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ABSTRACT OF THE THESIS

Comprehensive Serial Manipulator Forward Kinematics Calibration Scheme

by

Wen-Cheng Wu

Master of Science in Mechanical Engineering

University of California, Los Angeles, 2023

Professor Tsu-Chin Tsao, Chair

The misalignment error during assembly and/or manufacturing error of robot linkages may

compromise the accuracy of a serial manipulator, causing the actual forward kinematics

model parameter to differ from the designed value. This demands the need for forward

kinematics calibration.

To identify the actual model parameter, the calibration process involves recording data

from a set of robot poses as input to a parameter identification algorithm. In order to save

time on the data acquisition, optimal design of experiment is employed to use the least

amount of data points. Also, to avoid unnecessary calculations and numerical issues during

parameter identification, identifiability analysis is performed to determine and eliminate

unidentifiable parameters. Lastly, this work proposes novel nested algorithm to improve

computation efficiency and robustness for parameter identification. This approach exploits

the fact that part of the model parameter can be obtained explicitly given the rest of the

parameters. This effectively reduces the parameters to find during the iterative identification

process and is shown to be more efficient and robust than the commonly used generic method

in the literature.
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The calibration method is applied to a common 6-DOF industrial robot and a customarily

designed and fabricated 4-DOF surgical robot. For the industrial robot, the nested algorithm

demonstrates better robustness, faster error convergence over iteration, and less calculation

time than the commonly used generic algorithm. For the surgical robot, the results for

optimally designed data points demonstrate a faster convergence of residual error over the

number of data points compared to randomly designed data points.
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CHAPTER 1

Introduction

The demand for the accuracy of robotic serial manipulators is increasingly high with more

demanding tasks. Here, the accuracy of a serial manipulator is defined as the difference

between the actual and estimated position/orientation of the robot end-effector. The esti-

mation is done using prior knowledge of the robot model, known as the Forward Kinematics

(FK), which includes its designed dimensions and other mechanical properties. However,

due to misalignment errors and/or manufacturing errors of the linkage, the accuracy of the

FK estimation may be compromised. Thus, FK calibration is needed to identify the said

misalignment and manufacturing error, and then compensate for them.

Chapter 2 introduces the mathematical tool needed to perform FK calibration. The FK

calibration involves using a number of experimental data to fit the FK model parameters

via an optimization procedure, which minimizes the error between the measured and model-

estimated endpoint coordinates. The formulation of the problem along with the algorithms

for identifying the model parameters will be introduced. In addition to commonly known

methods, such as Gauss-Newton method and Levenberg-Marquardt method, this work pro-

poses a nested optimization algorithm for the purpose of making a more efficient numerical

optimization procedure and computation. The proposed method solves a smaller optimiza-

tion problem, which eliminates part of the parameters and reduces the computation burden.

The condition is that the optimal solution of the eliminated parameters can be found explic-

itly when other parameters are known. It is related to the concept of profile likelihood.

Chapter 3 discusses the identifiability analysis of the model parameters. The concept of
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identifiability of model parameters and its association with the precision of model parame-

ter estimation will be introduced. Also, analytical and numerical methods for determining

identifiability of model parameters shall be explained. One of those methods involves the

Singular Value Decomposition (SVD) analysis of a scaled Jacobian, which gives a more phys-

ical sense and fewer numerical issues compared to previously known approach. Additionally,

since most literature customarily proposes to fix those unidentifiable parameters in solving

the optimization problem, we will analyze the effect of fixing the unidentifiable parameters

on the accuracy and precision of the model parameter estimation. A sufficient condition to

lower the mean squared error of parameter estimation is given, which justifies the fixing of

parameters. This is also known as variance-bias trade-off.

The calibration also involves the selection of the experimental data. Chapter 4 considers

the optimal design of the experiment, sometimes simply called optimal design. To cali-

brate the FK parameter, an experiment using some sort of coordinate measurement machine

(CMM) has to be performed to measure the position/orientation of the robot end-effector.

This measurement acts as the true value for the end-effector pose. In order to achieve better

identifiability of the parameters, multiple measurements are measured with different poses

of the robot. The goal of optimal design is to maximize the information (or equivalently,

minimizing precision error) extracted from the measurement by finding the optimal set of

poses for the robot, within certain pose constraints. Optimal design will allow the estima-

tion of FK parameter to be more precise with fewer poses. This will be beneficial if online

calibration is needed and minimal data acquisition time is sought after.

In practice, the FK calibration also involves the identification of other parameters, such as

joint stiffness and transformation between the measurement and robot coordinates. Chapter

5 proposes FK calibration steps, including robot modeling, experiment design, identifiability

analysis, measuring robot poses, and the FK model parameter identification. FK model uses

the following model parameter, including DH parameters, joint stiffness constant (also called

joint compliance coefficient in this work), and Coordinate Transformation (CT) parameter.
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CT parameter is used to represent the Coordinate Transformation between the CMM frame

to robot base frame. The estimation of CT is also called CMM registration problem in this

literature. Experiment design discusses some general constraints for the data points and

the optimal design problem. For the section about identifiability analysis, the method for

detecting and countering non-identifiability is discussed. Also, a few prominent examples

of non-identifiability in FK calibration are listed and explained. For the measuring step,

the CMM used in this literature will also be introduced. This includes Optical coherence

tomography (OCT), commonly used in eye surgery. A method to locate the tool held by the

robot from OCT V-scan is also introduced. For the identification step, a generic scheme is

introduced which will collectively optimize all FK parameters all at once. A novel scheme

using nested optimization will also be discussed. CT parameter is usually not of interest after

calibration; however, it is still needed to be included in the optimization. Fortunately, the

optimal CT parameter can be explicitly found if other FK parameters are known. Therefore,

nested optimization algorithm can be performed to eliminate CT parameters from calibration

to reduce the number of parameters to be optimized.

Chapter 6 presents the result of applying the proposed method to an industrial robot.

The FK model of that robot is discussed, which assumes a noticeable joint compliance effect.

For comparison purposes, the results with and without considering joint compliance are

listed. It is shown that calibration with the joint compliance model demonstrates consistent

accuracy against varying loads, while calibration without the joint compliance model does

not. Unidentifiable parameters are determined. The comparison of generic and proposed

nested optimization is listed. It is observed that the estimated parameter values are the

same for both algorithms. The result also shows that the calculation time for each iteration

is significantly less for nested optimization (18% less for each iteration), and that nested

schemes require less iteration to achieve the same error convergence rate (33% less). In

addition to the superior efficiency, the nested scheme can be shown to be robust against bad

initial guesses of certain model parameters compared to the generic scheme. The residual

3



error is 0.15 mm for calibration points and 0.49 mm for validation points.

Chapter 7 presents the results of applying the proposed method to a customarily designed

and fabricated surgical robot. The joint stiffness effect is not modeled and neglected because

of small joint torque levels. The robotic surgical workflow calls for two calibration scenarios.

The first is the full calibration scenario, where the whole kinematic chain of the robot is

calibrated. The second is the in situ partial calibration scenario, where only the last 2 joints

of the robot are calibrated. The motivation behind the second scenario comes from the

special mechanism of the surgical robot, which can exchange tools. Also, Since the CMM

used for the surgical robot is an OCT (with 25µm measurement accuracy), there are certain

robot poses that can produce poor-quality OCT measurements. Certain Cartesian space

constraints have to be applied to the data points. Furthermore, it is desired to use fewer data

points to reduce data acquisition time. Therefore, optimal design with the said constraint

is performed for both calibration scenarios. The result for the optimally designed points

shows a faster convergence rate in residual error over the number of data points, compared

to randomly designed data points. The residual error of validation points is around 45µm

after full calibration and around 60µm with only the partial calibration of the last two links,

while the parameters of the first two links from the full calibration are fixed.

4



CHAPTER 2

Model regression: Optimization Algorithm and

Analysis

The calibration problem is actually a model regression problem. In a model regression

problem, there is a mathematical model estimating the behavior of a real-world system. The

goal of model regression is to find the best set of model parameters to make this estimation

as accurate as possible. In the case of Forward Kinematics (FK) calibration, the model is

the FK model of the robot, denoted f(x, β), predicting the position/orientation of the robot

end-effector, denoted y.

ŷ = f(x, β) (2.1)

, where the overhead symbol ∧ means prediction. The formulation of f(·) is derived using

the knowledge of Kinematics. The model function accepts certain variables x as inputs. This

variable is varying and can be measured or controlled. In FK calibration, x would be joint

configuration and sometimes includes joint torque. The model function also accepts model

parameters β as input. Unlike controlled input x, the model parameter β is unknown (can

not be directly measured) and is a fixed constant. For FK calibration, the most important

model parameter would be the Denavit–Hartenberg parameters (DH parameters) [DH55].

Other related parameters would be introduced in 5. The goal of FK calibration is to find

the optimal set of model parameters β∗ to best fit/predict the position/orientation of the

end effector y, more specifically, minimizing ∥y − ŷ∥.

5



2.1 Problem formulation

Given a set of data points (x, y), where x ∈ Rp is the input variable (also known as indepen-

dent variable, controlled variable), and y ∈ Rm is the output variable (else called measured

variable, dependent variable),

x := [xT
1 xT

2 ... xT
p ]

T , y := [yT1 yT2 ... yTm]
T (2.2)

Usually, controlled input x is actively changed, and then measurement of output y is per-

formed. A model function f : (Rp, Rn)→ Rm is also given as

ŷ = f(x̂, β) (2.3)

, which estimates output variable ŷ with respect to a certain input variable, x, and the model

parameter β ∈ Rn. The residual error is then given by

e(β) = [eT1 eT2 ... eTm]
T = y − f(x, β) (2.4)

Nonlinear Least Square (NLS) optimization is a model fitting problem, aiming to find

the optimal set of model parameter, β∗, which minimizes the 2-norm of residual error. More

specifically, the objective function, S(β), and the optimization problem can be defined as

followed

β∗ = arg min
β

S(β), S(β) := eTWe =
m∑
i=1

wie
T
i ei (2.5)

, where W = diag(w1, w2, · · · , wm) is the weighting matrix, which weighs each element in the

residual error. Weighting matrix doesn’t play an important role until there are measurements

of mixed units or mixed measuring methods inside y. In such case, wi = 1/σ2
i is normally

6



used, where σ2
i = V ar(yi). As for the reason for choosing such weight and choosing the form

of least square (2.5) as the objective is explained in the next section, Section 2.2.

2.2 Maximum Likelihood Estimation

Choosing the form of least square as given in (2.5) is to maximize the log likelihood function.

This is also known as Maximum Likelihood Estimation (MLE). To see this, the following

statistical model is assumed

y = f(xt, βt) + ey

x = xt + ex

(2.6)

(xt, βt) is the true measurement and true parameter, and β ∈ Rn. There is random error ey

and ex on the measurement y ∈ Rm (m > n) and controlled input x ∈ Rp. ey and ex are

assumed to be normal random vectors with zero mean, which means

ex ∼ N(0, Vx), Vx = diag(σ2
x,1, σ

2
x,2, · · · , σ2

x,p)

ey ∼ N(0, Vy), Vy = diag(σ2
y,1, σ

2
y,2, · · · , σ2

y,m)
(2.7)

, where σx,i and σy,i are standard deviation of the normal distribution for i-th element of ex

and ey.

The log likelihood function is

L(θ;Z) = −1

2
(eTxV

−1
x ex + eTy V

−1
y ey) + constant (2.8)

Unknown parameter θ actually includes both βt and xt. The observation is Z = [y;x].

Assume ex is small and the following approximation can be made

f(x, β) ∼= f(xt, β) + Jxex, Jx =
∂f(x, β)

∂x

∣∣∣∣
x=xt, β=βt

(2.9)
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To maximize log likelihood function, it is the same to minimize S ′(θ;Z) = eTxV
−1
x ex +

eTy V
−1
y ey.

S ′(θ;Z) = eTxV
−1
x ex + [y − f(xt, βt)]

TV −1
y [y − f(xt, βt)]

= eTxV
−1
x ex + [y − f(x, βt) + Jxex]

TV −1
y [y − f(x, βt) + Jxex]

= eTxV
−1
x ex + [e(βt) + Jxex]

TV −1
y [e(βt) + Jxex]

= [ex + CxJ
T
x V

−1
y e(βt)]

TC−1
x [ex + CxJ

T
x V

−1
y e(βt)] + eT (βt)V

−1
e e(βt)

(2.10)

, where Cx = (V −1
x + JT

x V
−1
y Jx)

−1 and Ve = Vy + JxVxJ
T
x . The last equality of the above

equation uses Matrix Inversion Lemma. Note that the second term is purely the function

of βt not xt, if Jx is stays relatively the same with small variation of x, meaningJx(xt, βt) ∼=

Jx(x, βt). the problem of maximizing log likelihood function then becomes two independent

problems.

min
βt

eT (βt)V
−1
e e(βt)

xt = x+ CxJ
T
x V

−1
y e(βt)

(2.11)

In practice, xt is usually not of interest so the second equation listed in (2.11) is rarely used.

Also for the first optimization problem listed in (2.11), since e(βt) uses the measurement x

instead of the unknown true value xt, the problem can be solved without explicitly derive

xt. Lastly, the first optimization problem listed in (2.11) is of least square form. If the prior

knowledge of Vy and Vx is obtained, the weighting matrix in (2.5) can be set to W = V −1
e .

This effectively makes the minimizing least square problem into MLE. Although, in practice,

simplification and approximation of W = V −1
e are usually performed for convenience. Such

simplification usually assumes controlled input can be measured precisely, and Vx ≈ 0.

Therefore, Ve ≈ Vy. This is why the weight matrix is usually chosen as the inverse of Vy

(mentioned at the end of Section 2.1).
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2.3 optimization algorithm

There are several methods for solving the NLS optimization problem given in (2.5), some

of which, including the Gauss-Newton (GN) method [GG09] and the Levenburg-Marquardt

(LM) method [LEV44, Mar63] will be introduced in the following sections.

2.3.1 Gauss-Newton method

With a small deviation of model parameter ∆β ∈ Rn, assume that the model function can

be approximated as

f(x, β +∆β) ∼= f(x, β) + J∆β (2.12)

where J is the multi-variable derivative of f by β, which is else called the Jacobian matrix

and is defined as

J(β) =
∂f(x, β)

∂β
(2.13)

The Jacobian matrix can be calculated by explicit function if such function is known. How-

ever, in most cases, such function may be too complicated to calculate or not known at all.

Then, Jacobian matrix has to be calculated numerically by approximation, such as forward

finite difference as followed

Jj(β) ∼=
f(x, β + δjuj)− f(x, β)

δj
(2.14)

, where Jj ∈ Rm is the j-th column of J . The finite difference step, δj ∈ R, for j-th parameter

is chosen as a small value. uj ∈ Rn is defined as,

9



[uj]k =


1 k = j

0 k ̸= j

(2.15)

The difference between the approximation made by (2.14) and the true Jacobian matrix

is referred to as truncation error, ϵt, which is proportional to the step size δj [Mat12, Olv14]

(see (2.16)).

