Lawrence Berkeley National Laboratory

Recent Work

Title

ANNUAL ENVIRONMENTAL MONITORING REPORT OF THE LAWRENCE BERKELEY LABORATORY 1987

Permalink https://escholarship.org/uc/item/4pq614gn

Author

Division, Staff of the Occupational Health.

Publication Date

1988-04-01

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

OCCUPATIONAL HEALTH DIVISION

Annual Environmental Monitoring Report of the Lawrence Berkeley Laboratory LAWRENCE

MAY 2 3 1988

LIBRARY AND POCUMENTS SECTION

BL-25

1987

Prepared by the Staff of the Occupational Health Division

April 1988

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

ţ

Ð

ۍ

ANNUAL ENVIRONMENTAL MONITORING REPORT OF THE LAWRENCE BERKELEY LABORATORY

1987

Prepared by the Staff of the Occupational Health Division Lawrence Berkeley Laboratory University of California Berkeley, California 94720

Gary E. Schleimer

Editor

This work was supported by the Assistant Secretary for Environment Office of Environmental Compliance and Overview Environmental Safety and Program Support Division U.S. Department of Energy under Contract No. DE-AC03-76SF00098

PREFACE

In 1976 R.H. Thomas published the *LBL Annual Environmental Monitoring Report* in two parts. Part I (LBL-4678) discussed in detail the modeling used to determine the population dose equivalent due to Laboratory radiological operations. That volume also described natural radiation background, geological features, climate and meteorology, and the environmental surveillance program of the Lawrence Berkeley Laboratory (LBL). Part II (LBL-4827) included only the results of the sampling and measuring programs and other data necessary to determine the environmental impact of the Laboratory's radiological operations for 1975. A format similar to LBL-4827 was used in the 1976, 1977, 1978, and 1979 Annual Monitoring Reports (LBLs 6405, 7530, 9080, and 11192, respectively).

While the 1980 Annual Report, LBL-12604, was kept brief, abstracted sections from LBL-4678 were included so that the document might stand alone. The same format has been used in this report, along with updates to LBL-4678 where appropriate, and a greatly expanded description of LBL's nonradiological environmental activities.

Readers wishing a more comprehensive discussion of LBL site characteristics and population dose modeling may obtain a copy of LBL-4678 from

Gary E. Schleimer Environmental Health and Safety Department Building 75, Room 112 Lawrence Berkeley Laboratory Berkeley, CA 94720

R.O. Pauer and G.E. Schleimer of the Environmental Health and Safety Department of the Engineering Division contributed to the preparation of this report.

The bulk of the sample preparation and lab work was done by V.J. Montoya. Sample assays and computer data entry were done by W.B. Corniea. Special assays of air samples were performed by A.R. Smith.

The editor wishes to gratefully acknowledge the assistance of the Technical Information Department's editorial and word processing groups.

CONTENTS

Preface	iii
List of Tables	. v
List of Figures	vii
Abstract	. 1
Introduction	. 1
1987 Environmental Monitoring Summary	. 3
1987 Environmental Activities and Permits Issued	. 4
Environmental Monitoring Results	. 5
Radiological Results Penetrating Radiation Airborne Radionuclides Waterborne Radionuclides Ground Water	5 5 9 11 19
Nonradioactive Pollutants Waterborne Pollutants Site Wastewater Discharges	19 19 25
Population Dose Resulting from LBL Operations Accelerator-Produced Radiation Airborne Radionuclides	25 27 28
Trends—LBL Environmental Impact Accelerator-Produced Penetrating Radiation Airborne and Waterborne Radionuclides	30 30 30
Quality Assurance	30
References	37

LIST OF TABLES

-

No.	P	'age
1.	Location of LBL monitoring stations	8
2.	Effective dose equivalent at LBL boundary due to accelerator operation, 1987	8
3.	Total quantities of radionuclides discharged into the atmosphere, 1987	. 11
4.	Summary of air samples, 1987	. 12
5.	Annual gross radioactivity found in LBL perimeter air samples, 1978–1987	. 13
6.	Summary of radioiodine in perimeter air samples, 1987	. 14
7.	Summary of airborne environmental HTO and ¹⁴ CO ₂ sampling, 1987	. 14
8.	Summary of perimeter airborne environmental HTO and ¹⁴ CO ₂ sampling, 1978–1987	. 15
9.	Summary of atmospheric deposition samples, 1987	16
10.	LBL perimeter-station deposition trends, 1978–1987	. 17
11.	Summary of surface- and drinking-water samples, 1987	20
12.	Summary of surface- and drinking-water samples, 1978–1987	21
13.	Summary of sewage sampling data, 1987	22
14.	Sanitary-sewer discharge trends, 1978–1987	23
15.	Summary of ground water samples, 1987	24
16.	Summary of Building 25 wastewater sample results, 1987	25
17.	Summary of Building 77 wastewater sampling results, 1987	26
18a.	Summary of Strawberry Sanitary Sewer sampling results, 1987	26
18b.	Summary of Hearst Sanitary Sewer sampling results, 1987	27
19.	Collective effective dose equivalent resulting from LBL airborne radionuclide releases, 1987	29

No.	Pa	ige
20.	Population dose equivalent, resulting from LBL operations, 1987	29
21.	LBL QAP sample results, 1987	36

,

LIST OF FIGURES

No.	Pa	age
1.	Lawrence Berkeley Laboratory Buildings	. 6
2.	Environmental monitoring, Lawrence Berkeley Laboratory	18
3.	Annual accelerator-produced dose equivalent at the Olympus Gate Environmental Monitoring Station, 1959–1987	31
4.	Annual accelerator-produced dose equivalent at Building 90 Environmental Monitoring Station, 1962–1987	32
5.	Annual accelerator-produced dose equivalent at the 88-Inch Cyclotron Environmental Monitoring Station, 1963–1987	33
6.	Annual accelerator-produced dose equivalent at the Panoramic Way Environmental Monitoring Station, 1963–1987	34
7.	Annual releases of tritium (HTO) from the Building 75 Tritium Facility, 1969–1987	35

ANNUAL ENVIRONMENTAL MONITORING REPORT OF THE LAWRENCE BERKELEY LABORATORY, 1987

ABSTRACT

The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1987 are presented and general trends are discussed.

INTRODUCTION

Laboratory Operations

The Lawrence Berkeley Laboratory (LBL) is a multiprogram national laboratory managed by the University of California (UC) for the U.S. Department of Energy (DOE). LBL's major role is to conduct basic and applied science research that is appropriate for an energy research laboratory. LBL, birthplace of the cyclotron, was founded by the late Nobel Laureate Ernest Orlando Lawrence 56 years ago.

The Laboratory also supports nationwide university-based research by providing national facilities, including the National Center for Electron Microscopy, four large accelerators, several small accelerators, a number of radiochemical laboratories, several large gamma irradiators, and a tritium (³H) labeling laboratory. The Bevatron (Building 51 in Fig. 1) is the most massive of LBL's accelerators. Originally designed as a 6-GeV proton synchrotron, it is presently capable of accelerating ions up to ⁴⁰Ca, from 20 MeV/nucleon to 2.1 GeV/nucleon, and ions up to uranium to 1 GeV/nucleon. For certain beams the SuperHILAC is used as an injector. (This combination is called the Bevalac.) The SuperHILAC (Building 71), a heavy-ion accelerator, is a multiprogrammable research accelerator in its own right and produces ion beams up to 8.5 MeV/nucleon. The 88-Inch Variable Energy Sector-Focused Cyclotron (Building 88) routinely produces intense beams of protons to about 60 MeV, alpha particles to 140 MeV, and heavy ions to mass 40 to energies of 350 MeV. The 184-Inch Synchrocyclotron (Building 6) provides alpha particle beams with energies up to approximately 1 GeV. Aside from shutdown periods, the first two of these accelerators provide beams around the clock. The 88-Inch Cyclotron provides beams ~120 hr/wk. The 184-Inch Cyclotron ceased operations in late 1987, is being dismantled, and an intense light source is to be built in its place.

The tritium facility located in Building 75 was designed to handle kilocurie quantities of tritium (a radioactive isotope of hydrogen $-{}^{3}$ H) used as a labeling agent for a variety of molecules subsequently employed in chemical and biomedical research. The facility was expanded during 1983 and is now funded by the National Institutes of Health.

Radiochemical and radiobiological studies performed in many laboratories at LBL typically use millicurie quantities of a great variety of radionuclides. The workplace and effluent release points are continuously sampled at all installations where significant quantities of radionuclides are handled.

The Site

LBL is situated upon a hillside above the main campus of UC. The 130-acre site is located on the west-facing slope of the Berkeley Hills, at elevations ranging from 150 to 350 meters above sea level. Most of the site is within the City of Berkeley, but about one-quarter of the eastern part is within the City of Oakland. It is located three miles east of San Francisco Bay and about fifteen miles east of San Francisco.

LBL is located in an urban environment on land owned by the University. The LBL site is bordered on the north by predominately single-family homes and on the west by multiunit dwellings, student residence halls, and commercial districts. The area to the south, which is part of the University lands, is maintained in a largely natural state and includes recreational facilities and the University Botanical Garden. The population within an 80-km (50-mi) radius of the Laboratory is approximately 5.1 million (1980 census).¹

The Laboratory's activities are located both on site and off site. There are 67 buildings on the LBL hillside site, plus additional facilities located on the University campus, notably the Donner Laboratory of Biology and Medicine and the Melvin Calvin Laboratory. The on-site space consists of 1,350,000 gross square feet (gsf) in about 60 buildings: 1,307,000 in DOE buildings and trailers and 43,000 in University-owned buildings. Off-site space utilized by LBL consists of 260,000 gsf in various University buildings on the UCB campus and 130,000 gsf in leased facilities in Emeryville and Berkeley.

The Laboratory's population is approximately 3,850, including about 600 visiting scientists and engineers. About 3,100 are located on site, 700 are located in campus buildings, and about 50 are in offsite leased space.

