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Structure and dynamics of networks with dyadic and higher order interactions

Abstract

The interplay between the structure of a networked system and the dynamics of its constituent
elements, including their interactions, leads to non-trivial emergent behaviors. These behaviors
can be essential to the function of the system as a whole, and thus mathematical frameworks that
allow careful analysis of such behaviors are valuable. The contribution of this dissertation is to
use the ideas of symmetries and balanced equivalence relations to show how network structure can
be used to find the admissible patterns of synchronization (e.g., cluster synchronization states),
track their dynamics, perform their linear stability analysis, and finally to retrieve the dynamics
from data. An additional contribution is extending these principles to the analysis of cluster
synchronization on hypergraphs. Hypergraphs allow capturing higher order interactions beyond
the pairwise interactions captured in strictly dyadic network systems.

Symmetries are ubiquitous in nature. A networked dynamical system can have symmetries in
its coupling structure, the dynamics of its constituent elements, or both. The first contribution
of this dissertation is demonstrating how such symmetries present themselves in the structure and
spectral properties of the Koopman operator, which is a linear infinite dimensional operator that
exactly reproduces the dynamics of the system in the space of observables. This can be put into
practice as the Koopman operator can be approximated via data driven methods. We demonstrate
how the knowledge of the symmetries can be incorporated into such approximations to speed up
the analysis and make it more accurate.

Cluster synchronization is a type of synchronization that is characterized by a subset of nodes in
the system having fully synchronized trajectories (i.e., forming a cluster), while following a distinct
trajectory from all the other clusters. Such behavior arises when all the nodes in the same cluster
receive the same dynamical input from all the other nodes in the system. Therefore, symmetries
as well as equitable partitions are useful tools to find the admissible cluster synchronization states
for a given system. The second contribution of this dissertation is generalizing the results related
to cluster synchronization in systems of coupled oscillators to study intricate patterns of synchro-

nization, such as the family of states where cluster synchronization and splay states coexist. In
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such states, due to the interaction between the nodal dynamics and network structure, groups of
oscillators become effectively decoupled despite the existence of physical coupling between them.
Networks capture pairwise (dyadic) interactions between elements, yet some systems are inher-
ently higher order. For instance, a 3-species chemical reaction or a publication with three coauthors
involve triadic interactions. The final contribution of this dissertation is to advancing the method-
ology of studying dynamics on systems with higher order interactions (e.g., triadic). Since such
interactions can not be represented as a sum of dyadic interactions, their analysis requires new
tools. Up to now, full synchronization on hypergraphs (which encode higher order interactions)
has been the main focus of in the literature, since the dyadic projection of the adjacency tensor
can be sufficient in stability calculations. We show that this approach is not sufficient for more
intricate dynamics such as cluster synchronization with respect to determining admissible states
and performing stability calculations. To address that, we introduce a formalism based on node
and edge clusters, and demonstrate how to apply it to admissibility and stability analysis. This
formalism provides a principled way to organize the analysis of dynamics on hypergraphs and serves
as a tool to investigate the role of higher order interactions in stabilizing and destabilizing different

states.
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CHAPTER 1

Introduction

A recurring theme of this dissertation is how the interplay between the structure and the dy-
namics in networked systems can lead to intricate patterns of collective behavior. To make progress
in analyzing such non-trivial patterns, we focused on systems with some degree of dynamical ho-
mogeneity. Because of this homogeneity, it is possible to relate the network structure (captured in
the form of an adjacency matrix, incidence matrix, or adjacency tensor) to its effective dynamics
while remaining agnostic to the details of the dynamics. Additionally, the analysis can be advanced
by making use of symmetries of the systems dynamics that are not contained in the structural rep-
resentation or by setting specific restrictions on the coupling functions. In the rest of this section,
I explain my dissertation work in more detail by describing our progress in analyzing systems with
symmetries using data-driven methods, formalizing the phenomenon of dynamical decoupling in
Stuart-Landau oscillators and beyond, and generalizing the analysis of cluster synchronization to
systems with higher order interactions.