ϵt = Ct|δj| (2.16)

Also, since every finite precision computing machine has a floating point error, ϵ, when

computing the (2.14), there will be roundoff error, ϵr [Mat12]. In the most simple case, ϵr

takes the following form

ϵr = Cr
ϵ

|δj|
(2.17)

The dilemma in choosing the right sizing for δj is that, if δj is too large there will be large

truncation error. However, if δj is too small, roundoff error would be large. To choose the

right sizing, both error should be the same size, such that

ϵt = ϵr =⇒ Ct|δj| = Cr
ϵ

|δj|
=⇒ |δj| = C

√
ϵ (2.18)

As shown in the above equation, the optimal finite step δj should be proportional to the

square root of ϵ. However, since calculating Ct and Cr involves additional computation

whether by analytical or numerical method, they are not found in practice. Rather, the

following step size has been used and proved satisfactory.

δj = sign(βj)max(1, |βj|)
√
ϵ (2.19)

10



With the assumption (2.12), then the following approximation of residual error (2.4) and

objective function (2.5) can be written

e(β +∆β) ∼= e(β)− J∆β (2.20)

S(β +∆β) = eT (β +∆β)We(β +∆β)

∼= [e(β)− J∆β]TW [e(β)− J∆β]

= eT (β)We(β)− 2eT (β)WJ∆β +∆βTJTWJ∆β

= S(β)− 2eT (β)WJ∆β +∆βTJTWJ∆β

(2.21)

When S(β +∆β) reaches minimum, its derivative by ∆β should be 0 vector, such that

∂S(β +∆β)

∂∆β
= −2e(β)TWJ + 2∆βTJTWJ = 0

=⇒ ∆β∗ = (JTWJ)−1JTWe(β) (2.22)

Note that the inversion in (2.22) implies that JTWJ is non-singular, which is assumed true

for now. The singularity of JTWJ is associated with the identifiability of model parameters.

The identifiability of a certain parameter can be linked to the precision of the estimation for

that parameter. The identified value of unidentifiable parameters would vary a lot if the data

point (y, x) is collected again and the model regression is conducted again. Mathematically

speaking, This corresponds to the situation that, when JTWJ is near singular, any small

deviation/noise of e(β) would be amplified, and ∆β∗ would vary greatly. There are ways

to detect such non-identifiability. After detection, to counter the non-identifiability, either

remodeling of the model can be performed or the unidentifiable parameters can be fixed at

a nominal value as a constant. All these are to prevent the inverse of a singular matrix and

its accompanying numerical issue. These will be further discussed in Chapter 3.
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The solution of (2.22) will then be applied iteratively to solve the NLS problem (2.5)

as shown in Figure 2.1. The implementation of this method is shown in Algorithm 1. The

stopping criteria (”check convergence” function) for the algorithm returns true if any of the

following is true.

• First-Order Optimality: if the first order gradient of S(β) is smaller than a gradient

tolerance, ϵg

∂S(β)

∂β
=

∂eT (β)We(β)

∂β
= 2eT (β)W

∂e(β)

∂β
= −2eT (β)WJ(β) (2.23)

∥∥∥∥∂S(β)∂β

∥∥∥∥
β=βk

=
∥∥−2JT

k Wek
∥∥ < ϵg (2.24)

• step size: if the maximum parameter step size, ∆βk,i (i means i-th element in ∆βk) is

smaller than a step size tolerance, ϵβ, in the following sense

max
i∈[1,n]

∥∆βk,i∥
∥βk,i∥

< ϵβ (2.25)

• error change: if the residual error change of ek is smaller than an error change tolerance,

ϵe, in the following sense

|∥ek∥ − ∥ek−1∥| < ϵf∥ek−1∥ (2.26)

The success of GN method depends on the assumption (2.12), which is approximately

correct when the step size, ∆β, is small. However, this is not often true. The calculated ∆β∗

from (2.22) is often too large for (2.12) to hold true. This implies that this method heavily

depends on the correctness of the initial guess, β0; otherwise, the calculated step will jump

too far. This is why Levenburg-Marquardt method is employed instead since LM method

can limit the step size.
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Figure 2.1: NLS solving algorithm diagram

Algorithm 1 algorithm for Guass-Newton method

1: Input: β0, ϵg, ϵe, ϵf , W

2: Output: βk

3: k ← 0

4: while ∼ converged do

5: Jk = J(βk), ek = e(βk)

6: ∆βk = (JT
k WJk)

−1JT
k Wek

7: βk+1 ← βk +∆βk

8: converged ← check convergence(ϵg, ϵf , ϵβ, Jk, ek,∆βk, βk)

9: k ← k + 1

10: end while

13



2.3.2 Levenburg-Marquardt method

Levenburg-Marquardt (LM) method ([LEV44, Mar63]) changes the parameter updating step

(2.22) of GN method to the following form, which introduces in a damping factor λ

∆β∗ = (JTWJ + λI)−1JTWe(β) (2.27)

Three important theorems that support this method are addressed in [Mar63].

• THEOREM1: The updating step, ∆β∗, given in (2.27) minimize the following opti-

mization problem

min
∆β

S(β +∆β)

s.t. ∆βT∆β = (∆β∗)T (∆β∗)

(2.28)

where the objective function is the approximation given in (2.21)

• THEOREM2: ∥∆β∗∥2 is continuous decreasing function of λ, with

lim
λ→∞
∥∆β∗∥2 = 0 (2.29)

• THEOREM3: The angle, γ, between ∆β∗ and steepest descent direction of S(β+∆β)

given in (2.21) is a continuous decreasing function of λ

lim
λ→∞

γ = 0 (2.30)

Theorem 2 means increasing λ will limit the updating step size. Theorem 1 proves that

this modified method could still minimize the approximated objected function (2.21) within

this limited step size. Theorem 3 means that this method would transform into steepest

descend method with increasing λ.
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LM method can be viewed from another aspect. Given a damping factor λ, LM method

is actually solving the modified problem below.

min
∆β

ẽT (β +∆β)W̃ ẽ(β +∆β) (2.31)

ẽ(β +∆β) :=

e(β +∆β)

∆β

 , W̃ :=

W 0

0 λ

 (2.32)

The modified problem (2.31) tries to minimize the norm of the modified error, ẽ, which

includes both the original error, e, and the updating step, ∆β, with λ acting as its weight.

This is how LM can minimize the objective function while limiting the step size at the same

time. Following the steps given in section 2.3.1, the updating step for the problem (2.31) is

∆β̃ = (J̃T W̃ J̃)−1J̃T W̃ ẽ(β)

= (JTWJ + λI)−1
[
JT (β) I

]W 0

0 λ

e(β)
0


= (JTWJ + λI)−1JTWe(β)

(2.33)

, which is exactly like (2.27).

There is still one issue remaining for LM method. As shown in (2.31), the optimization

problem tries to minimize the 2-norm of ∆β. This would become an issue if ∆β has different

units for its elements (parameters). Then, the 2-norm ∆β doesn’t have a physical meaning.

An unfortunate choice of unit may result in drastic differences among the value of different

parameters. Therefore, an improved scaled optimization problem is solved instead

min
∆β

ẽT (β +∆β)W̃ ẽ(β +∆β) (2.34)
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ẽ(β +∆β) :=

 e(β +∆β)

diag(JTWJ)
1
2∆β

 , W̃ :=

W 0

0 λ

 (2.35)

, where diag(JTWJ) is a diagonal matrix, whose diagonal elements are those of the JTWJ .

The absolute value of i-th element in diag(JTWJ)
1
2∆β represents the weighted error change

W
1
2 e(β +∆β) incurred by ∆βi (step change of i-th parameter) alone. For example, if β1 is

changed by ∆β1 while all other parameters remain the same, the incurred change on weighted

error is

∥∥∥W 1
2 [e(β +∆β)− e(β)]

∥∥∥ =
∥∥∥−W 1

2J(β)∆β
∥∥∥

=
∥∥∥W 1

2 [J1 J2 · · · Jn] [∆β1 0 · · · 0]T
∥∥∥

=
∥∥∥W 1

2J1∆β1

∥∥∥
= (JT

1 WJ1)
1
2 |∆β1|

=
∣∣∣[diag(JTWJ)

1
2∆β]1

∣∣∣
(2.36)

The term diag(JTWJ) acts as a weight for each parameter in ∆β, making them compa-

rable to each other in terms of their individual effect on the weighted residual error, W
1
2 e(β).

This scaled optimization problem therefore aims to minimize the original error while limit-

ing the norm of maximum weighted error changes incurred by the individual change of each

parameter.

Following previous procedure, the optimal updating step for this scaled problem is

∆β̃ = (J̃T W̃ J̃)−1J̃T W̃ ẽ(β)

= (JT W̃J + λdiag(JTWJ))−1
[
JT (β) diag(JTWJ)

1
2

]W 0

0 λ

e(β)
0


= (JTWJ + λdiag(JTWJ))−1JTWe(β)

(2.37)
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According to the above text, tuning λ would have an effect on the updating step size and

the method for updating. When (2.12) and (2.21) fail to approximate the model function

and objective function, and the objective increases, increasing λ will force the step size to

decrease (hence a better approximation for (2.21)) and make the updating step walk along

steepest descend direction. The implemented LM method is reported in Algorithm 2

Algorithm 2 algorithm for Levenburg-Marquardt method

1: Input: β0, ϵg, ϵe, ϵf , λ, W

2: Output: βk

3: k ← 0

4: while ∼ converged do

5: Jk = J(βk), ek = e(βk)

6: ∆βk = (JT
k WJk + λI)−1JT

k Wek or ∆βk = (JT
k WJk + λdiag(JT

k WJk))
−1JT

k Wek

7: βk+1 ← βk +∆βk

8: converged ← check convergence(ϵg, ϵf , ϵβ, Jk, ek,∆βk, βk)

9: if (k ≥ 1) ∩ (∥ek∥ < ∥ek−1∥) then

10: λ← λ/2

11: else

12: λ← λ ∗ 2

13: end if

14: k ← k + 1

15: end while
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2.4 Nested optimization scheme

In section 2.3, algorithm for solving NLS problem is introduced. However, those algorithm

belongs to low-level schemes. In this section, high-level optimization scheme will be intro-

duced. This scheme will seek to take advantage of the nature of the optimization problem

to better solve the problem.

As discussed in section 2.3, GN method depends heavily on the initial guess of the model

parameters. LM method tries to remedy this disadvantage by tuning the optimization step.

However, this will slow down the process. Depending on the nature of the NLS problem,

sometimes a subset of the model parameter can be solved in a closed-form solution if given

the rest of the model parameters. Nested optimization scheme takes advantage of this and

breaks up the model parameters into two groups. One group is solved using LM method,

and the other group (called nuisance parameters) can be solved using closed-form solution.

This nested scheme can achieve the same result as the generic one with faster convergence

speed, since fewer parameters are involved in each iterative, and the accuracy of the initial

guess for nested parameters becomes irrelevant.

2.4.1 formulation of nested scheme

Suppose that model parameter β in problem (2.5) can be separated into 2 groups of param-

eters, β = [βT
1 βT

2 ]
T , β1 ∈ Rn1 , β2 ∈ Rn2 . With a slight twist of problem (2.5), the NLS

problem can be rewritten in the following sense.

(β∗
1 , β

∗
2) = arg min

β1,β∗
2

S(β1, β
∗
2)

β∗
2(β1) = argmin

β2

S(β1, β2)

(2.38)

Now, suppose that, given β1, the optimal β∗
2 (nested parameters) can be calculated

explicitly with the optimal solution function g : Rn1 → Rn2 . Then the problem becomes

18



β∗
1 = argmin

β1

S(β1, g(β1))

β∗
2 = g(β1) = argmin

β2

S(β1, β2)
(2.39)

The equivalence of solving the optimal parameter using generic scheme and nested scheme

is proven in [GM95]. The proof given there is to maximize the log likelihood function,

which is equivalent to minimizing the least square error function given in (2.5) since normal

distribution is assumed. This is closely related to concentrated or profile likelihood, where

the optimal value of a subset of parameter β2 (called nuisance parameter) can be found

explicitly by other parameter of interest β1. Then, the likelihood function is expressed solely

by parameter of interest, thus concentrated. The optimal parameter β1 can be found by

maximizing the concentrated likelihood function. This is illustrated in Figure 2.2. The blue

line is the contour line of log likelihood function and the red line is g(β1). The red curve on

the right is the concentrated likelihood function (or profile).

As shown in (2.39), the nested objective function, S(β1, g(β1)), is now only dependent

on β1. See Figure 2.4, LM method can be applied to this nested objective function to solve

for optimal β∗
1 first. Then the optimal β2 can be calculated from function g(·). Compared

to the generic LM method (Figure 2.3), the nested scheme effectively reduces the parameter

number in the iterative LM process. Moreover, since β2 is calculated explicitly, its initial

guess is no longer a problem.

2.4.2 comparison of nested method to generic method

The difference between a generic method and a nested method can be seen in their updating

steps. Weighted Jacobian can be partitioned into two groups which correspond to β1 and

β2.

W
1
2J =

[
J1 J2

]
(2.40)
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Figure 2.2: concentrated likelihood illustration

Figure 2.3: generic LM method
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Figure 2.4: nested LM method

For simplicity, here GN method is used instead of LM method for this demonstration.

The updating step as described in (2.22) can be written into the following form using block

matrix inversion lemma 3.1.2 and matrix inversion lemma 3.1.3

∆β∗ = (JTWJ)−1JTWe

∆β∗ =

∆β∗
1

∆β∗
2

 =

(JT
1⊥J1⊥)

−1JT
1⊥

(JT
2⊥J2⊥)

−1JT
2⊥

W
1
2 e (2.41)

, where

J1⊥ = [I − J2(J
T
2 J2)

−1JT
2 ]J1

J2⊥ = [I − J1(J
T
1 J1)

−1JT
1 ]J2

(2.42)

In comparison, for the nested method, suppose it is possible to have a closed-form esti-

mator of β2 if given β1 and (y, x)

β∗
2 = g(β1, y, x) (2.43)

The weighted Jacobian matrix by β1 for the nested scheme is
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J1g =
dW

1
2f(β1, g(β1))

dβ1

=
∂W

1
2f(β1, β2)

∂β1

+
∂W

1
2f(β1, β2)

∂β2

∂g(β1, y, x)

∂β2

= J1 + J2Jg(β1, y, x)

(2.44)

Then, the updating step for the nested scheme is

∆β∗
1 = (JT

1gJ1g)
−1JT

1gW
1
2 e (2.45)

A comparison between the updating step of the generic method (2.41) and nested method

(2.45) shows the difference comes from J1⊥ and J1g. Further inspection between the two in

(2.42) and (2.44) shows that the difference comes from Jg and A = −(JT
2 J2)

−1JT
2 J1. Since

J1 and J2 is not a function of y, A = −(JT
2 J2)

−1JT
2 J1 is not either. However, Jg is a function

of y and will be modified by the change of y. It is suspected that this is the reason why the

nested scheme has a faster convergence rate than the generic one. More specifically, since

the Jacobian matrix will be modified according to the measured data y instead of just the

prediction by model alone, it is suspected that the updating step for the nested scheme will

be more accurate in predicting the optimal step.

2.4.3 time efficiency of nested scheme

As will be demonstrated in Chapter 7, the LM method takes most of the time (∼ 90%) to

calculate Jacobian matrix for each iteration. Therefore, whether nested scheme can reduce

the calculation of each iteration depends heavily on the calculation of Jacobian matrix.