The Climate

The climate of the LBL site is greatly influenced by its nearness to the Pacific Ocean and its exposure to the maritime air that flows in from the San Francisco Bay. Seasonal temperature variations are small, with a mean temperature difference between the summer 63°F and winter 48°F of only 15 degrees. Relative humidity ranges from 85–90% in the early morning to 65–75% in the afternoon. The average annual rainfall is 25 inches. About 95% of the rainfall occurs from October through April, and intensities are seldom greater than 0.5 inch per hour. Thunderstorms, hail, and snow are extremely rare. Winds are usually light, but summer sea breezes range up to 20–30 mph. Winter storm winds from the south or southwest have somewhat lesser velocities.

Geology

Most of the LBL site is underlain by complex sedimentary and volcanic rock. In general, the bedrock is relatively weak and weathers deeply. Consequently, a colluvial cover has been produced that is a few feet thick. The major geologic unit consists of poorly consolidated sandstones, siltstones, claystones, and conglomerates of relatively low strength and hardness. These rocks are blanketed by clay soils having high shrink-swell characteristics. The western and southern portions of the site are underlain by moderately well consolidated shales, siltstones, sandstones, and conglomerates. Throughout most of the upper elevations a volcanic unit overlays and is interbedded with the upper layers of the major geologic unit.

The Hydrogeology

Highly complex ground-water conditions are present at LBL. Year-round springs, annual surface seeps and variable water levels in observation wells indicate discontinuous and localized aquifers. These conditions are due to a combination of factors: open fracture volcanic flow rock, impervious claystone interbeds, permeable sandstone lenses, and irregular fracture patterns associated with past folding and faulting. During the rainy season, ground-water levels increase and cause a decrease in slope stability. Consequently, the Laboratory has installed an elaborate ground-water detection and drainage system. The drainage system uses both pumped vertical and free-flowing horizontal wells (hydraugers). Although ground-water wells are not used as a source of Laboratory or local community drinking water, two hydraugers (shown as dotted lines on Fig. 1) are sampled for gross radioactivity and tritium. Ground-water drainage feeds into Blackberry Creek on the north portion and into Strawberry Creek on the south portion of the Laboratory. Both creeks eventually flow through the Berkeley campus and then into the City of Berkeley storm drainage system, which empties into San Francisco Bay.

Water Supply

The Laboratory's primary water supply is the East Bay Municipal Utility District (EBMUD) Shasta Reservoir, which holds approximately two million gallons. The Laboratory's high pressure fire and domestic systems are supplied from this reservoir. A secondary source is the EBMUD's Berkeley View Tank, which holds approximately one million gallons. Water mains have automatic shutoff valves for protection in case of a main breakage. The LBL water distribution system operates entirely by gravity flow, requiring no pumps or energy consumption. The Laboratory has recently installed two 200,000-gallon water storage tanks at separate locations for fire protection. Diesel-powered pumps provide the necessary

flow and pressure for maintaining a reliable fire protection system during emergencies.

Sanitary Sewer Systems

The west-side LBL sanitary system connects to the City of Berkeley sewer main at Hearst Avenue. On the south side of the Laboratory, a second connection is also made to the City of Berkeley system. The Berkeley system flows to the EBMUD Sewage Treatment Facility, where the wastewater undergoes primary and secondary treatment before its discharge to San Francisco Bay. To ensure that its wastewater complies with the EBMUD discharge limits, the Laboratory monitors its wastewater for pH, toxic metals, and radioactivity. In addition, wastewater from both plating shops and a chemistry building is monitored and treated appropriately before discharge.

Storm Drainage System

Because of its hillside location and moderate annual rainfall, surface run-off is a prevalent feature at LBL. Consequently, an inclusive storm system, designed and installed in the 1960s, discharges into the Blackberry Creek watershed on the north side of LBL and the Strawberry Creek watershed on the south side. This system provides for runoff intensities expected in a 25-year maximum-intensity storm.

1987 ENVIRONMENTAL MONITORING SUMMARY

In order to establish whether LBL research activities produced any impact on the population surrounding the Laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year.² For 1987, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG)³ and of the natural radiation background. [The reader should note that throughout this report the phrase "population dose" should be taken to mean collective effective dose equivalent (CEDE) and "dose" or "dose equivalent" to mean effective dose equivalent.]

The maximum effective dose equivalent delivered to a hypothetical member of the community is defined as the maximum perimeter dose equivalent. That value [the 1987 dose equivalent at the Olympus Gate Environmental Monitoring Station (MS) B-13D] was ≤ 4.1 mrem (3.5 mrem from direct radiation and 0.6 mrem from radionuclide releases), about 4% of the RPG. The hypothetical maximum exposure to an individual from airborne radionuclides would be to a person residing just outside the western LBL perimeter. The 1987 effective dose equivalent to such a person would have been ≤ 1.6 mrem—less than 2% of the RPG. The total population dose equivalent attributable to LBL operations during 1987 was ≤ 13 manrem, an average of about 0.003% of the RPG of 100 mrem maximum effective dose equivalent to individual members of the surrounding population. CEDE is defined as the sum of the "doses" delivered to all individuals within an 80-km (50-mi) radius of the Laboratory.

Small amounts of ¹⁴C, ³⁵S, ¹²⁵Xe, ¹²⁵I, ¹³¹I, and unidentified alpha and beta-gamma emitters were released from LBL laboratory stacks. The collective effective population dose equivalent attributable to the foregoing releases is ~0.1 man-rem. The majority of the impact of LBL radionuclide operations is from the airborne release of 310 Ci of tritium (as HTO), which is responsible for a CEDE of approximately ≤ 10 man-rem, and a hypothetical maximum off-site individual exposure (from airborne radionuclides) of ≤ 1.6 mrem.

To put the Laboratory's impact into perspective, an approximate value for absorbed dose from external and internal natural sources (e.g., cosmic rays, radiation from continental rocks, naturally occurring radioactive potassium-40 in the muscles and bones) to each person within 80 km (50 mi) of LBL is roughly 0.1 rem/yr, which produces a natural annual population dose of ~510,000 man-rem.

Gross data for radioactivity in air and water for the period 1978–1987 are presented for comparison with the 1987 data. These gross data show that, except for periods following atmospheric nuclear weapons tests (China, 1980) and the Chernobyl fire (1986), gross radioactivity concentrations in air and water in the vicinity of LBL show only small fluctuations about background levels.

1987 ENVIRONMENTAL ACTIVITIES AND PERMITS ISSUED

Pursuant to LBL's long-term development plan, two environmental assessments (EAs) were completed in 1987 by the Laboratory's Plant Engineering Department in consultation with Ira Fink and Associates of Berkeley, California. These assessments have the following titles:

1. Environmental Assessment: 1–2 GeV Synchrotron Radiation Source

2. Lab-Wide Site Development Plan Final Report

Copies of these assessments were presented to the San Francisco Operations Office of DOE and to the UC. The assessments were prepared in compliance with the National Environmental Policy Act (NEPA).

For further information about these assessments contact

Donald G. Eagling Plant Manager Building 90G Lawrence Berkeley Laboratory Berkeley, CA 94720

In order to carry on its research, LBL designs and builds much of its required apparatus. These activities require substantial technical support, including the operation of fabrication, assembly, testing, and waste-handling facilities. The Laboratory operates these facilities under a series of environmental permits issued by state and local agencies. A list of these permits by type and issuing agency, with expiration date, is given below.

Environmental Permits

- 1) Source Operating Permits, Bay Area Air Quality Management District, Expire July 1, 1988.
 - Vapor Degreaser, Building 25A
 - Cold Cleaner, Building 46
 - Vapor Degreaser, Building 53
 - Ultrasonic Degreaser, Building 53
 - Machine Shop Tools, Building 53
 - Machine Shop Tools, Building 58
 - Vapor Degreaser, Building 64
 - Machine Shop Tools, Building 70A
 - Sawdust Collector, Building 74
 - Cold Cleaners (2), Building 76
 - Machine Shop Tools, Building 76
 - Sawdust Collector, Building 76
 - Paint Spray Booth, Building 76
 - Gasoline Storage Tank, Building 76
 - Vapor/Spray Degreaser, Building 77
 - Solder/Grinding Hood, Building 77
 - Ultrasonic Degreaser, Building 77
 - Machine Shop Tools (2), Building 77
 - Paint Spray Booth, Building 77
 - Sandblast Exhaust, Building 77
 - Ceramic Machine Shop Tools, Building 77
 - Paint Drying Oven, Building 77
 - Solvent Cleaning, Building 77
 - Metal Rack Saw, Building 79
 - Machine Shop Tools (2), Building 88

- Solder Hood, Building 88
- Solvent Cleaning, Building 934
- 2) Wastewater Discharge Permit, East Bay Municipal Utility District, Expires June 8, 1988.
 - Plating Shop, Building 25
 - Plating Shop, Building 77
- Hazardous Waste Facility Permit, California Department of Health Services, Expires November 7, 1988.
- 4) Storage Tank Registration. California Department of Health Services. Eight underground storage tanks, seven for petroleum fuel, one for waste oil.

Environmental Activities

1) An underground diesel storage tank, which had released an unknown amount of diesel into the soil, was removed. In addition, contaminated soil around and beneath the tank was also removed. Soil samples, taken during the soil removal operation, indicated that the contaminants had been removed to an acceptable level. In order to confirm that any remaining contaminants are not infiltrating into the ground-water, a well was installed below the former location of the tank and groundwater samples will be taken semiannually for at least the next year.

2) The LBL Environmental Impact Report had been accepted by the UC in order to extend its contract with the DOE to manage the Laboratory. This report assessed the potential impacts on the environment if the elements contained in the *Lawrence Berkeley Laboratory Site Development Plan* were to be implemented by continuation of the existing UC/DOE management arrangement. The current contract expired on September 30, 1987. The extension covers the period from October 1, 1987 through September 30, 1992.

3) A grease/oil interceptor had been installed at a steam cleaning pad. The effluent from steam cleaning operations is collected in an underground catch basin and pumped successively through an oil separator and then through a grease separator prior to discharge to the sanitary sewer system. The oil and grease is removed from the separator and properly disposed.

ENVIRONMENTAL MONITORING RESULTS

Radiological Results

Penetrating Radiation

To determine the radiological impact of LBL accelerator operations, we maintain permanent monitoring stations at four points about LBL's perimeter (see Fig. 1 and Table 1).

