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There is growing empirical evidence that anthropogenic climate
change will substantially affect the electric sector. Impacts will
stem both from the supply side—through the mitigation of green-
house gases—and from the demand side—through adaptive re-
sponses to a changing environment. Here we provide evidence
of a polarization of both peak load and overall electricity con-
sumption under future warming for the world’s third-largest
electricity market—the 35 countries of Europe. We statistically
estimate country-level dose–response functions between daily
peak/total electricity load and ambient temperature for the period
2006–2012. After removing the impact of nontemperature con-
founders and normalizing the residual load data for each country,
we estimate a common dose–response function, which we use to
compute national electricity loads for temperatures that lie out-
side each country’s currently observed temperature range. To this
end, we impose end-of-century climate on today’s European econ-
omies following three different greenhouse-gas concentration tra-
jectories, ranging from ambitious climate-change mitigation—in
line with the Paris agreement—to unabated climate change. We
find significant increases in average daily peak load and overall
electricity consumption in southern and western Europe (∼3 to
∼7% for Portugal and Spain) and significant decreases in northern
Europe (∼−6 to ∼−2% for Sweden and Norway). While the pro-
jected effect on European total consumption is nearly zero, the
significant polarization and seasonal shifts in peak demand and
consumption have important ramifications for the location of
costly peak-generating capacity, transmission infrastructure, and
the design of energy-efficiency policy and storage capacity.

electricity consumption | peak load | climate change | adaptation

Changes in the Earth’s climate stemming from greenhouse-gas
emissions (1) will impact natural and human systems worldwide

(2, 3). The energy sector uniquely connects to anthropogenic cli-
mate change, as it plays an important role in both mitigation and
adaptation (4–8). To meet the long-run mitigation targets agreed to
at the 21st United Nations Climate Change Conference in Paris
in 2015, the energy sector must undergo a fundamental trans-
formation toward low- and zero-carbon sources of energy (9, 10).
Electricity is anticipated to be a key to decarbonizing the transport
sector and it will play a much larger role in space and water heating
(9). At the same time, the power sector itself is highly climate-
sensitive—on both the supply side and the demand side. Energy
supply depends on the availability of water to cool power generators
and is potentially affected by changing flow regimes for run-of-river
hydropower (11). Further, higher temperatures reduce transmission
capacity of high-voltage power lines (12), lower the efficiency of
some fossil-fuel-powered generators, and depress yields of certain
crops used for bioenergy (13). On the demand side, short-term
human responses to weather shocks and long-term adaptation to
changing climatic conditions will alter energy consumption patterns
in the residential (14), commercial (15), agricultural, and industrial
sectors (6, 16). Adaptation to hotter temperatures will be driven by
thermal stress on humans, which has been shown to negatively
impact human health (17, 18), social interactions (19), and eco-

nomic output (20, 21). Human mortality rates increase during heat
waves (22), whereas heat stress depresses labor productivity (23,
24). Adaptation responses to offset these negative impacts of cli-
mate change will influence electricity consumption and load pat-
terns. While demand for space heating is expected to decrease in
response to less-frequent cold days, increased adoption and oper-
ation of air conditioning due to growing demand for space cooling
during hot days will put upward pressure on electricity consumption
as well as daily and seasonal peak loads (14, 18, 25–29).
Previous empirical work on the relationship between tem-

perature and electricity consumption primarily focused on the
United States (e.g., refs. 30–32) or single European countries
(e.g., refs. 33 and 34). Furthermore, most prior studies examined
total consumption impacts, whereas recent results suggest that
the effects on peak load (i.e., the highest load observed in a day/
month/year) may be substantially larger and costlier (32). This
study uses observed hourly electricity data across 35 European
countries—which are connected by the world’s largest synchro-
nous electrical grid—to estimate how climate change impacts the
intensity of peak-load events and overall electricity consumption.
The novelty of this study is threefold. First, it examines the

future of Europe’s electricity consumption patterns under cli-
mate change. Second, we use dose–response functions estimated
at the country level to remove the influence of nontemperature
confounders on peak load/consumption. Based on the normal-
ized residual load data (in which the influence of nontemperature
confounders has been removed), we then calibrate a common re-
sponse function of load and temperature that allows us to

Significance

We statistically analyze 2006–2012 high-frequency temperature
and electricity load data from 35 European countries to compute
climate change impacts on electricity demand until 2100. Ex-
trapolating countries’ load responses to temperature beyond
currently experienced climate, we find a future polarization of
both peak load and electricity consumption in Europe. Specifi-
cally, while total European consumption remains constant under
future warming, we project significant increases in the south,
decreases in the north, and a shift of seasonal peak load from
winter to summer for 19 countries. This changing spatial and
temporal pattern of consumption and peak load has important
implications for the build-out of transmission infrastructure, the
construction of peak-generating capacity, and the design of
energy-efficiency policy and storage capacity.
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project electricity consumption/peak load beyond each country’s
currently experienced temperature range. That is, unlike other
studies, we derive the relation of consumption/peak load to tem-
perature by combining actually observed responses from all
European countries covered by our data sample.
This is important, as we find that, for instance, Scandinavian

countries display monotonically decreasing temperature response
functions—current summers are not sufficiently warm to, for ex-

ample, warrant air conditioning. To project what a hotter future
may look like, we use the temperature responses of other European
countries. This technique implies that if end-of-century summer
temperatures in Sweden resemble summer temperatures of present-
day Northern Italy, then Swedish electricity demand and peak load
will increase in accordance with the rise in temperature. Thus, our
approach incorporates a spatial dimension for extrapolation, rather
than solely relying upon temporal extrapolation of national data