Using symbol Time(·) to denote the calculation time of its input process, and supposing

that J ∈ Rm×(n1+n2), then the calculation time of Jacobian matrix for generic LM method is

Time(Jgeneric) = m(n1 + n2)Time(f(β1, β2)) (2.46)
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Since Jacobian is calculated using the forward finite difference method (2.14), the calculation

of model function f (2.3) is repeated for each element inside Jacobian matrix J . Similarly,

for the calculation time of the Jacobian in nested scheme

Time(Jnested) = mn1Time(f(β1, g(β1))) (2.47)

Suppose the additional calculation introduced by the calculation of g(β1) is denoted ∆Tg

∆Tg = Time(f(β1, g(β1)))− Time(f(β1, β2)) (2.48)

Then, the time saved by nested scheme is

∆T = Time(Jgeneric)− Time(Jnested)

= m[n2Time(f(β1, β2))− n1∆Tg]
(2.49)

Thus, to maximize ∆T , it is better to employ nested scheme when the additional calculation

incurred by g(·) is small, or the number of the parameters saved from the LM method, n2,

is large. Also, it shall be demonstrated in Chapter 7 and Chapter 6 that the nested scheme

could reduced total iteration number required to reach the same error convergence stopping

criteria. Therefore, even if ∆T < 0, meaning nested scheme takes more time to complete an

iteration than generic scheme, the total calculation time could still be reduced by the nested

scheme with its reduced iteration number.
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CHAPTER 3

Identifiability analysis

In model regression, identifiability refers to the ability to precisely estimate the unknown

model parameters from the measured data, y, and controlled input, x. Identifiability is

associated with model formulation. The definition of identifiability is

Definition 3.0.1. A model f(x, β) is said to be locally identifiable at β = a if there is a

open set B, s.t. a ∈ B, and the following is true

f(x, β1) = f(x, β2) =⇒ β1 = β2, ∀β1, β2 ∈ B (3.1)

Global identifiability can also be defined if the injective (one-to-one) property of f(x, β)

is true for all β ∈ Rn. The definition comes from definition 5.2 of [LC98], except it uses

probability density function instead of model function f(x, β). For nonlinear model regres-

sion, most of the time, global identifiability is neither achieved nor of interest; Thus, local

identifiability is referred to as simply ”identifiability” unless clearly specified otherwise.

If a model is unidentifiable, there may be multiple possible β that has the same model

prediction f(x, β). In another words, the optimal estimation of model parameter may not

be unique and have large variance. However, it is not necessarily true that all parameters

from an unidentifiable model are unidentifiable. There may still be a subset of identifiable

parameters from an unidentifiable model. In light of this, a group of methods referred to

as identifiability analysis is then used to determine the identifiability of each parameter in a

given model.
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As the corner stone of the identifiability analysis, the following theorem relates the sin-

gularity of Jacobian, defined in 2.13, with the identifiability of a model

Theorem 3.0.1. A model f(x, β) is locally identifiable at β = a, if Ja = J(x, a) ∈ Rm×n

has full column rank, assuming m > n.

Proof. Supposing Ja has full column rank, rank(Ja) = n, to prove local identifiability, it is

equivalent to show

∃B, s.t. a ∈ B, and ∀β1, β2 ∈ B, β1 ̸= β2 =⇒ f(x, β1) ̸= f(x, β1)

First, define a function g : Rn → Rn

g(β) = JT
a f(x, β)

Take the derivative of g

∇g = JT
a Ja

Since g(β) is a function satisfying g : Rn → Rn, and also its derivative, ∇g(a) = JT
a Ja ∈

Rn×n, has full rank. Invoking Inverse function theorem, g(β) is locally invertible, which

implies it is injective as well

∃B, s.t. a ∈ B, and ∀β1, β2 ∈ B, β1 ̸= β2 =⇒ JT
a f(x, β1) ̸= JT

a f(x, β1)

=⇒ f(x, β1) ̸= f(x, β1)

An estimator β∗ = T (Z) is a method to calculate an estimation of the true model

parameter βt given a measurement Z. As shall be seen in the following section, there is a

theoretical lower bound on the variance of any unbiased estimator β∗. The mentioned lower
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bound is called Cramér–Rao bound (CRB) [Cra46, Rao92], which gives the theoretically best

precision one can inferred from the measured data. When model is close to non-identifiability,

it shall be shown that CRB would have large value. This means non-identifiability implies

bad precision for parameter estimation. Also, any estimator variance that can reach the CRB

is called efficient. It shall be shown in Section 3.1 that GN method is efficient, supposing

that certain conditions are met.

To achieve identifiability, there are two possible solutions. One solution is to change model

parameterization so that the new model is identifiable. As shall be explained in later sections,

this might be unwanted in some application such as the case in this literature. The other

solution is to fix some of the unidentifiable parameters. This is equivalent to introducing bias

in parameter estimation in exchange for lower variance. If prior information on the upper

bound of certain parameter bias is known, and the CRB for that parameter is larger, fixing

the parameter wouldn’t be a bad trade. This is known as variance-bias trade-off.

Sometimes, non-identifiability is caused by a poor choice of controlled input, making

the corresponding measurement unable to provide sufficient information to identify certain

parameters. In this case, CRB can provide a measure of how good a set of controlled input

is. This is further used to provide optimality criterion in optimal design of experiment

[KB19, ZWR94, ZWH96].

3.1 Cramér–Rao bound

Cramér–Rao bound (CRB) is the theoretical lower bound on the variance of an estimator.

The method used to estimate an unknown parameter using measurment data is called esti-

mator. The mentioned GN method and LM method are both examples of estimator. In this

section, the following proposition shall be proved.

Proposition 3.1.1. For the statistical model given in (2.6), the CRB is given by the following

equation
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Cov[β∗] ≥ (JTV −1
e J)−1 (3.2)

where

Ve := Vy + JxVxJ
T
x , Jx =

∂f(x, β)

∂x

∣∣∣∣
x=xt, β=βt

, J =
∂f(x, β)

∂β

∣∣∣∣
x=xt, β=βt

, (3.3)

The implication of Proposition 3.1.1 is to link CRB with the Jacobian matrix J . This further

links identifiability with CRB by Theorem 3.0.1. More specifically,

unidentifiable model =⇒ rank(J) < n

=⇒ (JTV −1
e J)−1undefined

This means the closer the model to non-identifiability, the larger the CRB and variance on

model parameter estimator.

There is another angle to view the relation between CRB and Jacobian. Suppose the

parameter can be partitioned into two groups β1 ∈ Rn1 and β2 ∈ Rn2 . Also, the weighted

Jacobian is partitioned into J1 ∈ Rm×n1 and J2 ∈ Rm×n2 .

V
− 1

2
e J = [J1 J2], β =

β1

β2


Decompose J2 into two components, one component J2∥ ∈ Col(J1) and another component

J2⊥ ∈ Col⊥(J1).

J2 = J2∥ + J2⊥,

∃A ∈ Rn1×n2 , s.t. J2∥ = J1A

JT
1 J2⊥ = 0

Find CRB using block matrix inversion lemma and matrix inversion lemma (see following),

27



CRB(β∗) = (JTV −1
e J)−1 =

JT
1 J1 JT

1 J2

JT
2 J1 JT

2 J2

−1

Lemma 3.1.2. block-wise matrix inversionA B

C D

−1

=

 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

 (3.4)

Lemma 3.1.3 (matrix inversion lemma).

(A−BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1 (3.5)

Then examine the (2,2) block of Cov(β∗)

CRB(β∗
2) = [JT

2 J2 − JT
2 J1(J

T
1 J1)

−1JT
1 J2]

−1

= [JT
2⊥J2⊥ + JT

2∥J2∥ − JT
2∥J1(J

T
1 J1)

−1JT
1 J1A]

−1

= (JT
2⊥J2⊥)

−1

(3.6)

The above equation shows that, if ∥J2⊥∥ is small, CRB(β∗
2) would be large. Examine a

special case where n2 = 1, which means β2 is a scalar. It can be seen that, if J2 ∈ Col(J1),

J2⊥ = 0 and the variance of β∗
2 would be infinite. This shows that, if any specific column of

J is linear dependent with other columns, the corresponding parameter would have infinite

CRB and zero precision for estimation.

Before diving into the proof of Proposition 3.1.1, a few components have to be introduced.

First, CRB is found to be the inverse of Fisher information matrix (FIM) [Cra46, Rao92].

Fisher information can be perceived as a quantification of information drawn from measurable

random variable/vector, denoted Z, on some unknown deterministic parameter (or vector),

denoted θ. With the definition of bias and FIM given below, CRB is given in Theorem 3.1.4

Definition 3.1.1. Suppose θ∗ = T (Z) is an estimator of unknown deterministic parameter

θ, with its expectation being E[θ∗] = ϕ(θ). Then, its bias is defined as
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b(θ) := E[θ∗]− θ = ϕ(θ)− θ (3.7)

Definition 3.1.2. Denote the conditional probability density function of Z given θ ∈ Rn to

be fZ|θ. The (i, j) element of Fisher information matrix, F (θ) ∈ Rn×n, is

[F (θ)]i,j := E

[(
∂log fZ|θ(z, θ)

∂θi

)(
∂log fZ|θ(z, θ)

∂θj

)∣∣∣∣ θ] (3.8)

Theorem 3.1.4. The covariance of estimator θ∗ = T (Z) has a lower bound

Cov[θ∗] = E[(θ∗ − ϕ(θ))(θ∗ − ϕ(θ))T ] ≥ (I +∇θb)F (θ)−1(I +∇θb)
T (3.9)

The proof of theorem 3.1.4 is given in [GH90]. Note that the above theorem does not

specifically specify the estimator to be unbiased. When the estimator is unbiased (b(θ) = 0),

the lower bound degenerate back to the inverse of FIM. For the special case of normal

distribution, FIM is derived as followed [Kay93].

Lemma 3.1.5. Suppose normal distribution for Z ∼ N(µ(θ),Σ(θ)), then the (i, j) entry of

FIM is

Fij =
∂µT

∂θi
Σ−1 ∂µ

∂θj
+

1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θj

)
(3.10)

With all the above Theorem and Lemma, Proposition 3.1.1 can be proved.

Proof. Proposition 3.1.1

The random noise model in 2.6 can be rearranged as followed

y
x

 =

ey
ex

+

f(xt, βt)

xt

 (3.11)

Define measurable random vector Z and unknown deterministic parameter θ as
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Z :=

y
x

 , θ :=

βt

xt

 (3.12)

The expectation and covariance matrix of Z is

µ(θ) = E[Z] =

f(xt, βt)

xt


Σ(θ) = E[(Z − µ)(Z − µ)T ] =

Vy 0

0 Vx

 (3.13)

Since ey and ex are both normal random variable, Lemma 3.1.5 can be used.

∂µ

∂θ
=

J Jx

0 I

 ,
∂Σ

∂θ
= 0 (3.14)

=⇒ F =
∂µT

∂θ
Σ−1∂µ

∂θ
=

JTV −1
y J JTV −1

y Jx

JT
x V

−1
y J JT

x V
−1
y Jx + V −1

x

 (3.15)

CRB of βt can be obtained by examining the (1,1) entry of the block-wise matrix inversion

of F

CRB(βt) = (F )−1
11

= [JTV −1
y J − JTV −1

y Jx(J
T
x V

−1
y Jx + V −1

x )−1JT
x V

−1
y J ]−1

= {JT [V −1
y − V −1

y Jx(J
T
x V

−1
y Jx + V −1

x )−1JT
x V

−1
y ]J}−1

= [JT (Vy + JxVxJ
T
x )

−1J ]−1

(3.16)

where the second equality comes from Lemma 3.1.2, and the third equality uses Lemma

3.1.3.
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3.2 Expectation and Covariance matrix of Guass-Newton estima-

tor

In this section, as an example, the expectation E[∆β∗] and covariance matrix Cov[∆β∗] of

GN estimator deviation ∆β∗ from true value will be derived. ∆β∗ is defined as

∆β∗ := β∗ − βt (3.17)

, where β∗ represents the optimal parameter minimizing the objective function, and βt rep-

resents model parameter estimated by the GN estimator. Due to the presence of random

noise, ∆β∗ is a random vector. The relationship between the random noise and Cov(∆β∗)

shall be presented.

residual error at true parameter

For the residual error definition given in (2.4) and the statistical model given in (2.6),

e(βt) = y − f(x, βt)

= f(xt, βt) + ey − f(xt + ex, βt)

= (ey − Jxex)

(3.18)

, where the third approximation is made using (3.19) with the assumption that ex is very

small, and Jx is the derivative of the model function by x (3.20).

f(xt + ex, βt) ∼= f(xt, βt) + Jxex (3.19)

Jx = Jx(xt, βt) =
∂f(x, β)

∂x

∣∣∣∣
x=xt, β=βt

(3.20)

In (3.18), it can be seen that, with the presence of random noise, even if βt is known and

used, the residual error is still not 0. Its expectation and covariance can be estimated as
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followed

E[e(βt)] = 0

Cov[e(βt)] = Cov[(ey − Jxex)]

= Vy + JxVxJ
T
x

= Ve

(3.21)

, where Ve := Vy + JxVxJ
T
x .

optimal parameter deviation

When β reaches optimal value β∗ minimizing the objective function S(β), derivative of

S(β) (2.23) should be 0, then

∂S(β)

∂β

∣∣∣∣
β=β∗

= 0 =⇒ JT (β∗)We(β∗) = 0 (3.22)

The residual error when reaching the optimal point e(β∗) can be approximated by (2.20)

e(β∗) ∼= e(βt)− J(β∗)(β∗ − βt)

∼= (ey − Jxex)− J∆β∗
(3.23)

The above equation uses the assumption that ∆β∗ << 1. Also, denote J = J(β∗). Then,

combining (3.23) and (3.22)

JTWJ∆β∗ = JTW [(ey − Jxex)] (3.24)

If the J has full column rank, Null(J) = 0, and the solution is

∆β∗ = (JTWJ)−1JTW [(ey − Jxex)] (3.25)

The method for picking out unidentifiable parameters to make J has full column rank, and
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the physical interpretation of the singularity of Jacobian matrix will be presented in section

3.3

The expectation and covariance of ∆β∗ is

E[∆β∗] = 0

Cov[∆β∗] = (JTWJ)−1JTWCov[(ey − Jxex)]WJ(JTWJ)−1

= (JTWJ)−1JTWVeWJ(JTWJ)−1

(3.26)

,and since

X =

JTWVeWJ JTWJ

JTWJ JTV −1
e J

 =
[
V

1
2
e WJ V

− 1
2

e J
]T [

V
1
2
e WJ V

− 1
2

e J
]
≥ 0 (3.27)

JTV −1
e J > 0 (3.28)

Then, the Schur complement X/(JTV −1
e J) ≥ 0

JTWVeWJ − (JTWJ)JTV −1
e J(JTWJ) ≥ 0

=⇒ (JTWJ)−1JTWVeWJ(JTWJ)−1 − JTV −1
e J ≥ 0

=⇒ Cov[∆β∗] ≥ (JTV −1
e J)−1

(3.29)

(3.29) means that the diag(Cov[∆β∗]) has a lower bound diag((JTV −1
e J)−1), and the equality

holds when W = V −1
e . This lower bound is the same as CRB presented in Section 3.1. This

suggests that, if Ve is known, W = V −1
e should be used to calculate objective function (2.5)

to achieve theoretically most precise optimal parameter identification. This makes sense

in that the measurement with less variance (more precise) should be considered with more

weight.
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3.3 determine unidentifiable parameters

From previous sections, it is shown that, when model is unidentifiable model, the CRB of

model parameters will become undefined. The concept of identifiability is examined from

the perspective of the whole model. However, it is also stated that even if the model is

unidentifiable, some subset of model parameter can still be identified. In this section, the

concept of identifiability will be examined from the perspective of individual parameter.

