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ABSTRACT OF THE DISSERTATION 

 
Genome-wide mapping and analysis of mammalian promoters 

 

by 

 

Leah Ortiz-Luis Barrera 

 

Doctor of Philosophy in Bioinformatics 

University of California, San Diego, 2007 

 

Professor Bing Ren, Chair 

Professor Philip Bourne, Co-Chair 

 
Mammalian organisms such as mouse and human are characterized by large 

genomes of 2-3 billion base pairs.  Sequencing of these genomes has revealed that only a 

small fraction, ~1.5%, encodes protein-coding genes.  The diversity of more than 200 cell 

types which make up mammals, from the zygote to the differentiated cell types which 

perform the functions of organs, is brought about by the coordinated expression of 

specific subsets of these genes.  Control of gene expression is, in turn, mediated by the 

binding of transcription factors at non-coding genomic regulatory sequences such as 

promoters, enhancers, and insulators.  Unraveling the control of gene expression, 

resulting in mammalian cell type diversity, thus entails the accurate and systematic 

characterization of these sequences. 



 xvi 

 

In this work, we describe a pilot application of chromatin immunoprecipitation 

with microarrays (ChIP-chip) to define active promoters in human fibroblast cells.  To do 

this, we mapped the genomic location of components of the transcription pre-initiation 

complex (PIC) using microarrays tiling the entire non-repetitive human genome sequence 

at 100 bp resolution.  The scale and novelty of this high-throughput strategy entailed 

significant bioinformatics challenges.  In particular, we highlight our model-based 

approach for the accurate identification of binding sites from the data.  Interestingly, this 

pilot identification of 10,567 active promoters revealed the extent of alternative promoter 

usage within a single cell type, clustering of active promoters, and classes of genes based 

on PIC binding and transcript expression level. 

We then extended our genome-wide promoter mapping strategy to characterize 

active promoters in mouse embryonic stem cells (mES) and adult organs.  We mapped 

~24,000 promoters across these samples, including 5,153 sites validating cap-analysis of 

gene expression (CAGE) 5’ end data in addition to 16,976 annotated mRNA 5’ ends.  To 

profile promoter usage across tissues by relative occupancy of RNA polymerase II (Pol 

II), we adapted a quantitative index of tissue-specificity and thus overcome limitations of 

“bound” or “unbound” classification.  We examined the sequence and epigenetic features 

of tissue-specific promoters defined by this measure and discovered a subset of promoters 

with enriched Pol II binding in mES persistently marked by H3K4me3 in adult tissues. 
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Chapter 1  

Introduction 

The complement of hereditary information, which differentiates a human from a 

mouse or a mouse from a fly, is encoded in a genome packed into every cell that makes 

up these organisms.  The range of proteins which perform the biological processes and 

form the structures distinguishing the variety of cell types within these organisms are 

encoded as “genes” in the genome.  The concept of the genome as information is due to 

its simplified representation as a long sequence specified by a four-letter alphabet (A, T, 

G, C).  Three-letter combinations or codons map to 20 distinct fundamental units of 

proteins called amino acids and constitute a genetic code.  Mammalian organisms such as 

mouse and human are characterized by large genomes from ~2-3 billion “letters” in total 

length.  Sequencing of these genomes has revealed that only a small fraction (~1.5%) of 

the total length encodes protein-coding genes in these organisms 1,2.   

Despite the simplified four-letter representation, a genome is not merely 

sequence. Within cells, the genome exists as double helical chains of deoxyribonucleic 

acid (DNA).  The letters (A, T, G, C) correspond to nitrogen-containing bases (adenine, 

thymine, guanine, cytosine) that differentiate the fundamental units called nucleotides 

which make up each DNA chain.  In living cells, the genome is dynamic because of the 

changing biochemical interactions between DNA and proteins. For instance, in 

eukaryotes, the genome exists as chromatin – a complex of proteins called histones along 

with DNA3.  Changes in the compaction of and structure of chromatin, histone variant 
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composition and chemical modifications of histones can affect the accessibility of the 

associated DNA to other proteins which decode the underlying information.  Broadly 

termed transcription factors, these proteins bind short DNA sequences and in turn affect 

the rate that specific genes are transcribed from the genome. 

Although significant advances in characterizing the protein-coding gene content 

of mammalian genomes has been achieved through knowledge of the genetic code and 

sequence analysis, we are far from a complete characterization of the larger fraction of 

non-coding genomic sequence.  Methods for mapping protein-DNA interactions in vivo 

have emerged as a powerful complementary strategy for characterizing the function of 

DNA elements other than protein-coding genes in the genome.  These functional 

elements can be defined by their characteristic protein markers such as transcription 

factors, histone variants, or by associated histones with distinctive modifications. 

In this dissertation, we demonstrate the feasibility of a genome-wide approach for 

characterizing a specific class of functional elements by mapping protein-DNA 

interactions.  We describe the experimental method and technological developments that 

enabled this approach.  The novelty of the method and the large volume of resulting 

genome-scale data entailed significant bioinformatics challenges.  In particular, we 

highlight the development of a model to accurately predict protein-DNA interaction sites 

from the data.  Largely, we reveal how these pilot applications of the genome-wide 

approach to map promoters in one mammalian cell type and in a comparative study 

across a panel of mammalian tissue types contribute to our understanding of a dynamic 

genome.  
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1.1 Control of Gene Expression 

 Despite the availability of mammalian genome sequences and the presumed 

exhaustive annotation of protein coding genes, our understanding of the mechanisms by 

which subsets of genes are expressed in a cell type or tissue-restricted manner remains 

quite limited 1,4-6.  Although assembly of eukaryotic DNA into chromatin confers 

additional levels of regulatory control, the general model of transcriptional activation 

suggests the critical role of sequence-specific DNA-binding factors at regulatory 

sequences such as enhancers and promoters in activating transcription initiation by RNA 

polymerase II and the general transcription machinery at core promoters 7,8.  Thus, the 

development of systematic genome-scale approaches toward the characterization of these 

enhancers and promoters critical for mediating tissue-specific expression of linked 

transcriptional loci will represent key advances in our attempts to understand this process.   

1.1.1 Regulatory Elements in Gene Activation 

 Previous investigations of tissue-specific expression have been mainly carried out 

on a gene-by-gene basis and directed toward the elucidation of three types of regulatory 

elements known to mediate tissue-specific transcription efficiency (1) chromatin openers, 

(2) enhancers, (3) promoters9.  Chromatin openers affect the decondensation of repressed 

chromatin to a potentially active state, and thus increase the accessibility of the gene(s) 

within the locus to transcription machinery.  A related class of cis-acting element known 

as the locus control region (LCR) has been characterized for a number of tissue-specific 

genes and gene loci using DNAse-I hypersensitivity site mapping.  Canonical examples 

include the β-globin LCR which mediates erythroid cell-specific expression of globin 
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genes and the T-cell-specific TCR-α/δ LCR.  Aside from containing chromatin opening 

elements, these LCRs are also characterized as containing cell-lineage specific enhancer 

activity10.  Classical enhancers by definition stimulate transcription efficiency 

independently of orientation and distance by the binding of their cognate transcription 

factors.  These chromatin openers and enhancers are commonly defined by tissue-specific 

DNAse-I hypersensitivity sites11.  Their tissue-restricted activity and ability to act at a 

distance makes them particularly challenging to identify and match to their affected 

transcriptional loci.  A promoter on the other hand, has been less challenging to define 

once tissue-specific expression of a transcript or gene is established.   

1.1.2 Promoters 

 Promoters are typically characterized as containing two distinct structures: (1) a 

core promoter region that binds the general transcription initiation machinery defined as 

approximately [-35, +35] bp over the transcriptional start site, and (2) a proximal 

promoter region containing binding sites for sequence-specific DNA-binding proteins, 

similar to those contained within enhancers, which can activate or repress transcription 

initiation efficiency 4,11,12 (Figure 1-1).   

 Core promoters are thought to be generally inactive in vivo without transcriptional 

activation mediated through co-activators.  These co-activators bridge the effects of 

sequence-specific transcription factors bound to short sequence motifs at the proximal 

promoter or an enhancer 11,13,14.  Although recent studies suggest that cell-type specific 

components of the general transcriptional machinery can contribute to promoter 

selectivity leading to tissue-specific gene expression, core promoters are considered to 
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have limited tissue or cell-type specificity15.  Nonetheless, detailed biochemical studies 

have revealed the importance of short sequence motifs characterizing core promoters 

such as the TFIIB recognition element (BRE), TATA box, Initiator (INR), Motif Ten 

Element (MTE), and the Downstream Core Promoter Element (DPE) 12,16-18.  The 

variable combinations of these short sequence motifs at core promoters are suggested to 

contribute to the complex control of gene regulation19,20.   

 Proximal promoters on the other hand have been characterized to contain short 

sequence motifs that are sufficient to direct tissue-specific transcription in transient 

transfection studies21.  One of the earliest well characterized examples is the proximal 

promoter of the albumin gene.  This highly-expressed gene in liver was shown to contain 

cognate binding sites for liver-enriched factors such as HNF-1 and C/EBP within 150 bp 

upstream of the transcriptional start site (TSS)9.  The role of promoters in the complex 

control of gene expression is substantiated by the degree to which complex promoter 

structures are conserved among species22.  Sequence comparison of human and mouse 

genes have shown homologous block structures in promoters with regions of 

conservation extending on average up to 510 bp upstream of the TSS23.  More recently, 

discovery of known and novel conserved sequence motifs linked to tissue-specific 

expression in human from a comparison of promoters in several mammals clearly 

supports the idea that motifs in proximal promoters can be predictive of tissue-specific 

expression24.   

1.1.3 Tissue-Specific Expression 

 Clearly directed genome-scale approaches toward characterization of tissue-specific 
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promoters will be critical in the task of annotating tissue-specific expression of transcripts 

and in beginning to understand mechanisms of the process.  Most genome-scale 

approaches to date have been accomplished by combining information for tissue-specific 

expression of genes from expression profiling experiments with computational strategies 

for identifying possible motifs for transcription factor binding sites.  One computational 

study has described a method for systematic identification of tissue-specific transcription 

factor binding sites by focusing on sequence motif differences in the promoters of 

differentially expressed genes across tissue types. This study used manually curated sets 

of tissue-specific genes to define motifs for transcripts with liver-enriched and muscle-

enriched expression25.  More general sequence analyses of promoter features related to 

tissue-specificity from microarray-based and expressed sequence tag expression data thus 

far have mainly identified the general correlation of tissue-specific genes with promoters 

that contain TATA boxes and lack CpG islands, while the least tissue-specific genes are 

generally correlated to CpG islands26,27.  Aside from general sequence features, 

expression profiling studies of known and predicted genes across a panel of 79 human 

and 61 mouse human tissues have identified hundred of regions of correlated 

transcription (RCT), linearly co-localized genes with similar expression patterns across 

tissues, including some that are subject to tissue-specific expression.  These tissue-

specific RCTs were posited to be regulated by common promoter elements or through 

higher-order gene regulation leading to site-specific remodeling of chromatin to active 

domains, but both hypotheses have yet to be substantiated by further analyses28.  A key 

limitation of these studies dependent on expression data is that the analyses focus on 

genes rather than on transcripts, which different promoters from the same gene could 
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generate.  The rate of occurrence of alternative transcript start sites has been estimated to 

range from 9% to 52% of known genes in mouse 21,27,29,30.   Increasing evidence for the 

prevalence of alternative promoter usage and their role in mediating tissue-specific 

expression in mammals, thus further underscores the importance of the accurate 

identification of core and proximal promoter sequences linked to tissue-specific transcript 

expression 22,31. 

1.2 Mapping Protein-DNA Interactions in the Genome 

The developments of tools for large-scale mapping of in vivo protein-DNA 

interactions, such as chromatin immunoprecipitation with microarrays (ChIP-chip) are 

enabling global views of transcription factor binding and chromatin context.  

Applications of these strategies to characterizing genomic DNA interactions with histone 

proteins, general transcription factors and sequence-specific transcription factors are 

beginning to identify regulatory regions, unravel the chromatin features at specific types 

of regulatory regions, and reveal the coordinated roles of transcription factors and 

chromatin modifications in the control of gene expression in eukaryotic genomes.  Prior 

to the publication of the work described in this dissertation, high-resolution genome-scale 

maps of protein-DNA interactions were completed only in yeast.  Protein-DNA maps in 

flies or mammals surveyed selected regions or chromosomes.  In the following sections, 

we give a brief background on chromatin, an overview of ChIP-chip, and review the 

advances based on this strategy prior to our work. 
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1.2.1 Chromatin 

In eukaryotes, genomic DNA is partitioned among chromosomes within the 

nucleus in each cell, and each chromosome consists of a long stretch of DNA and 

proteins, referred to as chromatin.  There are various levels of chromatin condensation 

leading to the densely packed chromosome3.  The nucleosome, the fundamental unit of 

chromatin organization, consists of 146bp of genomic DNA spooled in less than two 

turns around a disk-like histone octamer.  Each histone octamer consists of two copies of 

two heterodimers -- histones H3/H4 and H2A/H2B 32.  Wrapping of DNA around 

histones limits the accessibility of the underlying DNA sequence to transcription factor 

binding and gene expression. Thus, the varying levels of chromatin condensation not only 

suggest a role for chromatin in the packaging of eukaryotic genomes, but more 

importantly in restricting or controlling gene expression32. 

In addition, the lysine-rich amino terminal tails of histones are subject to various 

chemical modifications such as lysine acetylation and methylation as well as serine 

phosphorylation at specific amino acid residues 33.  Some of these modifications have 

been detected near or directly over genes or transcribed regions and correlate with gene 

activity or silencing.  Likewise, substitutions of the histone components of the octamer by 

variant proteins have been observed at specific sites in the genome and linked with gene 

activation 34.  Chemical modifications of histone tails and histone variant incorporation 

further underscore the role of chromatin structure in the control of gene expression in 

eukaryotic genomes.  The persistence or inheritance of these chromatin modifications and 

structures associated with gene activation or silencing across cell division falls under the 
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study of “epigenetic” or non-sequence based mechanisms for transcription regulation 

35,36. 

1.2.2 Chromatin Immunoprecipitation with Microarrays  

Chromatin immunoprecipitation with microarrays or ChIP-chip is among the tools 

that permit the study of genomic DNA in the context of chromatin in living cells.  It is 

used to identify genomic DNA binding sites of transcription factors.  It also allows the 

mapping of histones, histone variants, and specific histone tail modifications associated 

with genomic sequences.  This strategy is an expansion of the chromatin 

immunoprecipitation (ChIP) method (Figure 1-2).  Briefly, ChIP involves the chemical 

cross-linking of protein-DNA interactions in living cells by formaldehyde treatment.  By 

sonication, genomic DNA is fragmented into lengths of ~1000bp, and then protein-DNA 

interactions of interest are isolated by immunoprecipitation (IP) with an antibody specific 

to the protein.  The availability of a specific antibody is a key limiting step to defining the 

genomic DNA binding or association of a particular protein and has been circumvented 

by approaches using recombinant proteins 37,38.  Following enrichment for the protein-

DNA complexes of interest, the chemical crosslinks are reversed.  In the conventional 

method, the IP-enriched genomic DNA is assayed for specific fragments by Southern blot 

or polymerase chain reaction (PCR) to determine known or predicted protein association 

at specific genomic sequences 39.   

The advent of microarrays has permitted the identification of IP-enriched genomic 

DNA fragments by hybridization of the DNA to probes tiled on microarray 40.  Thus, 

instead of testing a handful of sites for protein-DNA interaction, ChIP with microarrays 
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or ChIP-chip allows the simultaneous survey of thousands of sites if not more and 

represents a powerful tool for discovering novel sites of protein-DNA interaction.  In this 

regard, the limitations of microarray use boil down to the coverage of the genome being 

surveyed and the resolution of that coverage.  Initial use of ChIP-chip involved the tiling 

of known promoter regions from yeast as ~1000bp probes on a microarray40,41.  Greater 

genome coverage and higher resolution involves the use of high-density microarrays with 

probes or oligonucleotide sequences less than 100bp in length representing genomic 

windows tiled with probes every 100bp or less 42-45. 

The ability to achieve high-resolution and complete genome coverage for 

mammalian genomes not only required advances in microarray technology.  The scale of 

the data set and the signal-to-noise ratio issues associated with high-throughout 

microarray data presented significant challenges for data analysis to be described in detail 

in Chapter 2.  However, the push to perform genome-wide ChIP-chip in mammals was 

motivated by insightful studies in the budding yeast 46,47.  The yeast genome, less than 

0.5% of the human genome in size, has been a productive ChIP-chip model system.  

Mapping of histones, histone modifications, histone variants, as well as the binding sites 

for nearly all known transcription factors in the yeast genome has provided a substantial 

preview of the lessons to be learned regarding gene regulation using ChIP-chip. 

1.2.3 Nucleosome Depletion at Active Promoters 

As described earlier, eukaryotic chromosomes consist of histone and non-histone 

chromosomal proteins along with DNA.  The fundamental unit of chromatin organization 

defined by a nucleosome consists of a histone octamer around which 146bp of genomic 
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DNA is wound.  Recent findings from genome-wide surveys of chromatin organization in 

yeast suggest that variation in nucleosome composition can be indicative of coding versus 

noncoding regions  45,48-50.  Although non-coding regulatory sequences have been 

identified by nuclease hypersensitivity on a gene-by-gene basis, the global identification 

of a generalized architecture of nucleosome depletion at promoters supports the model 

that these regulatory sequences must be accessible to transcription factors.  

ChIP-chip experiments to map histone H3 and H4 consistently showed that 

intergenic regions are less densely occupied by nucleosomes than transcribed regions and 

that this depletion among intergenic regions is primarily associated with promoters 

upstream of transcribed sequences  49.  A recent pioneering strategy, combining 

micrococcal nuclease digestion to isolate mono-nucleosomes and DNA microarrays tiling 

482kbp of the yeast genome at nearly every 20bp, resolved this stereotypical 

nucleosome-free region (NFR) to a roughly 150bp region situated about 200bp upstream 

of the start codon flanked on both sides by well-positioned nucleosomes 50.  NFRs were 

mainly associated with poly(dA-dT) stretches which have been shown to destabilize 

nucleosome formation in vitro.  Rap1 consensus sites were also shown to be sufficient to 

induce NFRs and combinations of transcription factor motifs were strongly associated 

with these regions 48.  Whether sequence determinants or nucleosomal eviction by 

transcription factors cause these NFRs, this generalized promoter architecture in yeast 

clearly illustrates the functional role of chromatin organization in mediating transcription 

regulation.   
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1.2.4 Histone Modifications and Histone Variants at Promoters 

Like nucleosome positioning, post-translational histone modifications also 

characteristically associate with distinct genomic loci.  Two general classes of post-

translational modifications, histone acetylation (H2A, H2B, H3, H4) and histone 

methylation (H3) have been mapped in genome-wide in yeast 45,51-53 and in a limited 

scale in higher eukaryotes 49,54-56.  The distinct mechanistic models for the addition of 

these modifications related to transcriptional activity might explain their characteristic 

bias for particular genomic loci.   

The bias of histone acetylation sites near the beginning of genes is consistent with 

the model that transcriptional activators recruit histone acetyltransferases near regulatory 

regions such as promoters 45,51-53.  Mapping of individual histone acetyl-lysines has 

helped to partition the histone acetylation signals into transcription-dependent and 

transcription-independent modifications in yeast. In contrast with transcription-

independent acetylation states, transcription-dependent lysine acetylation sites (H3K9, 

H3K14, H3K18, H4K5, H4K12, H2AK7) generally localize near 5' ends of 

transcriptionally active genes  52. A ChIP-chip adaptation of the previously mentioned 

single nucleosome mapping strategy applied to these modification states in yeast 

precisely situates these transcription-dependent hyperacetylated histones at 5' sites 

flanking a hypoacetylated region consistent with the nucleosome-free promoter 

region50,52. 

On the other hand, histone H3K4 methylation in yeast has been clearly shown to 

be biased toward transcribed loci with the degree of methylation (mono-, di-, tri-) 

decreasing from the 5’ to the 3’ end 45,52.  This is consistent with the recruitment of the 
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H3K4 methyltransferase Set1 at the 5’ end of regions actively transcribed by RNA 

Polymerase II (Pol II) 57.  Meanwhile, H3K36me3 has been observed throughout the 

coding regions consistent with the model that the matching histone methyltransferase 

Set2 is associated with the elongating form of Pol II 45.  

To date, large scale histone acetylation and methylation studies in higher 

eukaryotes are generally consistent with findings in yeast, with some notable additions 

49,54-56.  Mapping of H3K9/14 hyper-acetylation sites in activated human T cells correlate 

these sites highly with promoters.  The acetylation sites, including those distal from 

known promoters, were also associated with previously identified conserved non-coding 

sequences based on human-mouse conservation and known regulatory elements in 

activated T-cells 55.  Mapping of H3K4me2 over orthologous human and mouse Hox 

clusters revealed broad regions of methylation over coding and intergenic regions which 

are notably not conserved in sequence but rather in location in human and mouse.  

Enrichment in intergenic transcription was detected over these methylated regions in the 

HoxA and HoxB loci in human and mouse, suggesting yet to be clarified mechanisms for 

the deposition of this modification state over coordinately regulated gene loci domains 56. 

Like post-translational histone modifications, histone variant composition has also 

been implicated in transcriptional control.  Recent results by ChIP-chip suggest that the 

histone H2A variant H2A.Z in yeast situates preferentially near promoter regions 58,59.  

Single-nucleosome mapping resolved this H2A.Z enrichment over nucleosomes flanking 

the NFR 60.  The observation of H2A.Z at actively transcribed genes and inactive loci 

raises questions about when and how H2A.Z is deposited 58-61.  On the other hand, studies 

of the histone H3.3 variant in fly using biotin-tagged histone variants, in an adaptation of 
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the ChIP-chip procedure, show the pronounced enrichment of H3.3 over actively 

transcribed regions relative to canonical H3.  This enrichment correlates with the level of 

transcription activity as well as Pol II occupancy and H3K4me2 levels derived from 

previous ChIP-chip studies 38,49.  A slight enrichment of H3.3 replication-independent 

replacement was also observed upstream of transcribed regions and slightly upstream of 

the region of nucleosomal depletion at promoters.  Given a Pol II-associated  model for 

H3.3 deposition over transcribed regions, it remains unclear how H3.3 is deposited 

upstream of promoters 38,61.   

In summary, specific chromatin modifications and histone variant composition 

have been observed near promoters and correlated with gene activity (Figure 1-3). 

Although global observations were largely from studies in yeast, these patterns are 

predicted to be similar in higher eukaryotes.  Furthermore, it is expected that distinct 

chromatin features also characterize other regulatory sites such as enhancers and 

silencers.  

1.2.5 Sequence-Specific Transcription Factor Binding at Known Promoters 

Ultimately, understanding the restricted expression of specific transcripts in a 

given cell type and condition requires the reconstruction of regulatory networks 

controlled by sequence-specific transcription factors.  To this end, ChIP-chip using 

promoter arrays has been employed to define gene targets of several transcription factors 

implicated in development, disease, or cellular differentiation 62-65.  Usually in 

combination with mRNA expression profiling and motif-finding, these data sets have 

been used to predict groups of co-regulated genes activated or repressed by a factor or 
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combination of factors, as well as to define novel regulatory sequences for further 

verification.  ChIP-chip for the binding of known transcription factors in yeast revealed 

regulatory network motifs such a single-input module, regulator cascade, multi-input 

module, auto-regulation, feed-forward loop, and multi-component loop46,47.  Specifically 

these studies in yeast uncovered transcriptional modules – groups of transcription factors 

that share common target genes – such as those for the control of cell cycle progression 

and amino acid metabolism 47,66.   More recently, ChIP-chip studies of transcription factor 

binding at known promoters in human embryonic stem cells (hESC) uncovered a 

transcriptional module consisting of Nanog, Oct4, and Sox2 63.  These factors bind 

together to at least 353 gene promoters in hESC and form a feed-forward loop, as well as 

an interconnected auto-regulatory loop. Among their target genes are key transcriptional 

regulators of cell proliferation and differentiation, demonstrating the central role of this 

transcriptional module in the maintenance of hESC self-renewal and pluripotency. 

