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Structure and dynamics of networks with dyadic and higher order interactions

Abstract

The interplay between the structure of a networked system and the dynamics of its constituent

elements, including their interactions, leads to non-trivial emergent behaviors. These behaviors

can be essential to the function of the system as a whole, and thus mathematical frameworks that

allow careful analysis of such behaviors are valuable. The contribution of this dissertation is to

use the ideas of symmetries and balanced equivalence relations to show how network structure can

be used to find the admissible patterns of synchronization (e.g., cluster synchronization states),

track their dynamics, perform their linear stability analysis, and finally to retrieve the dynamics

from data. An additional contribution is extending these principles to the analysis of cluster

synchronization on hypergraphs. Hypergraphs allow capturing higher order interactions beyond

the pairwise interactions captured in strictly dyadic network systems.

Symmetries are ubiquitous in nature. A networked dynamical system can have symmetries in

its coupling structure, the dynamics of its constituent elements, or both. The first contribution

of this dissertation is demonstrating how such symmetries present themselves in the structure and

spectral properties of the Koopman operator, which is a linear infinite dimensional operator that

exactly reproduces the dynamics of the system in the space of observables. This can be put into

practice as the Koopman operator can be approximated via data driven methods. We demonstrate

how the knowledge of the symmetries can be incorporated into such approximations to speed up

the analysis and make it more accurate.

Cluster synchronization is a type of synchronization that is characterized by a subset of nodes in

the system having fully synchronized trajectories (i.e., forming a cluster), while following a distinct

trajectory from all the other clusters. Such behavior arises when all the nodes in the same cluster

receive the same dynamical input from all the other nodes in the system. Therefore, symmetries

as well as equitable partitions are useful tools to find the admissible cluster synchronization states

for a given system. The second contribution of this dissertation is generalizing the results related

to cluster synchronization in systems of coupled oscillators to study intricate patterns of synchro-

nization, such as the family of states where cluster synchronization and splay states coexist. In
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such states, due to the interaction between the nodal dynamics and network structure, groups of

oscillators become effectively decoupled despite the existence of physical coupling between them.

Networks capture pairwise (dyadic) interactions between elements, yet some systems are inher-

ently higher order. For instance, a 3-species chemical reaction or a publication with three coauthors

involve triadic interactions. The final contribution of this dissertation is to advancing the method-

ology of studying dynamics on systems with higher order interactions (e.g., triadic). Since such

interactions can not be represented as a sum of dyadic interactions, their analysis requires new

tools. Up to now, full synchronization on hypergraphs (which encode higher order interactions)

has been the main focus of in the literature, since the dyadic projection of the adjacency tensor

can be sufficient in stability calculations. We show that this approach is not sufficient for more

intricate dynamics such as cluster synchronization with respect to determining admissible states

and performing stability calculations. To address that, we introduce a formalism based on node

and edge clusters, and demonstrate how to apply it to admissibility and stability analysis. This

formalism provides a principled way to organize the analysis of dynamics on hypergraphs and serves

as a tool to investigate the role of higher order interactions in stabilizing and destabilizing different

states.
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CHAPTER 1

Introduction

A recurring theme of this dissertation is how the interplay between the structure and the dy-

namics in networked systems can lead to intricate patterns of collective behavior. To make progress

in analyzing such non-trivial patterns, we focused on systems with some degree of dynamical ho-

mogeneity. Because of this homogeneity, it is possible to relate the network structure (captured in

the form of an adjacency matrix, incidence matrix, or adjacency tensor) to its effective dynamics

while remaining agnostic to the details of the dynamics. Additionally, the analysis can be advanced

by making use of symmetries of the systems dynamics that are not contained in the structural rep-

resentation or by setting specific restrictions on the coupling functions. In the rest of this section,

I explain my dissertation work in more detail by describing our progress in analyzing systems with

symmetries using data-driven methods, formalizing the phenomenon of dynamical decoupling in

Stuart-Landau oscillators and beyond, and generalizing the analysis of cluster synchronization to

systems with higher order interactions.

Data-driven methods have gained popularity in recent years. One reason is that scientists and

practitioners often have to operate in the regime of abundance of data, but limited knowledge of the

system’s underlying dynamics. Additionally, sometimes the dynamics of the systems are known, but

do not provide enough intuition about the system’s emergent behaviors. One of the most promising

frameworks relating dynamical systems and data-driven methods is the operator perspective [86].

For instance, representing the dynamics via the Koopman operator offers a trade-off between track-

ing the finite-dimensional nonlinear dynamics evolving the state of the system in phase space and

tracking the linear infinite-dimensional Koopman operator acting in the function space [29,76]. The

linearity of this operator is appealing, since linear systems are significantly better understood than

general nonlinear systems. In practice, the infinite dimensionality of the operator poses a challenge,

and instead it is typically approximated by a finite dimensional operator acting on a finite number

of basis functions. These methods are related to dynamic mode decomposition (DMD) introduced
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in Ref. [132] and extended dynamic mode decomposition (EDMD) introduced in Ref. [157], which

rely on approximating the optimal linear operator evolving nonlinear observables. Methods such

as DMD have been very useful in application areas such as fluid dynamics [84]. Chapter 2 of

this dissertation focuses on how the knowledge of the networked system’s discrete symmetries can

be incorporated into data driven methods by relating the symmetries of the dynamics to those of

the Koopman operator. Our findings inform the choice of basis functions in EDMD and lead to

dimensionality reduction compared to the original problem.

Networked dynamical systems are often capable of synchronization, which is a general phenom-

enon characterized by weakly coupled dynamical elements adjusting their rhythms [117]. Examples

of synchronization in engineered and natural systems range from power grids, where synchroniza-

tion is central to the system’s function [104], to fireflies lighting up in unison [103] or neural

synchronization in the brain [55]. While complete synchronization is an important dynamical state

to analyze, other patterns of synchronization often appear as well. For instance, chimera states

are characterized by coexistence of synchronous and asynchronous domains in systems of coupled

oscillators [1], and are hypothesized to be linked to phenomena such as epileptic seizures [5]. An-

other intriguing example of symmetry breaking is remote synchronization, a type of synchronization

where two or more nodes in a dynamical network synchronize even in the absence of direct link

among them [46]. Some useful frameworks that can be applied to analyzing the states beyond

complete synchronization in systems of identical or nearly identical coupled elements are equivari-

ant dynamical systems theory [50] and cluster synchronization [114]. We apply these frameworks

and develop new tools for studying complex symmetry breaking states in systems with dyadic and

higher order interactions in Chapters 3 to 5.

Chapter 3 focuses on a specific continuum of states, referred to as decoupled states, that can

arise in systems of coupled oscillators with phase-shift symmetries and diverse coupling topologies.

The states can be analyzed using the concept of equitable partitions, while taking into account

the rotational symmetries of the nodal and coupling dynamics. In such decoupled states, the

nodes can be partitioned into fully synchronized clusters, with groups of fully synchronized clusters

forming splay clusters. Furthermore, different splay clusters are separated by an arbitrary phase

difference, thus forming a continuum of decoupled states. This interesting phenomenon leads to an
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effective decoupling between distinct splay clusters and has been recently observed experimentally

[43,97]. We show how to analyze the admissibility and stability of such states using concepts from

equivariant bifurcation theory and cluster synchronization research.

The results introduced so far were obtained for systems with purely dyadic interactions. How-

ever, some systems are better modeled using a combination of dyadic and higher-order (e.g., triadic,

quartic, etc.) couplings between the interacting elements [17]. These higher order interactions re-

quire new methods, and developing these methods is the main focus of Chapters 4 and 5.

Projections of the adjacency tensor are useful for analyzing full synchronization in dynamical

systems on hypergraphs [30,37,45,93]. In Chapter 4, we demonstrate that the projected hyper-

graphs are insufficient for analyzing cluster synchronization on undirected hypergraphs. The first

reason we highlight is the fact that it is not always possible to reconstruct the hypergraph from its

projection up to an isomorphism, potentially resulting in distinct cluster synchronization dynamics.

The second reason comes from symmetry analysis and the fact that some of the admissible cluster

synchronization states of the projected hypergraph are not admissible on the original higher order

system. Additionally, we show that the structure of the Jacobian can not be represented by the

projected adjacency matrices and node cluster assignments alone, unlike in systems with dyadic

interactions. Finally, to enable this analysis we introduce a formalism based on node and edge clus-

ters that allows us to state the admissibility and linear stability criteria for cluster synchronization

in systems with higher order interactions.

Laplacian (diffusive) coupling is a common choice for a coupling function in systems with dyadic

interactions [139,162]. In Chapter 5, we analyze cluster synchronization on undirected hypergraphs

with Laplacian-like coupling in detail. First, we show how to determine the admissibility of different

cluster synchronization patterns from the node clusters and the edge clusters, which are induced

by the node clusters. We take into account that the edges containing the nodes from a unique

cluster do not contribute to the system’s dynamics under Laplacian-like coupling. Additionally, we

demonstrate that the building blocks of the Jacobian structure are the projected Laplacian matrices

corresponding to each edge cluster and each order of interaction as well as diagonal indicator

matrices corresponding to node clusters. This set of matrices can then be used to block diagonalize

the Jacobian, leading to a dimensionality reduction of the stability calculation.
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Overall, this dissertation offers new insight into the interplay of structure and dynamics of

complex networked systems, and sets the ground work for further investigations. Future directions

for the work linking the structure of the Koopman operator and network symmetries include ana-

lyzing continuous symmetries, possibly connecting the work presented here to equivariant machine

learning literature [75, 150]. Future developments in our investigation of decoupled states could

include relaxing some of the conditions on the dynamics and relating our results to systems with

adaptive coupling [20], which will allow us to apply our admissibility results to a wider range of

systems with a more direct connection to applications in, for instance, neuronal networks. Addi-

tionally, the decoupled state admissibility and stability analysis can be extended to higher order

interactions. Finally, some future directions in analyzing cluster synchronization in systems with

higher order interactions are investigating the role of parameter heterogeneity, analyzing the com-

plex interplay between dyadic and higher order coupling and its role on stability, and extending our

cluster synchronization analysis to directed hypergraphs or simplicial complexes with dynamics on

hyperedges [101].
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CHAPTER 2

Koopman Operator and its Approximations for Systems With

Symmetries

Published as Salova, A., Emenheiser, J., Rupe, A., Crutchfield, J. P., & D’Souza, R. M.

(2019). Koopman operator and its approximations for systems with symmetries. Chaos: An Inter-

disciplinary Journal of Nonlinear Science, 29(9), 093128.

Many natural and engineered dynamical systems — power grid networks and biolog-

ical regulatory networks, to mention two — exhibit symmetries in their connectivity

structure and in their internal dynamics. Some have time-reversal symmetry, others

rotational and spatial translation invariance, and others still, combinations. These

symmetries are often key for understanding the behavior of systems. For instance,

the interplay between system behavior and structural symmetries arises in loco-

motion, where observed symmetries in animal gaits impose certain constraints the

structure of the neural circuits that generate them. For network systems in par-

ticular, symmetries in the connectivity structure are of fundamental importance.

For instance, the structural symmetries of a network of identical oscillators can

determine its admissible patterns of symmetry-breaking. That said, additional in-

formation beyond knowledge of the network structure is often required to address

more detailed questions about a system’s dynamics, such as whether a particular

configuration is stable in a given parameter regime. In these cases, the system’s

linearization near the steady state can be combined with interconnection symmetry

to provide the answer. However, these linearization methods are only valid on a

local subset of the state space and therefore are not sufficient for global characteris-

tics of nonlinear dynamical systems, such as their attractors, basins, and transients.

The Koopman operator, in contrast, is a linear infinite-dimensional operator that
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evolves the functions on the state space which is valid on the entire state space. We

show how to combine symmetry considerations with the Koopman analysis to study

nonlinear dynamical systems with symmetries. We use representation theory to de-

termine the effect of symmetries on the Koopman operator and its approximations,

drawing out how local dynamical symmetries interact with symmetries arising from

the connectivity of system variables. This, in turn, allows us to modify data-driven

Koopman approximation algorithms to make them more efficient when applied to

dynamical systems with symmetries. We illustrate our findings in a simple network

of coupled Duffing oscillators with symmetries in individual oscillator dynamics and

in their physical couplings.

2.1. Introduction

Symmetries of dynamical systems manifest themselves in asymptotic dynamics, bifurcations,

and attractor basin structure. Symmetries play a crucial role in guiding the emergence of synchro-

nization and pattern formation, which are behaviors broadly observed in natural and engineered

systems. Methods from group theory, representation theory, and equivariant bifurcation theory

provide useful tools to study the common features of systems with symmetries [50,52,54].

Dynamical elements organized into a network are an important class of dynamical systems

that often exhibit these behaviors, especially when symmetries appear in both network structure

and the dynamics of the individual nodes. Studying the effect of symmetries in network topol-

ogy of synthetic and real-life systems using computational group theory is an active area of re-

search [96, 114, 115]. Those symmetries lead to phenomena such as full synchronization, cluster

synchronization, and formation of exotic steady states such as chimeras [31,42,97,139]. Moreover,

topological symmetries underlying cluster synchronization of coupled identical elements assist in

analyzing the stability of these fully synchronous cluster states [62,114]. For networks of identical

coupled oscillators, the form of their limit cycle solutions and the form of their bifurcations can

be derived from symmetry considerations [10]. Symmetries are also key in determining network

controllability and observability. For example, Refs. [40,125] explored the effect of explicit network

symmetries for linear time-independent and time-dependent networks. Similarly, Refs. [88, 155]
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considered nonlinear network motifs with symmetries and studied how the presence of different

types of structural symmetries affect the observability and controllability of the system. Ref. [100],

similar to our approach, uses the Koopman operator formalism (discussed below). They provide

analytic results that link the presence of permutational symmetries in dynamical systems to their

observability properties.

Many dynamical systems of current interest are high dimensional and nonlinear. For instance,

this is the case for many complex networks, such as power grids and biological networks. Complexity

there arises from the interaction between network interconnectivity structure and the nonlinearities

in the node and edge dynamics. And, this often leads to multistability. Linearization methods can

provide insight near the system’s attractors, but they poorly approximate the dynamics on the rest

of the state space. In contrast, operator-based methods give access to the global characteristics

of nonlinear systems. And, they do so in a linear setting and are therefore more well-suited, for

instance, to characterize the attractor basin structure of multistable dynamical systems or the

design of control interventions. The Perron-Frobenius and Koopman operator are adjoint linear

infinite-dimensional operators whose spectra can provide global information about the system.

Their approximations using data-driven approaches make operator methods potentially applicable

when there is no prior knowledge of the system.

The Perron-Frobenius operator evolves densities on state space. It has been used extensively to

assess global behavior of nonlinear dynamical systems [86,149]. There are several well developed

approaches for obtaining its numerical approximations, such as Ulam’s method that relies on the

discretization of state space to obtain an approximation of the Perron-Frobenius operator [152].

Since the Koopman operator is adjoint to the Perron-Frobenius operator, numerical approximations

of the Koopman operators can be obtained using these methods as well [73].

The Koopman operator is an infinite dimensional linear operator that describes the evolution of

observables (functions of the state space) [73,77,86]. Its definition and properties in the context of

dynamical systems are provided, for instance, in Ref. [29], which also summarizes its applicability

to model reduction, coherency analysis, and ergodic theory. Methods based on the Koopman

operator decomposition have proved useful for applications such as model reduction and control
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of fluid flows [13], power system analysis [148], and extracting spatio-temporal patterns of neural

data [27].

Data driven methods to approximate the Koopman operator rely upon snapshot pairs of mea-

surements of the system state at consecutive time steps. Reconstructing the operator from these

snapshot pairs requires that a set of functions (called a dictionary of observables) be chosen. The

first data driven method introduced, dynamic mode decomposition (DMD), implicitly uses linear

monomials as a dictionary and thus is most applicable to systems where the Koopman eigenfunc-

tions are well represented by this basis set [132]. A more recent method called extended DMD

(EDMD) introduced in Ref. [157] can be more powerful than the standard DMD when applied to

nonlinear systems as it allows the choice of more complicated sets of dictionary functions. Applying

the EDMD is most computationally feasible if the number of the dictionary functions does not ex-

ceed the total number of the snapshot pairs used. That is not necessarily the case if a rich function

dictionary (e.g., a dictionary of high order polynomials) is chosen. A modification of EDMD called

kernel DMD introduced in Ref. [158] addresses this issue by providing a way to efficiently calculate

the Koopman operator approximation in a case when the number of dictionary functions exceeds

the number of measurements. Yet, the principled choice of an underlying dictionary that leads

to an accurate approximation of the eigenspectrum corresponding to the leading Koopman modes

using EDMD or kernel DMD remains an outstanding challenge. That problem is confronted, for

instance, in Ref. [89], where an iterative EDMD dictionary learning method is presented. Although

the optimal choice of dictionary functions is often unknown, there are some common choices that

are known to produce accurate results for certain classes of systems [157].

Here we study nonlinear dynamical systems with discrete symmetries combining operator-based

approaches and linear representation theory. Recently, related methods have been applied to dy-

namical systems with symmetries. On the one hand, Ref. [98] addresses symmetries of the Perron-

Frobenius operator in relation to the admissible symmetry properties of attractors. On the other,

Ref. [133] links the spatiotemporal symmetries of the Navier-Stokes equation to the spatial and

temporal Koopman operator. Additionally, Ref. [28] noted that symmetry considerations play an

important role in discovering governing equations. And, Ref. [68] shows how conservation laws
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can be detected with Koopman operator approximations and then used to control Hamiltonian

systems.

In contrast, our focus is on dynamical systems with symmetries described by a finite group.

We show how the properties of the associated Koopman operator spectrum can be linked to the

properties of the spectrum of the finite dimensional approximations of the Koopman operator ob-

tained from finite data. We further show how the analytic properties of the Koopman operator

decomposition can inform the choice of dictionary functions that can be used in the Koopman oper-

ator approximations. This gives a practical way to reduce the dimensionality of the approximation

problem.

Our development builds as follows. section 2.2 defines the Koopman operator, introduces ap-

proximation methods (EDMD and kernel DMD), and defines equivariant dynamical systems as

well as useful concepts from group theory and representation theory. section 2.3 draws out the

implications of dynamical system symmetries for the structure of the Koopman operator and its

eigendecomposition. section 2.4 connects the properties of the Koopman operator and the struc-

ture of its EDMD approximation for symmetric systems. This then allows modifying the EDMD

method to exploit the underlying symmetries, resulting in a block-diagonal Koopman operator

approximation matrix. We also provide numerical examples, showing how using particular dictio-

nary structures speeds up the algorithm. Finally, section 4.7 summarizes our findings and outlines

directions for future work.

2.2. Preliminaries

2.2.1. Koopman operator. In this section, we provide some background in operator theo-

retic approaches to dynamical systems, in particular, the Koopman operator and its adjoint Perron-

Frobenius operator. Since in this manuscript we address the approximations of the Koopman op-

erator where the input is discrete time data, we focus on their definition in the discretized setting.

The continuous time definitions are similar [29]. Our results regarding the degeneracy of Koopman

operator eigenvalues and the properties of its corresponding eigenfunctions presented in section 2.3

hold in both discrete and continuous time settings.
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Suppose we are given a continuous time autonomous dynamical systems defined as:

ẋ = gc(x).(2.1)

Here, x ∈ Rn, gc : Rn → Rn. Let Φ(x(t),∆t) be a flow map mapping the initial condition x(t) to

the solution at time t+ ∆t. It is defined in the following way:

Φ(x(t),∆t) = x(t) +

t+∆t∫
t

gc(x(τ))dτ.(2.2)

The system can be discretized with a finite time step ∆tstep, so that xi+1 = Φ(xi,∆tstep). We

denote the function evolving the dynamics of this discretized system by g:

xi+1 = g(xi).(2.3)

The Koopman operator is a linear infinite dimensional operator that evolves the functions

(referred to as observables) of state space variables f : Rn → C. The action of the Koopman

operator K on an observable function f for discrete time systems is defined as:

(Kf)(x) = f(g(x)).(2.4)

Since we consider data-driven Koopman operator approximation methods in this manuscript, the

discrete time version of the definition is most applicable.

Pairs of eigenvalues λ and eigenfunctions φ of the Koopman operator K are defined as:

(Kφ)(x) = λφ(x).(2.5)

Of particular interest are the Koopman modes that can be used in model reduction and coherency

estimation [124,147]. The Koopman modes vfi of the observable f(x) are defined by:

f(x) =
∑
i

vfi φi(x),(2.6)
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and are projections of the observable onto the span of the eigenfunctions of the Koopman operator

K. A particularly useful set of modes is that of the full state observable f(x) = x, defined as:

x =
∑
i

viφi(x).(2.7)

In general, parts of the Koopman operator spectrum can be continuous [29,79]. For instance,

this can be the case for chaotic systems. However, we focus on the case of a discrete spectrum

since the methods we refer to in the following sections (EDMD, kernel DMD) are only applicable

for that case. Our results regarding the symmetry properties of the discrete parts of the Koopman

operator spectrum are analogous to those related to the continuous part of the spectrum. Numerical

methods related to continuous Koopman operator spectra are considered, for instance, in Ref. [95].

The other candidate for studying dynamical systems using an operator based approach is the

Perron-Frobenius operator P defined as follows for deterministic dynamical systems:∫
A

Pρ(x)dx =

∫
g−1(A)

ρ(x)dx.(2.8)

Here, ρ(x) is a density on state space, and A ⊆ Rn is a subset of the state space, and g, defined

in eq. (2.3), evolves the state of the system. The Perron-Frobenius operator is the adjoint to the

Koopman operator [86], so an approximation of one of them provides an approximation of the

other [73].

2.2.2. Koopman operator approximation methods. Extended dynamic mode decompo-

sition (EDMD) introduced in Ref. [157] is a data-driven method of approximating the Koopman

operator for discretized systems that requires an explicit choice of a dictionary of functions referred

to as observables. How to optimally choose those functions remains an open problem for many

systems, especially if the form of differential equations describing the governing dynamical system

is not known in advance and only finite data on the behavior of the system is available. The method

can be very accurate in capturing the dynamics of the system, but its accuracy depends strongly

on the choice of an appropriate dictionary of observables. The method’s convergence properties are

studied in Ref. [78], and its relation to the Perron-Frobenius operator approximation methods is

discussed in Ref. [73]. Here, we summarize the EDMD and its relation to the Koopman operator.
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The first requirement for the method is a set of pairs of consecutive snapshots x = [x1, x2, ..., xM ]

and y = [y1, y2, ..., yM ], where the measurements xi and yi are performed with a small constant

time interval ∆t: yi = Φ(xi,∆t), where Φ is the flow map defined in eq. (2.2). Typically, the set of

snapshots contains measurements from different trajectories in state space. We define a dictionary

of linearly independent observables D = {ψ1, ..., ψN} and form vectors of observations Ψx and Ψy.

Here, Ψx ∈ RM×N , where N is the number of dictionary functions used in the approximation, and

M is the number of data snapshots. The elements of Ψx are obtained from (Ψx)ij = ψj(xi). We

also use the notation Ψ(xm) = (ψ1(xm), ..., ψN (xm)) for the dictionary functions evaluated at a

particular point on the trajectory.

A finite dimensional approximation of the Koopman operator K that we denote as K can be

obtained using:

K = Ψ+
x Ψy.(2.9)

Here, Ψ+
x denotes the pseudoinverse of Ψx. We focus on the case of the Moore-Penrose pseudoinverse

for the rest of the manuscript [116].

If the number of snapshots is much higher than the dimensionality of the function dictionary

(M � N), it is more practical instead to define the square matrices G and A as shown below and

obtain the approximation in the following way:

K = G+A, where G =
∑
m

Ψ(xm)∗Ψ(xm), A =
∑
m

Ψ(xm)∗Ψ(ym).(2.10)

Here, ∗ represents the complex conjugate transpose. If the only observables are the states of the

system x1, x2, ..., xn, EDMD reduces to DMD [73,157].

The eigendecomposition of K provides the Koopman eigenvalues, eigenfunctions, and modes

that allow an approximate linear representation of the underlying system dynamics. Let λj and uj

be the jth eigenvalue and eigenvector of K. Then the corresponding Koopman eigenfunction can

be approximated by:

φj(x) = Ψ(x)uj .(2.11)

12



Let bi be the vectors defined by g(x)i = Ψbi, where g(x)i = e∗ix denotes the elements the full state

observable discussed in Ref. [157], and B = (b1 ... bn). The Koopman eigenmodes can then be

obtained as:

vi = (w∗iB)T .(2.12)

Here, wi denotes the ith left eigenvector of K.

A modification of EDMD named kernel DMD [158] is better suited for systems with a low

number of measurements and a high number of observables (e.g., the full state observable for fluid

dynamical systems is very high dimensional, so defining a polynomial dictionary of the full state

observable is very computationally expensive), i.e. M � N . The method relies on evaluating the

kernel function:

k(xi, yi) = Ψ(xi)Ψ(yi)
∗.(2.13)

That allows efficient computation of M ×M matrices Ĝ, Â, and K̂, where M is the number of

trajectory time steps. The eigendecomposition of K̂ then can be used to obtain the approximations

of the Koopman eigenvalues, eigenfunctions, and modes.

In the main body of the manuscript, we focus on the case where the number of measurements is

relatively high for each degree of freedom (M � N), and obtain a way to reduce the dimensionality

of the EDMD approximation of the Koopman operator for systems with symmetries in section 2.4.

A similar modification of the kernel DMD is discussed in section 2.6.5.

2.2.3. Discrete symmetries. In this section, we define the concepts useful to study the

structure of the Koopman operator K and its approximations K for systems with symmetries.

Throughout this section and the rest of the manuscript, we use an example of a small network of

Duffing oscillators to illustrate the definitions and algorithms.

In this manuscript, we consider dynamical systems (as defined in eqs. (2.1) and (2.3)) that

respect discrete symmetries. These systems are called equivariant with respect to the symmetry

group Γ. We define groups by their presentations in a form 〈S|R〉, where S is a set of generators of

13



the group, and R is a set of relations among these generators that define that group. Every element

of the group can be written as a product of powers of some of these generators.

For instance, the cyclic group Zn is presented by 〈r|rn = 1〉. An example of a realization of

that group is a set of rotational symmetries of a regular n-gon.

To study dynamical systems with symmetries, we need to define the specific actions of the group

on a vector space in addition to an abstract presentation of a group Γ. Let X ⊂ Rn be a vector

space with elements x ∈ X. We denote the actions γρ on a vector space X by γρx if the set of these

actions Γρ is isomorphic to Γ. A shorthand γρx = γx is sometimes used in the literature when

the action corresponding to the subscript ρ is clear from the context (for instance, it is defined by

a permutation matrix of the same degree as the state space of the system), however, we use the

γρ notation to avoid ambiguity, since the precise definition of group action in particular cases is

important in this manuscript, as shown, for instance, in example 2.2.1 and example 2.2.2.

Finally, we define what it means for a dynamical system to be symmetric. Let ẋ = gc(x) be a

continuous time system of differential equations. Here, x ∈ Rn, and gc : Rn → Rn. The system is

Γ-equivariant with respect to the actions of Γρ if for all x ∈ X and γρ ∈ Γρ:

gc(γρx(t)) = γρgc(x(t)).(2.14)

As discussed in section 2.2, data comes in discretized form, so a discrete form of that definition

is useful. For discrete time systems defined by xi+1 = g(xi), equivariance is defined in a similar

manner:

g(γρxi) = γρg(xi).(2.15)

We note that if a continuous time system is Γ-equivariant, so is its discretization. Moreover, the

set of trajectories of a γ-equivariant system in state space also respects the symmetries of the

system. For discretized systems, it means that if {x0, x1, ...xn} form a trajectory in state space,

then {γρx0, γρx1, ...γρxn} form a trajectory as well.

An important example of equivariant dynamical systems that many of the recent works have

focused on (such as Refs. [62, 97, 114, 139]) is a system of coupled identical oscillators. In that

case, the set (or a subset) of actions under which the system is equivariant is defined by the set
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of permutational matrices P that commute with the adjacency matrix (a matrix that describes

connectivity between the nodes of the network) of that oscillator network. In this case, the action

of the group is linear, however, that does not always have to be the case.

We also need to define the action of the group in function space, where f ∈ F are functions

f : X → C as:

(γρ ◦ f)(x) ≡ f(γ−1
ρ x).(2.16)

Note that the group action is inverted to satisfy the group action axioms (so that actions on

functions form the same group structure as the actions on states). This definition will be useful

since the Koopman operator acts on functions (i.e. observables).

Another concept useful for our work is a linear group representation T , which is a mapping

from group elements γ ∈ Γ to the elements of the general linear group (a group of matrices of

degree n with the operation of matrix multiplication denoted by GL(n, V )) on a vector space V (in

this case, we are interested in V = Cn). The characters χi(γ) of a group representation Ti(γ) are

defined as χi(γ) = Tr(Ti(γ)).

A representation is called irreducible if it has no nontrivial invariant subspaces (meaning that the

representation matrices corresponding to the group elements can not be simultaneously non-trivially

block diagonalized into the same block form). For each Γ we can obtain all of its irreducible matrix

representations. We denote their elements mapping γ ∈ Γ to p× p-dimensional matrices as Ri(γ),

where the index i corresponds to the ith irreducible representation. Irreducible representations are

defined up to an isomorphism. For the purposes of this manuscript, it is useful to make use of

either the unitary irreducible representations or their characters.