Fig. 1. Similar temperature responses of daily peak load across countries. Response of daily peak load (y axes, in gigawatts; see SI Appendix, Fig. S1, for a
comprehensive overview of each country’s axes scaling) to daily maximum temperature (x axes, between −20 °C and +40 °C) based on observational data for
the years 2006–2012. Black dots represent the effect of replacing a day of daily maximum temperature in the omitted category (21 °C–24 °C) with a day of the
relevant maximum temperature (see Methods for details). Pink shaded areas denote 95%-confidence band based on Newey–West standard error. Regression
functions of all countries display similar characteristics with minimal peak load values at ∼22 °C (71.6 °F) that increase monotonically in lower and higher
temperatures, where data coverage is sufficient. Refer to SI Appendix, Fig. S1, for a detailed depiction of all country panels including axes titling and scaling.
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beyond the frame of experience. In the case of Scandinavian
countries, relying solely on temporal extrapolation of national
data would result in projecting monotonically decreasing tem-
perature response functions—even at high temperatures. Thus,
electricity consumption would be assumed to continuously de-
cline as temperatures rise.
Finally, our statistical methods flexibly control for the impacts

of important confounders, such as economic growth and other
socioeconomic trends. Hence, we provide a framework that al-
lows us to construct a counterfactual world with climate change
scenarios imposed on present-day Europe. The effects we detect
demonstrate the importance of incorporating anticipated higher
electricity consumption and peak load (in western and southern
Europe) due to climate change for planning and policy purposes.
Specifically, we statistically estimate the relationship between

daily electricity consumption/peak load and temperature at the
country level for 35 European countries using data for the years
2006–2012 and controlling flexibly for low-frequency trends and
weekday and seasonal fixed effects. We use these country-level
estimates to remove the effect of the confounders and calculate
residual load, which contains only the temperature component of
load and a constant for each country. Based on the normalized
residual load for all countries and years, we then estimate a
common dose–response function. We use this estimated com-
mon response function to project counterfactual electricity loads
under different climate-change scenarios at the country level.
The considered climate scenarios correspond to the Represen-
tative Concentration Pathways (RCPs, ref. 35) and range from
ambitious climate change mitigation in line with the Paris
agreement (RCP-2.6) to unabated climate change (RCP-8.5). It
is important to note that our computations should not be
interpreted as point forecasts of a most likely overall energy
future since they do not incorporate, for example, demographic
changes. Rather, they should be interpreted as simulations of
climate-change impacts on a high-frequency indicator important
to human welfare—electricity load—for the world’s largest
economy (if one adds the countries together).
We compute a time series of population-weighted daily maxi-

mum and daily average temperature for each of the 35 European
countries for the years 2006–2012 (observational data) and 2013–
2099 (projected values under different scenarios of climate-change
mitigation). Population projections, which we use exclusively for
within-country temperature weighting, correspond to the “middle-
of-the-road” Shared Socio-economic Pathway (SSP-2, ref. 36). All
temperature and population data come from the climate dataset of
the Intersectoral Impact Model Intercomparison Project (ISI-MIP,
ref. 37) covering bias-corrected (38) data on a horizontal grid of
0.5° resolution. The European Network of Transmission Systems
Operators for Electricity (39) provides data on electricity load
consumption (i.e., hourly load values per country) for the period
2006–2012. A detailed description of all data can be found in
Methods, and a list of all countries is provided in SI Appendix,
Table S1.

Results
Temperature Responsiveness of Electricity Load. First, we analyze
the relationship between daily peak load/daily electricity con-
sumption and daily maximum/daily average temperature using
2006–2012 data. We define daily peak load/daily electricity
consumption as the maximum/sum of the 24 hourly load values
reported for a day. The 2006–2012 sample period is determined
by the availability of observational data on both daily tempera-
ture and hourly load values. We build a regression model of
country-level-aggregated daily consumption and peak load vs.
daily maximum and daily average temperature, which controls
for weekdays, seasons, and large-scale economic events and
models the temperature response flexibly (Methods). We con-
duct the analysis at the country level—as opposed to smaller

geographical units—because high-frequency load data are cur-
rently only available for all countries in Europe at this level of
aggregation. The country-level analysis is appropriate, as there is
significant heterogeneity in temperature response across coun-
tries. A pooled, panel-style model, for example, would average
out this heterogeneity in temperature response, which is one of
the main findings of this paper. Similarly, aggregating smaller
countries into larger regions would introduce arbitrariness, lose
information, and sacrifice statistical power.
We find that most countries’ response functions display similar