1.3 Overview of the Dissertation  

 In the preceding sections I highlighted our limited understanding of the control of 

mammalian gene expression, in particular of the regulatory DNA elements such as 

promoters and enhancers which mediate the controlled expression of subsets of genes in 

specific cell types and tissues.  I also described the pioneering use of ChIP-chip for large-

scale mapping of protein-DNA interactions in yeast and to a limited extent in flies and 

mammals.  These maps underscore the power of ChIP-chip in characterizing regulatory 

DNA elements such as promoters by distinct chromatin features as well as by the binding 

of sequence-specific transcription factors.  Thus, the work described in this dissertation 
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involves a pilot study to test the feasibility of genome-wide ChIP-chip in a mammalian 

cell type in order to map and profile active promoters at high-resolution and in an 

unbiased fashion (Chapter 3).  The second major section involves the application of this 

genome-wide approach to identify active promoters in a panel of mammalian organs and 

embryonic stem cells in order to characterize the promoter sequence and epigenetic 

features of tissue-specific expression (Chapter 4).  These two chapters in full represent 

published work and a manuscript in preparation, respectively. 

 Aside from providing global views of promoter activity, a common thread 

underlying those two major projects is the development of analysis strategies for the new 

kind of ChIP-chip data generated.  In Chapter 2, I provide an overview of ChIP-chip data 

analysis issues and the common methods I have adapted to characterize six high-

resolution genome-scale ChIP-chip studies in human and mouse generated for these 

projects.  In particular, I highlight a model-based approach for defining protein-DNA 

interactions from ChIP-chip data (2.3). 
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Figure 1-1. Promoter schematic. 

 
 
Figure 1-2. ChIP-chip strategy 

(From publication: Kim, Tae H; Barrera, Leah; Ren, Bing. Genome-wide analysis of protein binding in 
mammalian cells.  Current Protocols in Molecular Biology, in press.) 

 

 
Figure 1-3. Chromatin structure and modification at active promoters 

General view based on ChIP-chip studies from model organisms (yeast and fly).
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Chapter 2  

ChIP-chip Data Analysis 

The advent of ChIP-chip using genomic tiling arrays has led to a growing number 

of analysis methods for pre-processing, binding site identification, and high-level analysis 

67-72. Genomic tiling arrays contain oligonucleotide or PCR products which cover the 

genome in a tiling path. Compared with low resolution (~1000bp) PCR arrays, high-

resolution (~100bp) oligonucleotide tiling arrays reveal ChIP-chip binding events by the 

enrichment of multiple neighboring probes instead of a single probe, thus permitting 

more reliable binding site identification.  Advances in high-density oligonucleotide array 

technology have enabled the genome-wide coverage of non-repetitive sequences in 

mammalian organisms such as human and mouse.  Experiments using these arrays 

typically result in a large volume of data, posing challenges in data analysis. In this 

chapter, we review the strategies we have developed and adapted for the analysis of the 

resulting data used for the pilot applications described in Chapter 3 and 4.   Given the 

growth and widespread adoption of the technology, we also highlight notable ChIP-chip 

analysis approaches concomitant with and after our work. 

2.1 Analysis Overview 

Steps involved in the analysis of ChIP-chip data are largely analogous to the steps 

involved in the analysis of microarray gene expression data (Figure 2-1).  Some common 

steps are data pre-processing, annotation and high-level analysis, database management 

and submission to microarray repositories.  Analogous steps include binding site 
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identification for ChIP-chip, compared with expression or ‘Present’ calls in microarray 

gene expression.  High-level analyses for ChIP-chip data involves the adaptation of 

visualization strategies to examine patterns of genomic binding and the use of motif-

finding strategies to find a common motif (or motifs) characterizing the binding sites for 

a particular factor.  Given the extensive literature for microarray expression data analysis, 

we only highlight key adaptations and developments for normalization, binding site 

identification and higher-level analysis73. Implementation of the following analyses 

requires standard bioinformatics capabilities – Perl scripting, database management 

systems such as MySQL, statistics modules from R, motif-finding programs, and 

specialized software for binding site identification. 

2.1.1 Microarray Platforms 

Coverage and resolution 

Prior to the advent of genomic tiling arrays, mammalian ChIP-chip arrays 

typically had biased coverage and limited resolution 42,44,64,74-78.  Coverage refers to the 

genomic regions surveyed by the probes on the array, while tiling resolution refers to the 

average distance (center to center) of the genomic positions corresponding to any two 

adjacent probes tiling a genomic region (Figure 2-2).  In early mammalian ChIP-chip 

applications, array coverage was biased to known promoters or CpG islands with one 

probe or array feature corresponding to each promoter or CpG island 64,79,80.  Array 

designs for unbiased coverage of genomic regions initially covered selected 

chromosomes or genomic regions in a tiling path.  Pilot applications include surveys of 

the smallest (autosomal) chromosomes in the human genome, chromosomes 21 and 22, 
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as well as 44 loci, comprising 1% of the human genome, designated as Encyclopedia of 

DNA Elements (ENCODE) regions 42,74,75,81.  Mammalian genome-wide high-resolution 

tiling arrays using the NimbleGen array platform were first described in a publication 

corresponding to Chapter 3 43.  Coverage of the entire non-repetitive human genomic 

sequence at 100 base pair (bp) resolution required 38 arrays.  Elimination of repetitive 

sequences is required for unambiguous mapping of ChIP-enrichment signal to genomic 

positions.   

Platforms 

The specifications and analysis support for the three commercial array platforms 

most commonly used and currently available for ChIP-chip with genomic tiling arrays – 

Affymetrix, Agilent, and NimbleGen – are summarized in Figure 2-3.  These 

specifications are compared to a prototypical PCR array made “in-house” by individual 

laboratories 81.  Currently, all platforms offer genome-wide array coverage of mammalian 

genomes such as mouse and human.  To date, the Affymetrix array platform offers the 

highest density and tiling resolution, covering the entire human genome at 35 bp 

resolution with 7 arrays.  On the other hand, the NimbleGen and Agilent array platforms 

are based on more flexible array synthesis technologies which do not require physical 

masks for every array design.  In particular the mask-less array synthesis (MAS) 

technology underlying NimbleGen arrays permits custom array designs for virtually any 

sequenced genome. We refer the interested reader to the following references describing 

the array production technology underlying each platform 82,83.   
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2.1.2 Data Pre-Processing 

After array scanning and image extraction, each probe or array feature is 

associated with an intensity signal or a pair of intensity signals corresponding to the 

amount of labeled DNA bound.  In addition to image quantification, pre-processing of 

this ChIP-chip microarray data typically requires data normalization.  There are two main 

types of normalization: (1) within-array normalization, and (2) between-array 

normalization for replicates and sample comparison.  To the best of our knowledge, there 

are no extensive reviews of normalization methods for ChIP-chip data compared with 

gene expression data.  However, as with gene expression data, the goal in normalizing 

ChIP-chip data is to identify and remove systematic sources of variation in the measured 

intensities in order to better resolve ChIP enrichment based on biological variation.  For 

two-color data, ChIP enrichment measured by a probe is typically represented as the log 

of the ratio of the intensity of the bound Cy5 labeled DNA or R (ChIP enriched) over the 

intensity of the bound  Cy3 labeled DNA or G (input DNA).  Most normalization 

schemes simultaneously take the intensities for each channel as input and output a 

normalized log ratio 73,84. 

Intensity-dependent normalization 

We use an R normalization package originally developed for microarray gene 

expression data, limma, to normalize ChIP-chip tiling array data 85.  We generally outline 

the procedure we use for ChIP log ratio normalization of two-color data (NimbleGen 

platform), but recommend the limma user’s guide for more detailed description of 

specific functions. 
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For two-color data, we extract the two channel intensities and an identifier for 

each probe and load them into the RGList object, a data structure, used as input to the 

various normalization functions in limma.  To assess the quality of the data before and 

after normalization, we view the traditional M versus A plots.  M refers to the log of the 

ChIP enrichment ratio, 
G

R

2log  and A refers to the average log intensity from both 

channels, ( )GR 22 loglog
2

1
+ , for each probe.  Thus, the M vs. A plot is a scatter plot 

where the log ratio for each probe is plotted relative to its average log signal.  In general, 

features on the plot are expected to be distributed near the M=0 line, with true ChIP 

enrichment represented by outliers at high values of M.  Anomalous intensity-dependent 

effects in which high M associates with low A can be spotted visually using these spots 84 

(Figure 2-4). 

Loess is a non-linear normalization strategy successfully used for the intensity-

dependent normalization of two-color expression array data 84.  It is a scatter-plot 

smoother that performs robust locally linear fits86.  This then results in the shifting of M 

values up or down depending on their intensity A according to the loess fit c: 

)(loglog 22 i
Ac

G

R

G

R
!"  

We generally use loess for within-array normalization to adjust ChIP log ratio 

values and specify only the control probes on the array to calculate the loess fit 

(normalizeWithinArrays).  The use of only control probes for normalization is critical 

when a large proportion of arrayed features map to binding sites for a factor (Figure 2-4).  
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We typically apply this normalization strategy when analyzing ChIP-chip data without 

replicates.  

Dye-swap normalization 

Dye incorporation or signal intensity biases can be treated by a simple dye-swap 

normalization 87.  This requires an experimental design in which the ChIP-enriched and 

genomic input samples for one of a pair of technical replicates for a ChIP-chip 

experiment are reversely labeled using Cy3 and Cy5, respectively, instead of the typical 

assignment of Cy5 to ChIP-enriched DNA and Cy3 to the genomic input DNA.  The 

ChIP log ratio enrichment for each probe from the pair of dye-swapped technical 

replicates is obtained by simply taking the average of the log ratio from each replicate 

where the ratio is based on the intensity signal from the ChIP-enriched channel over the 

genomic input channel.  We applied this type of normalization for replicate arrays used 

for condensed ChIP-chip scans in Chapter 3. 

Sequence-based normalization 

As an alternative to the normalization methods in limma or dye-swap 

normalization, Model-based Analysis of 2-Color arrays (MA2C) was recently developed 

to adjust probe intensities based on GC-content (XS Liu, unpublished).  MA2C extends 

the Model-based Analysis of Tiling-array (MAT) method recommended for normalizing 

single-channel ChIP-chip data based on the Affymetrix tiling array platform 70.  MAT 

takes as input the raw CEL and BPMAP files and adjusts the single-channel intensity for 

each 25 bp probe, i,  based using the following model of probe behavior based on probe 

sequence content: 
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Here the intercept α is based on the “T” count, β is the position effect of each nucleotide, 

γ is the effect of the nucleotide count squared, δ the effect of probe copy number ci, and ε 

is the error term for the probe i.  The value 
ik
n  is the nucleotide k count in probe i, and 

ijkI is the indicator function such that ijkI is 1 if the nucleotide at position j is k for probe i. 

and 0 otherwise. 

The parameters for the model are estimated with standard least-squares regression 

using all probes on the array.  Probes in the array are then grouped based on sequence 

content similarity into “affinity bins” of ~ 3000 probes.  Finally, each probe signal is 

standardized relative to its expected probe behavior and the standard deviation within its 

affinity bin: 
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This correction significantly improves ChIP-chip analysis of Affymetrix data, and 

suggests the importance of modeling baseline probe behavior for short oligonucleotides 

(25 bp) used in this platform70. In fact, a model-based correction of probe intensities 

based on sequence content has also been successful for the adjustment of Affymetrix 

microarray gene expression data using the R package gcrma 88.  

Quantile normalization 

To normalize across a set of replicate arrays we apply quantile normalization.  

This method forces the distribution of array probe values in each array across a set of 

arrays to be the same 89.  In other words, the value at the 92nd quantile for array A should 
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be equal to the value at the 92nd quantile for array B after quantile normalization.  We use 

the normalizeBetweenArrays function in limma. Quantile normalization strategies are 

also available through other R microarray analysis packages affy and rma. 

2.1.3 Single Array Error Model 

In this section, we briefly review the Single-Array Error Model, which is the 

standard for the ChIP-chip binding site analysis of low-resolution PCR arrays40,46,47,64,90.  

It is a one-sided test for ChIP enrichment calculated for each probe.  The single array 

error model is based on the simple calculation of a test statistic for each probe testing the 

null hypothesis that there is no difference in intensities for the Cy5 (R) and Cy3 (G) 

channels, R-G=0, against the one-sided alternative that the difference is greater than 0, R-

G>0. 

For each array feature, summary statistics are given in the GPR file for the 

intensity values measured in each channel (F635 Median, F635 Mean, F532 Median, 

F532 Mean, F635 SD, F532 SD, F635 +1SD, F532 +1SD, B635 Median, B532 Median, 

Flags). We associate each array feature with a Cy5 (F635 channel) and a Cy3 (F532 

channel) intensity value by taking the median statistics for the foreground measurements 

and subtracting (non-negative) median statistics for the background measurements: 

MedianBMedianFCy 6356355 !=   

MedianBMedianFCy 5325323 !=  

If there are blank spots on the array adjust the Cy5 and Cy3 intensities further by 

subtracting the median intensity measured at each channel among the blank spots in the 

array. 
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To normalize the Cy3 intensities relative to the Cy5 intensities, the median of the 

intensity ratios (Cy5/Cy3) is used to adjust each of the Cy3 intensities in a global scaling 

normalization: 
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A scatter-plot of log(Cy5) relative to log(Cy3) intensities is used to qualitatively assess 

the ChIP-chip experiment. A relatively tight distribution of spots over the 45-degree line 

suggests a clean hybridization. Deviations from the 45-degree line with higher Cy5 

relative to Cy3 intensities suggest array features overlapping ChIP-enriched genomic loci 

(Assumption: ChIP-enriched DNA is labeled using the Cy5 dye). (Figure 2-5) 

The Single-Array Error Model (SAEM) test statistic for each array feature is then 

calculated as: 
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The 
35

, CyCy !! values are the F635 SD and F532 SD measurements for each array feature, 

respectively. The function f is a fractional multiplicative error due to hybridization non-

uniformities, fluctuations in dye incorporation efficiency, and scanner gain fluctuations 

90. f  is chosen so that X has unit variance. It is estimated once from control experiments 

in which Cy5 and Cy3 labeled DNA come from the same reference sample 90 

A one-sided p-value for the standardized SAEM test statistic (X-statistic) is calculated 

using the standard normal cumulative distribution function (cdf) )1,0(N or ! : 
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This requires the assumption that the X-statistics have a Gaussian distribution with a 

minor right-tail corresponding to array features overlapping ChIP-enriched genomic loci. 

When the normality assumption does not hold as observed when the distribution is 

heavily skewed, alternative methods for modeling the null distribution of the X-statistics 

can be used to assign p-values or False-Discovery Rate (FDR) adjusted significance 

values  91.  The use of FDR-adjusted p-values obviates concerns regarding simultaneous 

or multiple testing of tens of thousands of probes.  Array features overlapping ChIP 

enriched genomic loci are then selected based on a particular p-value or FDR threshold 

(for example p < 0.001 or 5% FDR) and classified as “binding sites”. 

2.2 Binding Site Identification 

The key goal in the majority of ChIP-chip experiments is to define DNA regions 

bound by the factor of interest.  For ChIP-chip using microarrays spotted with PCR 

fragments an adaptation of the single-array error model (SAE) is commonly used to 

define arrayed features as overlapping ChIP-enriched genomic DNA and was described 

in the last section. Binding site identification for ChIP-chip using high-resolution 

oligonucleotide tiling arrays requires integrating intensity information over neighboring 

probes to determine enrichment.  In this case, it is not sufficient for a single array feature 

to have enriched signal, but rather enrichment is determined over a genomic window of 

probes (Figure 2-6).  
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For initial screens at 100 bp resolution, we have used a simple windowing approach 

to define ChIP-enriched genomic regions as being spanned by a minimum of 4 probes 

separated by a maximum of 500bp with ChIP enrichment log ratios greater than 2.5 

standard deviations from the mean.  This min-run, max-gap approach has been used for 

the analysis of tiling array data for transcriptome profiling 92.  An analogous windowing 

approach called ChIPOTle (ChIP On Tiled arrays) reassigns the value for each probe 

based on the average of log ratios for all probes within a pre-specified genomic window 

size (for instance, 1000 bp) centered on that probe 68.     

These approaches, however, do not adequately take advantage of the profile of 

ChIP enrichment.  Recently developed strategies to model genomic neighborhood 

enrichment include Joint Binding Deconvolution (JBD) and TILEHGMM 69,71.  JBD, in 

particular, requires additional information in the form of the fragment length distribution 

of the sonicated DNA for each ChIP-chip experiment to predict binding sites 71.  To 

precisely predict binding sites for a given factor at probe-level resolution, we have 

effectively used a peakfinding strategy called MPeak 72. This method models ChIP 

enrichment at a transcription factor binding site to be shaped like peaks or triangles over 

a genomic window, given assumptions regarding the sonication and ChIP steps (Figure 

2-7).  It uses a fast algorithm for determining non-overlapping binding peaks for a user-

selected significance level.  We describe the derivation and implementation of this 

approach in detail in the following section. 
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2.3 Peakfinding Model 

Our approach to peak-finding is model-based because we derive a probability 

model for the ChIP-chip process which explains the resulting ChIP-chip data as outlined 

below: 

1. Genomic binding sites: Factor binding sites (such as promoters) on the genome can 

be idealized as a set of points on the real line. Let’s denote the locations of these 

binding sites by their coordinates B1,B2, ...,BM. The total number M of binding sites 

and their coordinates are unknown, and they need to be inferred from the ChIP-chip 

data. 

2. Protein binding: In the ChIP-chip experiment, the proteins are bound to their cognate 

binding sites. For a genome sequence, let pm be the probability that the binding site m 

is bound by a protein. Different binding sites are assumed to be independent of each 

other. 

3. Sonication: The sonication process fragments chromosomes into shorter DNA 

fragments (~1000 bp). Each fragment is an interval on the real line. For a genome 

sequence, the set of cut points are randomly distributed.  A simple probability model 

is the Poisson point process, which has the following assumptions: (1) the probability 

that a cut point occurs in a small interval (x, x+Δx) is λ(x)Δx, where λ(x) is the 

intensity function measuring how dense the cut points are around x. 1/λ(x) can be 

considered the expected length of the intervals between two consecutive cut points 

around x. (2) For non-overlapping intervals, what is happening in one interval is 

independent of what is happening in the other interval. 
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4. Immunoprecipitation: For each protein bound to a binding site, the probability that it 

is recognized and bound by the antibody is α. For a DNA fragment to be immuno-

precipitated, it must contain at least one binding site that is bound by the protein, 

which must in turn be recognized and bound by the antibody. We call such a binding 

site a “good binding site.” Thus, the probability that BM is a good binding site is pmα = 

qm. A DNA fragment that contains at least one good binding site is called a “good 

fragment.” 

5. Tiling array of probes: At each location x, the array signal measured by a probe at x is 

denoted by Y (x) = log(Cy5/Cy3). It measures the relative abundance of good 

fragments that contain x. The actual binding sites are generally several bp long (not a 

point-source), and a probe can be as long as 50 bp. Here we mathematically idealize 

them as dimension-less points on the real line for simplicity. 

2.3.1 Probability Model 

Consider a random genome sequence. The ChIP process produces from this 

genome sequence a collection of non-overlapping good fragments. These good fragments 

only cover part of the whole genome. For any location x, let p(x) be the probability that x 

is covered by a good fragment. In the experiment, there are a large number of genome 

sequences, and p(x) manifests itself as the concentration of good fragments covering x. 

So p(x) can be considered the theoretical prediction of the signal value measured by 

probe x. In the following, we shall calculate p(x) under various scenarios. In order to 

make this subsection easy to follow, we add some non-rigorous steps in the derivations. 
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A key observation is that for x to be covered by a good fragment, a necessary and 

sufficient condition is that there is no cut point between x and at least one good binding 

site. 

One binding site scenario: Let’s first consider the simplest scenario where there is only 

one binding site at the origin of the real line. Then: 

)),0(cut noPr(
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where q is the probability that 0 is a good binding site, i.e., it is bound by a protein, which 

is in turn bound by the antibody. Without loss of generality, let’s assume that x > 0. 
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The last step follows the Taylor expansion: )()())(1log( xoxxxx
ii

!+!"=!" ## , with 

)( xo ! being a term that decreases to 0 faster than !"nn  as /1 .  Thus 
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x
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If we assume ,0for  )( >= xax! then 0for ,)(log >!= xaxcxp , where qc log= .  

Similarly for 0!x , if we assume bx =)(! , then .0for ,)(log !+= xbxcxp   We can 

combine the two equations for 0 and 0 !> xx  into one equation, 
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++
!!!= ][][)(log xaxbcxp  (Equation 2) 

where otherwise. 0][ and ,0 if ][ =>=
++

xxxx  

Equation (2) has a triangle shape peaked at 0, and is the basis for our model-based peak 

recognition method. However, this model assumes that there is only one binding site. For 

real data, the above model is true only around a local neighborhood of a binding site, 

where the effects from other binding sites can be neglected. In the following, we shall 

study the situation where there are more than one binding sites, in order to understand 

how different binding sites affect each other. 

Two binding site scenario: Suppose there are two binding sites 
1
B  and 

2
B . Let’s assume 

that 
21
BB ! . Let 

2 1
 and qq be the probabilities that they are good binding sites, 

respectively. For )(),,( 21 xpBBx! is influenced by both 
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where the last step follows the same logic as Equation (1). 

If 
1
B  and 

2
B are far away from each other, and if x is close to 

1
B , then the last two terms 

in Equation (3) can be neglected, and we will obtain an approximated equation that is in 

the same form as (2) in the one binding site scenario. 

General scenario: Now we are ready to derive the formula for general scenario, where 

there are M binding sites 
M
BB ,...,

1
. For notational convenience, we also add !"=

0
B , 

and 0 with , 101 ==!= ++ MM qqB .  For ),,( 1+!
MM
BBx  
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Using equations (5) and (6), )(xp can be calculated according to Equation (4).  From the 

above analysis, we can see that the triangle shape fits the data only within a local range 

around a true binding site. So in the data analysis, we shall fit a truncated triangle shape 

model whose range is adaptively determined. 

Chip measurement 

The “chip” step of the ChIP-chip process measures log p(x). The Cy5 measures 

the abundance of DNA fragments in the IP-enriched DNA pool, and Cy3 measures the 

abundance of DNA fragments in the un-enriched DNA pool. For a DNA fragment 

containing probe x, the hybridization strength, i.e., the probability that it will be 

hybridized by the probe x, can depend on x. By calculating )3/5log()( CyCyxY = , this 

dependence is cancelled out. We shall simply assume that the observational errors are 

additive and follow a stationary Gaussian process. 
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2.3.2 Peak Identification 

The previous section shows that a binding site causes an approximately truncated 

triangle shape for the signals of the probes around this binding site.  In this sub-section, 

we propose a model-based method to recognize these shapes.  After finding these 

truncated triangle shapes, including their positions and ranges, we can pool the probe 

signals within the range of each identified shape to test against the background noise 

hypothesis, to decide whether these signals are caused by a true binding site. 

Truncated triangle shape model 

We fit the truncated triangle shape model to the data around each probe in order 

to identify the positions and ranges of the shapes.   

Let’s use 
0
x to denote the genomic coordinate of this probe. We look at a window 

around 
0
x . Let L be the number of probes to the left of 

0
x  within the window. Let R be 

the number of probes to the right of 
0
x  within the window. Let’s denote the genomic 

coordinates of the probes to the left of
0
x  by ),...( 1!! xx

L
, and the coordinates of the probes 

to the right of 
0
x  by ),...( 1 R

xx .  Let the signals measured by these probes be 

),...,,...( 01 RL yyyy !! .  We then fit the following multiple regression model: 

[ ] [ ] , ,
00

RiLxxaxxbcy iiii !!"+""""=
++

#  (Equation 7) 

where 0 and 0 !! ba . We fit this model by a constrained least squares method. Let 

R

LiiyY !== )( and [ ] [ ] R

Liii
xxxxX !=

++
!!!!= ),,1( 00 .  Then, the least squares estimates of 

the coefficients are ( ) ( ) YXXXabc !!=
! "1~,

~
,ˆ .  To satisfy the positivity constraints, we let 

[ ] [ ]++
== bbaa

~ˆ and 
~ˆ .  Because of DNA packaging and interactions with histones etc., 
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there is reason to believe that the chopping rates around different binding sites may be 

different during the sonication step. Therefore we assume that each peak has its own 

slopes, a and b. 

Let )ˆ,ˆ,ˆ(ˆ abcXY = .  We calculate the residual variance 

( )dRLYY !++!= 1ˆˆ
2

2"   where d is the number of regression coefficients. If both L 

and R are non-zero, then 3=d .  If 2 then 0or  0 === dRL . 