A vector space, e.g. the space of square integrable functions F , can be uniquely decomposed

into components that transform like the ith irreducible representation of Γ under the actions of Γρ.

These components are called isotypic components [50]. We denote these components by Fi. An

isotypic decomposition of the square integrable function space with respect to Γρ is then defined

as F =
⊕
i
Fi, where the

⊕
symbol denotes the direct sum here and thereafter. We illustrate the

construction of an isotypic decomposition using an example of a Z2-equivariant system.
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Example 2.2.1. Symmetries of a single Duffing oscillator dynamics and isotypic components

in function space corresponding to the actions of its symmetry group.

The unforced Duffing oscillator equation has the form:

ẍ = −σẋ− x(β + α2x).(2.17)

We can rewrite the above equation as a system of differential equations to obtain:

ẋ = y,

ẏ = −σy − x(β + α2x).
(2.18)

Let x =

x
y

, and let the dynamics be denoted by ẋ = gc(x). Let rs =

−1 0

0 −1

 = −I2×2 be

the action on the state space that flips the signs of both variables. The actions rs and es = I2×2

form a group Γs isomorphic to Γ = Z2 = 〈r|r2 = e〉. Let γs ∈ Γs, then:

γsgc(x) = gc(γsx).(2.19)

Thus, the Duffing oscillator system is Z2-equivariant with respect to the actions γs.

We now illustrate the isotypic component decomposition of Z2 in function space. Z2 has two

one-dimensional irreducible representations: the trivial representation defined by Rtr(r) = 1 and

the sign representation defined by Rsign(r) = −1. Then the space of square integrable functions

F can be decomposed into F = Ftr ⊕ Fsign, where Ftr = {f : rs ◦ f = f(−x,−y) = f(x, y)} and

Fsign = {f : rs ◦ f = f(−x,−y) = −f(x, y)}. In this case, the sets of functions Ftr and Fsign
consisting of even and odd functions respectively transform like the trivial and sign irreducible

representations with respect to sign flip as a group generator action.

We now extend the example to a network of Duffing oscillators and explore additional permu-

tation symmetries.

Example 2.2.2. We now consider the dynamics of a network of Duffing oscillators, as shown

in fig. 2.1. Suppose the coupling is linear in x with a coupling coefficient assigned to every edge ηij.
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(c) Duffing oscillator network
with Z2 × Z2 symmetry

Figure 2.1. Possible symmetries of a network of three identical Duffing
oscillators depending on the coupling strength between the oscillators. Different
coupling strengths are shown in blue and red. Green arrows correspond to
permutational symmetries arising from physical coupling, black arrows correspond
to the symmetries of nodal dynamics. Scenarios (a)-(c) are considered in
examples 2.2.1 and 2.4.1 to 2.4.3.

Then for each node i in the network, we have the following dynamics:

ẋi = yi,

ẏi = −σẏi − xi(β + α2xi) +
∑
ij

ηij(xi − xj).
(2.20)

This general coupling scheme is used to model many systems in the literature [114,139].

We now consider the case of a 3-node network. Depending on what the coupling terms are, the

system may be Γ-equivariant with respect to different symmetry groups that act by permuting node

indexes. Some examples are:

a) If all coupling strengths ηij are equal, the network has D3 symmetry. This case is shown

on fig. 2.1a. Let the state of the system be defined by x = (x1 y1 x2 y2 x3 y3)T . Then, the

symmetry group is presented by D3 = 〈r, κ|r3 = κ2 = e, κrκ = r−1〉 and generated by the

actions rp =


0 1 0

0 0 1

1 0 0

⊗ I2×2 and κp =


1 0 0

0 0 1

0 1 0

⊗ I2×2.
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b) If the coupling strengths obey the conditions ηij 6= ηji and ηij = ηjk for i 6= k, the network

has Z3 symmetry. This case is shown on fig. 2.1b. The symmetry group is presented by

Z3 = 〈r|r3 = e〉 and generated by the action rp defined above.

c) If the coupling strengths obey the conditions η12 = η21 = η13 = η31, as well as η23 = η32,

and no other equalities hold, the network has Z2 symmetry. This case is shown on fig. 2.1c.

The symmetry group is presented by Z2 = 〈κ|κ2 = e〉 and generated by the action κp defined

above.

Even though in case (c) the permutation symmetry is isomorphic to the same group as the sign

flip symmetry in example 2.2.1, the isotypic components in function space F induced by the group

action are different. Z2 has two one-dimensional irreducible representations: trivial representation

R1(κ) = Rtr(κ) = 1 and sign representation R2(κ) = Rsign(κ) = −1. Let xi =

xi
yi

. The

isotypic components are defined by the permutative relations Ftr = {f : κp ◦ f = f(x1,x3,x2) =

f(x1,x2,x3)} and Fsign = {f : κp ◦ f = f(x1,x3,x2) = −f(x1,x2,x3)}.
Additionally, each node still has Z2 symmetry with respect to the action rs which is not broken

since the coupling function is odd. That symmetry is also depicted in fig. 2.1. The isotypic compo-

nents of the entire symmetry group are then intersections of the isotypic components of Z2 (acting

by a sign flip) and the symmetry group of the network geometry (acting by a permutation, e.g. D3

for case (a) of this example, also illustrated in fig. 2.3a).

Any function can be rewritten as a sum of projections into different isotypic components. The

procedure is outlined in the following section.

2.3. Properties of the Koopman operator for systems with symmetries

In this section, we consider the structure of the eigenspace of the Koopman operator of Γ-

equivariant systems. We show how to obtain a particular eigenbasis of the system corresponding

to the isotypic decomposition in function space and demonstrate that the isotypic decomposition

induces a block diagonal structure on the matrix representation of K.
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Theorem 2.3.1. For a Γ-equivariant dynamical system xi+1 = g(xi) and an arbitrary function

f , the Koopman operator commutes with the actions of the elements of Γ:

γρ ◦ (Kf)(x) = K(γρ ◦ f)(x).(2.21)

Proof:

The commutativity follows from the definitions of the Koopman operator and the definition of the

action of the group in state space and function space.

γρ ◦ (Kf)(x) = γρ ◦ f(g(x)) = f(γ−1
ρ g(x)) = f(g(γ−1

ρ x)) = Kf(γ−1
ρ x) = K(γρ ◦ f)(x)(2.22)

This result is similar to Theorem 3.1 in Ref. [98], where it is shown that the action of Perron-

Frobenius operator commutes with the action of the symmetry group Γ for Γ-equivariant systems.

Corollary 2.3.1. The space of eigenfunctions of the Koopman operator K with eigenvalue λ

for a Γ-equivariant system is Γ-invariant.

Proof:

Let Sλ be the set of eigenfunctions of K with eigenvalue λ. Let φ ∈ Sλ. Then, using the commuta-

tivity of K and Γρ, we can show that ∀γρ ∈ Γρ:

K(γρ ◦ φ(x)) = γρ ◦ (Kφ)(x) = λγρ ◦ φ(x).(2.23)

Thus, φγ,ρ ∈ Sλ, where φγ,ρ is also an eigenfunction with an eigenvalue λ defined as φγ,ρ(x) =

γρ ◦ φ(x).

We now consider a particular form of the eigenbasis of the Koopman operator that induces

block diagonal structure of the matrix representation of the action of the Koopman operator K.

The result quoted below is useful for that purpose.

Theorem 2.3.2. (Theorem 3.5 in Chapter XII of Ref. [54]).

Let Γ be a compact Lie group acting on the vector space V decomposed into isotypic components

V = W1
⊕
...
⊕
Wt. Let A : V → V be a linear mapping commuting with Γ. Then A(Wk) ⊂Wk.
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This result is applicable to finite symmetry groups. Isotypic components of F with respect to Γ

induce block diagonal structure of the matrix representation of the Koopman operator. Since K and

Γ commute, K(Fk) ⊂ Fk. This block structure can be exploited in finding the Koopman operator

approximations, as we show in the next section. Thus, we need to be able to obtain an isotypic

component basis from an arbitrary function dictionary. This is a well defined procedure [33],

outlined below. Functions obtained via isotypic decomposition are useful to perform calculations in

many areas of physics, for instance, they can simplify finding approximate solutions to Schrodinger

equation, or in studying crystallographic point groups [33, 143]. The construction is also widely

applied to dynamical systems, for instance, to study states and their stability using equivariant

bifurcation theory.

Suppose we start from an arbitrary basis function dictionaryDψ = {ψi}. Each of those functions

can be expanded in the isotypic component basis with at least one nonzero coefficient αpmn:

ψ =
∑
p

dp∑
m,n=1

αpmnξ
p
mn.(2.24)

Here, ξpmn is a basis function in the pth isotypic component of F with respect to the actions of the

symmetry group Γ, and dp is the dimension of that isotypic component. Alternatively, it can be

thought of as a sum over all inequivalent (non-isomorphic) irreducible representations of Γ, where

ξpmn transforms as the (m,n)th element of the pth irreducible representation of Γ [33]. We define a

projection operator and form a new function basis consisting of functions {ξpmn} as outlined below.

The projection operator is defined as:

Ppmn =
dp
|Γ|
∑
γ∈Γ

[Rp(γ)]∗mnγρ.(2.25)

Here, [Rp(γ)]mn denotes the element in nth row and mth column of the ith unitary irreducible

representation of γ ∈ Γ, and γρ is the group action. We can form an orthonormal basis Dξ = {ξi}
using the projection operator as follows:

ξpmn(x) =
1

cnp
Ppmn ◦ ψ(x).(2.26)
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Here, cnp = 〈Ppnnψ,Ppnnψ〉1/2, where 〈, 〉 denotes the inner product, which can be omitted for

our purposes since the scaling of basis functions does not affect the EDMD results (namely, the

approximation matrix K, along with its eigenvalues and eigenvectors). Similarly, the overall factor

dp
|Γ| of the projection operator in eq. (2.27) only affects the scaling of the basis functions and therefore

can be eliminated.

Equivalently, due to orthogonality relations of characters of irreducible representations, the

projection operator can be obtained using the following expression:

Pp =
dp
|Γ|
∑
γ∈Γ

χp(γ)∗γρ.(2.27)

Here, χp(γ) is a character of the pth irreducible representation of Γ. If this formula is used, each

irreducible representation of degree dp provides a basis function, and d2
p − 1 other basis functions

can be formed using the Gram-Schmidt orthogonalization process [33,114,143].

Once an isotypic component basis is obtained, the action of the Koopman operator on function

space can be presented in the form of a block diagonal matrix. Each irreducible unitary repre-

sentation of dimension dp in this case corresponds to a number dp of dp × dp sized blocks in that

matrix K. Similar analysis applies to the Koopman operator approximation K. The reason why

this additional decomposition works can be found in section 2.6.1.

2.4. Implications for EDMD

2.4.1. Constructing a basis for systems with known symmetries. In this section we

show that the approximation of K obtained using EDMD can be reduced to the block diagonal

structure similar to K under certain assumption on the data. We provide some examples of con-

structing an isotypic component basis from a given function dictionary. We highlight that the basis

depends on both the structure of Γ and the definition of its actions Γρ.

First, we establish that the Koopman operator approximation K commutes with the actions

γρ of Γ if the data used in the calculation respects the symmetry, meaning the set of pairs of data

points satisfies the condition:

{(γρxi, γρyi)} = {(xi, yi)}.(2.28)
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In other words, the set of trajectories is closed under the action of the symmetry group of the

underlying dynamical system. This condition on trajectories can be achieved by averaging over

a symmetry group, which has been used in literature related to other data-driven methods, for

instance, the proper orthogonal decomposition [12]. We note that this requirement can sometimes

be relaxed, as discussed in section 2.6.3.

In order to perform further simplifications, we pick a particular order of group elements {γ1, ..., γ|Γ|}
and create the vectors Ψx (and analogously Ψy) according to that ordering:

Ψ(x) =
(
γ1 ◦Ψ(x) ... γ|Γ| ◦Ψ(x)

)
,

Ψx =


Ψ1(x1) ... ΨN/|Γ|(x1)

...
. . .

...

Ψ1(xM ) ... ΨN/|Γ|(xM )

 .
(2.29)

Given the ordering of the group elements, we can also construct the permutation representation

of the group such that:

Pγk(γ1, ..., γ|Γ|)
T = (γkγ1, ..., γkγ|Γ|)

T .(2.30)

By Cayley’s theorem, such permutations form a group isomorphic to Γ. Determining the actions Pγk

of the group generators is sufficient to find the actions of all group elements. Let Pγk = Pγk ⊗ In×n.

We note that (Pγk)∗ = (Pγk)−1. It can be shown that:

PγkG = GPγk , PγkA = APγk .(2.31)

By definition, A = Ψ∗xΨy. We note that for symmetric trajectories satisfying eq. (2.28):

((ΨxPγk)∗ΨyPγk)ij =
∑
m

ψ∗i (γ
−1
k xm)ψj(γ

−1
k xm) =

∑
m

ψ∗i (xm)ψj(xm) = (Ψ∗xΨy)ij .(2.32)

Therefore,

(ΨxPγk)∗ΨyPγk = Ψ∗xΨy.(2.33)

Thus, A and G (for analogous reasons) commute with the action of the symmetry group.
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If G is invertible and G commutes with γρ, G
−1 commutes with γρ as well. Then:

PγiK = PγiG
−1A = G−1APγi = KPγi .(2.34)

If G is not invertible, the commutativity result still holds for G+. G is a normal matrix since it

satisfies GG∗ = G∗G. In section 2.6.2, we show that if G is normal, GG+ = G+G, so G commutes

with its Moore-Penrose pseudoinverse, and therefore the actions of K and Γ commute.

Since K commutes with the actions of Γ, KFi ⊂ Fi. This shows that K can be block-

diagonalized in the same way as K.

Suppose we start from a dictionary of observables. Since that dictionary is not necessarily an

isotypic component dictionary corresponding to Γ and its action, in order to obtain a block diagonal

matrix K, the dictionary needs to be modified using the procedure outlined in section 2.3. In the

example below, we show explicitly how to perform this transformation into the isotypic component

basis.

In order for the basis to faithfully represent the symmetries of the system we require that:

• The dictionary is closed under the action of the symmetries of the system:

If ψ ∈ D, γρψ ∈ span(D)(2.35)

• Each isotypic component is present after the isotypic component decomposition of the

original function basis:

∀m, p ∃ψ ∈ D, s.t. Ppmnψ 6= 0(2.36)

For instance, using a monomial basis for a D3 equivariant system does not satisfy the second

requirement.

If these requirements are satisfied, the change of basis does not affect the result obtained by

applying the EDMD algorithm as shown in section 2.6.4. Additionally, we note that the eigenval-

ues of K do not typically have the same degeneracy properties as the eigenvalues of K, but the

symmetries of the underlying dynamical system are preserved in trajectory reconstructions.

Example 2.4.1. Constructing an isotypic component basis for a single Duffing oscillator.
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We start from a system with Z2 symmetry described in example 2.2.1. Suppose a polynomial

basis is chosen to form basis functions. For instance, Dpoly = {1, x1, x2, x
2
1, x

2
2, x1x2, ...}. Each of

the dictionary items can be written as pmn(x1, x2) ≡ xm1 x
n
2 . For even m + n, pmn ∈ Ftr, and for

odd m+ n, pmn ∈ Fst, where Ftr and Fst are the isotypic components corresponding to the trivial

and standard irreducible representations of Z2, as discussed in example 2.2.1. Thus, using Dpoly
results in a sparse matrix K, and K is block diagonal after reordering the basis functions.

Another possible choice for a set of dictionary functions is a radial basis function set. This type

of functions was used to find the EDMD approximation of the Koopman operator in Ref. [157].

We use an initial dictionary Dψ of n mesh-free radial basis functions. The radial basis function

centers can be obtained by either k-means clustering of the data or sampling from a predetermined

distribution. As an example, we chose a specific form ψ(c, x) = rclog(rc), where c is a 2-dimensional

radial basis function center, and rc,x ≡ ||x− c||1/2.

In this case, the individual basis functions do not generally belong to a single isotypic component.

We use eq. (2.25) to construct an isotypic component basis by obtaining the projections of the

dictionary onto the isotypic components corresponding to the irreducible representations of Z2,

which are the trivial and standard representations defined in example 2.2.1. Projecting onto the

trivial isotypic component leads to:

Ptr ◦ ψ(c, x) =
1

2
([Rtr(e)]

∗ψ(c, x) + [Rtr(r)]
∗ψ(−c, x)) =

1

2
(ψ(c, x) + ψ(−c, x))(2.37)

Analogously, projecting onto the standard isotypic component results in:

Pst ◦ ψ(c, x) =
1

2
(ψ(c, x)− ψ(−c, x))(2.38)
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We simplify the notation by denoting ψ+
i ≡ ψ(ci, x). In order to satisfy eq. (2.35), for each ψ+

i , the

basis should also contain ψ−i ≡ ψ(−ci, x). Ignoring the irrelevant multiplicative factor:

ξtr1
...

ξtrn

ξst1

...

ξstn


= TZ2 ⊗ In×n



ψ+
1

...

ψ+
n

ψ−1
...

ψ−n


=



ψ+
1 + ψ−1

...

ψ+
n + ψ−n

ψ+
1 − ψ−1

...

ψ+
n − ψ−n


.(2.39)

For functions in Dξ ordered like in eq. (2.39), the approximation matrix K is block diagonal.

Example 2.4.2. Constructing an isotypic component basis for a network of Duffing oscillators

from a given basis.

We also consider a more complicated case of a system of Duffing oscillators with identical

coupling as depicted in fig. 2.1a. In that case, the system has Z2×D3 symmetry. Suppose we want

to construct an isotypic component basis from a given function dictionary D. As an example, we

use an initial dictionary Dψ of n mesh-free radial basis functions. Analogously to example 2.4.1,

each function can be presented in a form ψ(c, x) = rclog(rc), where c is a 6-dimensional radial basis

function center, and rc,x = ||x− c||1/2. In order to preserve the symmetries of the system, we need

to have dictionary elements corresponding to acting on the basis functions by each γρ ∈ Γρ. Due to

the form of these functions, γρ ◦ ψ(c, x) = ψ(γ−1
ρ c, x).

Since Γ = Z2 × D3 is a direct product of two groups, we can write the projection operator in

the following form:

Ppqmn =
dp
|Z2|

dq
|D3|

∑
γi∈Z2

∑
γj∈D3

[Rpq(γi, γj)]
∗
mn(γflipi , γpermj ),

where Rpq(γi, γj) = Rp(γi)⊗Rq(γj)
(2.40)

Here, Rp(γi) denotes the pth irreducible representation of γi ∈ Z2. Analogously, Rq(γj) denotes the

qth irreducible representation of γj ∈ D3. Specific actions of group elements γflipi and γpermj are

labeled by the superscripts.
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The symmetry group Z2 has 2 degree 1 irreducible representations, discussed in example 2.2.1:

• Trivial representation

• Sign representation

The symmetry group D3 has 2 degree 1 and 1 degree 2 irreducible representations, defined by:

• Trivial representation Rtr: Rtr(r) = 1, Rtr(κ) = 1

• Sign representation Rsign: Rsign(r) = 1, Rsign(κ) = −1

• Standard representation Rst: Rst(r) =

ω 0

0 ω2

 , Rst(κ) =

0 1

1 0

. Here, ω = e2πi/3.

Note that the dimensions di of the irreducible representations of Γ satisfy
∑
d2
i = |Γ| (if Γ = D3,

|Γ| = 6). Therefore, the number of isotypic component basis functions obtained from any set

{γ ◦ ψi}γ∈D3 is equal to the number of group elements, so the sizes are consistent.

Suppose we form a vector of basis functions in Dψ,

Ψ = (ψ1,1ψ2,1, ..., ψn,1, ..., ψ1,|Γ|, ψ2,|Γ|, ..., ψn,|Γ|)
T ,(2.41)

where the first index corresponds to acting on ψ1,i by the jth element of Γρ. Using eq. (2.40), we

obtain transformation matrices that we can use to get the isotypic component basis:

TD3 =



1 1 1 1 1 1

1 1 1 −1 −1 −1

1 ω ω2 0 0 0

0 0 0 1 ω2 ω

1 ω2 ω 0 0 0

0 0 0 1 ω ω2


, TZ2 =

1 1

1 −1

 .(2.42)

The isotypic component basis then can be obtained by modifying a set of functions in Dψ:

Ξ = TΨ, T ≡ TZ2 ⊗ TD3 ⊗ In×n.(2.43)

The matrix TZ2⊗TD3 is a 12×12 matrix, and its dimensions are equal to the size of the underlying

symmetry group Z2 × D3. The matrix In×n ensures that every element of the original dictionary

gets maps to an element of the new isotypic component dictionary.
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(b) K for a symmetry adapted dictionary of
observables

Figure 2.2. Structure of K for different choices of dictionary functions

If we use Ξ as a basis, we obtain K decomposed into 8 blocks, each corresponding to an irre-

ducible representation of Z2 ×D3.

We implement the EDMD algorithm to obtain the approximation of K. Here, the data comes

from 500 initial trajectories of length 10 that were then reflected and rotated so that the data respects

the symmetries. The parameter values of α = 1, β = −1, δ = 0.5, and η = 1 were used. We plot

the approximation matrix K in fig. 2.2. In this case, a dictionary of 120 radial basis functions was

used. fig. 2.2a illustrates the Koopman operator approximation matrix K calculated using an initial

dictionary Dψ and requires performing matrix operations on the full 120 × 120 matrix. fig. 2.2b

shows K obtained from the symmetry adapted basis functions. The order of calculations can be

reduced significantly since it is only necessary to perform matrix operations on blocks. K calculated

in the symmetry adapted basis has 4, 10× 10 and 2, 20× 20 unique blocks.

As shown in the examples above, we can construct a basis that block diagonalizes the Koopman

operator matrix approximation K from the elements of any arbitrary basis. Since the off block-

diagonal elements of the matrix are a priori known to be zero, we do not need to compute these

elements explicitly. This suggests that for systems with symmetries it is more efficient to perform

the EDMD algorithm for isotypic decomposition blocks. We denote the number of conjugacy

classes or irreducible representations of Γ by rΓ. In that case, instead of performing O((mrΓ)α)

operations of matrix inversion, multiplication, and eigendecomposition, it is sufficient to perform
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these operations for each of the rΓ blocks, with operations being O(mα). Here 2 < α < 3, e.g.

as seen in Ref. [74]. Even though the algorithmic complexity only differs by a factor that scales

with the size of the group that is fixed for any given system, in practice, the computation is

more efficient when EDMD specific to Γ-equivariant systems is used. We also note that each dp

dimensional irreducible representation contributes dp equal blocks, each one of dimension dp × dp,
to Ksymm, which further simplifies the calculation. Moreover, in the case of networks of high

dimensionality, it allows parallel eigendecomposition computation for isotypic component blocks.

table 2.1 summarizes the modified EDMD algorithm for Γ-equivariant systems and highlights that

the order of computations can be lowered.

Koopman eigenfunctions and eigenmodes have many applications in dimensionality reduction,

finding the basins of attraction, characterizing coherency between oscillatory systems, etc. Block

diagonalizing K allows the efficient computation of the Koopman eigenvalues, eigenfunctions, and

modes.

The kernel DMD is closely related to the EDMD algorithm. It relies on calculating the eigen-

triples associated with K from a dual matrix K̂ evaluated using a kernel trick commonly applied

in machine learning [158]. This method can be computationally advantageous for cases when the

number of basis functions exceeds the number of available measurements of the state of the system.

We find that the kernel DMD can also be modified to include symmetry considerations in order to

optimize the calculations. The method is provided in section 2.6.5.

2.4.2. Consequences of symmetry assumptions in the basis. Assume the data is sym-

metric as defined by eq. (2.28) with respect to the symmetry group Γ. A “perfect” basis is the

one respecting the isotypic decomposition of Γ. Suppose the basis functions belong to isotypic

components of Σ 6= Γ. That choice will affect the structure of K. We study that structure by

evaluating the elements of A, since K and G+ have the same structure as A.

If the system is Γ-equivariant and Σ ⊂ Γ and the set of actions of Σ is a subset of actions of

Γ, the system is also Σ-equivariant. Thus, picking a basis respecting the isotypic decomposition of

Σ will have the block diagonal structure corresponding to Σ. This means that the choice of basis

results in block diagonal K, but its structure does not provide any additional information about

the symmetries of the system.
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Standard EDMD EDMD for Γ-equivariant systems

• Pick a dictionary of N
observables

• Evaluate the observ-
ables at data points xi
and yi

• Evaluate the entries of
G,A: N2 elements

• Obtain G+: N × N
matrix

• Find K = G+A: N×N
matrices

• Find the eigendecompo-
sition of K: N ×N ma-
trix

• Pick a dictionary of N observables
• Identify the symmetry Γ of the system, find the

irreducible representations of Γ
• Change the basis to a Γ-symmetric basis using

eq. (2.27) and eq. (2.26) : multiplying at most
N/|Γ| |Γ|× |Γ| matrices by vectors |Γ|×1. Let Np

be the number of functions obtained from apply-
ing a projection operator Pp corresponding to p th
irreducible representation of Γ (e.g., Np = N/|Γ|
for cyclic groups).
• Evaluate the observables at data points xi and yi
• To obtain the blocks Kpq of K (each isotypic com-

ponent corresponds to dp blocks), for each p:
– Evaluate the entries of Gp1, Ap1: (Np/dp)

2

elements
– Obtain G+

p1: (Np/dp)× (Np/dp) matrix

– Find Kp1 = G+
p1Ap1: (Np/dp)× (Np/dp) ma-

trices
– Find the eigendecomposition of Kp1:

(Np/dp)× (Np/dp) matrix
– The other Kpq blocks equal to Kp1

• K =
⊕
p

dp⊕
q=1

Kpq. Its eigenvalues are the eigen-

values of Kp, and its eigenvectors only have Np

nonzero elements. Mathematically, eigenvectors
vkl of K are of the form (vkl)i =

⊕
p
δpkvpl.

Table 2.1. EDMD vs modified EDMD for Γ-equivariant systems. |Γ| is the order
of Γ. The irreducible representations of Γ are indexed by p and are dp-dimensional.

If the system is Γ-equivariant and Γ ⊂ Σ, functions belonging to particular isotypic components

of Σ are not preserved by the action of K. In the case of symmetric trajectories, that can provide

information on what the true symmetries of the system are.

A simple case corresponds to Σ = Σ0×Γ. In this case, every action of Σ0 commutes with every

action of Γ. Each isotypic component of F with respect to Σ can be expressed as Fpq = FpΣ0
∩

(FΓ)q, where FpΣ0
denotes the pth isotypic component of Σ0. In this case, the off-diagonal blocks

corresponding to interactions between isotypic components Fp1q1 and Fp2q2 are zero if q1 = q2, and

generally nonzero otherwise. For instance, if a network of three Duffing oscillators similar to those
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discussed in, e.g., example 2.4.2, but has no permutation symmetry and Σ = Z2 × D3, with the

action of Z2 being a sign flip in nodal dynamics, the isotypic components corresponding to these

Z2 symmetries will not interact with each other, resulting in two blocks in K.

Next, we consider a more general case. We denote the pth isotypic component of F with respect

to the symmetry group Σ by FpΣ. We note that if the following conditions hold:

FpΣ ∩ F
q1
Γ 6= ∅,(2.44)

FpΣ ∩ F
q2
Γ 6= ∅,(2.45)

where q1 and q2 index different isotypic components of Γ, then the off-diagonal blocks of K corre-

sponding to interactions between those components are generally nonzero.

The condition for FpΣ ∩ F
q
Γ 6= ∅ is equivalent to:

PpΣ ◦ (PqΓ ◦ f) 6= 0,(2.46)

where f is an arbitrary function, and PpΣ denotes the projection operator onto the pth isotypic

component with respect to the symmetry group Σ.

PpΣ ◦ (PqΓ ◦ f) =
∑
σ∈Σ

χp(σ)∗σρ ◦
∑
γ∈Γ

χq(γ)∗γρ ◦ f =
∑

σ∈Σ,γ∈Γ

χp(σ)∗χq(γ)∗(σργρ) ◦ f.(2.47)

Let H be the set of left cosets of Γ in Σ (defined as H = Σ/Γ = {σΓ : σ ∈ Σ}, where σΓ = {σγ :

γ ∈ Γ} [50]). Thus, the condition of eq. (2.46) holds if for all h ∈ H:∑
γ∈Γ

χ∗p(hγ
−1)χ∗q(γ) = 0(2.48)

Using eq. (2.48), the structure of Γ can be determined given the structure of K and Σ used in

the calculation. Characters of irreducible representations are available for small order symmetry

groups, and scaling up to larger order is possible using computational group theory software. Below

is an example for the subgroups of a dihedral group D3.

Example 2.4.3. Coupled Duffing oscillators: (Z2 × Z2)- or (Z2 × Z3)-equivariant system with

Z2 ×D3 basis functions.

30



We consider different coupling schemes of networks of 3 Duffing oscillators shown in fig. 2.1b

and 2.1c. We first note that the Z2 symmetry generated by a sign flip is still present in the system

for both cases, so two non-interacting blocks corresponding to irreducible representations of that

group with respect to that action are still present. Now we focus on the structure of K within each

of these non-interacting blocks.