Data-driven methods have gained popularity in recent years. One reason is that scientists and
practitioners often have to operate in the regime of abundance of data, but limited knowledge of the
system’s underlying dynamics. Additionally, sometimes the dynamics of the systems are known, but
do not provide enough intuition about the system’s emergent behaviors. One of the most promising
frameworks relating dynamical systems and data-driven methods is the operator perspective [86].
For instance, representing the dynamics via the Koopman operator offers a trade-off between track-
ing the finite-dimensional nonlinear dynamics evolving the state of the system in phase space and
tracking the linear infinite-dimensional Koopman operator acting in the function space [29,76]. The
linearity of this operator is appealing, since linear systems are significantly better understood than
general nonlinear systems. In practice, the infinite dimensionality of the operator poses a challenge,
and instead it is typically approximated by a finite dimensional operator acting on a finite number
of basis functions. These methods are related to dynamic mode decomposition (DMD) introduced
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in Ref. [132] and extended dynamic mode decomposition (EDMD) introduced in Ref. [157], which
rely on approximating the optimal linear operator evolving nonlinear observables. Methods such
as DMD have been very useful in application areas such as fluid dynamics [84]. Chapter 2 of
this dissertation focuses on how the knowledge of the networked system’s discrete symmetries can
be incorporated into data driven methods by relating the symmetries of the dynamics to those of
the Koopman operator. Our findings inform the choice of basis functions in EDMD and lead to
dimensionality reduction compared to the original problem.

Networked dynamical systems are often capable of synchronization, which is a general phenom-
enon characterized by weakly coupled dynamical elements adjusting their rhythms [117]. Examples
of synchronization in engineered and natural systems range from power grids, where synchroniza-
tion is central to the system’s function [104], to fireflies lighting up in unison [103] or neural
synchronization in the brain [55]. While complete synchronization is an important dynamical state
to analyze, other patterns of synchronization often appear as well. For instance, chimera states
are characterized by coexistence of synchronous and asynchronous domains in systems of coupled
oscillators [1], and are hypothesized to be linked to phenomena such as epileptic seizures [5]. An-
other intriguing example of symmetry breaking is remote synchronization, a type of synchronization
where two or more nodes in a dynamical network synchronize even in the absence of direct link
among them [46]. Some useful frameworks that can be applied to analyzing the states beyond
complete synchronization in systems of identical or nearly identical coupled elements are equivari-
ant dynamical systems theory [50] and cluster synchronization [114]. We apply these frameworks
and develop new tools for studying complex symmetry breaking states in systems with dyadic and
higher order interactions in Chapters 3 to 5.

Chapter 3 focuses on a specific continuum of states, referred to as decoupled states, that can
arise in systems of coupled oscillators with phase-shift symmetries and diverse coupling topologies.
The states can be analyzed using the concept of equitable partitions, while taking into account
the rotational symmetries of the nodal and coupling dynamics. In such decoupled states, the
nodes can be partitioned into fully synchronized clusters, with groups of fully synchronized clusters
forming splay clusters. Furthermore, different splay clusters are separated by an arbitrary phase

difference, thus forming a continuum of decoupled states. This interesting phenomenon leads to an



effective decoupling between distinct splay clusters and has been recently observed experimentally
[43,97]. We show how to analyze the admissibility and stability of such states using concepts from
equivariant bifurcation theory and cluster synchronization research.

The results introduced so far were obtained for systems with purely dyadic interactions. How-
ever, some systems are better modeled using a combination of dyadic and higher-order (e.g., triadic,
quartic, etc.) couplings between the interacting elements [17]. These higher order interactions re-
quire new methods, and developing these methods is the main focus of Chapters 4 and 5.

Projections of the adjacency tensor are useful for analyzing full synchronization in dynamical
systems on hypergraphs [30,37,45,93]. In Chapter 4, we demonstrate that the projected hyper-
graphs are insufficient for analyzing cluster synchronization on undirected hypergraphs. The first
reason we highlight is the fact that it is not always possible to reconstruct the hypergraph from its
projection up to an isomorphism, potentially resulting in distinct cluster synchronization dynamics.
The second reason comes from symmetry analysis and the fact that some of the admissible cluster
synchronization states of the projected hypergraph are not admissible on the original higher order
system. Additionally, we show that the structure of the Jacobian can not be represented by the
projected adjacency matrices and node cluster assignments alone, unlike in systems with dyadic
interactions. Finally, to enable this analysis we introduce a formalism based on node and edge clus-
ters that allows us to state the admissibility and linear stability criteria for cluster synchronization
in systems with higher order interactions.