Each station contains sensitive neutron and gamma pulse counters. The neutron detectors are ~500cm³ cylindrical BF₃ gas-proportional counters housed in 2.5-inch-thick cylindrical paraffin moderators. The gamma detectors are energy-compensated Geiger-Muller chambers. The output pulses from each of the eight detectors (one of each type is installed at each monitoring station) are prescaled and telemetered to registers in Building 75.⁴ Each LBL accelerator building contains at least one somewhat smaller moderated BF₃ neutron detector, whose output pulses are also prescaled and telemetered to Building 75. By comparing the accelerator neutron monitor output with the output of the perimeter-station neutron monitors, one may assign the perimeter dose equivalent to the accelerator responsible for it. Operational checks of the system are performed daily, and detectors are calibrated semiannually. A typical dose equivalent value for a perimeter-monitoring-station neutron detector corresponds to 0.43 µrem/pulse. A gamma register-pulse corresponds to about 1.3 µrem.

Figure 1. Lawrence Berkeley Laboratory buildings.

KEY TO LBL BUILDINGS SHOWN IN FIGURE 1

Bldg. Description

No.

HILL-SITE BUILDINGS .

Λ	Magnetic Fusion Energy (MFE)
5	Magnetic Fusion Energy (MEE)
5	Magnetic Fusion Energy (WHE)
0	184-Inch Cyclotron
6A	Utilities Service
7	Central Stores & Electronics Shops
9	Magnetic Fusion Energy
10	Biomedical Research and Photography
12	Central Stores Annex
14	Accelerator & Fusion Research
	& Earth Science
16	Magnetic Fusion Energy Laboratory
17	Solar Defricaration Process & Salvage
25	Mashanical Tashnalagy
25	Electronical Fechnology
25A	Electronics Snops
26	Medical Services
27	Cable Shop & High Voltage Test
29	Detector & Instrumentation Projects &
	Biomedical Research & Radiation Effects
31	Chicken Creek Barn
37	Utilities Service
40	Electronics Warehouse
41	Computer Aided Drafting
42	Earth Science Field Service
44	Indoor Air Pollution Studies
15	Fire Apparetus
45	A applatator Development Flootropics
40	Draineta & Deal Time Statement (DTSC)
	Projects & Real Time Systems Group (RTSG)
46A	Real Time Systems Group (RTSG)
47	Advanced Accelerator Study
48	Fire Station
50	Physics, Accelerator & Fusion Research
	& Nuclear Science
50A	Physics, Director's Office & Earth Science
50B	Physics & Computer Center
50C	CAM Division Office & Physics
50D	MCSD & Nuclear Science
50E	Farth Sciences
50E	Information & Computing Sciences Division
501	Dublic Information & Datanta
51	Public information & Patents
51	Bevalac/Bevatron
SIA	Bevatron Experimental Area
51B	External Particle Beam (EPB) Hall
52	Magnetic Fusion Energy Laboratory
53	SuperHILAC Development
54	Cafeteria
55	Research Medicine
55A	Nuclear Magnetic Resonance (NMR)
56	Cryogenic Facility
58	Accelerator Research & Development
584	Accelerator Research & Development
50 A	Addition
60	
00	nign Bay Laboratory
61	Standby Propane Plant
62	Materials & Chemical Sciences
63	Accelerator & Fusion Research
64	Accelerator & Fusion Research
65	Administrative Data Processing

66	Surface Science & Catalysis Lab
68	Upper Pump House
69	Materiel Management & Purchasing
70	Nuclear Science, Applied Science & Earth Sciences
70A	Nuclear Science, Materials & Chemical Sciences & Earth Sciences
71	Heavy Ion Linear Accelerator (HILAC)
71 A	HILAC Rectifier
71B	HILAC Annex
72	National Center for Electron Microscopy
72A	High Voltage Electron Microscope (HVEM)
72B	Atomic Resolution Microscope (ARM)
72C	ARM Support Laboratory
73	Atmospheric Aerosol Research
74	Biomedical Laboratory
74B	Biomedical Laboratory Annex
75	Radioisotope Service & National Tritium
-	Facility (NTF)
75A	Compactor Processing & Storage Facility
76	Craft & Maintenance Shops
77	Mechanical Shops
77A	UHV Phase I Assembly Facility*
78	Craft Stores
79	Metal Stores
80	General Research Laboratory
80A	Telephone Services
81	Liquid Gas Storage
82	Lower Pump House
83	Cell Culture Laboratory
88	88-Inch Cyclotron
90	Accounting & Financial Mgmt., Applied Science,
	Employment, Engineering, Personnel,
	Protective Services, Superconducting
	Super Colliding Group (SSC) & TID
	SMALL BUILDINGS AND TRAILERS
B-4A	Safety Equipment Storage
B-6B	Deionizer Building
B-7A	Radio Shop
B-7B	Office Trailer
B-7C	Office Trailer
B-7E	Office Trailer
B-13A	Environmental Monitoring West of 88
B-13B	Environmental Monitoring West of 90
B-13C	Environmental Monitoring South of UC Recreation Area
B-13D	Environmental Monitoring North of 71
D 100	

- B-13E Sewer Monitoring Station, Hearst Avenue B-13F Sewer Monitoring Station, Strawberry Canyon Waste Monitoring Station, West of 70 Power Supply House Office Trailer
- B-13G
- B-16A
- B-29A
- B-29B Office Trailer
- B-29C Office Trailer B-75B
 - Office Trailer

Building No.	Name
B-13A	Building 88 Environmental MS
B-13B	Building 90 Environmental MS
B-13C	Panoramic Environmental MS
B-13D	Olympus Gate Environmental MS

Table 1. Location of LBL monitoring stations (MS).

The neutron background attributable to cosmic rays measured at LBL exhibits small fluctuations about a mean value of 3.3 mrem/year.⁵ Table 2 lists the accelerator-produced fence-post dose equivalents measured at each environmental monitoring station during 1987. The fence-post neutron dose equivalent and gamma-ray dose equivalent attributable to LBL accelerator operations in 1987 (see Table 2) are characterized as follows.

1. The 184-Inch Cyclotron produced no dose discernible above background as measured at the Panoramic Environmental Monitoring Station.

2. The SuperHILAC and Bevatron contributed approximately 60% and 40%, respectively, of the fence-post dose equivalent measured at the Olympus Gate Environmental Monitoring Station. The 3.5 mrem was delivered fairly uniformly during the operating year.

3. The 88-Inch Cyclotron fence-post dose equivalent of 2.1 ± 0.4 mrem is primarily attributable to stray neutrons and scattered photons produced during 13 light-ion (helium-3, p⁺, D⁺, helium-4) runs during

	1987 total above background						
Station	gamma (mrem)	n (mrem)	Total ^a (mrem)				
Olympus Gate MS	0	3.5 ± 0.7	3.5 ± 0.7				
Building 90 MS	0	0.7 ± 0.3	0.7 ± 0.3				
Building 88 MS	0.7 ± 0.2	1.4 ± 0.3	2.1 ± 0.4				
Panoramic MS	0	≤0.7	≤0.7				
Standard for comparison (Dose to individuals	at maximum	point of expo	100 ^b osure)				

Table 2.Fence-post annual effective dose equivalent at
the LBL boundary due to accelerator operation,
1987.

^aThe errors shown are those associated with the actual counts and calibration-source uncertainties. Neutron flux-to-dose equivalent conversion factors are not known to this accuracy. ^bSource: Reference 3. ۵,

1987. (The fence-post dose equivalent from radionuclide releases at this station was calculated to be 0.6 mrem for 1987.)

The DOE Orders, which provide detailed requirements for radiation protection, under which DOE contractors (LBL, for example) operate, include a table (see Ref. 3) that assigns dose equivalent rate vs. neutron flux density values for neutrons of various energies. In the interest of more accurately reporting the impact of the 88-Inch Cyclotron on LBL's neighbors, measurements of the average energies of the stray neutrons that were produced during the 88-Inch Cyclotron light-ion runs were made at the 88-Inch Environmental Monitoring Station (EMS) in 1985. The measurements⁶ indicated that previously reported values of fence-post dose equivalent were conservatively reported by a factor of more than five. The value of 1.4 ± 0.3 mrem attributable to neutron fluence reported for 1987 reflects less conservative but more realistic neutron energy vs. dose equivalent conversion factors. A neutron spectrometer was installed in the 88 EMS in early 1988 and neutron spectral measurements are ongoing.

4. With the exception of two short periods at the 88-Inch Cyclotron EMS, the continuous gamma measurements telemetered from the four monitoring stations showed no significant correlation with LBL accelerator operation during 1987 and were thus interpreted as constituting the natural gamma background for 1987. The mean value of gamma background inside the monitoring stations was 84 ± 5 mrem for 1987.

LBL's Environmental Health and Safety (EH&S) Department operates a radiological and chemical waste storage yard north and an instrument calibration facility south of Building 75. (The small trailer "complex" on Fig. 1 south of Building 75 is Building 75B, which houses EH&S administrative and operational personnel.)

A recording Geiger-Muller instrument in the southeast corner of Building 75B continuously monitored impact from calibration activities. The instrument recorded a total exposure of 113 ± 7 mrem during 1987 for a net annual effective dose equivalent attributable to calibration activity of 29 ± 7 mrem. A similar instrument located in Building 75A recorded a total exposure of 99 ± 6 mrem for a net exposure of 15 ± 8 mrem.

The 75B instrument is located roughly 10 m from sources of radiation, 70 m from the perimeter fence, 270 m from the nearest commercial (40 hour/wk) occupancy [the Lawrence Hall of Science (LHS)], and 500 m from the nearest home.

The ~30 mrem net exposure at 75B predicts an impact of ~0.7 mrem/yr at the perimeter; < 0.01 mrem/yr (40 hours/wk occupancy) at LHS; and < 0.01 mrem/yr at the nearest home. The sources of radiation monitored by the Building 75A instrument (mainly packaged low-level radioactive waste) are approximately midway between the LBL perimeter fence and the monitor, implying a fence-post dose at that location of ~15 mrem/yr. However, the perimeter fence adjacent to 75A is on UC land and the distances to the nearest occupancies (LHS and private homes) are approximately the same as from the calibration facility discussed above. Thus the impact from this radiation source to the public would be approximately one-half of that from the calibration facility.

