticothalamic circuit, including 

increased broadband activity.  

The nRT as a locus of long-term, secondary impairments post-TBI 

We found two kinds of defects in the nRT: neuron loss, and alterations in synaptic properties. nRT 

neurons degenerated by three weeks after TBI, in agreement with previous observations from the 

human nRT (Ross et al., 1993), suggesting that even mild cortical injury can lead to neuronal loss 

in nRT. Potential causes for this neurodegeneration could be loss of cortical inputs causing 

excitotoxicity in nRT, which has been suggested to be a vulnerable brain region due to high 

density of axonal afferents from the cortex (Ross et al., 1993). We hypothesized that inflammation 

plays a major role in this process and that inhibiting inflammation would rescue these defects.  

The loss of neurons in the nRT could explain some of the synaptic changes in this area. In 

particular, we found that three weeks post-TBI, the frequency of IPSCs was reduced in nRT 

neurons. In many microcircuits, reduced inhibition on GABAergic neurons results in a net increase 
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in inhibition. By contrast, loss of GABAergic inhibition in the nRT results in corticothalamic circuit 

hyperexcitability, and can even elicit epileptiform activity (Huntsman et al., 1999; Sohal and 

Huguenard, 2003). Indeed, intra-nRT GABAergic connections are important for coordinating 

inhibitory output to the excitatory thalamic nuclei and controlling oscillatory thalamic activity (Sohal 

et al., 2000), and their loss is deleterious to the corticothalamic circuit. We speculate that the 

death of GABAergic neurons in the nRT may contribute to reduced intra-nRT inhibition. This 

reduced inhibition could cause a loss of feed-forward GABAergic inhibition, which may contribute 

to increased seizure susceptibility, and increased likelihood of developing post-traumatic epileptic 

activities.  

We also observed deficits in nRT EPSCs, in particular lower amplitude. This alteration is similar 

to the findings from a mouse model of epilepsy that lacks GluA4 AMPA receptors at the cortico-

nRT glutamatergic synapse. This defect results in loss of feed-forward inhibition in the thalamus, 

and epileptic activities (Paz et al., 2011). We therefore propose that alterations to the nRT EPSCs 

also contribute to corticothalamic circuit hypersynchrony and seizures, but likely results from a 

loss of cortical glutamatergic inputs to the nRT after TBI, although loss of other afferents cannot 

be excluded.  

Given that the changes we found in the corticothalamic circuit, and the nRT in particular, have 

been implicated in epileptic activities and cognitive deficits, our study pinpoints this circuit as a 

novel potential target for treating long-term TBI outcomes. 

Unlike nRT neurons, cortical neurons, such as layer-5 pyramidal neurons and GABAergic fast-

spiking interneurons, were not altered by mild TBI at chronic time points. These observations 

suggest the presence of homeostatic mechanisms that restore or reduce chronic hyperexcitability 

after TBI in the cortex. They also confirm that at least certain long-term outcomes of TBI must 

result from nRT dysfunction rather than simply from damage to the cortex. In this regard, it is 

interesting to see that while cortical neurons appear to have normal excitability and synaptic 

function at the chronic phase, the cortex shows increased broadband activity, particularly delta. 
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This observation is in agreement with previous magnetoencephalography studies in humans with 

mild TBI, EEG studies in humans with severe TBI, and EEG studies from rats with severe TBI, 

which observed increased delta activity at early time points post-TBI (Huang et al., 2009; Lee and 

Huang, 2014; Lu et al., 2011; Ronne-Engstrom and Winkler, 2006). In normal conditions, delta 

activity is associated with slow wave sleep, quiet wakefulness, and higher cognitive function 

(Church, 1975; Sachdev et al., 2015). In cases of injury, delta waves are associated with a white 

matter lesion (Ronne-Engstrom and Winkler, 2006). 

Overall, our findings suggest that the major long-term impact of mild TBI is in the thalamic end of 

the cortico-thalamo-cortical loop.  

C1q: good or bad? A question of timing 

We chose to test the importance of one specific inflammatory pathway, the classical complement 

pathway, using a pharmacological tool to block C1q in TBI mice. C1q has a well-documented role 

in normal brain function such as synaptic pruning during development (Stevens et al., 2007), as 

well as its involvement in several neurological diseases (Bellander et al., 2001; Hammad et al., 

2018; Hong et al., 2016; Krukowski et al., 2018; Lui et al., 2016; Wyatt et al., 2017; You et al., 

2007). In addition, we had observed that C1q expression was highly increased in the 

corticothalamic circuit for up to four months after TBI (Figure 2.S2).  

Although our mild TBI mice did not develop chronic GTCSs to determine if blocking C1q had an 

anti-seizure effect, we did observe many other protective effects of the anti-C1q antibody, 

including reduced inflammation and neurodegeneration. Based on these observations and 

previous literature implicating differences between protective and harmful inflammatory cell types 

(Liddelow et al., 2017; Mills et al., 2000), we speculate that C1q plays both good and bad roles 

but at different stages of pathology. At the time of the injury, C1q plays a “beneficial” role, perhaps 

by aiding with the formation of the glial scar that limits the size of the injury within the primary site 

of the cortex (Lu et al., 2011; Wang et al., 2018). However, at the chronic phase, C1q increase 
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plays a maladaptive role in promoting chronic inflammation and secondary neurodegeneration in 

the nRT.  

The cortex also exhibits an increase in C1q, but it does not appear to have a damaging role at 

this site, or may play a counterbalancing initial protective role since, unlike in the thalamus, the 

neuronal physiology is similar in the cortex of sham and TBI mice at chronic time points. Our 

findings suggest the existence of a time window during which the anti-C1q treatment might 

prevent secondary damage to the thalamus without impairing homeostatic recovery at the 

cortex.   

In conclusion, our study pinpoints C1q as a potential disease modifier that could be targeted for 

treating devastating outcomes of TBI within a certain time window (in this study, beginning 

treatment 24 hours post-injury). C1q might also serve as a biomarker to help identify those 

individuals likely to develop long-term, secondary injuries. Our study also motivates further 

investigation of the molecular mechanism by which C1q causes neuronal death in nRT, beyond 

its well-known role in synaptic pruning in health and disease. In addition, by showing that the 

thalamus is chronically affected by TBI, we identify a potential cause for many TBI-related 

disabilities such as altered sensory processing, sleep disruption, and epilepsy, and a novel target 

for post-TBI treatments. 
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Materials & Methods 

Animals 

We performed all experiments per protocols approved by the Institutional Animal Care and Use 

Committee at the University of California, San Francisco and Gladstone Institutes. Precautions 

were taken to minimize stress and the number of animals used in each set of experiments. Mice 

were separately housed after surgical implants. Adult (P30-P180) male CD1 mice were used for 

most experiments. Adult male Thy1-GCaMP6f mice (Tg(Thy1-GCaMP6f)GP5.17Dkim 

ISMR_JAX: 025393; C57BL/6 congenic) and C1q null mice (C1qatm1Mjw , ISMR_APB: 1494; 

C57BL/6 congenic) were used for specific experiments. 

Controlled cortical impact 

We anesthetized mice with 2-5% isoflurane and placed them in a stereotaxic frame. We 

performed a 3 mm craniotomy over the right somatosensory cortex (S1) centered at -1 mm 

posterior from Bregma, +3 mm lateral from the midline. TBI was performed with a CCI device 

(Impact One Stereotaxic Impactor for CCI, Leica Microsystems) equipped with a metal piston 

using the following parameters: 3 mm tip diameter, 15° angle, depth 0.8 mm from the dura, 

velocity 3 m/s, and dwell time 100 ms. Sham animals received identical anesthesia and 

craniotomy, but the injury was not delivered.  

Immunostaining and microscopy 

We anesthetized mice with a lethal dose of Fatal-Plus and perfused with 4% paraformaldehyde 

in 1X PBS. Serial coronal sections (30 µm thick) were cut on a Leica SM2000R sliding microtome. 

Sections were incubated with antibodies directed against C1q (1:700, rabbit, Abcam, ab182451, 

AB_2732849), GFAP (1:1000, chicken, Abcam, ab4674, AB_304558), GFP (1:500, chicken, Aves 

Labs, AB_10000240), Iba1 (1:500, rabbit, Wako, 019-19741, AB_839504), and NeuN (1:500, 

mouse, Millipore, MAB377, AB_2298772) overnight at 4°C. After wash, we incubated sections 

with Alexa Fluor-conjugated secondary antibodies (1:300, Thermo Fisher Scientific, A-11029) for 
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two hours at room temperature. We mounted sections in an antifade medium (Vectashield) and 

imaged using a Biorevo BZ-9000 Keyence microscope at 10-20x. Confocal imaging was 

performed using a confocal laser scanning microscope (LSM880, Zeiss) equipped with a Plan 

Apochromat 10x/0.45 NA air or 63x/1.4 NA oil immersion objective lens. A multi-line Argon laser 

was used for 488 nm excitation of AlexaFluor488 and a HeNe laser was used for 561 nm 

excitation of AlexaFluor594.  

Immunostaining of human tissue 

Formalin-fixed, paraffin-embedded tissue was sectioned at 6 μm and mounted on organosilane-

coated slides (SIGMA, St. Louis, MO). Representative sections of specimens were processed for 

hematoxylin/eosin, as well as for immunocytochemistry. Immunocytochemistry for C1q 

(1:200, rabbit polyclonal; DAKO, Denmark), was carried out on a paraffin-embedded tissue as 

previously described (Aronica et al., 2007; Schiering et al., 2014). Sections were incubated for 

one hour at room temperature followed by incubation at 4°C overnight with primary antibodies. 

Single-labeled immunocytochemistry was performed using Powervision method and 3,3-

diaminobenzidine as chromogen. Sections were counterstained with hematoxylin. An extensive 

neuropathological protocol was used (based upon the recommendations of the Brain-Net Europe 

consortium; Acta Neuropathologica 115(5):497-507 ·2008), including markers such as pTau 

(AT8), β-Amyloid, pTDP-43 and alpha-synuclein. 

Slice preparation for electrophysiology 

We euthanized mice with 4% isoflurane, perfused with ice-cold sucrose cutting solution containing 

234 mM sucrose, 11 mM glucose, 10 mM MgSO4, 2.5 mM KCl, 1.25 mM NaH2PO4, 0.5 mM CaCl2, 

and 26 mM NaHCO3, equilibrated with 95% O2 and 5% CO2, pH 7.4, and decapitated. We 

prepared 250-µm thick horizontal slices for thalamic recordings, and coronal slices for neocortical 

recordings with a Leica VT1200 microtome (Leica Microsystems). Slices were incubated at 32°C 

for one hour and then at 24-26°C in artificial cerebrospinal fluid (ACSF) containing 126 mM NaCl, 

10 mM glucose, 2.5 mM KCl, 2 mM CaCl2, 1.25 mM NaH2PO4, 1 mM MgSO4, and 26 mM NaHCO3, 
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and equilibrated with 95% O2 and 5% CO2, pH 7.4. Thalamic slice preparations were performed 

as described (Clemente-Perez et al., 2017; Paz et al., 2011; Ritter-Makinson et al., 2019). 

Patch-clamp electrophysiology 

Recordings were performed as previously described (Clemente-Perez et al., 2017; Paz et al., 

2011; Ritter-Makinson et al., 2019). We visually identified S1, nRT, and VB neurons by differential 

contrast optics with an Olympus microscope and an infrared video camera. Recording electrodes 

made of borosilicate glass had a resistance of 2.5-4 MΩ when filled with intracellular solution. 

Access resistance was monitored in all the recordings, and cells were included for analysis only 

if the access resistance was <25 MΩ. Intrinsic and bursting properties and spontaneous excitatory 

postsynaptic currents (EPSCs) were recorded in the presence of picrotoxin (50 µM, Sigma) and 

the internal solution contained 120 mM potassium gluconate, 11 mM EGTA, 11 mM KCl, 10 mM 

HEPES, 1 mM CaCl2, and 1 mM MgCl2, pH adjusted to 7.4 with KOH (290 mOsm). We corrected 

the potentials for -15 mV liquid junction potential.  

Spontaneous inhibitory postsynaptic currents (IPSCs) were recorded in the presence of kynurenic 

acid (2 mM, Sigma), and the internal solution contained 135 mM CsCl, 10 mM EGTA, 10 mM 

HEPES, 5 mM Qx-314 (lidocaine N-ethyl bromide), and 2 mM MgCl2, pH adjusted to 7.3 with 

CsOH (290 mOsm).  

Surgical implantation of devices for simultaneous recording of ECoG and multi-unit 

activity (MUA) 

The devices for simultaneous ECoG, MUA recordings, and optical manipulations in freely 

behaving mice were all custom made in the Paz lab as described in (Clemente-Perez et al., 2017; 

Ritter-Makinson et al., 2019). In general, recordings were optimized for assessment of 

somatosensory subnetworks (S1, somatosensory VB thalamus, and somatosensory nRT).  

We implanted cortical screws bilaterally over S1 (contralateral to injury: -0.5 mm posterior from 

Bregma, -3.25 mm lateral; ipsilateral: +1.0-1.4 mm anterior from Bregma, +2.5-3.0 mm lateral), 

centrally over PFC (+0.5 mm anterior from Bregma, 0 mm lateral), and in the right hemisphere 
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over V1 (-2.9 mm posterior from Bregma, +2.7 mm lateral). For MUA recordings in VB, we 

implanted electrodes at -1.65 mm posterior from Bregma, +1.75 mm lateral, with the tips of the 

optical fiber at 3.0 mm and two electrodes at 3.25 mm and 3.5 mm ventral to the cortical surface. 