Laplacian (diffusive) coupling is a common choice for a coupling function in systems with dyadic
interactions [139,162]. In Chapter 5, we analyze cluster synchronization on undirected hypergraphs
with Laplacian-like coupling in detail. First, we show how to determine the admissibility of different
cluster synchronization patterns from the node clusters and the edge clusters, which are induced
by the node clusters. We take into account that the edges containing the nodes from a unique
cluster do not contribute to the system’s dynamics under Laplacian-like coupling. Additionally, we
demonstrate that the building blocks of the Jacobian structure are the projected Laplacian matrices
corresponding to each edge cluster and each order of interaction as well as diagonal indicator
matrices corresponding to node clusters. This set of matrices can then be used to block diagonalize

the Jacobian, leading to a dimensionality reduction of the stability calculation.



Overall, this dissertation offers new insight into the interplay of structure and dynamics of
complex networked systems, and sets the ground work for further investigations. Future directions
for the work linking the structure of the Koopman operator and network symmetries include ana-
lyzing continuous symmetries, possibly connecting the work presented here to equivariant machine
learning literature [75,150]. Future developments in our investigation of decoupled states could
include relaxing some of the conditions on the dynamics and relating our results to systems with
adaptive coupling [20], which will allow us to apply our admissibility results to a wider range of
systems with a more direct connection to applications in, for instance, neuronal networks. Addi-
tionally, the decoupled state admissibility and stability analysis can be extended to higher order
interactions. Finally, some future directions in analyzing cluster synchronization in systems with
higher order interactions are investigating the role of parameter heterogeneity, analyzing the com-
plex interplay between dyadic and higher order coupling and its role on stability, and extending our
cluster synchronization analysis to directed hypergraphs or simplicial complexes with dynamics on

hyperedges [101].



CHAPTER 2

Koopman Operator and its Approximations for Systems With

Symmetries

Published as Salova, A., Emenheiser, J., Rupe, A., Crutchfield, J. P., & D’Souza, R. M.
(2019). Koopman operator and its approrimations for systems with symmetries. Chaos: An Inter-

disciplinary Journal of Nonlinear Science, 29(9), 093128.

Many natural and engineered dynamical systems — power grid networks and biolog-
ical regulatory networks, to mention two — exhibit symmetries in their connectivity
structure and in their internal dynamics. Some have time-reversal symmetry, others
rotational and spatial translation invariance, and others still, combinations. These
symmetries are often key for understanding the behavior of systems. For instance,
the interplay between system behavior and structural symmetries arises in loco-
motion, where observed symmetries in animal gaits impose certain constraints the
structure of the neural circuits that generate them. For network systems in par-
ticular, symmetries in the connectivity structure are of fundamental importance.
For instance, the structural symmetries of a network of identical oscillators can
determine its admissible patterns of symmetry-breaking. That said, additional in-
formation beyond knowledge of the network structure is often required to address
more detailed questions about a system’s dynamics, such as whether a particular
configuration is stable in a given parameter regime. In these cases, the system’s
linearization near the steady state can be combined with interconnection symmetry
to provide the answer. However, these linearization methods are only valid on a
local subset of the state space and therefore are not sufficient for global characteris-
tics of nonlinear dynamical systems, such as their attractors, basins, and transients.

The Koopman operator, in contrast, is a linear infinite-dimensional operator that
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evolves the functions on the state space which is valid on the entire state space. We
show how to combine symmetry considerations with the Koopman analysis to study
nonlinear dynamical systems with symmetries. We use representation theory to de-
termine the effect of symmetries on the Koopman operator and its approximations,
drawing out how local dynamical symmetries interact with symmetries arising from
the connectivity of system variables. This, in turn, allows us to modify data-driven
Koopman approximation algorithms to make them more efficient when applied to
dynamical systems with symmetries. We illustrate our findings in a simple network
of coupled Duffing oscillators with symmetries in individual oscillator dynamics and

in their physical couplings.

2.1. Introduction

Symmetries of dynamical systems manifest themselves in asymptotic dynamics, bifurcations,
and attractor basin structure. Symmetries play a crucial role in guiding the emergence of synchro-
nization and pattern formation, which are behaviors broadly observed in natural and engineered
systems. Methods from group theory, representation theory, and equivariant bifurcation theory
provide useful tools to study the common features of systems with symmetries [50,52,54].