The residual variance 2!̂  is used for identifying the peak positions as well as the 

ranges L and R. It is not used for testing the significance of the peaks. Specifically, model 

(7) is correct under the following two assumptions: 

1) 
0
x  is a true binding site, and  

2) λ(s) is constant within R](0, and )0,[ L! , respectively.  

If neither assumption is correct, then model (7) is incorrect, and the residual variance 2!̂  

will include the contribution from model bias. Therefore, a true binding site can be 

detected by the local minimum of the fitted 2!̂ . 

To be more specific, for any 
0
x  and L,R, let the signal iii xfy !+= )( .  )(xf is a 

truncated triangle shape peaked at 
0
x  if and only if assumptions 1) and 2) hold. If 

0
x  is 

not a true binding site, then )(xf  will not be a truncated triangle shape peaked at 
0
x . 

Instead, it will be a triangle peaked at a binding site other than 
0
x . Let 

( ) R

Li

R

Liixff !=!=
== )( and )( i"" .  We can write .!+= fY   Let XXXXH !!=

"1)(  be the 

projection matrix, and let  ˆ and ,ˆ,ˆ !! HHffHYY === be respectively, the projections of 
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! and ,, fY onto the space spanned by X .  Then 2
22

ˆˆˆ !! "+"=" EffYYE because 

[ ] 0=!E .  If assumptions 1) and 2) hold, then [ ] [ ]++
!!!!= 00)( xxaxxbcxf iii , so 

.0ˆ
2

=! ff  If we shift
0
x  from the true binding site while keeping L and R fixed, then 

.0ˆ
2

>! ff  Assuming 
i
!  come from a stationary process, and assuming that the probes 

are equally spaced, then 2

!̂! "E remains unchanged under the shift, because X remains 

the same. Therefore, 
2

ŶYE ! or ( )2!̂E is a local minimum relative to the shifting 

operation if assumptions 1) and 2) hold. This fact does not depend on the assumption that 

i
! are uncorrelated. Therefore, we may use the residual variance 2!̂  to identify the 

locations of the binding sites. 

We also use the residual variance 2!̂  to determine the ranges L and R of the 

truncated triangle shape. If 
i
!  are uncorrelated with constant marginal variance 2!̂ , then 

under assumption 1), 22 )ˆ( !! =E for any L and R that satisfy assumption 2). If L or R is 

too large for assumption 2) to be true because of the effects from nearby binding sites, 

then 22 )ˆ( !! >E . In practice, we choose L and R that give us minimum 2!̂ among all the 

allowable combinations of L and R. This is a conservative choice. L and R determine the 

range of a fitted triangle shape, so that we can pool the signals within this range, and use 

their average to test against the background hypothesis. 

For a peak shape caused by a true binding site, the conservative choice of L and R 

already enables us to include the strong signals around the binding site. Even though the 

conservative choice of L and R may fail to include the relatively weak signals of the 
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probes that are near the two ends of the true triangle shape, we will not lose much power 

in testing against the background hypothesis. At the same time, if 
0
x  is not a true binding 

site, then such choice of L and R will prevent us from pooling signals that may be caused 

by nearby binding sites, so that we will not declare too many false positives. 

If 
i
!  are stationary but not uncorrelated, with marginal variance 2!̂ , then under 

assumptions 1) and 2), 2222
))(1(ˆˆ !"""" #$++=$=$ HtrRLEEE , where 

( ) 2!"" #=$ E is the correlation matrix of .!  

( ) ( )dRLHtrRLE !++"=++= 1))(1(ˆ 22 ##  which depends on L and R and is not an 

unbiased estimate of the marginal variance 2!̂ . In this situation, we continue to choose L 

and R with minimum 2!̂ .   

Sometimes, ChIP-chip may produce an enriched region as a plateau of high 

values instead of a peak. In this case, our method can still detect a peak from such a 

region because the truncated triangle shape model can fit such plateau shape with very 

flat slopes. Occasionally, some probes may fail to function normally during the ChIP-

chip experiment. Such dysfunctional probes may produce overly small or large signals. 

The truncated triangle shape model enables us to detect and remove such probes as 

outliers. 

2.3.3 Peakfinding algorithm 

1. Identify all the local maximum probes in the data. A probe is a local maximum 

probe if its signal is greater than all the signals within k bp away (k is a parameter 

that is pre-specified and the default value is 200). 
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2. As a starting point, pick the probe with the largest signal among all the local 

maximum probes. 

3. At the current probe x, fit the triangle shape model as described above, for all 

combinations of (L,R), where both L and R are chosen within a range from the 

smallest allowable value to the largest allowable value (these two values are pre-

specified, and the default numbers are 300 bp and 1500 bp respectively). Then 

choose the (L,R) that gives the smallest residual variance 2!̂ . We call (x − L, x + 

R) the range of this probe x, and 2!̂ the residual variance of x. 

4. Repeat the above model fitting procedure for the neighbors of this current local 

maximum probe. For each neighboring probe x, obtain its range and residual 

variance as described in step 2. Then among the current local maximum probe 

and its neighbors, choose the probe with the smallest residual variance to identify 

the best fitted triangle shape. We mark this probe as a potential binding site. 

5. For any local maximum probe other than the above marked probe within the 

range of this best fitted triangle shape, we compare the fitted value of the best 

fitted triangle and the fitted value of the triangle centered at this local maximum 

probe. If the difference between the two fitted values at this local maximum 

probe is less than a threshold (which is a factor times the standard deviation of 

the residuals of the best fitted triangle, e.g default factor is 1.5), then this local 

maximum probe is said to be explained by the best fitted triangle and it is marked 

as non-peak. 
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6. Among all the local maximum probes still not marked, choose the local 

maximum probe with the largest signal. Then, go back to step 3. Stop the 

algorithm if all the local maxima are marked. 

2.3.4 Evaluating Peak Significance 

For a potential binding site x, suppose the truncated triangle shape fitted at x 

covers n probes. Let 
n
YYY ,...,,

21
be the signals of these n probes, which can be considered 

the signals caused by the potential binding site x. We want to test whether x is a real 

binding site by pooling these n probes. We decide to use the following test statistic: 

! =
=

n

i in
nYY

1
.  A similar method was proposed by Buck, Nobel and Lieb to calculate 

the significance of the sliding window average for each probe68. 

If 
n
YYY ,...,,

21
are not caused by a binding site, they should be pure noise, which 

can be modeled by a stationary process. This process, however, is not independent white 

noise, because there are auto-correlations between nearby probes. We may assume that 
i
Y  

is correlated with its neighbors jY  with mPP ij !"  ( ij PP  and are the genomic positions 

of ij YY  and , respectively). Then 
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 (Equation 8) 

where 2! is the marginal variance )(
i
YVar , and f is the auto-correlation factor. Both can 

be estimated from the data. Specifically, we can first calculate the marginal standard 

deviation of the whole sequence of signals. Then we remove those signals that are above 
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a threshold (default value is 2.5 times the marginal standard deviation). After that we 

estimate 2! and  f based on the remaining signals. Because the true peak shapes only 

occupy a few parts of the whole sequence, and the vast majority of the signals are 

background noise, such a procedure gives reasonable estimates of 2!  and  f. We calculate 

the p-value by comparing the observed 
n
Y with ))1(,0( 2 fN +! .  The normal distribution 

can be justified by the central limit theorem.  We can trim the insignificant peak shapes 

by thresholding the p-value (the default threshold is 1%). 

2.3.5 Use of Peakfinding 

A software package called Mpeak has been developed to implement the model-

based peakfinding strategy described in the previous sections.  The software and source 

code can be downloaded from http://www.chiponchip.org.    

Given the assumptions of the peakfinding approach, Mpeak is ideally used for 

ChIP-chip experiments involving sequence-specific DNA binding factors or factors that 

generally localize at punctate binding sites such as TAF1.  . 

2.4 High-Level Analysis 

We provide a cursory discussion of high-level analysis for ChIP-chip data 

because analysis is typically tailored to the biological question of interest motivating the 

ChIP-chip experiment.  Standard questions for ChIP-chip with genomic tiling arrays 

include: (1) Genomic distribution of bound sites relative to known genes and transcripts, 

(2) Genomic position clustering of bound sites into dense domains, (3) Enrichment of any 

associated genes into relevant functional categories, (4), Sequence-conservation of bound 
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sites, (5) Sequence motifs characterizing bound sites, (6) Punctate or large spreads of 

binding enrichment, (7) Comparison with and co-localization of other factors by ChIP-

chip, and (8) Correlation with matching transcription profiling information.   In the 

following sections, we highlight some of the resources and strategies for addressing 

initial questions of annotation and visualizing genomic distribution.  Chapters 3 and 4, in 

particular the Methods sections, will present more detailed strategies for high-level 

analysis. 

2.4.1 Annotation 

The central repositories for genomic annotation are the National Center for 

Biotechnology Information (NCBI) database and the University of California Santa Cruz 

(UCSC) Genome Browser93,94.  Both resources contain sequence information for 

available genomes and assemblies.  In addition, both sites contain coordinates and 

information for known genes, mRNA, and expressed sequence tags (ESTs), as well as 

annotation for known sites of genetic variation such as single-nucleotide polymorphisms 

(SNPs).  The UCSC Genome Browser also has extensive annotation with respect to 

cross-species conservation, such as alignments of any given genomic region with other 

available species as well as estimates of the conservation rate over that region. 

There is a variety of publicly available software and web resources for motif-

analysis and gene set annotation developed concomitant with the widespread use of 

microarray gene expression data.  These can be similarly applied for evaluating ChIP-

chip binding sites 95-97. An integrated web resource, Cis-Regulatory Element Annotation 

System (CEAS), is especially designed for ChIP-chip data annotation, given a set of 
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coordinates for ChIP-enriched regions it provides summaries of genomic distribution 

relative to known genes, conservation scores, and over-represented known transcription 

factor binding sites from TRANSFAC98.  Although we do not use this tool for the work 

to be described, we believe that it can be useful for preliminary ChIP-chip data analysis. 

2.4.2 Visualization  

Graphical browsing of ChIP-chip data is enabled by software such as SignalMap 

from NimbleGen and the Integrated Genome Browser (IGB) from Affymetrix. ChIP-chip 

data files for browsing contain chromosomal coordinates and the ChIP log ratio for each 

probe.  Visualization allows for initial identification of different patterns of ChIP 

enrichment, from punctate sites to large spans.  Genomic distribution of ChIP enrichment 

relative to known genes or other functional elements can be initially assessed by 

simultaneous viewing of annotation files on additional tracks.  Uploading custom tracks 

to the UCSC Genome Browser in designated BED, GFF, or WIG formats can also be 

used to visualize selected ChIP enriched regions in the context of all available annotation 

for transcripts, CpG islands, conservation, genetic variation, etc.  (Figure 2-8) Details for 

the file formats are given on the UCSC Genome Browser93. 

Visualization and pattern classification tools developed for expression analysis 

such as TreeView and Cluster 3.0 are also useful for examining patterns of ChIP 

enrichment over a set of parallel loci, especially when evaluating tiling array data.  For 

instance, visualization of TAF1, Pol II, H3Ac and H3K4me2 enrichment over windows 

centered on TAF1 sites reveals the co-localization of these marks over promoter regions 

99-101 (Figure 2-9). 
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2.5 Data Management 

Raw and pre-processed ChIP-chip data as well as resulting target lists and 

annotation are ideally stored within a database management system (DBMS). We use the 

open-source MySQL DBMS to facilitate data storage, retrieval, and manipulation.  

Indexing, by sub megabase intervals of genomic positions for all ChIP-chip data and 

genomic annotation tables, is critical to speed up comparisons and retrieval of specified 

genomic windows. 

Submission to public repositories for microarray data such as ArrayExpress and 

Gene Expression Omnibus (GEO) are required for ChIP-chip publications. Data 

submission formats such as MAGE-ML, MIAME, and SOFT require detailed annotation 

of the ChIP-chip experiments 102,103. 
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Figure 2-1. ChIP-chip analysis workflow. 

(Figure inspired by expression analysis workflow presented at the Cold Spring Harbor Systems Biology 
Workshop by Dr. Xiaoyue Zhao). 
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Figure 2-2. Coverage and resolution of arrays. 

(From publication: Kim, Tae H; Barrera, Leah; Ren, Bing. Genome-wide analysis of protein binding in 
mammalian cells.  Current Protocols in Molecular Biology, in press.) 

 

 
Figure 2-3. ChIP-chip microarray platforms. 
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Figure 2-4. M vs. A plot before and after normalization. 

Control probes used to calculate loess normalization fit are highlighted in red. (From publication: Kim, Tae 
H; Barrera, Leah; Ren, Bing. Genome-wide analysis of protein binding in mammalian cells.  Current 
Protocols in Molecular Biology, in press.) 
 
 

 
Figure 2-5. Scatterplot of Cy5 versus Cy3 enrichment. 

Green spots indicate enriched probes based on the Single-Array Error Model. (From publication: Kim, Tae 
H; Barrera, Leah; Ren, Bing. Genome-wide analysis of protein binding in mammalian cells.  Current 
Protocols in Molecular Biology, in press.) 
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Figure 2-6. ChIP-chip enrichment with high-resolution tiling arrays. 

 
 

 
Figure 2-7. Example of binding site resolution by peakfinding. 

(From publication: Kim, Tae H; Barrera, Leah; Ren, Bing. Genome-wide analysis of protein binding in 
mammalian cells.  Current Protocols in Molecular Biology, in press.) 
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Figure 2-8. UCSC Genome Browser screen shot. 

(From publication: Kim, Tae H; Barrera, Leah; Ren, Bing. Genome-wide analysis of protein binding in 
mammalian cells.  Current Protocols in Molecular Biology, in press.) 

 

 
Figure 2-9. ChIP-chip profiles with TreeView. 

(Adapted from publication: Kim, Tae H; Barrera, Leah O; Zheng, Ming; Qu, Chunxu; Singer, Michael A.; 
Richmond, Todd A.; Wu, Yingnian; Green, Roland; Ren, Bing.  A high-resolution map of active promoters 
in the human genome.  Nature, Vol.436, 2005).
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Chapter 3  

A High-resolution Map of Active Promoters in the 

Human Genome 

In eukaryotic cells, transcription of every protein-coding gene begins with the 

assembly of an RNA Polymerase II (Pol II) preinitiation complex (PIC) on the 

promoter12. The promoters, in conjunction with enhancers, silencers and insulators, 

define the combinatorial codes that specify gene expression patterns104. Our ability to 

analyze the control logic encoded in the human genome is currently limited by a lack of 

accurate information of the promoters for most genes105. Here, we describe a genome-

wide map of active promoters in human fibroblast cells, determined by experimentally 

locating the sites of PIC binding throughout the human genome. This map defines 10,567 

active promoters corresponding to 6,763 known genes and at least 1,196 un-annotated 

transcriptional units. Features of the map suggest extensive usage of multiple promoters 

by human genes and widespread clustering of active promoters in the genome. In 

addition, examination of the genome-wide expression profile reveals four general classes 

of promoters that define the transcriptome of the cell. These results provide a global view 

of the functional relationship among the transcriptional machinery, chromatin structure 

and gene expression in human cells. 
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3.1 Promoter Mapping in Human Fibroblast Cells 

3.1.1 Overview of Strategy 

The PIC consists of the RNA Polymerase II (Pol II), the transcription factor IID 

(TFIID) and other general transcription factors17. Our strategy to map the PIC binding 

sites involves chromatin immunoprecipitation coupled DNA microarray analysis (ChIP-

chip), which combines the immunoprecipitation of PIC-bound chromatin from 

formaldehyde crosslinked cells with parallel identification of the resulting bound DNA 

sequences using DNA microarrays40,81. Previously, we have demonstrated the feasibility 

of this strategy by successfully mapping active promoters in 1% of the human genome 

that correspond to the 44 genomic loci known as the ENCODE regions81,106. To apply 

this strategy to the entire human genome, we fabricated a series of DNA microarrays82 

containing roughly 14.5 million 50-mer oligonucleotides, designed to represent all the 

non-repeat DNA throughout the human genome at 100 basepairs (bp) resolution. We 

immunoprecipitated TFIID-bound DNA from the primary fibroblast IMR90 cells with a 

monoclonal antibody that specifically recognizes the TAF1 subunit of this complex (TBP 

associated factor 1, formerly TAFII250107, Figure 3-1). We then amplified and 

fluorescently labeled the resulting DNA, and hybridized it to the above microarrays along 

with a differentially labeled control DNA (Figure 3-1 A).  

3.1.2 Summary of TFIID Binding and Annotation 

We determined 9,966 potential TFIID-binding regions using a simple algorithm 

requiring a stretch of four neighboring probes to have a hybridization signal significantly 
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above the background. To independently verify these TFIID-binding sequences, we 

designed a condensed array that contained a total of 379,521 oligonucleotides to 

represent these sequences and 29 control genomic loci selected from the 44 ENCODE 

regions106 at 100 bp resolution. ChIP-chip analysis of two independent samples of IMR90 

cells confirmed the binding of TFIID to a total of 8,597 regions, ranging in size from 400 

bp to 9.8 Kbp (Figure 3-1 B). We further defined a total of 12,150 TFIID-binding sites 

within the 8,597 fragments using a peak finding algorithm that predicts the most likely 

TFIID-binding sites based on the hybridization intensity of consecutive probes with 

significant signals (Figure 3-1 A).  

Next, we matched these 12,150 TFIID-binding sites to the 5’ end of known 

transcripts in three public transcript databases (DBTSS108, RefSeq109, GenBank human 

mRNA collection110) and the EnsEMBL gene catalog111. To account for the uncertainty 

of our knowledge of the true 5’ end of transcripts and the uncertainty of predicted TFIID-

binding positions due to noise within the microarray data, we chose an arbitrary distance 

of 2.5 Kbp as a measure of close proximity. We found that 10,553 (87%) TFIID-binding 

sites were within 2.5Kbp of annotated 5’ ends of known mRNA. We resolved common 

TFIID-binding sites mapping to similar 5’ ends to define a non-redundant set of 9,328 

5’end-matched TFIID-binding sites. Of these TFIID-binding sequences 7,789 (83%) 

were found within 500 bp of the putative transcription start sites (TSS) (Figure 3-1 C). 

Since these 9,328 DNA sequences were bound by TFIID in vivo and within close 

proximity to the 5’end of known transcripts, we defined them as promoters for the 

corresponding transcripts (Data Table 3-1).  
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Of these 9,330 promoters, 8,960 were mapped within 2.5 Kbp of the 5’ end or 

within annotated boundaries of 6,763 known genes in the EnsEMBL gene catalog111 

(Figure 3-1 D, Data Table 3-1). The remaining 368 promoters corresponded to transcripts 

not contained within these boundaries of EnsEMBL genes, and therefore provide support 

for inclusion of these transcripts to the current gene catalogs. The list of promoters also 

confirmed 5,118 previously annotated promoters108, and defined 4,210 new promoters for 

at least 2,627 genes (Figure 3-1 E, Data Table 3-1).  

3.1.3 Independent Support and Characterization of TFIID Sites 

Four independent analyses validated the high specificity and accuracy of the 

active promoters detected in IMR90 cells. First, ChIP-chip analysis using an anti-Pol II 

antibody (8WG16) confirmed the binding of Pol II to at least 9,050 (97%) of the 9,328 

promoters in IMR90 cells (Figure 3-2). Second, standard chromatin immunoprecipitation 

(ChIP) performed on 28 promoters randomly selected from the above list confirmed the 

occupancy of Pol II on all but one promoter (Figure 3-3). Third, the 9,328 active 

promoters are enriched for known promoter-associated sequences such as CpG islands, 

and the INR and DPE core promoter elements (Figure 3-1 F). The percentage of CpG-

associated promoters (88%) was significantly higher than the previous estimate (56%)112, 

suggesting that CpG islands may play a more general role in gene expression than 

previously appreciated. Surprisingly, we did not find the TATA box to be significantly 

enriched in these promoters (Figure 3-1 F). This may be due to a lack of conservation of 

the TATA box in human promoters; alternatively, this may indicate that the TATA box is 

not a general promoter motif for human genes. This observation is in line with previous 
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reports that the TATA box is only present in a small number of promoters in yeast and in 

Drosophila113. Fourth, ChIP-chip analysis using antibodies that recognize acetylated 

histone H3 (H3ac) or di-methylated lysine 4 on histone H3 (H3K4me2) showed that over 

97% of the 9,328 promoters were associated with these known epigenetic marks for 

active genes (Figure 3-4)49. Interestingly, the localization of H3K4me2 in these 

promoters was predominantly downstream of the TFIID-binding site (Figure 3-4), and the 

mechanisms for such chromatin organization at human promoters are currently unclear. 

3.1.4 Novel Promoters 

Among the 12,150 mapped TFIID-binding sites, 1,597 are found more than 2.5 

Kbp away from previously defined 5’ends of mRNA, and may represent promoters for 

novel transcripts or genes (Data Table 3-2). Of these, 607 non-redundant TFIID-binding 

sites were matched within 2.5 Kbp of the 5’ ends of the Expressed Sequence Tag (EST)-

based gene models, indicating that they may indeed produce mRNA (Data Table 3-2). 

The remaining TFIID-binding sites were further filtered to a set of 632 putative 

promoters by requiring the occupancy of Pol II and presence of H3ac and H3K4me2 

within 1 Kbp of these sites (Figure 3-5).  

To verify that these promoters drive transcription, we analyzed mRNA from the 

IMR90 cells, using 50-mer oligonucleotide arrays that represent a 28 Kbp sequence 

surrounding 567 of 632 unmatched putative promoters. At least 35 novel transcription 

units were identified near the putative promoter regions, suggesting that these may 

represent new transcription units yet to be annotated in the human genome (Data Table 

3-3). The failure to detect mRNA from the other putative promoters may indicate that 
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these transcripts are highly unstable. Indeed, at least one putative promoter is located 

within 250 bp upstream from a predicted miRNA114 (Figure 3-6), suggesting that some 

putative promoters could transcribe non-coding RNA that might have escaped detection 

by conventional mRNA isolation techniques. 

In all, we defined a set of 1,239 putative promoters that correspond to previously 

un-annotated transcription units (Figure 3-5,Data Table 3-2). Evolutionarily conserved 

regions were found in a majority of these putative promoters (Figure 3-7). In addition, 

they were significantly enriched for core promoter motifs including INR (46%) and DPE 

(40%) and overlapped with CpG islands (40%,Figure 3-8). These results suggest that 

many of the putative promoter sequences that we have defined by TFIID-binding sites 

may indeed be functional promoters. There are 828 putative promoters located in the 

intergenic regions.  These promoters, together with the 368 promoters that matched to 

transcripts outside the EnsEMBL genes, may suggest the existence of 1,196 novel 

transcription units outside the current gene annotation115. This number corresponds to 

about 13% of the 8,960 promoters that were matched to known genes; therefore, we 

estimate that there are likely additional 13% of the human genes that remain to be 

annotated in the genome. This number agrees well with a recent estimate of the total 

number of human genes115, but is considerably lower than estimates based on number of 

transcripts detected by microarrays, SAGE, and other methods92,116-118. It is conceivable 

that promoters for many low-abundance transcripts may be infrequently occupied by 

TFIID and possibly escaped detection by our assays. Alternatively, it is possible that the 

novel transcripts detected by the other studies are products from a different transcription 

machinery or process.  
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3.2 Features of Active Promoters 

3.2.1 Clustering of Active Promoters 

Two notable features were apparent in this map of active promoters. First, large 

domains of four or more consecutive genes were found to be simultaneously bound by 

PIC and likely transcribed in the IMR90 cells. At least 256 clusters, consisting of 1,668 

EnsEMBL genes, can be classified into such regions, and the number of clustered 

promoters is highly significant (p << 0.001, Data Table 3-5). The clustering of active 

promoters is consistent with previous findings that co-regulated genes tend to be 

organized into coordinately regulated domains119-122.  

3.2.2 Alternative Promoter Usage 

Second, a large number of genes contained two or more active promoters (Data 

Table 3-4). In general, these multiple promoters correspond to transcripts with either 

different 5’ UTR sequences or distinct first exons (i.e., PTEN) but do not affect the open 

reading frames. In some cases, however, distinct proteins were produced from multiple 

promoters (i.e., NR2F2, WEE1). In other cases, transcripts undergo differential splicing 

and polyadenylation (i.e., NFKB2, STAT3). The widespread usage of multiple promoters 

in this single cell type indicates a greater complexity of the cellular proteome than 

previously expected and also reveals highly coordinated regulation of transcriptional 

initiation, splicing, and polyadenylation throughout the genome123. To experimentally 

verify our observations regarding multiple promoter utilization in IMR90 cells, we 

selected the WEE1 gene for further analysis. Two TFIID-binding sites were mapped 
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within this gene, corresponding to the 5’ ends of two distinct mRNAs, NM_003390 and 

AK122837 (Figure 3-9 A). Each mRNA encodes a distinct protein: one encodes a well-

characterized full length version of WEE1 protein, and the other only the kinase domain. 