For MUA recordings in nRT, we implanted electrodes at -1.4 mm posterior from Bregma, +2.1 

mm lateral, with the tips of the optical fiber at 2.7 mm and two electrodes at 2.9 mm, and 3.0 mm 

ventral to the cortical surface, respectively. 

In vivo electrophysiology and behavior 

Non-chronic MUA electrophysiological recordings in freely behaving mice were performed as 

described using custom-made optrode devices (Clemente-Perez et al., 2017; Ritter-Makinson et 

al., 2019). ECoG and thalamic LFP/MU signals were recorded using RZ5 (TDT) and sampled at 

1221 Hz, with thalamic MUA signals sampled at 24 kHz. A video camera that was synchronized 

to the signal acquisition was used to continuously monitor the animals. We briefly anesthetized 

animals with 2% isoflurane at the start of each recording to connect for recording. Each recording 

trial lasted 15-60 min. To control for circadian rhythms, we housed our animals using a regular 

light/dark cycle, and performed recordings between roughly 9:00 am and 6:00 pm. All the 

recordings were performed during wakefulness. We validated the location of the optrodes by 

histology after euthanasia in mice that did not experience sudden death and whose brains we 

were able to recover and process. 

Surgical implantation of devices for chronic ECoG recordings  

The wireless telemetry devices we used for chronic ECoG recordings were purchased from Data 

Sciences International (DSI). After performing controlled cortical impact surgery, we implanted 

cortical screws bilaterally over S1 as described above. The battery/transmitter device was placed 

under the skin over the right shoulder. We began recording mice as soon as they recovered from 

the surgery. Mice were singly housed in their home cages, which were placed over receivers that 

sent signals to an acquisition computer. ECoG signals were continuously recorded from up to 

eight mice simultaneously using Ponemah software (DSI), and sampled at 500 Hz. 
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Statistical analyses 

All numerical values are given as means and error bars are standard error of the mean (SEM) 

unless stated otherwise. Parametric and non-parametric tests were chosen as appropriate and 

were reported in figure legends. Data analysis was performed with MATLAB (SCR_001622), 

GraphPad Prism 7/8 (SCR_002798), ImageJ (SCR_003070), Ponemah/NeuroScore 

(SCR_017107), pClamp (SCR_011323), and Spike2 (SCR_000903). 

Image analysis and cell quantification 

We selected regions of interest (ROIs) for S1, nRT, and VB from 10x Keyence microscope images 

opened in ImageJ (SCR_003070). To ensure that each ROI covered the same area on the 

ipsilateral and contralateral sides of the injury site, the first ROIs were duplicated and repositioned 

over the opposite hemisphere. The image was then converted to 8-bit. The upper threshold was 

adjusted to the maximum value of 255, and the lower threshold was increased from 0 until the 

pixel appearance most closely matched the fluorescence staining from the original image. We 

used the same threshold boundaries for all sections with the same stain. An integrated density 

ratio was calculated for each brain region by dividing the ipsilateral integrated pixel density by the 

contralateral integrated pixel density. The integrated density ratios from three sections per animal 

were averaged to get a single average ratio per brain area for each animal. 

nRT cell counts were performed on sections stained with NeuN. The nRT was outlined in ImageJ 

(SCR_003070) and we performed a manual cell count of neuronal cell bodies using the manual 

counter plugin. 

Analysis of electrophysiological properties 

The input resistance (Rin) and membrane time constant (τm) were measured from the membrane 

hyperpolarizations in response to low intensity current steps (-20 to -60 pA). The reported 

rheobase averages and SEMs were calculated based on the current which first caused at least 

one action potential during the stimulus per recording. All data from Table 2.S1 were analyzed 
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using a Mann-Whitney test with α = 0.05 (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001), 

using GraphPad Prism 7 (SCR_002798).  

Cumulative probability distributions were generated in MATLAB (SCR_001622) from 11 sham 

nRT neurons and 9 TBI neurons, using 200 randomly selected events from each cell.  

ECoG spectral and seizure analysis 

Spectrograms were generated for frequencies between 1 and 50 Hz using the short-time Fourier 

transform with 0.5 s Hamming windows and 98% overlap between segments. Spectrograms and 

cumulative distribution functions were generated in MATLAB. ECoG frequency bands were 

divided as follows: delta = 1-4 Hz, theta = 5-8 Hz, alpha = 9-12 Hz, sigma = 13-15 Hz, beta = 16-

30 Hz, gamma = 31-50 Hz. Fast Fourier transforms were generated in MATLAB. Epileptic 

activities were analyzed manually within the time windows specified for each experiment. Epileptic 

discharges (EDs) were defined as clusters of interictal spiking events lasting five seconds or 

longer. Spike-and-wave discharges (SWDs) were defined as symmetrical 6-8 Hz spiking events 

lasting two seconds or longer. Generalized tonic-clonic seizures (GTCSs) were defined as spiking 

events lasting at least 30 seconds and present in both ECoG channels. Abnormal events were 

defined as any irregular spiking events that did not fit into any of the other categories. 

Anti-C1q antibody 

The anti-C1q is antibody ANX-M1, and the control is a mouse isotype IgG1 antibody (Annexon 

Biosciences). All mice were treated at a concentration of 100 mg/kg, and previous studies have 

reported no toxicity in rodents. The antibody has been characterized as described in (Hong et al., 

2016; Lansita et al., 2017; McGonigal et al., 2016). Mice were first treated 24 hours post-TBI, and 

continued receiving treatment every three days (four days post-TBI, seven days post-TBI, etc.) 

for three weeks, or until the experimental end point as noted in Figure 2.5. 

Treatment paradigm and tissue lysis 

For the PK study, mice underwent sham or TBI surgery on Day 0, and were treated 

intraperitoneally with 100 mg/kg of anti-C1q antibody (M1) or isotype control on Day 1 and 4. Mice 
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were perfused with PBS on Day 5. Plasma and brains (ipsi- and contra- lateral sides) were 

collected and flash frozen. Brains (without olfactory bulb and cerebellum) were lysed in 1:10 w/v 

BupH™ Tris Buffered Saline (Thermo Scientific 28379) + protease inhibitor cocktail (Thermo 

Scientific A32963) by homogenizing with 7 mm steel bead in Qiagen TissueLyser for two minutes 

at 30 Hz. Lysates were then spun at 17,000 x g for 20 minutes. Supernatants were used for ELISA 

assays. 

Pharmacokinetic (PK) and pharmacodynamic (PD) ELISA assays 

The levels of free anti-C1q drug M1 (PK), free C1q, total C1q, C1s and Albumin were measured 

using sandwich ELISAs. Black 96 well plates (Nunc 437111) were coated with 75 uL of respective 

capture protein/antibody: human C1q protein for PK (complement Tech), mouse monoclonal anti-

C1q (Abcam, ab71940) for C1q-free, rabbit polyclonal anti-C1q (Dako, A0136) and rabbit 

polyclonal anti mouse C1s (LSBio, C483829) for C1s, in bicarbonate buffer (pH 9.4) overnight at 

4°C. Next day, the plates were washed with dPBS pH 7.4 (Dulbecco’s phosphate-buffered saline) 

and blocked with dPBS containing 3% bovine serum albumin (BSA). Standard curves were 

prepared with purified proteins in assay buffer (dPBS containing 0.3% BSA and 0.1% Tween20). 

Samples were prepared in the assay buffer at appropriate dilutions. The blocking buffer was 

removed from the plate by tapping. Standards and samples were added at 75 uL per well in 

duplicates and incubated with shaking at 300 rpm at room temperature for one hour for PK 

measurements. For complement assays, samples were incubated overnight at 4°C followed by 

37°C for 30 minutes and then room temperature for one hour. Plates were then washed three 

times with dPBS containing 0.05% Tween20 and 75 uL of alkaline-phosphatase conjugated 

secondary antibodies (goat anti-mouse IgG for PK, M1 for C1q free, rabbit polyclonal anti-C1q for 

C1q total, rabbit polyclonal anti-C1s for C1s) were added to all wells. Plates were incubated at 

room temperature with shaking for one hour, washed three times with dPBS containing 0.05% 

Tween20 and developed using 75 uL of alkaline phosphatase substrate (Life Technologies, 

T2214). After 20 minutes at room temperature, plates were read using a luminometer. Albumin 
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assay was done using a matched antibody pair from Abcam (ab210890), followed by Avidin-AP 

secondary antibody for detection. Standards were fit using a 4PL logistic fit and concentration of 

unknowns determined. Analyte levels were corrected for dilution factors. 
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Figures 