First, let the function dictionary symmetry be Σ = D3 = 〈r, κ|r3 = κ2 = e, κrκ = r−1〉 and

the true symmetry of the system be Γ = Z3 = 〈r|r3 = e〉, where rD3 and rZ3 have the same

action. The isotypic component decomposition of D3 is defined in example 2.4.2 and can be written

as F = Ftr,D3 ⊕ Fsign,D3 ⊕ Fst,D3. The isotypic component decomposition of Z3 is defined as

F = Ftr,Z3 ⊕ Fω,Z3 ⊕ Fω2,Z3
(Z3 has 3 1-dimensional irreducible representations with χtr(r) = 1,

χω(r) = ω, χω2(r) = ω2). We note that:

• Ftr,Z3 ∩ Ftr,D3 6= ∅

Functions belonging to Ftr,Z3 satisfy the following condition:

Ftr,Z3 = {f : f(x3,x1,x2) = f(x1,x2,x3)}
Functions belonging to Ftr,D3 satisfy the following conditions:

Ftr,D3 = {f : f(x3,x1,x2) = f(x1,x2,x3), f(x1,x3,x2) = f(x1,x2,x3)}
Thus, Ftr,Z3 ∩ Ftr,D3 = Ftr,D3

• Ftr,Z3 ∩ Fsign,D3 6= ∅

This can be shown in a similar fashion.

• (Fω,Z3 ∪ Fω2,Z3
) ∩ Fst,D3 = Fst,D3

Functions belonging to Fω/ω2,Z3
satisfy the following condition:

Fω,Z3 = {f : f(x3,x1,x2) = ωf(x1,x2,x3)}
Fω2,Z3

= {f : f(x3,x1,x2) = ω2f(x1,x2,x3)}
Functions belonging to Fst,D3 satisfy the following conditions:

Fst,D3 = {f1, f2 : f1(x3,x1,x2) = ωf1(x1,x2,x3)

f2(x3,x1,x2) = ω2f2(x1,x2,x3)

f1(x1,x3,x2) = f2(x1,x2,x3)

f2(x1,x3,x2) = f1(x1,x2,x3)}
Thus, (Fω,Z3 ∪ Fω2,Z3

) ∩ Fst,D3 = Fst,D3
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Thus, the off block-diagonal structure of K is defined by:

• KFtr,D3 ∩ Fsign,D3 6= ∅

To see that is the case, we need to refer back to conditions in eq. (2.44) and eq. (2.45).

Since the intersections of both Ftr,D3 and Fsign,D3 with Ftr,Z3 are nonzero, the intersection

of the components produces non-zero elements in K.

• KFsign,D3 ∩ Ftr,D3 6= ∅

This can be shown in a similar fashion.

• other off-diagonal blocks are zeros

For instance, since the intersections of both Ftr,D3 and Fst,D3 with no specific isotypic

component of Z3 are simultaneously nonzero, KFtr,D3 ∩ Fst,D3 = ∅ and KFst,D3 ∩
Ftr,D3 = ∅, thus corresponding to blocks of zeros in K.

This structure is illustrated in fig. 2.3b and differs from that in fig. 2.3a.

Now, let Σ = D3 and Γ = Z2. Here, Z2 = 〈e, κ|κ2 = e〉, and κD3 and κZ2 have the same action.

The isotypic component decomposition of Z2 is defined as F = Ftr,Z2 ⊕Fsign,Z2.

We note that:

• Ftr,Z2 ∩ Ftr,D3 6= ∅

• Ftr,Z2 ∩ Fst,D3 6= ∅

• Fsign,Z2 ∩ Fsign,D3 6= ∅

• Fsign,Z2 ∩ Fst,D3 6= ∅

Additionally:

• Ftr,Z2 ∩ Fsign,D3 = ∅

• Fsign,Z2 ∩ Ftr,D3 = ∅

Thus, the off block-diagonal structure of K is defined by:

• KFtr,D3 ∩ Fsign,D3 = ∅

• other off-diagonal blocks corresponding to interactions between node permutation isotypic

components are generally nonzero

This structure is illustrated on fig. 2.3c and differs from that on fig. 2.3a and fig. 2.3b.
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(a) K if Σ = Γ = D3
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(c) K if Σ = D3, Γ = Z2

Figure 2.3. Structure of K with basis functions belonging to the isotypic
components of Σ = D3 for different underlying symmetries of the system. The
labels above and to the left correspond to the isotypic components interacting in
each block. Two labels are needed to index over D3 (bold font) and Z2 (standard
font).

This example shows that the structure of the approximation K with maximal symmetries as-

sumed provided information about the actual underlying symmetries of the system. In this specific

example, we can see that any off-diagonal block can be used as an indicator of whether a symmetry

subgroup Z2 or Z3 is present, as seen in fig. 2.3b and fig. 2.3c.

In summary, the symmetries of the system can be detected from the structure of the Koopman

operator approximation matrix. This allows using the same method both to detect the symmetries

of dynamical systems from data and to obtain their Koopman operator approximation. However,

we also note that there are multiple other methods to detect the symmetries of dynamical systems,

for instance, this work can be related to symmetry detectives [15]. Additionally, in many cases we

do not expect perfect symmetries to be present in data, as discussed in the next subsection. Thus,

it would be useful to see how these imperfections affect the results in order to be able to apply the

symmetry considerations in a more practical setting.

2.4.3. Towards realistic systems. In this manuscript, we provide a general approach for

dimensionality reduction in the calculation of Koopman operator approximations by exploiting

the underlying symmetries present in both the system’s dynamics and system’s structure. The

exact scaling achieved by the reduction depends on the structure of the symmetry group of the

dynamical system, specifically, the number of irreducible representations of the symmetry group

and the dimensionality of these irreducible representations.
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The results outlined in this manuscript, similar to most of the other literature related to dy-

namical systems with symmetries, are immediately applicable in the case of the existence of exact

symmetries in nonlinear dynamics. That is the case when the system is completely deterministic

and the initial conditions respect the symmetries of the system. If the symmetries of the system

are known and the available trajectories are deterministic, it is always possible to reconstruct the

trajectories that are related via the symmetry group of the system. Then, a full set of trajectories

respecting the symmetries of the system can be used to approximate the Koopman operator and

its eigendecomposition.

However, in many systems, that information is not necessarily available ahead of time and the

symmetries are not present in data, even if the initial conditions are symmetric, because of the

presence of noise in the system. Some of the examples of not fully symmetric data include the

following cases and their combinations:

• Deterministic systems with measurement noise. DMD for systems with measurement noise

and possible ways to correct for it are presented in Ref. [36]. It is shown in section 2.6.6

that in this case the expected values of off-diagonal elements of K computed using the

EDMD are zero, so the block decomposition may still be applicable.

• Stochastic systems with symmetric initial conditions and process noise. DMD applied to

the systems with process noise is studied, for instance, in Ref. [14].

• Systems with imperfect symmetries due to sampling and unknown underlying symmetries.

• Systems with imperfect symmetries in dynamics (e.g. slight parameter mismatch).

All these cases require separate treatment, and whether the isotypic component decomposition

is still useful in computing the Koopman operator approximation will vary depending on specific

characteristics of the data available from the system, such as the strength of the noise or the

trajectory sampling characteristics.

2.5. Conclusion

In this manuscript, we apply tools from group theory and representation theory to study the

structure of the Koopman operator for equivariant dynamical systems. This approach can be ap-

plied to systems with permutation symmetries (e.g. networks symmetric under node permutations
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where the information about the symmetries is contained in the adjacency matrix), systems with

intrinsic dynamical symmetries, and systems with both types of symmetries present. We find that

the operator itself and its approximations can be block diagonalized using a symmetry basis that re-

spects the isotypic component structure related to the underlying symmetry group and the actions

of its elements. For the approximation matrix to be exactly block diagonal, the data must respect

the symmetries of the system. That can be readily accomplished if the underlying symmetry is

known ahead of time (e.g., the topology of the network is known). Symmetry considerations are

applicable to both EDMD and kernel DMD, which means they become useful both in the regime

when the number of observables is much larger than that of measurements and vice versa.

Moving forward, it would be possible to extend these results. For instance, a natural next step

would be to investigate the effect of noise and imperfect symmetries on the Koopman operator

approximations for equivariant or nearly equivariant dynamical systems in more detail. It would

also be useful to apply the symmetry considerations beyond the range of applicability of EDMD.

In that case, symmetry considerations can be used to study, for instance, systems with continuous

Koopman spectra. Other future directions include relating our results to existing literature on

equivariant bifurcation theory, stability analysis, and continuous symmetries.

2.6. Appendices

2.6.1. Block diagonalization of isotypic components obtained from dp-dimensional

irreducible representations. We show that d-dimensional irreducible representations of Γ yield

identical blocks of K in the isotypic component basis obtained using the unitary irreducible repre-

sentations of Γ.

Let the function space be decomposed into isotypic components according to the actions of

the symmetry group Γ of order |Γ|, γρ ∈ Γρ: F = F1 ⊕ ... ⊕ FN , where N is the number of

irreducible representations of Γ. Let Fp be one of these isotypic components with a corresponding

unitary irreducible representation with elements Rp(γ) corresponding to γ ∈ Γ, and let dp be the

dimensionality of that representation.
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The projection operator is defined as:

Ppmn =
dp
|Γ|
∑
γ∈Γ

[Rp(γ)]∗mnγρ.(2.49)

It acts on f ∈ F to produce sets of projected functions according to:

ξpmn = Ppmn ◦ f.(2.50)

We already know that Kξpmn = hp, where hp ∈ Fp. The subspace Fp can be decomposed into dp

components Fp = Fp,1 ⊕ ...⊕ Fp,dp , where Fp,m = {g|g = Pmn ◦ f, f ∈ F , n = 1, ..., dp}. This is a

well-defined decomposition since 〈Ppmnf,Ppklh〉 = 〈f,PpnmPpklh〉 = 〈f, δmkPpnlh〉 [33] can be nonzero

only when m = k.

We want to show that Kξpmn ∈ Fp,m (also true for any linear operator that commutes with the

action of the symmetry group). Since the operator commutes with the actions of the group:

KPpmn ◦ f = PpmnK ◦ f = Ppmn ◦ h ∈ Fp,m.(2.51)

Here, K ◦ f ≡ h.

Let fΓ = {γ ◦ f |γ ∈ Γ}. Any set of linearly independent functions that span fΓ can be

transformed into a symmetry respecting basis obtained by calculating all the projections Ppmn ◦ fγ ,

where fγ ∈ fΓ. That corresponds to a block diagonal form of the Koopman operator.

We’ve already shown that K, the approximation of K, also commutes with the actions of the

elements of Γ for Γ-equivariant dynamical systems with Γ-equivariant data. Thus, we can obtain

an observable dictionary that block diagonalizes K into |Γ| blocks, where each dp-dimensional

irreducible representation results in dp dp × dp-dimensional blocks.

Additionally, suppose KPpmn ◦ f = h, then KPpkn ◦ f = PpkmKP
p
mn ◦ f = Ppkm ◦ h. This gives

us the relation between blocks in K corresponding to the same irreducible representation p. In

context of the approximation K, it means that we get that Kp,i (blocks corresponding to ψ ∈ Fp,i)
are equal for all i (for data respecting the symmetries of the system and a proper ordering of basis

functions).
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2.6.2. Commutativity of K and γρ acting in function space. We show that G and G+

(+ denotes the Moore-Penrose pseudoinverse) commute. We note that G is a Hermitian matrix

since:

G∗ =

(∑
m

Ψ∗(xm)Ψ(xm)

)∗
=
∑
m

Ψ∗(xm)Ψ(xm) = G(2.52)

Thus, G is also normal, i.e. GG∗ = G∗G. We show that if G is normal, GG+ = G+G.

Two of the criteria that define the Moore-Penrose pseudoinverse [116] state that G+ = G+GG+

and (GG+)∗ = GG+. It follows that the following relation holds: G+ = G+(GG+)∗ = G+(G+)∗G∗.

Using that relation [19] and commutativity of + and ∗ operations, we obtain:

G+G = G+(G+)∗G∗G = (G+)∗G+GG∗

= (G+)∗G∗ = (G+(G+)∗G∗)∗G∗ = GG+(G+)∗G∗ = GG+.
(2.53)

Since the action of γ commutes with A and G, and since G commutes with G+, the action of

γ commutes with K = G+A. which is a Koopman operator approximation.

2.6.3. Requirements of symmetrizing the data set. We note that the off-diagonal blocks

of the approximation matrix K are only zero if the symmetries are present in the data. The

non-diagonal elements can be set to zero explicitly, making computations more efficient.

Moreover, if the symmetries are known a priori, a fully symmetrized data set is not necessary

to obtain an approximation of the diagonal block elements of K. Suppose we have a dictionary

of basis functions belonging to a particular isotypic component with respect to the action of the

full symmetry group Γ. We label that component by p, and the corresponding unitary irreducible

representation by Rp(γ). We then define R′p(γ) ≡ Rp(γ)⊗In×n, where n is the number of functions

in the pth isotypic component. By definition of isotypic components, even for unsymmetrized data

it is the case that:

Ξ∗(γxm)Ξ(γym) = (Ξ(xm)R′p(γ))∗(Ξ(ym)R′p(γ)) = (R′p(γ))∗Ξ∗(xm)∗Ξ(ym)R′p(γ)(2.54)

37



If R(γ) is a diagonal matrix:

Ξ∗(γxm)Ξ(γym) = Ξ∗(xm)Ξ(ym).(2.55)

In case of one-dimensional irreducible representations, it is not necessary to use reflected data to

produce the blocks of K. For instance, as in example 2.4.2, where one of the generators of D3, κ,

corresponds to a non-diagonal matrix R(κ). In that case:∑
γ

∑
m

Ξ∗(γxm)Ξ(γym) = 3(Ξ∗(xm)Ξ(ym) + Ξ∗(κxm)Ξ(κym)).(2.56)

This demonstrates that the method is data-efficient and sets up requirements on the symmetry

properties of data.

2.6.4. Change of basis and the EDMD approximation. We show that rotating the ob-

servable dictionary preserves the symmetries of the reconstructed trajectories.

Suppose we have a basis consisting of dictionary functions Dψ and a dictionary Dξ obtained

by Ξ = TΨ. Let Ψ(t) ≡ (ψ1(x(t)) ψN (x(t)))T and Ξ(t) ≡ (ξ1(x(t)) ξN (x(t)))T . We show that

rotating the dictionary function vector by the projection matrix T does not affect the trajectory

reconstruction:

Ψt+1 = KψΨt, Ξt = TΨt Ξt+1 = KψTΨt = TKψΨt = TΨt+1.(2.57)

Next, we show that the state reconstruction preserves the symmetries of the system. Let P be

the action of the symmetry group on the basis functions Ψ. We aim to show that if Ψt+1 = KΨt,

then PΨt+1 = KPΨt. It follows directly from the fact that K and P commute:

PΨt+1 = PKΨt = KPΨt.(2.58)

Thus, the trajectories of basis functions reconstructed using the EDMD approximation are Γ-

equivariant, just like the original system. In particular, this is true in case of the evolution of the

full state observable.

2.6.5. Applicability to kernel methods. Kernel DMD introduced in Ref. [158] is a variant

of approximating the Koopman operator matrix most efficient when the number of measurement
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points is much smaller than the number of basis functions. Kernel DMD relies on evaluating Ĝ

and Â using the kernel method. Their elements can be found by indirectly evaluating the inner

products in the basis function space: k(xm, yn) = Ψ(xm)Ψ(yn)∗ (e.g., if k is a polynomial kernel,

k(x, y) = (1 + xyT )α). We note that k(γx, γy) = k(x, y) due to the properties of inner products.

In kernel DMD, Ĝij = k(xi, xj) and Âij = k(xi, yj). The eigendecomposition of Ĝ = QΣ2QT is

then used to find the matrix K̂ and use it in computing the eigendecomposition of the Koopman

operator approximation matrix K:

K̂ = (Σ+QT )Â(QΣ+).(2.59)

Again, we pick a particular order of group elements similarly to eq. (2.29):

Ψx =


Ψ(γ1x)

...

Ψ(γ|Γ|x)

 , where Ψ(x) =


Ψ1(x1) ... ΨN (x1)

...
. . .

...

Ψ1(xM/|Γ|) ... ΨN (xM/|Γ|)

(2.60)

We also construct a permutation representation of the group with elements denoted by Pγi as

defined in eq. (2.30).

By Cayley’s theorem, such permutations form a group isomorphic to Γ. Determining the

actions Pγi of the group generators is sufficient to find the actions of all the group elements. Let

Pγk = Pγk ⊗ In×n. We note that (Pγk)∗ = (Pγk)−1. It can be shown that:

PγiĜ = ĜPγi , PγiÂ = ÂPγi .(2.61)

We do so for Â, and the proof for Ĝ is equivalent. We find that:

(PγiÂ)kl = Âpl = k(xp, yl), γp = γiγk, (ÂPγi)kl = Âkq = k(xk, yq), γq = γ−1
i γl.(2.62)

And finally, k(xp, yl) = k(γixk, γiyq) = k(xk, yq).

Since the relation 2.61 holds, the same reasoning can be applied to block diagonalize the matrix

K̂. It is sufficient to apply the projection operator [143]:

Ppmn =
dp
|Γ|
∑
γ∈Γ

[Rp(γ)]∗mnPγi .(2.63)
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Standard kernel
DMD

Kernel DMD for Γ-equivariant systems

• Pick a dictionary of N
observables

• Evaluate the kernel
functions at data
points xi and yi

• Evaluate the entries of
Ĝ, Â: M2 elements
• Obtain Ĝ+: M × M

matrix

• Find
K̂ = (Σ+QT )Â(QΣ+):
M ×M matrices
• Find the eigendecom-

position of K̂: M ×M
matrix

• Pick a dictionary of N observables
• Identify the symmetry Γ of the system, find the

irreducible representations of Γ
• Change the basis to a Γ-symmetric basis using

eq. (2.30) and eq. (2.63)
• Evaluate the observables at data points xi and
yi, add trajectories to reflect the symmetries if
necessary
• To obtain the blocks K̂pq of K̂ (each isotypic com-

ponent corresponds to dp blocks), for each p:

– Evaluate the entries of Ĝp1, Âp1: (Mp/dp)
2

elements
– Obtain Ĝ+

p1: (Mp/dp)× (Mp/dp) matrix

– Find K̂p1 = Ĝ+
p1Âp1: (Mp/dp)× (Mp/dp) ma-

trices
– Find the eigendecomposition of K̂p1 :

(Mp/dp)× (Mp/dp) matrix

– The other K̂pq blocks equal to K̂p1

• K̂ =
⊕
p

dp⊕
q=1

K̂pq. Its eigenvalues are the eigen-

values of K̂p, and its eigenvectors only have Mp

nonzero elements. Mathematically, eigenvectors
vkl of K are of the form (vkl)i =

⊕
p
δpkvpl.

Table 2.2. kernel DMD vs modified kernel DMD for Γ-equivariant systems. |Γ| is
the order of Γ. The irreducible representations of Γ are indexed by p and are
dp-dimensional. Here, M be the number of data points used by the algorithm, and
{(xm, ym)} respect the symmetries of the system.

This projection operator is analogous to the one introduced in equation 2.25, except the symmetry

group in this case acts by permuting the group elements.

We can apply the singular value decomposition of P to obtain the basis for the projection

subspaces of irreducible representations (isotypic components). We form the transformation matrix

T by finding the singular value decomposition (SVD) and stacking its eigenvectors as rows of T

such that T = T ⊗ In×n.
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Similarly to EDMD, the isotypic component basis simplifies calculating the approximations of

K̂.

ÂD =
⊕
p

⊕
q

Âpq, ĜD =
⊕
p

⊕
q

Ĝpq =
⊕
p

⊕
q

QpqΣ
2
pqQ

T
pq,

K̂D =
⊕
p

⊕
q

(Σ+
pqQ

T
pq)Âpq(QpqΣ

+
pq).

(2.64)

The modification is summarized in table 2.2.

Finally, the approximations of Koopman eigenvalues, eigenfunctions, and eigenmodes can be

calculated using KD, as shown in Ref. [158].

2.6.6. Deterministic systems with sensor noise. Transfer operators with process and

measurement noise were also studied in Ref. [135]. Characterizing and correcting for the effect of

sensor noise in DMD is discussed in Ref. [36]. We need to extend the results to EDMD to quantify

the effect of sensor noise on the structure of the matrix K. The main modification that needs to

be made is the consideration of the effect of the noise in measuring X and Y on Ψx and Ψy.

Let X and Y be matrices analogous to Ψx and Ψy corresponding to the full-state observable

evaluated at discrete time steps. We denote the sensor noise matrices by Nx and Ny, so that the

measured Xn and Yn can be found from Xn = X + Nx and Yn = Y + Ny. We assume that the

noise distributions respect the symmetries of the system, which might be the case, for instance, for

symmetric networks. Moreover, we assume that the noise is state-independent.

We can form vectors Ψxn and Ψyn that can be used to find the approximation K using EDMD:

Kn = Ψ+
xnΨyn.(2.65)

Here, (Ψxn)ij = ψj((Xn)i), (Ψyn)ij = ψj((Yn)i), and NΨ,x and NΨ,y correspond to noise matrices

obtained as:

(NΨ,x)ij = ψj(Xi +Nx,i)− ψj(Xi).(2.66)

We aim to show that E(PKn) = E(KnP ), meaning that the expected value of the Koopman

operator Kn commutes with the permutation matrix corresponding to an element of the symmetry

group. If that is the case, then the expected values of the off-block-diagonal elements of Kn in a
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symmetry adapted basis as defined in eq. (2.27) are zero. To do that, we can express Kn as:

Kn = Ψ+
xnΨyn = (Ψx +NΨ,x)+(Ψy +NΨ,y)

= ((Ψx +NΨ,x)∗(Ψx +NΨ,x))+(Ψx +NΨ,x)∗(Ψy +NΨ,y)

= (Ψ∗xΨx + Ψ∗xNΨ,x +N∗Ψ,xΨx +N∗Ψ,xNΨ,x)+

(Ψ∗xΨy + Ψ∗xNΨ,y +N∗Ψ,xΨy +N∗Ψ,xNΨ,y).

(2.67)

If the inverse of the first term exists, it can be expanded into the Taylor series with terms of the

form below in a weak noise limit. We need to show that:

PγkE(M∗1M2...M
∗
n−1Mn) = E(M∗1M2...M

∗
n−1Mn)Pγk(2.68)

Here, the matrices Mi are selected from NΨ,x/y and Ψx/y. That follows directly from:

E((M1Pγk)∗(M2Pγk)...(Mn−1Pγk)∗(MnPγk))

= P−1
γk

E(M∗1M2...M
∗
n−1Mn)Pγk = E(M1M

∗
2 ...Mn−1M

∗
n)

(2.69)

Thus, the expected values of the off-block-diagonal elements of Kn are zero in the isotypic compo-

nent basis.
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CHAPTER 3

Decoupled synchronized states in networks of linearly coupled

limit cycle oscillators

Published as Salova, A., & D’Souza, R. M. (2020). Decoupled synchronized states in networks

of linearly coupled limit cycle oscillators. Physical Review Research, 2(4), 043261.

Networks of limit cycle oscillators can show intricate patterns of synchronization

such as splay states and cluster synchronization. Here we analyze dynamical states

that display a continuum of seemingly independent splay clusters. Each splay cluster

is a block splay state consisting of subclusters of fully synchronized nodes with

uniform amplitudes. Phases of nodes within a splay cluster are equally spaced, but

nodes in different splay clusters have an arbitrary phase difference that can be fixed

or evolve linearly in time. Such coexisting splay clusters form a decoupled state in

that the dynamical equations become effectively decoupled between oscillators that

can be physically coupled. We provide the conditions that allow the existence of

particular decoupled states by using the eigendecomposition of the coupling matrix.

We also provide an alternate approach using the external equitable partition and

orbital partition considerations combined with symmetry groupoid formalism to

develop an algorithm to search for admissible decoupled states. Unlike previous

studies, our approach is applicable when existence does not follow from symmetries

alone and also illustrates the differences between adjacency and Laplacian coupling.

We show that the decoupled state can be linearly stable for a substantial range

of parameters using a simple eight-node cube network and its modifications as an

example. We also demonstrate how the linear stability analysis of decoupled states

can be simplified by taking into account the symmetries of the Jacobian matrix.

Some network structures can support multiple decoupled patterns. To illustrate
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that, we show the variety of qualitatively different decoupled states that can arise

on two-dimensional square and hexagonal lattices.

3.1. Introduction

Networks of oscillators are pervasive in the world around us, from electric power grids to brain

networks. Thus understanding the coordinated, dynamical patterns of oscillation that can spon-

taneously arise in such networks is of broad interest. Coupled oscillators provide a useful model

to study many biological [8,32,60,146] and engineered [112,122] systems. Full synchronization,

where each node in the network follows the exact same trajectory in phase space, is the most basic

form and widely observed [44, 83, 144]. By considering the details of the network structure and

dynamics, more intricate forms of synchronization can be predicted, such as cluster synchroniza-

tion [18, 54, 65, 66, 99, 114, 131, 139], splay states [145, 164], chimera states [1, 7, 31, 161] and

fully asynchronous states. Here we focus on intriguing states of synchronization that have been

largely unstudied. The states have intricate synchronization patterns of seemingly independent

(but interwoven) sub-clusters that arise because the equations of motion lead to the cancelling out

of terms of often physically coupled oscillators. Hence such a state was called “decoupled” when

first discovered [3, 4]. Such a state appears naturally in analysis of symmetric networks of phase

oscillators with homogeneous parameters [10,26], and was only recently achieved in experiment for

a ring of phase-amplitude oscillators [97], demonstrating emergent long-range order that is a con-

sequence of decoupling. But the range of decoupled states that can be supported on any arbitrary

network topology has not yet been addressed, likewise the stability properties of decoupled states

are largely unexplored.

Here we focus on decoupled states in networks of linearly coupled phase shift invariant limit

cycle oscillators (e.g. Stuart-Landau oscillators). Their phase shift symmetry combined with linear

coupling provides an opportunity for diverse decoupled states to exist. Previously, the decoupled

state has been analyzed from the symmetry perspective [4, 10]. Here we show that the sufficient

conditions on the network topology that allow decoupling can not be derived from the symmetries

alone, echoing the results from groupoid formalism [51,142] and recent cluster synchronization lit-

erature [131,134,139]. This allows us to create an iterative algorithm to obtain allowed patterns
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of decoupling from network structure in the distinct cases of adjacency and Laplacian coupling.

We use the notions of (external) equitable partitions [131] and orbital partitions [31, 114] which

together take into account the balanced equivalence relations of the network as well as the symme-

tries of the associated quotient network. All nodes within each cell of the equitable partition are

fully synchronized, and detailed patterns of phase shift synchronization can be obtained from the

symmetries of the quotient network [142].

Additionally, we show how to use the eigendecomposition of the coupling matrix to check for

admissibility of decoupled states of a given structure by generalizing recent analysis of partial syn-

chronization in Stuart-Landau oscillator networks [81,118]. Finally, we provide a general outline

for determining the stability of these states and show how to use symmetry considerations to sim-

plify the stability calculations using the symmetries arising from the automorphism group of the

coupling matrix [114] and beyond [43,50]. As an illustration, we explicitly perform stability calcu-

lations for a decoupled state consisting of two independent splay clusters that occurs in an example

network of eight oscillators coupled on a cube (which corresponds to the case of decoupling that can

be explained by symmetries alone) in cases of adjacency and Laplacian coupling. Additionally, we

perform stability calculations for the same state for two distinct coupling topologies that are similar

to the cube, but break the symmetry in ways that keeps the state admissible only for adjacency

and Laplacian coupling respectively.

The rest of the manuscript is organized as follows. First we discuss decoupled states in more

detail. Then, in section 4.2, we present the necessary background, including the types of dynamics

and coupling matrices we consider, the formal definition of decoupling, and the notation that will

be used throughout the manuscript. In section 3.4, we consider how decoupling in linearly coupled

networks arises from the network topology, expanding existing results to cases when the presence of

these states is not purely dictated by symmetries. To illustrate the methods, we present examples

on various networks, from simple modifications of ring topology to periodic square and hexagonal

lattices. We then illustrate how the stability calculation can be simplified based on symmetry

considerations beyond cluster synchronization in section 3.5. Finally, we summarize our findings

and point out future directions in section 3.6.
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3.2. Decoupled states

A decoupled state consists of several distinct splay clusters. Each splay cluster is a block splay

state, and nodes in different splay clusters have an arbitrary phase difference that can either be fixed

in time, meaning the state is periodic, or evolve linearly for quasiperiodic states. Here, the term

decoupled refers to the fact that the coupling terms responsible for intra-cluster interactions cancel

out in the dynamical equations, even if physical coupling between the oscillators in different splay

clusters is present. Block splay states (also referred to as twisted states or traveling wave states

in the literature [145,164]) arise as a form of symmetry breaking for a variety of coupling matrix

structures, for instance, rings [42,97,156], all-to-all coupling [82], and lattices of oscillators [58,87].

These states are characterized by synchronization with a nonzero winding number (meaning that

for some ordering of oscillators, each pair of neighbors is separated by an equal phase difference,

and the winding number is determined by how many of the differences add up to 2π). See, for

instance, Fig. 3.1(b-d) which show three distinct block splay states that can exist for a ring of eight

identical oscillators. Such a ring supports a decoupled state consisting of two independent splay

clusters as shown in Fig. 3.1(e), with δ12 denoting the arbitrary phase difference between the two

splay clusters. The oscillators can be simple phase oscillators or can be limit cycle oscillators, such

as nanoelectromechanical oscillators [42,97] and Stuart-Landau oscillators, where further patterns

including amplitude death can exist [81,118].