We detected both transcripts in a steady state, asynchronous population of IMR90 cells 

(Figure 3-9 B). Interestingly, the shorter transcript appears to be most abundant in G0 

phase, while the longer transcript is highly transcribed in both G0 and S phase (Figure 

3-9 C), suggesting that the two promoters in the WEE1 gene may have distinct cell cycle 

functions.  

3.3 Comparison with Expression Profiling 

The active promoter map in IMR90 cells allowed us to systematically investigate 

the functional relationship between the transcription machinery and gene expression. We 

examined the genome-wide expression profiles of IMR90 cells and correlated the 

expression status of 14,437 EnsEMBL genes to promoter occupancy by the PIC.  

3.3.1 PIC Binding and Expression 

The comparison revealed four general classes of genes (Figure 3-10, Data Table 

3-6). Class I consists of 4,415 genes whose promoters were bound by the PIC, and 

transcripts were detected. Class II includes 658 genes whose promoters were bound by 

the PIC, but no transcript was detected. Class III contains 2,879 genes that were 

transcribed in IMR90 cells but the PIC was not detected on their promoters. Class IV 

comprises of the remaining 6,485 genes whose promoters were not bound by PIC and 

their corresponding transcripts were not detected.  
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The genes in class I and class IV, representing over 75% of the genes examined, 

support the general model that formation of the PIC on the promoters leads to 

transcription. The class II and III genes, on the other hand, are inconsistent with this 

model and may indicate other mechanisms responsible for the expression of these genes. 

We postulate that the discrepancy between the PIC formation and transcription on the 

class II promoters are due to at least two possibilities. The first possibility is that the PIC 

assembles on these promoters, but the PIC formation is not sufficient to initiate 

transcription. Additional regulatory steps, such as promoter clearance or elongation may 

be rate-limiting in transcription of these genes124. Some notable examples in class II are 

the immediate early genes, FOS and FOSB; the heat shock protein genes, HSPA6 and 

HSPD1; and the DNA damage repair genes, MSH5 and ERCC4. The second possibility is 

that transcription actually takes place at these promoters, but the resulting mRNAs are 

post-transcriptionally degraded, as in miRNA-mediated post-transcriptional silencing125.  

In contrast to class II, genes in class III appear to be transcribed, but the PIC 

binding on their promoters was not detected. This could simply be due to moderate 

sensitivity of our method81. To address this issue, we performed standard ChIP assay to 

detect binding of TFIID and Pol II on 10 randomly selected class III gene promoters. 

Nearly 60% of the promoters were weakly associated with TFIID and Pol II in these 

cells, and were marked by enrichment ratios less than 2-fold but nonetheless above the 

observed background (Figure 3-3). Hence, the failure to detect TFIID and Pol II 

occupancy in roughly 60% of the class III promoters (~1,700) may be due to weak 

signals that fall below the detection sensitivity of our method. This result indicates that 

the promoters of a significant fraction of class III genes are open and accessible for 
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transcription, but PIC assembles on these promoters transiently, weakly or only during 

the early stage of fibroblast differentiation.  

3.3.2 Histone Modifications and Expression 

In order to understand the functional relationship between the histone 

modification status and gene expression, we examined the histone modifications (H3ac 

and H3K4me2) in 29 ENCODE regions106 (Data Table 3-7), with a specific focus on the 

four classes of gene promoters. As expected, these epigenetic markers were associated 

with virtually all class I and class II genes, and the vast majority of class III genes. 

However, roughly 20% of the class IV genes were also associated with these markers 

(Figure 3-10). This result suggests that a significant number of genes not actively 

transcribed are also associated with these epigenetic markers. We speculate that these 

histone modifications may serve to restrict genome expression potential and define the 

transcriptome capacity of the cell, and the transcription regulators and machinery 

collaborate with these epigenetic markers to further restrict the transcriptome to generate 

a unique pattern of genome expression. 

3.4 Conclusion 
 

Our results provide an initial framework for analysis of the cis-regulatory logic126 

in human cells. The high-resolution map of active promoters in IMR90 cells will enable 

detailed analysis of transcription factor binding sites within these regions. The promoter 

map described here can also serve as a reference to understand gene expression in other 

cell types. We expect that a survey of additional cell types using the same approach will 
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allow comprehensive mapping of all promoters in the human genome, and help elucidate 

the control logic that governs gene expression in different cell types in the body.  

3.5 Methods 

Experimental design 

To identify active promoters in human cells, we isolated DNA bound by the 

general transcription factor IID (TFIID) from crosslinked primary fibroblast IMR90 cells 

by chromatin immunoprecipitation with an antibody that specifically recognizes the 

TAF1 subunit of this complex (TBP associated factor 1, formerly TAF250). The enriched 

DNA was then amplified and fluorescently labeled, and hybridized to the high-density 

oligonucleotide arrays along with a differentially labeled control DNA. We determined 

the potential TFIID binding sites using a simple statistical threshold requiring a stretch of 

four neighboring oligos to have a hybridization signal significantly above background. A 

total of 9,966 clusters of TAF1 binding sites were identified by this analysis. To verify 

the binding of TAF1 to these sequences, we designed a new array that contains a total of 

379,521 50-mer oligos to represent the 9,966 putative TAF1 binding sequences plus 29 

control genomic loci (selected from the ENCODE regions, each ranging in size from 500 

Kbp to 1.9 Mbp) at 100 bp resolution. TAF1 bound DNA was isolated from two 

independent samples of IMR90 cells and was labeled and hybridized to these arrays. A 

total of 8,597 TAF1 binding regions, ranging in size from 400 bp to 9.8 Kbp, were 

confirmed by the replicate experiments. 

Samples used, extract preparation and labeling 
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IMR90 cells were grown and maintained according to the direction from 

American Type Culture Collection. Cells were harvested and crosslinked with 1% 

formaldehyde when they reached ~80% confluency on the plates. Chromatin 

immunoprecipitation was performed as described previously 

(http://www.pnas.org/cgi/data/1332764100/DC1/1), with the following modifications64. 

Antibodies for ChIP were obtained from commercially available sources: mouse 

monoclonal antibody against Pol II (catalog # MMS-126R, Covance), mouse monoclonal 

TAF1 antibody (catalog # sc-735, Santa Cruz Biotechnology), and rabbit polyclonal 

H3ac and H3K4me2 (catalog # 06-599 and 07-030 respectively, Upstate). Following the 

ligation mediated PCR (LM-PCR) step, additional PCR reactions were performed to 

generate 100 µg of ChIP DNA for hybridization. 200 ng of LM-PCR products were 

amplified for five additional cycles under the same LM-PCR conditions.  

One microgram (µg) of LM-PCR products were used for labeling and 

hybridization to each array. One microgram of immunoprecipitated or total genomic LM-

PCR DNA was mixed with 40 µL of 1 µM Cy5 or Cy3 end labeled random prime 

nonamer oligonucleotides (TriLink Biotechnologies) respectively with the bacterial label 

control DNA in a total volume of 88 µL. The DNA and random primers were annealed 

by heating the sample to 98°C for 5 minutes and chilled quickly in ice water for 2-3 

minutes. Two microliter of (100 units) of E. coli DNA polymerase Klenow fragment and 

10 µL of 10 mM equimolar mixture of dATP, dTTP, dCTP, and dGTP were added to the 

annealed DNA sample and incubated at 37°C for 2 hours. The reaction was stopped by 

addition of 10 µL of 0.5 M EDTA. The labeled sample was ethanol precipitated by 

addition of 11µL 5 M NaCl and 110 µL isopropanol. The precipitate was collected by 
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centrifugation and the resulting labeled DNA pellet was washed with 80% ethanol (V/V). 

The pellet was dried under vacuum for 5-15 minutes to remove any remaining liquid, and 

the resulting dry labeled DNA pellet was resuspended in 10 µL dH2O. 

Hybridization procedure and parameters 

Equal amounts (12 µg) of Cy5 and Cy3 labeled DNA samples were mixed, and 4 

µL 2.94 nM Xenohybe control oligos (an equimolar mixture of 

5’TTGCCGATGCTAACGACGCATCAGACTGCGTACGCCTAAGCAACGCTA3’ 

and 

 5’CATTGCTGTGCGTACGCAGTCAAGTCGATCACGCTAACTCGTTGCGAC3’) 

was added to the mixture. The sample was vacuum dried under low heat until the volume 

of sample was less than 14.4 µL. The final volume of DNA was adjusted to 14.4 µL with 

dH2O. To this sample, 11.25 µL 20X SSC, 18 µL 100% formamide, 0.45 µL 10% SDS, 

0.45 µL 10X TE (100mM Tris, 10mM EDTA), and 0.45 µL equimolar mixture of Cy3 

and Cy5 labeled CPK6 oligonucleotides 

(5’TTCCTCTCGCTGTAATGACCTCTATGAATAATCCTATCAAACAACTCA3’ and 

5’TTCCTCTCGCTGTAATGACCTCTATGAATAATCCTATCAAACAACTCA3’, 

respectively) were added to prepare the hybridization mixture. The hybridization sample 

was heated to 95 °C and was applied to the slide and incubated in the MAUI® 

Hybridization Station (BioMicro Systems, Inc.) at 42 °C for 16-20 hours. 

The hybridized slides from the MAUI® Hybridization Station were washed once 

in Wash 1 (0.2X SSC, 0.2% SDS, 0.1 mM DTT) for 10-15 seconds and followed by 

another wash in Wash 1 (0.2X SSC, 0.2% SDS, 0.1 mM DTT) for 2 minutes with gentle 

agitation. The slides were then washed in Wash 2 (0.2X SSC and 0.1mM DTT) for 1 
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minute and followed by a wash in Wash 3 (0.05X SSC and 0.1 mM DTT) for 15 seconds. 

The slides were dried by centrifugation. 

Measurement data and specifications 

The hybridized arrays were scanned on an Axon GenePix 4000B scanner (Axon 

Instruments Inc.) at wavelengths of 532nm for control (Cy3), and 635nm (Cy5) for 

experimental sample. Data were extracted from the scanned images using the 

NimbleScan 2.0 program (NimbleGen Systems, Inc.). The arrays were gridded using the 

automated gridding algorithm, and extracted in two channels using a mean intensity 

calculation of the interior of the gridded rectangular features upon extraction, and each 

pair of N probe signals were converted into a scaled log ratio using the function: 

R(i) = Log (Experimental(i) / Control(i))  

The raw microarray data can be visualized by SignalMap software (Nimblegen Inc.). 

Array design 

The 38 genome scan arrays contained a total of 14,535,659 50-mer 

oligonucleotides, positioned at every 100 basepairs (bp) throughout the human genome as 

described in the oligonucleotide array description files. 

A condensed array used to verify the results from genome scan arrays contained a total of 

379,521 oligonucleotides to represent the 9,966 putative TAF1 binding sequences plus 29 

control genomic loci (selected from the ENCODE regions, each ranging in size from 500 

Kbp to 1.9 Mbp) at 100 bp resolution.  

Initial identification of TAF1 binding regions 

After scanning and image extraction, Cy5 (TAF1 IP) and Cy3 (input) signal 

values for each of the 38 arrays tiling the non-repetitive sequences of the human genome 



 

 

63 

at 100 bp resolution (NCBIv34) were normalized by intensity-dependent Loess127. 

Median filtering (window size=3 probes) was used to smooth logR (Cy5/Cy3) data across 

the tiled regions. For each array, IP-enriched probe clusters were defined as regions with 

a minimum of 4 probes separated by a maximum of 500 bp with filtered logR greater 

than 2.5 standard deviations from the mean log ratio.  

Peak finding and confirmation of TAF1 binding sites 

To confirm evidence of TAF1 binding at the initial 9,966 IP-enriched clusters, 

dye-swapped replicate ChIP experiments were hybridized to a custom array tiling only 

these putative binding regions (each extended upstream and downstream by 1.5 times its 

length) and the 29 ENCODE19 regions as control, at 100 bp resolution. Measured 

intensities for dye-swapped replicates were median-scale normalized and corresponding 

log ratios averaged. The log ratios across the regions were visualized using SignalMap.  

Given the 100 bp resolution of the arrays, we developed a peakfinding model to more 

precisely define binding sites (Chapter 2).  In this original implementation of the 

peakfinding strategy, the significance of a specific peak P̂  was based on the p-value for  

the following hypothesis test: 
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The degrees of freedom equal 3 because we fit three additional parameters in our model 

(one !  and two ! ’s because of the asymmetry of the triangles). We used a significance 

threshold P ≤ 0.2 to define peaks as binding sites.  

Classifying promoters by matching to 5’ end and gene annotation 

We compared the location of 12,150 TAF1 binding sites to annotated 5’end of 

transcripts from RefSeq, GenBank, and DBTSS. RefSeq transcript (refGene.txt) and 

GenBank mRNA (all_mrna.txt) coordinates were downloaded from UCSC Genome 

Browser (http://genome.cse.ucsc.edu) in Sept. 2004 (HG16, July2003/NCBI Build 34). 

The set of GenBank human mRNA data (all_mrna.txt) was filtered to include only 

mRNA alignments to the genome which match 95% of the transcript length. DBTSS data 

was downloaded from DBTSS Home (http://dbtss.hgc.jp ) in Jan. 2004. HG13 DBTSS 

coordinates were converted by blat alignment of promoter sequences to HG16 assembly 

from the UCSC Genome Browser. 

5’ End Annotation Source Number of Transcripts 

DBTSS 8,793 

RefSeq 22,074 

GenBank mRNA 118,346 

 

We found 10,504 binding sites within 2.5 Kbp of an annotated 5’end from 

DBTSS, RefSeq, or GenBank. To remove possibly redundant matches, we matched 

binding sites to their closest 5’ ends. For each 5’ end matched, the closest TAF1 binding 

site was selected to define a non-redundant set of 9,281 transcript-matched promoters.  
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We then used MegaBLAST128 to match these 9,281 transcript-matched promoters 

to 22, 222 EnsEMBL111 annotated genes (EnsEMBL v26) by requiring that the matched 

transcript have a 95% sequence identity and a hit length of at least 50 bp with the best 

aligning EnsEMBL transcript. Additionally we verified that the matching transcript is 

within the annotated boundaries of the matching EnsEMBL gene. By this strategy we 

matched 7,920 transcript-matched promoters to 6,197 genes with high-confidence. 216 

additional transcript matches to 206 EnsEMBL genes were made using translation tables 

knownToEnsembl and ensGeneXref downloaded from UCSC Genome Browser in Feb. 

2005 (HG17, May2004 /NCBI Build 35). To define the overlap of EnsEMBL genes with 

our transcript-matched promoters, the 1,145 transcript-matched promoters not matched to 

EnsEMBL genes by strategies described above were matched to corresponding 

EnsEMBL genes if they fall within the annotated gene boundaries. 

The 1,646 TAF1 binding sites (12,150 minus 10,504) outside 2.5 Kbp of the 

annotated 5’ ends from DBTSS, RefSeq, and GenBank were then matched to the 5’ ends 

of Acembly gene models based on EST clustering. Acembly coordinate information 

(acembly.txt) for 222,699 genomic alignments was downloaded from the UCSC Genome 

Browser in Sept. 2004 (HG16, July2003/NCBI Build 34). 749 promoters mapped within 

2.5 Kb of Acembly annotated 5’ ends were filtered to a set of 646 non-redundant set of 

Acembly-matched promoters. 39 of these Acembly-matched promoters were found to be 

within 2.5Kbp of EnsEMBL annotated gene starts and added back to the list of transcript-

matched promoters, resulting in final total of 607 Acembly-matched promoters. 

The remaining 897 sites not matched within 2.5Kbp of annotated 5’ ends from 

DBTSS, RefSeq, GenBank, and Acembly were filtered to define a set of 644 putative 
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promoters by requiring the identification of binding sites for Pol II and H3ac and 

H3K4me2 within 1 Kbp of the TAF1 sites. 10 of these promoters not matched by 

DBTSS, RefSeq, GenBank, and Acembly were found to be within 2.5Kbp of EnsEMBL 

annotated gene starts and added back to the list of transcript-matched promoters, resulting 

in a total of 634 filtered unmatched promoters.  Two of the 634 correspond to chrY 

regions homologous to other hits and were thus removed from analysis to give a final 

count of 632 filtered unmatched promoters. 

The combination of 9,281 transcript-matched promoters, 39 Acembly-matched 

promoters, and 10 putative promoters within 2.5Kbp of annotated ensEMBL genes 

represent a total of 9,330 promoters matched to known 5’ ends.  Two of 9,330 were 

found to correspond to chrY regions homologous to other hits and were thus removed 

from analysis to give a final count of 9,328 promoters matched to known 5’ ends. 

In the discussion, we partitioned the total of 10,567 promoters identified as 9,328 

promoters matched to known 5’ ends (transcript-matched promoters) and 1,239 putative 

promoters (607 Acembly + 632 filtered unmatched).  

A total of 8,960 of the 9,328 5’end/transcript-matched promoters mapped to 6,763 

EnsEMBL genes by alignment, location within the gene, or translation from annotation 

tables. To map transcript-matched promoters to nearby DBTSS annotated 5’ ends, we 

checked whether these promoters were within 2.5 Kbp of the DBTSS annotated start site 

and that the matching transcript is on the same strand as the DBTSS-associated transcript. 

By such criteria, we found 5,118 promoters within 2.5 Kbp of 3,996 DBTSS annotated 

promoters. 
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The coordinates of the TAF1 binding sites for the set of putative promoters were 

also compared to the genomic coordinates of the EnsEMBL annotated genes to determine 

whether to classify their location as intergenic or within genes. Putative promoters were 

classified as intergenic if they fall outside the annotated start and end of all the genes in 

the EnsEMBL gene catalog. 411 of 1,239 putative promoters fall within EnsEMBL 

annotated genes while 828 fall outside of ensEMBL genes. 

(Unless otherwise described, required conversions of coordinates between different 

assemblies/NCBI Builds were done using the utility liftOver and chain files from the 

UCSC Genome Browser).  

Validation of promoters 

Quantitative real-time PCR was performed with 0.5 ng of TAF1 or Pol II ChIP 

DNA and enriched total genomic DNA, as described previously42,56.  The quantitative 

real-time PCR of each sample was performed in duplicate using iCycler™ and SYBR 

green iQ™ SYBR green supermix reagent (Bio-Rad Laboratories). The threshold cycle 

(Ct) values were calculated automatically by the iCycle iQ™ Real-Time Dectection 

System Software (Bio-Rad Laboratories). Normalized Ct (ΔCt) values for each sample 

were then calculated by subtracting the Ct value obtained for the unenriched DNA from 

the Ct value for the promoter DNA (ΔCt = Ctpromoter – Cttotal). The fold enrichment of the 

tested promoter sequence in ChIP DNA over the unenriched DNA was estimated as 

described previously42,56. Primers used for this analysis are list below. 

Validation of putative promoters 

An array containing 567 of the 632 putative promoters with no 5’ end matches 

was designed by taking 13Kbp upstream and downstream sequences from each site and 
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tiling these regions at 38bp resolution with 49-mer probes (180,873 probes).  Controls 

selected from ENCODE regions were also tiled in the array at the same resolution 

(200,378 probes). To this array, Cy5 labeled cDNA synthesized from total RNA 

extracted from IMR90 cells were hybridized. Hybridization was performed as described 

above. 

To determine transcribed regions proximal to the putative promoters we used a 

strategy similar to that used to define transcriptionally active regions (TARs) with high-

resolution tiling arrays 129. Here, we required a minimum set of four consecutive probes 

exhibiting fluorescence intensities above the 90th percentile. Regions defined by these 

criteria as transcribed were then checked for overlap with known exons and/or location 

within genomic loci of known transcripts based on annotation from the knownGene table 

from the UCSC Genome Browser (HG16, July2003/NCBI Build 34). Distances of these 

transcribed regions to the 567 putative promoters were also computed to define matches. 

Motif analysis 

 We examined 400 bp of the 10,567 transcript-matched TAF1 binding sequences 

(extending 200 bp upstream and downstream from the identified peak) for the occurrence 

of the TATA box, INR, DPE and BRE elements using matrices defined in TRANSFAC 

8.3. and by Chalkley and Verrijzer130, Kutach and Kadonaga18, and Lagrange et al131. In 

addition, we examined the conservation of each motif in the promoter regions in chimp, 

mouse and rat genomes based on a multiple genome alignment [human May 2004 (hg17), 

chimp Nov. 2003 (panTro1), mouse May 2004 (mm5), rat June 2003 (rn3)]. The motif-

matching and conservation scores were calculated using exactly the same algorithm and 
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cutoffs as described in the UCSC genome browser TFBS conservation track (HG16, July 

2003):  

http://genome.cse.ucsc.edu/cgi-bin/hgTrackUi?g=tfbsCons 

As controls, we checked the randomly selected regions (ENr###s) by ENCODE 

consortium and generated 12,479 fragments of the same length.  

The 10,567 TAF binding sequences (-1000 bp to +200 bp of TAF1 binding site 

for 5’end-matched and -575 to +575bp of TAF1 binding site for unmatched) and DBTSS 

promoters (from -1000bp to 200bp of TSS) were also examined for any overlap with 

roughly 29,000 annotated CpG islands that were documented in the UCSC genome 

browser 132. 

Gene expression analysis 

Total RNA from IMR90 cells were extracted using Trizol® reagent (Invitrogen, 

Carlsbad, CA) and further purified using RNeasy Mini Kit (Qiagen, Valencia, CA) 

according to manufacturers’ recommendations. The purified total RNA was submitted to 

UCSD Cancer Center Microarray Resource for GeneChip® RNA Expression Analysis 

using HGU133 Plus 2.0 arrays. The resulting hybridization data was analyzed using 

Affymetrix GCOS v. 2.0 to determine the detection call as present (P), marginal (M), or 

absent (A) at significance level p<0.01. Detection calls from two technical replicates 

were combined to give an unambiguous P, M, or A call for each probe set by defining the 

consensus call as P only if it is P in both experiments, A if it is A in both experiments, 

and M otherwise.  

HGU133 Plus 2.0 probe sets were mapped to corresponding EnsEMBL genes 

using a translation table downloaded from EnsEMBL (EnsEMBL v26) using the EnsMart 
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Genome Browser in Nov. 2004. We then evaluated the detection calls of genes only for 

transcript-matched promoters whose transcripts were aligned to the matching EnsEMBL 

gene or whose transcripts were matched to the EnsEMBL gene by UCSC Genome 

Browser tables.  

Genes were called P if they were represented by any probe set with a P call and A 

if all their corresponding probe sets were called A. The set of P or A genes were 

partitioned by the presence of TAF1-binding to transcript-matched promoters 

corresponding to the gene in order to define the Class I, Class II, Class III, and Class IV 

genes. 

Multiple promoter usage 

To define multiple promoter usage for genes we grouped the set of transcript-

matched promoters by the matching EnsEMBL gene and counted the number of 

transcript-matched promoters for each gene. For this analysis, we considered only those 

genes for transcript-matched promoters whose transcripts were aligned to the matching 

EnsEMBL gene or whose transcripts were matched to the EnsEMBL gene by UCSC 

Genome Browser annotation tables as described above. 

Analysis of WEE1 transcripts  

Total RNA from IMR90 cells was prepared using Trizol® reagent. cDNA was 

synthesized from 10 µg of total RNA using poly-dT16 primer and Superscript® II reverse 

transcriptase (Invitrogen). After cDNA synthesis, RNase A/H was added to reaction to 

hydrolyze RNA, and the remaining cDNA was purified using QIAquick® PCR 

purification kit, and 20 ng of cDNA was used as templates for quantitative real-time 

PCR. The primers, 5’-AAGCTGCGACTCTTCGACAC-3’ and 5’-
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GAGGAGTCTGTCGCACATCA-3’ were used to amplify the WEE1 NM_003390 

mRNA. The primers, 5’-GAGTACTGCGCAGATGACCA-3’ and 5’-

GAGGAGTCTGTCGCACATCA-3’ were used to amplify the WEE1 AK122837 

mRNA. The primers, 5’-GCAAAGACCTGTACGCCAAC-3’ and 5’-

ACACCGAGTACTTGCGCTCT-3’ were used to amplify a reference gene, the gamma 

actin (ACTG1) mRNA. The quantitative real-time PCR of each sample was performed in 

triplicate using iCycler and SYBR green iQ SYBR green supermix reagent. The threshold 

cycle (Ct) values were calculated automatically by the iCycle iQ Real-Time Dectection 

System Software. Normalized Ct (ΔCt) values for each sample were then calculated by 

subtracting the Ct value obtained for the ACTG1 gene from the Ct value for the WEE1 

transcripts (ΔCt = CtWEE1 – CtACTG1). Using ΔΔCt values (calculated from ΔΔCt = 

ΔCtWEE1(G0,G1, or S) - ΔCtWEE1(ASYNCHRONOUS)) and the formula, 2-(ΔΔCt), the relative WEE1 

transcript levels in cell cycle synchronized sample were determined. 