 
Figure 2.1. The injured cortex and functionally connected thalamus show chronic 
inflammation and neuron loss three weeks after TBI. 
A, B) Schematic of a mouse brain coronal section showing the site and depth of the controlled 
cortical impact (A) and the location of the S1 cortex and nRT and VB thalamic regions (B). The 
impactor has a diameter of 3 mm and the impact was delivered at a depth of 0.8 mm to the right 
somatosensory cortex. 
C) Representative coronal brain section from a TBI mouse stained for C1q. C1q expression in 
the hippocampus is typical of physiological conditions.  
D) Close-up images of S1 (top), VB and nRT (middle), and confocal images of nRT (bottom) 
stained for C1q, neuronal marker NeuN, GFAP, a marker for astrocytes, and Iba1, a marker for 
microglia/macrophages. Injury site in the right S1 cortex is marked by an asterisk. Arrow in nRT 
indicates location of confocal image. Scale bars, 300 µm (top/middle) and 20 µm (bottom). 
E) Quantification of fluorescence ratios between ipsilateral and contralateral regions in sham 
and TBI mice.  
Data represent all points from min to max, with a Mann-Whitney test and α = 0.05 (*p < 0.05, **p 
< 0.01). Analysis includes between five and seven mice per group (n = three sections per 
mouse, one image per region).  
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Figure 2.2. The nRT ipsilateral to the injured cortex shows neuron loss and altered IPSC 
and EPSC properties three weeks after TBI. 
A-C) High-magnification coronal image of the nRT showing divisions into “head”, “body”, and 
“tail” (Clemente-Perez et al., 2017), and quantification of neuron counts across the entire 
ipsilateral nRT (B) or per subdivision, normalized to the median value from the sham group (C). 
Neuron count data represent mean ± SEM, with a Mann-Whitney test and α = 0.05 (*p < 0.05, 
**p < 0.01). Analysis includes six mice per group (n = three sections per mouse, averaged). 
D, E) Spontaneous IPSC recordings (D) from representative nRT neurons in sham and TBI 
mice, and frequency and amplitude distributions (E) in 13 posterior nRT neurons from four sham 
mice and 22 posterior nRT neurons from six TBI mice. 
IPSC data represent mean ± SEM analyzed with a Mann-Whitney test and α = 0.05 (*p < 0.05).  
F, G) Spontaneous EPSC recordings (F) from representative nRT neurons in sham and TBI 
mice, and frequency and amplitude distributions (G) in 11 posterior nRT neurons from six sham 
mice and nine posterior nRT neurons from seven TBI mice. Inset shows averaged EPSC traces 
from single nRT neurons from sham and TBI mice, plotted on the same scale.  
EPSC data represent mean ± SEM analyzed with a Mann-Whitney test and α = 0.05 (*p < 
0.05).  
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H) Representative images of coronal brain sections from Thy1-GCaMP6f mice with sham 
surgery (left) and TBI (right) (injury site marked by asterisk). Bottom panels show projection 
terminals from the cortex to VB and nRT. Scale bars, 1 mm (top) and 500 µm (bottom). 
Reduction in projection terminals from the cortex to VB and nRT (marked by arrows) were 
observed in n = six TBI mice. 
I) Quantification of Thy1-GCaMP fluorescence ratios between ipsilateral and contralateral 
regions in sham and TBI mice.  
Data represent all points from min to max, with a Mann-Whitney test and α = 0.05 (*p < 0.05, **p 
< 0.01). Analysis includes five sham mice and six TBI mice (n = three sections per mouse, one 
image per region).  
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Figure 2.3. Anti-C1q antibody reduces chronic inflammation and neuron loss three weeks 
after TBI. 
A, B) Representative coronal brain sections (A) and close-ups (B) of S1 (top), VB and nRT 
(bottom) from TBI mice treated with anti-C1q antibody and stained for C1q, NeuN, GFAP, and 
Iba1. Injury site in the right S1 cortex is marked by an asterisk. Scale bars, 1 mm (A), 500 µm 
(B). 
C) Quantification of nRT neuron counts and fluorescence ratios between ipsilateral and 
contralateral regions in control and antibody-treated sham and TBI mice. 
Data represent all points from min to max, with a Mann-Whitney test and α = 0.05 (*p < 0.05, **p 
< 0.01). Analysis includes between six and eight mice per group (n = three sections per mouse, 
one image per region).  
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Figure 2.4. Chronically recorded TBI mice show altered power across different ECoG 
frequency bands. 
A) Example 10-minute spectrograms from a sham mouse (left) and TBI mouse (right) taken 
from the same time point within the first 24 hours of TBI, overlaid with ECoG traces from 
ipsilateral S1. The TBI spectrogram shows an example of an electrographic seizure, while the 
sham spectrogram shows normal ECoG activity. Color bar represents power (mV2/Hz). 
B) Example seven-day spectrograms from a sham mouse (left) and TBI mouse (right) showing 
power across different frequency bands two to three weeks post-TBI. Power bands are sampled 
every 30 minutes. Color bar represents power (mV2/Hz). 
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C) Power spectral density of ECoG activity from sham and TBI cohorts averaged across the first 
week post-TBI. Inset shows example power spectral density plots from a representative sham 
and TBI mouse. See methods for details. 
D) Two-way ANOVAs of average power across frequency bands for the first week post-TBI. 
Each dot represents power for one mouse. 
E) Same as C) but at three weeks post-TBI. 
F) Same as D) but at three weeks post-TBI. 
G) Same as C) but at 11 weeks post-TBI. 
H) Same as D) but at 11 weeks post-TBI. 
Data represent all mice recorded, analyzed with a two-way ANOVA (*p < 0.05, **p < 0.01), even 
if they died or if the battery ran out before the experimental endpoint. n = eight sham mice, 16 
TBI mice. One mouse died within two days post-TBI. The remaining mice were recorded for the 
first week post-TBI, then recorded for alternating weeks until eleven weeks post-TBI. Delta = 1-4 
Hz, theta = 5-8 Hz, alpha = 9-12 Hz, sigma = 13-15 Hz, beta = 16-30 Hz, gamma = 31-50 Hz. 
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Figure 2.5. Anti-C1q antibody has modest effects on ECoG spectral features in mice with 
TBI. 
A) Example spectrograms (top) and histograms (bottom) from a control-treated mouse (left) and 
antibody-treated mouse (right) showing power across different frequency bands one month 
post-TBI. Power bands are sampled every 30 minutes. Color bar represents power (mV2/Hz). 
B) Power spectral density of ECoG activity from control-treated and antibody-treated TBI 
cohorts averaged across the first week post-TBI. Inset shows example power spectral density 
plots from a representative control-treated TBI mouse and an antibody-treated TBI mouse. See 
methods for details. 
C) Two-way ANOVAs of average power across frequency bands for the first week post-TBI. 
Each dot represents power for one mouse. 
D) Same as B) but at three weeks post-TBI.  
E) Same as C) but at three weeks post-TBI. 
Data represent all mice recorded, analyzed with a two-way ANOVA, even if they died before 
treatment ended. n = seven control-treated mice, seven antibody-treated mice. Delta = 1-4 Hz, 
theta = 5-8 Hz, alpha = 9-12 Hz, sigma = 13-15 Hz, beta = 16-30 Hz, gamma = 31-50 Hz. 
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Figure 2.S1. Postmortem brain tissue from a patient with TBI shows chronic inflammation 
eight days after TBI. 
A) Postmortem brain tissue from one control patient stained for HLA-DR, a marker for a MHC 
class II cell surface receptor that is expressed in microglia and macrophages. Case information: 
male, age 78. Scale bar, 1 cm. 
B) Postmortem brain tissue from one TBI patient stained for HLA-DR. Case information: male, 
age 79; fall accident, Injury Severity (GCS): moderate, CT: cerebral edema; no epilepsy (post-
TBI: eight days); no history of neurological diseases and without evidence of cognitive decline, 
based on the last clinical evaluation; no evidence of primary neurodegenerative pathology, 
evidence of trauma-induced diffuse axonal damage. Scale bar, 1 cm. 
C) Same as (A) but stained for GFAP. Scale bar, 1 cm. 
D) Same as (B) but stained for GFAP. Scale bar, 1 cm. 
E) Same as (A) but stained for C1q. Scale bar, 1 cm. 
F-I) Same as (B) but stained for C1q. Scale bars, 1 cm (F-G) and 40 µm (H-I). 
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Figure 2.S2. The injured cortex and functionally connected thalamus show chronic 
inflammation and neuron loss four months after TBI. 
A) Close-up images of S1 (top), VB and nRT (middle), and confocal images of nRT (bottom), 
stained for C1q, NeuN, GFAP, and Iba1. Injury site in the right S1 cortex is marked by an 
asterisk. Arrow in nRT indicates location of confocal image. Scale bars, 300 µm (top/middle) 
and 20 µm (bottom). 
B) Quantification of fluorescence ratios between ipsilateral and contralateral regions in sham 
and TBI mice.  
Data represent all points from min to max, with a Mann-Whitney test and α = 0.05 (*p < 0.05, **p 
< 0.01). Analysis includes between four and six mice per group (n = one to three sections per 
mouse, one image per region).  
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Figure 2.S3. C1q -/- mice show reduced inflammation and neuron loss three weeks after 
TBI. 
A) Close-up images of S1 (top), VB and nRT (bottom) stained for NeuN, GFAP, and Iba1. Injury 
site in the right S1 cortex is marked by an asterisk. Scale bars, 500 µm. 
B) Quantification of fluorescence ratios between ipsilateral and contralateral regions in sham 
and TBI C1q -/- mice.  
Data represent all points from min to max, with a Mann-Whitney test and α = 0.05 (*p < 0.05, **p 
< 0.01). Analysis includes between four and six mice per group (n = one to three sections per 
mouse, one image per region).  
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Figure 2.S4. Plasma and brain PK/PD show presence of free drug and reduced C1q in 
anti-C1q drug-treated sham and TBI mice. 
A) Plasma levels of free drug, C1q-free, and C1q-total were measured using sandwich ELISAs 
after TBI and sham mice were treated with two doses of 100 mg/kg anti-C1q or isotype control 
antibodies. Dotted line shows lower limit of quantification. 
B-F) Levels of free drug (B), C1q-free (C), and C1q-total (D) were measured in brain lysates in 
the ipsilateral (top) and contralateral (bottom) sides using sandwich ELISAs. Naïve mice were 
negative controls. Dotted line shows lower limit of quantification. 
Data represent all points from min to max, with a Mann-Whitney test between TBI control and TBI 
anti-C1q, and α = 0.05 (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). Analysis includes 
between three and 15 mice per group. 
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Figure 2.S5. Mice with TBI have spontaneous seizure-like events in the theta to alpha 
frequency range that are time-locked with thalamic bursting. 
A) Diagram of recording locations for in vivo experiments. Left, ECoG recording sites and TBI 
location are shown on the mouse skull. Right, approximate location of tungsten depth electrodes 
implanted unilaterally in the nRT. 
B) Representative ECoG traces from cortical recording sites and multi-unit traces from nRT 
showing a spontaneous seizure-like event. 
C) Power spectral analysis showing the average power across different frequency bands in the 
first 15 minutes of baseline ECoG signal from the ipsilateral S1 cortex in sham and TBI mice. 
D) Periodogram showing the power across frequencies taken from the first 15 minutes of 
baseline ECoG signal from the ipsilateral S1 cortex in a representative sham and TBI mouse. 
Data represent mean ± SEM analyzed with a Mann-Whitney test and α = 0.05 (*p < 0.05, **p < 
0.01). Analysis includes between 12 and 14 mice per group. 
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Figure 2.S6. Anti-C1q antibody has chronic disease-modifying effects on EcoG power in 
mice with TBI. 
A) Example spectrograms (top) and histograms (bottom) from a control-treated mouse (left) and 
antibody-treated mouse (right) showing power across different frequency bands 2.5 months 
post-TBI, which was four weeks after the treatment ended. Power bands are sampled every 30 
minutes. 
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B) Cumulative distribution functions for control-treated and antibody-treated cohorts sampled 
across different frequency bands in the first day post-TBI. We sampled 48 points from the first 
24 hours within the start of each recording.  
C) Same as B, but at three weeks post-TBI. We sampled 232 points between 15.25-20.1 days 
from the start of each recording.  
D) Same as B, but at 9-15 weeks post-TBI. We sampled 296 points between 104.6 to 110 days 
from the start of each recording.  
Data represent all mice recorded, even if they died before treatment ended. One control-treated 
mouse and one antibody-treated mouse died within three weeks post-TBI, two control-treated 
mice died within six weeks post-TBI, and the remaining mice were recorded for at least nine 
weeks post-TBI. At 24 hours, n = seven control-treated mice, seven antibody-treated mice. At 
three weeks, n = seven control-treated mice, seven antibody-treated mice. At 9-15 weeks n = 
six control-treated mice, four antibody-treated mice. Delta = 1-4 Hz, theta = 5-8 Hz, alpha = 9-12 
Hz, sigma = 13-15 Hz, beta = 16-30 Hz, gamma = 31-50 Hz. ns = p > 0.05.  



52 
 

Table 2.S1. Summary of intrinsic properties, EPSC, and IPSC data recorded from S1 
cortex, VB, and nRT. Mice were recorded between three and six weeks post-TBI, and 
recording conditions are described in the patch-clamp electrophysiology section of the methods. 
A Mann-Whitney test was performed for statistical analysis. 
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Table 2.S2. Summary of epileptiform activity analysis in sham, TBI, control-treated TBI, 
and antibody-treated TBI mice. Mice were recorded continuously starting the day of the TBI 
up until several weeks post-TBI. Surgical and recording conditions are described in the methods 
section titled “Surgical implantation of devices for chronic ECoG recordings”. Analysis was 
performed on the first 24 hours post-TBI, and across a 48 hour window at three weeks post-TBI. 
A repeated measures mixed-effects ANOVA was performed for statistical analysis. 
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Chapter 3 : Investigating the therapeutic effects of small molecules on 

neuroinflammation and seizure susceptibility after traumatic brain injury 

Abstract 

Astrocytes play a central role in supporting neuronal function and are also involved in the 

inflammatory response following traumatic brain injury (TBI). However, if astrocytes remain 

chronically inflamed, or reactive, they may become detrimental to neuronal survival. One potential 

approach to reduce the chronic reactivity of astrocytes is to reprogram them with small molecule 

therapeutics. Preliminary studies have identified a small molecule, RA8, that can reprogram 

astrocyte transcriptional states, and RA8 treatment of mice with stroke may have protective 

effects in the brain. Using a mouse model of cortical injury, we tested the potential therapeutic 

effects of RA8 in TBI outcomes such as neuroinflammation, neurovascular changes, and seizure 

susceptibility.  
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Introduction 

Astrocytes are critical for maintaining neuronal function, ionic balance, glial signaling, and blood 

brain barrier (BBB) integrity (Chen and Swanson, 2003; Karve et al., 2016). Astrocytes are known 

to become “reactive” as part of the inflammatory response to trauma such as a traumatic brain 

injury (TBI), for example by changing morphology and gene expression (Burda et al., 2016, Karve 

et al., 2016) or forming a glial scar to separate out damaged and healthy tissue (Sofroniew, 2009). 

This response can be protective when astrocytes produce factors to support regeneration (Kim et 

al., 2010; Madathil et al., 2013), but chronically persistent reactive astrocytes can be pathological 

if they continue to produce pro-inflammatory cytokines and chemokines and cause further BBB 

disruption (Blecharz-Lang et al. 2018, Carpentier et al., 2005, Liddelow et al., 2017). Thus, it could 

be useful to reprogram astrocytes into different, non-reactive states post-TBI. Several groups 

have demonstrated that glial cells can be reprogrammed into neurons or other states (Mattugini 

et al., 2019; Zhang et al., 2015). 

The Ding lab, our collaborators at the Gladstone Institutes, discovered a small molecule, RA8, 

that can reprogram both human and mouse astrocytic transcriptional states. RA8 was initially 

identified through a high-throughput screen as a molecule that reprograms astrocyte-restricted 

neural precursors toward a neural fate by modulating RNA splicing via action on the 

ribonucleoprotein H. Our preliminary studies have shown that in mice recovering from stroke, RA8 

treatment reduces astrogliosis and neuronal loss (Figure 3.S1, Figure 3.S2) and decreases 

seizure susceptibility. Given these positive outcomes in stroke, we decided to also test the 

potential therapeutic effects of RA8 treatment in TBI, as these two types of trauma have 

overlapping pathophysiology (Bramlett and Dietrich, 2004). Specifically, we wanted to know 

whether RA8 treatment could reduce reactive astrocytes or neuronal loss, change vascular 

density, or reduce seizure susceptibility in TBI mice. 
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Results 

RA8 treatment does not chronically reduce GFAP expression but could be protective of 

neuronal loss 

To determine if RA8 treatment could reduce chronic inflammation or neuronal loss after TBI, we 

induced a mild cortical impact injury to the right primary somatosensory cortex (S1) of adult mice, 

treated mice daily for two weeks with an i.p. injection of RA8 or vehicle starting 24 hours post-

TBI, and assessed the impact on their brains eight weeks later. We performed immunofluorescent 

staining of coronal brain sections with markers of neurons (NeuN) and astrocytes (GFAP) (Figure 

3.1), and analyzed expression in the peri-TBI S1 cortex and the functionally connected 

ventrobasal thalamus (VB), and reticular nucleus (nRT). At eight weeks post-TBI, vehicle-treated 

TBI mice had significantly higher GFAP expression in VB and nRT than sham mice (Figure 3.1C). 

RA8-treated TBI mice also had significantly higher GFAP expression in VB and nRT than sham 

mice, at the same level as vehicle-treated TBI mice, suggesting that the two-week RA8 treatment 

did hot have lasting effects on GFAP expression in astrocytes, but it does not rule out the 

possibility that RA8 could have transiently reduced GFAP levels during the treatment, or could 

have altered other aspects of astrocyte transcriptional state or function. 

At eight weeks post-TBI, we did not observe any differences in NeuN fluorescence in the cortex 

or thalamus between sham, vehicle-treated, or RA8-treated TBI mice (Figure 3.1). It is unclear 

why we do not observe reduced NeuN expression, as we would expect neuronal loss to persist, 

but it’s possible that the staining quality was affected by how long the perfused brains remained 

in sucrose before staining (see methods for details). We also performed immunofluorescent 

staining for CD31, a marker of endothelial cells (Simmons et al., 1990, Lertkiatmongkol et al., 

2016), to investigate whether vessel density was altered by TBI or RA8 treatment. Previous 

studies using various TBI models in rodents have observed vascular changes in the cortex and 

thalamus, particularly increased thalamic vessel density (Glushakov et al., 2018, Hayward et al., 
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2010). At eight weeks, we did not observe any major differences in the vessel density ratio 

between sham, vehicle-treated, and RA8-treated TBI mice. These results suggest that vascular 

changes in the thalamus may take place at later time points after TBI, which would align with 

studies that looked between three and nine months (Glushakov et al., 2018, Hayward et al., 2010). 