LBL has several multicurie gamma irradiators used in radiobiological and radiochemical research. The largest of these units is a 60 Co unit housed in an interlocked, massive, reinforced concrete-covered labyrinth built as part of LBL's Building 74. (This unit is also the irradiator closest to the LBL perimeter.) Surveys taken when the irradiator was upgraded and reloaded found no area where the stray radiation field exceeded 1 mrem/hr, 1 meter from the outside walls or ceiling. This irradiator is ~80 m from the LBL perimeter fence, 150 m from the nearest "commercial" occupancy (a UCB Botanical Garden building), and more than 700 m from the nearest house. The projected annual dose equivalents to members of the public would be: at the perimeter fence <1.4 mrem/yr; at the Botanical Garden house (40-hr/wk occupancy) <0.1 mrem/yr; and at the nearest house <0.02 mrem/yr (168-hr/wk occupancy).

Airborne Radionuclides

Gross atmospheric particulate beta and alpha activities are measured by air sampling at 14 points: Four perimeter environmental monitoring stations and 10 of the 14 "environmental sampling sites" identified in Fig. 1. (The sites on the north side of Building 75 and the roof of Building 4 are rain collectors. The sites at LHS and west of Building 69 are tritium samplers.) The Building 3 site contains samplers for HTO (tritiated water) and ¹⁴CO₂. Atmospheric air is also sampled for radioiodines at the four perimeter monitoring stations. The gross beta and alpha sampling media are $10 \text{ cm} \times 23 \text{ cm} (4 \times 9 \text{ inch})$ fiberglass-polyester filters through which air is pumped at 113 l/min (4 ft³/min) at the on-site locations, and 75 l/min (2.7 ft³/min) at the perimeter stations. TEDA-doped activated carbon cartridges are used to sample air for radioiodine at the four perimeter stations. Samples are removed weekly. Before they are counted, they are set aside for five days to enable short-lived radon and thorium daughters (naturally occurring airborne radionuclides) to decay. The filters are loaded into an automatic counter that determines their gross alpha activity by means of a large-area 0.25-mil Mylar window gas proportional counter. Gross beta activity is counted with Geiger-Muller detectors with 30 mg/cm² windows. The detection limit for alpha emitters is 3×10^{-15} μ Ci/ml. The detection limit for beta emitters is $120 \times 10^{-15} \mu$ Ci/ml. To ensure accuracy of all counting results, each group of samples counted includes at least one radiation standard sample and a number of background samples. Radioiodines in air, specifically ¹²⁵I and ¹³¹I are assayed by analyzing the activated carbon cartridges with a sodium iodide detector connected to a multichannel analyzer. The detection limits for ¹²⁵I and ¹³¹I are $4 \times 10^{-15} \mu$ Ci/ml and $12 \times 10^{-15} \mu$ Ci/ml, respectively.

Alan R. Smith of LBL's low background counting facility (LBCF), located in Bldg. 72, aggregated the 14 weekly environmental particulate air samples into sets and analyzed the sets for airborne particulate gamma-emitting nuclides. The sets were allowed to decay for at least two weeks and then analyzed with a large high-purity germanium detector (HPGE). Each set represented particulates collected from ~14,500 M³ of air, and was counted for a minimum of 1,000 minutes. Aside from very low concentrations of ¹³⁷Cs attributable to atmospheric nuclear weapons testing and the 1986 Chernobyl fire (¹³⁷Cs was found in concentrations of roughly $2 \times 10^{-17} \,\mu$ Ci/ml, about 0.000005% of the RPG), the only other gamma-emitters found in the samples were ⁷Be and ²¹⁰Pb. The ⁷Be is produced by cosmic-ray interactions with atmospheric nitrogen (and can also be produced by accelerators). It was found in concentrations ranging from 1.2×10^{-14} to $1.5 \times 10^{-13} \,\mu$ Ci/ml and averaged $4.8 \times 10^{-14} \,\mu$ Ci/ml, which is 0.001% of the RPG. The detection limit for ⁷Be is $2 \times 10^{-16} \,\mu$ Ci/ml for a 1,000 minute count. The concentrations of ²¹⁰Pb, a natural air contaminant, were not computed.

Inasmuch as the DOE Orders³ make no provision for unidentified radionuclides, throughout this report unidentified radionuclides will be conservatively labeled thorium-232 if they are alpha-emitting material or strontium-90 if beta-emitting material. The assertion of conservatism is made because, while ⁹⁰Sr and ²³²Th are found at LBL, they are only in a few LBL laboratories and, for isotopes used at LBL, represent the most restrictive beta and alpha emitters, respectively, 'listed in Reference 3. Although ²²⁷Ac, which is 4500 times more restrictive a beta emitter than ⁹⁰Sr, is also found at LBL, its most likely state is in equilibrium with its alpha emitting daughters, 18-day ²²⁷Th and 14-day ²²³Ra, and it would thus be detected as an alpha emitter.

Tritium, as HTO, is sampled by passing atmospheric air through a column containing silica gel. Adsorbed water is "exchanged" into distilled water, and an aliquot (5 ml) is placed in a vial and counted in a liquid scintillation counter. The detection limit for HTO in air is $500 \times 10^{-12} \,\mu\text{Ci/ml}$.

As with gross alpha and beta samples, silica gel HTO samples are changed weekly. Each of the four perimeter environmental monitoring stations contains a tritium sampler, as does the Building 3 site. The stack from the tritium labeling facility is also monitored for tritium as described above. An additional site, is located at the northeast corner of Building 69A.

The concentration of ¹⁴CO₂ in air is determined by air sampling with NaOH. Samples are changed weekly. Air is bubbled through a jar containing 30 ml of 0.2 M NaOH and thymol blue as a pH indicator. If acid fumes in the sampled air drop the pH of the sample to about 6, a color change results, and the sample is assumed to be invalid (an infrequent occurrence). An aliquot (5 ml) of the NaOH is added to a scintillation cocktail and counted in a liquid scintillation counter. The detection limit for ¹⁴CO₂ is $200 \times 10^{-12} \mu$ Ci/ml.

The total quantities of radionuclides discharged into the atmosphere are summarized in Table 3. Aside from the tritium release that is four times the 1986 value, the figures are similar to those of last year, and the releases resulted in a small collective effective dose equivalent (see Table 19). One may note that a number of the average values listed in several of the tables in this report (notably Tables 4, 6, 7, 9, 11, and 13) are less than the minimum values listed for individual samples. The foregoing occurs whenever the actual average value of a substance measured is less than the detection limit for that substance in an individual sample, and the average represents the arithmetic sum of all measurements divided by the number of measurements taken (as in this report). The uncertainties listed with tabular quantities represent 95% confidence limits of the assay values (or sum of assay values).

Although small quantities of radionuclides (Table 3) were discharged into the atmosphere during 1987, the data from the general environmental air sampling were within the range of normal background. The Table 4 data for 1987 may be compared with data from Table 5, which lists LBL perimeter air sample data maxima and averages for the period 1978–1987.

The radioiodine sampling program (Table 6) detected no significant ¹²⁵I or ¹³¹I in perimeter air during 1987. The environmental air sampling program for ¹⁴C and ³H found detectable concentrations of these nuclides (Tables 7 and 8). Essentially, 100% of the tritium released from LBL was discharged from the Building 75 stacks.

All measurements of atmospheric deposition at outlying perimeter stations lie within the range of normal background; however, tritium was detected in rainfall collected within the Laboratory boundary near the stack from the Building 75 Tritium Facility (Tables 9 and 10). The deposition values, adjusted for rainfall, are compared with drinking-water standards (Ref. 3) assuming that all beta activity is ⁹⁰Sr and all alpha activity is ²³²Th (conservative assumptions for both). The drinking-water tritium standard³ is used for tritium in Table 9.

Local drinking water is supplied by the East Bay Municipal Utility District (EBMUD) from sources located > 150 km east of LBL. EBMUD uses no well water or local surface water as drinking water.

Waterborne Radionuclides

Rainwater, creek water, and sewage from LBL's two sewer outfalls are analyzed for gross beta and alpha emitters (see Fig. 1; the Strawberry Sanitary Sewer is the southern site, Hearst is the western sewer).

Nuclide	Quantity discharged (Ci)
Tritium (as HTO)	310
Xenon-122,125	4×10^{-2}
Carbon-14 (as ¹⁴ CO ₂)	1×10^{-2}
Iodine-125	3×10^{-3}
Sulfur-35	6×10^{-5}
Iodine-131	5×10^{-5}
Unidentified beta-gamma emitters ^a	$< 3 \times 10^{-5}$
Unidentified alpha emitters ^b	< 10 ⁻⁶

Table 3.Total quantities of radionuclides discharged into
the atmosphere, 1987.

^aConservatively assumed to be ⁹⁰Sr.

^bConservatively assumed to be ²³²Th.

Table 4.Summary of air samples, 1987.

	No. of samples	Concentration (10 ⁻¹⁵ µCi/ml)							
			Alpha			Beta		Average a	s % of standard
		Avg.	Min.	Max.ª	Avg.	Min.	Max.ª	Alpha	Beta
On-site average of 10 locations	497	0.3 ± 0.1	< 2	4±2	11 ± 4	< 110	140 ± 110	4	0.1
Perimeter Stations		<u> </u>							
Bldg. 88	48	≤ 0.5	< 3	4±3	≤ 16	< 160	< 160	≤7	≤ 0.2
Bldg. 90	48	≤ 0.5	< 3	5 ± 3	21 ± 17	≤ 16	200 ± 160	≤7	0.2
Panoramic Way	49	≤ 0.5	< 3	5 ± 3	≤ 16	< 160	≤ 160	≤7	≤ 0.2
Olympus Gate	46	≤ 0.5	< 3	4 ± 3	≤ 16	< 160	< 160	≤7	≤ 0.2
Standard for Comparis	son ^b	7			9,000				<u> </u>

^aHighest single weekly sample.

.