Dynamical elements organized into a network are an important class of dynamical systems
that often exhibit these behaviors, especially when symmetries appear in both network structure
and the dynamics of the individual nodes. Studying the effect of symmetries in network topol-
ogy of synthetic and real-life systems using computational group theory is an active area of re-
search [96,114,115]. Those symmetries lead to phenomena such as full synchronization, cluster
synchronization, and formation of exotic steady states such as chimeras [31,42,97,139]. Moreover,
topological symmetries underlying cluster synchronization of coupled identical elements assist in
analyzing the stability of these fully synchronous cluster states [62,114]. For networks of identical
coupled oscillators, the form of their limit cycle solutions and the form of their bifurcations can
be derived from symmetry considerations [10]. Symmetries are also key in determining network
controllability and observability. For example, Refs. [40,125] explored the effect of explicit network

symmetries for linear time-independent and time-dependent networks. Similarly, Refs. [88,155]
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considered nonlinear network motifs with symmetries and studied how the presence of different
types of structural symmetries affect the observability and controllability of the system. Ref. [100],
similar to our approach, uses the Koopman operator formalism (discussed below). They provide
analytic results that link the presence of permutational symmetries in dynamical systems to their
observability properties.

Many dynamical systems of current interest are high dimensional and nonlinear. For instance,
this is the case for many complex networks, such as power grids and biological networks. Complexity
there arises from the interaction between network interconnectivity structure and the nonlinearities
in the node and edge dynamics. And, this often leads to multistability. Linearization methods can
provide insight near the system’s attractors, but they poorly approximate the dynamics on the rest
of the state space. In contrast, operator-based methods give access to the global characteristics
of nonlinear systems. And, they do so in a linear setting and are therefore more well-suited, for
instance, to characterize the attractor basin structure of multistable dynamical systems or the
design of control interventions. The Perron-Frobenius and Koopman operator are adjoint linear
infinite-dimensional operators whose spectra can provide global information about the system.
Their approximations using data-driven approaches make operator methods potentially applicable
when there is no prior knowledge of the system.

The Perron-Frobenius operator evolves densities on state space. It has been used extensively to
assess global behavior of nonlinear dynamical systems [86,149]. There are several well developed
approaches for obtaining its numerical approximations, such as Ulam’s method that relies on the
discretization of state space to obtain an approximation of the Perron-Frobenius operator [152].
Since the Koopman operator is adjoint to the Perron-Frobenius operator, numerical approximations
of the Koopman operators can be obtained using these methods as well [73].

The Koopman operator is an infinite dimensional linear operator that describes the evolution of
observables (functions of the state space) [73,77,86]. Its definition and properties in the context of
dynamical systems are provided, for instance, in Ref. [29], which also summarizes its applicability
to model reduction, coherency analysis, and ergodic theory. Methods based on the Koopman

operator decomposition have proved useful for applications such as model reduction and control



of fluid flows [13], power system analysis [148], and extracting spatio-temporal patterns of neural
data [27].

Data driven methods to approximate the Koopman operator rely upon snapshot pairs of mea-
surements of the system state at consecutive time steps. Reconstructing the operator from these
snapshot pairs requires that a set of functions (called a dictionary of observables) be chosen. The
first data driven method introduced, dynamic mode decomposition (DMD), implicitly uses linear
monomials as a dictionary and thus is most applicable to systems where the Koopman eigenfunc-
tions are well represented by this basis set [132]. A more recent method called extended DMD
(EDMD) introduced in Ref. [157] can be more powerful than the standard DMD when applied to
nonlinear systems as it allows the choice of more complicated sets of dictionary functions. Applying
the EDMD is most computationally feasible if the number of the dictionary functions does not ex-
ceed the total number of the snapshot pairs used. That is not necessarily the case if a rich function
dictionary (e.g., a dictionary of high order polynomials) is chosen. A modification of EDMD called
kernel DMD introduced in Ref. [158] addresses this issue by providing a way to efficiently calculate
the Koopman operator approximation in a case when the number of dictionary functions exceeds
the number of measurements. Yet, the principled choice of an underlying dictionary that leads
to an accurate approximation of the eigenspectrum corresponding to the leading Koopman modes
using EDMD or kernel DMD remains an outstanding challenge. That problem is confronted, for
instance, in Ref. [89], where an iterative EDMD dictionary learning method is presented. Although
the optimal choice of dictionary functions is often unknown, there are some common choices that
are known to produce accurate results for certain classes of systems [157].