More specifically, various methods for determining which parameter is unidentifiable will be

given.

Note that all methods given in this section are a prior method, meaning no measurement

have to be done beforehand to perform them (y and x is not observed). Since the true

parameter βt is not known apriori, the calculation of Jacobian and model function uses the

initial guess or nominal value of β instead. For the controlled input x, the designed value

is used instead. If good initial guess nor nominal value is available, an initial optimization

can be done ahead to serve as starting seed. Also, the variance of measurement noise Ve is

assumed known or measured by prior experiments.

3.3.1 identifiability by model function

Suppose that the model function is simple enough. Then, the simplest way to determine

if a specific parameter is unidentifiable is by checking if that parameter can be changed

without changing the model function prediction f(x, β). This is a direct interpretation of

the definition given in Definition 3.0.1. The non-identifiability of model parameters can

be further categorized into two different situations. If the change of one single parameter

results in no change of the model function prediction f(x, β), then that parameter is called

redundant. If the change of multiple parameters results in no change of the model function

prediction f(x, β), then those parameters are called dependent parameters, or correlated

parameters. Usually, it is pretty easy to spot any redundant parameters by any of the
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methods given in this section. In contrast, dependency among parameters is less apparent

to find.

For example, for the following model function

f(a, b, d, x) = (a+ b)x+ 0× d (3.30)

and the true value for the model parameter is [a b d]true = [2 0 0]. It is clear that with the

following model parameter deviation for (a, b), f is unchanged

∆a = −u

∆b = u
=⇒ f(a+∆a, b+∆b, d, x) = f(a, b, d, x) (3.31)

Then, it means that (a, b) are dependent parameters. Also, since any change on d would

result in no change on f , d is redundant.

3.3.2 identifiability by Jacobian column

Identifiability can also be determined by checking the linear dependency of the Jacobian

columns. More, specifically, check if it is possible to find a vector ∆βnull ∈ Rn/{0}, s.t.

J∆βnull = 0 =⇒ rank(J) < n

, which further implies the Jacobian does not have full column rank; thus, by Theorem 3.0.1,

the model is unidentifiable. The parameter corresponding to the linear dependent columns

is unidentifiable. If a minimal linear dependent set includes only one Jacobian column, then

that column is 0 vector, and the parameter corresponding to the column is redundant. If there

are multiple Jacobian columns inside one minimal linear dependent set, then the parameters

corresponding to those columns are dependent. A less formal but helpful interpretation of

the above statement is by checking if there is any subset of parameter (including single
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parameter) deviation that would cancel each other out in terms of their respective effect on

the model function f(x, β).

3.3.3 identifiability by SVD

The methods mentioned above depends either on the simplicity of the model or on the non-

intuitive inspection on linear dependency. Oftentimes, correlation between parameters is

not apparent by performing previously mentioned methods. The method to be introduced

below uses CRB as a way to quantify identifiability, and uses singular value decomposition

(SVD) to determine identifiability of the parameters. Compared to previous methods, it

is more straightforward and intuitive, and can provide physical meaning to identifiability

in terms of the precision of the model parameter estimation. It is the aim of this method

to provide a numerical way to examine and quantify identifiability as opposed to treating

the identifiability as a binary property associated with model parameter. However, before

diving into the numerical aspect, the analytical aspect will be discussed first. To fully explain

identifiability by SVD, a few concepts have to be introduced first.

scaled parameter

The following method will use the formulation in Proposition 3.1.1 to calculate CRB,

but with a slight twist. Define parameter scaling matrix D (a diagonal matrix), and scaled

parameter βs as

D = diag((JTV −1
e J))

1
2 ∈ Rn×n, βs = Dβ (3.32)

One consequence of scaling the parameters is to change the dimension of the parameter

from their respective unit (e.g. mm, rad, etc.) to be dimensionless (the unit of weighted

error). Furthermore, as mentioned in Section 2.3.2, what is of interest is not the absolute

value of the scaled parameter but its deviation. If i-th parameter changes by a small deviation

δβi, the scaled parameter deviation δβs,i = Dδβi represents the incurred change on the norm
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of residual error. This allows the comparison among parameters in terms of how much each

parameter deviation would effect the weighted residual error. Lastly, there is another insight

into the scaling matrix D. Inspecting its i-th diagonal element Di, its inverse is actually the

square root of CRBind(βi), where subscript ”ind” means βi is estimated individually while

assuming other parameter is known.

Di = (JT
i V

−1
e Ji)

1
2 =

1√
CRBind(βi)

(3.33)

Therefore, the small deviation of scaled parameter δβs,i also means the ratio between the

actual parameter deviation δβi and
√
CRBind(βi). This concept will become useful when

inspecting CRB(βs), which will be introduced shortly.

scaled Jacobian

Define the scaled Jacobian as the derivative of weighted residual error (2.4) by scaled

parameter,

Js :=
∂(−V − 1

2
e e)

∂βs

= V
− 1

2
e JD−1 (3.34)

, where the weighting matrix is selected to be W = V
− 1

2
e > 0.

One assumption here is there are no redundant parameters in the model, or otherwise,

they are taken out of the model beforehand. This is justified because the deviation of the

redundant parameter would have no effect on the model function; thus, its disappearance

would cause no consequences. The purpose of this assumption is to make Js always defined.

More specifically, since there is no redundant parameters, i-th column of Jacobian Ji would

have non-zero norm, which means D > 0

∥Ji∥ > 0 =⇒ Di = diagi(D) =
∥∥∥V − 1

2
e Ji

∥∥∥ > 0

Following from the definition given in (3.34), it can be seen that the scaled Jacobian
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matrix is dimensionless, which makes the singular value decomposition (SVD) of Js physically

meaningful instead of just being a numerical operation. The significance of this will be given

shortly. First, the notation for SVD has to be introduced

Js = USV T (3.35)

, where U ∈ Rm×n and V ∈ Rn×n have orthonormal columns. U and V are called left and

right singular matrix respectively. S = diag(σ1, σ2, ..., σn) ∈ Rn×n, with σ1 ≥ σ2... ≥ σn.

Another worth-noting property is that the scaled Jacobian is the Jacobian matrix with

normalized columns. By inspecting its matrix norm and invoking the equivalence of norm

inequality, the following property for its singular value could be derived

∥A∥max ≤ ∥A∥ ≤
√
mn∥A∥max

=⇒
1 ≤ σ1 = ∥Js∥ ≤

√
mn

0 ≤ σk ≤
√
mn, k = 2 ∼ n

(3.36)

CRB of scaled parameter

Following similar derivation as in Proposition 3.1.1, the CRB for scaled parameter is

CRB(βs) = (JT
s Js)

−1 (3.37)

The scaled Jacobian can be used to represent the CRB of model parameter β

CRB(β) = (JTV −1
e J)−1 = D−1(JT

s Js)
−1D−1 = D−1CRB(βs)D

−1 (3.38)

The derivation of the above equation uses the definition of scaled Jacobian given in (3.34).

Recall (3.33), the CRB of i-th scaled parameter can then be written as

CRB(βs,i) = Di CRB(β) Di =
CRB(βi)

CRBind(βi)
(3.39)
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The above equation shows yet another benefit for using scaled parameter. The CRB of

scaled parameter gauges how precise each parameter estimation is when that parameter is

estimated collectively with other parameters versus individually. Without scaled parameter,

it is not clear as to how large the variance or CRB of a specific parameter is too large. It

can be shown that CRB(βs,i) ≥ 1 with block matrix inversion lemma presented in Lemma

3.1.2, which is trivial and not proven here. This shows the involvement of other parameter

will always deteriorate the precision of a specific parameter estimation.

It is mentioned in Section 3.1 that the CRB of unidentifiable parameters would be in-

finitely large or, more formally, undefined. That was done using the normal component J2⊥

of one Jacobian column to the others. Alternatively, SVD can be used to represent the CRB

of scaled parameter

CRB(βs) = (JTV −1
e J)−1 = V S−2V T =

n∑
i=1

1

σ2
i

ViV
T
i (3.40)

, where Vi is the i-th column of right singular matrix V . From above equation, it can be seen

that CRB can be decomposed into n different component with 1/σ2
i being its weight. If, for

example, σn = 0, then Vn ∈ Null(Js). The non-zero entries in Vn would be unidentifiable,

and the component, VnV
T
n would have infinite (undefined) weighting, which means the CRB

of the corresponding unidentifiable parameters would be infinite (undefined).

identifiability by SVD

From previous argument about CRB(βs), the closer σi is to 0, the larger the CRB of

corresponding unidentifiable parameter is. However, CRB is not a good way to determine

non-identifiability mainly due to its inversion calculation. When encountering strictly 0

singular values, calculation of CRB would involve inversion of a singular matrix. Therefore,

CRB(βs) is introduced here for explanation purpose. It will later come into use when dealing

with variance-bias trade off issues. As a numerically stable alternative, SVD can be used

to find out the basis for Null(Js) and subsequently the dependent parameters. Vi which
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corresponds to zero or close to zero σi is the basis for null space of Js. Then, the dependent

parameters are those parameters with non-zero entries in Vi.

The immediate question is perhaps that, to find the unidentifiable parameters, why not

use SVD of J instead? Why bother using Js? After all, using J to determine identifiability

is what Theorem 3.0.1 originally suggested. Indeed, when it comes to robot FK calibration,

that is what most of the literature suggested as well [LLW21, MD00, KJB16, ZRH90b].

However, [Sch93] suggested using scaled Jacobian with column-wise normalization by in-

finity norm of the Jacobian column. [DMB93] suggested normalization by 2-norm of the

Jacobian column or 1 depending on whether Di = 0. However, both state that the scaling

is for comparing singular values when the magnitude among parameters is greatly different,

without getting into too much detail as to why that is the case.

When the singular value is exactly at 0, it is completely equivalent to finding dependent

parameters using SVD of J and Js. Since D > 0 and Ve > 0, Null(Js) = {0} if an only

if Null(J) = {0}. Also, since D is a diagonal matrix with positive diagonal values, the

dependent parameter predicted by SVD of J and Js will be the same. However, when the

Jacobian does not have strictly 0 but close to 0 singular value. In this case, the last singular

value σn and its corresponding right singular vector, Vn, are considered instead, since σn is

the least of all. It can be seen that the σn of Js would contribute most to the summation of

the CRB of all scaled parameters

n∑
i=1

CRB(βs,i) = Tr(CRB(βs)) =
n∑

i=1

1

σ2
i

(3.41)

Using SVD of Js for the prediction of unidentifiable parameters thus has a physical meaning.

Also, this determination is invariant with the selection of units for the parameters since they

are scaled and become dimensionless. However, the same can not be said for the SVD of J

or V
− 1

2
e J . In fact, denote the singular value of weighted Jacobian V

− 1
2

e J to be γi, then
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n∑
i=1

CRB(βi) = Tr((JTV −1
e J)−1) =

n∑
i=1

1

γ2
i

(3.42)

It can be seen that γn would contribute most to the summation of the CRB of all originally

”unscaled” parameters. The units and magnitude among parameters may differ. This sum-

mation is a purely numerical operation and does not possess physical meaning. If the unit

of one parameter changes (e.g. mm to m), the determination of unidentifiable parameters

would have very different results.

In practice, when using finite precision machine to calculate singular values, it is unlikely

that a singular value would have a strict 0 value, even if it is 0 analytically. Similarly, it is

also necessary to have a method to determine the non-zero entries inside Vi. In this case, a

threshold on singular value and right singular vector is performed. The u-th parameter, βu,

is considered unidentified if

∃v ∈ {1, 2, ..., n}, s.t. σv < ϵσ1, and V 2
uv > ϵmax{max

i
V 2
iv, max

j
V 2
uj} (3.43)

, where ϵ is the floating point error.

3.4 Variance-bias trade off

The performance of an estimator can be quantified by its variance and bias. Variance

shows how precise the estimation is, whereas bias shows accuracy. An index combining

both quantity is mean square error (MSE). It can be shown that, for the estimation of i-th

parameter inside β ∈ Rn

MSE(β∗
i ) = V ar(β∗

i ) + b2i (3.44)

, where β∗
i is the i-th element inside estimator β∗ = T (Z). This can be easily proven by the

following
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E[(β∗ − βt)(β
∗ − βt)

T ] = E[(β∗ − β∗ + β∗ − βt)(β
∗ − β∗ + β∗ − βt)

T ]

= Cov(β∗) + bbT − bE[(β∗ − β∗)T ]− E[(β∗ − β∗)]bT

= Cov(β∗) + bbT

(3.45)

Then, by examining the i-th diagonal element, (3.44) is shown. Equation (3.45) will come

in handy in later proof.

It is mentioned that unidentified parameter will have large CRB. In this case, even if

the estimator is unbiased, MSE will still be very large. Suppose there is a good guess βg

on the unidentified parameter, and the difference between the guess and the true value

βt is guaranteed to be smaller than a bias bound B. Then, a fixed-parameter estimator

which estimates the unidentified parameter to be β∗ = βg regardless of the measurement

(observation) Z = (y, x) will have an MSE smaller than B2. This is one way to implement

variance-bias trade off. By deliberately increasing the bias and decreasing the variance of

the estimator, MSE is lowered and a better estimator is obtained.

3.4.1 sufficient condition for lowering MSE for all parameters

For an unbiased estimator, after fixing a subset of parameters, the variance of those fixed

parameter is lowered to 0, and their bias would most likely increase, unless a perfect guess

of the fixed parameter is made, which is unlikely. For ”unfixed” parameter, it can be shown

that the variance would also decrease and the bias would increase from 0. Nevertheless, it

is very inconvenient to calculate and track down the difference of bias and variance for both

fixed and unfixed parameter before determining if a certain parameter should be fixed. The

following theorem solves this problem by giving the sufficient condition, on which the MSE

of all parameter (fixed and unfixed alike) will be smaller after fixing a subset of parameter.

Theorem 3.4.1. Suppose the model parameter β ∈ Rn can be partitioned into two groups
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β =

β1

β2

 , β1 ∈ Rn1 , β2 ∈ Rn2

For β2, there exits a guess β2g ∈ Rn2 and a bias bound B2 ∈ Rn2
>0, such that

|(β2g − β2t)i| < (B2)i, i ∈ {1, 2, ..., n2}

Denote an unbiased estimator β∗ = T (Z) to estimate β, where Z is one observation.

Suppose β∗ is in multivariate normal distribution and has a covariance matrix

Cov(β∗) =

 Cov(β∗
1) Cov(β∗

1 , β
∗
2)

Cov(β∗
2 , β

∗
1) Cov(β∗

2)


Denote another estimator, β′ = T (Z| β2 = β2g), which estimates β under the condition

that β2 = β2g

When the following condition is satisfied

σmin(Cov(β∗
2)) ≥

n2∑
i=1

(B2)
2
i (3.46)

Then, ∀i ∈ {1, 2, ..., n}

MSE((β∗)i) ≥MSE((β′)i)

The proof of Theorem 3.4.1 requires the following Lemma [Mis64]

Lemma 3.4.2. A multivariate normal random vector Z = [X;Y ] has covariance matrix

Cov(Z) =

 A B

BT C


Then, the conditional variance and expectation is
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E[X|Y ] = E[X] +BC−1(Y − E[Y ])

Cov(X|Y ) = A−BC−1BT

Proof. of Theorem 3.4.1

Denote the bias to be b∗1 and b∗2 for β∗, and b
′
1 and b

′
2 for β

′

b∗ = E[β∗]− βt =

b∗1
b∗2

 , b
′
= E[β

′
]− βt =

b′1
b
′
2

 (3.47)

Since β∗ is unbiased, b∗1 = 0 and b∗2 = 0. Also, since β
′
2 = β2g is given, b

′
2 = β2g − β2t and

Cov(β
′
2) = 0.