Vascular density changes occur secondarily from BBB disruption, which is observed early on 

around the injury site (Chodobski et al., 2011). 

Mice with TBI have increased seizure susceptibility 
 
We assessed susceptibility to electrographic and behavioral seizures from sham and TBI mice 

three weeks post-TBI (Figure 3.3). For this purpose, we used the pentylenetetrazol (PTZ, 45 

mg/kg, i.p.) challenge, which is a well-established approach for measuring seizure susceptibility 

(Bolkvadze and Pitkänen, 2012). We found that TBI mice were more likely to show generalized 

tonic-clonic seizures than sham mice (Figures 3.3B and 3.3D). We also observed that TBI mice 

had a shorter latency to the first myoclonic jerk than sham mice (Figures 3.3C and 3.3E), but no 

change in the latency to the convulsive seizure (Figures 3.3C and 3.3F), indicating that TBI 

increases susceptibility for generalized tonic-clonic seizures and reduces the latency to early 

seizure stages. These results suggest that mild TBI induces network hyperexcitability similar to 

what has been shown previously in more severe TBI (Bolkvadze and Pitkänen, 2012). 

RA8 treatment does not greatly alter seizure susceptibility 

We next wanted to know whether RA8 treatment could reduce seizure susceptibility in TBI mice 

(Figure 3.4). We once again used a PTZ challenge (35 mg/kg, i.p.) in sham, vehicle-treated TBI 

mice, and RA8-treated TBI mice. The dose was adjusted in this cohort because a larger dose of 

45 mg/kg PTZ caused seizures in almost 50% of the sham mice. Six weeks post-TBI, we found 

that vehicle-treated TBI mice were more likely to show generalized tonic-clonic seizures than 

sham mice, but the two-week RA8 treatment did not significantly reduce the number of TBI mice 

that had a seizure (Figure 3.4B). We also did not observe major differences in latency to the first 
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myoclonic or the convulsive seizure between any of the groups (Figures 3.4C-E). We conclude 

that a short-term RA8 treatment does not alter later susceptibility to PTZ-induced seizures.  
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Discussion 

In this study, we investigated whether treatment with a small molecule, RA8, could alter TBI 

pathophysiologies including neuroinflammation and seizure susceptibility. Because RA8 can 

reprogram astrocyte transcriptional states, we hypothesized that treating TBI mice with this small 

molecule might have beneficial effects on astrocyte-related outcomes such as inflammation and 

neurovascular disruption.  

Even though RA8 did not reduce GFAP expression in our fluorescence analysis, the treatment 

could have converted some astrocytes, perhaps those that are not expressing GFAP, into a neural 

fate. There are many other astrocyte markers that could also be altered by RA8, which should be 

investigated further. Although we did not see decreased NeuN fluorescence in vehicle-treated TBI 

mice as we expected, other analyses such as neuron counts might reveal more subtle differences 

that we could not observe with fluorescence analysis alone. Neuron loss analyzed by 

fluorescence alone may be underestimated if there is associated loss of brain structure volume, 

because the density of remaining neurons is preserved. Furthermore, treatment timing may play 

an important role in the outcomes we observed. To maximize the data we could get from a single 

pilot study cohort, mice were treated for two weeks, tested twice for seizure susceptibility at three 

and six weeks post-TBI, then perfused at eight weeks post-TBI for immunohistochemical staining. 

One major strength of this approach is the ability to look at correlations between factors such as 

lesion size, inflammation, and seizure susceptibility within individual mice. A disadvantage is 

having limits on the timing of various experimental endpoints. For example, future studies could 

determine if RA8 has a more transient effect on inflammation or neuron loss after TBI by 

performing histology during or shortly after RA8 treatment.  

Seizure susceptibility is one of many approaches to test the excitability of the brain. It is useful 

because it can be used to test excitability in cohorts that do not necessarily show spontaneous 

epileptic seizures, but there are a few alternatives to PTZ, including pro-convulsant drugs like 
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kainic acid. Even if spontaneous seizures are present, they can be difficult to capture because 

they occur randomly and infrequently. However, seizure susceptibility does not always identify 

which individuals are or will become epileptic (Bolkvadze and Pitkanen, 2012). Even though RA8 

treatment did not affect seizure susceptibility in TBI mice six weeks post-TBI (which was four 

weeks after the treatment ended), it is possible that the treatment could reduce seizure 

susceptibility during the treatment period, reduce hyperexcitability in other susceptibility assays, 

or it could reduce other types of spontaneous epileptiform activities which we could not test within 

the time frame of the study. We did see a trend toward increased latency to different seizure 

stages in RA8-treated TBI mice, but further experiments will need to be conducted to understand 

the full therapeutic effects of RA8 in TBI.  

Overall, there is great potential and a wealth of research in animal models investigating small 

molecule therapeutic treatments for TBI and post-TBI outcomes (Chou et al., 2017, Hoane et al., 

2009, Knoblach and Faden 2002, Singleton et al., 2010). Small molecule treatments are less 

invasive and easier to produce or distribute than alternative interventions being explored for TBI 

therapy, such as stem cell transplants. One major challenge of clinical trials for TBI treatments is 

finding an intervention that can target multiple factors contributing to neurodegeneration or loss 

of cognitive function across different time points after injury. It is likely that a combination of small 

molecule treatments will be the most successful in mitigating or preventing adverse health 

outcomes after TBI. 
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Materials & Methods  

Animals 

We performed all experiments per protocols approved by the Institutional Animal Care and Use 

Committee at the University of California, San Francisco and Gladstone Institutes. Precautions 

were taken to minimize stress and the number of animals used in each set of experiments. Mice 

were separately housed after surgical implants. Adult (P30-P180) male CD1 mice were used for 

all experiments.  

Controlled cortical impact 

We anesthetized mice with 2-5% isoflurane and placed them in a stereotaxic frame. We 

performed a 3 mm craniotomy over the right somatosensory cortex (S1) centered at -1 mm 

posterior from Bregma, +3 mm lateral from the midline (Figure 2.1A). TBI was performed with a 

CCI device (Impact One Stereotaxic Impactor for CCI, Leica Microsystems) equipped with a metal 

piston using the following parameters: 3 mm tip diameter, 15° angle, depth 0.8 mm from the dura, 

velocity 3 m/s, and dwell time 100 ms. Sham animals received identical anesthesia and 

craniotomy, but the injury was not delivered.  

Immunostaining and microscopy 

We anesthetized mice with a lethal dose of Fatal-Plus and perfused with 4% paraformaldehyde 

in 1X PBS. Serial coronal sections (30 µm thick) were cut on a Leica SM2000R sliding microtome. 

Sections were incubated with antibodies directed against GFAP (1:1000, chicken, Abcam, 

ab4674, AB_304558), NeuN (1:500, mouse, Millipore, MAB377, AB_2298772), and CD31 (1:125, 

rat, BD Pharmingen, 550274) overnight at 4°C. After wash, we incubated sections with Alexa 

Fluor-conjugated secondary antibodies (1:300, Thermo Fisher Scientific, A-11029) for two hours 

at room temperature. We mounted sections in an antifade medium (Vectashield) and imaged 

using a Biorevo BZ-9000 Keyence microscope at 10-20x.  
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In vivo electrophysiology and behavior 

Non-chronic electrophysiological recordings in freely behaving mice were performed as described 

using custom-made ECoG devices (Clemente-Perez et al., 2017; Ritter-Makinson et al., 2019). 

ECoG was recorded using RZ5 (TDT) and sampled at 1221 Hz. A video camera that was 

synchronized to the signal acquisition was used to continuously monitor the animals. We briefly 

anesthetized animals with 2% isoflurane at the start of each recording to connect for recording. 

Each recording trial lasted 15-60 min. To control for circadian rhythms, we housed our animals 

using a regular light/dark cycle, and performed recordings between roughly 9:00 am and 6:00 pm. 

All the recordings were performed during wakefulness. We validated the location of the electrodes 

by histology after euthanasia in mice that did not experience sudden death and whose brains we 

were able to recover and process. 

Statistical analyses 

All numerical values are given as means and error bars are standard error of the mean (SEM) 

unless stated otherwise. Parametric and non-parametric tests were chosen as appropriate and 

were reported in figure legends. Data analysis was performed with MATLAB (SCR_001622), 

GraphPad Prism 7/8 (SCR_002798), ImageJ (SCR_003070), and Spike2 (SCR_000903). 

Image analysis and cell quantification 

We selected regions of interest (ROIs) for S1, nRT, and VB from 10x Keyence microscope images 

opened in ImageJ (SCR_003070). To ensure that each ROI covered the same area on the 

ipsilateral and contralateral sides of the injury site, the first ROIs were duplicated and repositioned 

over the opposite hemisphere. The image was then converted to 8-bit. The upper threshold was 

adjusted to the maximum value of 255, and the lower threshold was increased from 0 until the 

pixel appearance most closely matched the fluorescence staining from the original image. We 

used the same threshold boundaries for all sections with the same stain. An integrated density 

ratio was calculated for each brain region by dividing the ipsilateral integrated pixel density by the 
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contralateral integrated pixel density. The integrated density ratios from three sections per animal 

were averaged to get a single average ratio per brain area for each animal. 

RA8 treatment 

RA8 was prepared in a stock of 30% polyethylene glycol 300 (PEG300) in PBS. To avoid affecting 

cortical lesion size, RA8 treatment began 24 hours after TBI, when mice received daily intra-

peritoneal injections of 40 mg/kg RA8 or vehicle (30% PEG300 in PBS) for two weeks.  
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Figures 

 

Figure 3.1. Quantification of GFAP and NeuN fluorescence eight weeks after TBI. 
A, B) Representative coronal brain sections (A) and close-up images (B) of S1 (top), VB and 
nRT (bottom) stained for GFAP, a marker for astrocytes, and neuronal marker NeuN. Injury site 
in the right S1 cortex is marked by an asterisk. Scale bars, 1 mm (A), 500 µm (B). 
C) Quantification of fluorescence ratios between ipsilateral and contralateral regions in sham 
mice, vehicle-treated TBI mice, and RA8-treated TBI mice.  
Data represent all points from min to max, with a Kruskal-Wallis test with multiple comparisons 
and α = 0.05 (*p < 0.05, **p < 0.01). Analysis includes between 13 and 16 mice per group (n = 
three sections per mouse, one image per region).  
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Figure 3.2. Quantification of vascular density eight weeks after TBI. 
A) Representative close up of a section of the cortex from a sham mouse stained for CD31, a 
marker for endothelial cells (left) and analyzed for vessel density (right). 
B) Quantification of vessel density ratios between ipsilateral and contralateral regions in sham 
mice, vehicle-treated TBI mice, and RA8-treated TBI mice. 
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Figure 3.3. Mice with TBI have higher PTZ-induced seizure susceptibility and reduced 
latency to myoclonic jerks three weeks after TBI. 
A) Diagram of recording locations for in vivo seizure susceptibility experiments. ECoG recording 
sites and TBI location are shown on the mouse skull. 
B) Quantification of the proportion of 21 sham and 26 TBI mice that had a generalized tonic-
clonic seizure induced by PTZ. Seizure outcome data represent the proportion of mice that did 
or did not have seizures, analyzed with a chi-square test (**p < 0.01).  
C) Latency to reach each stage of seizure severity after PTZ administration. PTZ-induced 
seizures between stages 2-4 occurred more rapidly in TBI mice than sham mice, analyzed with 
multiple t-tests (****p < 0.0001).  
D) Representative ECoG trace from a TBI mouse that had a PTZ-induced seizure. 
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E) Quantification of the latency to the first twitch/myoclonic jerk, as determined by video-ECoG 
recordings. 
F) Quantification of the latency to the convulsive seizure, as determined by video-ECoG 
recordings. 
G) Quantification of the maximum seizure severity reached after PTZ administration, analyzed 
with a Mann-Whitney test (**p < 0.01).  
Latency data represent mean ± SEM analyzed with a Mann-Whitney test and α = 0.05 (***p < 
0.001). Analysis includes between six and 26 mice per group. 
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Figure 3.4. Two-week treatment of RA8 does not alter seizure susceptibility six weeks 
after TBI. 
A) Diagram of recording locations for in vivo seizure susceptibility experiments. ECoG recording 
sites and TBI location are shown on the mouse skull. 
B) Quantification of the proportion of 20 sham mice, 16 vehicle-treated TBI mice, and 18 RA8-
treated TBI mice that had a generalized tonic-clonic seizure induced by 35 mg/kg PTZ. Seizure 
outcome data represent the proportion of mice that did or did not have seizures, analyzed with a 
chi-square test (*p < 0.05).  
C) Latency to reach each stage of seizure severity after PTZ administration. 
D) Quantification of the latency to the first twitch/myoclonic jerk, as determined by video-ECoG 
recordings. 
E) Quantification of the latency to the convulsive seizure, as determined by video-ECoG 
recordings. 
F) Quantification of the maximum seizure severity reached after PTZ administration.  
Latency and seizure severity data represent mean ± SEM analyzed with a Kruskal-Wallis test 
with multiple comparisons and α = 0.05. Analysis includes between nine and 20 mice per group. 
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Figure 3.S1. RA8 reduces neuronal loss in VB via suppression of astroglial reactivation 
in a mouse model of post-stroke epilepsy. 
A, B) NeuN and GFAP labeling in coronal thalamic sections from mice two weeks after cortical 
photothrombotic stroke with vehicle (A) or RA8 (B) i.p. treatment.  
C) Quantification of integrated fluorescence density ratios (ipsilateral/contralateral) from eight 
vehicle-treated stroke mice and nine RA8-treated stroke mice (top) and from all brain sections 
(bottom). 
Data were analyzed with a t-test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). Analysis 
includes between eight and nine mice per group (n = three sections per mouse, one image per 
region).   
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Figure 3.S2. RA8 reduces long-term reactive astrogliosis in the peri-stroke cortex in a 
mouse model of post-stroke epilepsy. 
A, B) GFAP labeling in coronal brain sections from mice two weeks after cortical photothrombotic 
stroke and treatment with vehicle (A) or RA8 (B) i.p. treatment. 
C) Quantification of GFAP integrated fluorescence density ratios (ipsilateral/contralateral) from 
seven vehicle-treated stroke mice and five RA8-treated stroke mice (top) and from all brain 
sections (bottom). 
Data were analyzed with a t-test (*p < 0.05, **p < 0.01). Analysis includes between five and 
seven mice per group (n = three sections per mouse, one image per region).  
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Chapter 4 : Conditional bistability, a generic cellular mnemonic mechanism for robust 