functional forms: load values are smallest for daily maximum
temperatures of ∼22 °C (71.6 °F, daily average temperatures of
16 °C/60.8 °F) and increase monotonically in lower and higher
temperatures, where there is data coverage. While we identify an
asymmetric U-shape in southern European countries such as
Greece and Italy, we can only estimate the country-level re-
sponse function for the lower portion of the temperature spec-
trum in northern Europe due to data coverage (Fig. 1 and SI
Appendix, Figs. S1–S4).
However, if Hamburg’s climate by the end of the century will

resemble that of Rome’s current climate, one would expect in-
creased adoption of air conditioners and hence a positively sloped—
and possibly steeper—response curve at higher temperatures. To
account for this response, we must extrapolate a country’s tem-
perature response beyond the temperature range that it currently
experiences. To this end, we combine normalized and population-
weighted consumption/peak load data from all countries. We
remove the impact of nontemperature confounders using the
country-level regression coefficients. We then compute the median
response for each 1 °C-temperature bin (Fig. 2 and SI Appendix,
Fig. S5 A–C) and use the characteristics of this common response
curve to extrapolate at the country level. This approach, discussed in
detail in Methods, implies that we estimate future electricity load by
country—particularly on hot days—using patterns observed in other
European countries—specifically, countries that already experience
very warm temperatures (compare SI Appendix, Fig. S5D). Put dif-
ferently, we assume similar adaptation behavior to hot temperatures

Fig. 2. Common response function. Observational daily peak load and daily
maximum temperature data (2006–2012) of all countries are combined
taking national population size into account (gray dots). Load values have
been adjusted based on the country-level regression coefficients to remove
the influence of nontemperature confounders and the resulting residual
load data have been normalized to allow for comparison across countries
(L̂

norm
c,d ; see Methods for details). We obtain the response function by linking

the medians of 1 °C bins (thick blue line). The first and last bin each com-
prises at least 20,000 data points; we linearly extend the median function for
temperatures beyond these bins (dashed blue lines).
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throughout Europe. We apply this common dose–response function
to projected daily temperature data for the years 2013–2099. The
resulting peak load and daily consumption values lie well within the
range of our data sample for 2006–2012 (Fig. 3 and SI Appendix,
Figs. S6–S8).

North–South Polarization Under Future Warming. When comparing
future peak loads to observed values in the past, our analysis
shows a significant north–south polarization across Europe (Fig.
4 and SI Appendix, Fig. S9). While average daily peak load de-
creases in northern Europe—countries with present-day winter
peaks—it increases in southern and western Europe (with the
exception of Italy)—countries with current summer peaks. The
percentage change in Central European countries is generally
slightly positive, indicating a small increase in average daily peak
load. The polarization is most pronounced by the end of this
century and for a scenario of unabated climate change (RCP-8.5)
but still holds for earlier periods and for a scenario of significant
climate change mitigation (RCP-4.5; Table 1 and SI Appendix,
Table S2). Even in the case of very ambitious climate change
mitigation (RCP-2.6) the polarization pattern persists.
Regarding the change in average daily electricity demand from

the near-term (2015–2019) to the more long-term future (dif-
ferent 5-year periods between 2020 and 2099), we find a similar
polarization pattern for RCP-8.5 and RCP-4.5 (Fig. 5 A and B,
Table 2, and SI Appendix, Fig. S10 A and B and Table S3). There

is no clear trend for a scenario of very ambitious climate-change
mitigation (RCP-2.6; Fig. 5C and SI Appendix, Fig. S10C). The
percentage change in total European electricity demand fluctu-
ates around zero in all scenarios but begins to increase slightly
during the last two decades of the 21st century under RCP-8.5.

Discussion
Complementary to previous studies, which focused exclusively on
the role of prices and income on future electricity demand, we
quantify the impact of a factor thought to be stationary until
recently—climate. The effects we detect are due to temperature
changes in response to anthropogenic carbon emissions only. To
isolate this effect, infrastructure, technology, and socioeconomic
factors such as population and economic structure are held
constant in this study. Future planning studies will need to in-
corporate how changes in population, income, or industrial
structure—as well as an enhanced integration of the European
grid (“Europeanization”) or other technological developments—
will affect both generation and consumption. Recent work suggests
that population changes significantly drive electricity consumption,
with growing populations leading to higher consumption (40).
In terms of economic growth, adoption of air conditioners is
thought to be increasing in income and decreasing in unit
costs, as well as in the expected price of electricity (41). It is
particularly difficult to forecast changes in efficiency, cost, and
adoption of new technologies (e.g., heat pumps) across sectors—a