^bReference 3: alpha conservatively assumed to be ²³²Th; beta assumed to be ⁹⁰Sr.

ì

			Concentratio	on (10 ⁻¹⁵ µCi/ml)	
		Alpha	a	Beta	
Year	Samples	Avg.	Max.	Avg.	Max.
1978	198	0.8 ± 0.2	5	60 ± 10	210
1979	202	1.5 ± 0.3	7	28 ± 12	230
1980	204	1.0 ± 0.3	6	28 ± 12	240
1981	195	1.1 ± 0.2	5	120 ± 40	500ª
1982	197	0.9 ± 0.2	4 ± 2	14 ± 10	140 ± 100
1983	201	0.49 ± 0.1	2	< 6	110 ± 80
1984	187	0.46 ± 0.1	3 ± 2	< 6	120 ± 100
1985	198	0.54 ± 0.2	4 ± 3	12 ± 6	120 ± 80
1986	195	0.5 ± 0.2	9 ± 3	40 ± 10	700 ± 100^{b}
1987	191	≤ 0.5	5 ± 3	≤ 16	200 ± 160
Standard for comparison ^c		7		9000	

 Table 5.
 Annual gross radioactivity found in LBL perimeter air samples, 1978–1987.

^aThe Peoples Republic of China conducted an atmospheric nuclear test on October 15, 1980. Radionuclides from the test were not detected in LBL air samples until early 1981.

^bChernobyl fire, April 26, 1986.

°Reference 3: alpha conservatively assumed to be 232 Th; beta conservatively assumed to be 90 Sr.

<u></u>			Concentration $(10^{-15} \mu \text{Ci/ml})$						Average as %	
				¹²⁵ I		¹³¹ I			of standard	
Perimeter Station	No. of samples	Avg.	Min.	Max.	Avg.	Min.	Max.	¹²⁵ I	¹³¹ I	
Bldg. 88	41	< 1	< 4	≤7	< 2	< 12	≤ 20	< 0.0002	< 0.0005	
Bldg. 90	42	< 1	< 4	≤6	< 2	< 12	≤20	< 0.0002	< 0.0005	
Panoramic Way	39	≤1	< 4	≤7	< 2	< 12	≤ 20	< 0.0002	< 0.0005	
Olympus Gate	42	≤1	< 4	≤6	< 2	< 12	≤ 20	≤ 0.0002	< 0.0005	
Standard ^a for comparison		5 × 10 ⁵			4×10^{5}					

Table 6. Summary of radioiodine in perimeter air sample.	, 1987.
--	---------

^aReference 3.

Table 7.Summary of airborne environmental HTO and ¹⁴CO2 sampling, 1987.

	NI C	Concentra	ation (10	^{−9} µCi/ml)	Average as %
	NO. OF samples	Avg.	Min.	Max.	Average as % of standard ^a
Samples for Tritium as HTO	. <u>.</u>				<u> </u>
On-Site					
ENV 69A Bldg. 3 roof	51 51	1.1±0.5 < 0.2	< 0.5 < 0.5	$\begin{array}{c} 8\pm2\\ 2.8\pm0.5\end{array}$	1.1 < 0.2
Perimeter					9999-94-94 - 94 - 94 - 94 - 94 - 94 - 9
LHS B-13D (Olympus)	50 47	< 0.2 < 0.2	< 0.5 < 0.5	$\begin{array}{c} 2.6\pm0.5\\5\pm1\end{array}$	< 0.2 < 0.2
Standard for Comparison ^a		100		-	
Samples for Carbon-14 (as ${}^{14}CO_2$)					· · · · · · · · · · · · · · · · · · ·
On-Site					
Bldg. 3 roof	51	< 0.1	< 0.3	0.4 ± 0.1	< 0.02
Standard for Comparison ^a		500			

^aReference 3.

		Concentration (10 ⁻⁹ µCi/ml)									
		HT	0	_	¹⁴ CO ₂						
Year	No. of Samples	Avg.	Max.	No. of Samples	Avg.	Max.					
1978	101	2.2	9	50	0.12	0.45					
1979	101	1	3.4	49	0.026	0.37					
1980	103	< 0.2	0.4	52	< 0.07	0.35					
1981	100	< 0.2	1.1	50	< 0.06	0.2					
1982	102	0.3 ± 0.1	3 ± 1	51	< 0.04	0.3 ± 0.2					
1983	101	0.4 ± 0.1	3 ± 1	49	< 0.01	0.3 ± 0.2					
1984	97	0.5	7±3	51 [°]	0.6	30 ± 10					
1985	102	≤ 0.3	5 ± 1	50	≤ 0.1	1.1					
1986	100	0.5 ± 0.1	12 ± 3	51	0.07 ± 0.02	0.4 ± 0.1					
1987	97	< 0.5	5 ± 1	51	< 0.05	0.4 ± 0.1					
Standard	for comparison ^a	100			500						

Table 8.

Summary of perimeter airborne environmental HTO and $\rm ^{14}CO_2$ sampling, 1978–1987.

^aReference 3.

Table 9.	Summary	of atmos	pheric d	leposition,	1987

		1	otal deposition	(10 ⁻³ µCi/m ²)			Tritium in rainfall as HTO ^a (µCi/m ²)			
	No. of	Alpl	ha		Beta		NIf			
	samples	Avg.	Max. ^b	Avg.	Min.	Max. ^b	samples	Avg.	Max. ^{b,d}	
On-Site (9 locations)	108	0.015 ± 0.006	0.18 ± 0.04	0.56 ± 0.06	0.17 ± 0.09	1.2 ± 0.1	122	5.4 ± 1	44 ± 9	
Perimeter (4 locations)	48	≤ 0.04	0.06 ± 0.04	0.8 ± 0.5	0.4 ± 0.1	1.6 ± 0.1	24	0.1 ± 0.05	0.2 ± 0.1	
Perimeter Averages as a % of Standard		≤ 0.2		≤ 0.2				0.009		
Drinking-water standard × 534°		27		534				1068		

^aThe on-site tritium-in-rainfall data are computed from samples taken at 11 locations.

^bHighest total for any one site.

^cThe standards used for comparison are derived from Reference 3 for 232 Th (alpha values) and 90 Sr (beta values). The deposition represents that quantity of activity found in 534 liters of water (the average quantity of rainfall/m² during 1987). Thus, the values used are 534 times the Reference 3 values. [No standards for comparison have been established, so drinking-water standards (radionuclide concentration/l) are used.]

^dThe location of this deposition collector is on the north side of Bldg. 75. The average HTO concentration in samples taken from the 75 collector was $8.3 \times 10^{-5} \,\mu$ Ci/ml or about 3% of the HTO drinking water standard.

			Concent	tration (10 ⁻³	μCi/m²)		(μCi/m ²)			
		D - 1 - 6-11	A	lpha	Bet	a	NT C	H	го	
Year	No. of Samples	(cm)	Avg.	Max.	Avg.	Max.	No. of Samples	Avg.	Max.	
1978	46	73.6	0.18	< 0.8	11	16	24	1.4	2	
1979	47	79.9	0.04	0.1	2.6	5 ± 2	38	0.2	0.4	
1980	47	57.3	0.04	0.06	2.5	6	32	< 0.2	< 0.6	
1981	48	83.1	< 0.01	0.09	6.9	9.7	36	< 0.1	< 0.2	
1982	48	109.0	< 0.01	0.017	1.9	5.2	36	< 0.2	0.3	
1983	48	119.4	0.02	0.07	1.6	3.5	36	< 0.2	0.4	
1984	48	45.5	0.05	0.08	< 1	3	36	< 0.2	0.2	
1985	48	44.5	0.02	0.4	0.7	2	27	< 0.2	0.2	
1986	48	81.4	0.03	0.04	0.8 ± 0.2	2	29	0.1	0.3	
1987	48	53.4	≤ 0.04	0.06	0.8 ± 0.5	2	24	0.1	0.2	

Table 10.LBL perimeter station deposition trends, 1978–1987.

Additionally, sewer effluent is analyzed for gross halogen (radioiodine) content and for tritium. Rainwater is also analyzed for tritium as is the ground water, which flows from the horizontal wells (hydraugers), whose bores are represented by the heavy dashed lines in Fig. 1.

Sewer outfalls are sampled continuously, sample-to-flow ratios are designed to be between 10 and 20 ppm, and composite samples are taken weekly. The five creek sample points indicated in Fig. 2 are sampled weekly. A one-quart grab sample is taken from each site and analyzed for gross alpha and beta emitters.

The four perimeter environmental monitoring stations have 46-cm-diameter (18-in.) cylindrical rainfall collectors on their roofs. During rainy months (generally October through May) rainwater is picked up monthly and analyzed for gross alpha and beta activities and for tritium. During the dry California summer, each collector is rinsed with a quart of tap water, and the rinse is analyzed for "dry deposition." The 10 other atmospheric sampling sites alluded to in the air sampling section of this report also contain 46cm-diameter (18-in.) combination rain/dry deposition collectors, which are sampled on a monthly basis in the same manner as the four perimeter environmental monitoring stations.

Rain that falls into the collector on the north side of Building 75 is analyzed on a storm-by-storm basis for tritium and gross alpha and beta activities. Tritium analysis of water samples is accomplished by liquid scintillation counting. Water samples are prepared for gross alpha and beta analysis by acidification (HNO₃) and evaporation into 2-inch stainless steel planchettes. Organic residues not wet-ashed by the nitric acid treatment are oxidized by flaming the planchettes.

Since radioiodine is driven out of the water samples when they are acidified, aliquots of the sewer effluent samples are preserved for radioiodine analysis. The iodine contained in the samples is precipitated with silver using stable KI as a carrier. The iodine aliquots are filtered, and the filtrate is processed in the same manner as the acid (HNO_3) samples described earlier. After the filtrate planchette has been flamed, the filter containing any precipitated radioiodine is placed in the planchette and is counted.

Figure 2. Environmental Monitoring, Lawrence Berkeley Laboratory.

The prepared planchettes are weighed (the tare weight of each planchette is first determined) and counted in a thin-window, low-background gas proportional counter for both gross alpha and beta activities. Since the samples are thick, self-absorption is computed based on areal sample density, which is the sample weight divided by the area of the planchette (20.26 cm^2), assuming an alpha energy of 5.2 MeV and a beta energy of 1 MeV.