Gene cluster analysis 

We sorted the current EnsEMBL genes by chromosome and by annotated start 

(most 5’ end) to define consecutive or neighboring genes. We then searched for runs of 

consecutive EnsEMBL genes with transcript-matched promoters to define clusters and 

evaluated the number of runs (clusters) and sizes of runs (clusters). To compute the 

significance of the number of genes found in clusters of 4 or more consecutive genes 

(1,668 genes), we randomly selected 6,763 genes in the genome (the number of 

EnsEMBL genes matched with TAF1-bound promoters) 1000 times and calculated the 

number of genes found in clusters of 4 or more genes at each iteration (mean=957, 

standard deviation=59). Given that the observed number of genes in clusters is at least 12 
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standard deviations away from the mean and no iteration resulted in a count of 

consecutive genes, in clusters of 4 or more, greater than 1,668, we provide the 

conservative estimate of significance as p<0.001. 
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Figure 3-1. Identification and characterization of active promoters in the human genome.  

(A) Outline of the strategy employed to map TFIID-binding sites in the genome. (B) A representative view 
of the results from TFIID ChIP-on-chip analysis. The logarithmic ratio (log2 R) of hybridization intensities 
between TFIID ChIP DNA and a control DNA, and RefSeq gene annotation is shown in the top and middle 
panels, respectively. A close-up view of two replicate sets of TFIID ChIP-chip hybridization signals around 
the 5’ end of the TCFL1 gene is shown in the bottom panel. Arrows indicate the position of TFIID-binding 
site determined by a peak-finding algorithm. (B) Distribution of TFIID-binding sites relative to the 5’ end 
of the matched transcripts. (D & E) Venn diagrams showing number of identified promoters that matched 
EnsEMBL genes (d) or promoters annotated in DBTSS (E). (F) Chart showing the percentage of IMR90 or 
DBTSS promoters overlapping with CpG islands, or containing conserved TATA box, INR or DPE 
elements (see Methods for more details). 
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Figure 3-2. TAF1 and Pol II are co-localized.  

Hybridization signals (log R) for TAF1 binding sites were plotted against the corresponding signals for Pol 
II binding. The observed square of the correlation coefficient (R2) for TAF1 and Pol II was 0.66. 

 
 

 
Figure 3-3. Conventional ChIP followed by quantitative PCR validates TAF1 ChIP-chip results.  

The x-axis lists all the promoters tested in four classes. The y-axis plots the fold enrichment observed in 
TAF1 ChIP DNA compared to the unenriched input DNA. The red bar is denotes the value of the average 
plus two standard deviations observed (1.06) for the all negative controls (class IV) for TAF1. The black 
bar is denotes the value of the average plus two standard deviations observed (0.94) for the all negative 
controls (class IV) for Pol II. 
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Figure 3-4. Chromatin modification features of active promoters.  

Logarithmic ratios of the ChIP-chip hybridization intensities (log2 R) of probes from 0.5 Kbp upstream to 
0.5 Kbp downstream of the identified TFIID-binding sites for TFIID, Pol II, H3ac, and H3K4me2 are 
plotted in a yellow-blue colored scale for 9,328 transcript-matched promoters. The bottom panel shows a 
yellow-blue colored scale used to color each cell with corresponding log2 R values. (b) A detailed view of 
TFIID, Pol II, H3ac, and H3K4me2 profiles on the promoter of RPS24 gene.  
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Figure 3-5. Chromatin modifications at putative promoters.   

Logarithmic values of the ChIP enrichment ratio (log R) of probes from 0.5 Kbp upstream to 0.5 Kbp 
downstream of the identified TFIID-binding sites for TFIID, Pol II, H3ac, and H3K4me2 are plotted in a 
yellow-blue colored scale (the bottom panel of Fig. 2a) for 634 putative promoters. 
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Figure 3-6. A putative promoter maps to a microRNA gene.  

UCSC browser window capture shows the TAF1 binding profile and the annotation tracks. The TAF1 
binding site is directly over the microRNA has-mir-199a-1. 
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Figure 3-7. Putative promoters are evolutionarily conserved.  

Conservation analysis of 1,239 putative promoters (in grey bars) and 1,239 randomly selected control 
genomic fragments (in white bars) is shown. The x-axis represents conservation score, PhastCon, and the y-
axis represents the percentage of all putative promoters (or the control genomic fragments) with the 
corresponding PhastCon score.  
 

 
Figure 3-8. Sequence features associated with the putative promoters.  

Putative promoters identified in IMR90 cells (referred to as IMR90) were compared to promoters curated in 
DBTSS or randomly selected genomic fragments. The percentage of putative IMR90 promoters (–250bp to 
250bp of TAF1 binding sites) or DBTSS promoters (-1200bp to +200bp of TSS) that overlap with CpG 
islands, and the percentage of putative IMR90 promoters (from –250 to +250 of TAF1 sites) or DBTSS 
promoters (-200bp to 200bp of TSS) that contain conserved TATA box, INR and DPE elements are shown. 
The TATA box consensus is defined by the union of TATAAAT[A/T], [T/A]A[C/T]TTATAT and 
TTTATA[C/G/T]; the DPE element consensus is defined as [A/G][C/G][A/T][C/T][A/C/G][N]. The INR 
element consensus is defined as PyPyAN[T/A]PyPy.  
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Figure 3-9. Utilization of multiple promoters for a human gene in a single cell type.  

(a) Annotation of the WEE1 gene locus and the corresponding TFIID-binding profile. Black bars over the 
first and second exons in transcripts indicate the positions of the primers used for real-time quantitative RT-
PCR analysis of each transcript. (b) RT-PCR analysis of NM_003390 and AK122837 transcripts in 
asynchronous population of IMR90 cells. (c) Real-time quantitative RT-PCR analysis of NM_003390 and 
AK122837 transcripts in cell cycle synchronized population of IMR90 cells. Transcript levels observed for 
each cell cycle phase were normalized to the level observed in the asynchronous population.  
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Figure 3-10. Four distinct classes of promoters define the transcriptome of IMR90 cells.  

(a) A 2x2 matrix describes the distribution of genes defined by expression and PIC occupancy on the 
promoter. (b & c) Matrices showing the percentages of genes associated with the H3ac (b) or H3K4me2 (c) 
modification for each of the four classes of genes. Italicized numbers in some boxes represent extrapolation 
from the 29 ENCODE regions. 
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Supplementary Data Tables 

The following tables are available for download from:  

http://licr-renlab.ucsd.edu/download.html.   

They are listed under the publication: Tae Hoon Kim, Leah O. Barrera, Ming Zheng, 

Chunxu Qu, Michael A. Singer, Todd A. Richmond, Yingnian Wu, Roland D. Green and 

Bing Ren. A high-resolution map of active promoters in the human genome. Nature, 

2005.  

Data Table 3-1. 9,328 TAF1 binding sites matched to known 5' ends (within 2.5Kbp).  

The first column lists coordinates of TAF1 binding sites. The second column lists the database source of 
the matched transcript. The third column lists the accession numbers for the matched transcripts. The fourth 
column lists the relative distance between the TAF1 binding site and the 5’ end of the matched transcript. 
The fifth column lists the available gene name for the corresponding transcript. The sixth column lists the 
corresponding DBTSS ID number. The seventh through 10th columns list ChIP enrichment ratio (log R) of 
the TAF1, Pol II, H3ac, and H3K4me2 at the TAF1 binding site matched to the transcript. The last four 
columns list presence of known promoter sequence motifs (CpG, DPE, INR, and TATA respectively) in the 
promoter.  

Data Table 3-2. 1,239 putative promoters (Acembly-match and no 5’ end match).  

The first column lists coordinates of TAF1 binding sites. The second through fifth columns list ChIP 
enrichment ratio (log R) of the TAF1, Pol II, H3ac, and H3K4me2 at the TAF1 binding site matched to the 
transcript. The sixth through ninth columns list presence of known promoter sequence motifs (CpG, DPE, 
INR, and TATA respectively). The 10th column lists the matched Acembly gene models. The 11th column 
lists IDs for those EnsEMBL genes that contained TAF1 binding sites within the gene locus, but not at their 
5’ ends. 

Data Table 3-3. Validation of putative promoters.  

The 35 novel transcribed units identified within 2.5Kbp of the putative TAF1 binding sites are isolated in 
the worksheet "Novel transcribed units." The first column lists coordinates for transcriptionally active 
regions detected in validation array experiment. The second column lists transcriptionally active cluster ID. 
The third column lists the coordinates for the putative promoters identified by TAF1 genome-scan that are 
within 2.5 Kbp of the detected transcript. The fourth column lists the accession number of known 
transcripts whose exons overlap with the detected transcript. The fifth column lists the accession number of 
those transcripts whose exons flank the putative promoter and detected transcript. The last column lists the 
coordinates for the closest putative promoters identified by TAF1 genome-scan from the detected 
transcript.  

Data Table 3-4. Multiple promoter usage.  

The first column lists the EnsEMBL genes with 2 or more TAF1 binding sites. The second column lists 
gene names. The third column lists the number of TAF1 binding sites found with the gene. The fourth 
column lists the accession numbers of matching transcripts and the coordinates of the corresponding TAF1 
binding sites. 
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Data Table 3-5. Clusters of genes with TAF1-bound promoters.  

The first column lists the cluster size in number of genes. The second column lists EnsEMBL gene IDs of 
the genes in the cluster. The third column lists the gene names. 

Data Table 3-6. Gene expression classes.  

Four classes of genes as discussed in the text are appended in order. The first column lists the gene names. 
The second column lists EnsEMBL gene IDs. 

Data Table 3-7. Histone modification on class III and IV genes.  

Two separate worksheets, “ClassIII_ENCODE” and “ClassIV_ENCODE” are provided. The first, second 
and third columns list the chromosome ID, start and end coordinates respectively of the EnsEMBL gene 
found within the 29 ENCODE regions analyzed. The fourth column lists EnsEMBL gene IDs. The fifth 
column lists gene names. The sixth column lists the ENCODE region IDs. The seventh through 10th column 
lists whether TAF1, Pol II, H3ac and H3K4me2 are bound at the corresponding promoter, respectively. The 
last column provides additional notes. 
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Chapter 4  

Genome-wide Mapping of Tissue-specific Promoters 

The analysis of several mammalian genomes has revealed between 20,000 to 

30,000 genes in each genome, a number that may seem hard to reconcile with the large 

number of cell types and complex functions of these organisms.  The solution to this 

paradox partly lies in the large array of transcripts that each gene can potentially generate 

through usage of alternative promoters and the variable levels of transcripts that each 

gene produces in different tissues and cell types. Thus, in order to understand the 

mechanisms that control diverse patterns of gene expression in mammals, it is necessary 

to accurately define the active promoters and monitor their cell or tissue-dependent 

activity. Previous high throughput strategies for assaying tissue-specific gene expression 

have primarily relied on measurements of steady-state transcript levels by microarrays or 

tag sequencing. Here, we employ a new experimental strategy to identify and characterize 

tissue specific promoters by integrating genome-wide maps of RNA polymerase II (Pol 

II) binding, chromatin modifications and gene expression profiles.  We applied this 

strategy to mouse embryonic stem cells (mES), and adult brain, heart, kidney, and liver.  

Our results delineated 24,363 Pol II binding sites throughout the genome, 91% of which 

correspond to 5’ end annotation based on known transcripts and cap-analysis of gene 

expression (CAGE) and can be regarded as promoters.  A majority of these 

experimentally defined promoters are active in all tissues, while only 4,396 can be 

characterized as tissue-specific using a quantitative measure of Pol II occupancy. In 
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general, Pol II occupancy at these tissue specific promoters is correlated with the 

presence of active histone modification marks. However, a set of mES- specific 

promoters display persistent levels of H3K4me3 in non-ES tissues despite undetectable 

Pol II binding and transcript.  Broadly, our results expand the knowledge of tissue-

specific mammalian genes and provide a resource for understanding the transcriptional 

programs in mammalian development and differentiation. 

4.1 Introduction 

Mammalian organisms are characterized by a diversity of cell types -- from the 

zygote and progenitor cells to the more than 200 differentiated cell types which perform 

the functions of organs in adults.  In general, the functions of each cell type are specified 

by the complement of genes expressed 28,58,119,133,134. Thus, investigating the mechanisms 

that control gene expression, beginning with the critical step of transcription initiation, 

will contribute toward understanding how the diversity of mammalian cell types and their 

functions are generated 135. 

Many large-scale efforts have been devoted to the investigation of transcript 

expression patterns across cell and tissue types.  Microarray-based technologies and high 

throughput sequencing methods have been used to determine steady-state mRNA levels 

of genes in a compendium of cell and tissue types under normal or pathological 

conditions 28,119,133,134,136. In addition, recent advances in the sequencing of transcript 5’ 

ends have also expanded the annotation of mammalian promoters in different mammalian 

tissues and provided valuable references of potential transcriptional start sites for most 

mammalian genes 29,137,138.  These studies have revealed a large spectrum of transcripts 



 

 

85 

for each gene generated by extensive usage of alternative promoters, alternative splicing 

and alternative polyadenylation sites.  One of the questions raised by these observations 

is how cells control the usage of different promoters to produce the diverse forms of 

transcripts.  

In order to understand the mechanisms that drive differential gene expression in 

diverse cell and tissue types, it is necessary to examine transcription factor binding and 

chromatin structures at the active promoters for each gene in various tissues.  

Transcription of protein-coding and most non-coding RNA genes starts with the binding 

of RNA polymerase II (Pol II) over the core promoter spanning the transcript start site 

(TSS) 12,19.  In eukaryotes, transcriptionally active promoters have been associated with 

nucleosome depletion at some TSS, as well as characteristic histone variants and histone 

tail modifications  (H3K4me2, H3K4me3, and H3ac)  38,45,50,58-60,139,140.  In addition, 

binding sites for sequence-specific transcription factors have been identified within 

promoters and linked to cell or tissue-specific patterns of expression 24,25,141-146.   

In this study, we employ an integrated experimental strategy to characterize 

transcriptional promoters in the mouse genome across a panel of mouse organs – brain, 

heart, kidney, liver – and mouse embryonic stem cells (mES).  We first identify active 

promoters by localizing the binding sites of the RNA polymerase II pre-initiation 

complex in each tissue throughout the genome.  We then confirm the activity of the 

promoters by examining the active chromatin marks including histone H3 acetylation and 

methylation.  We assess promoter tissue-specificity by promoter Pol II binding, active 

chromatin modifications (H3ac, H3K4me3) and relative transcript levels.   
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Our results lead to the identification of 24,363 Pol II binding sites which match 

existing transcript annotation as well as 5’ end sequencing from cDNA libraries of 

various mouse tissue and cell types 93,137,138,147,148.  By adapting a definition of tissue-

specificity based on Shannon entropy previously used for gene expression data, we define 

4,396 promoters as having enriched Pol II binding in a particular tissue – adding to the 

annotation of tissue specific promoters in the literature 27.  Microarray analysis of gene 

expression across tissues supports the classification of genes with tissue-specific Pol II 

enrichment.  The combination of these data leads to a high-confidence catalog of genes 

which contribute to the uniqueness of the tissues surveyed.  Additionally, we identify 

known and novel sequence motifs that characterize tissue-specific promoters in brain, 

heart, kidney, liver, and mES. Epigenetic patterns of acetylation and lysine 4 tri-

methylation of histone H3 defined by ChIP-chip generally correspond with Pol II 

enrichment across tissues.  However, half of the promoters with enriched Pol II binding 

in mES maintain active epigenetic marks in tissues where Pol II binding is relatively 

depleted. Broadly, these findings underscore the utility of Pol II binding and chromatin 

modification data as key resources complementing transcription profiling in unraveling 

the layers of tissue-specific gene regulation. 

4.2 Genome-wide Mapping of Pol II in mouse ES cells and adult tissues 

4.2.1 Overview of Strategy 

In eukaryotes, RNA polymerase II (Pol II) drives the synthesis of mRNA and 

small nuclear RNA.  Its C-terminal domain (CTD) is hypo-phosphorylated as part of the 

pre-initiation complex (PIC), phosphorylated at Ser5 early in the transcription cycle and 
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at Ser2 toward the 3’ end of the gene  149,150.  Thus, we used a monoclonal antibody 

(8WG16) specific for the hypo-phosphorylated RNA polymerase II CTD to map PIC 

binding at active promoters in mouse brain, heart, kidney, and liver tissue, as well as R1 

ES cells using chromatin immunoprecipitation with microarrays. We adapted the strategy 

we previously used to map active promoters in human fibroblast cells (Figure 4-1) 43.  

Specifically, we first performed ChIP-chip on Pol II using chromatin prepared from the 

four organs and ES cells, and a set of 37 microarrays, containing a total of 14.3 million 

50-mer oligonucleotides, tiling the non-repetitive sequence of the mouse genome at 100 

base-pair (bp) resolution.  The results from the genome-wide survey of Pol II binding led 

to the identification of a total of 32,482 Pol II binding sites. We designed a set of four 

microarrays containing 1.4 million oligonucleotides to cover each site extended by 2 Kbp 

upstream and downstream, and repeated independent Pol II ChIP-chip for each tissue to 

confirm Pol II binding (condensed scan).  To define confirmed sites of Pol II binding, we 

applied our previously described peak finding strategy on the condensed scan ChIP-chip 

and genome-scan ChIP-chip for each tissue 43,72. We required that a peak of Pol II 

binding predicted in the condensed scan is within 500bp of a peak predicted in the 

genome scan (Figure 4-1, Methods).  

4.2.2 Summary of Pol II Binding and Annotation 

Using the procedure summarized in Figure 4-1, we defined a total of 24,363 high-

confidence, non-overlapping Pol II binding sites in the mouse genome across five tissues 

(Data Table 3-1). Each of these sites has confirmed binding based on the genome scan 

and condensed scan for at least one tissue.  These binding sites range in size from 50bp to 

18Kbp.  By assaying Pol II enrichment by ChIP with quantitative PCR (ChIP-qPCR) at 
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27 randomly selected gene promoters in mES cells, we estimated ~ 70% sensitivity and 

100% specificity for our method of defining Pol II binding sites by ChIP-chip in each 

tissue (Figure 4-2).  Additionally, we estimated a 100% positive predictive value (PPV) 

by ChIP-qPCR validation of 24 randomly selected Pol II ChIP-chip bound sites in liver 

(Figure 4-3).  

Since the PIC-form of Pol II is expected to localize over transcription initiation 

sites in the genome 150-152, we compared the location of these binding regions with 

annotated mRNA transcript start sites (TSS)  downloaded from the UCSC Genome 

Browser (MM5; refGene, knownGene, ensGene, and all_mrna)  93.  16,976 (69%) of 

these sites mapped within 2.5Kbp of (66,559) distinct transcript start sites (TSS) based on 

RefSeq, Ensembl, UCSC knownGene, or GenBank annotation.  These transcripts in turn 

correspond to 11,000 out of ~24,000 mouse genes based on Entrez Gene annotation 94.  

Of the remaining unmatched sites within and outside of known gene loci, 5,153 mapped 

within 2.5Kbp of TSS based on 5’cap-analysis of gene-expression (CAGE) sequencing 

from a panel of 145 mouse cDNA libraries 138,148.  Taken together, these two lines of 

evidence provide independent support that 91% of these Pol II binding regions 

correspond to known transcription initiation sites (Table 4-1).  

The distance distribution of Pol II binding sites to matching TSS clearly supports 

the accuracy of our method in defining known transcription initiation sites (Figure 4-4).  

In addition, the number of promoters relative to the number of genes suggests the 

prevalence of alternative promoter usage. For instance, a recent RNA interference study 

defined estrogen receptor beta (Esrrb) as one of 7 genes which are critical for embryonic 

stem cell renewal in vitro 153.  We identified two tissue-specific promoters for this gene; 
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one of them appears to have enriched Pol II binding in mES, while the other shows 

enriched binding in kidney (Figure 4-5).  We estimate that 28% of genes with Pol II 

binding utilize two or more alternative promoters across the five tissues.  This estimate is 

half of the previous estimate in mammalian genomes and may be due to the limited 

number of tissues surveyed as well as the more limited resolution of transcription 

initiation sites based on Pol II binding compared with the base-pair resolution of 5’ end 

sequencing methods 29,137.  

Additionally, in characterizing the genomic distribution of the CAGE-matched 

sites, we validate estimates of exonic transcription initiation activity based on CAGE data 

137.  The majority (62%) of the CAGE-matched sites resides within known gene 

boundaries (exonic and intronic) (Figure 4-4).  A substantial fraction are tissue-specific 

(37%) and the prevalence of these sites underscores the role of transcription initiation, 

along with splicing, in defining the complexity of transcript populations even from within 

known gene loci.  A previous study based on CAGE tag frequency has correlated this 

exonic promoter activity with tissue-specific genes 137.   

4.2.3 Novel Promoters 

By examining the co-localization of H3K4me3, an epigenetic mark associated 

with 5’ ends of active genes from yeast to human, we defined 382 sites not near known 

TSS or CAGE tag clusters as putative promoters.  This fraction (1.6%) of our catalog 

suggests only a small number of transcription initiation sites still missed by extensive 

5’end sequencing efforts to annotate the mouse transcriptome (Figure 4-4).  A large 

fraction (37%) of these putative promoters appears to be tissue-specific.  These putative 
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promoters are primarily from mES (67%) and kidney (18%).  Further investigations are 

necessary to determine the matching transcripts for these uncharacterized promoters. 

4.2.4 Unexpected Pol II Binding Behavior 

We also observed examples of unusual patterns of hypo-phosphorylated Pol II 

binding deviating from its expected localization over canonical TSS 151,152.  For instance, 

distinct binding sites for Pol II were found within boundaries of known transcripts in 

addition to the TSS (Figure 4-6).  Of 3,843 genes surveyed with multiple Pol II binding 

sites within transcript boundaries, 46% have significant correlation between increased Pol 

II binding density and relative tissue expression  (R>0.6, 2-fold enrichment above 

expectation).  Furthermore, contrary to expected punctuate patterns of Pol II binding at 

TSS, we catalogued 53 broad tissue-specific Pol II binding regions greater than 5Kbp in 

span (Figure 4-7, Data Table 4-2).  44 of 53 overlap transcript start sites for known genes.  

These overlap highly expressed tissue-specific genes such as the cardiac muscle protein 

leimodin (Lmod2) and a secreted protein, natriuretic peptide precursor A, (Nppa) in heart.  

Additional examples of these regions overlap well-known ES-cell enriched genes such as 

Pou5f1 and Rcor2 (Figure 4-7 D).  The Pol II binding patterns for these two genes extend 

thousands of base pairs upstream as well as downstream from the TSS (Figure 4-7A,B).  

H3ac mimics the Pol II binding pattern while H3K4me3 appears concentrated over the 

TSS in comparison.  Finally, among 819 tissue-specific Pol II binding sites not matched 

to known 5’ end data based on annotated transcripts or CAGE or H3K4me3 localization, 

we found approximately half to be enriched in mES cells (Table 4-2).  A significant 

fraction of these mES sites overlap previously mapped Oct4 and Nanog binding sites in 
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mES (24%) compared to expected (0.2%) 154. Although our annotation clearly links the 

majority (92%) of the Pol II bound to transcription initiation, this preliminary analysis 

suggests that a small fraction may be linked to distal regulatory sites which physically 

interact with promoters 155,156. 