and flexible working memory computations 

Abstract 

Persistent neural activity, the substrate of working memory, is thought to emerge from synaptic 

reverberation within recurrent networks. However, reverberation models do not robustly explain 

the fundamental dynamics of persistent activity, including high-spiking irregularity, large intertrial 

variability, and state transitions. While cellular bistability may contribute to persistent activity, its 

rigidity appears incompatible with persistent activity’s labile characteristics. Here, we unravel in a 

cellular model a form of spike-mediated conditional bistability that is robust and generic, and that 

provides a rich repertoire of mnemonic computations. Under asynchronous synaptic inputs of the 

awakened state, conditional bistability generates spiking/bursting episodes, accounting for the 

irregularity, variability, and state transitions characterizing persistent activity. This mechanism has 

likely been overlooked because of the subthreshold input it requires, and we predict how to assess 

it experimentally. Our results suggest a reexamination of the role of intrinsic properties of neurons 

in the collective network dynamics responsible for flexible working memory. 
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Introduction 

Working memory (WM), the ability to maintain and manipulate information within seconds, is 

essential to cardinal brain functions. Persistent neural activity represents a major neural correlate 

of WM, especially in the prefrontal cortex (PFC). The theory postulates that once triggered, 

persistent activity self-sustains through spiking reverberation in recurrent networks (Wang, 

2001; Compte, 2006). Cortical architectures may provide sufficiently positive and nonlinear 

feedback for network dynamics to converge toward persistent activity (attractor 

dynamics; Cossart et al., 2003; MacLean et al., 2005). However, network reverberation as a 

unique causal origin remains controversial because it fails to robustly account for fundamental 

aspects of persistent activity such as the higher irregularity of spiking during the delay period of 

WM tasks, the large intertrial variability of the discharge and its temporal structure under quasi-

stationary states, and the ability to encode parametric information (Seidemann et al., 

1996; Koulakov et al., 2002; Compte et al., 2003; Goldman et al., 2003; Shafi et al., 2007; Barbieri 

and Brunel, 2008). 

As a non-mutually exclusive alternative, intrinsic properties of neurons may underlie persistent 

activity, in addition to synaptic mechanisms, for object (Compte, 2006), spatial (Camperi and 

Wang, 1998), and parametric (Koulakov et al., 2002; Goldman et al., 2003) WM, and the 

interaction of WM with long-term memory (Egorov et al., 2002; Larimer and Strowbridge, 2010). 

The intrinsic bistability of neurons (i.e., the coexistence of stable states of quiescence and self-

sustained spiking) is central to this proposal because it allows memorizing transient inputs in 

individual neurons (Booth and Rinzel, 1995; Delord et al., 1996, 1997; Marder and Calabrese, 

1996; Shouval and Gavornik, 2011). Bistability is ubiquitous in peripheral (Lee and Heckman, 

1998; Perrier and Tresch, 2005), subcortical (Rekling and Feldman, 1997; Kawasaki et al., 1999), 

and cortical (Krnjević et al., 1971; Schwindt et al., 1988; Silva et al., 1991; Tahvildari et al., 



86 
 

2007; Zhang and Séguéla, 2010) structures, and in the PFC (Haj-Dahmane and Andrade, 

1997; Dembrow et al., 2010; Gee et al., 2012; Thuault et al., 2013). 

This hypothesis has been criticized because intrinsic bistability is generally strongly stereotyped in 

vitro: it does not depend on the level of background depolarization [absolute bistability (AB)], 

requires long on- and off-stimuli (seconds), strong levels of pharmacological manipulations (e.g., 

neuromodulation), and displays extremely long (tens of seconds), high-frequency, highly regular 

discharges with partially inactivated spikes (Haj-Dahmane and Andrade, 1997; Egorov et al., 

2002; Tahvildari et al., 2007; Zhang and Séguéla, 2010; Gee et al., 2012). These rigid features 

contrast with the flexibility of WM-related computational processes and persistent activity [e.g., 

high intertrial variability (Shafi et al., 2007) and irregular spiking (Compte et al., 2003)]. 

However, non-stereotyped, conditional forms of bistability, where self-sustained spiking depends 

on background depolarization, have been found in the cortex (Silva et al., 1991; Tahvildari et al., 

2007) and other structures (Bourque, 1986; Rekling and Feldman, 1997; Lee and Heckman, 

1998; Kawasaki et al., 1999; Perrier and Tresch, 2005). Conditional bistability (CB) has been 

observed in layer V (L5) PFC pyramidal neurons (Thuault et al., 2013), which is not surprising, 

since bistability is underlain in these neurons by two spike-mediated (i.e., suprathreshold) 

currents—the high-threshold L-type calcium (CaL) and the calcium-activated nonspecific cationic 

(CAN) current (Haj-Dahmane and Andrade, 1997; Gee et al., 2012; Thuault et al., 2013)—that 

correlate with CB in many other neuronal types (Bourque, 1986; Silva et al., 1991; Rekling and 

Feldman, 1997; Lee and Heckman, 1998; Kawasaki et al., 1999; Perrier and Tresch, 

2005; Tahvildari et al., 2007). A spike-mediated form of AB was previously studied (Shouval and 

Gavornik, 2011), but spike-mediated CB remains unexplored hitherto. Yet, its mechanism may 

depart from more classical spiking-independent forms of bistability relying on dendritic calcium 

(Hounsgaard and Kiehn, 1993; Booth and Rinzel, 1995), NMDA (Milojkovic et al., 2005; Major et 

al., 2008; Larimer and Strowbridge, 2010), or subthreshold currents (Delord et al., 
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1996, 1997; Washburn et al., 2000; Genet and Delord, 2002; Loewenstein et al., 2005; Carrillo-

Reid et al., 2009; Genet et al., 2010). 

Here, we explore the computational and mnemonic consequences of spike-dependent CB in a 

model of a L5 PFC pyramidal neurons. 

 

  



88 
 

Results 

Mimicking synaptic inputs during WM 

Our main goal was to determine whether depolarizing spike-mediated currents can maintain the 

memory of an event at the level of the discharge of an individual neuron, while producing realistic 

spiking patterns, as observed during WM. To that end, we designed a realistic isopotential model 

of a L5 pyramidal PFC neuron endowed with high-threshold CaL (ICaL), calcium-activated 

nonspecific cationic (ICAN), afterhyperpolarization potassium (IAHP), action potential and leak 

currents, and intracellular calcium ([Ca2+]) linear dynamics (see Materials and Methods). In the 

model, ICaL and ICAN are spike-mediated because ICaL activates at membrane potentials above the 

spike threshold and is the unique source of intracellular calcium activating ICAN, as found in PFC 

neurons exhibiting spike-mediated bistability (Haj-Dahmane and Andrade, 1997). Parameters 

were set such that ICAN was the sole spike-mediated charge carrier between these two currents 

(Haj-Dahmane and Andrade, 1997). 

To test whether spike-mediated currents contribute to persistent activity in the model, we used 

two stimulation protocols. The event protocol, classically used to assess bistability, consisted of 

a single, short (0.2 s) suprathreshold current pulse mimicking the arrival of an input (e.g., 

perceptive or motor) event. In the event/delay protocol, the event was followed by a longer (1 s) 

subthreshold depolarizing current mimicking background activity from the PFC network to the 

neuron during the delay of a WM task. This input may correspond to persistent activity 

reverberating within local PFC recurrent connections to maintain information about the event or 

to ongoing inputs related to motivational, attentional, anticipatory, or executive aspects of WM 

processes. 

Conditional bistability is invisible with classical protocols 

At low levels of the maximal CAN conductance (gCAN), the neuron discharged only during the 

event (Figure 4.1a1, event protocol), even when the event was followed by a background 
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subthreshold delay current (Figure 4.1a2, event/delay protocol). A bifurcation analysis as a 

function of the IInj indicated that the neuron was monostable (M): it admitted either a stable fixed 

point corresponding to the resting potential (Figure 4.1a3, green solid curve) or, above the spiking 

threshold θON, to a stable limit cycle corresponding to rhythmic spiking (Figure 4.1a3, red solid 

curves). 

At large gCAN values, the event induced a self-sustained discharge that outlasted the triggering 

event, providing a cellular form of memory, with both protocols (Figure 4.1b1, 4.1b2). 

Mechanistically, self-sustained spiking arose from the positive feedback among spiking, CaL 

activation, increased [Ca2+], and CAN activation (Figure 4.1b1, red arrows), which did not operate 

at low gCAN levels (compare with Figure 4.1a1). Here, the neuron was bistable: the resting 

potential coexisted with rhythmic spiking in a bistability domain situated between θON, the 

threshold for initiating spiking, and θOFF, the threshold for terminating spiking (Figure 4.1b3, 

lavender domain). The bistability domain included IInj = 0 μA · cm−2 (θOFF < 0 < θON), so that cellular 

memory did not require any background subthreshold input. Hence, the spike-mediated bistability 

was absolute, as observed in a previous model (Shouval and Gavornik, 2011) and in PFC neurons 

under pharmacological manipulations (Dembrow et al., 2010; Gee et al., 2012). Therefore, 

persistent activity outlasted the delay period (Figure 4.1b2, star; i.e., memory was infinite), unless 

a specific inhibitory input terminated it. 

At intermediate gCAN levels, we observed that bistability was conditional: spiking during the delay 

depended on the level of subthreshold depolarization, as found in several neural structures and 

in the PFC (Bourque, 1986; Silva et al., 1991; Rekling and Feldman, 1997; Lee and Heckman, 

1998; Kawasaki et al., 1999; Perrier and Tresch, 2005; Tahvildari et al., 2007; Thuault et al., 

2013). After the event, spiking stopped in the event protocol (Figure 4.1c1) but persisted during 

the entire delay in the event/delay protocol (Figure 4.1c2) even though the background delay 

current (IInj-delay) was subthreshold (i.e., below θON; Figure 4.1c3, black arrow). This was possible 

because IInj-delay was above θOFF (i.e., in the bistability domain; 0 < θOFF < θON; Figure 4.1c3). The 
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background current was needed under CB, by contrast to AB, because the spike-mediated 

positive feedback was not sufficient to support autonomous self-sustained spiking at 

moderate gCAN levels. This explains why persistent activity terminated at the end of the delay 

when IInj values returned to zero, below θOFF and the bistability domain (Figure 4.1c2, void 

symbol), being followed by an ADP (Figure 4.1c2, black arrow), as found in PFC neurons 

expressing spike-mediated currents and/or bistability (Haj-Dahmane and Andrade, 

1997; Dembrow et al., 2010; Gee et al., 2012). Thus, under CB, the duration of cellular memory 

adapted to the duration of network memory (i.e., reverberation), alleviating the requirement for a 

dedicated inhibitory stimulus to terminate persistent activity. Note also that triggering spiking-

dependent bistability did not require long stimulations, because of the moderate time constant 

of ICAN (∼100 ms; see Materials and Methods), as found in PFC neurons (Haj-Dahmane and 

Andrade, 1997). 

CB induced by the event/delay protocol is robust 

To assess the robustness of CB mnemonic properties, we parametrically explored the model’s 

response to the event/delay protocol (Figure 4.2a) as a function of IInj-delay and gCAN, which is 

important because the response reflects the regulation history of spike-mediated excitability and 

dictates the possible existence of CB (Figure 4.1). We found that CB existed in a large range 

of gCAN values (Figure 4.2a, CB domain). Moreover, the ranges of CB and AB domains were 

much wider than M domains, indicating the prevalence of mnemonic properties with spike-

mediated excitability in the model. We also found that cellular memory expressed differentially, 

depending on delay stimulation conditions. In the gCAN range of CB, there was no firing during the 

delay at the lowest IInj-delay values (i.e., discharge was memoryless; Figure 4.2a, yellow domain 

and trace). In contrast, delay firing was slowly decaying in a significant IInj-delay range below θOFF, 

underlying a transient memory (Figure 4.2a, orange), whereas above θOFF a stable conditional 

memory was observed (compare Figure 4.2a, lavender, 4.1c). In addition, we observed a stable 

absolute memory (i.e., sustained activity without self-termination) in the range of AB 
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(compare Figure 4.2a, purple, 4.1b). Under CB, memory typically lasted hundreds of milliseconds 

when transient (Figure 4.2b) and firing frequency was generally moderate (<50 Hz), in contrast 

to AB (Figure 4.2c). These results indicated that spike-mediated CB is robust, multiform, with 

long durations and low frequencies, which is consistent with persistent activity in the PFC during 

WM tasks (Compte, 2006). Moreover, parametrically, CB lies between M and AB, which have 

both largely been observed (Haj-Dahmane and Andrade, 1997; Dembrow et al., 2010; Gee et al., 

2012). This suggests that CB, although observed occasionally in the PFC (Thuault et al., 2013), 

may have been mostly overlooked because the event/delay protocol, which is mandatory to reveal 

it, is almost never used in intracellular recordings. 