Fig. 3. Estimated daily peak load values for projected daily maximum temperatures in 2013–2099 under three warming scenarios. Estimated peak load values
for the years 2013–2099 under three different RCPs (blue, yellow, and red dots) lie well within the range of observational data (L̂c,d , gray dots). Blue shaded
areas denote the uncertainty range (see Methods for details).
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topic we leave for future work. Finally, strengthening existing
policies and designing new policies to address climate change
mitigation and adaptation will significantly affect energy markets
across the European Union.
Our results remain qualitatively true for three different carbon

emission scenarios (RCP-2.6, RCP-4.5, and RCP-8.5), suggesting
that the qualitative results will remain valid also for other climate
models. Climatic differences between various carbon-concentration
scenarios (RCPs) are small until the year 2050 due to inertia in the
climate system. Consequently, also the differences in electricity
demand that we report here are rather small across different sce-
narios until 2050.
A central assumption of this study is that warmer European

countries can be surrogates for the future of cooler European
countries. That is, our analysis assumes that as climate zones
shift north so does the temperature response. This assumption is
empirically supported by our finding that—within the current
temperature range—the relationship between the normalized
electricity load and ambient temperature has the same functional
form for all examined European countries (Fig. 2). However,
cultural, economic, and other differences across Europe might
hinder this assumed adaptation to warmer temperatures. For
example, if Swedes have a much higher (or lower) heat tolerance
and consequent use of air conditioning, we would overestimate
(or underestimate) the temperature response. In addition to
differences in heat tolerance, other variation might arise from
differences in income, work practice (e.g., common working
hours, siesta times, and holiday distribution), the economic

structure (e.g., outdoor vs. indoor sectors or degree of sector
electrification), and the prevalence of alternative energy sources.
Increased demand for cooling is considered to be one of the main

drivers of the social costs of carbon (42)—an important figure used
in federal rulemaking in the United States. Here we show that for
Europe as a whole electricity consumption is projected to remain
flat under future warming. However, this result does not imply that
there are no damages from climate change for the electricity sector.
Rather, we observe a shift in demand from the north, which has a
much higher share of renewables in electricity consumption (35.8%
in Sweden and 44.8% in Norway), to the south (Italy 17.6%, Spain
15.2%, and Greece 10%, ref. 43). In contrast to recent analyses for
the United States (32), we further do not find a uniform rise in daily
peak load across all regions. Instead, we find an increase in southern
and western Europe and a decrease in the north. Additionally, we
observe a change in the temporal load profile of many European
countries with annual peak load—the highest load value of the
year—shifting from winter to summer. In our dataset, 30 of the
35 countries currently experience annual peaks in winter. With
warmer winters and hotter summers, it is an empirical question
as to whether the annual peak will shift seasons. Using the re-
sidual (temperature-driven) simulation results for the 2080–
2099 period under RCP-8.5, we find that 19 of these 30 countries
will experience annual peak demand in summer instead of winter
(SI Appendix, Table S4).
The spatial redistribution of consumption across the conti-

nent, the decreases in present-day winter peaks in the north, and
the increases in future summer peaks in the south may require

Fig. 4. Percentage change in average daily peak load from 2006–2012 to 2080–2099 for projected daily maximum temperatures under mitigated (A) and
unmitigated (B) climate change. While daily peak load decreases in northern European countries, it increases in southern and western European countries.
This trend is most pronounced for a scenario of unabated climate change (RCP-8.5, B) but still holds for a scenario of mitigated climate change (RCP-4.5, A).
Table 1 provides data on all countries and the three RCPs, as well as on different planning horizons until 2100.
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costly investments in transmission infrastructure, storage, and
generating capacity. An additional challenge arises due to the
temporal redistribution of annual peak load from winter to
summer in many countries. This seasonal shift has ramifications
for the types of generating capacity which can be dispatched to
meet peak demand. It also has strong implications for future
(interseasonal) storage requirements—particularly if a larger
share of the electricity is produced by renewable sources.
From an economic perspective, the most significant redistributive

effects will come from changes in the intensity of peaks across the
continent. Currently, the northern European countries experience
annual peak load in winter due to electric heating and lighting
demand (44). In southern Europe, the pattern is opposite: peak
demand generally occurs in summer, which is consistent with high
cooling demand. Generally, the entire energy system—generation
and transmission capacity—is designed to meet peak demand on
the highest load day of the year. Regulators build in capacity reserve
margins to meet unexpectedly high peak loads. To meet these un-
expectedly high loads, electricity generators run so-called peaker
plants. These peaker plants are rarely used, relatively inefficient,
high-pollutant plants with short ramp-up times and high marginal
costs of generation. In the United States, the cost of the additional
capacity necessary to operate a single extra air-conditioning unit of
1 kW is estimated to be approximately $1,220, which reduces to
$455 per kW after accounting for separate discounting of air con-
ditioning and power plant (45, 46). Additional investment is re-

quired because these peaker plants must be placed in the direct
vicinity of load centers. Overall, significant investments in peaker
plants or storage of renewable power will be necessary to meet
higher peak demand in southern and western Europe.
Given the high marginal cost of power at these peak periods

electricity prices will likely increase in the long run. The tem-
poral pattern of how these costs will be passed through to con-
sumers depends on the local regulatory structure. The worst-case
scenario in our computations predicts a maximum increase in
average daily peak load between 5% and 7% for Portugal and
Spain, which are among the economies with the largest predicted
increases by the end of century. This increase is equivalent to an
average 0.1% per year growth, which can be offset by very
modest improvements in energy efficiency or market-based
regulations. The forecasting horizon here is significantly larger
than the planning horizon of energy systems planners; the period
2020–2039 is more in line with the planning horizon. In this more
proximate period, Spain and Portugal’s predicted increases are
between 1.2% and 2.8%—again, relatively small levels of increase.
In conclusion, our analysis suggests that the impacts of climate

change on electricity load for the EU-35 overall are neutral, yet
demand redistributes spatially from the north to the south and,
in many countries, temporally from winter to summer. The
magnitude of the increase in the south allows the additional costs
to be offset by carefully crafted policies. We speculate that the
main burden of the climate-induced electricity effect will rest on