4.3 Tissue-specific Promoters 

4.3.1 Entropy Measure of Tissue-specificity 

In order to characterize the tissue activity of a particular promoter or Pol II 

binding site, we used the ChIP-chip log2ratio enrichment as a measure of Pol II 

occupancy at all sites across tissues and defined an index of tissue activity for each site 

by adapting a Shannon entropy previously applied to microarray gene expression and 

EST data 27. We defined the relative Pol II binding in a tissue t for a given site s as 
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is the average ChIP-chip log2ratio in the 1Kbp 

neighborhood centered at the midpoint of Pol II binding site s, and N is the total number 

of tissues surveyed.   The entropy of a site’s Pol II binding distribution across tissues is 

then defined as: st
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= .    The measure Hs has units of bits and as in its use 

with expression data, the value of Hs ranges from zero, for genes bound by Pol II in a 

single tissue, to log2(N) for sites bound uniformly in all tissues surveyed.  We also 

adapted the companion measure of “categorical tissue-specificity” to characterize the bias 

of a Pol II binding site for a particular tissue defined as )(log |2| ststs pHQ != .  This index 

also has units of bits and as before has a minimum of zero when a site is bound by Pol II 
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predominantly in the tissue and grows without bound as the relative binding of Pol II in 

that tissue goes to zero. 

4.3.2 Tissue-specific MicroRNAs 

We used these measures of entropy and categorical tissue-specificity to assess the 

usage of all Pol II binding site across tissues.  When applied to sites not matched to 

known mRNAs but near known microRNAs (miRNAs), 10 of 19 matched miRNAs were 

classified as tissue-specific.  Recent studies have provided evidence that miRNAs play a 

pivotal role in defining tissue and cell-specific expression patterns (Table 4-3) 157.  

Indeed, 7 of the 10 promoters we defined as tissue-specific for the miRNA were cloned 

from the corresponding tissue source, or closely-related tissue source in the case of mES 

and testis 158.  Two of these tissue-specific miRNAs have been shown to downregulate a 

large number of miRNAs in human: miR-124 transfection in HeLa cells shifted the 

expression profile towards that of brain, while miR-1 shifted the expression profile of 

HeLa cells toward heart and skeletal muscles 157.   

4.3.3 Promoter Tissue-specificity and CpG Islands 

Overall, the majority of transcript-matched promoters have ubiquitous activity by 

the Pol II binding entropy across the tissues surveyed (Figure 4-8).  As expected, the 

promoters uniformly bound by Pol II overlap significantly with CpG islands compared to 

promoters with Pol II binding enriched in specific tissues 27,137,159,160.  Tissue-specific 

promoters defined by a low entropy measure (H≤1) have a five-fold decrease in CpG 

island overlap (15%) compared with promoters with a high entropy measure (H≥2) 

associated with ubiquitous activity (75%).  Profiling of Pol II and active chromatin 
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modifications at CpG versus non-CpG island promoters suggests that nearly all 

promoters overlapping CpG islands have some H3K4me3 across tissues even when Pol II 

binding and H3ac appears weak (Figure 4-9).  ChIP-qPCR of Pol II and H3K4me3 

enrichment at 5 randomly selected promoters with variable Pol II occupancy supports this 

observation (Figure 4-10).  Subtle enrichments of H3ac and H3K4me3 revealed by these 

promoter profiles across tissues are not likely to be called “present” by typical ChIP-chip 

analysis methods and reveal the limitations of binary calls in ChIP-chip analysis. 

4.4 Tissue-specific Gene Promoters 

To hone in on the relationships among promoter Pol II binding, active chromatin 

modifications, and transcript level in tightly regulated expression, we focused the 

remainder of our analysis on 9% of the gene promoters (937) with Pol II binding enriched 

in a specific tissue and profiled the Pol II, H3ac, and H3K4me3 ChIP-chip log2ratios 

2Kbp upstream and downstream from a reference start site and compared the matching 

gene expression enrichment by normalized expression signal across tissues (Figure 4-11).   

4.4.1 Promoter Pol II Binding and Expression 

The panels illustrate that tissue-enriched Pol II binding correlate as expected with 

higher gene expression levels in that tissue relative to other tissues, not just based on our 

expression array data but also from a compendium of expression data from 61 mouse 

tissues 28,119.  To quantitatively measure this correlation, we created ranked lists of all 

genes for each tissue ordered by their categorical tissue-specificity based on our 

expression data 27.  We then assessed the enrichment of each set of genes defined as 
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tissue-specific based on Pol II binding at the top of the ranked list for each tissue based 

on categorical tissue-specific expression.  Not surprisingly, the measures of categorical 

tissue-specificity using binding and expression data correlate significantly (Table 4-4).  

We highlight the top ten tissue-specific genes defined by expression within each set of 

genes defined as tissue-specific based on Pol II binding (Figure 4-12).  Among these 

genes are those known to be highly-specific and highly-expressed in heart such as cardiac 

myosin (Myl2) and actin (Actc1) as well as mES-enriched genes reported to be 

characteristic of stem cells such as Tdgf1, Zfp42, Nanog, and Pou5f1.   

Comparison of genes defined as tissue-specific based on binding and expression 

allows the identification of a high-confidence set of genes with tissue-enriched activity.  

Conversely, examining the genes defined as tissue-specific by Pol II binding not 

supported by expression data can be useful in identifying possible mis-assignment of Pol 

II binding to a gene based on the nearest 5’ end assumption or the transcript to gene 

mapping annotation.  Alternatively, this minority might represent tissue-specific 

promoters for genes which might be regulated at steps beyond initiation 149.  For instance, 

two genes with enriched Pol II binding and histone modifications at its promoter region 

have no enrichment in mES based on our expression profiling data.  4930511H11Rik 

appears to be more highly expressed, albeit in low levels in adult tissues, while Tmcc3 is 

called absent across the tissues we surveyed.  Based on the GNF expression atlas, 

4930511H11Rik appears to be selectively expressed in testis, while Tmcc3 is selectively 

expressed in the oocyte and fertilized egg (Figure 4-13).   
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4.4.2 Pol II Binding and Histone Modifications 

Across tissues, tissue-specific Pol II enrichment matches enrichment of epigenetic 

marks generally associated with gene activity (Figure 4-11).  In mES, however, genes 

with specific Pol II enrichment can be further partitioned into two major classes.  The 

first category (mES c1) suggests a “strict” mechanism for defining cell-specific 

transcription initiation and expression similar to the general profile observed among 

promoters with enriched activity in specific adult tissues.  For example, Pol II and histone 

modifications are enriched only in mES and not detectable by ChIP-chip in other tissues 

as shown for the Lin28 gene (Figure 4-14 A).  The second category (mES c2) shows that 

although there appears to be preferential gene expression enrichment and Pol II binding 

in mES, other tissues have clearly detectable although weaker histone modifications over 

the promoter region of the same gene as exemplified by the Pol II and H3K4me3 

promoter profile and gene expression of Dnmt3b across tissues (Figure 4-14 B).   

ChIP with quantitative PCR (qPCR) for Pol II, H3K4me3, and H3ac at four genes 

from each mES category confirm the Pol II enrichment at these promoters specific to 

mES.  We also verify the partitioning of these two categories by the relative enrichment 

of histone modifications, in particular of H3K4me3, in adult tissues for mES c2 (Figure 

4-15).  Pol II binding enrichment is at least 5-fold greater in mES compared to all other 

tissues for each gene promoter in both c1 and c2 (Figure 4-15 A).  Relative enrichment of 

H3ac in adult tissues for promoters in c2 appears lower than in mES, but this detection in 

adult tissues is notable relative to promoters in c1 and the control (Figure 4-15 B).  

H3K4me3 enrichment appears be comparable between adult tissues and mES at mES c2 

promoters with the exception of the Sox2 promoter (Figure 4-15 C).  For Sox2, a minor 
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H3K4me3 enrichment was observed in brain only, and clearly less than in mES.  

Although Sox2 has been implicated in embryonic stem cell self-renewal and pluripotency 

in concert with Nanog and Oct4 63, it is also found to be present as a neural stem cell 

marker with suggested roles in neuron maintenance in the adult brain 161.  

4.4.3 Functional Characterization of Tissue-specific Genes 

To compare our grouping of genes based on tissue-enriched Pol II promoter 

binding with existing functional annotation, we determined the enriched GO biological 

process (GO-BP) categories in each group 136,162.  We found that the most enriched GO-

BP categories correspond to the known physiological roles of the tissue and cell type 

(Table 4-5). 

Here, we highlight genes from each set with known regulatory roles as well as 

groups of genes whose known biological functions characterize the tissue. For instance, 

among the brain-enriched genes are myelin transcription factors (Myt1, Myt1l), 

homeobox proteins (Pknox2, Uncx4.1), zinc-finger proteins (Egr3, Scrt1), and forkhead 

factors (Foxg1).  We also recovered a number of genes involved in synaptic transmission 

such as acetylcholinesterase (Ache), GABA receptors (Gabra1, Gabrg2), and glutamate 

receptors (Gria2, Grin2b).  In heart, we recover developmental regulators such as Hand2, 

Nkx2-5, Smyd1, Sox6, Tbx18, and Tbx20 in addition to genes for cardiac muscle proteins 

such as Actc1, Mybpc3, Myh6, Myl3, Myom1, Tnnc1, and Ttn.  We also found several 

Hox genes to have enriched expression in kidney (Hoxa7, Hoxa9, Hoxa10, Hoxb6, 

Hoxb9, Hoxc6, Hoxc10, Hoxd3, Hoxd9, and Hoxd10).  These pattern specification genes 

have been suggested to be critical for renal organogenesis 163.  In liver, we find the known 
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hepatic nuclear factor 3 (HNF3)/Forkhead family transcription factors Foxa1, Foxa3 as 

well as the related HNF6 transcription factor Onecut1 57.  Several of the aforementioned 

developmental regulators found to be enriched in adult tissues are repressed by Polycomb 

group proteins in mouse embryonic stem cells 164 such as Egr3 and Uncx4.1 in brain 165, 

key heart developmental genes such as Nkx2-5, Tbx18, and Tbx20 166,167, Pax8 and Hox 

genes in kidney 168, and the liver factor Onecut1. 

In mES, we observe that the two classes of gene promoters have a subtle 

difference in the ranking of the most enriched GO-BP categories.  The mES c2 class is 

most enriched in genes related to cell cycle and cell division, while mES c1 is most 

enriched in genes related to cell proliferation and pattern specification.  Among the genes 

in mES c2 are those which may not have restricted expression in mES but clearly 

enriched activity such as a host of cell-cycle related genes (Ube2c, Sgol2, Bub1, Bub1b, 

Aurkb, Cdc2a, Cdca2, Cdca7, Cdc25c) and DNA replication genes (Mcm3, Mcm8).  

Among genes in mES c2 with reported roles in development are Gli zinc-finger 

transcription factors (Gli1, Gli2, Zic3) activated through the Sonic hedgehog (Shh) 

signal-transduction pathway as well as a hedgehog receptor gene, Ptch2 169. Gli1 and 

Gli2 — both of which mediate Hh signals — have been implicated in tumorigenesis and 

are reported to be found among precursor cells in adult tissues 169.  Additionally, the 

lymphoid enhancer factor 1 (Lef1) gene, which mediates the effects of the Wnt signaling 

pathway, belongs in this class 170. 

Among the mES c1 genes, we find the majority of genes which have studied roles 

in stem-cell renewal and pluripotency such as Pou5f1, Nanog 63,154, as well as additional 

stem-cell markers such as Dppa4, Nr0b1, Utf1, Tdgf1, Zfp42 171,172.  We also define 
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previously identified ES-enriched genes in the TGF-beta signaling pathway such as 

Lefty1, Lefty2, and Nodal 171,173 as well as fibroblast growth factors such as Fgf4, Fgf15, 

and Fgf17.  Among these FGFs, Fgf4 has a reported role in trophoblast stem cell 

proliferation  174.  Because the comparison of Pol II binding in mES is relative to adult 

tissues, genes with reported roles in development were also found in mES c1. These may 

not necessarily be ES-specific transcription factors, but may have poised promoters 

marked by Pol II binding and H3K4me3 or basal transcriptional activity.  Gbx2 has 

reported roles in nervous system development 175; Pitx2, heart development 176; Six6os, 

eye development 177. 

4.4.4 Sequence Motifs at Tissue-specific Promoters 

Nearly half (45%) of the promoters in mES c2 overlap CpG islands.  This 

proportion is more than two-fold higher than the overlap of promoters in mES c1 with 

CpG islands (20%). Among the adult tissues, brain appears to have the largest overlap 

(24%) between tissue-specific gene promoters and CpG islands compared with heart 

(10%), kidney (14%), and liver (9%). This is in agreement with a previous observation 

that among transcripts with specific expression patterns, promoters associated with the 

central nervous system were exceptionally CpG-rich 137.  

In order to define discriminating sequence motifs within each tissue-specific 

promoter set, we use two complementary motif-finding strategies.  The first strategy 

measures motif enrichment in each tissue-promoter set relative to a background set based 

on a balanced error measure which equally weighs a motif’s ability to identify promoters 

in the set (sensitivity) and to correctly discriminate against promoters not in the set 
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(specificity) 25,143,144.  Using this strategy, we characterized the enrichment of known 

vertebrate motifs from TRANSFAC 178 and JASPAR 179 in each tissue-specific promoter 

set relative to two types of background promoter sets: (1) a random set of mouse 

promoters from CSHLMPD 142, and (2) the relative complement of the tissue-specific 

promoter set in the set of all tissue-specific promoters (Table 4-6).  To identify novel 

motifs in each tissue-specific promoter set, we used a previously described de novo motif 

finder, DME 25,143,144.  We evaluated the significance of these novel motifs using the same 

misclassification metric and report the novel motifs for each set (Table 4-6). 

As a complement to this strategy, we used relative over-representation of 

conserved occurrences to define characteristic motifs for each tissue set.  Strictly defining 

a conserved occurrence as the best match to the motif aligned in the same position at 

orthologous mouse and human promoters, we identified binding sites for transcription 

factors with previously reported roles in the specific tissue or cell type, as well as others 

whose roles remain unclear or whose binding domains appear similar to those of 

transcription factors with reported roles in that tissue (Table 4-6).   

4.5 Discussion 

One of the first steps towards a comprehensive understanding of the mechanisms 

of cell diversity is to define and profile the active promoters in different cell types.  Here 

we described an integrated approach for profiling the epigenetic and sequence features of 

active promoters in mouse embryonic stem cells and four adult organs defined by 

genomic Pol II binding.  We defined 24,363 Pol II binding sites that correspond to 

complementary evidence of transcription initiation based on known transcript 5’ ends and 
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CAGE annotation (91%).   Our study provided evidence for over 5,000 TSS previously 

supported by CAGE evidence alone, confirmed widespread usage of alternative 

promoters by mammalian genes, and identified several thousand promoters as tissue-

specific.  These tissue specific promoters led to the identification of transcription factor 

motifs potentially related to tissue specific transcription factor binding, genes with tissue 

specific expression, and a class of ES cell genes with promoters persistently marked by 

active chromatin modifications in adult tissues. 

To characterize the tissue-specificity of factor binding by ChIP-chip at promoters, 

we adapted a quantitative index based on Shannon entropy.  This strategy overcomes 

some of the limitations associated with ChIP-chip technology.  The current emphasis on 

“bound” versus “unbound” sites in ChIP-chip analysis sacrifices sensitivity for specificity 

in defining sites associated with a particular factor.  This naïve classification becomes 

especially problematic, however, when comparing factor occupancy at genomic sites 

across cell types or conditions.  Further development of quantitative measures of relative 

ChIP-enrichment for a factor’s genomic localization across samples or conditions, as 

used here, will be critical in circumventing these issues.    

We used two complementary approaches – classification and conservation – to 

define the sequence motifs associated with tissue specific promoters based on our entropy 

measure. We recovered binding sites for the “master regulator” HNF4 as a significant 

known motif in liver, and a binding site for the muscle regulator SRF as a significant 

motif in heart 25,65,143,144,180.  A Myc-Max binding motif, enriched in the mES c2, supports 

a purported key role for c-myc in ES cell regulation 181.  Several motifs for CREB and its 

related factors such as ATF underscore their widespread roles in the brain – in memory 
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formation, neuronal plasticity and survival 182.  Although it has been mainly associated 

with MHC class II gene transcription, we also found the Rfx5 binding motif to be 

enriched in our brain-specific genes. A unique DNA binding domain characterizes the 

RFX family of transcription factors and the roles of other family members are 

uncharacterized in mammals.  A previous study has shown that the Drosophila homologs 

of the mammalian Rfx1 to 3 genes are detected only in the embryonic brain and 

peripheral nervous system of the fly 183.  Additionally, Ap4, Mef2, and specific muscle 

TATA-binding protein (TBP) motifs, previously linked to muscle-specific expression 

were identified in heart along with motifs for orphan nuclear receptors such as Rora and 

Sf1.  Sf1 has no clear role in the heart or muscle cells based on literature search, while 

Rora has been implicated in the regulation of genes involved in lipid homeostasis of 

skeletal muscle 184. The Rora motif in combination with a Tcf11 motif has also been 

shown to be enriched at promoters of heart-specific genes 185.  In kidney, a binding motif 

for a key regulator of renal development, Pax2, was identified along with a motif for 

Hnf1.  Aside from roles in kidney, Hnf1 is also known to regulate genes in the pancreas 

and the liver 65.  Although a role for the repressor Cutl1 has not been clearly described in 

liver, its binding motif appeared to be conserved in liver relative to other tissues 186,187.  

Notably, none of the novel motifs defined based on classification ability were 

significantly enriched based on the strict conservation metric. In particular, conservation 

did not support the novel motif which was the only motif identified in mES c1.  In 

general, promoters with mES enriched activity were characterized by a dearth of over-

represented motifs, known and novel, relative to adult tissues. Although our limited motif 

results in mES cells may reflect the bias of existing motif databases and the limitations of 
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our motif-analyses strategies, we posit that long-range or distal regulatory elements might 

play a more critical role in regulating the expression of enriched transcripts in ES cells. 

Although in general there are close associations among Pol II binding, histone 

modifications, and transcript levels at most tissue specific promoters, we find enrichment 

of “active” epigenetic marks at a number of promoters with weak to undetectable Pol II 

occupancy.   This trend is particularly apparent for roughly half of the promoters with 

enriched Pol II binding and gene expression in mES (mES c2).  These promoters remain 

epigenetically marked by H3ac and H3K4me3 in adult tissues.  Modifications associated 

with transcriptional activity, in particular H3K4me3, have been suggested to play 

additional roles as markers of recent transcription or poised activation at promoters, 

directly or indirectly inhibiting other forms of chromatin-mediated repression 188-192. 

Subtle differences in the known function and identity of genes between the two mES 

classes reveal more known mouse embryonic stem cell markers within mES c1 (Nanog, 

Pouf51, Dppa4, Nr0b1, Utf1, Tdgf1). Promoters in mES c2 might be associated with a 

unique set of genes, such as the Gli zinc finger transcription factors,  expressed at low 

levels, or in a small subset of cell types, within adult tissues 169. The mES c2 category, 

relative to its complement among promoters with mES enriched activity, is distinguished 

by a two-fold higher overlap with CpG islands (45%).  This sequence distinction might 

provide a clue to understanding this class and its regulation 191,192. Further work is under 

way to more precisely characterize this phenomenon and its extent. 

Our approach toward understanding tissue-specific gene expression integrates Pol 

II binding, chromatin modifications, and sequence features of promoters with 

measurements of relative transcript abundance. The genomic maps of Pol II binding and 
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chromatin modifications will be valuable resources that complement profiles of transcript 

levels and abundance for unraveling the layers of control governing gene expression 

patterns across cell types.  Mapping of these features at different cell types at various 

developmental stages will likely provide further insight as to how cell-specific programs 

of expression are specified by sequence and epigenetic features across development. 

4.6 Methods 

Sample Preparation 

R1 ES cells (a gift from Dr. Don Cleveland, Ludwig Institute for Cancer 

Research, San Diego) were maintained on top of feeder cells in cell culture dish with 

DMEM high glucose medium supplemented with 15% FBS, 0.1mM non-essential amino 

acid, 1mM sodium pyruvate, 1µM β-mercaptoethanol, 2mM L-glutamine, 50g/ml 

pen/strep and LIF. Cells were passed once on 0.1% gelatin without feeder cells before 

harvested. Cells were harvested and crosslinked with 1% formaldehyde for 20 minutes 

when they reached ~80% confluence on the plates. Mouse tissues were dissected from a 

10-12 week old female BL6 mouse, chopped into small pieces (about 1mm3) with a razor 

blade in cold 1XPBS, and crosslinked with 1% formaldehyde for 30 minutes at room 

temperature. Cells were then sonicated as described in Z. Li and colleagues64  

Chromatin Immunoprecipitation with Microarrays (ChIP-chip) 

Chromatin immunoprecipitation was performed as previously described 64. 

Briefly, 2 mg of sonicated chromatin (OD260) was incubated with 10 µg of antibody (anti-

RNA polymerase II, MMS-126R, Covance; anti-H3ac, 06-599, Upstate; anti-Me3H3K4, 

07-473, Upstate) coupled to the IgG magnetic beads (Dynal Biotech). The magnetic 
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beads were washed eight times with RIPA buffer (50 mM Hepes at pH 8.0, 1 mM EDTA, 

1% NP-40, 0.7% DOC, and 0.5 M LiCl, supplemented with Complete protease inhibitors 

from Roche Applied Science), and washed once with TE (10 mM Tris at pH 8.0, 1 mM 

EDTA). After washing, the bound DNA was eluted at 65°C in elution buffer (10 mM Tris 

at pH 8.0, 1 mM EDTA, and 1% SDS). The eluted DNA was incubated at 65°C overnight 

to reverse the cross-links. Following incubation, the immunoprecipitated DNA was 

treated sequentially with Proteinase K and RNase A, and was desalted using the 

QIAquick PCR purification kit (Qiagen). The purified DNA was blunt ended using T4 

polymerase (New England Biolabs) and ligated to the linkers (oJW102, 5'-

GCGGTGACCCGGGAGATCTGAATTC-3', and oJW103, 5'-GAATTCAGATC-3'). 

The ligated DNA was subjected to ligation-mediated PCR, labeled with Cy3 and Cy5 

dCTP using a BioPrime DNA labeling kit (Invitrogen), and hybridized to the mouse 

genome tiling microarray.  

The 37 genome-scan tiling array set containing 14.5 50-mer oligonucleotides, 

positioned at every 100 bp were designed and fabricated using the maskless array 

synthesis technology (MAS) by NimbleGen Systems.  These arrays were designed to 

contain all the non-repetitive sequences throughout the mouse genome (NCBIv33, mm5). 

Initial Identification of Pol II Binding Sites in Five Tissues 

After scanning and image extraction, Cy5 (ChIP DNA) and Cy3 (input) signal values for 

each of the 37 genome tiling arrays were normalized by intensity-dependent Loess using 

the R package limma 85,193. Median filtering (window size=3 probes) was used to smooth 

log2 (Cy5/Cy3) data across the tiled regions. For each array, ChIP-enriched probe clusters 

were defined as regions with a minimum of 4 probes separated by a maximum of 500 bp 
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with filtered log2R greater than 2.5 standard deviations from the mean log ratio, as used 

in our previous study of TAF1-binding in the human genome 43. 

 The application of the analysis above for each genome-scan tiling set corresponding 

to Pol II ChIP-chip for each tissue resulted in five sets (brain, heart, kidney, liver, 

embryonic stem cells) of putative Pol II binding regions in the mouse. 

Condensed Array ChIP-chip 

 We designed a condensed array by combining the five sets of putative Pol II 

binding regions from the five Pol II genome-wide scans.  Each binding region was 

extended by 2000 bp upstream and downstream and overlapping regions from the Pol II 

ChIP-chip of different tissues were merged to yield a set of 32,482 putative Pol II binding 

regions for condensed array design.  NimbleGen Systems used the same probe designs 

from the genome-scan tiling set overlapping the 32,482 regions to synthesize the 

condensed scan array set containing 1.5 million probes in 4 arrays. 

We performed 15 ChIP-chip experiments over the condensed array design for 3 

factors (Pol II, H3ac, H3K4me3) across five mouse tissues.  After scanning and image 

extraction, Cy5 (ChIP DNA) and Cy3 (input) signal values for each of the 4 condensed-

scan tiling arrays (in each set) were normalized by applying either intensity-dependent 

Loess or median-scaling normalization with the correction based only on the intensities 

of 14,572 control probes (designated RANDOM_GC11_GC34).   The R package limma 

was used to implement the normalization.  Prior to comparison and clustering, array data 

were quantile normalized across tissues using the normalize.quantiles function in the R 

package affy 85,193. 