The phase shift invariance of the full dynamical system allows existence of decoupled states

consisting of multiple splay clusters with an arbitrary winding number. However, it is possible to

obtain decoupling from more relaxed conditions [4]. In that case, however, the admissible splay

states will be restricted by specific symmetries of the individual oscillator dynamics and coupling

terms.

A periodic decoupled state was first observed in an analysis of bifurcations on rings of coupled

oscillators [3], and motivated a symmetry based analysis of decoupling phenomena in networks

with more general structure [4]. Under the presence of symmetries in nodal dynamics and with

linear coupling, these states can be present in a diverse range of systems such as oscillators coupled

in rings, hypercubes, full bipartite graphs, and infinite chains [4]. The state appears naturally

in analysis of symmetric networks of phase oscillators with homogeneous parameters [10,26] (the
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Figure 3.1. Illustrating splay states (b-d) and a decoupled state (e-f) in a ring
network of 8 limit cycle oscillators. (a) The physical coupling and node indexes.
(b-e) Each state is visualized on a ring corresponding to unit amplitude. Each
small circle corresponds to the instantaneous phase of a subset of nodes, with the
number of oscillators in that phase denoted by the number inside the circle, and
their indexes provided next to the circle. (b) A splay state with 2 fully
synchronized sub-clusters, each consisting of 4 nodes. (c) A splay state with 4 fully
synchronized sub-clusters, each consisting of 2 nodes. (d) A splay state with 8 fully
synchronized sub-clusters, each consisting of a single node. (e) A decoupled state
consisting of two splay state clusters (violet and teal nodes) with an arbitrary
phase difference δ12 between them. Each phase is labeled by Cqp = {i, j} where p
denotes which splay cluster nodes i and j belong to, and q further partitions each
splay cluster into fully synchronized sub-clusters, each consisting of 2 oscillators.
(f) Visualizing the decoupled state (e) on a ring (a), where colors correspond to
the splay clusters, and different intensities distinguish between different fully
synchronized sub-clusters.
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latter considers a general case of difference and product coupling), where the state is described as

partitioned rotating blocks.

More recently, the state was predicted to occur in rings of 4n coupled phase-amplitude na-

noelectromechanical oscillators [42], and, to our knowledge, experimentally observed for the first

time in 2019 [97]. Interestingly, in ring networks, the physically coupled neighboring nodes have

an arbitrary phase difference and are effectively decoupled from each other. Stability analysis of

the decoupled states on 4n-node ring networks with uniform and non-uniform natural frequencies

was performed in Ref. [43]. There, it was shown that the amplitude degree of freedom is essential

for the linear stability of that state (i.e., the state would not be linearly stable for phase only oscil-

lators in the absence of explicit long-range, nonpairwise, or nonphase coupling). Moreover, it was

demonstrated that mismatches in the natural frequencies of oscillators lead to intricate patterns

of stability that show sensitive dependence on the relative frequencies of groups of oscillators in

distinct splay clusters.

3.3. Formalism

In this manuscript, we consider networks of phase shift invariant limit cycle oscillators (such as

Stuart-Landau oscillators) with linear coupling, with dynamical behavior governed by:

żj = f(|zj |, ψj) · zj + κjke
iβjk

∑
k

Mjkzk.(3.1)

The first term corresponds to the evolution of the state of each oscillator, denoted by, zj = rje
iθj ∈

C, in absence of coupling. Without coupling, the system would evolve according to a nonlinear

function f(|zj |, ψj) · zj (where the nonlinearity arises from the form of the function f). Specifically,

we consider functions where, in absence of coupling, one of the admissible states of the system is a

limit cycle with fixed amplitude rj and linearly evolving phase θj . Here, ψj denotes the parameters

of individual oscillators.

The oscillators are coupled through the coupling matrix M , and parameters κjk and βjk con-

tribute to the strength of dissipative coupling Re(κjke
iβjk) and reactive coupling Im(κjke

iβjk). The

coupling matrix M is constrained to have binary off-diagonal entries and can either correspond to

the adjacency matrix A or the graph Laplacian L, where L = A−D (note the sign convention) the
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diagonal matrix D is defined by Dij = δij
∑
Ai, and δij is the Kronecker delta. Here, we assume

the network is undirected. However, the results generalize for directed networks as well.

States of dynamical systems described by eq. (3.1) and its modifications (e.g., with added time

delay) have been extensively analyzed in case of Stuart-Landau oscillators, where the individual

oscillator dynamics are of the form:

f(|zj |, ψj) · zj = (λj + iωj − |zj |2)zj ,(3.2)

where λj ∈ R is the bifurcation parameter, and ωj ∈ R is the individual oscillator frequency.

Similarly, the dynamics of experimentally realized nanoelectromechanical oscillators [97] is well ap-

proximated by equations of the form of eq. (3.1) [90], with individual oscillator dynamics following:

f(|zj |, ψj) · zj =

(
−1 + iωj + 2iαj |zj |2 +

1

|zj |

)
zj ,(3.3)

where ωj ∈ R is the oscillator frequency, and αj is the Duffing nonlinearity. We will use these types

of individual oscillator dynamics in our illustrative examples throughout the manuscript.

Some basic parameters are needed to define a state consisting of multiple splay clusters. We

illustrate this with an example of a decoupled state in a network of nanoelectromechanical oscillators

shown in fig. 3.1 (e-f) and studied in Ref. [43]. Let k denote the number of independent splay

clusters. Let m denote the number of fully synchronized sub-clusters in the splay cluster, and let

n denote the number of nodes in each sub-cluster. The number of nodes in the network is simply

N = kmn. For fig. 3.1 (e-f), k = 2,m = 2, n = 2. We will also use the key notation Cqp with

p ∈ 1, 2, · · · k indicating the splay cluster index and q ∈ 1, 2, · · ·m indicating the fully synchronized

sub-cluster index. We provide formal details below (including the more complicated case where m

and n can vary for different splay clusters).

Example 3.3.1. A network of eight nanoelectromechanical oscillators coupled to their nearest

neighbors via Laplacian coupling on a ring (shown schematically on fig. 3.1 (a)) exhibits a variety

of states that can be observed in experiment [97]. Assuming the parameters of the network are
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homogeneous, the equation below is a good approximation of the dynamics of the system:

żj = −zj + iωzj + 2iα|zj |2zj +
zj
|zj |

+ iδ
∑
k=j±1

Ajk (zk − zj) .(3.4)

In addition to multiple splay states, some of which shown on fig. 3.1(b-d), this system admits a

decoupled state (shown in fig. 3.1 (e-f)) defined by:

(z1, ..., z8) = (z1, z2,−z1,−z2, z1, z2,−z1,−z2).(3.5)

Here, z1 = eiθ1, z2 = eiθ2, and θ2− θ1 is an arbitrary free parameter, and the oscillators are labeled

by going around the ring.

Using the Cqp notation (defined formally below in definition 3.3.2), C1
1 = {1, 5}, C2

1 = {3, 7},
C1

2 = {2, 6}, C2
2 = {4, 8}, and C1 = {1, 3, 5, 7}, C2 = {2, 4, 6, 8}. So the “even” nodes are decoupled

from the “odd” nodes (evident from neighbors of each node being in antiphase in relation to each

other), and the neighboring nodes that are physically coupled are separated by an arbitrary but fixed

phase difference.

If the parameters in eq. (3.4) are homogeneous, all the nodes (and therefore the splay clusters)

move with the same frequency, resulting in the constant time-independent phase difference θ2 − θ1.

We now define the (periodic or quasiperiodic) decoupled state more generally as a combination

of different splay clusters, where each splay cluster can have a unique number of fully synchronized

sub-clusters as well as nodes within each sub-cluster:

Definition 3.3.1. We say a set of mn nodes is in a splay state (with m fully synchronized clus-

ters) if for some ordering of nodes their states are {z, ..., z, ωz, ..., ωz..., ωm−1z, ..., ωm−1z}. Here,

ω is the mth primitive root of unity.

Definition 3.3.2. Here we define a decoupled state consisting of k distinct but interleaved

splay states, where each splay state is called a splay cluster for conceptual convenience.

Let the nodes of the system be labeled by indexes I = {1, ..., N}, where N is the total number

of nodes. We can partition the nodes according to their phases into non-overlapping clusters Cqp

with subscripts indicating the splay cluster to which the node belongs and the superscripts

indicating the fully synchronized sub-cluster within each splay cluster. Let the splay state
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clusters be indexed by p. Then mp is the number of fully synchronized sub-clusters in splay cluster

p and np is the number of nodes in each of the fully synchronized sub-clusters (the total number of

nodes is then N =
k∑
p=1

npmp.).

Mathematically, this is described by:

• Cqp , p = 1, ..., k, q = 1, ...,m, s.t. if i, j ∈ Cqp , zi = zj, and |Cqp | = npmp;

• Cp = Cq1p ∪ ... ∪ Cqmpp , s.t. if i ∈ Cqrp and j ∈ Cqsp , zi = e2πi|qr−qs|/mzj, and the phase

difference is fixed over time;

• if i ∈ Cq1t and j ∈ Cq1u , zi = eiδtu
ri
rj
zj, and the condition holds instantaneously, but δtu is

allowed to evolve linearly in time.

The partition of nodes into the cells C1
1 , ..., C

m1
1 , ..., C1

k , ..., C
mk
k defines the state.

In presence of adjacency coupling, the decoupling is manifested by the fact that the total effect

of the nodes in the cluster Cp on each node j in the cluster Cr (p 6= r) cancel out. Mathematically,

the interaction terms are proportional to
∑
k∈Cp

Ajkzk = 0. In case of Laplacian coupling, the only

effects of the nodes in Cp on each node j in the cluster Cr (p 6= r) are manifested through the

self-interaction terms. Mathematically, the interaction term affecting the state of the node j if

proportional to
∑
k∈Cp

Ajk(zk − zj) = −npjzj, where npj denotes the number of edges coming into the

node j from the cluster p.

To further illustrate how the oscillators are organized into splay clusters and fully synchronized

sub-clusters in a decoupled state, and how this corresponds to our notation, we present schematic

examples of possible amplitudes and relative phases of such states in fig. 5.1 for phase-amplitude

oscillators. fig. 5.1(a) corresponds to the case when the amplitudes of all the oscillators are equal.

In contrast, fig. 5.1(b) shows a state where the amplitudes of oscillators in different splay clusters

differ. Moreover, each splay cluster has a distinct number (2, 3, and 4) of fully synchronized

sub-clusters, which leads to interesting multi-frequency oscillation behavior.

A state where both antiphase synchronization and multifrequency behavior are present, simi-

larly to the one on fig. 5.1(b), is described in Ref. [151]. However, in the state presented there,

clusters of oscillators of different amplitudes all either have the same or opposite phases, making it

different from the decoupled state considered in our manuscript.
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Figure 3.2. Schematic examples of possible phase (position on a ring) and
amplitude (ring radius) configurations in decoupled states in networks of limit
cycle oscillators. Different colors represent different splay clusters. Cqp corresponds
to qth fully synchronized sub-cluster in pth splay cluster. (a) Equal amplitude
state with constant phase differences, m1 = m2 = m3 = 3 (could be periodic or
quasiperiodic, depending on the details of the system). (b) Quasiperiodic state
with different amplitudes, m1 = 2, m2 = 3, m3 = 4.

We note that the dynamics described by eq. (3.1) is not the only type of dynamics producing

decoupled clusters. For example, the state can arise in mean field coupled networks of phase-only

oscillators such as Kuramoto and Kuramoto-Sakaguchi oscillators [10,26], which can be considered

as the approximation linearly coupled Stuart Landau oscillators in case of weak coupling. Such

models have fewer degrees of freedom and may be easier to analyze, but do not capture the ampli-

tude dynamics or full stability properties of the decoupled states of phase-amplitude oscillators [43].

In this section, we presented the general form of a decoupled state. Now, a natural question

to ask is what coupling topologies admit its existence. In addition to the all-to-all case, some ex-

amples of these networks have been investigated in literature, e.g., in context of rings of Josephson

junctions [3] and nanoelectromechanical oscillators [97]. More generally, in [4], the constraints on

the topologies allowing the existence of decoupled states are formulated based on symmetry consid-

erations for a more general class of dynamical equations with adjacency coupling. In section 3.4 of

this manuscript, we demonstrate that the decoupled states do not uniquely arise from symmetries
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alone, even in case of adjacency coupling. Therefore, our analysis covers cases not addressed in

earlier work.

3.4. Decoupled states and network topology

In this section, we investigate what decoupled states are admissible for a given network topology

and, conversely, what network topologies are allowed to form a decoupled state of a given form.

Linearity of the dynamics in z allows directly predicting the form of allowed decoupled states

from the eigendecomposition of the adjacency or Laplacian matrix of the network, as we show in

section 3.4.1. Checking the admissibility of a given form of the decoupled state is based on these

conditions is trivial. However, finding all the allowed decoupled states based on the conditions in

section 3.4.1 hold can be challenging in practice, as the corresponding eigenvalues can be highly

degenerate.

An alternative way to search for decoupled states is by investigating the structure of the coupling

network directly. Previously, the decoupling conditions were formulated for oscillator networks with

adjacency coupling and symmetries [4]. However, we show that decoupling is admissible for a much

wider range of network topologies as well as for Laplacian coupling. We build upon work showing

that cells of equitable partition of networks can synchronize [51,113,131,134], and more intricate

patterns of synchrony can be inferred from the symmetries of the quotient networks [53, 142].

Combining these results with adjacency and Laplacian coupling and taking the decoupling effects

into account, in section 3.4.2 we formulate the conditions on decoupling that expand the set of

networks previously discussed. In both cases, the network parameters can have modular structure,

as discussed in section 3.4.3. section 3.4.4 demonstrates how the algorithms in section 3.4.2 can be

used to reveal ways in which the decoupled state and its combination with amplitude death can

appear in coupled oscillators on 2D square and hexagonal lattices.

It is worth noting that the analysis below can be extended to include the concept of amplitude

death, which is a phenomenon associated with stabilization of the trivial steady state solution that

can be observed in Stuart Landau oscillator networks [102]. For simplicity, most of the results

below are presented for the state in which all the oscillators have nonzero amplitudes, and thus

no partial amplitude death [11] is observed. However, adding nodes exhibiting amplitude death
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to the adjacency coupled network in a way that keeps the dead nodes decoupled from other nodes

would not change the admissibility of state of the other nodes (though it will influence its stability

properties). This also extends to Laplacian coupling. Specifically, nodes that are only connected to

one fully synchronized cluster can be synchronized with the rest of the cluster without destroying

the decoupled state on other nodes.

3.4.1. Admissible patterns of decoupling from eigendecomposition. In this section,

we discuss the conditions on admissibility of a specific decoupled state given the coupling via an

adjacency/Laplacian matrix M . These conditions can be formulated in terms of the eigenvectors

of M (similar to Ref. [81, 118], where the concept of eigensolutions is discussed). Assuming the

parameters are homogeneous throughout the network, the dynamics of the system in eq. (3.1)

reduces to:

ż = f(|z|) · z + κeiβMz.(3.6)

The coupling matrix can be decomposed according to:

Mv = ηv,(3.7)

where η and v are its eigenvalues and eigenvectors.

First, we seek eigendecompositions that result in a periodic decoupled state that evolves ac-

cording to:

z(t) = z0rηe
iωηt,(3.8)

where z0 is an initial condition corresponding to the decoupled state as defined in definition 3.3.2.

eq. (3.8) suggests that the conditions on the eigendecomposition of the coupling matrix M

(again, M = A for adjacency coupling, and M = L = A−D for Laplacian coupling) that result in

a periodic decoupled state with z0 are:

• If i, j ∈ Cqp :

[vp]i = [vp]j .(3.9)
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• If i ∈ Cq1p and j ∈ Cq2p :

[vp]j = e2πi|q1−q2|/m[vp]i.(3.10)

• If i /∈ Cp:

[vp]i = 0.(3.11)

• Consider distinct clusters Cp1 and Cp2 , with corresponding eigenvalues and eigenvectors

arising from Mvp1 = ηp1vp1 and Mvp2 = ηp2vp2 . For these clusters:

ηp1 = ηp2 ,(3.12)

which results in any vector corresponding to the decoupling state vd =
∑
eiδjvpj being an

admissible eigenvector.

To summarize, we require that any vector with the entries corresponding to an instance of a

decoupled state with an arbitrary phase difference between splay clusters is an eigenvector of M .

We can now show that these conditions on the eigendecomposition lead to decoupling. Let vd

be an eigenvector. We use an ansatz zi = [vd]izη to obtain:

vd ◦ żη =
(
f(|vd ◦ zη|) + κeiβM

)
vd ◦ zη,

where ◦ denotes element-wise product. Using our key assumption of phase shift invariance in the

full system, which is manifested in the form of eq. (3.6), we arrive to:

żη =
(
f(|zη|) + ηκeiβ

)
zη(3.13)

The resulting solution is then of the form:

z(t) = rηe
iωηtvd,(3.14)

which corresponds to the evolution of a decoupled state. The amplitude rη and the angular fre-

quency ωη depend on the parameters and the form of the function f .
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A condition similar to eq. (3.12) (normalized vp1 + vp2 is an eigenvector of the Laplacian)

without eqs. (3.9) to (3.11) holding does not result in a decoupled state. For instance, an adja-

cency/Laplacian matrix for a ring of six coupled oscillators has eigenvectors corresponding to splay

clusters (rotating blocks) with winding numbers 2 and 3, but these states are not decoupled. Yet,

multiple decoupled states are admissible for all-to-all coupled networks of six oscillators, as shown

in fig. 3.3 (c-d).

On the other hand, if all the conditions in eqs. (3.9) to (3.11) hold, but eq. (3.12) does not hold,

the resulting decoupled state is quasiperiodic. That quasiperiodic state is characterized by:

zj = zη,p[vp]j , zη,p = rη,pe
iωη,pt,(3.15)

for j ∈ Cp. This allows the oscillator amplitudes and frequencies, rη,p and ωη,p, to be different for

nodes in different splay clusters, as shown in fig. 5.1 (b).

Our approach extends the analysis of eigensolutions describing the dynamics of constant ampli-

tude states in networks of coupled Stuart-Landau oscillators, as presented in Refs. [81,118]. There,

the eigendecomposition was associated with splay states and their coexistence with amplitude death

(the state in which z(t) = 0 for some oscillators) [102], but decoupling was not considered. We

discuss the case of Stuart Landau oscillators in more detail in section 3.7.1. For networks of Stuart

Landau oscillators, the decoupled state can coexist with partial amplitude death. For instance, if

the decoupled state is an admissible state, the state a set of nodes belonging to a decoupled cluster

has zero amplitude is admissible as well. Additionally, eq. (3.15) demonstrates that multifrequency

oscillations previously associated with coexistence with amplitude death can occur even in absence

of it.

Example 3.4.1. As described in example 3.3.1, a decoupled state exists in an eight oscillator

ring with nearest neighbor coupling, and the solution is valid both for adjacency and Laplacian cou-

pling schemes. This is evident since the following eigenvectors that share an eigenvalue correspond

to decoupling of the even and odd nodes on the ring:

vp1 = (1, 0,−1, 0, 1, 0,−1, 0)T , vp2 = (0, 1, 0,−1, 0, 1, 0,−1)T , ηp1 = ηp2 .(3.16)
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In case of Laplacian coupling, breaking the symmetry by adding an edge between any pairs of nodes

related by i, j ∈ Cqp does not affect these eigenvectors, and the state is still admissible. However,

this does not hold for adjacency coupling.

We also note that this if the state is a result of symmetries (when the state belongs to a fixed

point subspace of an isotropy subgroup of the symmetry group of the system [54]), these conditions

become identical to the ones presented in Ref. [4] and could result in periodic or quasiperiodic

states [43].

Using the approach outlined here is easy if the goal is to check whether a particular decoupled

state is admissible for a coupling topology encoded in M . However, it is not always trivial to

enumerate the decoupled states of larger networks based on the eigendecomposition of the coupling

matrix. This method is not very easily applicable to highly regular networks, such as periodic

lattices discussed in section 3.4.4, because the eigenvalues become highly degenerate, making it

nontrivial to check conditions in eqs. (3.9) to (3.12) numerically. In the following section, we

introduce an alternative method that can be used to address this issue and allows to make a more

intuitive connection between the network structure and the decoupled state dynamics.

3.4.2. Admissible patterns of decoupling from network partitions. In this section,

we provide a complementary approach of relating network structure to the existence of decoupled

states. Since the admissibility of states depends on both the network structure and the coupling

type, we consider Laplacian and adjacency coupling separately. Specifically, we provide an iterative

algorithm that partitions the Laplacian coupled network nodes into splay clusters Cp and fully

synchronized clusters Cqp based on the concepts of equitable and orbital partitions used in cluster

synchronization literature [114,115,131,134,139]. We also show how the adjacency coupling case

is different and provide a way to search for decoupled states in that case as well.

For both coupling types, we require that the coupling between the nodes within a splay cluster

admits a splay state. However, in the Laplacian case, the edges between any nodes in the same

fully synchronized cluster can be ignored, whereas in case of adjacency clustering these edges also

affect the admissibility of the state. Additionally, we have take into account that self-terms can
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arise from Laplacian coupling between different splay clusters, which is not an issue for adjacency

case.

Let the set of nodes in the network be defined by I.

Definition 3.4.1. An equitable partition is a partition of the indexes of network nodes into

non-overlapping cells (collections of nodes) I1, ..., Id, where the number of edges from a node in

Ii to a node in Ij is the same for any choice of individual nodes within these cells. An external

equitable partition is a partition where these conditions hold for i 6= j.

Definition 3.4.2. An orbital partition is a division of network nodes into non-overlapping

cells I1, ..., Id according to the orbits of the automorphism group of that network (the symmetry

group formed by the node permutations that keep the network topology invariant). The nodes that

permute among one another under the action of all symmetry group elements get assigned to the

same cell.

Definition 3.4.3. A quotient network associated with a particular coarse-grained version of

the original network, such that each cell of the that partition becomes a new node and the weights

between these new nodes are the out-degrees between the cells in the original graph.

Now, we can define an algorithm to obtain decoupled states in networks with Laplacian coupling.

(The algorithm for adjacency coupling is presented in Alg. 3.4.0.2.) In contrast with existing

decoupled state literature [4, 10], we consider the states that arise from more than symmetries

alone.

Algorithm 3.4.0.1. To find admissible decoupled states for Laplacian coupling, it is sufficient

to:

(1) Find an external equitable partition of the network and form an quotient network associated

with that partition (it is possible that the equitable quotient is the same as the original

network).

(2) Check if the resulting quotient network formed in step 1 is symmetric with respect to any

symmetry group of the form Γ = Zm1 × ... × Zmk that acts on k non-overlapping sets of

nodes, the union of which is the entire quotient network. Find an orbital partition of the
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quotient network under the action of the symmetry group Γ and form the new quotient

network from the cells of this partition.

(3) Check if the number of edges coming into every node of the quotient network formed in

step 2 is divisible by the weight of that node (the number of nodes of the quotient network

in Step 2 combined into that node).

• If that is not satisfied, go back to step 2 and try a new orbital partition. In case that

does not work, go to step 1 and try a new external equitable partition.

• If that is satisfied, then a decoupled state is obtained. The orbital partition provides the

assignment into splay clusters Cp, and the equitable partition provides the assignment

into fully synchronized clusters Cqp .

In a special case of homogeneous parameters, if m1 = ... = mk, and the weights on all self-loops

and edges in an orbital quotient network are equal, the state is periodic.

We show that these conditions indeed characterize the decoupled states.

The first step is forming an equitable partition. It has been shown that equitable partitions

lead to synchronization [131,134], since all the nodes in a given partition cell get the same input

from all the other cells. Thus, the nodes in each cell of that partition can synchronize.

The second step is forming an orbital partition with respect to a symmetry group Zm1×...×Zmk ,

where Zmi refers to the cyclic group of degree mi. This ensures that a block splay state exists within

each cluster [48, 49]. We note that the symmetry of the quotient network does not necessarily

translate to the symmetry of the original network.

The last step combined with the second step ensures that each of the nodes in a decoupled state

is not influenced by other splay clusters in the dynamical equations.

We also note that the steps are not uniquely defined. First, there can be multiple equitable

partitions of the network. In some cases, different network partitions correspond to qualitatively

distinct decoupled states. For instance, in a network of 6 oscillators, two distinct decoupled states

are possible, see fig. 3.3. One of them corresponds to m = 3 with n1 = n2 = 1, the other to m = 2

with n1 = n2 = n3 = 1. Another case corresponds to finding partitions that could be further refined

to produce decoupled states. In that case, the state obtained is a restriction of a decoupled state
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Figure 3.3. Examples of decoupling on a 6-node network. A decoupled state
does not appear in a ring with nearest neighbor coupling. (a) Three decoupled
clusters in case of next neighbor coupling. (b) Two decoupled clusters for nearest

neighbor coupling with additional edges across the ring (ω stands for e2πi/3). (c-d)
Both of the states are admissible for all-to-all coupling.

with more clusters to a specific inter-cluster phase difference. Finally, the same quotient network

structure could correspond to qualitatively different decoupled states (e.g., shown in section 3.4.4).

Below is an example of applying the algorithm:

Example 3.4.2. We consider a network of eight oscillators similar to the ring in example 3.3.1

with additional edges between a subset of next nearest neighbors and two opposite nodes, as shown

in fig. 3.4(a).

• Solid lines on fig. 3.4 represent the ring topology, which would result in a periodic decoupled

state in absence of parameter heterogeneity. The state is admissible in case of adjacency

or Laplacian coupling.
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• Adding additional edges represented by dotted lines on fig. 3.4 would result in a quasiperi-

odic state. The state is admissible in case of adjacency or Laplacian coupling.

• Adding an edge represented by dashed line on fig. 3.4 makes that quasiperiodic state only

admissible in case of Laplacian coupling.

Following algorithm 3.4.0.1, we find the decoupled state that the network admits for the Lapla-

cian coupling case. The steps of the algorithm, as well as their description, is shown on fig. 3.4.

fig. 3.4 (d) shows the instantaneous state of the system. In general, even if all the oscillator natural

frequencies are equal, the frequencies of splay clusters (corresponding to nodes colored red and blue

on fig. 3.4 (c)) will differ because of the different intra-cluster connectivity structure (as evident

on fig. 3.4 (c′)). This leads to multifrequency splay synchronization of identical oscillators without

amplitude death.

This same algorithm can be applied to periodic lattices. The analysis of decoupled states in

square and hexagonal 2D periodic lattices is presented in section 3.4.4. There, we show that diverse

synchronization patterns can arise for the same regular network connectivity patterns.

Now, we consider adjacency coupling. If the external equitable partition is replaced by an

equitable partition in the first step of algorithm 3.4.0.1, that algorithm can be used to obtain

decoupled states for adjacency coupling. However, that does not cover the full range of possibilities

for decoupled states arising in adjacency coupled networks. We provide a more general algorithm

below.

Algorithm 3.4.0.2. To find admissible decoupled states for adjacency coupling, it is sufficient

to:

(1) Divide the network nodes into non-overlapping sets of nodes I1, ..., Ik. This partition is a

candidate for assigning nodes into splay clusters Cp.

(2) For each j = 1, ..., k, consider a subset of the original network that only contains nodes in Ij

and edges between these nodes. Check if there is an equitable partition of that subnetwork

into cells of equal size (I1
j , ..., I

mj
j , where |I1

j | = ... = |Imjj |), s.t. the resulting quotient

network is Zmj -symmetric. If so, I lj become candidates for fully synchronized clusters Cqp .
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Figure 3.4. Obtaining the decoupled state using algorithm 3.4.0.1 for the
network topology shown on (a). Subfigures (b)-(c) represent the steps to obtain
the state. The top row shows network partitions, and the bottom rows
demonstrate the quotient networks on various steps of algorithm 3.4.0.1. (b) shows
the four fully synchronized clusters corresponding to the external equitable
partition with the corresponding quotient network shown on (b′), once the self
edges are removed. (c′) shows the quotient network with re-weighted edges that is
now colored according to its orbital partition. (c) shows the original network
colored according to the orbital quotient. The decoupled state consists of four fully
synchronized clusters (shown in distinct colors on (b)) and two splay (rotating
block) clusters (shown in distinct colors on (c)). (d) demonstrates the form of the
state, where a and b are complex state variables.

(3) Check that the numbers of edges coming from nodes within each subset (I1
j , ..., I

mj
j ) of Ij

into every node i that is not part of that cell, i /∈ Ij, are equal.

• If the condition above is not satisfied, go back to step step 2 and try a new partition.

In case that does not work, go to step 1 and try a new equitable partition.

• If the condition is satisfied, then a decoupled state is obtained. The partition I1, ..., Ik

assigns the nodes into splay clusters Cp, and its refinement I1
j , ..., I

mj
j provides the

assignment into fully synchronized clusters Cqp .