Table 1. Percentage change in average daily peak load by country relative to 2006–2012 for daily maximum temperatures under RCP-
2.6, RCP-4.5, and RCP-8.5

Country

2020–2039 2040–2059 2060–2079 2080–2099

RCP-2.6 RCP-4.5 RCP-8.5 RCP-2.6 RCP-4.5 RCP-8.5 RCP-2.6 RCP-4.5 RCP-8.5 RCP-2.6 RCP-4.5 RCP-8.5

Austria −0.001 0.195 0.122 0.268 0.074 0.011 0.173 −0.058 −0.045 0.084 0.076 −0.106
Belgium 0.953 1.091 1.190 1.200 1.068 1.097 1.098 0.883 0.988 1.073 0.938 1.029
Bosnia–Herzegovina −0.164 0.418 0.204 0.238 0.360 0.240 0.219 0.221 0.858 −0.086 0.449 1.457
Bulgaria 1.914 3.452 2.610 2.732 3.348 3.071 2.918 3.294 5.103 2.645 4.185 6.535
Croatia 0.093 1.269 0.947 0.806 1.184 1.256 0.797 1.100 2.478 0.370 1.500 3.615
Czech Republic 0.474 0.819 0.909 1.013 0.632 0.692 0.766 0.543 0.652 0.670 0.782 0.563
Denmark −0.737 −0.657 −0.275 −0.246 −0.752 −0.785 −0.504 −1.008 −1.164 −0.421 −0.694 −1.731
Estonia −1.490 −1.531 −1.117 −1.082 −1.806 −1.910 −1.263 −1.971 −2.346 −1.306 −1.458 −3.345
Finland −2.544 −2.637 −2.419 −2.369 −2.727 −2.840 −2.363 −2.884 −3.141 −2.412 −2.573 −3.855
France 1.256 1.806 1.993 2.023 2.217 2.025 1.622 1.547 2.194 1.448 1.453 4.005
Germany 0.448 0.548 0.614 0.641 0.496 0.486 0.549 0.381 0.407 0.531 0.475 0.385
Great Britain 1.334 1.585 1.759 1.956 1.305 1.322 1.658 0.980 0.819 1.824 1.188 0.213
Greece −1.193 0.239 −1.021 −0.601 0.385 0.196 −0.723 0.771 1.988 −0.920 1.156 3.727
Hungary 0.029 0.702 0.657 0.395 0.503 0.689 0.418 0.619 1.100 0.182 0.740 1.594
Iceland −0.563 −0.527 −0.214 −0.544 −0.439 −0.621 −0.319 −0.595 −0.630 −0.218 −0.543 −0.793
Ireland 1.126 1.338 1.354 1.472 1.084 1.072 1.315 0.944 0.736 1.386 0.998 0.335
Italy −2.121 −1.866 −1.931 −1.801 −1.793 −1.909 −2.001 −1.934 −1.501 −2.040 −1.796 −0.921
Latvia −2.467 −2.445 −2.086 −2.013 −2.702 −2.696 −2.237 −2.803 −3.118 −2.266 −2.324 −3.864
Lithuania −1.693 −1.632 −1.303 −1.288 −1.836 −1.806 −1.493 −1.883 −2.121 −1.540 −1.476 −2.628
Luxembourg 1.191 1.316 1.379 1.360 1.288 1.340 1.300 1.150 1.294 1.264 1.228 1.421
Macedonia 1.633 3.170 2.028 2.547 3.104 3.098 2.513 3.286 5.368 2.229 3.992 7.625
Montenegro −1.191 −0.886 −1.051 −0.827 −0.928 −1.202 −0.882 −1.220 −0.937 −1.089 −0.914 −0.575
Netherlands 0.287 0.352 0.430 0.482 0.249 0.224 0.417 0.133 0.053 0.418 0.281 −0.151
Northern Ireland 1.462 1.650 1.753 1.822 1.391 1.403 1.676 1.247 0.996 1.820 1.318 0.570
Norway −2.531 −2.440 −1.917 −2.088 −2.578 −2.677 −2.168 −2.960 −3.250 −1.989 −2.477 −4.209
Poland 0.027 0.190 0.425 0.437 0.033 0.078 0.249 −0.017 −0.049 0.131 0.281 −0.253
Portugal 1.978 2.274 1.853 2.263 2.627 2.837 1.758 2.671 3.591 1.645 2.453 5.568
Romania 1.089 2.107 1.983 1.762 1.996 1.882 1.758 2.095 2.832 1.419 2.385 3.416
Serbia 2.770 4.535 3.800 3.773 4.335 4.290 3.843 4.244 6.013 3.290 4.884 7.732
Slovakia 0.559 1.084 1.158 1.046 0.827 0.978 0.937 0.861 1.125 0.713 1.056 1.320
Slovenia 0.356 0.743 0.616 0.675 0.683 0.653 0.602 0.560 0.951 0.480 0.712 1.251
Spain 1.485 1.376 1.276 1.662 2.009 2.169 1.350 2.044 3.472 1.255 2.078 5.572
Sweden −3.623 −3.571 −3.086 −3.034 −3.674 −3.818 −3.247 −4.081 −4.381 −3.236 −3.522 −5.378
Switzerland 1.197 1.339 1.316 1.519 1.256 1.018 1.356 0.874 0.850 1.269 1.029 0.962
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the planners of transmission infrastructure and peak-generating
and storage capacity.