Final Catalog of Pol II Binding Sites 
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 To define a final catalog of Pol II binding sites we applied an improved version of 

the peakfinding algorithm which we previously used to define Taf1 binding in human 

IMR90 cells 43,72.  This algorithm predicts a binding site for a factor at the probe-level 

resolution.  The p-value for significant peaks is based on the following test-statistic: 
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Here n is the number of probes in the window forming a triangle centered at the predicted 

peak; Yi is the log ratio for probe i within the window.  The algorithm does not use a pre-

specified window size but computes the statistic for all possible windows of a certain size 

range containing triangles centered at the predicted peak.  We chose a p-value cutoff of 

p<0.05 to define significant peaks for Pol II binding in both the condensed scan and 

genomewide scan for each tissue.  We designated a peak in the condensed scan as 

confirmed if the peak is predicted within 500bp of the peak identified in the genome-wide 

scan for each tissue.  We define the coordinates of the confirmed peaks as the range 

defined by the matching condensed scan peak and genome scan peak. 

 As a second step in defining a catalog of Pol II binding sites, we pooled the 

confirmed peaks in each tissue and merged all the sites that are within 1000 bp of each 

other.  This cutoff was based on the distribution of nearest neighbor distances between 

confirmed peaks.  Sites were then merged across tissues if there was any base pair 

overlap.  The Pol II binding site is then defined as the range of the confirmed peaks 

merged across tissues. 

Expression Analysis 

 To complement the Pol II mapping strategy, we defined the set of genes with 
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transcripts relatively enriched in each tissue.  We identified these genes by analyzing the 

genome-wide expression profiles of the each tissue using Affymetrix GeneChIP mouse 

430 2.0, which represent over 39,000 mouse transcripts.  Total RNA from each mouse 

tissue was extracted using Trizol® reagent (Invitrogen, Carlsbad, CA) and further purified 

using RNeasy Mini Kit (Qiagen, Valencia, CA) according to manufacturers’ 

recommendations. The purified total RNA was submitted to UCSD Cancer Center 

Microarray Resource for GeneChip® RNA Expression Analysis using mouse 430 2.0, 

arrays. The resulting hybridization data was analyzed using Affymetrix GCOS v. 2.0 to 

determine the detection call as present (P), marginal (M), or absent (A) at significance 

level p<0.05. 

We used annotation from the Affymetrix library file Mouse430_2.cdf to match 

probe sets to corresponding Entrez gene identifiers.  Probe sets with identifier extension 

“x_at” were removed from the analysis. A total of 20,827 Entrez genes were mapped to 

the remaining probe sets.  We performed quantile normalization on the probe set signals 

across tissues using the R package affy.  To assign a signal for a gene in each tissue, we 

selected the maximum normalized expression signal of all probe sets matched to the gene 

if there are multiple probe sets for a gene.  Tissue-specific measures of entropy and 

categorical tissue-specificity based on expression were computed as previously 

described27. 

Quantitative PCR 

Quantitative real-time PCR was performed with 0.5 ng of H3ac, Me3H3K4 or 

RNA polymerase II ChIP DNA and total genomic DNA, as described previously. The 

quantitative real-time PCR of each sample was performed in triplicate using iCycler™ 
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and SYBR green iQ™ SYBR green supermix reagent (Bio-Rad Laboratories). The 

threshold cycle (Ct) values were calculated automatically by the iCycle iQ™ Real-Time 

Dectection System Software (Bio-Rad Laboratories). Normalized ΔCt values for each 

sample were then calculated by subtracting the Ct value obtained for the unenriched 

DNA from the Ct value for the ChIP DNA (ΔCt = CtChIP – Cttotal). The fold enrichment of 

ChIP DNA over the unenriched DNA was estimated using the formula 2-(� Ct). 

Reporter assays 

500 bp DNA fragments (250 bp upstream and downstream of RNA polymerase II 

peak) were cloned into the pGL3Basic plasmid (promega), in front of the promoterless 

firefly luciferase gene. 200ng of these plasmids were cotransfected with 2ng of pRL-

CMV, a renilla luciferse reporter, into mouse hepatocyte AML12 (ATCC # CRL-2254) 

using lipofectamine2000 (Invitrogen). Transfected cells were harvested 48 hours after 

transfection, and Luciferase activity was measured using the Dual Luciferase Kit from 

promega according to vendor protocol. The ratio of firefly luciferase to renilla luciferse 

was used as the relative activity for each sample. 5 RNA polymerase II intragenic DNA 

fragments were used as negative controls. 

Comparison of Pol II Binding Sites with Transcriptional Start Sites and Known Genes 

Annotation Source Number of Transcripts 

UCSC Genome Browser MM5 (downloaded April 2006) 93 

refGene* 19,363 

knownGene 36,838 

ensGene 31,035 
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all_mrna* 156,546 

*Filtered to transcripts with >95% similarity to matching genomic loci. 

We compared the location of 24,363 Pol II binding sites to annotated 5’ ends from 

the UCSC Genome Browser by comparing the distance of the 5’ end to the closest edge 

of a binding site.  Each Pol II binding site was then matched to its closest transcript 

within 2.5kbp. 

Transcript-matched Pol II binding sites were matched to mouse Entrez gene 

identifiers using the gene2accession table downloaded from 

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA, and the remainder by using the mouse gene 

annotation derived from http://symatlas.gnf.org. 

Comparison of Pol II Binding Sites with RIKEN CAGE data 

We used a similar strategy to compare binding sites with RIKEN CAGE data.  The data 

file (rikenCageTc.txt), containing 594,136 CAGE tag clusters, was downloaded from the 

UCSC Genome Browser MM5 in July 2006. 

Genomic distribution assignment 

We assessed the genomic distribution of sites not matched to known TSS 

(n=7,387) by comparing their position relative to known gene and transcript annotation.  

Sites were assigned to a genomic distribution class given the following criteria and order 

of assignment: a) Exonic: If the site directly overlaps an exon, it is classified as exonic.  

Sites which are less than 1Kbp in size were extended to 1Kbp in total length (equal 

extension on each side), before assessing overlap. Exon coordinates were downloaded 

from the UCSC Genome Browser (MM5) based on the block information for mRNA and 

EST tracks (Table Browser).  b) Intronic:  If the site is within a transcript but not 
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overlapping exon annotation, it is classified as intronic.  c) 3’ Proximal: If the site is 

within 2.5Kbp downstream of the 3’ end of a gene, it is classified as 3’ Proximal.  d) 5’ 

Distal: If the site is more than 2.5 Kbp upstream but within 100Kbp upstream of a gene 5’ 

end, it is classified as 5’ Distal.  e) 5’ Distal: If the site is more than 2.5 Kbp downstream 

but within 100Kbp downstream of a gene 3’ end, it is classified as 3’ Distal.  F) Gene 

Desert: The remainder of the sites that do not fall within gene or transcript boundaries 

and are not within 100Kbp of the boundary annotations are classified as falling within 

“Gene Deserts”.  The gene distal and gene desert classes were adapted from another 

publication 154. 

Promoter Prediction Criteria 

We also applied the peakfinding algorithm for the histone modification ChIP-chip 

data (H3ac, H3K4me3) in each tissue in order to define sites of histone modification 

enrichment at p<0.05.  Given the observed association of H3K4me3 with the 5’ end of 

genes from genome-scale studies in yeast, we classified CAGE and TSS-unmatched Pol 

II binding sites within 1000bp of H3K4me3 enrichment (in the same tissue) as promoters. 

Comparison of Pol II Binding Sites with microRNA annotation 

MicroRNA annotation was downloaded from miRBase (Release 8.1, May 2006) 158.  

MM8 coordinates for 336 miRNAs were converted to MM5 coordinates in two steps 

using UCSC Genome Browser Utility liftOver and conversion tables (1) 

mm8toMm7.over.chain and (2) mm7toMm5.over.chain downloaded in May 2006 93.  334 

miRNA coordinates were converted to mm5 and matched to Pol II binding sites.  85 

miRNAs mapped within 2.5kb of 118 Pol II binding sites. 66 of 85 miRNAs were also 
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within 2.5 kb of annotated transcription start sites (TSS) while 19 miRNAs  were outside 

2.5kb of a known TSS.   

Comparison of Pol II Binding Sites with other ChIP-CHIP and ChIP-PET Data 

From Supplementary Table 2 (Table S2) of the article “The Oct4 and Nanog 

transcription network regulates pluripotency in mouse embryonic stem cells,” we 

obtained the MM5 coordinates of the binding sites for Oct4 and Nanog in E14 mouse ES 

cells 154.  We compared these coordinates with the location of our Pol II binding sites (not 

mapped to TSS, CAGE or promoter predictions) and matched those which are within 2.5 

kb of the Pol II binding sites. 

From Supplementary Table 9 (Table S9) of the article “Polycomb complexes 

repress developmental regulators in murine embryonic stem cells”, we obtained the list of 

transcription factors bound by Polycomb complexes in mouse embryonic stem cells 164.  

We compared the identifiers of the genes in the table with the genes in our tissue-specific 

sets. 

Assessment of Tissue-Specificity 

Each of the 24,363 sites was scored for tissue-specificity by calculating the 

Shannon entropy of the site’s Pol II binding probability distribution across tissues, Hs.  

As described in 4.3.5, the relative Pol II binding probability in a tissue t for a given site s 

is calculated as: 

!
""

=
Nt

ststst BBp
1

,,| where 
st

B
,

is the average ChIP-chip log ratio in the 1kb neighborhood 

centered at the midpoint of Pol II binding site s and N is the total number of tissues 

surveyed.    
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As described in results, Hs is computed for each site, and the categorical tissue-

specificity tsQ |  is calculated for each site and tissue combination to determine the bias of 

a site for a particular tissue27. 

The maximum entropy score is attained when the Pol II binding is uniform across 

tissues (pt|s=1/5) for a given site.  We used the arbitrary cutoffs of Hs ≤1 and 

min( tsQ | )≤1.32 to define tissue-enriched sites.  In the idealized case, Hs ≤1 represents a 

probability distribution for a site s in which Pol II binding is predominantly enriched at 

≤2 tissues (on average) with negligible relative occupancy at the rest of the tissues.  

Among all sites with a min( tsQ | )≤1.32, the maximum Hs is 1.01. 

CpG Overlap of Pol II Binding Sites and Promoters 

Any overlap of transcript-matched Pol II binding sites to CpG islands was 

determined by comparing the coordinates of CpG islands from the MM5 file 

cpgIslandExt.txt downloaded from the UCSC Genome Browser (MM5) 93. 

CpG islands within tissue-specific gene promoters were identified based on the 

commonly used criteria requiring regions greater than 200bp in length, within [-

200,+100]bp of the reference start, G or C content greater than 50%, and a ratio of 

observed over expected CG dinucleotide counts greater than 0.6 194. 

Assessment of Multiple Promoter Usage 

We considered the set of genes with Entrez identifiers mapped to unique loci in 

the mouse genome and classified genes into two general classes based on the number of 

TSS-matched Pol II binding sites it contains (single promoter or multiple promoters).  

The fraction of genes with multiple promoters (28%) represents our conservative estimate 
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of multiple promoter usage given the limited panel of tissues surveyed and the coarser 

resolution of transcript 5’ ends compared to RIKEN CAGE data. 

To assess the relationship between the tissue-enrichment of multiple Pol II 

binding sites and relative tissue expression, we examined all genes (based on Affymetrix 

gene loci annotation) with ≥2 Pol II binding sites (n=3,843).  We calculated the 

correlation coefficient (pearson R) between the relative tissue-binding vector (Pol II) and 

relative tissue expression vector for each gene. The relative tissue-binding vector of a 

gene contains the aggregate 
st

B
,

 for each tissue across all the sites s matched to the gene 

G: 
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The relative tissue-expression vector for each gene G is simply the associated normalized 

log10 signal (expr) from the Affymetrix expression array experiment for each tissue: 

[exprbrain,G, exprheart,G, exprkidney,G, exprliver,G, exprmES,G] 

To assess the significance of the proportion of genes with strong positive 

correlation between relative tissue-binding and expression, we randomly permuted the 

labels of binding and expression vectors 1000 times and obtained an estimate of the 

expected proportion of genes across the range of correlation coefficients, R![-1,1].  We 

found that the expected distribution across correlation coefficients is relatively uniform 

and that the observed percentage of genes with R>0.6 (46%) between relative tissue 

binding enrichment and expression is >2-fold enriched above the expected (21%). 
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Assessment of Large Clusters of Tissue-Enriched Pol II Binding 

From our catalog of Pol II binding sites, we selected 53 sites defined as tissue-

enriched with length >5kb.  40 of these sites were matched to known genes with Entrez 

identifiers.    

Evalutating Tissue-Specific Gene Promoters 

We considered the set of genes which had TSS-matched Pol II binding sites 

enriched in only one tissue (max (Hs)≤1 and max( tsQ | )≤1.32 for only one tissue).  We 

selected one reference start for each gene based on the Pol II binding site mapped closest 

to a TSS if there are multiple Pol II binding sites for a tissue.  The reference start is 

defined differently for the following cases:  1) If the Pol II binding site contains the 

matching annotated transcript start (regardless of size), the annotated transcript start is 

used as the reference start. 2) If the Pol II binding site is less than or equal to1kb in span 

(and does not contain the matching annotated start), use the midpoint of the site as the 

reference start.  3) If the Pol II binding site is greater than 1 kb in span (and does not 

contain the matching annotated start), use the edge of the site closest to the matching 

annotated transcript start as the reference start. 

Promoter Profile 

For each set of genes with tissue-enriched Pol II binding, we extracted the ChIP-

chip logR profiles for Pol II, H3ac, and H3K4me3 for all tissues over the [-2,+2]Kbp 

interval relative to the reference start.  For each gene, we concatenated these “promoter 

profiles” for each factor, for all tissues.  Each gene is represented by 15 concatenated 

vectors of 40 values, one for each 100bp bin in the [-2,+2]Kbp interval.  For each set of 

tissue-enriched genes, we performed k-means clustering (pairwise complete-linkage) on 
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these concatenated tissue promoter profiles as implemented in the command line version 

of Cluster 3.0 downloaded from 

(http://bonsai.ims.utokyo.ac.jp/~mdehoon/software/cluster/software.htm) 100. Unlike 

brain, heart, kidney, and liver which are predominantly enriched in Pol II and histone 

modifications  in a tissue-specific manner, we observed that at k=2, the profiles for the 

mES set was roughly split into two major classes: 

Class 1 (c1):  A class with clearly mES-enriched Pol II binding, H3ac, and H3K4me3 

enrichment relative to other tissues.   

Class 2 (c2): A class with clearly mES-enriched Pol II binding, H3ac, and H3K4me3 

enrichment but also detectable but weaker enrichment of H3ac, H3K4me3 (and barely 

detectable Pol II in average profiles) in other tissues.  The TreeView application was used 

for visualization 101. 

Expression Profile 

We profiled the matching expression data based on our in-house Affymetrix 

experiments.  Signals were logged (log10) and normalized across tissues for each gene. 

We also downloaded the matching gene expression profiles across a panel of 

mouse tissues and cell types from SymAtlas (http://symatlas.gnf.org).  We selected the 

matching data from the file gnf1m-gcrma.txt and performed hierarchical clustering 

(pairwise complete-linkage) of array (tissue) experiments using Cluster 3.0 on the gene 

mean-centered and normalized (log10) data before aligning to the tissue-set profiles to 

compare our results.  The TreeView application was used for visualization 101. 
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Expression Correlation Score (ECS) 

The metric to score the correlation of expression data with the tissue-enriched sets 

defined based on Pol II binding is a variant of the gene-set enrichment analysis as used by  

Xie, et al 24.  

Given: Set of genes S independently defined as tissue-enriched by Pol II binding in a 

tissue t. 

Goal: Evaluate the enrichment of the gene set S near the top of the ranked list L of genes 

ordered by tissue-specificity in t based on expression ( tGQ | ).  The categorical tissue-

specificity score based on expression ( tGQ | ) was calculated as described in the original 

application 27.  The ranked list L of genes includes all genes surveyed in the Affymetrix 

GeneChIP mouse 430 2.0. 

Metric: Calculate the sum of the ranks of S in L (rank-sum statistic, RS). Evaluate the 

non-randomness of ranks of S in L by comparing against the rank sums of random 

subsets (1000 random subsets) of L of the same size.  Define the Expression Correlation 

Score (ECS) as: 

!
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=  

The ECS score is analogous to a z-score with an associated p-value.  High SCS scores 

imply that the majority of items in S are near the top of the list L. 

Tissue-specific sets defined based on Pol II binding alone are highly-enriched for 

genes which are highly tissue-specific based on expression data.  Calculating the ECS 
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score for set S(t1) in ranked list L(t2) (where t1 and t2 are different tissues) shows 

significant anti-correlation (negative ECS score).  

Motif Discovery 

Data 

Tissue-specific Pol II binding sites uniquely matched to known genes and within 

2.5 kb of an annotated transcript start for the matching gene were used as anchors to 

define 1200bp proximal promoter regions spanning 1000bp upstream and 200bp 

downstream of a reference start.  Reference starts are defined in the same way as for 

promoter profiles. 

Random mouse promoters were selected from the Cold Spring Harbor Laboratory 

Mammalian Promoter Database (CSHLmpd).  The promoter region was defined to be [-

1000, +200] bp from the reference transcription start site 142. 

Balanced Misclassification Metric 

We identified motifs for each set of tissue-specific gene promoters by examining 

the relative over-representation of known vertebrate transcription factor binding site 

(TFBS) matrices based on Transfac 178 and JASPAR 179 (673) in each set compared to 

two types of background sets: 1) a random set of mammalian promoters or 2) the relative 

complement of the set in the set of all tissue-specific gene promoters.  The mES c2 set 

was excluded from the relative complement sets of tissue-specific promoters because of 

its non-specific pattern of histone modification enrichment.  A previously described 

enumerative strategy, DME, was also used to determine the highest ranked de novo 

discriminative motifs of different widths (w=6,8,10,12,14) in each tissue-specific set 

compared to each of the two types of background sets 25,144.   
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For both known and de novo motifs, a motif’s ability to classify the foreground 

sequences from background sequences is measured by the balanced misclassification 

error rate.  This error rate is defined as: 

( )
!"
#
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ySpecificitySensitivit
ErrorRate   

Sensitivity is defined as the proportion of promoters in the foreground set 

containing the motif and specificity is defined as the proportion of promoters in the 

background set without the motif.  The threshold for motif matching is optimized for 

each matrix to minimize the error rate. 

The significance of the balanced misclassification error rate for a motif (p-value) 

is determined by estimating the expected distribution of the error rates for a given 

comparison.  This is achieved by permuting the labels of foreground and background 

sequences 1000 times and calculating the misclassification error rate for the best 

discriminative motif for each permutation.  The p-value for the top-ranked discriminative 

motif for the true foreground and background sets then represents the probability of 

obtaining a misclassification error rate less than the one observed based on the expected 

distribution of error-rates. This p-value is a conservative measure of significance when 

considering the error-rates of lower-ranked (rank >1) motifs for the true foreground and 

background comparison.  For each comparison, we filtered the significant results to 

include motifs with p-value<0.05 and specificity>2/3. 

Using tools from the CREAD (http://rulai.cshl.edu/cread/index.shtml) sequence 

analysis package (kmercomp, featuretab, and feateval), the ability of all possible short 

nucleotide sequences (k=1,2,3) to discriminate foreground and background sequences 
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were also compared with the error-rates of the motifs of greater widths (w>=6).  By this 

strategy, we determined that in the comparison between the kidney promoter set versus 

random promoters, the “CAG” sequence is a better discriminator than the most 

significant motifs V$MYOD (M00184) and V$E12_Q6 (M00693). Similarly, in the 

comparison between the mES c2 set versus other tissue-specific promoters (brain, heart, 

kidney, liver), the “CG” dinucleotide is a better discriminator than the other significant 

CG-rich motifs from TRANSFAC and JASPAR (not reported).  This reflects the 

differences in CG-composition between the mES c2 set and other tissues as reported in 

the analysis of CpG overlap. 

Relative Tissue-Enrichment of Conserved Occurrences 

Data 

The 1200bp proximal promoter regions (MM5) were mapped to orthologous 

human promoters (HG17) in two steps by using UCSC utility liftOver and two 

conversion files: (1) mm5ToMm7.over.chain with the default minMatch cutoff ≥0.95 and 

(2) mm7ToHg17.over.chain with the minMatch cutoff ≥0.50.  The following table 

summarizes the number of tissue-specific gene promoters mapped in human relative to 

mouse by this strategy: 

Species Brain Heart Kidney Liver mES c1 mES c2 

Human 202 62 147 129 106 118 

Mouse 219 70 174 159 157 158 
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Method 

Given the set of known vertebrate TFBS matrices from TRANSFAC and 

JASPAR (678), the best occurrence of each motif was mapped at every promoter, for 

every tissue-specific set for both mouse and human using the CREAD 

(http://rulai.cshl.edu/cread/index.shtml) utility storm. Promoter occurrences for all motifs 

were filtered to those scoring above a functional depth threshold of  0.85: 

( )
( )sibleScoreMinimumPossibleScoreMaximumPos

sibleScoreMinimumPosScore
DepthFunctional
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For every motif, we counted the number of promoters in which the best 

occurrence of the motif overlapped in the orthologous mouse and human promoters 

(aligned).  We defined the total number of orthologous promoter pairs as P, the total 

number of orthologous promoter pairs with conserved occurrences of a motif m as C, the 

number of orthologous promoter pairs specific to the tissue as T, and the number of 

orthologous promoter pairs in T with conserved occurrences of the motif as k.  We then 

scored the tissue-enrichment of the conserved occurrences for each motif (m) and for 

each tissue (t) by using the hypergeometric distribution 195.   
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p-values obtained from each of the 4,038 tests (673 motifs, 6 tissue sets) were classified 

as significant based on a p-value cutoff of p<1/4038 to account for multiple testing. 
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GO Analysis 

We used the GO analysis tools at DAVID Bioinformatics Resources 

(http://david.abcc.ncifcrf.gov/) to determine the most enriched functional categories for 

the genes (based on Entrez identifiers) in each tissue set 95.  We focused on the GO-

biological processes (BP) at level 3 (among levels 1-5) because of the intermediate level 

of descriptive information and category size. We highlight the top functional categories 

below the EASE score/DAVID p-value (a modified Fisher-exact p-value) of p<0.05 95 

based on  the default genome-wide scope.  There is no explicit multiple testing 

correction, but the ranking based on the score should reflect the most relevant categories 

for each tissue. 
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Figure 4-1.  Outline of promoter mapping strategy. 
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Figure 4-2. Summary of ChIP quantitative PCR analysis of 27 random RefSeq promoters in mES.   

The y-axis denotes the cycle difference for ChIP enrichment relative to input at each site.  Values for each 
bar represent the mean of 3 replicates with error bars showing the standard deviation.  The first four 
promoters (L-R, on the x-axis) were determined to be relatively un-enriched in Pol II binding in mES by 
comparison with negative controls (last five promoters) selected from intergenic regions.  Threshold for Pol 
II enrichment was defined as the mean of the negative controls plus three times the mean of the standard 
deviations for each negative control experiment. 
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Figure 4-3. Summary of ChIP quantitative PCR analysis of Pol II, H3Ac, and H3K4me3 of 24 Pol II 
bound sites in liver.  

The y-axis denotes the cycle difference for ChIP enrichment relative to input at each site.  Values for each 
bar represent the mean of 3 replicates with error bars showing the standard deviation.  The 24 sites tested in 
liver (L-R, on the x-axis) were compared with negative controls (25-29) selected from intergenic regions.  
Red horizontal line indicates maximum mean enrichment plus standard deviation for a negative control site. 
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Figure 4-4. Genomic distribution of Pol II binding sites. 

(A) Distance of matched Pol II binding sites relative to known 5’ ends based on knownGene, refGene, 
ensGene, and all_mrna annotation downloaded from the UCSC Genome Browser (MM5).  Bin size=250bp. 
(B) Genomic distribution of Pol II sites matched to CAGE annotation (and not matched near known 
transcript 5’ ends).  Genomic distribution criteria is as follows.  3’ Proximal: within 2.5 Kbp downstream of 
3’ end.  5’ Distal: 2.5Kbp to 100Kbp upstream of 5’ end. 3’ Distal: 2.5Kbp to 100Kbp downstream of 3’ 
end. Exonic: overlapping exons (Pol II sites <1Kbp long extended to 1Kbp for overlap). Intronic: within 
transcript boundaries not near exons. Gene Desert: greater than 100kb from a 5’ or 3’ end. (C) Genomic 
distribution of putative promoters based on the criteria in B. 
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Figure 4-5. Examples of Pol II binding at promoters across tissues. 