Below, we provide an example of how the admissible networks for adjacency coupling may differ

from those for Laplacian coupling, even for the same resulting decoupled state.
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Figure 3.5. An example of a topology that allows decoupling in presence of
Laplacian coupling, but not adjacency coupling. The subfigures (a-c) have different
edges of the network highlighted in bold. (a): within fully synchronized clusters,
any coupling is admissible for Laplacian coupling. (b): between fully synchronized
sub-clusters that are in the same splay clusters. The quotient networks are
Z3 × Z2-symmetric. (c): between splay clusters. Each red node is connected to 2
nodes in each teal sub-cluster, each teal cluster connected to 2 nodes in each red
sub-cluster. (d): external equitable partition. (e): orbital partition with respect to
Z3 × Z2. The dashed lines are edges that are not mandatory.

Example 3.4.3. We provide examples of two 16-node networks with different coupling topologies

that admit a decoupled state. In both cases, the decoupled state consists of two splay clusters. The

first cluster has 3 fully synchronized sub-clusters with 4 nodes each. The second consists of 2 fully

synchronized sub-clusters with 2 nodes each.

fig. 3.5 provides an example of a network topology that admits a decoupled state for Laplacian

coupling, but not adjacency coupling. The network shown in fig. 3.6 is an example of a network

topology that admits a decoupled state for adjacency coupling, but not Laplacian coupling.

The configuration shown in fig. 3.5(a-c) is similar to remote synchronization [111]: one of the

fully synchronized pairs of nodes, namely, two red nodes on the bottom right of fig. 3.5 have no

edges directly connecting them to each other.
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Figure 3.6. An example of a topology that allows decoupling in presence of
adjacency coupling, but not Laplacian coupling. The subfigures have different
edges of the network highlighted in bold. (a): within fully synchronized clusters.
(b): between fully synchronized sub-clusters, within the same splay cluster. The
quotient networks are Z3 × Z2-symmetric. (c): between splay clusters. Each red
node is connected to the same number of nodes in each teal sub-cluster, and vice
versa. (d): external equitable partition. (e): orbital partition with respect to
Z3 × Z2. The dashed lines are edges that are not mandatory.

Although the algorithms in this section are most useful conceptually, the steps can be imple-

mented using code published in recent literature. For instance, an efficient way to obtain equitable

partitions from the network structure is described and implemented in Ref. [69], and orbital par-

titions can be determined using the supplementary code in Ref. [114].

3.4.3. Heterogeneous networks. So far, we considered decoupled states arising in the net-

works of oscillators with homogeneous individual oscillator parameters ψ and homogeneous coupling

parameters κ and β. However, since the interaction dynamics between different decoupled clusters

sum up to zero, and since the self-interactions do not affect the state for Laplacian coupling, decou-

pled states can also be observed if the homogeneity assumption is relaxed. Specifically, decoupling

can be observed in modular networks with different modules corresponding to different node and

edge parameters, and the decoupled state is robust to small discrepancies in parameters within
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each modules [97]. Additionally, decoupling can be present in a multilayer network where each

layer corresponds to a specific functional form of node dynamics and coupling parameters.

We denote the nodal parameters by ψi and the coupling parameters by ψij . For both coupling

schemes, the relaxed conditions require the following:

• Nodal parameters, denoted by ψ, satisfy ψi = ψj if i ∈ Cp and j ∈ Cp.
• Coupling parameters between different fully synchronized sub-clusters of each decoupled

splay cluster satisfy ψij = ψkl (here, i, k ∈ Cqp and j, l ∈ Crp , q 6= r).

Additionally, for Laplacian coupling we require that the inter-cluster coupling parameters satisfy

ψij = ψkl if i, k ∈ Cp and j, l ∈ Cq when p 6= q. If the nodes belong to the same synchronized

cluster, no restrictions on the coupling strength are needed.

For adjacency coupling, we require each edge parameter ψij from a fully synchronized cluster of

Cqp to a fully synchronized cluster Csr is matched by an edge ψij = ψkl of the same strength going

into each of the clusters Ctr where s 6= t. Additionally, we require all the intra-cluster coupling

parameters within fully synchronized sub-clusters to have the same strength.

The conditions above can be understood both from the eigenvector approach in section 3.4.1

and the more structural approach in section 3.5.2. The restrictions presented here set constraints

on the interactions within different blocks of the weighted coupling matrix so that the heterogeneity

in parameters does not affect the relevant eigenvectors, therefore still allowing the decoupled state

to be present, preserving the reasoning of section 3.4.1. Re-weighting the coupling matrix does

introduce different types of edges and nodes to the networks in section 3.5.2, but these changes do

not affect the structure of the relevant quotient networks, therefore keeping the decoupled states

admissible if they were admissible in a homogeneous networks [2].

In addition to parameter heterogeneity, we can consider heterogeneity in nodal dynamics, re-

sulting in a multilayer matrix with each type of dynamics corresponding to a distinct layer. An

example of such a network could be a network of Stuart-Landau oscillators coupled to a network of

nanoelectromechanical oscillators, with nodal dynamics defined in eq. (3.2) and eq. (3.3). Very sim-

ilarly to the case of node parameter heterogeneity, this setup allows the decoupled state if fi(|zj |, ψ)

and fj(|zj |, ψ) have the same functional form and parameters for i ∈ Cp and j ∈ Cp.
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3.4.4. Decoupled states on lattices. Generally, coupled periodic and chaotic oscillators

placed on lattice topologies lead to a rich variety of spatio-temporal patterns, as shown in various

analytic and numerical studies [6,18,53,87,141]. For instance, all possible balanced two-colorings

for square lattices are presented in Ref. [153]. Since the lattice topology is highly symmetric, a

variety of decoupled states is admissible on lattice networks.

The simplest example of a lattice system is an infinite 1D chain of oscillators. A state where

even and odd nodes are decoupled and next nearest neighbors are in antiphase [4] is the only

admissible decoupled state for such a system. This state is similar to the pattern observed in rings

of 4N oscillators [3,43,97], which is a chain with periodic boundary conditions.

More complicated decoupling patterns can arise on 2D lattice coupling topologies. To illustrate

them, we consider a periodic 8× 8 square lattice, where each node has four immediate neighbors,

and a periodic 8 × 8 hexagonal lattice, where each node has six neighbors. Though the analytic

expressions for eigenvectors and eigenvalues of the Laplacian of periodic square and hexagonal

lattices are available [120], their eigenvalue spectra are highly degenerate and enumerating the

decoupled states based on the results of section 3.4.1 is therefore nontrivial. On the other hand,

the approach from section 3.4.2 can be used, but it requires forming equitable partitions (also

referred to as balanced k-colorings) of the lattice where k ≥ 4.

Some of the resulting decoupling patterns, along with the quotient and orbital networks respon-

sible for generating them, are demonstrated on figs. 3.7 and 3.8. To keep the examples minimal,

we do not introduce node or edge heterogeneity. However, the states we present can also occur if

the node and edge parameters satisfy the conditions of section 3.4.3.

First, we consider the square lattice case (fig. 3.7). We observe various patterns of decoupling,

in many of which the pattern can be related to balanced 2-colorings [153]. Distinct colors represent

distinct splay clusters, and different degrees of transparency represent different synchronized sub-

clusters within each splay cluster. There are several partitions that lead to two decoupled clusters

(fig. 3.7 (a-d)), one that leads to four decoupled clusters (fig. 3.7 (e)), and one that leads to eight

(or, more generally, to n for n× n lattices), with the phase differences between nodes on different

diagonals arbitrarily defined (fig. 3.7 (f)). In cases (d,e,f), the nodes are additionally effectively

decoupled from their own cluster. In case of adjacency coupling, this means that the oscillator
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Figure 3.7. Decoupling in a periodic square lattice with nearest neighbor
coupling (each node has 4 neighbors; in the visualization, the nodes are coupled if
the edges of the squares touch). Subfigures (a-d) left: state of each node. Top
right: external equitable partition defining the fully synchronized state (edges are
unidirectional have weigh 1 for single line, 2 for double line). Bottom right: orbital
partition defining splay clusters. Colors correspond to different splay clusters, and
different brightness within each color corresponds to different fully synchronized
sub-clusters. (a-d) has two splay clusters, (e) has four, (f) has n for a n× n
periodic lattice.
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frequencies and amplitudes in the decoupled state are the same as they would be in absence of any

coupling.

Next, we consider the hexagonal lattice coupling structure (fig. 3.8). We observe two distinct

partitions corresponding to two decoupled clusters (fig. 3.8 (a-b)), and one corresponding to three,

four, six, and eight decoupled clusters (fig. 3.8 (c-f)). The nodes are effectively decoupled from

their own cluster in partitions (a,c-g). The state in (e) is consists of four (or, more generally, n for

2n×2n lattices) separate clusters corresponding to every other row in the lattice and two decoupled

clusters populating other rows. The state in (f) is similar to that in fig. 3.7 (e), where each pair of

rows is separated by an arbitrary phase difference.

In networks of Stuart-Landau oscillators, amplitude death can coexist with the phenomena

described above. For instance, if any of the nonzero amplitude splay clusters is replaced with a

set of dead nodes, the state is still admissible. Additionally, we present an example illustrating a

different possibility on fig. 3.8 (g). The state consists of three splay clusters and a cluster of dead

nodes. Two of the splay clusters are the same as those shown on fig. 3.8 (c). The nodes in the

third cluster of fig. 3.8 (c), shown in red, form a decoupled cluster and a cluster of dead nodes on

fig. 3.8 (g). Two decoupled clusters are characterized by winding numbers m1,2 = 3, and the third

cluster has m3 = 2.

In some of the patterns, all the nodes are decoupled from their own splay cluster in addition to

being decoupled from all the other splay clusters. That implies the state is not linearly stable if the

nodal dynamics is described by phase-only oscillator dynamics such as those of nearest neighbor

Kuramoto and Kuramoto-Sakaguchi model [43].

The analysis can be extended to higher dimensional lattices, in which even more complicated

decoupling patterns could be observed. Stability of these patterns could be a subject of further

investigation.

3.5. Stability calculations

3.5.1. General Jacobian structure. It is important to perform linear stability analysis

of the decoupled state because it allows predicting which parameter regions will correspond to
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Figure 3.8. Decoupling in a periodic hexagonal lattice with nearest neighbor
coupling (each node has 4 neighbors; in the visualization, the nodes are coupled if
the edges of the hexagons touch). The meaning of parts of subfigures described
under fig. 3.7. Subfigures (a-f) left: state of each node. Top right: external
equitable partition defining the fully synchronized state (edges are unidirectional
have weigh 1 for single line, 2 for double line). Bottom right: orbital partition
defining splay clusters. (a-b) have two splay clusters, (c) has three, (d) four, (e)
six, (f) has n for a n× n periodic lattice. Subfigure (g): decoupling pattern
including amplitude death.
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observing that state in simulations and experiments. Here, we present the general outline of linear

stability calculation for decoupled states in equations of the form of eq. (3.1) for N =
k∑
i=1

nimi.

The details of the stability calculation depend on the form of nodal dynamics, the decoupled

state (periodic or quasiperiodic, equal or unequal winding numbers mi), the type of coupling

(Laplacian or adjacency matrix), and the coupling topology within splay clusters. In some cases, the

stability calculations can be simplified using symmetry considerations, both by block diagonalizing

using subgroups of the automorphism group leading to cluster synchronization [114] and by block

diagonalizing by additionally using the symmetries of the splay states [43, 50]. In other cases,

symmetry methods may not be applicable.

Since the dynamics of each node correspond to two degrees of freedom, the Jacobian evaluated

at the decoupled state is a 2N × 2N matrix. For simplicity, we order the nodes according to the

splay clusters to which they belong. The full Jacobian matrix can be written as:

J =


JC1,C1 . . . JC1,Ck

...
. . .

...

JCk,C1 . . . JCk,Ck

 ,(3.17)

where each block JCi,Cj of size 2mini × 2mjnj corresponds to the interactions between the splay

clusters. Furthermore, each of these blocks is of the form:

JCp1 ,Cp2 =


JCq1p1 ,C

q1
p2

. . . JCq1p1 ,C
qm
p2

...
. . .

...

JCqmp1 ,C
q1
p2

. . . JCqmp1 ,Cqmp2

 ,(3.18)

where the finer blocks JCqipj ,C
qk
pl

correspond to the interactions between the fully synchronized sub-

clusters. The fully synchronized sub-cluster blocks are of the form:

JCq1p1 ,C
q2
p2

=


Ji1,j1 . . . Ji1,jn2

...
. . .

...

Jin1 ,j1 . . . Jin1 ,jn2

 .(3.19)
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Here, Cq1p1 = {i1, ..., in1}, and Cq2p2 = {j1, ..., jn2}. Finally, the Jacobian associated with each pair of

oscillators is:

Jij =

Jri,rj Jri,θj

Jθi,rj Jθi,θj

 =


˙δri
δrj

˙δri
δθj

˙δθi
δrj

˙δθi
δθj

 ,(3.20)

where δri and δθi are small perturbations of the amplitude and phase of the ith oscillator around

the decoupled state.

For instance, if m1 = ... = mk, the full Jacobian J is a 2N × 2N matrix, where N = (n1 + ...+

nk)m. Then, for i1 =
p1−1∑
j=1

mnj +(p1−1)q1 +r1 and i2 =
p2−1∑
j=1

mnj +(p2−1)q2 +r2, Ji1,i2 represents

the interactions between the oscillators in Cq1p1 and Cq2p2 blocks.

Given a specified decoupled state, the Jacobian blocks Jij (where i ∈ Cq1p1 and i ∈ Cq2p2 ) on that

decoupled state can be evaluated explicitly:

Jij =



 ∂fri/∂ri
∑
i∈Cp

κAijr sinβ∑
i∈Cp

κAij
1

r
sinβ

∑
i∈Cp
−κAij cosβ

 ,

for i = j;

Aijκ

 cos(β + ∆q1q2
p1p2) −r sin(β + ∆q1q2

p1p2)
1

r
sin(β + ∆q1q2

p1p2) cos(β + ∆q1q2
p1p2)

 ,

for i ∈ Cq1p1 , j ∈ Cq2p2 ,

(3.21)

where we assume homogeneous coupling parameters. Here, for the general quasiperiodic case

in case of uniform m, ∆q1q2
p1p2(t) = σp1p2(t) + σq1q2 , where σq1q2 =

2π

m
× ((q1 − q2) mod m), and

σp1p2(t) = σp1p2(0) + σ̇p1p2t is a linearly evolving phase difference between the clusters.

If the Jacobian is time-independent, linear stability analysis can be performed by obtaining the

largest real part of a Jacobian eigenvalue corresponding to transverse perturbations (as opposed

to the neutrally stable perturbations of phases in the direction within the state correspond to k

zero eigenvalues, where k is the number of splay clusters in the decoupled state). If the Jacobian

is a periodic matrix (namely, only two clusters have an irrational frequency ratio), the stability

analysis can be performed using Floquet theory. That is always possible when only two decoupled
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clusters are present. If more than two clusters are present and no special restrictions are imposed

on frequencies, the Jacobian is quasiperiodic and different methods are needed to perform stability

analysis.

3.5.2. States arising directly from symmetries. Symmetries are extremely useful in an-

alyzing various states of equivariant networked dynamical systems [50, 114], determining the ob-

servability and controllability of such dynamical systems [39, 100, 155], as well as studying their

global behaviors via transfer operators and their numerical approximations [130]. Likewise, if the

decoupled state arises from symmetries alone, these symmetries can be used to assist in stability

calculations using linear representation theory as shown below. Though the case of mi 6= mj can

appear as a result of symmetries, we first focus on the case of uniform m. The symmetries of the

Jacobian in that case are a combination of the symmetries associated with the orbital partition of

the network, and the symmetries leading to the splay state. The splay state symmetries show up as

follows. If i ∈ Cq1p1 and j ∈ Cq2p2 , k ∈ Cq3p3 and l ∈ Cq4p4 , for ((q1 − q2) mod m) = ((q3 − q4) mod m)

it is the case that Jij = Jkl if Aij = Akl (in other words, the coupling within each block is defined

by a circulant matrix). This simply follows from the general form of the dynamics we consider in

eq. (3.1). Below we present the conditions under which these symmetries (e.g., discussed in [4])

can be used to simplify the linear stability calculations.

Let M be the coupling matrix, and let Γ be the automorphism group of the matrix. The group

is formed by permutation matrices Pγ that act by relabeling the network nodes. Let Σc ⊆ Γ be

its subgroup such that its orbit partitions the nodes into decoupled splay clusters. Let Σs ⊂ Σc be

the subgroup such that its orbit partitions the nodes further into fully synchronized clusters. To

obtain decoupled splay clusters of equal winding number m, we require Σc (and therefore Σs) to

be subgroups of (Sn1 × ...× Snk)× Zm. Additionally, we require Zm ⊆ Σc. Here, Sni refers to the

symmetric group of degree ni.

Since Σs leads to fully synchronized clusters, it can be used to block diagonalize the Jacobian

according to its isotypic components (or, equivalently, irreducible representations) [114]. The

symmetries of the splay states and their effect on the structure of the Jacobian, however, can also

be taken into account, and the Jacobian can be block diagonalized according to the irreducible

representations of Σc instead, leading to a finer structure [43,50]. This results in a new coordinate
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system, defined by a linear transformation T , such that TJT−1 is block diagonal, and thus simplifies

the calculation of its associated eigenvalues (static J case, periodic state) or Floquet exponents (for

quasiperiodic state with linearly evolving inter-cluster phase differences). A more detailed outline

of the process is presented in section 3.7.2.

We first consider how the considerations above can be applied to a previously discussed example

of a ring of oscillators.

Example 3.5.1. We consider a ring of eight oscillators (similar to example 3.4.1). The auto-

morphism group of the graph is the cyclic group Γ = Z8. The subgroup of the full automorphism

group, Σc = Z4, corresponds to partitioning the nodes into four clusters according to its group orbit.

The subgroup of Σc, Σs = Z2, partitions each of the orbits into fully synchronized clusters. Using

the results above, we can block diagonalize the Jacobian matrix using the irreducible representations

of the symmetry group Z4, going from a 16 × 16 matrix to one with 4 blocks, each of the size

4 × 4. A detailed analysis is presented in Ref. [43], where it is also shown that the symmetries of

the time-dependent Jacobian are preserved for quasiperiodic states arising from the same symmetry

group.

Next, we present how to perform this simplification for a “cube” of eight oscillators. The ring

and cube networks exhibit the same decoupled state, but the stability simplification process is

different.

Example 3.5.2. We now consider a (3D) cube consisting of eight oscillators (a general dis-

cussion of decoupling in hypercubes can be found, e.g., in [4], but stability has not been addressed

previously). The full symmetry group of such a network is Γ = S4×Z2. Its subgroup Σc = Z2×Z2

corresponds to fully synchronized clusters (shown on fig. 3.9). Its subgroup Σs = Z2 corresponds to

decoupling between even and odd nodes with antisynchronization between nodes in each cluster as

shown on fig. 3.9, where only the nodes in inner and outer ring are fully synchronized among each

other. A detailed stability calculation for an example of adjacency coupled Stuart Landau oscillators

is presented in section 3.7.3. Again, the simplification results in going from a 16× 16 matrix to 4,

4× 4 blocks, but the linear transformation T is different from the one in example 3.5.1. We focus
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Figure 3.9. Example of a state on an eight-node coupled network and its
Jacobian structure. (a) State of a network, where colors represent different
decoupled clusters. (b) Adjacency matrix structure. (c-d) Jacobians in node and
symmetry coordinates respectively. Colors represent different numerical values.
Each colored block corresponds to a 2× 2 matrix for amplitude and phase
dynamics. (d) Dark gray lines correspond to Jacobian blocks according to fully
synchronized cluster symmetries. Black corresponds to the finer structure obtained
by decomposing according to Σc.

on the case of identical oscillators for simplicity and consider adjacency and Laplacian coupling.

3.5.3. Beyond symmetries. Isotypic component decomposition is not directly applicable if

the state does not appear as a result of symmetries. However, the stability analysis can still be

simplified [134,139,163]. Here, we present a low-dimensional example where the analysis can be

performed even without the extra simplifications.
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Figure 3.10. Linear stability of the decoupled state discussed in example 3.5.2
and section 3.7.3 for adjacency coupling. Left (a-h): coupling on a cube. Right:
(a′-h′): coupling on a cube with additional edges. Subfigures (g) and (g′) in the
lower right corner of the stability plots show the coupling topologies linear stability
was calculated for. Note that all the edges and all the nodes are assumed to have
equal coupling and individual parameters. Largest transverse Jacobian eigenvalue
is plotted for a set of parameters λ, σ, β, and δ (the angle between two splay
clusters). Each subplot corresponds to the case where two of these parameters are
fixed, and two are varied. Fixed parameters are selected from λ = 9, σ = 3,
β = 7π/12, and δ = 7π/24. Dashed white lines correspond to these fixed
parameter values and can be used to guide comparing the subplots. Colors
represent the magnitude of the real part of the maximum transverse eigenvalue of
the Jacobian (blue for positive eigenvalue or linearly unstable solution, yellow and
red for negative eigenvalue or linearly stable solution). The corresponding color
bar is shown at the bottom of the figure. White spaces on the plots correspond to
the parts of the space where there is no solution corresponding to real amplitude.
The subfigures represent the following: (a) and (a′) λ vs κ; (b) and (b′) β vs κ; (c)
and (c′) δ vs κ; (d) and (d′) λ vs δ; (e) and (e′) β vs δ; (f) and (f′) λ vs β; (e) and
(e′) colormap.

We modify the network in example 3.5.2 to break the original network symmetries in a way

that keeps the decoupled state admissible. The original topology is shown in fig. 3.10 (g). We

demonstrate these topology modifications in fig. 3.10 (g′) and fig. 3.11 (g′). The coupling topology

of fig. 3.10 (g′) corresponds to adding edges between different decoupled clusters such that the

inter-cluster coupling terms still add up to zero. In this setting, the decoupled state can still

appear in presence of adjacency coupling. We present its stability for various parameter regimes

on fig. 3.10(a′-f′). The regions of parameter space where the state is stable are similar to those
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Figure 3.11. Linear stability of the decoupled state discussed in example 3.5.2
and section 3.7.3 for Laplacian coupling. Left (a-h): coupling on a cube. Right:
(a′-h′): coupling on a cube with a removed edge. For fixed parameter values and
subplot meanings see captions of fig. 3.10.

related to symmetric coupling, illustrated in fig. 3.10(a-g), though the details of the stability region

boundaries differ. Similarly, we expect the modified topology to modify the shape of the state’s

basin of attraction once the parameters are fixed.

We also break the symmetry of the network in a way that makes the state admissible for

Laplacian coupling by deleting an edge between two nodes in a fully synchronized cluster, as shown

in fig. 3.11 (g’). The resulting stability diagrams are shown in fig. 3.11 (a′-f′). The stability

diagrams show that symmetry breaking affects the shape of the stability regions, but preserves the

possibility of observing these states in experiments, e.g., the experimental realization of networks

of Stuart-Landau oscillators described in Ref. [70].

3.6. Conclusion and outlook

Synchronization phenomena, especially understanding the origins and stability of non-trivial

synchronization patterns, are of great interest for both theoretical and practical reasons. Here

we focus on states of synchronization that result from the canceling of terms in the dynamical

equations of evolution that lead to decoupling of often physically coupled oscillators that rely

both on the coupling structure and the phase shift invariance of the coupled dynamical equations.

Such states show intriguing, emergent long-range order, such as next-nearest neighbor antiphase
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synchronization with seeming independence between physically coupled nearest neighbors, as shown

for the ring of 8 oscillators used as an example throughout this work (e.g., fig. 3.1 (e)). Here we

consider the broad class of possible decoupled states that are accessible given the underlying network

topology and the nature of the coupling between oscillators. Note that specific decoupled states

have been studied in the literature previously based on symmetry considerations [3, 4, 97], but

a unifying treatment of the class of states and their stability properties did not previously exist.

Our work accomplishes this and also reveals that network symmetries alone are insufficient for

identifying all possible decoupled states that a system can support, since the symmetries of the

quotient network do not necessarily translate to the symmetries of the full network.

Specifically, we analyze the continua of decoupled states in networks of linearly coupled phase

shift invariant limit cycle oscillators. We show that the eigendecomposition of the coupling matrix

can reveal which decoupled states are admissible. We also formulate the admissibility criteria in

the language of equitable and orbital partitions. This takes into account the balanced equivalence

relations of the network as well as the symmetries of the associated quotient network and makes

connections to symmetry groupoid and cluster synchronization literature. We demonstrate how

various forms of decoupled states can arise in systems such as lattices of oscillators with periodic

boundary conditions, and how partial amplitude death can a be part of these decoupled states.

Some of the most commonly considered cases of coupling for networked dynamical systems

are the adjacency and Laplacian coupling schemes. Knowing the precise form of the coupling

interactions lets us study the effect of the network structure on decoupling admissibility in great

detail. We find that the Laplacian coupling scheme admits more flexibility in coupling between fully

synchronized nodes, since the time evolution is not affected by the edges within fully synchronized

clusters. Adjacency coupling, on the other hand, poses restrictions on the edges within fully

synchronized clusters. However, it allows more flexibility in connections between different splay

clusters, since the only condition that has to be imposed for the state to be admissible is that the

contributions to each node from the splay clusters it does not belong to cancel out.

If the decoupled state is a direct result of network symmetries (as opposed to the symmetries

of the quotient network), it is admissible for both adjacency and Laplacian coupling schemes.

Additionally, in that case the stability analysis can be simplified by block diagonalizing the Jacobian
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according to the irreducible representations of the symmetry group related to the state. We show

how finer block sizes can be achieved by considering the symmetries beyond the automorphism

group of the coupling matrix. We pick a simple eight node cube network, as well as those obtained

from it by symmetry breaking edge addition and deletion, to illustrate the numerical linear stability

analysis and determine what parameter regions can allow the observation of the decoupled state

in simulations and experiment. We show that the stability regions are relatively robust to edge

perturbations.

Our analysis of decoupled states is generalizable. For instance, it can be easily extended to

networks with directed coupling, or even multilayer networks. In multilayer networks, decoupling

could be present in one or more layers, or correspond to layers being decoupled from each other. In

addition, the definition of the state itself can be extended to include dead nodes decoupled from all

the other nodes, or, in case of Laplacian coupling, the nodes that are only attached to their cluster

and therefore do not change the state of all the other nodes. In future work, it would be interesting

to investigate the stability of decoupling combined with amplitude death, as that coexistence may

be allowed for a larger set of network topologies. Moreover, decoupling is robust with respect to

small parameter mismatch between individual oscillator parameters, as shown in experiments [97].

That robustness, as well as the fact that the state can be observed for diverse coupling topologies,

e.g., modular coupling with all-to-all coupling between the modules, could mean decoupling can

occur in natural systems such as biological networks and be related to behaviors such as remote

mediated synchronization in the brain [121]. Since the stability analysis in presence of parameter

heterogeneity exhibits sensitive dependence on the parameter values corresponding to islands of

stability [43], such analysis is an important step towards understanding and predicting decoupling

in experimental and natural systems.

3.7. Appendices

3.7.1. Decoupling in Stuart Landau oscillators. Here, we provide the form of the decou-

pled solution for Stuart-Landau oscillator networks and show how it leads to phenomena that have

not been explicitly discussed in Stuart-Landau literature. The dynamics in presence of adjacency
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coupling can be expressed as:

żj = (λj + iωj − |zj |2)zj +
∑
k

Mjkκjke
iβjkzk.(3.22)

Here, M can be an adjacency matrix or a Laplacian matrix. Equivalently, in phase-amplitude

coordinates:

ṙj = (λj − r2
j )rj +

∑
k

Mjkκjkrk cos(βjk + θk − θj),

θ̇j = ωj +
∑
k

Mjkκjk
rk
rj

sin(βjk + θk − θj).
(3.23)

If j ∈ Cp, the only nodes that have effect on j also belong to Cp. Let

λ̃ =
∑
k∈Cp

Ajkκp cos (βp + θk − θj) and ω̃ =
∑
k∈Cp

Ajkκp sin (βp + θk − θj) .(3.24)

The adjacency coupling dynamics on the decoupled state can be expressed as:

rj =

√
λj + λ̃p, θj = θj(0) + (ωj + ω̃)t.(3.25)

Here, the parameters βp and κp are the in-cluster coupling parameters, θj(0) satisfy the decoupled

state conditions.

For instance, if the oscillators are not directly coupled to the any other ones in their group

Cp (e.g., ring topology in example 3.3.1), and the decoupled state is admissible, the solution takes

form:

rj =
√
λj , θ̇j = ωj .(3.26)

The oscillators move at their natural frequencies in the same manner they would in absence of

coupling. Their amplitudes and frequencies are uniform within splay clusters, but may differ

between the clusters if parameter heterogeneity is present.
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For Laplacian coupling with M = A−D, the dynamics is:

rj∈Cp =

√
λp + λ̃p −

∑
Cp

Ajkκp cosβ,(3.27)

θj∈Cp = θj(0) +

ωp + ω̃ −
∑
Cp

Ajkκp sinβ

 t.(3.28)

Here, each coupling edge introduces a shift in oscillator amplitudes and phases.

3.7.2. Adding state symmetries to cluster synchronization. As shown in the section 3.5.2,

the Jacobian of the dynamics on decoupled states commutes with the permutations generated by

the actions of the group Σc, the orbits of which form splay clusters (not just the subgroup Σs and

associated fully synchronized sub-clusters).