CB generically emerges from spike-mediated excitability 

We wondered whether CB mnemonic properties were generic in essence, or specific to the model 

considered. Spike-mediated biophysical determinants—CaL and CAN current gating variables 

and the intracellular calcium [Ca2+]—share a common dynamical trait. Their spike-triggered 

activation operates faster, compared with their relaxation time scale, during the ISI. This 

asymmetry produces interspike traces that form a memory after each spike, favoring the firing of 

the following spike and, in turn, self-sustained spiking. We tested whether the dynamic asymmetry 

of these determinants was essential to cellular memory. We found that considering fixed (i.e., 

voltage- or calcium-independent) time constants to suppress the dynamic asymmetry of the CaL, 

the CAN, or both currents had no effect on cellular memory (compare Figure 4.3a-c, 4.2a), 

indicating that [Ca2+] dynamic asymmetry was sufficient to support cellular memory. We also 

found that, in the absence of both calcium dynamics and the CAN current, CaL asymmetry alone 

was both sufficient (Figure 4.3d) and necessary (Figure 4.3e). Therefore, while cellular memory 

required the asymmetry between activation/relaxation time constants of a least one determinant, 

it was independent of its exact nature. This demonstrated that dynamic asymmetry was generic 

in underlying the positive feedback of spike-mediated CB. Remarkably, we found that CB 
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coexisted with marked ADP amplitudes (∼2.5 to 15 mV) after spiking (Figure 4.3f, above 

horizontal lines), contrasting with the smaller ADP of monostable neurons (<2.5 mV). 

CB mnemonic properties under in vivo conditions 

In vivo, PFC neurons continuously receive asynchronous synaptic inputs inducing strong 

membrane-potential fluctuations. These fluctuations may disrupt conditional memory, which relies 

on a minimal subthreshold depolarization. Thus, we assessed cellular memory with stochastic 

synaptic excitatory (AMPA) and inhibitory (GABAA) inputs driving fluctuations as found in vivo in 

the PFC (i.e., several millivolts; Fellous et al., 2003). Here, we tested the response of the neuron 

to the protocols considered in vitro and to a delay protocol (i.e., devoid of event). The latter was 

used as a control, since stochasticity may induce spiking during the subthreshold delay input. We 

found that at gCAN levels providing CB in vitro, the neuron responded in vivo to the event/delay 

protocol with a persistent activity (Figure 4.4a, right) that was absent after the event protocol (left) 

and initially weaker during the delay protocol (middle). As a general rule, activity included 

episodes during which spikes clustered in bursts and spike-mediated currents were significantly 

activated (Figure 4.4a, lavender). During bursting episodes, the positive feedback characterizing 

CB ensured self-sustained spiking, which was irregular and terminated because of synaptic 

fluctuations. Bursting episodes alternated with non-bursting episodes essentially characterized by 

single spiking at lower frequency and smaller spike-mediated current activation (Figure 4.4a, 

yellow; i.e., during which the positive feedback was disengaged). A raster plot across trials 

(Figure 4.4b) illustrates stronger activity, a larger bursting propensity, and important variability in 

the temporal structure of the discharge during the event/delay protocol. 

While firing slowly increased during the delay protocol (Figure 4.4c, fuschia) and rapidly decayed 

after the event protocol (Figure 4.4c, light blue), it persisted longer during the delay in the 

event/delay protocol (Figure 4.4c, lavender; τmemory ∼900 ms), with a frequency exceeding the 

sum of firing frequencies triggered by event or delay inputs alone (Figure 4.4c, salmon). Thus, 

persistent activity is an emergent property arising from nonlinear interactions between spike-
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mediated currents and the delay background input. Persistent activity with τmemory in the range of 

hundreds of milliseconds to seconds (i.e., consistent with WM) was robustly evoked for a large 

domain of event input parameters (Figure 4.4d) and a thinner domain of the delay input 

parameters (Figure 4.4e). Large τmemory values were observed when the event was stronger than 

the delay (Figure 4.4d, right part of the map), with persistent activity decaying during the delay 

(Figure 4.4c, lavender). 

Mechanistically, the excitation provoked by the event favored the rapid engagement of the positive 

feedback during the delay, as reflected by the strong synchronization of the onset of the first 

bursting episode across trials (Figure 4.4f). This first episode displayed a larger recruitment of 

spike-mediated currents (Figure 4.4g) and an increased duration (Figure 4.4h) and frequency 

(Figure 4.4i), compared with the following bursting episodes. As a result, the probability of being 

in a bursting episode (i.e., at a higher firing frequency) remained high at the beginning of the delay 

and progressively decreased toward its steady state (Figure 4.4j), accounting for the decreasing 

pattern of firing frequency (Figure 4.4c, lavender). Note that the instantaneous firing frequency 

remained globally constant within episodes (i.e., the discharge was quasi-stationary; Figure 

4.4k). 

CB promotes irregular discharge under in vivo conditions 

In WM tasks, spiking irregularity is larger during the delay than during stimulus presentation (i.e., 

event; Compte et al., 2003), with a higher coefficient of variation (CV) of ISIs over 1 and a CV2 (a 

version of CV based on successive ISIs) of ∼1, which has been difficult to reproduce robustly in 

theoretical models (Barbieri and Brunel, 2008). In our model, irregularity was generally higher 

during the delay, compared with the event (Figure 4.5a, b, dots above first bisector), 

independently of whether neurons were M (Figure 4.5a, b, no ICAN, black dots) or CB (Figure 

4.5a, b, colored dots). Indeed, at a given similar firing mean frequency, the longer delay (2.5 s) 

allowed longer ISIs that could not occur during the shorter event (0.5 s). Thus, during the event, 

the sampling of the ISI distribution was truncated at low frequencies, and the apparent ISI variance 
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was therefore decreased, compared with the delay. This effect was moderate for M neurons 

(Figure 4.5a, b, black dots), but it dramatically increased for CB neurons firing at low frequency 

(<15 Hz; Figure 4.5a, b, colored dots), since, in the latter neurons, alternations of bursting 

episodes (with smaller ISIs) and non-bursting episodes (with larger ISIs) strongly increased the 

variance of the ISI distribution during the delay. At such low-frequency firing, the CV was largely 

>1 and the CV2 was ∼1, as found during WM delays (Compte et al., 2003). Moreover, 

CV/CV2 culminated for inputs leading to intermediate memory time constants in the range of 

∼400–600 ms (Figure 4.5c, d) and transition frequencies between episodes at ∼1 Hz (color 

code). In these conditions, both the CV and CV2 were significantly larger during the delay (Figure 

4.5e, f, thick black trace), compared with the event (Figure 4.5e, f, thin black trace). Remarkably, 

consistent with data (Compte et al., 2003), the CV distribution during the delay was broadened, 

compared with that during the event, which did not occur for the CV2. 

To fully confirm the genuine effect of depolarizing spike-mediated currents on spiking irregularity, 

we compared CV/CV2 with and without CB (1) upon stationary stimuli to avoid the interference of 

frequency time variations due to the protocol and (2) at identical mean firing frequencies to avoid 

the nontrivial effects of frequency on these measures (Compte et al., 2003). In these conditions, 

where computing these observables admits its plain significance, we found that, compared with 

M neurons (Figure 4.5g, black), the CV was systematically superior in CB neurons (Figure 4.5g, 

lavender) < 20 Hz and was >1 below 10 Hz. In CB neurons, the CV2 was also superior below 2 

Hz, situated at ∼1, whereas it was essentially similar to M neurons >2 Hz (Figure 4.5h). Thus, 

although the mean local irregularity measured by the CV2 was the same on average (because 

local increases of frequency regularity within bursting episodes compensated for the local 

frequency irregularities at transitions between bursting and non-bursting episodes), we found that 

the global irregularity of the discharge (measured by the CV; i.e., the normalized ISI SD) was 

increased in CB neurons due to the presence of spike-mediated currents. 
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Discussion 

Here, we show that spike-mediated CaL and CAN currents of L5 pyramidal PFC neurons (Haj-

Dahmane and Andrade, 1997; Gee et al., 2012; Thuault et al., 2013) support CB. Moreover, our 

study suggests that CB is prevalent for several reasons. First, CB relies on suprathreshold 

mechanisms that are ubiquitous in pyramidal PFC neurons and operate robustly, independent of 

biophysical details, which are generic. Second, CB parametrically situates between M and AB 

regimes, both extensively observed in the PFC and other areas (Krnjević et al., 1971; Schwindt 

et al., 1988; Yang et al., 1996; Haj-Dahmane and Andrade, 1997; Dembrow et al., 2010; Zhang 

and Séguéla, 2010; Gee et al., 2012). AB is often observed under strong neuromodulatory 

manipulation that upregulates depolarizing spike-triggered conductances, yielding unrealistic 

stereotyped discharges inconsistent with WM firing patterns (Compte et al., 2003; Shafi et al., 

2007). This suggests that neuromodulation regulates conductances below the range for AB in 

behaving animals. Below AB, the probability of being in CB is largely predominant (a much wider 

range than M; Figure 4.2a). Moreover, minimal neuromodulation is crucial for optimal PFC 

computations (Wang et al., 2007), whereas M lies at the lowest neuromodulation (conductance) 

levels. Thus, CB is likely encountered in PFC pyramidal neurons under physiological 

neuromodulatory levels. Third, we show that ADP represents a generic marker distinguishing CB 

from M neurons. ADPs are ubiquitous across L5 PFC pyramidal types (Yang et al., 1996; Haj-

Dahmane and Andrade, 1997) and share specific common features with CB neurons (>5 mV; 

durations up to ∼100 ms, occurrence even at low frequencies, CAN/calcium dependence; Yang 

et al., 1996; Haj-Dahmane and Andrade, 1997; Boudewijns et al., 2013), suggesting that PFC 

neurons displaying ADP are conditionally bistable. Hence, CB was observed without artificial 

pharmacological activation in L5 PFC pyramidal neurons with prominent ADPs (Thuault et al., 

2013). Altogether, these lines of evidence indicate that CB likely constitutes a prevalent property 

in PFC L5 pyramidal neurons in physiological conditions during WM tasks. 
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So, why has CB remained scarce in the PFC? CB requires a triggering suprathreshold input 

followed by a subthreshold input (or applied upon a depolarized subthreshold holding potential). 

Therefore, CB neurons are undetectable using the classic protocol ubiquitously used, which 

consists of a single suprathreshold input applied from the resting potential. Consequently, 

neurons can be categorized as M (Figure 4.1c1), while actually displaying genuine CB (Figure 

4.1c2). Such misclassification should be frequent given the much larger CB domain (compared 

with M), and systematically applying event/delay protocols should unravel CB in a significant 

fraction of neurons. Remarkably, event/delay protocols are meaningful physiologically, mimicking 

the temporal profile of inputs during WM: a strong behaviorally relevant (e.g., perceptive) signal 

followed by a lower background input during the delay (e.g., reverberating persistent activity or 

WM-related feedforward inputs). 

Information maintenance in CB neurons relies on the asymmetry between fast buildup/activation 

and slower relaxation/deactivation dynamics of spike-activated mechanisms. This asymmetry 

maintains spike-to-spike excitability through the positive feedback between depolarization and 

suprathreshold activation. Noticeably, the slow CAN deactivation time constant of ∼100 ms (Haj-

Dahmane and Andrade, 1997) allows the maintenance of self-sustained activity down to ∼10 Hz. 

Slower CAN in the PFC (Sidiropoulou et al., 2009) may support lower frequencies, at some 

expense (see below). Under asynchronous inputs, CB generates bursting/non-bursting episodes. 

Bursting episodes can be triggered by—and form a memory of—incoming events, when a 

background input follows the event. Statistically, this persistent activity fades at the second 

timescale across trials, consistent with WM, reflecting the stochastic disruption of bursting 

episodes due to synaptic fluctuations. By contrast, firing frequency is steady within bursting 

episodes, so that information maintenance is constant within individual trials for the duration of 

the first bursting episode. 

Overall, the spike-mediated mechanism we unravel is robust to the exact nature and parameter 

values of the model and displays a much higher resistance to transient episodes of inhibition, 
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compared with subthreshold-based bistabilities (Washburn et al., 2000; Loewenstein et al., 

2005; Carrillo-Reid et al., 2009). Sensitivity to inhibitory interference was used to discard the 

possible role of intrinsic bistability in maintaining persistent activity (Sanchez-Vives and 

McCormick, 2000; McCormick et al., 2003). Our results indicate that this reasoning does not apply 

to spike-mediated mechanisms, because they preserve resistance to inhibition, as does synaptic 

reverberation. 

Previously described bistabilities are rigid, requiring strong/long stimuli to be turned on/off and 

producing long, high-frequency discharges primarily independent of the background input (Haj-

Dahmane and Andrade, 1997; Egorov et al., 2002; Tahvildari et al., 2007; Zhang and Séguéla, 

2010; Gee et al., 2012) By contrast, CB exhibits a rich repertoire of computational operations. It 

expresses as a memoryless discharge or subserve transient or stable conditional memory, 

depending on input parameters. Moreover, mnemonic activities can be initiated by short events 

because of the moderate CAN activation time constant (Haj-Dahmane and Andrade, 1997). 