Table 11 summarizes the 1987 data from the surface-water and tap-water sampling programs. These results are similar to those obtained in past years and all lie within the normal range of background activity. There is no reason to suspect that any of the observed radioactivity originated from LBL. Table 12 summarizes the surface- and drinking-water samples for 1978–1987.

Table 13 summarizes the sewage sampling data for 1987. The average and maximum values listed for sewer beta concentrations reflect the weekly activity found in the hotter of the acid or radioiodine planchettes. Table 14 summarizes the sewage data for the years 1978–1987.

Ground Water

During 1987 the sampling of two of LBL's many hydraugers was started. Samples taken were counted for gross alpha and beta activity and tritium. One hydrauger, designated 75-77 hydr, describes a group of 3 bores, which were drilled horizontally ~200 ft into the earth fill where Buildings 75, 75A, 75B, and 69 were built. The bores are manifolded together and drain north of Bldg. 77 (see Fig. 1 for the approximate "fan out" of the hydraugers' bores). The second hydrauger, which was designated CC hydr, is a ~2500-ft-long horizontal bore from the Chicken Creek access road into Little Grizzly Peak (see Fig. 1). Both hydraugers continued to flow throughout 1987. The "75-77" hydrauger was chosen to be sampled since it drains water from the earth fill that is rained upon by the highest measured tritium-in-rainfall concentration (see Table 9). The "CC" hydrauger is the deepest hydrauger at LBL and is sampled so that the deepest available ground water can be assayed.

Measurable tritium was found in samples taken from 75-77 hydr. Table 15 summarizes the hydrauger (ground-water) sampling data for 1987.

Nonradioactive Pollutants

Waterborne Pollutants

Plating Shop Wastewater Discharges. There are two plating shops at LBL: Building 25 and Building 77. Both shops are subject to the EPA Metal Finishing Pretreatment Standard (40 CFR 433). In general, this standard establishes wastewater discharge limits for cyanide and certain toxic metals. The Categorical Pretreatment Standards have been adopted by EBMUD in Ordinance No. 296.

Wastewater samples are taken from both plating shops to verify compliance with the discharge limits. The samples represent a 24-hour average discharge and are taken before the wastewater combines with wastewater from nonelectroplating operations.

Periodically, EBMUD also obtains samples and reports their results to LBL.

Building 25 Plating Shop

As required by the EBMUD wastewater discharge permit, wastewater samples were taken quarterly from the discharge of the Building 25 treatment unit. The parameters to be monitored were chromium, copper, and lead. In addition, EBMUD collected three samples throughout the year and reported their results to LBL.

One of the seven samples taken indicated a discharge violation for lead. The subsequent investigation determined that a malfunctioning pH meter on the treatment unit probably led to this violation. After this meter was cleaned and recalibrated, discharge levels returned to within allowable limits. There were no other discharge violations detected.

		<u></u>		Concentra	<u>tion (10⁻⁹ μCi</u>	/ml)				
	No. of	<u></u>	Alpha			Beta		Average as % of standard		
	samples	Avg.	Min. Max.		Avg.	Min.	Max.	Alpha	Beta	
On-site streams		, .								
Blackberry	51	≤ 0.2	≤0.6	≤2	1.9 ± 0.12	0.9 ± 0.7	3.5 ± 0.9	≤0.4	0.2	
Lower Strawberry	50	0.2 ± 0.1	≤0.7	5 ± 3	1.7 ± 0.12	0.8 ± 0.7	13 ± 2	0.4	0.2	
Upper Strawberry	51	0.3 ± 0.2	≤0.8	7 ± 4	1.7 ± 0.22	≤ 0.8	3.5 ± 1	0.6	0.2	
Average		≤0.2			1.8 ± 0.1			≤ 0.4	0.2	
Off-site streams										
Claremont	51	0.5 ± 0.2	≤ 0.3	< 3	1.9 ± 0.1	≤ 0.8	5 ± 1	1	0.2	
Wildcat	51	≤0.2	≤ 0.4	< 2	1.1 ± 0.1	≤ 0.8	3 ± 1	≤0.4	0.1	
Tap Water	- 51	≤ 0.03	≤ 0.1	≤0.4	0.7 ± 0.1	≤ 0.5	1.5 ± 0.7	≤ 0.06	0.07	
Standard of Comparison ^a		50			1000					

Table 11.Summary of surface- and drinking-water samples, 1987.

^aReference 3: alpha assumed to be 232 Th; beta assumed to be 90 Sr.

٤

¥

(

			Co	ncentratio	n (10 ^{−9} μCi/ı	ml)							
		Three On-	-site Streams			<u> Iwo Off-s</u>	ite Streams		Drinking Water				
		pha	Bet	<u>a</u>	Alp	ha	Bet	Beta		Alpha		Beta	
Year	Avg.	Max.	Avg.	Max.	Avg.	Max.	Avg.	Max.	Avg.	Max.	Avg.	Max.	
1978	< 0.1	6	3.5±0.1	17	< 0.3	4	1.8 ± 0.1	9	< 0.1	0.3	1.3 ± 0.1	3	
1979	< 0.2	14	3 ± 0.1	27	< 0.08	5	1.4 ± 0.1	3	< 0.1		0.8 ± 0.1		
1980	< 0.2	4	2 ± 0.1	9	< 0.3	3	1.2 ± 0.1	4	< 0.1	0.5	0.8 ± 0.1	3	
1981	< 0.2	3	3.1 ± 0.1	45	< 0.2	3	1.6 ± 0.1	22	< 0.1	0.4	1.0 ± 0.1		
1982	< 0.3	3 ± 2	1.7 ± 0.1	5 ± 1	< 0.3	5 ± 3	1.4 ± 0.1	6±1	< 0.1	1.1 ± 0.5	0.9 ± 0.1	$2.2 \pm 1^{\circ}$	
1983	< 0.1	4 ± 2	1.5 ± 0.1	4 ± 1	< 0.3	< 2	1.2 ± 0.1	4±2	< 0.04	1.2 ± 0.5	0.9 ± 0.1	2.3 ± 0.7	
1984	< 0.13	< 2	1.6 ± 0.3	3±1	0.6 ± 0.3	3 ± 2	1	8 ± 1	0.03	0.3	0.9 ± 0.1	7 ± 1	
1985	< 0.2	< 2	2 ± 0.5	25 ± 2	≤0.3	≤3	1 ± 0.1	5±1	0.06 ± 0.05	≤2	0.9 ± 0.1	2 ± 1	
1986	< 0.2	8±5	2.3 ± 0.1	27 ± 2	0.4 ± 0.3	4 ± 3	1.6 ± 0.1	10 ± 2	0.06 ± 0.04	< 0.4	1.1 ± 0.1	6±2	
1987	≤ 0.2	7±4	1.7 ± 0.1	13 ± 2	0.4 ± 0.2	≤3	1.5 ± 0.2	5 ± 1	< 0.03	< 0.4	0.7 ± 0.1	1.5 ± 0.7	

 Table 12.
 Summary of surface- and drinking-water samples, 1978–1987.

Table 13a.Summary of sewage sampling data, 1987.

Total quantities discharged	Total volume (10 ⁶ liters)	Alpha (µCi)	Beta (mCi)	Tritium (Ci)
Hearst Sewer	140	≤ 14	2 ± 0.4	< 0.04
Strawberry Sewer	120	≤ 15	22 ± 5	0.7 ± 0.2

Table 13b. Summary of sewage sampling data, 1987 (continued).

	Concentration (10 ⁻⁹ µCi/ml)								Concent	ration (10	^{−6} μCi/ml)	Average as % of <u>drinking-water standard</u>		% of standard
NT -	NT C		Alpha	۱ 	Beta			N7 6	Tritium			Alpha	Beta	Tritium
concentrations	NO. Of samples	Avg.	Min.	Max.	Avg.	Min.	Max.	NO. Of samples	Avg.	Min.	Max.	%	%	%
Hearst	44	≤0.11	≤ 0.4	< 1.4	11±2	≤ 2.4	80 ± 20	49	< 0.3	≤ 0.5	6±2	≤ 0.2	1	< 0.02
Strawberry	48	· ≤0.12	≤ 0.4	1.2 ± 1.1	180 ± 40	5 ± 3	2200 ± 500	48	5±1	≤ 0.5	20 ± 4	≤ 0.2	20	0.2
Overall	92	≤ 0.08			90 ± 40				3±1			≤ 0.2	9	0.2
Standard for cor	nparisonª	50			1000		· · · · · · · · · · · · · · · · · · ·		2000					

^aSource: Reference 3.

^bConservatively assumed to be ²³²Th.

^cConservatively assumed to be ⁹⁰Sr.

Note: The standards cited here are for specific radionuclides in *drinking water*, not sewage, and are provided for comparison purposes only.

						Concentration	(10 ^{−9} µCi/m	1)				
				Hearst					•	Strawb	erry	
	No. of	Total	Gros	s alpha	Gross beta		No. of	Total	Gross alpha		Gross beta	
Year	Samples	(10 ⁶ l)	Avg.	Max.	Avg.	Max.	Samples	(10 ⁶ l)	Avg.	Max.	Avg.	Max.
1978	50	229	. 0.9	34	33	824	48	233	0.6	9	14000	92000
1979	43	247	0.2	5	15	25	45	302	0.5	5	2600	14000
1980	48	288	0.4	3	22	220	46	135	0.3	6	180	1000
1981	49	281	< 0.2	1	21	150	43	89	0.5	14	240	2500
1982	42	300	0.05	1.1	20	460 ± 20	29	180	0.5	17 ± 12	60	640 ± 40
1983	49	190	0.06	< 5	9	80 ± 7	38	140	< 0.4	< 20	60	800 ± 40
1984	51	170	0.02	< 5	80	1100 ± 50	39	74	0.02	< 2	70	250 ± 10
1985	50	160	< 0.2	< 3	15	90 ± 10	49	120	< 0.2	< 2	140	1600 ± 30
1986	47	200	< 0.1	1 ± 0.3	10 ± 1	50 ± 10	47	110	< 0.1	1.1 ± 0.3	400 ± 10	4200 ± 700
1987	44	140	≤ 0.1	≤ 1.4	11 ± 2	80 ± 20	48	120	≤0.1	1.2 ± 1.1	180 ± 40	2200 ± 500

Table 14.Sanitary-sewer discharge trends, 1978–1987.