To block diagonalize the Jacobian matrix, we take the following steps. First, we find the

projection operators T (l) from the following expression:

T (l) =
d(l)

h

∑
κ

χ(l)
κ

∑
g∈κ

Rg(3.29)

Here, d(l) is the dimension of the lth irreducible representation of Σc, h is the size of the symmetry

group Σc, κ is a conjugacy class, χκ are the characters corresponding to a conjugacy class κ and

an irreducible representation l, and Rg are the linear representations of group elements g ∈ Σc in

a form of permutation matrices.

Stacking the eigenvectors ot T (l) provides a projection matrix T , which can be used to transform

the Jacobian into a block diagonal form: JBD = TJT−1. A more detailed description of the

process as applied to clusters of identically synchronized oscillators can be found in recent cluster

synchronization literature [114], and the process of obtaining the projection can be simplified using

computational group theory tools developed to address this problem [57].

3.7.3. Detailed example of stability calculations. Here, we provide explicit stability ma-

trix block diagonalization for example 3.5.1 and a periodic solution. We consider the Stuart Landau
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oscillator dynamics:

żj = (λ+ iω − |zj |2)zj +
∑
k

Mjkκe
iβzk.(3.30)

The adjacency matrix A and the form of the decoupled state of interest zdc are:

A =



0 1 0 0 1 0 1 0
1 0 0 0 0 1 0 1
0 0 0 1 1 0 1 0
0 0 1 0 0 1 0 1
1 0 1 0 0 1 0 0
0 1 0 1 1 0 0 0
1 0 1 0 0 0 0 1
0 1 0 1 0 0 1 0


, zdc =



a
a
−a
−a
b
b
−b
−b


.(3.31)

where |a| = |b|. In case of adjacency coupling, M = A, and M = A − D for Laplacian coupling.

The time evolution in case of adjacency coupling is defined by:

rj(t) =
√
λ+ κ cosβ, θ̇j(t) = ω + κ sinβ.(3.32)

If the coupling is Laplacian,

rj(t) =
√
λ− 2κ cosβ,

θ̇j(t) = ω − 2κ sinβ.
(3.33)

Let Σc = Z2 × Z2 be the group defining the splay clusters, as discussed in section 3.5. The

group has two commuting generators (we denote them by α and β, and the identity element by e),

and the corresponding representations acting on the coupling matrix are:

Rα = I4×4 ⊗
(

0 1
1 0

)
,(3.34)

Rβ = I2×2 ⊗
(

0 1
1 0

)
⊗ I2×2.(3.35)

All elements of this group commute with the adjacency matrix A (as well as L). The group has

four irreducible representations, with characters presented in the table below.
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e α β αβ

χ11 1 1 1 1

χ12 1 -1 1 -1

χ21 1 1 -1 -1

χ22 1 -1 -1 1

The projections onto the isotypic component basis are then defined by their nontrivial eigen-

vectors:

T11 =

(
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

)
,(3.36)

T12 =

(
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1

)
,(3.37)

T21 =

(
1 −1 1 −1 0 0 0 0
0 0 0 0 −1 1 −1 1

)
,(3.38)

T22 =

(
1 −1 −1 1 0 0 0 0
0 0 0 0 −1 1 1 −1

)
.(3.39)

The transformation matrix can be obtained by vertically stacking these projection matrices.

To illustrate the stability calculation, we first provide the form of the Jacobian evaluated at the

decoupled state:

J =



JD J11
11 0 0 J11

12 0 J12
12 0

J11
11 JD 0 0 0 J11

12 0 J12
12

0 0 JD J11
11 J12

12 0 J11
12 0

0 0 J11
11 JD 0 J12

12 0 J11
12

J11
21 0 J21

21 0 JD J11
11 0 0

0 J11
21 0 J21

21 J11
11 JD 0 0

J21
21 0 J11

21 0 0 0 JD J11
11

0 J21
21 0 J11

21 0 0 J11
11 JD


.(3.40)

Here, each element is a 2× 2 block. Except for the self-interaction blocks, JD (denoted by JAD

and JLD respectively), the blocks are the same for adjacency and Laplacian coupling. The blocks
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are defined by:

JAD =

 λ− 3r2 κr sinβ

−κ/r sinβ −κ cosβ

 , JLD =

λ− 3r2 − 3κ cosβ κr sinβ

−κ/r sinβ −κ cosβ

 ,

J11
11 = κ

 cosβ −r sinβ

r sinβ cosβ

 , J11
12 = κ

 sin δ r cos δ

r cos δ − sin δ

 , J12
12 = −J11

12 ,

J11
21 = κ

− sin δ r cos δ

r cos δ sin δ

 , J21
21 = −J11

21 ,

(3.41)

where δ = δ12 + β, and JAD and JLD refer to JD in case of adjacency and Laplacian coupling

respectively, and the values of r can be obtained from eq. (3.32) and eq. (3.33) for the adjacency

and Laplacian cases respectively. Then JBD = J1 ⊕ J2 ⊕ J3 ⊕ J4, where:

J1 =

JD + J11 0

0 JD + J11

 , J2 =

JD + J11 J11
12 − J12

12

J11
21 − J21

21 JD + J11


J3 =

JD − J11 0

0 JD − J11

 , J4 =

 JD − J11 −J11
12 + J12

12

−J11
21 + J21

21 JD − J11

 .

(3.42)

Additional zero structure within J1 and J3 arises from the form of eq. (3.41). The eigenvalues of

J1 and J3 can be computed analytically. This reduced the size of the Jacobian blocks and speeds

up the stability computations.

We present a linear stability diagram for such a system as a function of parameter values λ,

κ, β, and δ1,2 in fig. 3.10 and fig. 3.11 for adjacency and Laplacian cases respectively. Colors

show the value of the maximum transverse Lyapunov exponent ηmax. We note that the symme-

tries of equations lead to Re(η(δ))max = Re(η(π/2 − δ))max, Re(η(δ))max = Re(η(−δ))max, and

Re(η(β))max = Re(η(−β))max, where ηs stand for the Jacobian eigenvalues, and all the parameters

not stated in parentheses (e.g., λ, ω, κ, δ12 for η(β)) are kept constant.
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CHAPTER 4

Analyzing states beyond full synchronization on hypergraphs

requires methods beyond projected networks

Preprint available as Salova, A., & D’Souza, R. M. (2021). Analyzing states beyond full syn-

chronization on hypergraphs requires methods beyond projected networks. arXiv preprint

arXiv:2107.13712.

A common approach for analyzing hypergraphs is to consider the projected adja-

cency or Laplacian matrices for each order of interactions (e.g., dyadic, triadic, etc.).

However, this method can lose information about the hypergraph structure and is

not universally applicable for studying dynamical processes on hypergraphs, which

we demonstrate through the framework of cluster synchronization. Specifically, we

show that the projected network does not always correspond to a unique hyper-

graph structure. This means the projection does not always properly predict the

true dynamics unfolding on the hypergraph. Additionally, we show that the sym-

metry group consisting of permutations that preserve the hypergraph structure can

be distinct from the symmetry group of its projected matrix. Thus, considering

the full hypergraph is required for analyzing the most general types of dynamics

on hypergraphs. We show that a formulation based on node clusters and the cor-

responding edge clusters induced by the node partitioning, enables the analysis of

admissible patterns of cluster synchronization and their effective dynamics. Addi-

tionally, we show that the coupling matrix projections corresponding to each edge

cluster synchronization pattern, and not just to each order of interactions, are nec-

essary for understanding the structure of the Jacobian matrix and performing the

linear stability calculations efficiently.
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4.1. Introduction

The framework of dynamical systems on dyadic networks provides a useful tool for modeling

the behavior of many systems, including those from biological, social, and engineered realms [16,

34,35,119,123]. However, some systems have higher order non-additive interactions which require

going beyond dyadic interactions [17,24]. Hypergraphs are a natural extension of dyadic networks

that allow the study of a wider range of systems by capturing higher-order interactions. Naturally,

adding higher order interactions requires modifying tools from systems with dyadic interactions to

be applicable to dynamics on hypergraphs and also developing new tools to analyze the system’s

behavior.

There are several ways higher order dynamics can be defined. Namely, dynamics can be defined

on the nodes interacting via hyperedges of different orders [45, 85, 93, 136, 137, 138, 159, 162].

Alternatively, especially if the dynamics is defined on a simplicial complex, the dynamical signals

can be defined on simplices of different dimensions [41,47,101]. Here, we take the former approach.

Specifically, we consider dynamics on undirected hypergraphs, where the evolution of each node

depends on the state of its neighbors via dyadic and higher order interactions. Additionally, we

assume that some sets of nodes within the system have similar internal dynamics, and some sets

of edges have similar coupling forms. We specifically study cluster synchronization where groups

of oscillators in the system have fully synchronized trajectories, but distinct groups follow distinct

trajectories. The framework of cluster synchronization is useful for analyzing intricate patterns

of synchronization in dynamical systems on hypergraphs and it illustrates the difference between

analysis based on full hypergraph considerations and those based on dyadic projections.

To study synchronization in higher order systems, the generalization of the dyadic graph adja-

cency and Laplacian matrices are useful tools. Several ways to generalize these matrices from the

perspective of node interactions have been recently proposed [30,37,45,93]. These generalizations

are based on projecting the higher order edges onto dyadic cliques and finding the adjacency or

Laplacian of a resulting network for each order of interactions. Specifically, the projections of this

form are sufficient to formulate stability conditions for full synchronization on undirected hyper-

graphs [37,45,93] and chemical hypergraphs [105] or even some cases of cluster synchronization,

such as non-intertwined cluster synchronization [162]. A downside of hypergraph projection is the
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non-applicability of such analysis to more intricate types of synchronization dynamics in higher

order systems. In this manuscript, we demonstrate that the hypergraph projection description is

not sufficient for analyzing cluster synchronization in the most general case.

First we show that the projection is not always in one-to-one correspondence with the origi-

nal higher order system. In other words, several non-isomorphic hypergraphs can have the same

projection onto a dyadic network. Specifically we demonstrate that distinct hypergraphs can have

the same projection, yet the effective interactions on the hypergraphs can be distinct even for the

same pattern of cluster synchronization (i.e., which nodes follow the same trajectory, and which do

not). It is these effective interactions between the clusters that determine the dynamical behav-

ior. Projections are sensitive enough for capturing full synchronization dynamics and its stability

properties, but do not necessarily capture more intricate patterns of synchronization.

We next compare the symmetries of the full hypergraph with the symmetries of its dyadic

projections to show that the hypergraph does not always admit the same cluster synchronization

patterns as one would deduce from its dyadic projections. Symmetry considerations, namely the

orbits of the symmetry group of the system (as well as its subgroups), can be used to determine some

of the admissible cluster synchronization states [50, 114]. While the symmetries of the projected

hypergraph are often in direct correspondence with the symmetries of the original hypergraph [45],

we demonstrate that for some topologies, some of the symmetries of the projected network do not

preserve the hypergraph structure (also discussed in Ref. [107]).

Our final contribution is showing how projected networks can be used for stability calcula-

tions. In systems with purely dyadic interactions, cluster synchronization states do not necessarily

arise from symmetries alone [142]. They can also arise from more general balanced equivalence

relations. This is also the case for systems with higher order interactions, both for Laplacian-like

coupling [126, 129] and more general couplings discussed in this manuscript. To analyze gen-

eral cluster synchronization patterns whether they arise from symmetries or more generally from

equitable partitions, we define the concept of edge clusters with each edge cluster corresponding

to a specific edge synchronization pattern. We demonstrate that one needs to define a separate

projected adjacency matrix for each edge synchronization pattern and hyperedge order to fully

86



capture the structure of the Jacobian matrix used for linear stability analysis (discussed in detail

in section 4.8.1).

Linear stability calculations can be simplified using simultaneous block diagonalization [163].

We demonstrate that the set of matrices that need to be simultaneously block diagonalized to

analyze cluster synchronization on hypergraphs includes the projected adjacency matrices for each

edge pattern of synchronization for interactions beyond dyadic. In contrast, stability analysis for

dyadic interactions does not require tracking the individual edge synchronization patterns.

The rest of the manuscript is organized as follows. section 4.2 provides the basic formulation

for dynamical systems on undirected hypergraphs and the general conditions for cluster synchro-

nization in such systems based on node and edge partitions. section 4.3 demonstrates that the

hypergraph projection does not always allow us to unambiguously reconstruct the original hyper-

graph up to an isomorphism, which can produce misleading predictions for the effective dynamics of

cluster synchronization states. In section 4.4 we consider symmetries and show that some of the or-

bital partitions of the projected hypergraph do not describe the admissible cluster synchronization

states of the original hypergraph, thus projected adjacency matrices are not always sufficient to de-

termine the admissible patterns of synchronization on hypergraphs. section 4.6 demonstrates that

the projected hypergraph adjacency matrices combined with the cluster synchronization indicator

matrices are not sufficient to fully represent the structure of the Jacobian and simplify its analysis

in the case of the most general hypergraph structure and pattern of synchronization. Instead, we

show how to use projections corresponding to different cluster synchronization patterns to perform

the linear stability analysis. Finally, we discuss our results and future directions in section 4.7.

4.2. Background: cluster synchronization oh hypergraphs

4.2.1. Hypergraph structure and dynamics. First, we define the general form of the

dynamics on hypergraphs that is being considered. A hypergraph is defined by a set of N nodes

and a set of hyperedges ej ∈ E . In this work, we focus on undirected hyperedges. Let Ei ⊂ E
be the set of hyperedges that contain node i. Each hyperedge ej ∈ Ei contains a set of nodes

ej = {i, j1, ..., jm−1}. The order of the hyperedge ej is m, which is the number of nodes including

i that are part of it. Thus, m = 2 corresponds to dyadic edges, m = 3 to triadic edges, etc.
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Using notation similar to Ref. [37], we can express the evolution of the state of each node in

the system, xi ∈ Rn, as:

ẋi = Fi(xi) +
∑
e∈Ei

Ge(xi, xe\i).(4.1)

Here, the function Fi(xi) describes the evolution of uncoupled nodes, and the function Ge(xi, xe\i)

is a coupling function corresponding to the influence of the hyperedge e on node i, where xi is

the state of the node i itself, and xe\i is the state of the rest of the edge. This setup is general,

including the case when the interaction hypergraph is a simplicial complex which has the additional

requirement that each subset of nodes in the hyperedge forms a hyperedge of lower order.

Often, some degree of homogeneity is present within the nodal dynamics, Fi(xi), of different

nodes i as well as in the coupling dynamics, Ge(xi, xe\i). In that case, one can use the hypergraph

structure to find nontrivial partitions into sets of nodes that can fully synchronize. In the simplest

case, all the self-dynamics are characterized by the same function F and the coupling dynamics

of a given order m are characterized by the same function G(m). In that case, it is sufficient to

consider adjacency structures (e.g., adjacency tensors) with binary entries.

The exact higher order adjacency structure can be defined in terms of the collection of m

incidence matrices I(m), one for each order m. Let E(m)
i be the set of hyperedges of order m

containing the node i. Then, the nonzero elements of the incidence matrix are [I(m)]i,e = 1 if

e ∈ E(m)
i . Additionally, we assume undirected coupling, so [I(m)]i,e = 1 for all i ∈ e.

With these simplifications, the dynamics of eq. (4.1) can be expressed as:

ẋi =F (xi) +
d∑

m=2

σ(m)
∑

e∈E(m)

[I(m)]i,eG
(m)(xi, xe\i),(4.2)

where due to undirected coupling we assume that the function G(m)(xi, xe\i) is invariant under any

reordering of nodes in xe\i.

In Ref. [129], we cover the stability analysis in the case of Laplacian and Laplacian-like cou-

pling. Here, we assume more general undirected coupling. In the case of undirected coupling,

the presence of the hyperedge {i1, ..., ik, ..., im} providing input to node i1 via the coupling func-

tion G(m), s.t. ẋi1 = ... + G(m)(xi1 , ..., xik , ..., xim), implies that hyperedge affects xik via the
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same coupling function, s.t. ẋik = ... + G(m)(xik , ..., xi1 , ..., xim). Additionally, the coupling func-

tion responsible for providing input into node xi1 has to be invariant with respect to permuta-

tions of the elements corresponding to the nodes providing this input within a hyperedge, namely,

G(m)(xi1 , ..., xik , ..., xik′ , ...) = G(m)(xi1 , ..., xik′ , ..., xik , ...). For a concrete example of triadic cou-

pling, consider the extension of the Kuramoto model to triadic interactions presented in Ref. [160],

with G(3)(xi, xj , xk) = K sin(θj + θk− 2θi), where we set the coupling strengths σ(3) to be identical

for all triadic edges. First, we note that G(3)(xi, xj , xk) = G(3)(xi, xk, xj). In addition, for the

coupling to be undirected, we require that Ii,e = Ij,e = Ik,e, where the edge e consists of nodes i, j,

and k.

4.2.2. Bipartite representation of a hypergraph. While incidence matrices are a useful

and compact representation of the hypergraph structure, sometimes it is helpful to deal with square

matrices instead. Thus, hypergraphs represented via a bipartite graph will be useful for much of

the analysis herein. The adjacency matrix M of the bipartite representation of a hypergraph is of

the form:

M =

0N×N IN×M

ITN×N 0M×M

 ,(4.3)

where N is the number of nodes in the hypergraph, M is the number of edges, and I is its

incidence matrix. While this matrix is less compact than the incidence matrix, this bipartite graph

representation allows the use of standard dyadic interaction tools in analyzing systems with higher

order interactions, as M is a square matrix.

An important caveat here is that one needs to additionally take into account that the elements

of M represent the relations between nodes and edges, and not simply the interactions between

the nodes. This is discussed in more detail in section 4.3 in the context of hypergraph isomorphism

and section 4.4 in relation to admissible patterns of cluster synchronization.

4.2.3. Dyadic projections of hypergraphs. A common way to analyze hypergraph struc-

ture and full synchronization dynamics is by using the projection of the hypergraph structure onto

a dyadic coupling matrix for each order of interaction. Depending on the type of the coupling
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function, either an adjacency or Laplacian projection can be used. In several recent publica-

tions [30,37,45,93], the projected matrices for each order of interactions are defined as:

A(m) = I(m)[I(m)]T −D(m),(4.4)

where [D(m)]ii =
∑
j
I

(m)
ij and has zero off-diagonal elements.

This projection is useful in analyzing, for instance, the stability of full synchronization in systems

with higher order interactions, by either forming an aggregate projection matrix with different edge

orders being assigned different weights [30,37,93], or considering projected Laplacians in case of

noninvasive coupling [45]. However, in some cases, this projection loses information about the

original hypergraph even for a given order of interactions (e.g., triadic), as discussed in section 4.3

and section 4.4. Additionally, these projections are insufficient for cluster synchronization analysis,

which is why we need to define such a projection for every edge pattern of synchronization, as

discussed in section 4.6.

4.2.4. Admissible patterns of cluster synchronization on hypergraphs. While projec-

tion matrices are useful in analyzing full synchronization, collective behavior of coupled dynamical

systems is more complicated when the nodes are not fully synchronized. Often, it is useful to ana-

lyze these behaviors using the framework of cluster synchronization, where the nodes in the same

clusters Ci are fully synchronized due to receiving the same dynamical input, but their behavior

is distinct from all the other clusters Cj . Cluster synchronization can arise as a form of symmetry

breaking in systems with identical nodes and edges (or hyperedges of the same order) that allow

full synchronization. However, it can also be present in systems with multiple node and edge types,

such as multilayer networks, in which full synchronization solutions are not admissible.

Patterns of cluster synchronization have been extensively analyzed for systems with dyadic

interactions [18, 31, 114, 127], with a few recent advances to higher order systems. Cluster syn-

chronization of coupled map lattices on chemical hypergraphs was recently analyzed in Ref. [21],

but the setup is distinct from the general structure and dynamics considered in this manuscript.

Stability of cluster synchronization in systems like the one in eq. (4.2) is analyzed in Ref. [162].

However, the question of admissibility of different patterns is not discussed there, and the analysis

is limited to non-intertwined clusters. Finally, cluster synchronization on hypergraphs is briefly
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discussed in Ref. [45]. However, the reference only discusses the patterns of synchronization arising

from symmetries and does not discuss the ones arising from more general partitions (e.g., dis-

cussed in Ref. [129] and later herein). Additionally, the conditions for symmetry-based clusters in

Ref. [45] may not be sufficient for general hypergraphs, and additional checks must be performed

as discussed in detail in section 4.4.

In this section, we demonstrate how to find the admissible cluster synchronization patterns

by partitioning the nodes into node clusters, and the edges into edge clusters based on the node

clusters those edges span. The framework is similar to that in Ref. [129], but we do not restrict the

coupling functions to Laplacian-like coupling. As an example of cluster synchronization, consider

fig. 4.1(a). The hypergraph structure shown on the left admits a cluster synchronization pattern

with two node clusters, shown in purple and teal. Each purple node p obtains input from two

hyperedges, one of the form C
(3)
ppp (containing three nodes in the purple cluster) and one C

(3)
ptt . Each

teal node t gets input from two edges of the form C
(3)
ptt . We will index the node clusters as Cj (where

j can refer to a cluster number or a cluster “color”). Here, the node clusters are C1 = Cp = {1, 2, 3}
and C2 = Ct = {4, 5, 6}. The edge clusters induced by node partition (i.e., hyperedges which span

equivalent node clusters, and, therefore, have equivalent node trajectories) are denoted by C
(m)
j . In

this example, C
(3)
1 = C

(3)
ppp = {[1, 2, 3]} and C

(3)
2 = C

(3)
ptt = {[1, 4, 5], [2, 4, 6], [3, 5, 6]}. The bipartite

graph in fig. 4.1(a) (right) demonstrates the relations between nodes (circles) and edges (triangles).

The bipartite graph makes it clear that there are two triadic edge clusters (C
(3)
1 shown in olive and

C
(3)
2 shown in yellow) induced by the node clusters.

The cluster synchronization pattern in fig. 4.1(a) is not the only admissible pattern. fig. 4.1

(a-d) shows four distinct example partitions, using direct hypergraph representation (left column)

and its bipartite representation (right column).

Mathematically, the condition for an admissible cluster synchronization state based on the

incidence matrix is

∑
ej∈C

(m)
k

I
(m)
ij =

∑
ej∈C

(m)
k

I
(m)
i′j(4.5)
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Figure 4.1. Synchronization patterns in hypergraphs. Left column: hypergraph,
right column: equivalent bipartite representation. [(a-d)] Distinct cluster
synchronization patterns.

where i, i′ ∈ Cl, and the summation is performed over all the columns of I(m) corresponding to the

edges in the kth edge cluster of order m, denoted by C
(m)
k . eq. (5.2) has to hold for all the orders

of interaction and edge clusters, unless the specific form of the coupling function makes some edge
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clusters irrelevant to cluster synchronization admissibility (e.g., fully synchronized hyperedges in

Ref. [129]).

The effective interactions between different clusters are contained in the quotient hypergraph,

where

I
(m)
eff = PnI(m)(P(m)

e )T ,(4.6)

where Pn (K × N) and P(m)
e (Km × N) are the indicator matrices corresponding to node and

edge partitions, and I(m) is the mth order incidence matrix. The nonzero elements of the indicator

matrices Pn and P(m)
e are defined by [Pn]i,j = 1 if node i belongs to node cluster Cj , and [P(m)

e ]i,j =

1 if the mth order edge i belongs to the mth order edge cluster C
(m)
j .

Note that eq. (5.2) can be easily modified to handle the case where there are different types of

nodes and hyperedges in the system. If distinct node types are present, only the ones within the

same type are expected to fully synchronize. To put it in the form of eq. (5.2), we can form a trivial

incidence matrix I(1), where I
(1)
i = I

(1)
j if and only if the nodes i and j are of the same type, and

add those incidence matrices to the set that needs to be tested in eq. (5.2). If distinct hyperedge

types are present, eq. (5.2) has to hold for each edge interaction order m and for each edge type.

Equivalently, the bipartite graph adjacency matrix (eq. (4.3)) can be used to partition nodes

and edges into clusters using the methods applicable to systems with dyadic interactions (even for

systems with different types of nodes and hyperedges). Importantly, since we distinguish between

nodes and edges, they need to be partitioned into clusters separately (corresponding to the case

of two distinct types of nodes in systems with dyadic interactions). It is also important to note

that for each node partition obtained from the bipartite representation, only the coarsest edge

partition is properly identified. For instance, fig. 4.2 demonstrates two partitions admissible on the

bipartite graph, whose structure corresponds to the hypergraph with six nodes (shown as circles in

the bipartite graph) and four triadic edges (shown as shaded triangles). However, only one of the

resulting partitions (fig. 4.2 top right) is an admissible partition of the nodes and hyperedges of

the hypergraph itself. fig. 4.2 bottom right shows that partitioning the bipartite representation can

misidentify the edge partitions induced by the node partitions. In this case, all hyperedges contain
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the same nodes (purple, teal, violet), and thus have to belong to the same edge cluster, although

the bipartite representation divides them into two edge clusters.

v1

v5v4 v3v2

v6

v1 v2 v3 v4 v5 v6

e124 e135 e246 e356

v1 v2 v3 v4 v5 v6

e124 e135 e246 e356

v1 v2 v3 v4 v5 v6

e124 e135 e246 e356

v1 v2 v3 v4 v5 v6

e124 e135 e246 e356

correct edge
partition

incorrect edge
partition

Figure 4.2. Left: cluster synchronization pattern on a hypergraph. Right:
equitable partitions of the corresponding bipartite network. Only the top partition
represents the correct node and edge partition of the hypergraph. In the bottom
partition, the hyperedges e124 and e356 are incorrectly assigned into a cluster
distinct from that containing e135 and e246, even though all the hyperedges consist
of one violet, one purple, and one teal node.

4.3. Hypergraph dyadic projection: loss of information on structure and effective

dynamics

Hypergraph projections can be used to analyze fully synchronized states and their stability [37,

45]. However, this tool is not always useful in analyzing general dynamics on hypergraphs, including

cluster synchronization. Initial results obtained in Ref. [37] led its authors to conjecture that it is

possible to create a hypergraph projection (with the adjacency matrix calculated as a weighted sum

of terms defined in eq. (4.4)) that fully preserves the information about the hypergraph structure.

However, we show the projection as defined in eq. (4.4) does not necessarily correspond to a unique

hypergraph. In fact, these distinct hypergraphs that get mapped onto the same single projection

do not even have to be isomorphic, as we show next in section 4.3.1. As a result, sometimes the
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hypergraphs with the same node clusters and projected adjacency matrix have distinct quotient

hypergraphs, and thus different cluster synchronization dynamics.

4.3.1. Example: non-isomorphic hypergraphs with distinct effective dynamics but

identical dyadic projection. Identical hypergraphs, as well as isomorphic hypergraphs, produce

identical dynamical behavior, including cluster synchronization. However, the hypergraphs that

map onto the same projected network are not necessarily identical or isomorphic, and therefore can

produce distinct dynamical behavior despite having the same projection. This can be investigated

computationally, especially since the problem can be considered on a single order of higher order

interactions at the time, because distinct orders can be distinguished in the projection.

To obtain hypergraphs that are not isomorphic, but which have the same projected dyadic

adjacency matrix, it is sufficient to find two distinct incidence matrices, I
(m)
1 and I

(m)
2 , that satisfy

I
(m)
1 [I

(m)
1 ]T −D(m) = I

(m)
2 [I

(m)
2 ]T −D(m) = A(m),(4.7)

with no nontrivial permutational matrix P satisfying

P (M1 +R) = (M2 +R)P,(4.8)

where M1 and M2 are the respective adjacency matrices corresponding to the bipartite graph

representation of the original hypergraphs. Here, R is a diagonal matrix whose purpose is to avoid

permuting nodes with edges. It has diagonal entries Rii = α if i ≤ N and Rii = β if i > N . In

numerical calculations, α and β can be set to be distinct random numbers.

As an example, consider two distinct hypergraphs with triadic interactions, each with six nodes

and seven hyperedges. The first is shown in the box shaded in purple in fig. 5.1(a), and the second

in the box shaded in olive in fig. 5.1(d). Both fig. 5.1(a) and fig. 5.1(d) are the union of the two

simpler hypergraphs shown in the respective boxes. The hypergraphs in the left column of fig. 5.1(a)

and (d) are isomorphic but distinct, whereas the right column hypergraphs are identical. Note,

the full hypergraphs in fig. 5.1(a) and (d) are not isomorphic. The graph isomorphism problem

is notoriously complicated. However, we used the networkx.is isomorphic Python package [56] to

verify that indeedM1 +R corresponding to fig. 5.1(a) is not isomorphic toM2 +R corresponding
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Figure 4.3. Synchronization patterns in hypergraphs. Teal and violet node colors
correspond to distinct node synchronization clusters. [(a) and (d)] Hypergraph
structure of two distinct hypergraphs (violet box (a) and olive box (d)) containing
the union of hypergraphs shown on the left and on the right. The left hypergraphs
in (a) and (d) are distinct, but isomorphic to each other. The right hypergraphs in
these boxes are fully identical. [(b) and (e)] Distinct quotient hypergraphs for
cases (a) and (d) respectively. [(c) and (f)] State of node 4 (x4) vs state of node 1
(x1) using eq. (4.12) dynamics evolved for 104 time steps for the two-cluster state
on hypergraphs (a) and (d) respectively. Node 1 belongs to the violet cluster, node
4 belongs to the teal cluster. (g) The same projected network (left) and its
quotient network (right) results for both cases (a) and (d). Thick lines correspond
to edges of weight two, and thin lines correspond to those of weight one.

to fig. 5.1(d). We denote their incidence matrices by I1 and I2. The corresponding projected dyadic

graph for both of the above hypergraphs, containing edges of weight 1 and 2 (shown in thin and

thick lines respectively), is demonstrated in fig. 5.1(g). Its adjacency matrix is

A(3) = I
(3)
1 (I

(3)
1 )T −D(3) = I

(3)
2 (I

(3)
2 )T −D(3) =


0 1 1 2 2 2
1 0 1 2 1 1
1 1 0 1 2 1
2 2 1 0 2 1
2 1 2 2 0 1
2 1 1 1 1 0

 .