Suppose condition (3.46) is met, then

σmin(Cov(β∗
2)) ≥

n2∑
i=1

(B2)
2
i

=⇒ xTCov(β∗
2)x ≥

n2∑
i=1

(B2)
2
i ≥ xT b

′

2b
′T
2 x, ∀x ∈ Rn2/{0}

=⇒ Cov(β∗
2) ≥ b

′

2b
′T
2

For fixed parameter β2, from the above inequality, the following can be derived

Cov(β∗
2) ≥ b

′

2b
′T
2 =⇒ Cov(β∗

2) + b∗2b
∗T
2 ≥ Cov(β

′

2) + b
′

2b
′T
2

Examine the diagonal entry of the above inequality, it can be concluded that, for fixed

parameter, the mean squared error is smaller

MSE((β∗)i) > MSE((β′)i), ∀i ∈ fixed parameter

For unfixed parameter β1, apply Lemma 3.4.2 to β∗,
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E[β
′

1] = E[β∗
1 ] +K(β2g − E[β∗

2 ])

Cov(β
′

1) = Cov(β∗
1)−KCov(β∗

2)K
T

,where K = Cov(β∗
1 , β

∗
2)Cov(β∗

2)
−1. Since E[β∗

1 ] = β1t and E[β∗
2 ] = β2t

b
′

1 = Kb
′

2

=⇒ Cov(β∗
1) + b∗1b

∗T
1 − [Cov(β

′

1) + b
′

1b
′T
1 ] = K[Cov(β∗

2)− b
′

2b
′T
2 ]KT ≥ 0

=⇒ Cov(β∗
1) + b∗1b

∗T
1 ≥ Cov(β

′

1) + b
′

1b
′T
1

Similarly, by examining the diagonal entry for the above inequality and combining the case

for fixed parameters, the following can be obtained

MSE((β∗)i) > MSE((β′)i), ∀i ∈ {1, 2, ..., n}

3.4.2 further interpretation

The condition (3.46) is given in unscaled parameter. To avoid numerical issue from badly-

scaled parameter, previously mentioned in Section 3.3.3, scaled parameter should be used

instead.

σmin(Cov(β∗
2s)) ≥

n2∑
i=1

(B2s)
2
i (3.48)

,where β∗
2s and B2s is the scaled β∗

2 and B2. Furthermore, since CRB(β∗
2s) ≤ Cov(β∗

2s), a

stricter condition for lowering MSE can be written using CRB as the covariance matrix
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σmin(CRB(β∗
2s)) ≥

n2∑
i=1

(B2s)
2
i (3.49)

This condition is still not useful enough since it involves calculation of a possibly singular

matrix CRB(β∗
2s). From (3.6), the above condition can be further simplified as

σmin(CRB(β∗
2s)) =

1

σmax(JT
2s⊥J2s⊥)

≥
n2∑
i=1

(B2s)
2
i

=⇒
∥∥JT

2s⊥J2s⊥
∥∥ n2∑

i=1

(B2s)
2
i ≤ 1 (3.50)

, where J2s⊥ is the component of J2s normal to Col(J1s). The simplified condition can be

checked without worries of singularity issue. As can be seen from the above inequality, to

lower MSE, it is better to fix parameter that has smaller bias bound B2s (more accurate

guess) and small J2s⊥ (unidentifiable parameters and poor estimator precision). If there is

no good guess for a specific parameter, then it means Bs → ∞. An extreme cases arises

when there is no good guess Bs →∞ while the parameter is unidentifiable
∥∥JT

2s⊥J2s⊥
∥∥ = 0.

In this case, either fixing it or leaving it is acceptable.
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CHAPTER 4

Optimal Design of Experiment

As mentioned in previous chapter, CRB is a quantification of precision of an estimator. It

is also closely related to identifiability of parameters and linear dependency of the Jacobian

matrix. Since Jacobian matrix is a function of both the parameters β and the controlled

input x, one way to decrease the CRB is to select suitable x to disrupt the linear dependency

of the Jacobian matrix. Thus, optimal design of experiment is needed. The goal of that is

to maximize the Fisher information matrix (in terms of some concept of matrix norm) or

minimize the CRB over the controlled input x. In FK calibration, this is equivalent to find

the optimal poses of the robot for the CMM to measure.

The mathematical formulation of the optimal design problem is as followed

min
x

Φ(F (x))

s.t. C(x) ≤ 0

(4.1)

, where C(x) is some sort of constraint function. Since Fisher information matrix F (x) =

JTV −1
e J is a matrix, scalarization function Φ(·) : Rn×n → R has to be used to quantify

F (x). Of course, there are many scalarization functions to choose from as optimality criteria.

Famous optimality criteria include

• A-optimality: Φ(F ) = Tr(F−1)

• D-optimality: Φ(F ) = −log(det(F ))

• E-optimality: Φ(F ) = −σmin(F )
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The calculation of the objective and constraints F (x) and C(x) often need prior knowl-

edge on β since J = J(β, x). The nominal value of β has to be used instead, or some sort

of simple experiment has to be done ahead to infer the rough value of the parameters. This

problem will occur later in this literature as well and shall be discussed in more details in

Ch. 7

The FIM can be decomposed into the addition of FIM of individual poses. To see this,

it is necessary to extend the definition of input x and output y defined in (2.2). Suppose

there are N data points (xi, yi) being collected, and xi ∈ Rp′ , yi ∈ Rm′
. The input vector

and output vector then become

x =


x1

x2

...

xN

 ∈ Rp, y =


y1

y2
...

yN

 ∈ Rm (4.2)

Obviously, p = Np′ and m = Nm′.

Recall from Chapter 3.1 that the FIM can be formulated as

F (x) = JTV −1
e J (4.3)

Partition the weighted Jacobian as

V
− 1

2
e J =


J1

J2
...

JN

 , Ji ∈ Rm′×n (4.4)

With the restructured definition of x and y, Ve = Vy + JxVxJ
T
x becomes a diagonal block

matrix of the following form.
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Ve(x) =


V1(x1) 0 · · · 0

0 V2(x2) · · · 0
...

...
. . .

...

0 0 · · · VN(xN)

 (4.5)

This implies that Ji = Ji(xi). Then the FIM becomes

F (x) =
N∑
i=1

Fi, Fi = Fi(xi) = JT
i Ji (4.6)

The above equation shows that the FIM F (x) can be decomposed into Fi(xi), which is a func-

tion of individual input xi. This formulation allows convenient mathematical manipulation

for the following.

4.1 optimal design formulation

In general, there are two groups of methods to further formulate the optimization problem.

• point by point search method: find N input xi from all feasible poses XF = {x :

C(x) ≥ 0} to minimize F (x) in a point-by-point fashion

• search from pool method: find N input xi from a finite set (the pool) XP ⊂ XF , to

minimize F (x)

4.1.1 search from pool method

As the name suggests, this method pick the inputs from a pool of finite candidates. This

setup can turn the optimal design problem into convex optimization. Suppose that the finite

set XP (candidate pool) is given, and number of element inside XP is M = |XP | >> N . The

individual FIM Fi corresponding to the i-th candidate input xi (i ∈ [M ]) can be calculated.

Then, the formulation described in (4.1) can be rearranged as
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min
ρi

Φ(
M∑
i=1

ρiFi)

s.t.

M∑
i=1

ρi = N, ρi ∈ {0, 1}

(4.7)

, where the input weight ρi ∈ {0, 1} is a binary number and indicate whether the i-th

candidate input xi is selected or not. However this problem is NP hard. This problem can

be relaxed as followed

min
ρi

Φ(
M∑
i=1

ρiFi)

s.t.
M∑
i=1

ρi = N, ρi ≥ 0

(4.8)

Note that if the scalarization function Φ(·) is convex, then this relaxed problem becomes

a convex programming problem. In fact, all the optimality criteria mentioned earlier in this

chapter is convex. Furthermore, A-optimality and E-optimality can be further transformed

into Semidefinite programming (SDP) problem [BV04]. It is also reported that D-optimality

can be transformed into Second Order Cone programming (SOCP) problem [Sag09]. Both

SDP and SOCP can be solved efficiently by interior point method (IPM) [Jor06]. After the

relaxed optimal design problem is solved, and the relaxed optimal input weight ρ̂ is found,

the sub-optimal solution to the original problem (4.7) can be found by thresholding.

Despite the many benefits presented above, the downside of this problem is that it requires

pre-calculation of large amount of Jacobian matrix Ji. Ideally, the candidate pool xi ∈ XP

has to have a wide yet dense distribution. This could pose quite a problem for time-pressing

online calibration purposes. It can be argued that the calculation of Ji could be done prior

and stored for later use. However, since Ji is a function of not only x but also β as well, if

it is wished to use a different set of parameter for calculation of Ji, the previous calculation

has to be done again. For instance, suppose that originally nominal value of parameter β0
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is used for optimal design of experiment. Then, experiment is done, and measurement of y

and x is obtained. Later, estimation of parameter is performed, and it is found out that the

estimated parameter β∗ has noticeable difference from β0. It is then wished to use β∗ instead

of β0 for future optimal experiment design. This happens when there is a constant need for

estimation of a subset of changing parameters while other parameters are estimated before.

For example, a surgical robot with exchangeable tool constantly changes its tool. Each time

tool exchange happens, FK calibration has to be performed to estimate the FK parameter

representing the changed mechanism, while the remaining mechanism is still best described

by the previously calibrated value. This will be discussed with more details in Chapter 7.

4.1.2 point by point search method

Due to the downside mentioned earlier, an alternative method to solve optimal design prob-

lem is proposed here. This method is called point-by-point search method. Just as the name

suggested, this method iteratively solves for the next optimal data point, xk+1 ∈ Rp′ , with k

being the number of current data points, until k = N is reached. Suppose that k input, xi,

is already given, so Fi, i ∈ [k] can be calculated. Then, the next optimal input can be found

by solving

min
xk+1

Φ(
k∑

i=1

Fi + Fk+1(xk+1))

s.t. C(xk+1) ≥ 0

(4.9)

Note that, unlike search from pool method, there is no way to guarantee the above problem to

be convex optimization problem. However, it can still be solved by IPM, and the calculation

required is not so big if N is small.

This method should not start from k = 1 since F (x) would probably not have full rank,

and the optimality criterion is likely to be undefined or 0, which will cause further issue

when performing IPM to solve the problem. Instead, a minimum amount, denoted Nmin, of
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data points should be selected to ensure that F (x) has full rank. This selection of initial

seed input xmin ∈ Rp′Nmin could be done either manually or randomly. Also, Suppose that

rank(Ji) ≥ r. To ensure full rank for F , the necessary condition is

rank(F ) = n =⇒ rank(J) = n

=⇒ Nminr ≥ n
(4.10)

Note that this is only necessary condition. Whether this is sufficient condition depends on

xmin. If it is not sufficient, additional input has to be included into xmin. However, this

necessary condition is generally sufficient as well if the selected inputs are not close to each

other.
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CHAPTER 5

Forward Kinematic calibration

The accuracy of a serial manipulator is defined by the difference of actual and estimated

end-effector pose, where pose means both position and orientation. The estimated pose is

calculated by the FK of the robot. FK model describes how the pose of the end-effector

would move with respect to the joint variable and applied force/torque. Like any model, the

FK model can be parameterized. Unfortunately, due to misalignment error during assembly,

manufacturing error of linkage, and/or simply poor knowledge on the model, the true FK

parameters often deviates from nominal value (designed value). This would compromise the

accuracy of FK. To improve accuracy, FK calibration is performed. Its purpose is to identify

(estimate) the true value of the FK parameters.

FK calibration setup

The setup for the FK calibration is illustrated in Figure 5.1. The whole setup consists

of a robot and a Coordinate Measuring Machine (CMM). Both are fixed on the ground.

CMM can measure the whole or partial pose (i.e. position and orientation) of a special tool

mounted onto the flange. There are four major frames for this setup. The robot base frame

{b} is attached to the base of the robot. Flange frame {f} is attached to the robot flange.

Tool frame {t} is attached to the end of the tool. The origin of {t} is called the tool center

point (TCP). Note that the tool frame is considered the same as the end-effector frame in

this literature. CMM frame {m} is the reference frame for all pose measurements by CMM.

There are three measurable quantities. The tool pose m
tT can be fully or partially mea-
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Figure 5.1: frames and transformations used in FK calibration

sured by CMM. An example of ”partial” measurement of m
tT is that CMM may only measure

position of the tooltip and/or direction of the tool centerline. Joint angle/translation (col-

lectively called joint variable) q can be measured by encoder. Joint torque/force τ can be

measured by motor current and/or force sensor.

There are four major transformations in this setup. Denote the transformation from

frame {i} to frame {j} to be i
jT

• m
bT : It is parameterized by Coordinate Transform (CT) parameter tmb ∈ R6, m

bT =

m
bT (tmb). tmb is an unknown parameter and needs to be inferred during FK calibration.

• b
fT : It is parameterized by DH parameter η and is a function of q.

b
fT = b

fT (q, η) (5.1)

This function is known as FK of the robot. η represents the geometry of the robot

linkage and how they are connected. The above assumes rigid joint model. In case
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where joint compliance has perceivable effect, flexible joint model is assumed. The

above becomes

b
fT = b

fT (q, η, τ, C) (5.2)

, where C is joint compliance coefficient. It describes how much the joint q would move

when sustaining joint force/torque τ . The true value of both parameters, η and C, are

unknown and needs to be inferred during FK calibration.

• f
tT : It is called tool transformation matrix in this literature. The dimension of the tool

is assumed known so the transformation f
tT is known as well.

• m
tT : This transformation can be (partially) measured by CMM (red arrow in Figure

5.1), or estimated using FK (blue arrow in Figure 5.1).

m
tT = m

bT (tmb)
b
fT (q, η, τ, C) f

tT (5.3)

In summary, FK calibration is to identify the model parameter (β = [η;C; tmb]) of the

model function ŷ = f(x, β) given in (5.3), which estimates the output (y = m
tT ) given an

independent input (x = [q; τ ]). The true intention for FK calibration is to obtain an accurate

FK function, b
fT (q, η, τ, C), for further application of the robot. Therefore, finding η and C

is of interest. As for CT parameter, it depends on whether further application of the robot

still needs CMM. In most cases, CMM is not used after FK calibration is done; thus, the CT

parameter is not important. However, some application, like the surgical robot mentioned

in Chapter 7, would still require the use of CMM (an Optical Coherence Tomography, OCT)

after FK calibration. In this case, CT parameters are of interest.

FK calibration procedure
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See Figure 5.2. FK calibration proposed in this literature includes 5 steps: modeling FK,

experiment design, identifiability analysis, measuring using coordinate measuring machine

(CMM), and finally identify the parameters.

1. Modeling: model the output y (i.e. m
bT ) as a function of independent input x (i.e.

q and τ) and model parameter β (i.e. η, C, and tmb). Or more simply, derive the

analytical expression of equation (5.3).