۶

1ê

		Concentration (10 ⁻⁹ μCi/ml)								ration (10	∽ μCi/ml)	Average as % of drinking-water standard		
TTJ	NT C		Alpha		Beta			HTO			Alpha	Beta	Tritium	
Hydrauger Designation	NO. Of Samples	Avg.	Min.	Max.	Avg.	Min.	Max.	Avg.	Min.	Max.	%	%	%	
75-77 Hydr.	11	≤1	< 0.5	≤6	2 ± 0.4	< 0.9	4 ± 2	6±1	< 0.9	10 ± 1	2	0.3	0.2	
CC Hydr.	5	≤0.6	< 0.6	≤ 0.9	≤ 0.5	< 0.9	≤ 0.9	≤0.6	< 0.4	< 1	1	≤ 0.05	< 0.03	
Drinking wate	r standard*	50			1000			2000						

Table 15.Summary of ground-water samples, 1987.

•

^aReference 3 alpha assumed to be 232 Th, beta assumed to be 90 Sr.

	Chromium (ppm)	Copper (ppm)	Lead (ppm)
Minimum:	0.020	1.20	0.180
Maximum:	0.130	2.90	0.810
2 X SD:	0.096	1.45	0.585
Average:	0.063	1.90	0.397
% of Limit:	2.29	56.21	57.5
# > Limit:	0	0	1
Limit:	2.77	3.38	0.69

Table 16. Summary of Building 25 wastewater sample results.^a

^aSummary of results from 7 samples.

Table 16 summarizes the results from the samples taken by LBL and EBMUD.

Building 77 Plating Shop

As required by EBMUD, wastewater samples were taken bimonthly from the discharge of the Building 77 treatment unit. Samples were analyzed for cadmium, chromium, copper, lead, nickel, zinc, and cyanide. In addition, EBMUD collected three samples throughout the year and reported their results to LBL. There were no discharge violations detected by LBL or EBMUD.

^{*}Table 17 summarizes the results of the samples taken by LBL and EBMUD.

Site Wastewater Discharges

There are two sanitary sewer systems serving LBL: Strawberry Sanitary Sewer and Hearst Sanitary Sewer. Effluent from each sewer system is monitored at the LBL boundary. Sampling is performed to assure compliance with the site discharge limits mandated by the EBMUD Ordinance No. 270. In this case the EBMUD does not require a compliance report from the Laboratory.

At both sites, a series of flow proportioned grab samples were collected and analyzed for a set of regulated heavy metals and oil and grease. No discharge violations were found at either site.

Tables 18a and 18b summarize the analytical results from the Strawberry and Hearst Sanitary Sewer samples, respectively.

POPULATION DOSE RESULTING FROM LBL OPERATIONS

The development of LBL's model used to assess the population dose equivalent attributable to penetrating radiation and airborne radionuclides, respectively, is detailed in Ref. 5. The model used population figures from the 1970 U.S. census.

	Cadmium (ppm)	Chromium (ppm)	Copper (ppm)	Lead (ppm)	Nickel (ppm)	Zinc (ppm)	Cyanide Total (ppm)
Minimum:	0.003	0.050	0.170	0.010	0.230	0.052	0.010
Maximum:	0.160	0.330	0.760	0.100	1.100	0.11	0.020
2 X SD:	0.121	0.246	0.426	0.061	0.640	0.039	0.010
Average:	0.052	0.194	0.340	0.042	0.610	0.076	0.014
% of Limit:	7.594	7.004	10.059	6.087	15.327	2.912	1.167
# > Limit:	0	0	0	0	0	0	0
Limit:	0.69	2.77	3.38	0.69	3.98	2.61	1.20

р

Table 17.Summary of Building 77 wastewater sample results, 1987.ª

^aSummary of results from 9 samples.

Table 18a. Summary of Strawberry Sanitary Sewer sampling results, 1987.^a

	Cadmium (ppm)	Chromium (ppm)	Copper (ppm)	Iron (ppm)	Lead (ppm)	Nickel (ppm)	Silver (ppm)	Zinc (ppm)	Oil & Grease (ppm)
Minimum:	0.003	0.010	0.034	0.310	0.010	0.020	0.003	0.120	2
Maximum:	0.050	0.190	2.60	15.00	0.380	1.000	0.340	1.90	63
2 X SD:	0.023	0.085	1.22	7.676	0.170	0.354	0.133	0.745	26.0
Average:	0.009	0.050	0.57	5.745	0.059	0.129	0.031	0.562	14.7
% of Limit:	0.900	2.51	11.3	5.74	2.97	2.59	3.09	11.2	5.89
# > Limit:	0	0.	0	0	0	0	0	0	0
Limit:	1	2	5	100	2	5	1	5	250

^aSummary of results from 36 samples.

	. <u></u>								 Oil &
	Cadmium (ppm)	Chromium (ppm)	Copper (ppm)	Iron (ppm)	Lead (ppm)	Nickel (ppm)	Silver (ppm)	Zinc (ppm)	Grease (ppm)
Minimum:	0.003	0.010	0.091	0.280	0.010	0.010	0.005	0.130	3
Maximum:	0.040	0.250	3.00	4.90	0.630	0.110	0.320	2.95	40
2 X SD:	0.021	0.118	1.38	2.38	0.27	0.052	0.150	1.47	20.2
Average:	0.007	0.070	0.75	1.48	0.095	0.020	0.063	0.73	14.9
% of Limit:	0.682	3.500	14.972	1.482	4.757	0.403	6.309	14.554	5.974

0

100

0

2

0

5

0

1

0

5

0

250

Table 18b. Summary of Hearst Sanitary Sewer sampling results, 1987.^a

0

2

^aSummary of results from 35 samples.

0

1

> Limit:

Limit:

While the population within 80 km (50 mi) of LBL increased by 13% during the 1970s^{1,7,8} from 4.6 to 5.1 million people, the populations of Berkeley and Oakland, the two cities immediately adjacent to LBL, declined. Recomputing the population dose model with population statistics from the 1980 census produced no significant difference in its impact/insult value.

0

5

Accelerator-Produced Radiation

The LBL model developed by Thomas⁵ for determining population dose equivalent from the maximum measured value of perimeter (fence-post) dose assumes that the fence-post rate changes are uncorrelated with fluctuations in population. During 1987 the maximum fence-post dose was measured at the Olympus Gate Monitoring Station and was 3.5 mrem for the year (Table 2). An examination of the time sequence of the telemetered neutron fluence from the Olympus detector indicated that the neutron fluence peaks correlated well with the fluence peaks from the neutron detector located in the Bevatron approximately 40% of the time and with the peaks from the HILAC detector 60% of the time. The Bevatron and the SuperHILAC operated continuously seven days a week during 1987 except for maintenance, a "summer" shutdown from June 1 through October 1, and a year-end shutdown December 23, 1987 to January 6, 1988.

Aside from shutdown periods the modest fence-post dose equivalent was produced with reasonable uniformity throughout the year and does not seriously compromise the Thomas model's assumptions (student populations were low during the summer shutdown). The model's expression relating population dose equivalent M (in man-rem) to maximum measured fence-post dose H₂ (in rem) is

$$M < 10^3 \times H_o (1.0 - 0.56f),$$
 (1)

where f = the fraction of the fence-post dose contributed by the 88-Inch Cyclotron and/or the SuperHILAC. Since 40% of the fence-post dose has been assigned to the Bevatron, f = 0.6 [in Eq. (1)].

Thus the expression becomes

$$M < 10^3 (1 - 0.34) H_0.$$
 (2)

Since H_a was 3.5 mrem (or 0.0035 Rem), the population dose equivalent attributable to LBL accelerator operation during 1987 was

< 2.3 man-rem.

Airborne Radionuclides

The CEDE resulting from airborne releases of radionuclides is listed in Table 19. The US Environmental Protection Agency (EPA) regulations in 40 CFR 61 require that facilities releasing airborne radionuclides compute the impact of such releases using AIRDOSE-EPA or an approved code. In this report, MICROAIRDOSE, a microcomputer version of the AIRDOSE-EPA radionuclide dispersion and dose assessment code, was used (see Ref. 9). This code was used to compute both collective-effectivedose equivalent and the effective dose equivalent to a maximally exposed individual (radionuclides only).

MICROAIRDOSE computes contributions to the doses from inhalation, ingestion, and exposures from surface contamination and immersion. The code requires:

- a) radionuclide release data;
- b) committed dose-equivalent factors for released radionuclides;
- c) site-specific meteorological data;
- d) agricultural parameters;
- e) site-specific food and water source parameters;
- f) radionuclide-independent parameters; and
- g) distribution of the population within 80 km (50 mi) of LBL.

The data were obtained from the following sources:

- a) Table 3 of this report is used.
- b) values are from Ref. 10.
- c) 1960-1964 Oakland Airport five-year average data were used. While it is most desirable to use on-site meteorology data for the "release year" (1987), the US EPA Region IX regional meteorologist (Ref. 11) indicated that the use of the Oakland Airport five-year average data is, for this application, an acceptable second choice.
- d) Default parameters provided with the MICROAIRDOSE code were used from Ref. 12.
- e) Food and water source parameters were compiled by Victor J. Montoya of LBL EH&S Department's Environmental Surveillance Group from data provided by the water boards and agricultural commissioners of the 11 San Francisco Bay Area counties. The average values for foodstuffs and water not collected or grown within 80 km (50 mi) of LBL were found to be as follows: 35% of the drinking water is imported; 95% of the produce and leafy vegetables are imported; 25% of the milk is imported; and 90% of the meat is imported. (Imported food and water are assumed to be uncontaminated.)
- f) Values are from Ref. 13.
- g) The population distribution about LBL was compiled into 16 compass directions of 10 radial sectors each by Winifred B. Corniea of LBL EH&S Environmental Surveillance Group using data in Ref. 8.