Methods
For 35 European countries (see SI Appendix, Table S1 for a list of coun-
tries) we compute population-weighted daily maximum and daily aver-
age temperature time series for the years 2006–2099. All temperature

and population data come from the ISI-MIP (37) climate dataset covering
data on a grid of 0.5°-by-0.5° resolution. To assign grid cells to countries,
we construct a mask using spatial information provided by the Global
Administrative Areas initiative (47).

Population-Weighted Temperature Time Series. We spatially aggregate the
gridded daily maximum and daily average temperature data to the country
level using population-density weights: for each grid cell g that geo-
graphically belongs to a country c we multiply the daily maximum (or daily
average) temperature value Tg,c,d as given by the data by the population
value Pg,c for the respective year. Summing over all grid cells and dividing by
the total population of country c yields the population-weighted daily
maximum (or daily average) temperature value Tc,d on day d:

Tc,d =

P
gTg,c,d · Pg,cP

gPg,c
.

Temperature Data. For the historical period (2006–2012) we use daily
maximum and daily average temperature data from the WFDEI meteo-
rological forcing dataset (48), which applies the WATCH forcing data
methodology to ERA-interim reanalysis data (49). With regard to tem-
perature projections (from 2013 on) we use time series of daily maximum
and daily average near-surface temperature corresponding to different
RCPs (RCP-2.6, RCP-4.5, and RCP-8.5, ref. 35). These data originate from the
Princeton Earth System Model of the Geophysical Fluid Dynamics Labora-
tory (GFDL-ESM2M, ref. 50), which is one of the global climate models
of the fifth phase of the Coupled Model Intercomparison Project (CMIP-5,
ref. 51) with a median warming sensitivity (1). The temperature data in-
clude a bias-correction technique (38) to ensure long-term statistical
agreement of the projected values with historical observations from the
WATCH database.

Population Data. Historical population data come from the United Nations
World Population Prospects (UNWPP, ref. 52), and population projections
(from 2010 on) correspond to the second SSP (SSP-2, ref. 36). These pop-
ulation data are used exclusively to translate gridded temperature data into
population-weighted national temperature time series. Our analysis does
not consider the influence of population trends on electricity demand and
peak load.

Electricity Load Data.Data on electricity consumption—hourly load values per
country—originate from the European Network of Transmission Systems
Operators for Electricity (39). For 21 countries, the database covers the entire
period 2006–2012. For two, three, one, and eight countries, data are only
available from 2007, 2008, 2009, and 2010 on, respectively. Within these
periods, data points are occasionally missing for several hours or days. If data
are missing for 1 h or more, we excluded the whole day from the analysis to
avoid distortions. Cyprus (99.72% data points missing), Iceland (39.9%),
Montenegro (5.61%), and Great Britain (2.62%) have the scarcest data
density. Cyprus is excluded from the second part of the analysis because of
data scarcity. A comprehensive list of all countries and their respective load
data coverage is given in SI Appendix, Table S1. The results are robust to
restricting the sample period to years where we have coverage for
all countries.

Regression Model. For each country c, the independent variable is
population-weighted daily maximum or daily average temperature (Tc,d
in degrees Celsius) for the period 2006–2012. The dependent variable is
national daily peak load or national daily electricity consumption (Lc,d in
gigawatts or gigawatt hours, respectively). To place the fewest restric-
tions on the functional form of the dose–response function(s), we sort
the independent variable into discrete bins, Bini, of 3 °C width (in total
Nc bins). To ensure sufficient data coverage, we select the first and last
bin such that at least 2% of all data points lie below its upper or above
its lower boundary, respectively. The main result of the regression is
robust against variations of the specific number of data points present in
the first and last bin (SI Appendix, Fig. S11). Following a commonly ap-
plied approach (3), we then regress the dependent variable on dummy
variables Bi representing the bins:

Bi
�
Tc,d

�
=
�
1 if   Tc,d ∈Bini

0 if   Tc,d ∉Bini
.