2. Experiment design: design the model input xdes for the measuring step. It needs to

satisfy certain constraints (e.g. end-effector has to be within CMM working range),

while trying to increase FIM (improving precision of parameter estimation).

3. Identifiability analysis: check if there are any unidentifiable parameters either by ex-

amining the model function (Section 3.3.1) or by SVD (Section 3.3.3). Note that

identifiability analysis by SVD needs to use the designed input xdes from the last step.

If there are unidentifiable parameters, try to eliminate them by remodeling or re-design

the experiment. If both are unsuitable, use Theorem 3.4.1 to check if it is suitable to

fix them as constant in the estimator.

4. Measuring: Command robot to the designed input xdes. Use CMM to measure y, and

simultaneously record x

5. Identifying: Use the measurement y and x obtained from last step as the input to

certain estimator algorithm. The estimator would then identify the model parameters

β∗.

In this chapter, all of the above steps will be addressed.
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Figure 5.2: calibration flowchart
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5.1 Forward Kinematics model

The purpose of modeling is to derive and/or guess the analytical expression of a model

function which best predicts the behavior of m
tT w.r.t. input (q and τ) and model parameter

(η, tmb and C).

m

tT̂ =
m

tT̂ (q, τ, η, C, tmb)

=
m

bT̂ (tmb)
b

f T̂ (q, η, τ, C) f
tT

(5.4)

, where the hat overhead sign, Â, over some physical quantity A means that A is estimated

by the FK model. As demonstrated above,
m

tT̂ is the multiplication of three transformations.

The model for
m

bT̂ (tmb) and
b

f T̂ (q, η, τ, C) will be discussed in this section.

For explanation purposes in the later text, m
tT and b

tT are partitioned as the following.

m
tT =

Rm pm

0 1

 , Rm =
[
xm ym zm

]
(5.5)

b
tT =

Rb pb

0 1

 , Rb =
[
xb yb zb

]
(5.6)

, where pm, xm, ym, zm ∈ R3 and pb, xb, yb, zb ∈ R3. pm and pb mean the TCP position relative

to CMM frame {m} and base frame {b}. zm and zb mean z direction of the tool frame {t},

relative to CMM frame {m} and base frame {b}. z-direction of the tool frame {t} is usually

selected to be the tool centerline as well. The meaning of the xm, xb, ym, yb are similar to zm

and zb, which altogether form rotation matrix Rm and Rb.

5.1.1 Denavit–Hartenberg convention

The most widely used convention for representing the kinematics of a serial manipulator

is Denavit–Hartenberg convention [DH55]. See Figure 5.3, suppose that there are h joints.
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Figure 5.3: DH convention

This convention attaches a series of coordinate frames {i}, called link frames hereafter, to

the joint of the robot. Then, a group of 4 parameters (di, θi, ai, αi), called DH parameters

ηi, are defined to represent the transformation between successive link frames i
i+1T . The

flange frame of the robot can then be described by DH parameters ηi and joint variables qi

from each joint. For now, rigid joint model is assumed, meaning applied joint torque/force

would not affect joint variable. The effect of joint compliance or flexible joint model will be

discussed in Section 5.1.3.

Define link frame

The guideline for defining link frame {i} axis is as followed

• Zi is the same as the axis of joint i + 1 for revolute joint. For prismatic joint, the

direction of Zi is the same as the direction of joint i+1 translation, but its location is

arbitrary.
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• Xi is defined as the common normal of Zi and Zi−1, and its direction is Xi = Zi−1×Zi.

In case Zi ∥ Zi−1, the direction of Xi points away from Zi−1, and its location can be

chosen arbitrarily to be on any common normal.

• Yi is chosen so that it completes the right-hand coordinate.

A few things to note for the first and last link of the Kinematic chain

• Link 0 is base, and link h is robot flange.

• Frame {0} can be defined using the above guideline by arbitrarily place X0 to intersect

with Z0 perpendicularly. Base frame {b} is defined to be frame {0}.

• {f} is defined using flange geometry. For example, flange geometry is usually cylindri-

cal, and Zf can be chosen to be the axis of the cylindrical flange.

• After defining {f}, frame {h} is defined by the above guideline using Zf as joint axis

h+ 1.

With the above definition, frame {i} is attached (fixed) to the link i on joint axis i+1. This

is true for all frames and links ∀i ∈ [h].

Define DH parameter

The guideline for defining DH parameter for joint i, ηi = [di; θi; ai;αi] ∈ R4, is

• di: called link offset, the distance between origin Oi and Oi−1 along Zi−1

• θi: called joint angle, the angle between Xi and Xi−1 about Zi−1

• ai: called link length, the length of the common normal between Zi and Zi−1 along Xi

• αi: called joint twist, the angle between between Zi and Zi−1 about Xi
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DH matrix representation

the transformation from {i− 1} to {i} is

i−1
iT (qi, ηi) = Qi(qi)Tranz(di)Rotz(θi)Tranx(ai)Rotx(αi)

= Qi(qi)


cos(θi) −sin(θi)cos(αi) sin(θi)sin(αi) aicos(θi)

sin(θi) cos(θi)cos(αi) −cos(θi)sin(αi) aisin(θi)

0 sin(αi) cos(αi) di

0 0 0 1


(5.7)

, where Tranz(di), Tranx(ai), Rotz(θi), Rotx(αi) ∈ R4×4 are defined as

Tranz(di) =


1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1

 , T ranx(ai) =


1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1

 (5.8)

Rotz(θi) =


cos(θi) −sin(θi) 0 0

sin(θi) cos(θi) 0 0

0 0 1 0

0 0 0 1

 , Rotx(αi) =


1 0 0 0

0 cos(αi) −sin(αi) 0

0 sin(αi) cos(αi) 0

0 0 0 1

 (5.9)

, and Qi(qi) is defined as

Qi(qi) =

Tranz(qi), joint i is prismatic joint

Rotz(qi) , joint i is revolute joint
(5.10)

For purpose of clarity, this kind of notation deliberately separates the joint variable qi from

the FK parameter θi and di. This concept comes from [ZRH90a, ZWR93]. In this way,
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when referring to θi and di, it means model parameter, which remains constant during FK

calibration. When referring to joint variable qi, it means model input, which is not a constant

and may vary with different data points.

Finally, the transformation from base frame {b} to flange frame {f} is

b

f T̂ (q, η) =
0
1T

1
2T...

h−1
hT (5.11)

, where q = [q1; q2; ...; qh] ∈ Rh and η = [η1; η2; ...; ηh] ∈ R4h.

In keeping with the 4-parameter style of parameterization for each link, one major short-

coming of the DH convention is that it implicitly assumes {h} to be the same as {f}, and

uses {h} to represent {f}. Although it is true that their Z axis is the same by definition,

Zh := Zf , their X axis is not necessarily the same, Xh ̸= Xf . More specifically, Xf is defined

based on flange geometry, and Xh is defined by the common normal of Zh = Zf and Zh−1.

Their definitions are not the same. An example of this is shown in Figure 5.4. This makes

the FK model represented by the DH convention incomplete in the sense that it fails to

capture all the behavior of the studied system. This calls for a remodeled version of the DH

parameters below.

Extended DH parameter

The original DH convention with only 4 parameters for each joint is not enough to

represent the arbitrary placement of the last link frame {h}, which should take 6 parameters

to express. This issue is also addressed in [ZRH90a, ZWR93], which suggested using a 6-

parameter model to represent the last link transformation. Here, with the addition of 2 more

parameters βh and bh, the Extended DH (EDH) parameter, ηh = [dh; θh; ah;αh; bh; βh] ∈ R6,

is then proposed to replace the DH parameter on the last link transformation. The EDH

representation below is designed to resemble the original DH transformation for program

writing purposes.
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Figure 5.4: An example of Xf ̸= Xh

h−1
hT (qh, ηh)

= Qh(qh)Tranz(dh)Rotz(θh)Tranx(ah)Rotx(αh)Trany(bh)Roty(βh)

= Qh(qh)


cbhcth − sahsbhsth −sthcah sbhcth + cbhsthsah ahcth − bcahsth

cbhsth + sahsbhcth cthcah sbhsth − cbhcthsah ahsth + bhcahcth

−cahsbh sah cahcbh dh + bhsah

0 0 0 1


(5.12)

, where the symbol c and s means cos(·) and sin(·), and the subscript ah, bh, th means

αh, βh, θh. Trany and Roty is defined as

Tranz(bi) =


1 0 0 0

0 1 0 bi

0 0 1 0

0 0 0 1

 , Roty(βi) =


cos(βi) 0 sin(βi) 0

0 1 0 0

−sin(βi) 0 cos(βi) 0

0 0 0 1

 (5.13)
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5.1.2 Coordinate Transform

To parameterize m
bT , define a function HS(·) : R6 → R4×4

HS(t) =


RS(t4, t5, t6)

t1

t2

t3

0 1

 (5.14)

, where S is a sequence representing the Euler angle system used for rotation matrix pa-

rameterization RS (e.g. S = ZY X). As demonstrated above, the first three elements in

t represent the translation vector, and the last three elements represent the Euler angle

representation for the rotation matrix.

Partition the CT parameters tmb ∈ R6 into two groups. One group pmb is for representing

the translation vector. The other is Euler angle rmb for representing the rotation matrix

tmb =

pmb

rmb

 , pmb ∈ R3, rmb ∈ R3 (5.15)

Then the m
bT is represented using HS(·)

m

bT̂ = HS(tmb) (5.16)

=⇒


m
bR = RS(rmb)

mpb = pmb

Ideally, the sequence S is chosen so that no gimbal lock happens. Gimbal lock will be

detected after performing identifiability analysis. When it happens, two of the Euler angles

will be dependent on each other, rendering those two parameters unidentifiable. Normally,
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Figure 5.5: power transmission setup for revolute joint

an arbitrary choice of S will do. In the unfortunate case where gimbal lock happens to occur,

re-parameterization is needed and different S should be used.

5.1.3 Joint compliance model

Joint compliance, or joint stiffness, refers to the phenomenon where joint undergoes elastic

deformation when applied outside force/torque. Many literatures [LHS08, WZF09, KB19,

ODB12, GYN00] reported that joint compliance has noticeable effect on the robot TCP

position and that incorporating the joint compliance model would increase the accuracy of

FK estimation.

See Figure 5.5. For the revolute joint, it has been suggested [ODB12, AWR07] that

the main source of compliance comes from the torsion-spring-like behaviour of the gear

train between the motor and driven linkage. Since most industrial robot designs mount the

encoder on the motor side, the actual joint value qactual on the linkage side is not directly

measured. Therefore, the torsional deformation ∆q that happens at the gear train is not

visible to the motor-side encoder. Although there may be other sources of compliance (e.g.

linkage deformation), the gear train deformation has the dominant effect. For the prismatic

joint, it most likely involves some screw design to convert the rotary movement of the motor

into linear translation. Also, there must be a gear train to amplify motor torque as well. It
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is unknown how the applied force would deform the combined mechanism of the gear train

and screw. For simplicity, rigid joint is assumed for the prismatic joint.

To model the joint compliance deflection for revolute joint, the torsion spring model is

used. The joint deflection is assumed to be linear to applied force/torque.

∆q = qactual − q = Cτ (5.17)

, where q is the joint value measured by encoder (already scaled by gear ratio). This is the

most used model due to its simplicity. To apply this, modify the Qi(qi) matrix in (5.10) to

include i-th joint compliance coefficient Ci and joint torque/force measurement τi

Qi(qi, τi, Ci) =

Tranz(qi), joint i is prismatic joint

Rotz(qi + Ciτi) , joint i is revolute joint
(5.18)

5.2 Experiment design

The experiment design is to design a set of joint variables and joint torque (if calibration of

the flexible joint model is desired), which will be used for the measuring step. To improve the

precision of parameter estimation, a good general rule is to spread the range of the designed

joint variable and joint torque as much as permitted. If it is desired, an optimal experiment

design could be performed. Recall (4.1)

min
q,τ

Φ(F (q, τ))

s.t. C(q, τ) ≤ 0

(5.19)

Note that optimal design over joint torque/force is generally not possible since it requires

applying precise force/torque to the joints. Some sort of equipment is needed to achieve this

requirement. However, this has been done before [KB19]. In most cases, however, payloads

with different weights are mounted on the tool to increase the range for joint torque/force.
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There are some constraints on the designed joint variable and joint torque C(q, τ) ≤ 0.

Some of the common constraints include but are not limited to the following.

• joint limit constraint: joint variable and joint torque have to be within a certain range

for safe operation

qlb ≤ q ≤ qub

τlb ≤ τ ≤ τub

(5.20)

• robot working range constraint: The FK model might behave differently on different

points and/or on different orientations; thus it is desired to calibrate the robot within

its normal working range (defined relative to {b}).

Cw(
b
tT ) ≤ 0 (5.21)

• CMM sensing constraint: TCP and tool orientation has to be within a certain set

(defined relative to {m}), where CMM can obtain adequate measurements.

Cs(
m
tT ) ≤ 0 (5.22)

• collision constraint: the robot must not collide with itself.

Using the FK model function described in Section 5.1, all constraint functions above (ex-

cept joint torque constraint and collision constraint) would eventually turn into constraints

on q. Depending on the type of CMM and robot used, one constraint might be more strict

than the other. To simplify the problem, it is possible to satisfy multiple constraints by just

meeting the most demanding one.

Checking the constraints C(q, τ) ≤ 0 and calculating objective function F (q) with a given

q would require the knowledge of η, C, and tmb. However, their true value is unknown at
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this stage, and initial guesses have to be used instead. For DH parameters, a good initial

guess η0 can be obtained from the designed nominal value or from the manufacturer manual.

For the joint compliance coefficient, the rigid joint model is assumed, and its initial guess is

C0 = 0. For CT parameters, there is usually no good initial guess, and a small experiment

has to be performed to find them.

The task of finding tmb or m
bT alone is called a registration problem. Registering the

robot with CMM means locating the robot base frame {b} relative to the CMM frame

{m}. A generic method to do this is by point cloud registration. First, command the robot

to N different joint variables and record their value qi ∈ Rh, i ∈ [N ] using encoder, and

measure their TCP position pmi ∈ R3 using CMM. Calculate TCP position relative to {b},

p̂bi = p̂bi(qi, η0) ∈ R3, using FK model function. Now, there are N pairs of (pm,i, p̂bi). Then,

m
bT can be found using point cloud registration (PCR) algorithm. The details of the PCR

algorithm used in this literature will be discussed in Section 5.5.2.

Special treatment has to be done for the collision constraint. It does not translate easily

to the joint variable constraint since it depends on the geometry of each link. A posterior

check is much easier instead of formulating collision constraints into the experiment design

problem. More specifically, after the experiment design is done and a group of designed joint

variables qdes is obtained. Perform a posterior check algorithm, which attaches a convex

shape to each link and checks if collision happens for each designed joint variable. If true,

pick that joint variable out. One of the algorithms for collision detection of convex shapes

can be found in [GJK88].

5.3 Identifiability Analysis

Non-identifiability falls into 2 categories [WHR21]. One is structurally unidentifiable, which

means the model is locally unidentifiable at a given model parameter β on every input

x. Structural non-identifiability can be eliminated by remodeling the function. The other
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type of Non-identifiability is practical non-identifiability. The definition of practical non-

identifiability, in this literature, is defined as the model being locally unidentifiable at a

given model parameter β and at a given input x. Practical non-identifiability should not

happen with good experiment design.