The same values for a-d and f and g were used by MICROAIRDOSE to compute the maximally exposed individual, but it was assumed that 100% of all food and water were grown or collected locally. (More than 90% of the exposure from tritium is assigned to intakes of tritium in food and water. Since there are no known drinking water wells in the communities immediately adjacent to LBL, the value of ≤ 1.6 mrem maximum individual dose-equivalent-from-radionuclides should be quite conservative.) Table 20 summarizes the total CEDE due to LBL operations.

Nuclide	(man-rem)
H-3	9.9
Xe-125	< 0.001
C-14	0.01
I-125	0.02
S-35	< 0.001
I-131	< 0.001
Unidentified alpha emitters	0.07
Unidentified beta emitters	0.02
Total	10.0

Table 19.Collective effective dose equivalent
resulting from LBL airborne nuclide
releases, 1987.

Table 20.	Population effective dose equivalent, resulting from LBL
	operations, 1987. ^a

Contributing factor	Population effective dose equivalent (man-rem)
Penetrating radiation from accelerator operations	2.3
Radionuclide release (from Table 19)	10
LBL-produced effective population dose equivalent	< 13

^aFor 1987, the population dose attributable to natural background sources for the population within 80 km (50 mi) of LBL was approximately 5.1×10^{6} persons $\times 0.1$ rem/person-yr = 5.1×10^{5} man-rem.

Accelerator-Produced Penetrating Radiation

Figures 3–6 show the annual accelerator-produced dose equivalent reported by the four perimeter environmental monitoring stations from the year they were established to date. During the past several years, the LBL accelerators have run heavy ions during a significant fraction of their operating schedules. Successful work in beam development had served to increase beam currents in recent years and had increased the dose equivalent at the Building 88 EMS somewhat. That upward trend was reversed in 1983. The maximum perimeter dose equivalent (Fig. 3) remains a diminishing fraction of the radiation protection guidelines³ reflecting improvements in accelerator beam optics, local shielding, and cave selection.

Airborne and Waterborne Radionuclides

Figure 7 shows the annual releases of tritium (as HTO) from the Building 75 Tritium Facility from 1974 through 1987.

The 310 curies released during routine operations in 1987 is approximately four times of the 1986 releases and is responsible for approximately 80% of the LBL-produced population-dose equivalent from all sources for 1987. The operational personnel of the tritium facility are continuing to investigate all sources of release so that future releases may be minimized. The releases occur during molecular tagging and tritium waste processing. The increased releases during 1987 reflect a very active program compared to the previous year.

With the exception of occasional known releases, the atmospheric sampling program has yielded data over the past few years that are within the range of normal background.

The surface-water program has always yielded results within the range of normal background. Because no substantial changes in the quantities of radionuclides used are anticipated, no changes are expected in these observations.

Under the terms of its license, the UC campus has discharged radionuclides into the Strawberry sewer, complicating the analysis of LBL sewer-sampling data. After 1979 the University discharges were sharply curtailed and are expected to remain so in the future.

QUALITY ASSURANCE

During 1987, in addition to the quality control procedures described in the body of this report, samples that were blind-spiked with tritium were worked up along with each group of environmental samples assayed for HTO.

The LBL Environmental Surveillance Group analyzed DOE's Environmental Measurements Laboratory (EML) QAPXXVI and QAPXXVII Water Samples for tritium and air samples for several gamma emitting nuclides (as reported in References 14 and 15). The results are tabulated in Table 21. The improvement in the gamma emitters-in-air results between May and September reflects increased experience with our group's first high resolution (HPGE) detector.

Figure 3.

Annual accelerator-produced dose equivalent reported by the Olympus Gate Environmental Monitoring Station, 1959–1987. Maximum Permissible Dose (General Population) is the maximum permissible dose equivalent to any single individual in the general non-Laboratory population. The maximum permissible continuous average effective dose equivalent to the general population is 100 mrem/year (excluding natural radiation background).

Figure 4. Annual accelerator-produced dose equivalent reported by the Building 90 Environmental Monitoring Station, 1962–1987.

ł

Figure 5. Annual accelerator-produced dose equivalent reported by the 88-Inch Cyclotron Environmental Monitoring Station, 1963–1987.

4/15/88

Annual releases of tritium (HTO) from the Building 75 Tritium Facility, 1969–1987.

QAP Sample #	Date	Media	Nuclide	Reported LBL Results ^a (± percent)	EML Value	Ratio LBL/EML
XXVI	5/87	Air	BE-7	$6 \times 10^3 \pm 16$	4.64×10^{3}	1.29
		Air	MN-54	$8 \times 10^2 \pm 20$	4.55×10^{2}	1.76
		Air	CO-60	$7 \times 10^2 \pm 14$	4.44×10^2	1.58
		Air	CS-137	$5.7\times10^2\pm19$	4.70×10^{2}	1.21
		Water	Н-3	30 ± 10	33.7	0.89
XXVII	9/87	Air	BE-7	$8 \times 10^2 \pm 50$	8.96×10^{2}	0.89
		Air	RU-106	$3 \times 10^2 \pm 50$	2.51×10^{2}	1.20
		Air	SB-125	$1 \times 10^3 \pm 10$	9.63×10^{2}	1.04
		Air	CS-137	$3 \times 10^2 \pm 13$	2.90×10^{2}	1.03
		Air	CE-144	$3.2\times10^2\pm25$	4.06×10^{2}	0.79
		Water	Н-3	19 ± 10	19.1	0.99

Table 21.LBL QAP sample results, 1987.

^aResults for water are in Pci/ml; results for air are in Pci/sample. Reported errors are in percent.

REFERENCES

- 1. U.S. Department of Commerce Bureau of the Census, Characteristics of the Population: Number of Inhabitants--California 1980, PC 80 1 AC (March 1982).
- 2. U.S. Department of Energy, Effluent and Environmental Monitoring Program Requirements, DOE 5484.1, Chapter III (1981) and (1985).
- 3. U.S. Department of Energy, Requirements for Radiation Protection, DOE 5480.XX, Attachment 1, Table 1 [Concentration Guides for the Protection of the Public] (1987 in draft).
- 4. Dakin, H.S. and Stephens, L.D., Environmental Radiation Telemetry System, Lawrence Radiation Laboratory report UCRL-16482 (1967).
- 5. Thomas, R.H. (ed.), The Environmental Surveillance Program of the Lawrence Berkeley Laboratory, Lawrence Berkeley Laboratory report LBL-4678 (1976).
- 6. Greenhouse, N.A., private communication.
- 7. University of California Systemwide News, UC Headcount Environments (October 31, 1983).
- 8. U.S. Department of Commerce Bureau of the Census, Census Tracts--San Francisco-Oakland, California (et al.) Standard Metropolitan Statistical Area (SMSA), PHC 80 2 321 (July 1983).
- 9. "MICROAIRDOSE" Radiological Assessments Corporation, Neeses, SC, copyright 1987.
- Corley, J.P. (ed.) Committed Dose Equivalent Tables for US Department of Energy Population Dose Calculations, prepared for the US Department of Energy, Office of Operational Safety by Pacific Northwest Laboratory, Richland, WA, DOE/EH, 1985.
- 11. Vimont, John, private communication (March 1988).
- Hoffman, F.O. and Baes, C.F., II (eds), A Statistical Analysis of Selected Parameters for Prediction Food Chain Transport and Internal Dose of Radionuclides. Final Report. ORNL/NUREG/TM-282, 1979.
- 13. Ng, Y.C., et al., Prediction of the Maximum Dosage to Man from the Fallout of Nuclear Devices, UCRL-50163 (1968).
- 14. Sanderson, C.G. and Feiner, M.S., Semi-Annual Department of Energy Quality Assessment Program Report, Environmental Measurements Laboratory EML-498, September 1, 1987.
- 15. Sanderson, C.G. and Feiner, M.S., Semi-Annual Department of Energy Quality Assessment Program Report, Environmental Measurements Laboratory EML-503, January 4, 1988.

DISTRIBUTION LIST

Lawrence Berkeley Laboratory

External Distribution

D.A. Shirley	2	Russell Roberts	20
G. Rosenblatt	1	San Francisco Office	
P.H. Silverman	1	Uakland, CA	
K.H. Berkner	1	David L. Duncan Regional Radiation	1
M.J. Bissell	. 1	U.S. Environmental Protection A gangy	
T.F. Budinger	1	Region IX San Francisco, CA	
E.J. Cairns	1		
D.G. Eagling	2	John H. Hickman Radiologic Health Branch California State Dent. of	1
L.T. Kerth	1	Health Services 714 P St.	
M. Krebs	1	Sacramento, CA	
R.H. Kropschot	. 1	Bureau of Radiological Health	2
J.T. Lyman	. 1	Health Services Dept.	
T.V. McEvilly	1	Berkeley, CA	
S. Merola	1	F. Glenn Lynch City of Berkeley Health Department	1
G.L. Pappas	2	Berkeley, CA	
N.E. Phillips	1	Jerry Winn	1
G.C. Pimentel	1	Dept.	
TIM Symons	1	Oakland, CA	
1.5.141. 6 yinons	1	Roger James	1
A.R. Smith	1	Water Quality Control Board	
P.J. Oddone	1	San Francisco Bay Region Oakland, CA	
R.H. Thomas	3		-
L.J. Wagner	3	Bay Area Air Quality Management Dist. San Francisco, CA	1
Environmental Health			
and Safety Dept.	20	Jeff Wong Radiologic Health Branch	1
Lawrence Hall of	<u> </u>	California State Dept. of	
Science	3	Health Services 714 P St.	
Technical Info. Dept.	9	Sacramento, CA	

A. Hull **Brookhaven** National Laboratory Upton, NY Robert W. Buddemeier L-233 Lawrence Livermore National Laboratory Livermore, CA D. Busick Stanford Linear Accelerator Center Stanford University Stanford, CA L. Coulson Fermi National Accelerator Laboratory Batavia, IL Berkeley Public Library Oakland Public Library

UC-41 distribution 160

1

1

1

1

1

LAWRENCE BERKELEY LABORATORY TECHNICAL INFORMATION DEPARTMENT UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720

.