This discretization allows us to flexibly model the nonlinear relation between
temperature and electricity load without relying on, for example, splines that

Fig. 5. Percentage change in daily electricity demand (5-year average) com-
pared with 2015–2019 average for projected daily maximum temperatures un-
der different scenarios of climate change mitigation. Five-year average electricity
demand values are denoted by the year in the middle of the respective time
interval on the x axis. (A) Under a scenario of unabated climate change (RCP-8.5),
daily electricity demand decreases in northern Europe and increases in countries
in southern and western Europe. Total European electricity demand increases in
the last two decades of the century relative to 2015–2019. (B) For a scenario of
mitigated climate change (RCP-4.5), the trend observed in A is present but less
pronounced. (C) For a scenario of very ambitious climate change mitigation that
keeps global temperature increase below 2 °C (RCP-2.6), there is no clear trend.
Table 2 provides data on all countries, RCPs, and 5-year periods until 2100.
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might unnecessarily distort the data (53). As is standard in the impacts lit-
erature, we apply Chebyshev polynomials, Cj,d, of degree j=0, . . . , 6 to
capture the influence of other influencing factors that operate on lower
frequencies than electricity demand, such as macroeconomic activity (32, 54–
56). Recursively, the Chebyshev polynomials are given by

Cj,d = 2d ·Cj−1,d −Cj−2,d for  j≥ 2,

with C0,d = 1 and C1,d =d. Polynomials up to the order six are sufficient to
obtain robust results (compare SI Appendix, Figs. S12 and S13). Furthermore,
dummy variables Wk,d and Sl,d control for weekdays and seasons, re-
spectively. The regression model thus reads

Lc,d =
XNc−1

i=0

αi,cBi
�
Tc,d

�
+

X6
j=0

βj,cCj,d +
X6
k=0

γk,cWk,d +
X3
l=0

δl,cSl,d +Ωc + ec,d ,

where αi,c ,   βj,c ,   γk,c ,   and  δl,c are the regression coefficients, Ωc describes a
country-specific constant, and ec,d denotes the stochastic error term. We
compute a 95%-confidence band using the Newey–West standard error,
which is robust against autocorrelations of time-ordered data (here, up to
15 days). The procedure described above is equivalent to estimating dose–
response functions separately by country.

Response Function. We derive a common dose–response function for all
countries by combining the national observational temperature and
load data (Fig. 2 and SI Appendix, Fig. S5). Concerning the load data,

only the parameter related to the temperature variable and the constant
are considered:

L̂c,d = Lc,d −
X6
j=0

βj,cCj,d −
X6
k=0

γk,cWk,d −
X3
l=0

δl,cSl,d =
XNc−1

i=0

αi,cBi
�
Tc,d

�
+Ωc + ec,d .

To render these residual load data comparable across countries, we normalize
as follows:

L̂
norm
c,d =

L̂c,d − L̂c,d
�
Tfix1

�
L̂c,d

�
Tfix2

�
− L̂c,d

�
Tfix1

�,

where L̂c,dðTfixλÞ with λ= 1,2 denotes the mean of all load values L̂c,d at
temperatures Tc,d ∈ ½Tfixλ ± 0.5°C�. We choose temperatures Tfix1 and Tfix2 such
that for each country the associated load values are as far apart as possible,
while the respective temperature bins still carry a sufficient number of data
points to obtain a robust result. For daily maximum temperatures, we
choose Tfix1 = 20  °C and Tfix2 = 8  °C; for daily average temperatures, we set
Tfix1 = 14  °C and Tfix2 = 4  °C. We weight the data according to the countries’
populations, with the least populated country, Luxembourg, serving as the
“population unit.” Note that no scaling is applied to the x axis. We then bin
these data into discrete temperature intervals of 1 °C width, with the first
and last bin comprising at least 20,000 data points to ensure sufficient data
coverage. The main results presented in this study do not depend on the
specific choice of bin width (SI Appendix, Fig. S14). For each bin, we compute
the median, as well as the 5th and 95th percentiles. We then obtain the
response function by linearly linking the medians of two neighboring bins

Table 2. Percentage change in average daily electricity consumption by country relative to 2015–2019 for daily maximum
temperatures under RCP-2.6, RCP-4.5, and RCP-8.5