Detect non-identifiability

Identifiability analysis by model function (Section 3.3.1) can be performed once the mod-

eling step is done without even needing to do experiment design. It can be used to detect

structural unidentifiable parameters. Since most industrial robots mostly adopt a similar

design, their FK model function and a few common unidentifiable cases are already well-

studied. These well-studied cases can be spotted right away if given the DH parameters.

Some of them are explained later in this section.

Identifiability analysis by SVD (introduced in Section 3.3.3) can be performed only after

obtaining a set of designed joint variables qdes from the experiment design step. However, it

can detect both structural and practical non-identifiability. In addition, it can conveniently

spot the non-identifiability of a robot with a novel geometry or a newly designed robot. This

is especially useful for the surgical robot presented in 7, which has a geometry unlike that

of a common industrial robot.

Counter non-identifiability

In general, practical non-identifiability is caused by negligence in the design of the exper-

iment. It may happen to every parameter. To counter it, spread the designed joint variables

and the end-effector position/pose in Cartesian space as much as possible. Then, the prac-

tical identifiability of geometric parameters, meaning DH parameters and CT parameters,

should improve. For the joint compliance parameter, spread the joint torque/force as much

as possible. This is most easily done by mounting payloads with various weights to the robot.
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However, since most industrial robots have a joint axis 1 parallel to the direction of gravity,

there will be no substantial joint deflection on joint 1; therefore, C1 becomes redundant.

For structural non-identifiability, it can be decided depending on the type of unidentifiable

parameters whether to remodel or not. If the unidentifiable parameter is the CT parameter

(most likely rmb), a different model (e.g. choose a different sequence S for HS(·)) can be used

instead. If the unidentifiable parameter is DH parameter, care is needed before proceeding

to change the model formulation. Since DH convention is used in almost every robot design

and its accompanying control program, it could cause quite an inconvenience to employ

another model. Therefore, in this literature, when encountering non-identifiability with the

DH parameter, remodeling is never adopted.

If both remodeling and redesign experiment is not acceptable, fixing the remaining

unidentifiable parameter during identifying step is another option. To decide whether to

fix a parameter, Use Theorem 3.4.1 or the more useful version given in (3.50). It is advised

as discussed in Section 3.4.2 to fix unidentifiable or close to unidentifiable parameters since

the precision for the identification of those parameters is bad. It would be better to trade

the large variance for a small bias by fixing those parameters to lower MSE. If there is an

unidentifiable parameter with a bad initial guess, neither fixing it nor leaving it is more

beneficial to the other. In this case, both options are acceptable.

After all the above countermeasures are executed, if there are still some unidentifiable

parameters left, use LM method given in 2.3.2 to identify them in the identifying step. It

will always give a parameter estimation although it might have a large MSE. In comparison,

GN method would have numerical issues when trying to calculate the matrix inversion in

(2.22).

A few common examples of structural non-identifiability are given below. The underlying

cause for most of them arises from the arbitrary selection in the DH convention.
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Figure 5.6: illustration of parallel axis non-identifiability

5.3.1 Parallel Axis

If there are consecutive joints i and i − 1 that are parallel (meaning αi−1 = 0) or near

parallel to each other, then di and di−1 are dependent. In [Hay83], Hayati tried to tackle

this by remodeling FK and introducing a new Hayati parameter. This issue comes from the

non-unique common normal of two parallel lines. See Figure 5.6, the origin of each frame

is marked with a colored dot. Since joint axis i is parallel to joint axis i− 1, frame {i− 1}

can be selected to be any point on joint axis i (red dot can be moved along joint axis i)

without changing the previous and next frame (blue dots are fixed). An infinite amount of

(di, di−1) pair corresponds to the same FK model, which makes them dependent and thus

unidentifiable.
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Figure 5.7: illustration of prismatic joint non-identifiability

5.3.2 Prismatic Joint

If joint i is prismatic joint, then (ai, ai−1, di+1, di, di−1) are dependent on each other. This

non-identifiability arises from the arbitrary selection for the location of the prismatic joint

axis or Zi−1. As long as the direction of Zi−1 is the same as joint axis i, it can be attached to

any location on link i. See Figure 5.7. The location of Zi−1 and Oi−1 can move perpendicular

to its direction (red arrow), which causes Oi to move along the joint axis i + 1. However,

frame {i − 2} and {i + 1} and other frames remain unchanged. Since the axes of all joints

remain in the same direction, link twist α and joint angle θ of all joints remain unchanged.

Only the said five unidentifiable parameters are changed. This means there is an infinite

amount of parameter set (ai, ai−1, di+1, di, di−1) which represent the same model, making

them dependent on each other. Since there are 2 dof to decide where to place Zi, to eliminate

the non-identifiability, 2 of the 5 parameters (ai, ai−1, di+1, di, di−1) have to be fixed.
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Figure 5.8: illustration of base frame non-identifiability

5.3.3 base frame

This will happen during every robot FK calibration. (tmb, d1, θ1) are dependent on each

other. This non-identifiability comes from the arbitrary selection of base frame {b} along

joint axis 1. See Figure 5.8. Base frame {b} can be chosen to be on any point along joint

axis 1, and it can also rotate around the joint axis 1 (green dot, X0, and Z0 can move/rotate

in the direction of green arrow). Following similar arguments as in previous sections, this

means there is an infinite amount of parameter set (tmb, d1, θ1) which represents the same

model; thus they are dependent. Since there are 2 dof to decide where to place {b}, to

eliminate the non-identifiability, 2 of the 8 parameters (tmb, d1, θ1) have to be fixed. Usually,

(d1, θ1) are selected, since there is generally no good initial guess on tmb.

73



Figure 5.9: illustration of flange frame non-identifiability

5.3.4 flange frame

This happens when CMM only has partial pose measurement. The last link parameter ηh

would become dependent. For example, suppose that CMM can only measure the position

of the end-effector. See Figure 5.9. Since there is no way to know the orientation of the tool

just by the CMM measurement alone, it is undetermined as to where the flange frame is

relative to the second last link frame {h− 1}. Any point on the green sphere is a potential

flange frame {f ′}, and any last link DH parameter η′h corresponding to a given potential

{f ′} describes the same model behavior (same TCP). Therefore, ηh is dependent on each

other.

One method to eliminate such non-identifiability is to design the tool so that multiple

different tool transformation matrices f
tT are used. This would impose more constraint and

implicitly determine the flange frame location relative to {h − 1}. For example, in [NB13],

8 different f
tT are used to obtain full parameter calibration on the last link. The minimum
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Table 5.1: minimum amount of f
tT to achieve full last link calibration NT

CMM type EDH DH

position only 3 1

position + partial orientation 1 0

full measurement 0 0

Table 5.2: amount of unidentifiable last link parameter U

CMM type EDH DH

position only 3 1

position + partial orientation 1 0

full measurement 0 0

amount of f
tT that should be used to obtain full last link calibration is denoted NT and given

in Table 5.1. If only one f
tT is used, the amount of unidentifiable last link parameters, U , is

given in Table 5.2. Both NT and U depend on the last link parameterization (EDH or DH)

and CMM type (position only, position + partial orientation, or full pose measurement). A

simple way to derive U is. For example, if EDH is used (6 unknown ηh), and CMM only

measures position (3 constraints), that means there are 3 degrees of freedom left to place

the location of {f}, thus U = 6− 3 = 3.

5.4 Measurement

During the measuring step of FK calibration, a Coordinate Measuring Machine (CMM) is

used. The robot will be commanded to N points using the designed joint variable qdes, and
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Table 5.3: total rt and effective r dimension of CMM measurement

CMM type rt r measurement description

P 3 3 pm position only

PZ 6 5 pm, zm position + partial orientation

T 12 6 m
tT full measurement

payloads would be mounted onto the robot to apply joint torque. For the i-th point, measure

the joint variable qi ∈ Rh using the encoder, measure the joint torque/force τ ∈ Rh using

motor current, and measure the end-effector pose m
tT i ∈ R4×4 using CMM .

Depending on the CMM used, it may measure the full pose of m
tT (T-type), position

+ partial orientation (pm, zm) (PZ-type), or simply position pm (P-type), where (pm, zm)

are the TCP position and tool centerline (See (5.5)). Note that the total dimension of the

measurement (rt) is not necessarily the same as the effective dimension (r) due to additional

constraints given on the norm of orientation measurement. For example, the total dimension

of PZ-type measurement (pm, zm) is rt = 3 + 3 = 6. However, since there is an additional

constraint ∥zm∥ = 1, the effective dimension is r = 3 + 2 = 5. The total and effective

dimensions of all CMM types are listed in Table 5.3.

The combined effective measurement r of all N data points has to be larger than the pa-

rameter number n; otherwise, practical non-identifiability would occur. This was mentioned

in Section 4.1.2 and (4.10), the minimum amount of data points required is Nmin

Nminr ≥ n

The following text in this section will be introducing 2 types of CMM, which will be used

in Chapter 6 and 7. The introduction will be focusing on their relevance with FK calibration,

rather than its working principle.
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Figure 5.10: SMR and SMR holder

Laser Tracker

See Figure 5.10. A laser tracker can track the position of a spherical mounted reflector

(SMR), which can be mounted on the robot flange with an SMR holder. The SMR holder is

precisely machined and its dimensions are assumed known. This implies that the transfor-

mation matrix f
tT is known, where the tool frame {t} is the frame attached to the position

of the SMR. A laser tracker is, in general, a P-type CMM.

OCT

Optical Coherence Tomography device (OCT) is another type of CMM. It can measure

a 3D point cloud of the object placed in its working range. This is referred to as a Volume

scan or V scan. Each volume scan can be divided into multiple slices of cross-sections which
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Figure 5.11: tool localization using OCT V scan

are referred to as B scans. If the geometrical topology of the object is known (e.g. cylinder),

the point cloud can then be fitted using the following proposed algorithm to obtain the

orientation and position of the object.

See Figure 5.11, a tool localization algorithm is developed to obtain the tooltip position

(yellow dot) and tool axis direction (purple arrow) using an OCT volume scan, which es-

sentially makes OCT a PZ-type CMM. The tool is assumed to have a cylindrical shaft (red

dots) and may have non-cylindrical features at its tip (blue dots). The localization algorithm

workflow is drawn in Figure 5.12 and discussed below

1. Principal component analysis is performed to create a bounding box to exclude outlier

points and to obtain an initial guess of tool axis location and direction. Outlier rejection

is performed on 3 principal axes separately. See Figure 5.13, the distribution of points

along each axis is obtained and smoothed by the moving average. Then, the lower and
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Figure 5.12: tool localization workflow. ”pt.” stands for ”point”.
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Figure 5.13: OCT point distribution along principal axis

upper bound of the bounding box along each axis is selected to be the crossing point

of the highest peak and a threshold line of 2% peak height.

2. Divide the point cloud into 2 groups. The first group is the points of the cylindrical

tool shaft. The other is the points of the non-cylindrical feature points near the tip.

The plane of division is selected to be at a fixed distance from the outermost point of

the point cloud.

3. To obtain tool axis direction, perform cylinder fitting on the points of the cylindrical

shaft using the initial guess of the tool axis obtained in the first step.

4. To obtain the tooltip position, a value called d is assigned to each point. d is the

location of the associated point along the tool axis zm with d = 0 being the outermost

point (See Figure 5.14). Draw a cumulative percentage plot vs d (Figure 5.15). The

cumulative percentage stands for the percentage of points which has a less d value than

the current d.

Fit a line using the points of d > −0.15mm. Outlier is rejected during line fitting.
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Figure 5.14: definition of d

Figure 5.15: cumulative percentage vs d
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Find the intersection of the fitted line and 100% cumulative percentage. The intersected

point has d value of d = dtip, which is considered the fitted tooltip location along the

tool axis.

5.5 Parameter Identification

The nonlinear model regression technique introduced in Chapter 2 is used to identify the

unknown DH parameters η, CT parameters tmb, and joint compliance coefficient C. Using

the notation in that chapter, the model parameter of interest, the model input, and the

output are

β =


η

tmb

C

 ∈ Rn, x =

q
τ

 ∈ Rp, y =


pm

xm

ym

zm

 ∈ Rm (5.23)

, where q = [q1; q2; · · · ; qN ] ∈ RNh, supposing the robot has h joints, and N points are

measured during the measuring steps. For i-th points, the joint encoder measurement is

denoted qi ∈ Rh. The notation for joint torque/force measurement τ ∈ RNh, tool frame

position measurement pm ∈ R3N , and tool frame orientation measurement xm,ym,zm ∈

R3N are defined in a similar fashion. Depending on the CMM type, a subset of tool pose

measurement (pm, xm,ym,zm) may be unavailable and y might change. Also, depending on

whether it is desired or feasible to calibrate the joint compliance coefficient, τ and C may

be taken out of x and β.

FK model function is as derived in Section 5.1, and the overhead symbol ˆ refers to

any quantity estimated by the FK model. For example, p̂m(x, β) means the TCP position

relative to CMM estimated by FK.
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5.5.1 Generic Optimization Scheme

Depending on the CMM type, the objective function may include position error and/or

orientation error. The following would describe how to formulate the objective for the P,

PZ, and T type CMM. Then, the LM method described in Section 2.3.2 can be employed to

estimate the model parameters.

The position error and the orientation error for the 3 tool frame axes are defined as

ep(β) = pm − p̂m(x, β)

ex(β) = xm − x̂m(x, β)

ey(β) = ym − ŷm(x, β)

ez(β) = zm − ẑm(x, β)

(5.24)

P-type

S(β) = eTp ep (5.25)

PZ-type

S(β) = eTp ep + w2eTz ez (5.26)

T-type

S(β) = eTp ep + w2(eTx ex + eTy ey + eTz ez) (5.27)

, where w is the weight between orientation error and position error. It is selected to be w =

σp/σz. σp and σz are the standard deviations of the position and orientation measurement,

which are obtained by some testing on the CMM.
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5.5.2 Registration using vector field

The task of finding the CT parameters tmb alone while other parameters are given is called

a registration problem. This problem can be interpreted as finding the relative position

and orientation of the robot base to CMM, m
bT . Registration can be done explicitly using

point cloud registration [HHN88], which is a technique to find the spatial transformation

between 2 groups of points by matching them. Application of this method means matching

the end-effector position measurements from CMM to its estimated positions from FK.

However, some CMMs can also measure the orientation (or part of orientation) of the

end-effector. The problem now becomes matching] two vector fields instead of just two point

clouds. In this case, an extended version of the registration method with vector fields is

proposed to take advantage of the additional orientation measurement. This can also be

solved explicitly. In another word, it is desired to find an estimator for transformation m
bT

∗

such that it is closed-form and has the following form

m
bT

∗ = g(y, x|β1) (5.28)

, where y may have none of, part of, or all of the orientation measurements, and (β1,β2) are

β1 =

η

C

 , β2 = tmb (5.29)

The above uses the notation convention given in Section 2.4. Depending on whether it is

desired or feasible to calibrate C, C and τ may be taken out of β1 and x. Note that CT

parameter tmb is never explicitly calculated using this method since it is actually m
bT that

is of interest. There is no need to calculate its parameterization as is needed when doing

numerical solving.

The estimator g(·) begins by calculating the tool frame {t} relative to base frame {b} by

FK model functions for all N data points. For the i-th data point
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b

tT̂ i(xi, β1) =

b

tR̂i p̂b,i

0 1

 ,
b

tR̂i =
[
x̂b,i ŷb,i ẑb,i

]
(5.30)

Then the estimator aims to find the optimal m
bR and pmb (both represented by tmb) such

that the objective in (5.25), (5.26), or (5.27) is minimized.