Thus, the conditions from eq. (4.7) hold: two non-isomorphic hypergraphs, fig. 5.1(a) and (d), s.t.

no nontrivial permutation satisfies eq. (4.8) for their bipartite adjacency matrices M1 and M2,

have the same projected adjacency matrix.

The fact that non-isomorphic hypergraphs may have the same projected graph has consequences

on the cluster synchronization dynamics. Specifically, the inability to reconstruct the original

hypergraph may lead to an ambiguity in effective dynamics in a hypergraph, even if the node

assignment into clusters is the same between the two hypergraphs. As an example, consider the
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coloring of nodes on fig. 5.1. In all its subfigures, teal and violet nodes represent distinct clusters.

This cluster assignment is admissible in both hypergraphs in fig. 5.1(a) and (d). The corresponding

quotient hypergraphs are shown respectively in fig. 5.1(b) and (e). These hypergraphs represent

the effective dynamics of each type of node (teal and violet). As very clearly visible in fig. 5.1,

these quotient hypergraphs are qualitatively different. The dynamics on each type of nodes in case

of fig. 5.1(b) is:

ẋp = F (xp) + 4G(3)(xp, xp, xt),

ẋt = F (xt) +G(3)(xt, xt, xt) + 2G(3)(xt, xp, xp),(4.9)

whereas in case of fig. 5.1(e) it is:

ẋp =F (xp) + 2G(3)(xp, xp, xt) +G(3)(xp, xp, xp) +G(xp, xt, xt),

ẋt =F (xt) + 2G(3)(xt, xp, xt) +G(3)(xt, xp, xp),(4.10)

leading to distinct behaviors.

To provide a concrete example of distinct trajectories arising from eq. (4.9) and eq. (4.10), we

consider the discrete time dynamics:

xt+1
i = F (xti) + σ(3)

∑
e∈E(m)

[I(3)]i,eG
(3)(xte\i),(4.11)

where xti is the state of the node i at time t, and the self evolution and coupling functions are

defined as:

F (xti) = α
1− cos(xti)

2
+
π

6
, G(3)(xtj , x

t
k) =

1− cos(xtj + xtk)

2
.(4.12)

This oscillator dynamics is the optoelectronic dynamics defined in Ref. [31] with added triadic

interactions. We also use this dynamics in section 4.6.2. Here, we chose the parameters α = 0.5

and σ(3) = 1.5. fig. 5.1(c) demonstrates the dynamics of two clusters (teal and violet) on the

hypergraph shown in fig. 5.1(a), and fig. 5.1(f) demonstrates the dynamics of these clusters on the

hypergraph shown in fig. 5.1(d). The dynamics of the two-cluster state are clearly distinct for these

different hypergraph topologies with the same projected network.

97



Here, we covered one of the mechanisms that leads to non-isomorphic hypergraphs having the

same projected adjacency matrix. Namely, it requires picking two isomorphic hypergraphs, and

breaking the isomorphism by adding the same set of additional hyperedges. Clearly, if additional

identical interactions of any order are present in both hypergraphs, eq. (4.7) still holds and the

hypergraphs will have the same projection.

Note that in case of complete synchronization, distinct hypergraphs with the same dyadic

projection produce the same effective behavior, so this phenomenon only arises for more complicated

dynamical states.

4.3.2. Does loss of information from the projection occur frequently in randomly

selected hypergraphs? To estimate if the information loss from projecting the hypergraph is

frequent for a given number of nodes (nnodes) and hyperedges (nedges), we investigate how often the

condition in eq. (4.7) holds for pairs of hypergraphs with hyperedges added at random.

It is known that bipartite network projections may exhibit data loss. In fact, it was shown that in

some cases, non-isomorphic bipartite networks with incidence matrices I1 and I2 can have identical

projections corresponding to node and edge interactions, i.e., I1I
T
1 = I2I

T
2 and IT1 I1 = IT2 I2, but

those cases are rare [71]. Here, we consider a similar problem in the context of hypergraphs, but

only require the node interaction projections to be identical. In fact, for the example discussed

in fig. 5.1, IT1 I1 6= IT2 I2. This leaves us a wider range of options to explore. On the other hand,

since we consider hypergraph projections where different edge orders can be distinguished, we only

focus on matrices I with constant column sums, where these sums equal to the edge order. This

restriction narrows down the types of incidence matrices we consider.

Here, we focus on the case of triadic interactions on hypergraphs. First, we create 10, 000

random hypergraphs by randomly selecting with replacement three distinct nodes that will be

connected by a hyperedge nedges times for each of the hypergraphs consisting of nnodes nodes. We

note that the resulting hypergraphs may have duplicate edges, isolated nodes, or several connected

components. We accept this since in real hypergraphs, more than one edge order can be present,

so the nodes that are isolated for a specific interaction order may not be isolated when all orders

of interactions are considered. But we also compare the results to those considering only fully

connected hypergraphs. Then, we remove the “duplicate” isomorphic hypergraphs. Finally, we
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Figure 4.4. (a) Number and (b) fraction of pairs of non-isomorphic hypergraphs
sharing the same projection for a given number of nodes and triadic hyperedges.
(c) Number and (d) fraction of pairs of non-isomorphic fully connected
hypergraphs sharing the same projection.

find the non-isomorphic hypergraphs satisfying eq. (4.7) and calculate the number and fractions

of such pairs for each number of nodes and hyperedges. The results calculated for small numbers

of nodes and hyperedges are presented in fig. 4.4. We note that while these hypergraphs are

not common, they could still occur as motifs in larger hypergraphs. For example, consider two

identical hypergraphs. Adding different extra hyperedges to the same subset of their nodes, s.t.

those hyperedges satisfy eq. (4.7) makes the whole hypergraph satisfy eq. (4.7), producing two

hypergraphs that are not isomorphic but have the same projection.

4.4. Symmetry differences between hypergraphs and their dyadic projections

Structural symmetries of hypergraphs and dyadic networks determine some of the types of

synchronization patterns admissible in the system and assist in determining their stability. We
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demonstrate that in some cases, there are symmetries of the projected adjacency matrix that are

not the symmetries of the original hypergraph.

Specifically, consider the permutations of each order of interactions defined in Ref. [45]

PL(m) = L(m)P,(4.13)

or, equivalently,

PA(m) = A(m)P,(4.14)

where the permutation matrices P satisfying eq. (4.14) for each order of interactions form the

symmetry group. For the examples studied in Ref. [45], the resulting symmetry group is associated

with cluster synchronization states on simplicial complexes. We demonstrate that is not always the

case, both in case of dynamics on simplicial complexes, or, more generally, hypergraphs. While this

issue does not arise very often in randomly selected large hypergraphs, it is still important to know

that using the conditions in Ref. [45] to obtain the patterns of cluster synchronization requires an

extra step of checking that each specific pattern is admissible on the full hypergraph and not just

the projections of every order. Thus, next in section 4.4.1, we develop the conditions for cluster

synchronization to arise from symmetries that hold for any hypergraph structure.

4.4.1. Hypergraph symmetries. Equitable partitions (groupings of nodes into clusters, in

which nodes in the same cluster receive the same input from that cluster as well as all the other

clusters) give rise to the admissible cluster synchronization states for a given hypergraph structure.

Equitable partitions that result from structural symmetries of the hypergraph are called orbital

partitions and are a special case of more general equitable partitions [50,54]. For instance, all the

partitions shown in fig. 4.1 are orbital partitions, while the ones shown later in fig. 4.7 are not.

Even more flexibility is allowed for Laplacian-like coupling which requires only external equitable

partitions (groupings of nodes into clusters, in which nodes in the same cluster receive the same

input from all the other clusters, meaning that the hyperedges only containing one type of node

cluster, e.g., the edge e123 in fig. 4.1(a), can be ignored for admissibility purposes), and patterns
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arising from symmetries are less common in that case [129]. In summary, orbital partitions are a

subset of equitable partitions, which are the subset of external equitable partitions.

Our focus in this section is structural symmetries. First, we state the algorithm for finding

symmetry induced cluster synchronization patterns in systems with dyadic interactions. The auto-

morphism group of the dyadic adjacency matrix A is formed by a set of permutation matrices P ,

s.t. PA = AP . Any subgroup of that group can be linked to an admissible cluster synchroniza-

tion pattern via orbital partitions. Namely, all the subsets of the network nodes that get mapped

to themselves (and thus belong to the same cell of the orbital partition) can be completely syn-

chronized [114]. The approach can be generalized to systems with different types of nodes and

interactions, e.g., multilayer networks of coupled oscillators where cluster synchronization requires

compatibility between intra- and interlayer symmetries [38].

Symmetries of dyadic projected networks can not be immediately translated to those of a system

with higher order interactions similarly to more general equitable partition methods. Instead, one

has to consider the full hypergraph and the node and edge permutations simultaneously to assess the

hypergraph synchronization patterns from the symmetry perspective. Symmetries, such as the ones

analyzed in Ref. [107] for directed hypergraphs, arise from the hypergraph automorphism group

with elements P represented as permutation matrices. We formulate the cluster synchronization

condition in terms of the symmetries of the undirected hyperedges of each order m as:

PI = IPedge.(4.15)

Here, PN×N is a permutation matrix that reorders the nodes, and [Pedge]M×M corresponds to the

permutations of the edge labels if node labels are permuted. These hyperedge permutation matrices

are defined as follows:

[Pedge]ei,ej = [P ]i1j1 ...[P ]imjm ,(4.16)

where ei = {i1, ..., im} and ej = {j1, ..., jm} are the hyperedges. The orbits of the subgroups of the

automorphism group with elements P determine the admissible cluster synchronization patterns.

Note that I here is an aggregate matrix combining all the interaction orders. Alternatively, we

could consider the incidence matrices for different orders of interactions, I(m), separately. Then,
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Figure 4.5. Symmetries of the dyadic projection (b) identify some patterns that
are not admissible on the original hypergraph (a). (a) Hypergraph structure. (b)
Hypergraph projection with a pattern of synchronization not admissible for the
original hypergraph. (c) Quotient hypergraph of the projected network. (d)
Lattice of partitions representing the admissible synchronization patterns obtained
from the projection in (b). Only patterns highlighted in violet are admissible for
the original hypergraph. Blue: pattern on [(b-c)].

the largest common subgroup of the symmetry groups of all the interaction orders determines the

automorphism group of the hypergraph.

As an example, consider the incidence matrix corresponding to the hypergraph structure in

fig. 4.1

I(3) =



[1
23

]

[1
45

]

[2
46

]

[3
56

]

1 1 1

2 1 1

3 1 1

4 1 1

5 1 1

6 1 1


.(4.17)

One of the pairs containing a node permutation and its induced edge permutation satisfying

eq. (4.15) is

P = (1)(6)(2, 3)(4, 5), Pedge = ([1, 2, 3], [1, 4, 5])([2, 4, 6], [3, 5, 6]).(4.18)

Permuting the nodes and edges simultaneously leaves the structure of the hypergraph in fig. 4.1

invariant.
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4.4.2. Symmetries and square projection matrices. Projected adjacency (or, if appro-

priate, Laplacian) matrices are useful to study cluster synchronization from the symmetry perspec-

tive [45]. However, in some cases, synchronization patterns obtained from the projected matrix are

not admissible as synchronization patterns of the original hypergraph.

In section 4.4.1, we demonstrated how the symmetries of a hypergraph can be obtained from

the incidence matrix. Equivalently, such symmetries can be deduced from the adjacency matrixM
of the hypergraph’s bipartite representation with the additional requirement that the permutations

are of the form where nodes are permuted with nodes, and edges are permuted with edges. Similarly

to section 4.3.1, we add a diagonal matrix R to ensure that. The conditions are then

PM(M+R) = (M+R)PM,(4.19)

where PM is an (N +M)× (N +M)-dimensional permutation matrix. Just like in the case of other

balanced equivalence relations, only the coarsest edge partitions for each node partition would be

the ones that actually correspond to the hyperedge permutations. However, all the partitions of

the nodes themselves are valid.

If instead of the full hypergraph we consider the projection matrix, its symmetries (elements of

the automorphism group) satisfy the condition

P
(m)
A A(m) = A(m)P

(m)
A ,(4.20)

for each order m. Here, the permutation matrix PA is an N ×N -dimensional permutation matrix.

First, we note that the node partitions for the original hypergraph obtained using eq. (4.19)

are always a subset of those for the projection shown in eq. (4.20). This means that the admissible

patterns on the hypergraph can be a proper subset of those that are admissible on the dyadic

projection. In many specific hypergraph cases, the conditions in eq. (4.19) and eq. (4.20) result in

equivalent group orbits, thus corresponding to identical sets of admissible cluster synchronization

patterns. However, in fig. 4.5, we present an example when this equivalence does not hold. Specif-

ically, fig. 4.5(a) shows a hypergraph with six nodes and six hyperedges. This hypergraph admits

three patterns of synchronization corresponding to the orbital partitions that are shaded in violet in

fig. 4.5(d). fig. 4.5(b) demonstrates the structure of the dyadic projection of the hypergraph. This
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Figure 4.6. (a) Number and (b) fraction of hypergraphs with an automorphism
group containing less elements than that of its projected network. (c) Number and
(d) fraction of non-isomorphic fully connected hypergraphs with an automorphism
group containing less elements than that of its projected network.

projection admits the full seven orbital partitions shown in fig. 4.5(d). One particular partition

shaded in blue in fig. 4.5(d) is specifically illustrated in fig. 4.5(b), where node colors correspond to

a cluster assignment arising from eq. (4.20). fig. 4.5(c) demonstrates the quotient network corre-

sponding to the blue partition. Note that the blue partition does not correspond to a valid pattern

of synchronization on the hypergraph in fig. 4.5(a) since it does not satisfy eq. (4.19).

4.4.3. How often are the symmetries of the hypergraph distinct from those of

the projected network? We aim to get an idea of how often the automorphism group of the

hypergraph does not have the same number of elements as that of its dyadic projection, which

would result in different admissible cluster synchronization patterns. To do so, we generate a set of

random non-isomorphic hypergraphs, similarly to section 4.3.2. We then find the number of node

partitions induced by the symmetry group of the bipartite network representing the hypergraph
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Figure 4.7. Examples of cluster synchronization patterns arising from equitable
partitions that are not orbital partitions (in other words, patterns did not arise
from symmetries). (a) Hypergraph with dyadic and triadic interactions. (b)
Hypergraph with only triadic interactions.

and compare that to the number of partitions induced by the symmetry group of the projected

adjacency matrix, counting the number of cases in which these numbers are not the same.

Our results are presented in fig. 4.6, where subfigures (a)-(b) consider all the hypergraphs we

generate, and (c)-(d) only take into account hypergraphs with one connected component. While

the number of occurrences when the hypergraph and the projection differ becomes relatively rare as

the size of the hypergraph increases, the fact that they can differ means that if using, for instance,

the method from Ref. [45], an extra step of checking which of the orbital partitions of the projected

hypergraph are the orbital partitions of the original hypergraph is required.

4.5. Mismatch between equitable partitions of the hypergraph and the dyadic

projection

Beyond symmetries, more generally, admissible cluster synchronization patterns arise from eq-

uitable partitions (e.g., consider the cluster synchronization patterns in fig. 4.7(a,b)). One of the
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Figure 4.8. Example of a pattern that is not symmetry-induced, but follows
from a more general equitable partition, which is not admissible on a hypergraph
but is admissible on its projection. Top and bottom sub-figures (boxed, labeled as
quotient 1 and quotient 2 ) demonstrate the effective interactions of the nodes the
arrows are pointing to. Since the effective interactions are distinct, the pattern is
not admissible.

natural mechanisms for the latter is Laplacian and Laplacian-like coupling, where the fully syn-

chronized edges do not add any dynamical contributions to the states of their nodes, and only
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affect the system’s stability [129]. However, even for systems with non-diffusive (adjacency) cou-

pling, clusters do not necessarily arise from the symmetries alone. Two such examples are shown

in fig. 4.7. Here, fig. 4.7(a) is an example where the dyadic synchronization pattern does not arise

from symmetries, with extra hyperedges added to form a system with higher order interactions.

This can hold for systems with no dyadic interactions as well, as shown by the synchronization

pattern in fig. 4.7(b).

If a pattern of synchronization arises from an equitable partition that is not an orbital partition,

similar mismatch between the states of the full hypergraph and its projection can be observed. For

instance, fig. 4.8 demonstrates a pattern which is not symmetry induced but arises from an equitable

partition. This pattern of cluster synchronization is not admissible for the full hypergraph, but is

admissible on its projection.

Additionally, for some types of coupling functions partitions more general than equitable par-

titions are sufficient, and it is also possible in that case that that the hypergraphs have the same

projection but different admissible states. For instance, consider triadic coupling of the form

G(xi, xj , xk) = g(xj − xi)g(xk − xi),(4.21)

where g(xi, xi) = 0, on a hypergraph with purely triadic interactions. The admissibility conditions

for a cluster synchronization state given this coupling function are similar to eq. (5.2), with the

caveat that a hyperedge influencing the node i ∈ Ck can be ignored if any other node j on a

hyperedge is a part of the same cluster as i, i.e., j ∈ Ck, since then G(xi, xj , xk) = 0 when evaluated

on that cluster synchronization state. Consider the isomorphic hypergraphs in fig. 4.9(a) (violet)

and fig. 4.9(b) (olive). For the coupling form defined by eq. (4.21), the same cluster assignment is

admissible on fig. 4.9(a) (each node in a given cluster receives the same dynamical input), but not

admissible on fig. 4.9(b) (nodes 1, 2, and 3 are assigned to the same cluster, but node 3 receives

the dynamical input that is different from that received by nodes 1 and 2). Since the violet and

olive hypergraphs have the same dyadic projection, dyadic projection alone would not be sufficient

to determine which states are admissible for a given hypergraph structure. Therefore, having full

information about the hypergraph structure is essential if the coupling functions allow us to relax

some of the partition admissibility conditions.
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Figure 4.9. Three cluster pattern of synchronization (nodes in different clusters
shown in different colors) on hypergraphs with the same dyadic projection.
Assuming the coupling type defined in eq. (4.21), this pattern of synchronization is
admissible on the violet hypergraph (a), but not the olive hypergraph (b).

4.6. Stability calculations: Jacobian block diagonalization

4.6.1. Background and dyadic interactions. Here we consider the general case where

equitable partitions and external equitable partitions determine admissible cluster synchronization

patterns.

Simultaneous block diagonalization, which can be based on symmetry considerations or bal-

anced equivalence relations, is a useful tool that allows dimensionality reduction in cluster syn-

chronization stability calculations. Tools for performing such reduction in the case of systems with

dyadic interactions have been developed for systems such as networks with different types of edges,

temporal networks, multilayer networks, and beyond.

Symmetry methods do not always provide the most refined block diagonal Jacobian structure

[162]. As shown in section 4.4, while in most cases the symmetries of the hypergraph coincide with

those of the projected matrix, this is not always the case. Regardless, once the symmetry group

and group orbits are obtained, the irreducible representations of the symmetry group produce the

block diagonalization of the Jacobian. The details of this process are discussed in section 4.8.2.
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When cluster synchronization partitions come from more general balanced equivalence relations,

such as equitable or external equitable partitions, different methods must be used. In systems

with purely dyadic interactions, simultaneous block diagonalization of the coupling matrix and the

diagonal indicator matrices corresponding to different clusters,

{A,E1, ..., EK},(4.22)

block diagonalizes the Jacobian in a simple case of identical time-independent coupling. This

dimensionality reduction can be performed using the algorithm from Refs. [162, 163]. Next, in

section 4.6.2, we demonstrate how these results can be generalized to analyze cluster synchronization

on hypergraphs.

4.6.2. Stability of cluster synchronization on hypergraphs. Here, we demonstrate how

to perform and simplify symmetry-independent stability analysis for general undirected coupling

(as opposed to Laplacian and Laplacian-like coupling discussed in Ref. [129]). The form of the

dynamical equations and undirected coupling are discussed in eq. (4.2). In this section, we develop

cluster synchronization analysis for general patterns. The more specialized case of stability analysis

of cluster synchronization patterns arising from symmetries is discussed in section 4.8.2.

As discussed in section 4.2.3, a projected adjacency matrix for an interaction order m can be

defined as:

A(m) = I(m)[I(m)]T −D(m),(4.23)

where [D(m)]ii =
∑
j
I

(m)
ij and has zero off-diagonal elements. To analyze cluster synchronization on

hypergraphs, instead of simply using A(m), we need to define a projected adjacency matrix A(m)
k

for each interaction order m and edge cluster (distinct pattern of synchronization on a hyperedge

of order m induced by node clusters) indexed by k. Here,

A(m)
k = I

(m)
k [I

(m)
k ]T −D(m)

k ,(4.24)

where I
(m)
k is an N × |C(m)

k | matrix (here, |C(m)
k | denotes the number of unique elements in the

edge cluster C
(m)
k ) consisting of the columns of I(m) corresponding to the hyperedges in the kth
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cluster of order m. Additionally, D(m)
k is a diagonal matrix of node degrees corresponding to the

number of edges with that synchronization pattern ([D(m)
k ]ii =

N∑
j=1

[I
(m)
k ]ij).

Then, the variational equation determining the linear stability of cluster synchronization states

can be expressed as:

δẋ =

( K∑
k=1

Ek ⊗ JF (sk)−
d∑

m=2

σ(m)·(4.25)

[ Km∑
k=1

∑
l∈{C(m)

k }

∑
p∈{C(m)

k \l}

ElA(m)
k Ep ⊗ JG(m)(sl, sp, sC(m)

k \l,p)

+

Km∑
k=1

∑
l∈{C(m)

k }

ElD(m)
k ⊗ JG(m)(sl, sC(m)

k \l)
])
δx.

Here, {C(m)
k } is the set of unique node clusters included in the kth edge cluster. Additionally,

s
C

(m)
k \l defines the set of all trajectories of nodes included in edge cluster C

(m)
k , excluding the one in

the cluster Cl. Note that all node clusters and all edge clusters of all orders contribute to eq. (4.25).

The terms contributing to the off-diagonal Jacobian elements are defined as

[JG(m)(sl, sp, sC(m)
k \l,p)]q,r =

∂G
(m)
q

(
xi, xj , xk1 ..., xkm−2

)
∂[xj ]r

∣∣∣∣ xi=sl,xj=sp,
xkv=[s

C
(m)
k
\l,p

]v

.(4.26)

Similarly, the diagonal elements consist of

[JF (sk)]q,r =
∂Fq(xi)

∂[xi]r

∣∣∣∣
xi=sk

,(4.27)

[JG(m)(sl, sC(m)
k \l)]q,r =

∂G
(m)
q

(
xi, xk1 ..., xkm−1

)
∂[xi]r

∣∣∣∣ xi=sl,
xkv=[s

C
(m)
k
\l

]v

.

In addition, we note that if i ∈ Ck and j ∈ Ck, [D(m)
k ]ii = [D(m)

k ]jj from the cluster synchronization

admissibility conditions.

While eq. (4.25) requires a lot of notation, the implication is simple: block diagonalization of

the Jacobian requires the simultaneous block diagonalization of the set of cluster indicator matrices,
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the dyadic adjacency projection, and the projections for each higher order edge cluster:

{E1, ..., EK ,A(2),A(3)
1 , ...,A(3)

K3
, ...,A(d)

1 , ...,A(d)
Kd
}.(4.28)

The reason why only consideringA(2) for dyadic interactions is sufficient is discussed in section 4.8.1.

For some topologies and synchronization patterns in systems with higher order interactions,

it is only necessary to simultaneously block diagonalize the cluster indicator matrices and the

projections of higher order coupling matrices, i.e.

{E1, ..., EK ,A(2), ...,A(d)}.(4.29)

One of such cases, in addition to complete synchronization, is the case of noninvasive clusters [162],

where each node in cluster Ci receives the input from the same set of nodes in cluster Cj . Others

include the case when there is only one edge pattern in the hypergraph for coupling of each order,

i.e. there is only one matrix A(m)
1 = A(m) (e.g., fig. 4.1(c)), discussed in more detail in section 4.8.1.

For more general cases, such as the cluster synchronization patterns shown in fig. 4.1(a,b,d)

and in figs. 4.7 and 5.1, the conditions in eq. (4.29) are not sufficient. Thus, the direct analogy

with dyadic coupling does not work, and the entire set of matrices in eq. (4.28) is required for

simultaneous block diagonalization.

To provide a concrete example, we consider the dynamics of a form:

xt+1
i = F (xti) +

d∑
m=2

∑
e∈E(m)

[I(m)]i,eG
(m)(xte\i),(4.30)

which is a discrete time analogue of eq. (4.2). Additionally, we impose the optoelectronic oscillator

dynamics as discussed in Ref. [31] but add higher order terms. Namely, we use

F (xti) = α
1− cos(xti)

2
+
π

6
, G(2)(xtj) = σ(2)

1− cos(xtj)

2
,(4.31)

where α = 2π/3− 4σ(2), with additional higher order terms

G(3)(xtj , x
t
k) = σ(3)

1− cos(xtj + xtk)

2
(4.32)
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Figure 4.10. Stability of complete and cluster synchronization for a hypergraph
of optoelectronic oscillators. (a) Synchronization patterns: full synchronization
(top row), two clusters (middle row), and three-cluster chimera state (bottom
row). (b) Linear stability (maximum transverse Lyapunov exponent) as a function

of coupling strengths σ(2) and σ(3) for the states in part (a) based on 2.5× 104

time steps. White regions are due to not seeing a specific state in simulations on
the quotient hypergraph for 20 initial conditions. (c) Representative trajectories
for each state. Full synchronization state is a fixed point, 2-cluster state is periodic
with period 5, 3-cluster state can be considered a chimera state and is chaotic. (d)
Regions of stability of these states plotted together. It is evident there are regions
where the system is multistable. (e) Matrices that need to be simultaneously block
diagonalized for stability calculation. Distinct matrices shown in distinct colors.
Diagonal elements correspond to the cluster indicator matrices Ei.

introduced to add triadic hyperedge interactions. Finally, we combine this dynamics with the

hypergraph structure displayed in fig. 5.3(a) to define our example system.

The hypergraph in fig. 5.3(a) consists of six coupled oscillators and supports a variety of cluster

synchronization states: twenty two distinct cluster synchronization patterns are admissible, includ-

ing the two extreme states where all the node trajectories are distinct and the fully synchronized

state. To narrow down our analysis, we focus on three states: the fully synchronized, two-cluster,

and three-cluster state as shown respectively in the rows of fig. 5.3(a). The stability properties

are shown in fig. 5.3(b), and example trajectories in fig. 5.3(c). The three-cluster state can be

considered a chimera state in some regions of the phase space, since each cluster exhibits chaotic

behavior that is not frequency synchronized with the other clusters (an example trajectory is shown

in fig. 5.3(c) bottom row). The set of matrices that need to be block diagonalized to analyze this
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state is demonstrated in fig. 5.3(e). It is evident that higher order interactions have a large effect on

stability, as stability regions change significantly when the triadic coupling σ(3) becomes nonzero.

The numerically calculated stability regions of all three states are shown together in fig. 5.3(d) as

a function of σ(2) and σ(3).

4.7. Conclusion

In this manuscript, we consider the applicability of dyadic methods for analyzing systems with

higher order interactions in the context of cluster synchronization. Specifically, we consider the

questions of admissibility and stability of the cluster synchronization states on hypergraphs. We

show that the dyadic projection cannot be used in the most general instance and instead develop

an analysis based on node and edge clusters which is sufficient.

First, we demonstrate that it is not always possible to reconstruct the hypergraph from its

projected network. Since it is possible to construct the projections that distinguish between different

orders of interactions, we focused our attention on distinct orders of interaction. While the cases

when the information about the hypergraph is lost in the projections appear to be rare, they have

strong implications on the analysis of cluster dynamics when distinct hypergraphs with identical

projections both admit a specific cluster synchronization state, but have distinct quotient network

structure dictating distinct dynamical evolution, as shown in fig. 5.1.

Additionally, we investigate how the patterns of synchronization admissible on the hypergraph

are related to those admissible on its dyadic projected network and demonstrate that these patterns

do not have to be the same. We explicitly provide examples where some of the symmetries of the

projected hypergraph do not preserve the structure of the hypergraph itself, making these patterns

of synchronization inadmissible.

Dyadic methods still can be used to find the admissible patterns on a hypergraph by using the

adjacency matrix of the corresponding bipartite graph with additional diagonal elements. However,

for large hypergraphs, it may be more efficient to find the admissible patterns on the projected

network and then manually check their admissibility on the original hypergraph.

Finally, while projected networks are sufficient to define the structure of the Jacobian for the

stability calculation of the fully synchronized state, it does not capture the full structure of the
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Jacobian for cluster synchronization. For networks with purely dyadic interactions, additional

diagonal matrices describing the distinct patterns of synchronization are needed to capture the

Jacobian structure. However, in case of higher order interactions, even that is not sufficient.