Country

RCP-2.6 RCP-4.5 RCP-8.5

2035–
2039

2055–
2059

2075–
2079

2095–
2099

2035–
2039

2055–
2059

2075–
2079

2095–
2099

2035–
2039

2055–
2059

2075–
2079

2095–
2099

Austria 0.118 0.774 0.346 0.370 −0.461 −0.359 −0.532 −0.336 −0.532 −0.275 −0.249 −0.785
Belgium 0.153 0.536 0.278 0.370 −0.352 0.030 −0.259 −0.384 −0.647 −0.467 −0.946 −0.537
Bosnia–Herzegovina −0.240 0.633 0.306 0.122 −0.115 0.371 −0.119 −0.049 0.114 0.763 1.943 2.356
Bulgaria −1.062 0.178 0.804 0.078 0.718 0.914 1.191 1.688 0.456 1.665 5.748 7.525
Croatia −0.063 0.822 0.727 0.244 1.275 1.562 0.648 0.840 1.056 2.276 4.215 4.367
Czech Republic −0.017 0.974 0.359 0.385 −0.834 −0.428 −0.549 −0.461 −0.559 −0.315 −0.239 −1.041
Denmark 0.149 0.821 0.376 0.485 −0.694 −0.588 −0.445 −0.617 −0.467 −0.536 −1.108 −1.260
Estonia 0.526 1.496 0.802 0.720 −0.532 −0.665 −0.645 −0.532 −0.956 −1.540 −2.474 −3.036
Finland 0.603 0.987 0.751 0.656 0.050 −0.003 −0.128 −0.038 −0.526 −1.031 −1.578 −1.958
France 1.022 1.774 0.975 1.078 −0.026 1.304 −0.267 −0.693 −1.785 −1.087 −0.903 1.640
Germany 0.054 0.505 0.185 0.288 −0.442 −0.228 −0.332 −0.337 −0.483 −0.329 −0.646 −0.610
Great Britain −0.021 0.303 0.172 0.354 −0.603 −0.765 −0.559 −0.643 −1.086 −0.929 −1.875 −1.618
Greece −0.816 −0.293 0.270 −0.530 2.458 1.900 3.695 2.961 1.107 2.989 6.352 8.761
Hungary −0.233 0.119 0.323 0.007 0.366 0.264 0.132 0.275 0.723 1.125 1.775 1.342
Iceland −0.206 −0.134 −0.024 0.230 −0.022 −0.043 −0.010 0.062 0.252 −0.198 −0.009 −0.069
Ireland 0.057 −0.023 0.063 0.035 −0.138 −0.562 −0.212 −0.317 −0.737 −0.602 −1.190 −1.041
Italy −0.003 0.283 −0.001 0.056 0.032 0.180 0.098 0.042 0.052 0.236 0.761 1.014
Latvia 0.227 1.219 0.477 0.488 −0.583 −0.549 −0.597 −0.368 −0.675 −0.991 −1.759 −2.250
Lithuania −0.012 0.809 0.202 0.211 −0.528 −0.368 −0.463 −0.169 −0.397 −0.597 −1.081 −1.532
Luxembourg 0.075 0.306 0.148 0.201 −0.239 0.090 −0.247 −0.181 −0.417 −0.221 −0.467 −0.118
Macedonia −1.191 0.434 0.626 −0.047 1.517 1.382 2.426 2.292 0.306 2.756 7.827 11.223
Montenegro −0.352 0.700 0.197 0.105 −0.719 −0.088 −0.679 −0.481 −0.166 0.091 0.900 1.208
Netherlands −0.012 0.185 0.099 0.095 −0.240 −0.226 −0.245 −0.208 −0.218 −0.230 −0.525 −0.498
Northern Ireland 0.067 −0.002 0.086 0.097 −0.208 −0.567 −0.239 −0.280 −0.615 −0.524 −1.129 −0.959
Norway 0.423 1.142 0.809 1.120 −0.711 −0.799 −0.566 −0.491 −0.628 −1.103 −2.016 −2.123
Poland −0.145 0.698 0.253 0.126 −0.582 −0.276 −0.336 −0.206 −0.272 −0.337 −0.505 −1.133
Portugal 0.790 1.089 0.786 0.538 1.006 1.686 1.034 0.078 −0.155 1.353 1.886 4.267
Romania −0.538 0.268 0.761 0.017 0.302 0.234 0.379 0.807 0.730 1.291 3.365 3.374
Serbia −0.648 1.390 1.494 0.784 1.220 1.555 1.048 1.668 0.985 3.524 7.237 9.460
Slovakia −0.282 0.492 0.292 0.023 −0.231 −0.060 −0.281 −0.155 0.253 0.518 0.868 −0.171
Slovenia 0.062 0.450 0.237 0.192 0.161 0.261 −0.058 0.075 0.015 0.376 0.817 0.615
Spain 0.676 1.008 0.695 0.017 0.834 1.702 0.850 0.289 0.156 1.287 2.794 5.634
Sweden 0.635 1.653 0.960 1.041 −0.856 −0.770 −0.690 −0.721 −0.785 −1.067 −2.199 −2.493
Switzerland 0.062 0.701 0.239 0.287 −0.929 −0.640 −1.116 −0.867 −1.019 −0.694 −1.131 −1.032
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(Fig. 2). Analogously, the uncertainty range is obtained by linking the 5th
and 95th percentile values, respectively. For temperatures that are lower
(higher) than the first (last) bin, we linearly extend the line given by the first
(last) two bins. We chose this linear extrapolation for temperatures outside
the range currently sufficiently covered by the data because we consider it
to be a balance between the complexity of the functional form of the ex-
trapolation and the quality of the representation of the existing data (i.e.,
how well the fit can represent the existing data). In other words, on the one
hand the data do not justify assuming that peak load and electricity
consumption are constant for temperatures above or below the observed
values. Thus, such an assumption would be very strong. On the other hand,
the sparseness of data for high and low extreme temperatures inhibits
detecting functional forms more complex than the linear approach—for

instance higher-order polynomials. Note that the projected values L̂
proj
c,d =

L̂
proj,norm
c,d ðL̂c,dðTfix2Þ− L̂c,dðTfix1ÞÞ+ L̂c,dðTfix1Þ are compared with the residual
load data L̂c,d (in Figs. 3–5, Tables 1 and 2, and SI Appendix, Figs. S6–S10 and
Tables S2 and S3). We excluded Cyprus from this part of the analysis due to its
scarce data density (compare SI Appendix, Table S1).
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