Here we study nonlinear dynamical systems with discrete symmetries combining operator-based
approaches and linear representation theory. Recently, related methods have been applied to dy-
namical systems with symmetries. On the one hand, Ref. [98] addresses symmetries of the Perron-
Frobenius operator in relation to the admissible symmetry properties of attractors. On the other,
Ref. [133] links the spatiotemporal symmetries of the Navier-Stokes equation to the spatial and
temporal Koopman operator. Additionally, Ref. [28] noted that symmetry considerations play an

important role in discovering governing equations. And, Ref. [68] shows how conservation laws



can be detected with Koopman operator approximations and then used to control Hamiltonian
systems.

In contrast, our focus is on dynamical systems with symmetries described by a finite group.
We show how the properties of the associated Koopman operator spectrum can be linked to the
properties of the spectrum of the finite dimensional approximations of the Koopman operator ob-
tained from finite data. We further show how the analytic properties of the Koopman operator
decomposition can inform the choice of dictionary functions that can be used in the Koopman oper-
ator approximations. This gives a practical way to reduce the dimensionality of the approximation
problem.

Our development builds as follows. section 2.2 defines the Koopman operator, introduces ap-
proximation methods (EDMD and kernel DMD), and defines equivariant dynamical systems as
well as useful concepts from group theory and representation theory. section 2.3 draws out the
implications of dynamical system symmetries for the structure of the Koopman operator and its
eigendecomposition. section 2.4 connects the properties of the Koopman operator and the struc-
ture of its EDMD approximation for symmetric systems. This then allows modifying the EDMD
method to exploit the underlying symmetries, resulting in a block-diagonal Koopman operator
approximation matrix. We also provide numerical examples, showing how using particular dictio-
nary structures speeds up the algorithm. Finally, section 4.7 summarizes our findings and outlines

directions for future work.

2.2. Preliminaries

2.2.1. Koopman operator. In this section, we provide some background in operator theo-
retic approaches to dynamical systems, in particular, the Koopman operator and its adjoint Perron-
Frobenius operator. Since in this manuscript we address the approximations of the Koopman op-
erator where the input is discrete time data, we focus on their definition in the discretized setting.
The continuous time definitions are similar [29]. Our results regarding the degeneracy of Koopman
operator eigenvalues and the properties of its corresponding eigenfunctions presented in section 2.3

hold in both discrete and continuous time settings.
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Suppose we are given a continuous time autonomous dynamical systems defined as:

(2.1) T = gc(x).

Here, z € R", g, : R" — R™. Let ®(x(t),At) be a flow map mapping the initial condition z(t) to
the solution at time t + At. It is defined in the following way:

t+At

(2.2) B(x(t), At) = 2(t) + / ge(z(7))dr.

t

The system can be discretized with a finite time step Atgep, so that z;11 = ®(x;, Atgep). We

denote the function evolving the dynamics of this discretized system by g:

(2.3) Tit1 = g(w;).

The Koopman operator is a linear infinite dimensional operator that evolves the functions
(referred to as observables) of state space variables f : R — C. The action of the Koopman

operator K on an observable function f for discrete time systems is defined as:

(2.4) (Kf)(x) = flg(x)).

Since we consider data-driven Koopman operator approximation methods in this manuscript, the
discrete time version of the definition is most applicable.

Pairs of eigenvalues A and eigenfunctions ¢ of the Koopman operator K are defined as:

(2.5) (Ko)(x) = Ap(x).

Of particular interest are the Koopman modes that can be used in model reduction and coherency

estimation [124,147]. The Koopman modes vlf of the observable f(z) are defined by:

(26) fl@) =Y loi),
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and are projections of the observable onto the span of the eigenfunctions of the Koopman operator

K. A particularly useful set of modes is that of the full state observable f(x) = z, defined as:
(2.7) r =Y vigi(x).

In general, parts of the Koopman operator spectrum can be continuous [29,79]. For instance,
this can be the case for chaotic systems. However, we focus on the case of a discrete spectrum
since the methods we refer to in the following sections (EDMD, kernel DMD) are only applicable
for that case. Our results regarding the symmetry properti