We show that for higher order interactions we generally need multiple projection matrices, each

corresponding to a specific order of interactions and specific edge pattern of synchronization. These

matrices are also useful in simplifying the stability calculations as shown in eq. (4.28).

The results on the admissibility of cluster synchronization obtained in this manuscript are

easily generalizable to directed hypergraphs, just like the results for admissible clusters on dyadic

networks generalize to networks with directed edges. The admissibility analysis we develop is valid

for any cluster synchronization pattern on directed hypergraphs, provided that the edge clusters

assignments take the hyperedge directedness into account. Linear stability analysis for patterns

arising from symmetries, as discussed in section 4.8.2, is also valid for directed hypergraphs. The

simplification of linear stability analysis and its interpretation for patterns arising beyond symmetry

considerations can use the results from Refs. [25, 92], which will again need to be generalized to

higher order interactions.

In summary, hypergraph structures support a rich variety of dynamical phenomena, and hyper-

edges of all orders contribute to the dynamical evolution and stability calculations (see for instance

eq. (4.25)). A formalism in terms of node clusters and edge clusters provides a principled way

to organize the calculations for states beyond full synchronization. Such an approach may enable

detailed analysis of the interplay between dyadic and higher order interactions and its impact on

dynamical phenomena that can not be observed in systems with strictly dyadic interactions.

4.8. Appendices

4.8.1. When projected matrices are enough for stability calculations. Here, we con-

sider the cases in which the non-diagonal elements of each block of the Jacobian (i.e., each part

corresponding to the interactions of specific clusters Ci and Cj) coming from the same interaction

order, denoted as J
(m)
Ci,Cj

contains only zeros and identical nonzero elements.
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Figure 4.11. Example of a hypergraph and node clusters that it allows using
eq. (4.29) for simultaneous block diagonalization. (a) Hypergraph and its node
clusters, shown in distinct colors. (b) Jacobian structure. Distinct colors
correspond to distinct edge contributions (e.g., orange corresponds to the

derivatives of G(3)(s1, s2, s3))
.

The condition above clearly holds for systems with purely dyadic interactions, since each edge

cluster (e.g., connecting nodes in Ci to nodes in Cj) only contributes to the Jacobian blocks J
(2)
Ci,Cj

and J
(2)
Cj ,Ci

.

The first way for the condition to hold for higher order edges is when for each pair of node

clusters on a hyperedge, the edge cluster they are contained in is unique. In this case, the elements

contributing to J
(m)
Ci,Cj

are either zero, or equal and unambiguously determined from eq. (4.27).

For instance, consider the cluster synchronization pattern in fig. 4.7(a): the condition holds for its
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hyperedge clusters, C
(3)
ptt and C

(3)
ppp. Similarly, it works for fig. 4.7(c): there is only one edge cluster,

C
(3)
tvp. That condition, however, does not hold for fig. 4.7(b) and (d).

Now, assume there are several distinct edge clusters that contain the nodes from clusters Ci

and Cj , i.e., including a pair of edge clusters satisfying {i, j} ⊂ C(m)
k and {i, j} ⊂ C(m)

l . Then, for

every hyperedge in edge cluster C
(m)
l containing the nodes a ∈ Ci and b ∈ Cj , there has to exist a

corresponding hyperedge in edge cluster C
(m)
k that contains the nodes a and b. This has to hold

for every pair of such hyperedge clusters. The condition formulated here ensures that the nonzero

off-diagonal Jacobian elements corresponding to the mth order interactions within each block are

equal, and that they can be expressed as:

J
(m)
a,b =

∑
k

JG(m)(si, sj , sC(m)
k \i,j),(4.33)

where a ∈ Ci, b ∈ Cj , and {i, j} ⊂ C(m)
k .

As an example illustrating the discussion above, consider fig. 4.11(a) with three node clusters,

Cp, Ct, and Cv, and two edge clusters, C
(3)
ttp and C

(3)
ttv . There are two types of edges that contain two

teal nodes, but both pairs (2 and 4; 3 and 5) are contained exactly once in each type of hyperedges

present in the hypergraph (C
(3)
ttp and C

(3)
ttv ), thus satisfying the requirements in the paragraph above.

As illustrated in fig. 4.11(b), each block JCa,Cb contains the same contributions within its nonzero

elements, thus, the full adjacency matrix projections (eq. (4.29)) can be used for simultaneous block

diagonalization. In contrast, consider fig. 4.11(c) with a hypergraph that supports the exact same

pattern of synchronization but requires more intricate stability calculations. Block diagonalizing

the Jacobian for fig. 4.11(c), the structure of which is schematically illustrated in fig. 4.11(d),

requires a set of matrices from eq. (4.28), and exhibits different stability properties.

In summary, while under some circumstances block diagonalizing the matrices in eq. (4.29) is

sufficient, eq. (4.28) is required in the most general case.

4.8.2. Stability calculations for patterns arising from orbital partitions. In the man-

uscript we discussed how some of the cluster synchronization patterns can be determined from

symmetries (orbital partitions). Due to a general result from equivariant dynamical systems the-

ory, the Jacobian evaluated on a cluster synchronization state commutes with the elements of the
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symmetry group whose orbital partition determines the structure of that cluster synchronization

state [50] (we denote the actions of these elements by P ). Therefore, the following holds:

JcsP = PJcs.(4.34)

where Jcs is the full Jacobian of the system (δẋ = Jcsδx) evaluated at a particular cluster synchro-

nization state. As a result, the Jacobian can be block diagonalized using the matrices that block

diagonalize the symmetry group elements P .

The individual terms of the variational equation for linear stability, eq. (4.25), can also be used

to demonstrate why the full Jacobian commutes with the symmetry group action. First, we note

that the diagonal cluster indicator matrices Ek commute with the permutations P (PEk = EkP ),

since the permutations P only permute the nodes within a specific cluster. Additionally, for the

same reason, the matrices P commute with the diagonal matrices D(m)
k . We can also define the

matrices E
(m)
k to be diagonal matrices, s.t. [E

(m)
k ]ii = 1 if the ith hyperedge of order m belongs

to C
(m)
k , and [E

(m)
k ]ii = 0 otherwise. Similarly, the permutations Pedge (as defined in eq. (4.16))

commute with the matrices E
(m)
k , as they only permute the edges within a specific edge cluster.

Finally, we use eq. (4.15) to show that the matrices A(m)
k = I

(m)
k [I

(m)
k ]T −D(m)

k commute with

the action of the symmetry group:

PI
(m)
k [I

(m)
k ]T = PI(m)E

(m)
k [I(m)E

(m)
k ]T = I(m)PedgeE

(m)
k [I(m)]T(4.35)

= I(m)E
(m)
k Pedge[I

(m)]T = I(m)E
(m)
k [I(m)P Tedge]

T = I(m)E
(m)
k [I(m)]TP,

using that P T = P−1 is an element of the symmetry group that preserves the structure of the

hypergraph and generates the orbital partition leading to the cluster synchronization pattern we

consider. Therefore, all the terms of eq. (4.25) commute with the symmetry group elements P , and

as a result, eq. (4.34) holds.

Group representation theory can be used to block diagonalize the Jacobian to simplify the

stability calculations in a similar way they are used for systems with dyadic interactions [114,140].

Alternatively, other simultaneous block diagonalization methods are applicable and can result in a

finer block diagonal structure [163].
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The steps in symmetry-based block diagonalization may appear simpler than those discussed in

section 4.6. Additionally, they apply to both directed and undirected hypergraphs. However, the

calculation of irreducible representations that are then used to find the transformation of Jcs into

the block diagonal form is more computationally expensive [162]. Moreover, the method is only

applicable to systems where the state arises from symmetries, and not the larger class of systems

with patterns of cluster synchronization arising from balanced equivalence relations.
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CHAPTER 5

Cluster synchronization on hypergraphs

Preprint available as Salova, A., & D’Souza, R. M. (2021). Cluster synchronization on hyper-

graphs. arXiv preprint arXiv:2101.05464.

We develop the formalism to analyze cluster synchronization for dynamical elements

coupled via hypergraphs beyond pairwise interactions. We introduce the notion of

edge partitions and show how node and edge partitions allow us to identify admis-

sible cluster synchronization states and simplify their linear stability calculations.

The analysis in terms of node and edge partitions provides a principled way to track

dynamics on hypergraphs, and the projected Laplacian matrices based on each edge

cluster are essential to block diagonalizing the Jacobian in order to reduce the di-

mensionality of the stability analysis. Our work enables detailed analysis of patterns

of synchronization beyond full synchronization and beyond dyadic interactions.

5.1. Introduction

Patterns of synchronization in complex interdependent dynamical systems can be essential to

their function. Often, such systems are modeled by networks of agents with dyadic interactions

between them [110]. However, studying dyadic interactions is not always sufficient. Higher order

edges may be required to describe many systems, including chemical [67], biological [72], and

coauthorship interactions [59, 94], and processes such as consensus dynamics [108], making it

necessary to go beyond the pairwise interaction analysis [17]. A hypergraph can be used to encode

the structure of these higher order interactions.

Cluster synchronization is a type of synchronization where different groups of oscillators in the

system follow distinct synchronized trajectories. Studies of cluster synchronization have focused on

phenomena on networks with dyadic interactions, including a broad class of important behaviors

such as remote synchronization and chimera states [31, 46] with wide areas of applicability from
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neuroscience and ecological networks to opinion dynamics [38,63,91,109,154]. Ideas from graph

and equivariant dynamical systems theory can be applied to deduce admissible patterns of cluster

synchronization on dyadic networks and simplify their stability analysis [18,114].

Recently, many contributions to analyzing synchronization on hypergraphs and simplicial com-

plexes have been made. For instance, several recent works study full synchronization in phase

oscillator models, where higher order interactions extend the range of available models and lead to

new behaviors [9,22,23,101,136,138]. Performing stability analysis is crucial to determine which

synchronization patterns can be observed in experiments or natural systems. Some recent works

extend the master stability function formalism, originally formulated for dyadic interactions, to

higher order structures to analyze full synchronization and its stability [30,37,45,80,106], as well

as non-intertwined cluster synchronization [162] and cluster synchronization on chemical hyper-

graphs [21]. However, the admissibility and stability of cluster synchronization states in arbitrary

systems of dynamical elements coupled via hypergraphs has not yet been considered.

In this manuscript, we formulate the conditions for cluster synchronization on hypergraph

structures using external equitable partitions. Our analysis is formulated in terms of partitioning

the nodes into node clusters and, additionally, “edge clusters” induced by the node partition for

each order of the interactions (e.g., dyadic edge clusters, triadic edge clusters, etc.). This allows

us to simplify the stability calculation by grouping the contributions to node dynamics via each

of the distinct edge clusters. We then generalize the results from Refs. [64, 114, 163] (which are

formulated on networks with dyadic interactions) to a hypergraph setting and show how to block

diagonalize the Jacobian to simplify the stability analysis beyond dyadic interactions and non-

intertwined clusters. We release accompanying code that can be used for admissibility and stability

calculations [126].

5.2. Background

First, we define the general form of the dynamics on hypergraphs that is being considered. A

hypergraph consists of a set of N nodes and a set of hyperedges ej ∈ E . In this work, we focus on

undirected hyperedges. Let Ei ⊂ E be the set of hyperedges that contain node i. Each hyperedge

ej ∈ Ei contains a set of nodes ej = {i, j1, ..., jm−1}. The order of the hyperedge ej is m, which
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is the number of nodes including i that are part of it. Thus, m = 2 corresponds to dyadic edges,

m = 3 to triadic edges, etc.

For each edge order m, the adjacency structure can be defined in terms of the collection of m

incidence matrices I(m) (as illustrated in Fig.3 of Ref. [17]). Let E(m)
i be the set of hyperedges of

order m containing the node i. Then, for the simplest case of homogeneous edge coupling dynamics

for each edge order m, the nonzero elements of the incidence matrix are [I(m)]i,e = 1 if e ∈ E(m)
i .

We can express the evolution of the state of each node in the system, xi ∈ Rn, as:

ẋi =F (xi) +
d∑

m=2

σ(m)
∑

e∈E(m)

[I(m)]i,eG
(m)(xi, xe\i),(5.1)

where d is the maximum edge order present in the hypergraph. Here, σ(m) denotes the strength of

the mth order coupling.

The function F (xi) describes the internal dynamics of the node i, and the function G(xi, xe\i)

is a coupling function corresponding to the influence of the hyperedge e on node i, where xi is the

state of the node i itself, and xe\i is the state of the rest of the edge. This setup is general, including

the case when the interaction hypergraph is a simplicial complex and the additional requirement

that each subset of nodes in a hyperedge forms a hyperedge of lower order must be satisfied.

In this manuscript, we focus on noninvasive coupling functions. Specifically, we assume that the

coupling function is Laplacian or Laplacian-like for dyadic interactions and Laplacian-like for higher-

order interactions. Laplacian coupling for dyadic interactions is of the form G(xi, xj) = H(xj) −
H(xi). Laplacian-like coupling for edges of order m is of the form G(m)

(
m−1∑
l=1

xjl − (m− 1)xi

)
.

Coupling functions of this form are natural, for instance, for higher order networks of phase oscil-

lators [138], and are not limited to systems with one-dimensional node states.

5.3. Cluster synchronization

Cluster synchronization is manifested by groups of nodes following the same trajectory over

time, xi1(t) = ... = xiL(t), where the groups are not fully synchronized with one another. We call

each group of synchronized nodes a “node cluster” and denote them by C1, C2 . . . , CK assuming

K distinct groups exist. The set of dynamic trajectories followed by the nodes in each cluster, the
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“node cluster trajectories”, can be expressed as s1(t), ..., sK(t). The trajectories are time-dependent,

but we assume the time-dependence is implicit and use the notation s1, ..., sK for compactness.

Likewise, we consider “edge clusters” and “edge cluster trajectories”. A hyperedge of order

m can be characterized by the node clusters to which the m nodes it connects together belong.

All the hyperedges of order m with the same set of node clusters is called an edge cluster and

denoted by C
(m)
1 , C

(m)
2 , . . . , C

(m)
Km

, assuming Km distinct edge clusters exist for each order m. The

edge cluster trajectories are denoted by s
C

(m)
1

, s
C

(m)
2

, . . . , s
C

(m)
Km

, where s
C

(m)
j

is the set of dynamic

trajectories followed by the nodes involved in the jth edge cluster. A concrete example of node

and edge clusters will be given in Fig. 5.1. The node and edge clusters with their corresponding

trajectories will be used to facilitate stability calculations.

For dynamical systems on networks with purely dyadic interactions, equitable partitions can be

used to determine the synchronized clusters [69,131] as well as other patterns of synchronization

[127]. Equitable partitions divide the network into cells, where each node in a cell Ci receives

the same input from any cell Cj including the nodes within its own cell, i = j. Each cell of the

network defines a cluster of nodes that could be synchronized. In case of noninvasive coupling, as

is the focus of this manuscript, the conditions above only have to hold for i 6= j (in which case the

partition is called an external equitable partition), since the terms representing the effect of nodes

within the same cluster upon one another becomes zero if evaluated on that state.

The same idea holds for higher order interaction networks, where the equitable partitions now

need to be defined in terms of the interactions of all orders. The conditions can be relaxed to

external equitable partitions if the coupling functions are noninvasive, such as the Laplacian-like

coupling considered herein. Namely, we can ignore the input into every node i belonging to the

cluster Ck from all the hyperedges that only connect the nodes in Ck. General undirected coupling

is considered in Ref. [128].

More explicitly, the partitioning can be achieved by considering the incidence matrix. The

nodes can be separated into non-overlapping cells of “node clusters”. This node partition induces

a partition of edges into “edge clusters”, according to what combination of node clusters those

edges contain (we only need to consider the unordered set of included node clusters in the case of

Laplacian-like coupling as the edges are undirected). The partition is equitable if each node in a
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Figure 5.1. An admissible pattern of synchronization into four clusters of nodes
based on an external equitable partition. (a) The hypergraph. (b) The dyadic
quotient network. (c) The triadic quotient network, with nodes undergoing that
effective dynamics shown in larger size. [(d)-(e)] Incidence matrices for dyadic and
triadic interactions respectively. Dots represent ones. Row label colors represent
the node clusters, column label colors represent the edge clusters induced by the
node clusters. (d) shows there are 6 types of dyadic edge clusters and (e) shows
there are two types of triadic edge clusters.

given node cluster gets the same input from each edge cluster. We demonstrate this on a concrete

example by considering the hypergraph structure shown in fig. 5.1.
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The structure of the hypergraph in fig. 5.1 is an extension of the network shown in Fig.1 in

Ref. [163], with extra hyperedges added to represent the higher order interactions, and extra edges

added to highlight that strict symmetry conditions are not necessary for our framework. We need

to specify certain aspects of the dynamics for the system as well and for this we impose conditions

on the coupling functions. Namely, we assume that G(2) is Laplacian and G(3) is Laplacian-like.

Many distinct partitions, each one corresponding to a different pattern of cluster synchroniza-

tion, can be admissible for a given hypergraph. To illustrate a specific example, we focus on the

four cluster synchronization pattern shown in figure fig. 5.1(a). We can divide the nodes into four

non-overlapping cells (i.e., synchronized clusters) which we label by their number for convenience in

mathematical formulas, C1, C2, C3, C4, or equivalently by their color for convenience when referring

to the figure, Cg, Cy, Cb, Cv, corresponding to green, yellow, black, and violet. C1 = Cg = {1, 2, 3},
C2 = Cy = {4, 5, 6}, C3 = Cb = {7, 8, 9, 10, 11, 12}, and C4 = Cv = {13, 14, 15}. There are 6 dis-

tinct dyadic order edge clusters as shown by the identical color combinations in the column labels

of fig. 5.1(d). There are two distinct triadic order edge clusters corresponding to the identical color

combinations in the column labels of fig. 5.1(e), where C
(3)
1 = C

(3)
gyv = {[1, 4, 13], [2, 5, 14], [3, 6, 15]}

and C
(3)
2 = C

(3)
ybb = {[4, 7, 10], [5, 8, 11], [6, 9, 12]}. These node and edge clusters together form an

external equitable partition. Therefore, this particular partition corresponds to an admissible pat-

tern of synchronization. Additionally, we use the notation Cj ∈ C(m)
k to denote the node clusters

that are included in the kth edge cluster, for instance C
(3)
1 = {Cg, Cy, Cv} = {C1, C2, C4}, written

respectively in terms of colors and then index number.

The condition for cluster synchronization in hypergraphs with Laplacian-like coupling can be

written as:

∑
ej∈C

(m)
k

I
(m)
ij =

∑
ej∈C

(m)
k

I
(m)
i′j ,(5.2)

for i, i′ ∈ Cl, where we are summing over the m-th order hyperedges ej that are in edge cluster

C
(m)
k , where the terms coming from edge clusters C

(m)
k that contain only nodes in Cl can be ignored

due to noninvasive coupling.
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The effective dynamics of cluster synchronized states can be expressed via the quotient hyper-

graphs which represent the interactions between nodes of different clusters. The structure of that

effective quotient hypergraph for the state shown in fig. 5.1(a) is contained in the effective incidence

matrices, I
(m)
eff , defined as:

I
(2)
eff =


[b
y
]

[y
v
]

[y
g
]

b 1

y 2 1 1

v 1

g 1


, I

(3)
eff =



[b
by

]

[g
y
v
]

b 1

y 1 1

v 1

g 1


.(5.3)

(See Ref. [128] for more details on calculating I
(m)
eff .) The quotient hypergraph (illustrated in fig. 5.1

(b-c)) can be used to read out the time evolution of each node. For instance, every node in the

yellow cluster evolves according to:

ẋy = F (xy) +G(2)(xg − xy)

+G(2)(xv − xy) + 2G(2)(xb − xy)

+G(3)(xb + xb − 2xy) +G(3)(xv + xg − 2xy),(5.4)

with analogous equations describing the time evolution of completely synchronized nodes belong-

ing to other clusters. Here, G(m) is expressed taking into account the Laplacian-like coupling

assumption.

5.4. Stability

Stability analysis of cluster synchronization patterns on dyadic networks is well understood

[31, 114]. However, in the presence of higher order coupling, the Jacobian acquires additional

terms. Here, we show how all the terms in the Jacobian can be block diagonalized by using the

incidence matrices for a given cluster synchronization pattern, thus enabling stability calculations

for general dynamics on hypergraphs.
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First, we define a Laplacian corresponding to the kth edge cluster (i.e., synchronization pattern)

of order m as follows:

L(m)
k = mD(m)

k − I(m)
k [I

(m)
k ]T ,(5.5)

where I
(m)
k is an N×|C(m)

k | matrix (here, |C(m)
k | denotes the number of unique elements in the edge

cluster C
(m)
k ) consisting of the columns of I(m) that correspond to the hyperedges in the kth cluster

of order m. For instance, for the bby 3rd order hyperedge cluster of the hypergraph in fig. 5.1, I
(m)
k

is obtained by keeping the last 3 columns of I(m). Additionally, D(m)
k is a diagonal matrix with

elements [D(m)
k ]ii corresponding to the number of mth order edges in the kth edge cluster node i is

part of ([D(m)
k ]ii =

N∑
j=1

[I
(m)
k ]ij).

The variational equation for linear stability depends on all node clusters and all edge clusters

of all orders. For a specific pattern of cluster synchronization, it is:

δẋ =

( K∑
k=1

Ek ⊗ JF (sk)−
d∑

m=2

σ(m)·(5.6)

( Km∑
k=1

∑
l∈{C(m)

k }

ElL(m)
k ⊗ JG(m)(sl, sC(m)

k \l)
))

δx,

where Ek denotes the diagonal cluster indicator matrix encoding which nodes are in cluster Ck

([Ek]ii = 1 if i ∈ Ck and [Ek]ii = 0 otherwise). Additionally, {C(m)
k } is a set of unique node clusters

included in the kth edge cluster, (e.g., in Fig. 5.1, {C(3)
ybb} = {y, b}). Finally, s

C
(m)
k \l is the set of

all the trajectories of nodes included in edge cluster C
(m)
k , excluding those nodes in node cluster l.

The partial derivatives are computed as:

JG(m)(sl, sC(m)
k \l)p,q

∂G
(m)
p

(
m−1∑
j=1

xj − (m− 1)x0

)
∂[x2]q

∣∣∣∣ x0=sl,
xj=[s

C
(m)
k
\l

]j

=
∂G

(m)
p (z)

∂zq

∣∣∣∣
z=

m−1∑
j=1

[s
C
(m)
k
\l

]j−(m−1)sl

,(5.7)

where [s
C

(m)
k \l]j is the jth trajectory in the set s

C
(m)
k \l.

126



The key implication of eqs. (5.6) and (5.7) is that to block diagonalize the Jacobian for the entire

system of Laplacian-like coupled oscillators, it is sufficient to simultaneously block diagonalize the

following matrices:

{E1, ..., EK ,L(2),L(3)
1 , ...,L(3)

K3
, ...,L(d)

1 , ...,L(d)
Kd
}.(5.8)

The form of the projected Laplacians describing a specific pattern of cluster synchronization (the

L(m)
k matrices) is similar to that of the generalized Laplacian [93].

An example of simultaneous block diagonalization is shown in fig. 5.2. There, we impose

Laplacian coupling on dyadic edges, and Laplacian-like coupling on triadic edges. We observe

that in the first case (two clusters, shown in fig. 5.2(a,c-e)), it is sufficient to simultaneously block

diagonalize the cluster indicator matrices (Ey and Eb), the dyadic Laplacian, and the projected

triadic Laplacian, since each node participates in a unique triadic edge pattern. However, in the

second case (four clusters, shown in fig. 5.2(b,f-h)), for the triadic interactions it is necessary to

simultaneously block diagonalize two matrices corresponding to the two distinct triadic order edge

clusters (shown in fig. 5.2(g)).

The results relevant for binary hyperedges are easily generalizable to systems with different

types of nodes and edges, and thus are applicable to multilayered networks [38]. Generally, only

the nodes of the same type get fully synchronized. Additionally, synchronization requires that the

input to each node in the cluster from all types of edges is the same. Thus, we need to cluster

the edges not only based on the node clusters, but also on the edge types. Given the appropriate

cluster assignment, the Jacobian block diagonalization is still obtained by simultaneously block

diagonalizing the set of matrices in eq. (5.8).

We consider an example of a system with different types of hyperedges shown in fig. 5.3(a), where

distinct colors (blue and violet) illustrate distinct hyperedge types and we consider a state with

two distinct node clusters (denoted with black and yellow colored nodes). The different hyperedge

types are also highlighted in fig. 5.3(b-c) with different colors corresponding to different edge types

in the labeled incidence matrices. eq. (5.2) establishing the condition for cluster synchronization

holds for all types of edges and all coupling orders.
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Figure 5.2. Block diagonalizing the Jacobian evaluated on cluster
synchronization states. [(a,b)] Admissible states with two (left column) and four
(right column) clusters. [(c,d)] and [(f,g)] The set of matrices that need to be
simultaneously block diagonalized. [(e,h)] Blocks of the resulting Jacobian. Pink
and blue correspond to parallel and transverse perturbation blocks respectively.

In order to obtain concrete linear stability results, we need to impose specific dynamical equa-

tions to describe the evolution of the system. We use the optoelectric oscillator dynamics used

in experiments in Ref. [61] and considered in [162,163], with one-dimensional discrete time node
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Figure 5.3. Example linear stability calculation for the system discussed in
eqs. (5.9) and (5.10). The calculations were performed using the accompanying
code, Ref. [126]. (a) Left: a hypergraph with attractive (blue) and repulsive
(violet) coupling (eq. (5.10)) and with nodes that obey the same dynamical
equations (eq. (5.9)). Right: the quotient networks representing dyadic and triadic

interactions. (b) Structure of I(2) (left) and I(3) (right). Black and yellow
represent the distinct clusters, blue and violet represent the distinct coupling
types. (c) Matrices used in simultaneous block diagonalization to perform the
stability analysis. (d) Jacobian structure after block diagonalization. Pink and
blue represent parallel and transverse perturbation blocks respectively. (e) Linear
stability diagram for a fixed parameter β = 1.8 and various values of dyadic and
triadic coupling strengths, σ(2) and σ(3). Pink areas are linearly stable, blue areas
are not linearly stable. Black lines correspond to direct simulation of standard
deviations from the average cluster trajectory for each of the σ(3) values in white.
(f) Left: stability diagram with three distinct parameters σ(3) shown with different

colored solid lines. Right: bifurcation diagram for the three distinct values of σ(3)

shown in the corresponding color. Horizontal axis represents the dyadic coupling
strength, vertical axis corresponds to the states of black nodes xblack at the past
100 time steps. Background colors represent the calculated linear stability for each
value of σ(2).

dynamics

F (xi) = β sin2(xi + π/4)(5.9)

and coupling functions

G(2)(xi, xj) =δijσ
(2)[F (xj)− F (xi)],(5.10)

G(3)(xi, xj , xk) =δijkσ
(3) sin(xi + xj − 2xk).
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Here, the values of δij and δijk are selected from values {−1, 1} and correspond to repulsive and

attractive hyperedges respectively. To avoid complications from multistability, we pick a two cluster

state for our analysis and we make edges connecting only the nodes that are in the same cluster

attractive and all the other edges repulsive. Keeping the parameter β constant, we vary σ(2) and σ(3)

to determine the linear stability regions for different parameter regimes. We present our findings

for this example system in fig. 5.3. Figure 5.3(a-b) shows the analogous plots to Fig. 5.1(a-e) with

the state, the quotient networks, and incidence matrices respectively. Figure 5.3(c) shows the set

of matrices that need to be simultaneously block diagonalized. Figure 5.3(e) is the linear stability

plot demonstrating sensitive dependence on both parameters σ(2) and σ(3), with the changes in

the stability properties of the system showing correspondence to different regions of the bifurcation

diagram shown in Figure 5.3(f).

5.5. Conclusion

Systems of dynamical elements coupled on hypergraphs can show intricate synchronization

patterns beyond full synchronization, such as cluster synchronization. We show how to use the

structure of the incidence matrices to determine the admissibility of cluster synchronization patterns

and analyze their stability properties. To do so, we need to consider not only the partition into

node clusters, but also the partition into hyperedge clusters that is induced by the synchronization

pattern of the entire set of nodes coupled on each hyperedge. Our formulation in terms of node and

edge clusters provides a general way to organize the analysis of dynamical processes on hypergraphs.

A crucial aspect of analyzing synchronization patterns is their stability analysis. We demon-

strate how to organize and reduce the dimension of stability calculations. Unlike previous work,

our analysis is not restricted to dyadic interactions, full synchronization [45], or non-intertwined

clusters [162]. Our results open up an opportunity for detailed analysis of systems of theoretical

and practical significance, as well as investigating the role of higher order interactions in stabilizing

or destabilizing different states.
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[79] M. Korda, M. Putinar, and I. Mezić, Data-driven spectral analysis of the Koopman operator, Applied and

Computational Harmonic Analysis, (2018).

[80] A. Krawiecki, Chaotic synchronization on complex hypergraphs, Chaos, Solitons & Fractals, 65 (2014), pp. 44–

50.

135



[81] S. Krishnagopal, J. Lehnert, W. Poel, A. Zakharova, and E. Schöll, Synchronization patterns: from
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