(A) Each bar represents the Pol II ChIP-chip log2ratio measured for each 50bp probe spaced by 50bp 
intervals over the region spanning the promoters for the Crmp1 gene.  Differences in relative occupancy of 
Pol II across tissues suggest preferred usage of the AF501323 promoter in brain and conversely preferred 
usage of NM_007765 promoter in mES cells.  Both promoters are shown to overlap CpG islands. (B) Pol II 
enrichment across tissues for the Esrrb gene.  Alternative promoters are spread over a larger region.  The 
upstream promoter (ENSMUST0000064599.2) has greatest Pol II ChIP-chip log2ratio enrichment in kidney 
while the downstream promoter (BC044858) has greatest Pol II ChIP-chip log2ratio enrichment in mES. 
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Figure 4-6. Gene locus with multiple Pol II binding sites across tissues and its relative expression.   

The horizontal panels for each tissue represent Pol II ChIP-chip log2ratio enrichment across the gene loci.  
Each black bar represents the Pol II ChIP-chip log2ratio for a single 50bp probe.  The vertical red-green bar 
at the far right represents the matching relative tissue-expression in the corresponding tissue based on 
normalized log10 signals from Affymetrix expression profiling. 
Below the tissue panels, is the gene structure and orientation of the Creg1gene.  At the bottom, we also 
match the RIKEN CAGE tag clusters (TCs) within the genomic window.  Top-right scale shows relative 
expression enrichment associated with red, and the converse in green. 
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Figure 4-7. Unusually large regions of Pol II binding. 

(A) Example of extended Pol II binding (>5Kbp) over the Pouf51 gene (chr17:34013130-34020755).  We 
highlight the ChIP-chip log2ratio enrichment for Pol II, H3ac, and H3K4me3 in mES cells within each 
horizontal panels over the genomic window.  Each bar represents the ChIP-chip log2ratio for the 
corresponding 50bp probe.  The bottom panel shows the gene structure of Pou5f1 and its relative position 
and orientation within the window. (B) Example of extended binding over the Rcor2 gene (chr19:6976315-
6984904). (C) Histogram of the size distribution of all 24,363 Pol II binding sites (bin size = 100bp). (D) 
Large Pol II binding sites overlapping known genes, n=40.  Red-green heatmap of the relative expression 
(normalized log10 expression signal) across tissues for each matched gene.  Genes are grouped  (by row) 
according to the tissue in which Pol II binding is enriched.  Red-green scale indicates relative expression 
enrichment associated with red, and the converse in green. 
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Figure 4-8. Tissue-specificity of known promoters based on Pol II binding and overlap with CpG 
Islands.   

Bars indicate distribution of promoter counts (Y-axis, left) across the different bins (bin size = 0.2 bits) 
spanning the range of tissue-specificity measured by Shannon entropy (H) H!  [0, log2(N)].  Low values of 
H indicate tissue-specific expression and the maximal value denotes uniform expression across tissues 
surveyed.  Dashed line indicates the fraction of promoters within each bin overlapping CpG Islands (Y-
axis, right). 
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Figure 4-9. Promoter profiles of Pol II binding, H3ac, and H3K4me3.   

Profiles grouped according to the tissue with the highest relative Pol II binding, and ordered within each 
tissue according to the Pol II entropy score or H (right bar) for all transcript-matched promoters 
(n=16,976).  These promoters are partitioned by overlap with CpG islands: A) CpG promoters, n=8,374. B) 
Non-CpG promoters, n=8,602. 
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Figure 4-10. ChIP-qPCR validation of Pol II and H3K4me3 at 5 promoters. 

Summary of ChIP quantitative PCR analysis of Pol II and H3K4me3 at 5 randomly selected promoters (1-
5) with variable Pol II ChIP-chip binding across tissues and 5 negative control intergenic regions (6-10).  
The y-axis denotes the cycle difference for ChIP enrichment relative to input at each site.  Values for each 
bar represent the mean of 3 replicates with error bars showing the standard deviation.  
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Figure 4-11. Tissue-specific gene promoter profiles and expression. 

Pol II binding and histone modifications across tissues for tissue-specific promoters compared with relative 
transcript level based on expression profiling based on in-house Affymetrix expression of the tissues 
surveyed and relative to 61 tissues profiled in the GNF SymAtlas.  Profile of Pol II binding, chromatin 
modifications at a tissue-specific promoter is concatenated across tissues and mapped to relative tissue 
expression of matching transcript based on Affymetrix expression profiling (in-house and GNF) along the 
same row.  The rows are ordered and grouped according to the tissue-specific classification of the promoter 
based on Pol II binding. 
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Figure 4-12. Tissue-specific genes based on promoter binding and relative transcript level. 

We highlight the genes associated with tissue-specific promoters based on Pol II binding which rank 
highest in the list of genes ordered by categorical tissue-specific expression (top ten) for brain (A), heart 
(B), kidney (C), liver (D), mES c1 (E), mES c2 (F). 
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Figure 4-13. mES-enriched promoters with no transcript level correlation. 

(A) Promoter profile for Pol II and H3K4me3 ChIP-chip log2ratio enrichment across tissues over the 
4930511H11Rik promoter. 5’ end position (arrow) and relative gene orientation indicated by transcript 
schematic at the bottom. Each vertical bar represents the ChIP-chip log2ratio for the corresponding 50bp 
probe. (B) Promoter profile for the Tmcc3 gene. (C) Relative expression of 4930511H11Rik across the 
tissues surveyed based on normalized log10 signals from Affymetrix expression profiling.  Expression 
enrichment from low to high is represented by color gradient from green to black to red. (D) Relative 
expression for the Tmcc3 gene. (E) 4930511H11Rik expression across a panel of cell types in the GNF 
expression atlas (copyright GNF) show enriched expression in testis.  Each horizontal bar is a 
representative signal for each of the tissue type surveyed. (F) Tmcc3 gene expression across a panel of cell 
types in the GNF expression atlas (copyright GNF) show enriched expression in fertilized egg and oocyte. 
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Figure 4-14. Transcript level and promoter profiles for mES c1 and mES c2. 

(A) Promoter profile for Pol II and H3K4me3 ChIP-chip log2ratio enrichment across tissues over the Lin28 
promoter. 5’ end position (arrow) and relative gene orientation indicated by transcript schematic at the 
bottom. Each vertical bar represents the ChIP-chip log2ratio for the corresponding 50bp probe. (B) 
Promoter profile for Dnmt3b.  (C) Relative expression of Lin28 across the tissues surveyed based on 
normalized log10 signals from Affymetrix expression profiling.  Expression enrichment from low to high is 
represented by color gradient from green to black to red. (D) Relative expression for Dnmt3b. (E) Lin28 
expression across a panel of cell types in the GNF expression atlas (copyright GNF) show enriched 
expression in embryo-related genes, fertilized egg, and oocyte.  Each horizontal bar is a representative 
signal for each of the tissue type surveyed. (F) Dnmt3b expression across a panel of cell types in the GNF 
expression atlas (copyright GNF) show enriched expression in embryo-related genes, fertilized egg, and 
oocyte. 
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Figure 4-15. ChIP-qPCR validation of mES c1 and c2 classification. 

(A) Average fold difference or Pol II ChIP DNA enrichment relative to input DNA (Z-axis) at the 
promoters for selected mES c2 genes (labeled in red), mES c1 genes (labeled in black), and an intergenic 
control (Y-axis) across the different tissues (X-axis). (B) Similar graph for H3ac. (C) Similar graph for 
H3K4me3. 
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Table 4-1. Summary of Pol II binding across tissues.  

Pol II binding sites denote the number of sites associated with each tissue after merging the sites across 
tissues to define a total of 24,363 binding sites across tissues.  Percent near TSS or CAGE is defined as 
being within 2.5 Kbp of the 5’ end of the transcript or of the boundaries of the CAGE cluster. 
 

 
 
 

Table 4-2. Summary of Oct4 and Nanog co-localization. 

Oct4 and Nanog co-localization with tissue-specific Pol II bound sites in mES versus adult tissues not 
mapped to promoters based on known transcript 5’ end, CAGE, or H3K4me3 localization.  Overlap 
between Pol II and Oct4 or Nanog binding is defined as within 2.5Kbp of their boundaries. 
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Table 4-3. MicroRNAs matched to Pol II binding across tissues.  

Genomic location is givenbased on the Pol II binding site.  Highlighted in gray are microRNAs we found 
enriched in the same or related cell type as the cloning source. 
 

miRNA ID H 

Most 
Enriched 
Tissue 

mirBASE 
miRNA clone 
tissue sources Genomic Location 

mmu-mir-129-2* 0.82 brain cerebellum Outside Gene 

mmu-mir-124a-3* 0.86 brain brain,mES Outside Gene 
mmu-mir-9-3 1.15 brain brain,mES Intronic 
mmu-mir-133a-2* 0.01 heart heart Intronic 
mmu-mir-133a-1* 0.06 heart heart Intronic 
mmu-mir-1-2* 0.49 heart heart Intronic 
mmu-mir-681 0.67 heart embryo Intronic 
mmu-mir-497 1.51 heart embryo Intronic 

mmu-mir-145 1.69 heart heart Outside Gene 

mmu-mir-143 1.73 heart 
heart,        
spleen Outside Gene 

mmu-mir-23a 2.01 heart heart Intronic 
mmu-mir-704 0.10 liver embryo Intronic 
mmu-mir-122a* 0.32 liver liver Intronic 
mmu-mir-190 0.74 liver kidney Intronic 
mmu-mir-192 1.46 liver liver Intronic 

mmu-mir-193 1.86 liver kidney Outside Gene 

mmu-mir-469* 0.02 mES testis Outside Gene 

mmu-mir-200c 1.19 mES testis Outside Gene 
mmu-mir-202 1.60 mES testis Intronic 
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Table 4-4. Binding and expression correlation 

Tissue-specific classification of gene promoters based on Pol II binding correlates with tissue-specific 
classification of genes based on expression using the metrics of Shannon entropy and categorical tissue-
specificity.  The expression correlation score (ECS) is a z-score measuring the enrichment of tissue-specific 
genes defined based on binding near the top of ranked lists for the same tissue ordered based on categorical 
tissue-specific expression (Affymetrix expression profiling). 
 

 
 

Table 4-5. Summary of enriched Gene Ontology Biological Process (GO-BP).   

Categories (Level 3) enriched for each tissue at p<0.05, ordered by increasing p-value. 
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Table 4-6. Summary of known and novel motifs. 

Identified in each tissue using a relative conservation metric and a balanced misclassification metric.  
Significant motifs identified using the relative conservation metric are based on a p-value threshold which 
takes into account the number of motifs and tissues tested (p-value cutoff <1/(motifs! tissues)).  Error-rate 
p-values do not require multiple testing adjustment and are filtered at p<0.05. 
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Supplementary Data Tables 
The following tables are available for download from:  

http://bioinformatics-renlab.ucsd.edu/rentrac/wiki/MousePromoter 

The site hosts information for the parallel publication submitted during the preparation of 

the dissertation. (Username: mouse, Password: 6tissues) 

The Supplementary Data Tables are listed as “Data Tables” under the 

Supplementary Information section. 

Data Table 4-1. 24,363 sites of Pol II binding annotated with known transcripts, CAGE, and Entrez Gene 
annotation as well as measures of tissue-specific Pol II binding using entropy (H) and categorical tissue-
specificity (Q). 

Data Table 4-2. Large regions of Pol II binding annotated with coordinates, tissue-enrichment, and 
matching Entrez Gene. 

Data Table 4-3. TSS and CAGE-unmatched Pol II binding near Oct4 and Nanog binding sites. 

Data Table 4:4-9: Tissue-specific gene promoter tables are annotated with coordinates, Entrez gene 
annotation, matching GO biological process and entropy measures based on Pol II binding and expression 
in various tissues: 

Data Table 4-4. Brain 

Data Table 4-5. Heart 

Data Table 4-6. Kidney 

Data Table 4-7. Liver 

Data Table 4-8. mES c1 

Data Table 4-9. mES c2 

Data Table 4-10. 27 Refseq promoters tested by Pol II ChIP-qPCR in mES. 

Data Table 4-11. Coordinates of 29 sites tested by Pol II ChIP-qPCR in liver. 

Data Table 4-12. Coordinates of 5 randomly selected promoters with variable Pol II binding tested for  Pol 
II binding and H3K4me3 by ChIP-qPCR in brain, heart, kidney, liver, and mES. 
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Chapter 5 

Conclusions 

In this dissertation, I have discussed the genome-wide mapping and analysis of 

active promoters, in human fibroblast cells and across a panel of adult mouse organs and 

embryonic stem cells.  The scale and novelty of these studies required key collaborations 

with experimental scientists who performed the ChIP-chip experiments and biological 

validation, technology developers who provided the tiling array platforms, and 

statisticians with whom we collaborated to develop a model-based approach and efficient 

algorithm to identify binding sites from ChIP-chip data.  As the bioinformatics researcher 

performing the bulk of the data management and analysis at the nexus of these 

collaborations, I have been pulled in the various directions of learning and performing 

ChIP-chip experiments, exploiting computational strategies to best tease out biological 

insights from our genome-wide promoter mapping data, and immersing myself in 

literature regarding transcription regulation and tissue-specific expression. It has been a 

challenge and a privilege.  In this final chapter, I briefly review persisting ChIP-chip 

analysis issues beyond the scope of this dissertation and broadly outline some biological 

questions brought to light by the work described. 

5.1 ChIP-chip Analysis Issues 

“Much of what we present in this chapter could be described as first pass attempts 

to deal with the deluge of data arriving at our doors.  Questions come in a volume and 
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pace that demand answers; we do not have the luxury of waiting until we have final 

solutions to problems…”196  

- Yee Hwa Yang and Terry Speed, Statistical Analysis of Gene Expression Data 

 The quote above can be applied to this dissertation and ChIP-chip tiling array 

analysis to date. Although we have described advances in developing model-based 

approaches for analyzing ChIP-chip data and adapting microarray pre-processing 

strategies, improvements in analysis remain to be achieved.  Many key issues with ChIP-

chip data analysis are reminiscent of fundamental issues that have plagued microarray 

expression profiling.  More than a decade since the first publications showing the utility 

of microarray expression profiling, experimental and analysis issues are still being 

reviewed and debated 197-199.  The following list highlights some of these microarray 

issues as adapted to ChIP-chip: 

(1) Experimental design 

(2) Quality control of ChIP-chip experiments 

a. Microarray quality 

b. Sample quality 

i. Antibody 

ii. Chromatin 

c. Hybridization 

(3) Data pre-processing 

a. Image acquisition 

b. Normalization 

(4) Semi-quantitative ChIP-chip enrichment values 
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a. Signal-to-noise ratio 

b. Small dynamic range (ChIP-chip log2ratios compared to ChIP with 

quantitative PCR fold differences) 

c. Accuracy  

(5) Insufficient models for sources of variation 

a. Probe-specific effects 

(6) Experimental assessment of sensitivity and specificity 

a. Comparison against ChIP with quantitative PCR for random and selected 

sites. 

For instance, the question of accuracy (4c) or “conformity of a measured quantity 

to its actual value” has rarely been addressed in ChIP-chip experiments.  Microarray 

expression signals attempt to model the number of transcripts or relative transcript levels 

in a cell 196,197.   ChIP-chip enrichment values attempt to represent protein-DNA 

interactions.  Are we measuring protein-DNA interactions comparable to the traditional 

measures of binding affinity such as dissociation constants?  If not, then what are we 

measuring?  How does the duration of formaldehyde cross-linking affect what we 

measure? Even before the advent of ChIP-chip, cross-linking time has been judged to be 

a critical parameter in chromatin immunoprecipitation experiments that can affect antigen 

availability in chromatin and amount of total material.  For instance, for proteins other 

than histones, longer cross-linking times are generally recommended 39.  

Researchers analyzing ChIP-chip data need a fundamental understanding of the 

experimental procedure to derive realistic models of the data and the biological variation 

being measured.  Aside from cross-linking time, there are still steps in the ChIP-chip 
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procedure for which variable methods are employed.  It is still not clear how these 

different methods result in different ChIP-chip results.  For instance, when mapping 

histone modifications in a genome, the use of sonication versus micrococcal nuclease 

digestion during the fragmentation step changes the profile of ChIP enrichment.  In 

addition, there are at least three methods for amplifying IP-enriched DNA to generate 

enough sample for array hybridization -- linear amplification, whole genome 

amplification (WGA), and ligation-mediated PCR (LM-PCR) 200-202.  A systematic 

comparison of these amplification methods across various types of ChIP-chip tiling 

experiments – histone modifications, sequence-specific binding factors, and general 

transcriptional machinery – might reveal biases of the different approaches. 

 Relative to gene-centric microarray expression profiling data, ChIP-chip tiling 

array data differs in that there is no clear fundamental unit of probe or probe sets which 

correspond to a genomic site of binding or association for a particular factor.  Typically 

the range of binding is inferred from the range of enriched signal above a selected 

background or following a model of enrichment.  This difference makes ChIP-chip data 

simultaneously more challenging and more informative. It is more challenging because 

there is no clear fundamental unit for comparison across experiments or for summarizing 

binding sites.  Binding sites can be provided as probe-based peaks or as variable genomic 

ranges.  On the other hand it can be more informative because aside from large-scale 

discovery of binding sites, ChIP-chip can reveal patterns and profiles of binding 

revealing domains of gene regulation 139,190.  For instance, large domains of H3K27 

methylation were observed at highly conserved genomic regions encompassing genes for 

developmental regulators in mouse embryonic stem cells.  Within large domains of this 
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histone modification linked to repression, punctate sites of H3K4me3 were found at 

promoters and predicted to poise developmental regulators for transcription 139,190. 

 Clearly, interesting discoveries are being made using ChIP-chip as revealed by 

this dissertation and the onslaught of publications in the field.  However, without a doubt, 

more work remains to be done to improve how we model and analyze ChIP-chip data.  

Furthermore, despite the current emphasis on its use for genomic annotation of binding 

sites, ChIP-chip is increasingly used to map a factor across cell types and conditions to 

examine changes in occupancy.  Although we have taken a first step by adapting 

information theoretic measures such as entropy, strategies akin to differential gene 

expression analysis or gene-set expression analysis (GSEA) need to be developed for 

gleaning biological insight from changes in factor binding at genomic sites across 

conditions 203.  Finally, a broader question is how the emergence of cost-effective 

sequencing technologies will supplant the use of microarrays for identifying genomic 

sites of ChIP-enrichment 204.  Although ChIP-sequencing might render some array-based 

issues of probe design, image extraction, and normalization obsolete, some of the issues 

outlined above will remain pertinent. 

5.2 Future Work 

Although there are many conceivable questions emerging from our genome-wide 

mapping of promoters, I would like to highlight two areas for further investigation: 

(1) Transcription elongation 

(2) Active histone modifications at promoters 
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5.2.1 Transcription Elongation 

Despite our emphasis on the importance of transcription initiation as a rate-

limiting step in gene expression, our genome-wide mapping of active promoters by PIC 

binding in human fibroblast cells compared with microarray gene expression profiling 

data revealed a class of genes (15% of genes examined) with promoters bound by the PIC 

and no detectable transcripts (PIC Class II).  This discordance can be trivially attributed 

to platform sensitivity differences, but more interestingly we have hypothesized that these 

genes might be regulated past the stage of transcription initiation – at the level of 

promoter clearance, elongation, or by post-transcriptional regulatory mechanisms such as 

mRNA degradation mediated by miRNAs (Chapter 3).   

Increasingly, other groups have begun to emphasize barriers to transcription 

elongation at the various steps of promoter clearance, promoter-proximal pausing, and 

productive elongation 149.  Although Pol II at the stage of transcription initiation has been 

associated with Serine 5 phosphorylation at the CTD, the extent of this phosphorylation 

might not be sufficient to distinguish it from the hypo-phosphorylated form of Pol II we 

have been mapping as part of the PIC.  Given that pausing has been shown to occur at 

sites +20 to +40 from the TSS, our ChIP-chip enrichment profiles do not give enough 

resolution to distinguish paused Pol II from Pol II at the initiation site. One group in 

particular has begun to examine some of the genes we have classified as Class II from our 

genome-wide mapping of active promoters.  Using a nuclear run-on assay (NRO) to 

measure the density of transcriptionally engaged Pol II across a gene, they validated 

promoter proximal pausing at the 15 of 21 Class II genes they tested 205.  Interestingly, 

they also found evidence of promoter proximal pausing at half of the genes they tested 
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which we found to have PIC binding and detectable transcript (Class I) or no PIC binding 

and detectable transcript (Class II).  To the best of their knowledge, only 7 human genes 

have been shown to have paused polymerase by NRO analysis until this recent work 205. 

Clearly, the extent of regulation at the level of transcription elongation remains 

unclear, but our work has supported the possibility that this is greater than previously 

thought.  The development of nuclear run-on analysis at a global scale might reveal the 

degree to which promoter-proximal pausing occurs.  The extent to which this prevents 

productive elongation might also be investigated by mapping components of the known 

candidates for pausing control.  These include DRB sensitivity-inducing factor (DSIF), 

negative elongation factor (NELF), as well as the positive transcription-elongation factor-

b (P-TEFb) 149.  Given the current footprint of ChIP-chip enrichment, resolving the 

presence of pausing control factors, especially at short genes, might not be possible.  

However, preliminary tests of the binding resolution of components of the pausing 

control factors might be productive until global nuclear run-on assays are implemented. 

5.2.3 Active Histone Modifications at Promoters 

The presence of histone modifications associated with transcriptional activity, 

H3K4me3 and H3ac, at promoters with weak to undetectable Pol II binding and 

expressed transcript was a striking observation in our genome-wide promoter mapping 

across adult mouse organs and embryonic stem cells.  Although we singled out a notable 

class of gene promoters which have enriched Pol II binding and chromatin modifications 

in embryonic stem cells and maintain the active chromatin marks without the Pol II 

binding in the differentiated tissues, our tests at 5 random promoters revealed the general 
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persistence of active chromatin marks, in particular H3K4me3, at promoters in tissues 

where the Pol II binding is undetectable or below the threshold determined by ChIP-

qPCR.  Our work was initially focused on the identification and characterization of 

“tissue-specific promoters” across mouse brain, heart, kidney, liver, and mES cells by Pol 

II binding.  However, our comparison of the chromatin modifications at the Pol II sites 

across the tissues revealed our limited understanding for the establishment and the 

persistence of these chromatin marks, especially H3K4me3, which by consensus, have 

been linked to transcriptional activity 189. 

A limited study at a handful of genes in human hepatic cell lines revealed the 

persistence of histone modifications – H3K4me2, H3K4me3, H3K79me2, H3ac, and 

H4ac – for an extended period of time after alpha-amanitin induced transcriptional block 

and through mitotic cell division 188.  The theory of histone modifications as “short-term 

memory of recent transcription” was first put forth based on observations of H3K4me3 

enrichment at 5’ ends of yeast genes that have been transcriptionally inactivated 206.  

Recently, a study of DNA methylation, Pol II occupancy, and H3K4me2 at 16,000 

human promoters revealed the enrichment of H3K4me2 at transcriptionally inactive CpG 

island promoters without DNA methylation.  They suggest that the association of this 

active chromatin modification, H3K4me2, at transcriptionally inactive CpG islands might 

function in protecting the associated promoters from DNA methylation and silencing 192.   

 A recent review of H3K4me3 highlighted the potential complexity of this 

individual chromatin modification in humans by listing an extended family of histone 

methyltransferases which can establish this one mark in humans compared to a single 

enzyme in yeast.  Similarly, they presented two superfamilies of candidate “effectors” or 
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factors with characteristic folds which have been shown to recognize the H3K4 methyl-

lysines 189.  A better understanding of the specialized functions of the diverse writers and 

readers of this particular mark which has been shown to be, on its own, predictive of 

promoter 5’ ends, might also be revealing of different modes of transcriptional regulation 

that regulate the expression of different classes of genes. 

 To the extent that we can continue to take advantage of the power of ChIP-chip, 

several future experiments might clarify some of our observations.  For instance, how 

does the genomic localization and enrichment of H3K4me3 change across a time-course 

of embryonic stem-cell differentiation?  If we complement these H3K4me3 marks with 

maps of candidate writers and readers of this mark, we can further ask the question of 

which writers and readers are gained and/or lost at genes depending on whether they have 

been transcriptionally inactivated or transcriptionally induced in the time-course.  We can 

examine any biases of ChIP-chip enrichment of these various factors at CpG Island 

versus non-Cpg Island promoters.  Without a doubt, elucidating the “intricacy” of a 

single mark, H3K4me3, at a specific class of regulatory elements, promoters, presents a 

formidable challenge on its own 189.  We hope that clever use of insights from our studies, 

as well as the work of many others, will pave the way to unraveling its complexity. 
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