Furthermore, the duration and frequency of mnemonic discharges are controlled by the delay 

input at low frequencies. Finally, under in vivo-like inputs, this diversity expresses as bursting/non-

bursting episodes with variable frequencies and durations, resulting in a large variability of the 

discharge structure across trials, as found during WM (Shafi et al., 2007). 

In response to asynchronous inputs, CB increases discharge irregularity, because smaller ISIs 

during bursting episodes and larger ISIs during non-bursting episodes increase the ISI distribution 

variance. The CV/CV2 are highest at low firing frequencies i.e., under excitation/inhibition balance, 

two factors increasing irregularity; Compte et al., 2003. In such conditions, the CV is >1 and 

CV2 ∼1 in CB neurons during the delay, being higher than during the event, as in WM (Compte 

et al., 2003), properties previous models are unable to account for robustly (Barbieri and Brunel, 

2008). This effect happens in CB neurons, because bursting/non-bursting episodes can alternate 

during delays of several seconds, but not during shorter events (0.2 s). 
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Besides, while CB clearly increases the CV, its effect on the CV2 is mild. This results because 

whereas frequency changes at the transitions of episodes increase CV2, the more regular 

discharge within bursting episodes decreases it. Synaptic inputs are not stationary in vivo (Shafi 

et al., 2007; Ostojic, 2014), which could explain the slightly higher CV/CV2 observed 

experimentally (Compte et al., 2003), compared with the situation reported here. This could also 

explain the larger difference in CV2 values between the delay and the event (Compte et al., 2003), 

as changes in the synaptic input rates have more time during the delay to exert their effect on 

successive ISIs and thus on the CV2. 

Interestingly, the overall increase in irregularity in CB neurons required an AHP current, which 

balanced the CAN current in the model (CAN alone decreased irregularity; data not shown). 

Finally, our conclusion that busting/non-bursting alternations underlie irregularity is additionally 

supported by the finding that very slow CAN currents—driving very long bursts without 

alternations—decrease the CV (Sidiropoulou et al., 2009). 

What roles may CB play at the network scale during maintenance? Here, CB requires a 

subthreshold constant background input from the network to memorize a transient event. 

However, inputs are not stationary in PFC networks and cellular CB should affect, in turn, network 

dynamics. Therefore, interactions between local cellular CB and global network recurrence may 

provide a rich repertoire of dynamics. 

Hence, following an event, bursting in CB neurons may be sustained by the prolonged synaptic 

feedback due to bursting in other CB neurons. Such synergistic CB bursting recruitment may 

determine the extent to which activity is amplified and prolonged, possibly resulting in decaying, 

stable, or ramping temporal firing patterns of WM (Shafi et al., 2007). Synergy between CB 

neurons may also provide a realistic biophysical basis for WM of parametric information, which 

requires bistable elements to emerge robustly (Koulakov et al., 2002; Goldman et al., 2003). Such 

collective dynamics are plausible because CB is gradual in essence, by contrast to AB. WM-
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related drives during the delay and the regulation state of synaptic strengths and spike-mediated 

excitability should be fundamental in setting the gradual synergetic recruitment of CB neurons. 

Within a recurrent network, CB neurons can discharge during the delay even when they have not 

received the event input, because of the subthreshold recurrent input provided by other neurons 

of the network actively maintaining the memory of that event (Figure 4.4c, fuschia curve). This 

could be problematic if presynaptic and postsynaptic neurons belong to different populations 

encoding distinct memories (i.e., Hebbian assemblies), as memory would “bleed over” across 

populations (i.e., memory interference). This problem may arise even with monostable 

postsynaptic neurons, although CB neurons would discharge at higher rates for a similar recurrent 

delay input, enhancing interference. However, different mechanisms have been imagined that 

may circumscribe interference between memory representations [e.g., mutual (Miller and Wang, 

2006) or global (Brunel and Wang, 2001) inhibition between assemblies]. Besides, enhanced 

“bleeding” due to CB could also improve pattern completion within Hebbian assemblies, because 

the easier recruitment of CB neurons not activated by the event (because of incomplete input 

pattern presentation) would facilitate complete memory retrieval through associative synaptic 

reverberation. 

Besides, during WM delays, PFC networks encounter transitions between stable collective states 

of quasi-stationary firing at the second timescale, reflecting mental states during the exploration 

of computational solutions, as cognitive processes wander from stimulus encoding to decision-

making and action (Seidemann et al., 1996; Cossart et al., 2003). Bursting/non-bursting episodes 

in CB neurons share similar quasi-stationary firing and generate maximal irregularity at this 

timescale. We suggest that CB may promote the emergence of stable collective states and the 

complexity of PFC neuronal operations, providing a basis for exploring computational solutions 

during WM. Intrinsic plasticity and neuromodulation would represent strategic processes to 

regulate spike-mediated mechanisms for the emergence of adapted WM-related cognitive 

processes. 
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While CB relies on a weak spike-mediated positive feedback, it is precisely this “weakness” that 

underpins the computational richness and flexibility it brings, compared with what was previously 

thought. We suggest that the traditional view should be overcome in favor of a reconciling 

perspective whereby synaptic reverberation and conditional bistability concur with the emergence 

of the highly flexible persistent activity required for elaborating adaptive WM-related cognitive 

processes and intelligent behavior. 
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Materials & Methods 

Design of the standard model 

We consider an isopotential L5 PFC pyramidal neuron model that follows the Hodgkin–Huxley 

formalism. The neuron model is endowed with the leak (IL) and action potential (AP) currents 

(INa, IK) and a synaptic (ISyn, “in vivo condition”) or an injected (IInj, “in vitro condition”) input current. 

Depending on the hypothesis tested, the model also comprises one or more calcium- and/or 

voltage-dependent suprathreshold currents, generically denoted Iion. These currents can be 

depolarizing (ICaL, ICAN) or hyperpolarizing [afterhyperpolarization potential potassium current 

(IAHP)]. The standard version of the model comprises the following three 

currents: Iion = ICaL + ICAN + IAHP, with parameters described in the Parameter section (see below). 

The membrane potential evolves according to the following:

 

Leak current IL and action potential currents INA and IK 

The leak current is written as follows: 

  

and AP currents are taken from a previous model we devised to reproduce spike currents of 

excitatory regular-spiking neocortical neurons (Naudé et al., 2012). 

High-threshold calcium current (IAHP) 

The CaL current is derived from Delord et al. (1997) and follows as:

 

where the activation xCaL follows first-order kinetics: 

 

with a voltage-dependent time constant: 
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with αCal and βCal adapted to fit the time constant observed in vitro (Helton et al., 2005). 

The activation follows: 

 

where V1/2,CaL and KCaL, respectively, denote the half-activation potential and the e-fold slope of 

Boltzmann activation voltage dependence, and were estimated from the I–V curve obtained in 

vitro (Helton et al., 2005). 

Calcium-activated nonspecific cation current (ICAN) 

The CAN current obeys the following: 

 

where the activation xCAN follows first-order kinetics depending on the intracellular calcium 

concentration, as follows: 

 

with 

 

and 

 

where αCAN and βCAN, respectively, denote activation and deactivation kinetic constants chosen to 

get significant activation in the micromolar range with time constants fitting those observed in 

vitro after large calcium influx in L5 PFC pyramidal neurons (i.e., ∼35 ms in the range 5–10 μM in 

the model and up to ∼100 ms at lower [Ca2+] during interspike intervals (ISIs; Haj-Dahmane and 

Andrade, 1997)). 

IAHP 

The AHP current modeled here corresponds to the SK potassium channel type and obeys the 

following: 
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where the activation xAHP follows calcium-dependent first-order kinetics as follows:

 

with 

 

and 

 

where αAHP and βAHP, respectively, denote the activation and deactivation kinetic constants, fitted 

to account for the time constants of medium AHPs observed in vitro in L5 PFC pyramidal neurons 

(Villalobos et al., 2004; Faber and Sah, 2007). 

Calcium concentration dynamics 

In the model, calcium concentration dynamics results from the inward influx due to ICaL and from 

first-order buffering /extrusion (Haj-Dahmane and Andrade, 1997) as follows:

 

where F is the Faraday constant, Ca0 is the basal intracellular calcium concentration, τCa is the 

buffering time constant, and the following: 

 

is the surface area-to-volume ratio of an idealized intracellular shell compartment of 

thickness r1 situated beneath the surface of a spherical neuron soma of radius r0. Calcium 

dynamics possesses an intrinsic asymmetry resulting from the inward influx due to rapid increases 

of ICaL and the slower first-order buffering process. 

Synaptic currents 
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In in vivo conditions (see Protocols), synaptic activity is simulated with fluctuating excitatory 

AMPA and inhibitory GABAA conductances as studied in L5 PFC pyramidal neurons (Destexhe 

and Paré, 1999), and the synaptic current is modeled as follows:

 

where VE and VI are the reversal potentials, and the fluctuating conductances gE and gI are given 

by two Uhlenbeck–Ornstein processes, as follows: 

 

 

where τE and τI are the respective time constants of the temporal evolution of 

conductances, gE0 and gI0 are the mean conductances (that depend on the considered protocol), 

σE and σI are the SDs, and xE(t) and xI(t) are Gaussian stochastic processes with zero mean and 

unit SDs. 

Determination of afterdepolarization potential amplitudes 

The amplitude of afterdepolarization potentials (ADPs) is determined using a specific stimulation 

protocol composed of a 15 ms phasic current of fixed amplitude set to elicit a single action 

potential. The ADP amplitude is calculated as the maximal membrane potential difference 

between conditions in the presence and the absence of the tested supraliminar current (ICaL, ICAN, 

or both). This difference was calculated in a window starting 10 ms after the action potential peak 

(to avoid the influence of different action potential lengths due to the presence/absence of 

suprathreshold currents) and ending 1 s later, far after complete relaxation to resting potential. 

Standard model parameters 

Unless indicated in figure legends, standard parameter values are as follows: for the leak 

current, gL = 0.05 mS · cm−2, VL = −70 mV; AP current parameters are as in a previous model that 

we developed of excitatory regular-spiking neocortical neurons (Naudé et al., 2012), with ḡNa = 24 

mS · cm−2, VNa = 50 mV, ḡK = 3 mS · cm−2, and VK = −90 mV. For supraliminar ionic currents, 
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parameters are ḡCaL = 0.0045 mS · cm−2, VCaL = 150 mV, V1/2,CaL = −12 mV, KCaL = 7 mV, αCaL = 

0.6, βCaL = −0.02 mV−1, ḡCAN = 0.025 mS · cm−2, VCAN = 30 mV, αCAN = 0.0056 μM−1 · ms−1 and 

βCAN = 0.0125 ms−1, ḡAHP = 0.2 mS · cm−2, VAHP = −90 mV, αAHP = 0.05 μM−1 · ms−1, and βAHP = 0.2 

ms−1. Geometrical and intracellular calcium dynamics parameters are as follows: F = 96,500 mol 

· s−1 · A−1, r0 = 4 μm, r1 = 0.25 μm, Ca0 = 0.1 μM, τCa = 100 ms. Synaptic parameters 

are gE0,BACKGROUND = 0.0325 mS · cm−2, gE0,EVENT = 0.065 mS · cm−2, gE0,DELAY = 0.040 

mS · cm−2, and independently of the period considered, σE = 0.0125 mS · cm−2, gI0 = 0.1 mS · 

cm−2, σI = 0.0075 mS · cm−2, τE = 2.5 ms, τI = 10 ms, VE = 0 mV, and VI = −75 mV. 

Numerical procedures 

The models were numerically integrated using the forward Euler method with a 1e−2 ms time step. 

Bifurcation diagrams were obtained using the XPP software for qualitative analysis of dynamical 

systems (http://www.math.pitt.edu/~bard/xpp/xpp.html). Spikes were detected as a maximum of 

the membrane potential above −20 mV. 

In in vitro protocols, the behavior maps (see Figs. 2, 3) were built as follows: the discharge during 

a 10 s delay period was classified as (1) memoryless, when no spike occurred during the delay 

period or when one spike occurred at <25 ms after the onset of the delay period; (2) transient 

memory, when an unstable discharge occurred during the delay period and lasted at least 25 ms 

after the delay period onset (to exclude cases where an ultimate spike is blown just after the 

phasic current pulse due to the activation of a fast sodium current in the last milliseconds of the 

phasic current pulse); and (3) stable memory, when the last spike of the discharge occurred after 

9.5 s and the mean relative absolute difference between successive ISIs was <5% during the last 

2 s of the delay period. 

In in vivo protocols, spikes were defined as belonging to a burst when they were part of a 

succession of at least three spikes with all ISIs <100 ms (instantaneous frequencies >10 Hz). 

Other spikes were defined as not belonging to a burst [i.e., isolated spikes or doublet of spikes 

(with an intradoublet ISI inferior to 100 ms) that were separated from the rest of the spike train by 
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ISIs >100 ms]. Bursting episodes were defined as contiguous periods of time within which all 

spikes belonged to a burst. Non-bursting episodes were defined as the periods outside the 

bursting episodes. The choice of 100 ms as a cutoff ISI value was arbitrarily set to separate 

periods with frequency inferior to 10 Hz, which are typical of the spontaneous state of activity in 

the awake cortex from periods of activity taking part in coding (Destexhe et al., 2001). This exact 

value is not important to the conclusions drawn in the present study. 

Statistical methods 

We used a two-tailed Wilcoxon rank-sum test to compare the medians of the CV distributions in 

the event and delay periods of the event/delay protocol, because the CV distributions were not 

normal, according to Kolmogorov–Smirnov goodness-of-fit hypothesis tests. A similar procedure 

was used to compare the medians of the CV2 distributions in the event and delay periods of the 

event/delay protocol. 

 

  



107 
 

Figures 

 
Figure 4.1. Conditional bistability is a hidden property in neurons endowed with a supra-
threshold conductance in response to standard protocols applied “in vitro”. 
Response of monostable (a; gCAN = 0.003 mScm-2), absolute bistable (b; gCAN = 0.03 mScm-2) and 
conditional bistable (c; gCAN = 0.02 mS.cm-2) neurons (standard model) to an event protocol with 
a 0.2 second supra-threshold current step (a1, b1, c1) and to the event-delay protocol, in which 
the event is followed by a 1 second sub-threshold depolarizing current mimicking background 
activity in PFC networks during the delay of a working memory task (a2, b2, c2). Note the after-
depolarization potential (ADP) following spiking in the conditional bistable neuron. The thresholds 
for initiating (θON) and terminating (θOFF) spiking are represented as green and red dotted lines 
respectively, and the bistability domains are colored in lavender. Red arrows denote the positive 
feedback loop between spiking, CaL activation (xCaL), increased [Ca2+] and CAN activation (xCAN). 
Right panels (a3, b3, c3): bifurcation diagrams illustrating the stable fixed point (resting potential, 
green solid curve) and the minimal/maximal potentials of action potentials during the limit cycle 
(rhythmic spiking, red solid curves), the thresholds for initiating (θON, green doted lines) and 
terminating spiking (θOFF, red doted lines) and the background delay current during the delay (IInj-

delay, black arrows). Bistability domains are colored in lavender. Black dotted lines indicate 
unstable fixed points of the models. 
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Figure 4.2. Existence and expression of conditional bistability “in vitro”. 
(a) Discharge behaviors of the standard neuron model in response to the event/delay protocol 
(IInj-event = 0.6 µA.cm-2) as a function of the maximal CAN conductance gCAN and the background 
delay current IInj-delay. M, CB and AB indicate the monostability, conditional bistability and absolute 
bistability domains, respectively. The memoryless and transient memory, stable conditional 
memory and stable absolute memory behaviors are respectively indicated as yellow, orange, 
lavender and purple domains (lower panel) and discharges (upper panels). (b, c) Heat maps of 
the duration of memoryless and transient memory behaviors (b) and of the mean firing frequency 
of stable memory behaviors (c) during the delay period, as a function of the maximal CAN 
conductance gCAN and the background delay current IInj-delay. Note that above θON, the tonic current 
is supra-threshold and the neuron fires even when no event precedes the delay period. Saw-teeth 
at the border between memoryless and transient regions occur due to the discretization of a 
continuous behavior: increasing the maximal CAN conductance leads to a single spike at more 
than 25 ms after the onset of the delay period (transient memory), then before 25 ms 
(memoryless), then several spikes before and after 25ms (transient memory). See the definition 
of transient memory behavior in Methods. 
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Figure 4.3. Conditional bistability is a generic mnemonic property of neurons endowed 
with depolarizing spike-mediated mechanisms. 
Thresholds (a-e) for initiating (θON, green lines) and terminating spiking (θOFF, red lines) for models 
with fixed (i.e. voltage- or calcium-independent) time constants suppressing the dynamic 
asymmetry of the CaL current (a), the CAN current (b) or both (c) or for models endowed with the 
sole CaL current with a voltage-dependent (d) or a fixed (e) time constant, as a function of the 
supra-threshold maximal conductance and background delay current. (f) ADP amplitudes of the 
five alternative models presented in (a-e). Line colors match the respective panel titles and the 
orange line applies to the standard model. Note that for ADP amplitudes (f) supra-threshold 
maximal conductances were normalized by the boundary value defining the transition between 
conditional and absolute bistability for each model. M, CB and AB indicate the monostability, 
conditional bistability and absolute bistability domains, respectively. Saw-teeth at the border 
between memoryless and transient regions occur due to the discretization of a continuous 
behavior: increasing the maximal CAN conductance leads to a single spike at more than 25 ms 
after the onset of the delay period (transient memory), then before 25 ms (memoryless), then 
several spikes before and after 25ms (transient memory). See the definition of transient memory 
behavior in Methods. 
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Figure 4.4. Conditional bistability confers robust event memory under strongly 
fluctuating synaptic inputs “in vivo”. 
(a) Membrane-potential, CaL and CAN activation, calcium dynamics and AHP activation traces 
of the standard neuron model in response to the event, delay and event/delay protocols for a 
realization of the excitatory (green) and inhibitory (red) synaptic fluctuating conductances. Spikes 
belonging to bursting and non-bursting episodes are indicated in lavender and yellow, 
respectively. Small activation build-ups of spike-mediated currents during non-bursting episodes 
and larger build-ups during bursting episodes are signaled by yellow and lavender stars, 
respectively. See Methods for criteria that define bursting episodes. (b) Spike raster plot for 250 
trials of the protocol depicted in (a), with different realizations of synaptic fluctuations. Color code 
as in (a). (c) Frequency poststimulus time histogram (PSTH) of the discharge (250 trials) after the 
onset of event (light blue), delay (fuschia) and event/delay (lavender) protocols; difference 
between the PSTH during the event/delay protocol and the sum of PSTHs during the event and 
delay protocols (salmon). Frequency means ± standard error means are displayed. The memory 
time constant is defined as the time constant of firing frequency relaxation to its steady-state value 
in the event/delay protocol. (d) Memory time constant map of persistent activity, as a function of 
the mean and standard deviation of the excitatory fluctuating conductance of the event input 
during the event/delay protocol. The red dot indicates conductance parameters of the delay 
background input. When the event mean conductance is smaller than that of the delay input (left 
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part of the map), the activity builds up to the steady-state during the delay from the lower event-
trigger initial frequency (e.g. pink curve in panel (c), for a null event mean conductance) and the 
time constant is smaller. (e) Memory time constant map of persistent activity, as a function of the 
mean and standard deviation of the excitatory fluctuating conductance of the delay input during 
the event/delay protocol. (d-e) Means across 100 trials; other synaptic parameters as in the 
standard model (see Methods). (f) Probability distribution of onset times of bursting episode as a 
function of their order of occurrence during the delay period (20 s) of the event/delay protocol, 
across 250 trials. (g-i) CAN conductance activation (g), mean duration (h) and mean spiking 
frequency (i) during bursting (lavender) and non-bursting (yellow) episodes, as a function of their 
order of occurrence during a delay period (20 s) in the event/delay protocol. Means ± standard 
error mean across 250 trials. (j) Probability of being in a burst episode during the delay period 
(2.5 s) in the event/delay protocol.  (k) Mean instantaneous spiking frequency as a function of the 
normalized time within bursting and non-bursting episodes (normalized time equals 0 at the 
beginning of episodes, 1 at their end). Means ± standard error mean across 100 trials. 
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Figure 4.5. Conditional bistability promotes irregular discharge under “in vivo” 
conditions. 
(a, b) CV (a) and CV2 (b) measures of the inter-spike interval (ISI) distribution of the discharge in 
monostable (black dots; gCAN = 0 mScm-2) and conditionally bistable (colored dots; gCAN = 0.025 
mScm-2) neurons, in response to the input of an event protocol (x-axis) and to the 2.5 s delay 
input of an event/delay protocol (y-axis). The color code for conditionally bistable neurons 
indicates the firing frequency during the delay. Both inputs have the same excitatory input 
parameter taken in the ranges 0-0.05 mScm-2 for the mean and 0-0.025 mScm-2 for the standard-
deviation, to limit the effect of firing frequency, which affects CV/CV2 measures in a non-trivial 
fashion (Compte, 2003).  In both protocols, the event input lasts 0.5 s, as in reference (Compte, 
2003). In the event/delay protocol, the event input has a 0.065 mScm-2 mean and a 0.0125 mScm-

2 standard-deviation. (c, d) In the conditionally bistable neuron, the highest discharge irregularity 
during the delay, measured by the CV (c, y-axis) and the CV2 (d, y-axis) is observed at 
intermediate memory time constants (~300-600 ms; x-axes) and frequencies of transitions 
between bursting and non-bursting episodes (color code). (e, f) At moderate memory time 
constants (400-600 ms), the means of CV (e) and CV2 (f) probability density functions during the 
delay are significantly higher in the CB neuron during the delay (thick black curve), compared to 
those during the event (thin black curve); p<1e-9 on two-tailed Wilcoxon rank sum tests for both 
the CV and CV2 distributions (distributions were not normal, according to Kolmogorov-Smirnov 
goodness-of-fit hypothesis tests; for the CV distribution nevent = 29092, ndelay = 5448, 
median(CVevent) = 0.5478 and median(CVdelay) = 1.0142;  for the CV2 distribution nevent = 26755, 
ndelay = 5345, median(CV2,event) = 0.5634 and median(CV2,delay) = 0.8043). (g, h) Irregularity of the 
discharge plotted as a function of firing frequency, for the conditionally bistable (lavender) and 
monostable neurons (black), in response to stationary synaptic inputs, as measured by the CV 
(g) and the CV2 (h). 
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Chapter 5 : Conclusion & Future Directions 

As an undergraduate, I served as a leader for a student organization called MIT BrainTrust, which 

brought together students and individuals with brain injury in the Boston community. Our goals 

were to provide social support for people living with brain injury, to raise money and awareness 

for brain injury research, and to inspire students interested in science or medicine to improve 

health care and treatment of TBI. Working with this organization and hearing the stories of so 

many individuals with brain injury was a driving factor in choosing my field of study in graduate 

school. I wanted to do TBI research, with the hope that my discoveries could eventually improve 

the lives of the friends I had made through BrainTrust. 

My thesis work aimed to 1) better understand basic mechanisms of neuronal functions like 

persistent activity in working memory, which we found is supported by conditional bistability in 

PFC neurons, 2) investigate how the brain is altered by TBI, and 3) identify potential new 

therapeutic targets for preventing or treating post-TBI health issues. We looked beyond the injury 

site, and investigated how TBI changes cellular and circuit excitability across the entire 

corticothalamic circuit. Importantly, we examined these outcomes three weeks post-TBI, a chronic 

time point, to understand which effects last longer than others and which might be better targets 

for treatment. Our findings indicate that while most of the corticothalamic circuit has returned to 

normal excitability levels by three weeks, the nRT has a significantly lower frequency of 

spontaneous inhibitory postsynaptic currents. Future studies using cell-type-specific labeling or 

optogenetic targeting of specific nRT inputs could address remaining questions like which nRT 

neurons (ex. parvalbumin-expressing vs. somatostatin-expressing, see (Clemente-Perez et al., 

2017)) are experiencing this deficit, and whether the synaptic deficit is coming from one or more 

upstream brain regions.  

We also considered the role of one particular inflammatory pathway, the C1q complement 

pathway, which has been implicated in TBI in a few studies (Al Nimer et al., 2013; Bellander et 
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al., 2001; Krukowski et al., 2018; Manek et al., 2018; Rostami et al., 2013; von Gertten et al., 

2005; You et al., 2007) but whose role had not been studied in detail, particularly in the 

corticothalamic circuit. We showed that the C1q pathway has a major effect on regulating 

inflammation and neuron loss in the corticothalamic circuit. Furthermore, we found that treating 

mice with an antibody that blocks the C1q complement pathway reduces chronic inflammation 

and nRT neuronal loss after TBI. We hope that future studies will determine if this antibody has 

other therapeutic effects in TBI, for example improving sensory processing or sleep. It would also 

be useful to understand the mechanisms of how glia and/or neurons respond to the antibody’s 

effects, to know if there might be any adverse side effects or potential applications of the antibody 

in other therapeutic contexts. 

Our use of electrophysiological techniques has given us valuable information about how the 

intrinsic, synaptic, and bulk cortical activity of the corticothalamic circuit are chronically altered by 

TBI, which we examined at a very detailed level. In addition to the reduction of nRT sIPSCs, we 

saw that TBI mice had increased power in the delta frequency band (1-4 Hz), which is prominent 

in behavioral states including sleep. Future studies should probe in more detail how these 

changes might relate not only to sleep disruption, but also to other behavioral outcomes of TBI 

such as memory loss or epilepsy. We have started a collaboration with Anita Luthi’s lab at the 

University of Lausanne to study whether sleep architecture is altered in TBI, and whether blocking 

the C1q pathway might improve or restore sleep patterns in TBI mice. 

Our preliminary studies testing the potential therapeutic effects of small molecules have just 

started to scratch the surface. Further studies are needed to understand how RA8, a molecule 

which alters astrocyte transcriptional states, might be able to protect the brain from chronic 

inflammation after TBI. We have seen positive outcomes in a mouse model of stroke and we 

hypothesize that it may have similar protective effects in our TBI model. We are also interested in 

another small molecule, SM2 (also known as CH-223191), which was also identified as a 

candidate in a drug screen by our collaborators in Sheng Ding’s lab at the Gladstone Institutes 
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(Kim et al., 2006). SM2 is an antagonist of aryl hydrocarbon receptors, and it is thought to protect 

cell bodies from dying after axon degeneration (Shackleford et al., 2018), which is a major cause 

of neurodegeneration in TBI. We have just started investigating the effects of SM2 in our TBI 

mouse model. 

Rodent models of TBI are useful for answering many questions and dissecting circuit mechanisms 

that could not be studied in humans. However, it is important to find ways to bridge the gap 

between animal model research and human research in order to make meaningful progress in 

treating people with brain injury. This project was inspired in part by clinical discoveries, and in 

turn we hope that our discoveries will inform future clinical TBI studies. 
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