For errors given in (5.24), they turn into

ep,i(β2|β1) = pm,i − m
bRp̂b,i − pmb

ex,i(β2|β1) = xm,i − m
bRx̂b,i

ey,i(β2|β1) = ym,i − m
bRŷb,i

ez,i(β2|β1) = zm,i − m
bRẑb,i

(5.31)

P-type

The objective in (5.25) becomes

S(β2|β1) =
N∑
i=1

∥pm,i − m
bRp̂b,i − pmb∥2 (5.32)

In [HHN88], it is explained that the above objective can be simplified into

S1(Rmb) =
N∑
i=1

∥∥p′m,i − m
bRp̂′b,i

∥∥2
(5.33)

, where p′m,i and p̂′b,i are the position measurement and position estimation by FK shifted to

their respective average point, or

p′m,i = pm,i − pm, pm =
1

N

N∑
i=1

pm,i

p̂′b,i = p̂b,i − pb, pb =
1

N

N∑
i=1

p̂b,i

(5.34)
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, and the optimal p∗mb is

p∗mb = pm − m
bR

∗pb (5.35)

m
bR

∗ is found by minimizing the above S1(
m
bR). Then, it is shown that minimizing S1(

m
bR)

is the same as maximizing S2(
m
bR)

S2(
m
bR) = Tr(mbR

TM), M =
N∑
i=1

p′m,ip̂
′T
b,i (5.36)

Finally, it is shown that the optimal m
bR

∗ is

m
bR

∗ = M(MTM)−
1
2 (5.37)

PZ-type

The objective given in (5.26) can be written as

S(β2|β1) =
N∑
i=1

∥pm,i − m
bRp̂b,i − pmb∥2 + w2

N∑
i=1

∥zm,i − m
bRẑb,i∥2 (5.38)

By [HHN88], the first summation in the above equation can be turned into the form in (5.33)

if optimal pmb∗ is given by (5.35). Then, the objective becomes minimizing the following

S1(Rmb) =
N∑
i=1

∥∥p′m,i − m
bRp̂′b,i

∥∥2
+

N∑
i=1

∥wzm,i − m
bRwẑb,i∥2 (5.39)

Comparing the term in the two summations in the above equation, it can be seen that the

pairs, (p′m,i, p̂
′
b,i) and (wzm,i, wẑb,i) take similar structure. Following the same deduction in

[HHN88] by expanding the squared norm and using the cyclic property of trace, the objective

becomes maximizing S2(
m
bR) = Tr(mbR

TM), where M is
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M =
N∑
i=1

p′m,ip̂
′T
b,i + w2

N∑
i=1

zm,iẑ
T
b,i (5.40)

The optimal m
bR

∗ is then given by calculating (5.37).

T-type

Following the previous deduction, the objective is to maximize S2(
m
bR) as in (5.36) but

M is given by the following

M =
N∑
i=1

p′m,ip̂
′T
b,i + w2(

N∑
i=1

xm,ix̂
T
b,i +

N∑
i=1

ym,iŷ
T
b,i +

N∑
i=1

zm,iẑ
T
b,i)

=
N∑
i=1

p′m,ip̂
′T
b,i + w2(

N∑
i=1

m
tRi

b

tR̂
T
i )

(5.41)

, and the optimal p∗mb and
m
bR

∗ can then be calculated by (5.35) and (5.37).

5.5.3 Nested Optimization Scheme

As discussed in Section 2.4, nested optimization scheme can be employed in the identification

of FK parameters (β1 = [η;C]) since part of the model parameter (β2 = tmb) can be found in

a closed-form solution given the rest, as demonstrated in the previous section. This would

improve the robustness of the optimization by eliminating the need to provide an initial

guess for tmb, which is usually very inaccurate. In addition, it can be shown empirically that

this will improve the efficiency of LM method while simultaneously reaching the same result

as the generic LM method.

Suppose m
bT

∗ given in (5.28) can be partitioned into the following

m
bT

∗ = g(y, x|β1) =

gR(y, x|β1) gp(y, x|β1)

0 1

 (5.42)
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Substitute the above into (5.31), and the errors given that the optimal CT parameter is used

become the following. For simplicity and to emphasize β1, y and x are dropped.

ep,i(β1) = pm,i − gR(β1)p̂b,i(β1)− gp(β1)

ex,i(β1) = xm,i − gR(β1)x̂b,i(β1)

ey,i(β1) = ym,i − gR(β1)ŷb,i(β1)

ez,i(β1) = zm,i − gR(β1)ẑb,i(β1)

(5.43)

The nonlinear model regression problems in (5.25), (5.26), and (5.27) thus become the fol-

lowing forms depending on the CMM type. Note that all of the following objectives are

only a function of FK parameters β1 = [η;C]. This problem can then be solved using LM

method.

P-type

S(β1,
m
bT

∗(β1)) =
N∑
i=1

eTp,iep,i (5.44)

PZ-type

S(β1,
m
bT

∗(β1)) =
N∑
i=1

eTp,iep,i + w2eTz,iez,i (5.45)

T-type

S(β1,
m
bT

∗(β1)) =
N∑
i=1

eTp,iep,i + w2(eTx,iex,i + eTy,iey,i + eTz,iez,i) (5.46)
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CHAPTER 6

Application to an industrial robot

6.1 experiment design

In this chapter, a 6-joint serial manipulator AR-607 (Figure 6.1, developed by Industrial

Technology Research Institute, Taiwan) is used for demonstration. The CMM used is a laser

tracker (AT901, Leica), which is a P-type CMM and can measure the position of an SMR

mounted on the robot. To avoid the non-identifiability of the last link parameters (Section

5.3.4) 3 different tool transformation matrices f
tT are used. More specifically, a special SMR

holder (See Figure 6.2) is mounted on the robot flange. It can hold SMR in 3 different

mounting positions. In addition, payloads can be easily mounted onto this SMR holder. In

total three different payload weights (0N, 14N, 28N) are used in this experiment. These

weights of the payload are selected to span over the designed working range of the robot.

See Figure 6.3. The robot is commanded to 27 joint configurations for measurements.

They are used in the calibration algorithm to identify the model parameters. In total, 27

joint configurations × 3 SMR holders × 3 payloads constitute 243 data points. They are

referred to as calibration points. Additionally, another 100 joint configurations are used

to validate the result. They are not used in the calibration algorithm. In total, 100 joint

configurations × 3 SMR holders × 3 payloads constitute 900 data points. These are referred

to as validation points. For each data point, the position measurement is taken by CMM,

the joint value is recorded by the encoder, and the joint torque is recorded through motor

current.
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Figure 6.1: industrial robot AR-607 developed by ITRI

(a) mounting 1 (b) mounting 2 (c) mounting 3

Figure 6.2: SMR holder
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(a) calibration points (b) validation points

Figure 6.3: data points used in experiment

The Cartesian coordinate of both calibration and validation points is chosen so as to span

the workspace of the robot. Another requirement for these data points is that their pose

must allow visibility of SMR to the laser tracker. To achieve this, an initial experiment is

conducted to register the robot with CMM. The position and encoder measurements of 8 data

points are collected. These measurements are used in the registration method in Section 5.5.2

to infer the location of CMM relative to the robot, assuming the DH parameters to be their

nominal value and Ci = 0. Then, to obtain joint angles, inverse kinematics is performed to

enforce the SMR opening pointing toward CMM within a certain angle tolerance. Note that

optimal experiment design is not performed in this calibration scheme. It is demonstrated

in Chapter 7.
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6.2 modeling and identifiability analysis

The FK model follows the definition given in Section 5.1. The joint compliance model is

assumed, and the extended DH parameter is assumed for the last link. The Euler angle

sequence for CT parameter is S = ZY X. Under these conditions, there are only 4 uniden-

tifiable parameters in this model, d1, θ1, d2 and C1. See Section 5.3.3, (d1, θ1) are typical

unidentifiable parameters for they are dependent on the CT parameters. Since joint 2 and

join 3 are parallel, d2 is dependent on d3 (Section 5.3.1). Lastly, C1 is unidentifiable because

the direction of gravity is parallel to the joint 1 axis, meaning the addition of payload would

not apply torque to joint 1. Thus, the small deviation of C1 will not cause any movement

on the position of SMR. By the argument provided in Section 3.3.1, C1 is unidentifiable.

Since these 4 parameters are unidentifiable, by the argument given in Section 3.4.2, as long

as their nominal values have a finite bias bound B (the nominal value is close to the actual

value within the bias bound B), they should be fixed at nominal value. This means they are

assumed known. Note that the nominal value of C1 = 0. In total, there are 34 parameters

to be identified (6 CT parameters + 21 DH parameters + 2 EDH parameters for the last

link + 5 Joint compliance coefficients).
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Table 6.1: identified DH parameter deviation and Joint compliance coefficient

joint 1 2 3 4 5 6

δd - - -0.22 0.56 -0.17 -0.55

δθ - -0.06 -0.16 -0.04 0.01 -0.76

δa -0.17 0.19 0.06 -0.15 0.21 -0.55

δα -0.02 -0.02 0.04 0.06 -0.02 -0.09

δb N.A. N.A. N.A. N.A. N.A. -0.92

δβ N.A. N.A. N.A. N.A. N.A. -0.37

C - 0.88 1.92 2.57 10.62 5.92

a Unit for angle is in deg, length in mm., C in 10−3 deg/Nm

b ”δ” means deviation of the calibrated value from the nominal value

c hyphen ”-” means fixed parameter. Its value is 0

6.3 Result

6.3.1 calibrated parameters and position error

The initial guess of DH parameters and joint compliance coefficient uses the nominal value.

Note that the nominal value of the joint compliance coefficient is 0 (Ci = 0). Unlike the

nested scheme, the generic scheme requires an initial guess of CT parameters. It is obtained

by performing the registration method provided in Section 5.5.2 on the 243 calibration points.

This initial registration assumes the DH parameters and joint compliance coefficients to be

nominal values. The calculated initial guess of CT parameter is listed in Table 6.2.

The calibrated values of model parameters are shown in Table 6.1 and 6.2. It is observed

that the calibrated values and the error are completely the same for both schemes. This

means that both schemes can achieve the same results and the same residual error.
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Table 6.2: identified CT parameter

pmb,x pmb,y pmb,z rmb,z rmb,y rmb,x

initial guess 2.6795 2.0032 -0.4972 -178.32 -3.61 0.88

calibrated value 2.6789 2.0020 -0.4973 -178.41 -3.57 1.16

a Unit for angle is in deg, length in m

To have a better visualization of error distribution, see Figure 6.4. The median error of

the validation points is 0.232 mm (red band) and that of the calibration points (0.138 mm).

See Table 6.3, the residual error after 3 different kinds of calibration scenarios are reported.

The 3 scenarios use the same data (243 calibration points) to identify model parameters.

The only difference is the model parameter they identify. For example, scenario CT only

identifies CT parameters, while assuming DH parameters and joint compliance coefficient

are at nominal value.

6.3.2 Joint compliance model

See Table 6.3, compared to scenario CT+DH, full calibration scenario CT+DH+C has

smaller errors in every criterion. For example, validation points has an rms error of 0.490mm

after full calibration CT+DH+C, while that after partial calibration CT+DH is 0.64 0mm.

This suggests incorporating joint compliance into the model could improve accuracy. This

can also be seen in Figure 6.5. This figure shows the position error distribution of validation

points under various loads (0N, 14N, and 28N) and different calibration scenarios (CT+DH

or CT+DH+C). If joint compliance is not considered (CT+DH), the points having larger

loads have noticeably larger median and maximum errors. However, if joint compliance is

considered (CT+DH+C), the error is smaller and less sensitive to load. This shows that the

incorporation of the joint compliance model into FK calibration would improve the accuracy
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Figure 6.4: box plot of position error, the box represents the 25th and 75th percentile, the

red band represents the median, the whisker represents maximum or minimum value, and

the red crosses represent outliers. Points with position error greater than 75th percentile

plus 1.5 times the interquartile distance are considered outliers.
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Table 6.3: residual error

point type scenariob rms max std

CT 1.539 3.697 0.615

calibration points CT + DH 0.218 0.460 0.088

CT + DH + C 0.154 0.358 0.064

CT 1.664 3.646 0.717

validation points CT + DH 0.640 2.030 0.422

CT + DH + C 0.490 1.519 0.328

aUnit is mm

b indicates whether a specific group of parameter is identified

of the FK estimation against varying loads.

6.3.3 efficiency and robustness improvement of nested scheme

To demonstrate the efficiency improvement of the nested scheme, for the nested scheme, the

averaged calculation time for each LM iteration is 0.2226 ± 0.0001 s, and, for the generic

scheme, that is 0.2644 ± 0.0002 s. The generic scheme is around 18% slower. For both

schemes, the Jacobian calculation time takes 96% of the time for each iteration. See Figure

6.6 (a), to reach the same error change convergence criteria with ϵf = 10−9 (Section 2.3.1),

the generic scheme needs to perform 12 LM iterations, while the nested scheme only needs

8 iterations. That is around 33% less iteration needed. In conclusion, The nested scheme

requires not only less time on each iteration but also fewer iterations to achieve the same

convergence criteria.

To demonstrate the robustness of the nested scheme, see Figure 6.6. If the generic

scheme has a very good initial guess not far from calibrated value (like the one in Table
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Figure 6.5: box plot of position error of the validation points under various loads and cali-

bration scenarios
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(a) good CT initial guess

tmb0 = [2.6795 2.0023 − 0.4972 − 178.32 − 3.61 0.88]
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(b) bad CT initial guess

tmb0 = [2.6805 2.0023 − 0.4972 − 168.31 − 3.61 0.88]

Figure 6.6: convergence curve
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Figure 6.7: convergence curve with a very bad CT initial guess

tmb0 = [0 0 0 0 0 0]

6.2), the convergence of the nested scheme is only slightly faster than that of the generic

scheme (Figure 6.6 (a)). If there is an unpredictable disturbance in the initial guess of the

CT parameter, the convergence for the generic scheme will deteriorate (See Figure 6.6 (b)),

while that of the nested scheme remains unaffected. To demonstrate an extreme case, see

Figure 6.7. In this case, the CT initial guess is so bad that it needs 43 iterations to converge,

while the nested scheme needs just 8 iterations. These show that the nested scheme is robust

against the inaccuracy of the CT initial guess.
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CHAPTER 7

Application to a surgical robot

7.1 Full calibration on entire Kinematic chain

7.1.1 experiment setup

See Figure 7.1, the surgical robot called Intraocular Robotic Intervention Surgical System

Version 2 (IRISS v2) is developed by UCLA. It is a 4-joint robot. The first 2 joints and the

last joint are revolute joints. The 3rd joint is a prismatic joint. It has an exchangeable tool

cartridge (See Figure 7.2), which can easily be dismounted to replace the tool and the last

joint of the robot. The CMM used in calibration and also widely used in eye surgery is an

Optical coherence tomography device (OCT). The OCT device used in this experiment is

Telesto II 1060LR with objective lens LSM04BB (Thorlabs). Its volume scan precision is

9.2 µm along the lens axis and 25 µm along the lateral direction. The OCT V scan can be

used to infer the TCP and tool direction through the tool localization method mentioned

in Section 5.4. This makes OCT a PZ-type CMM. A precision test of the tool localization

method is performed with an I/A handpiece (92-IA21 Handle, Millennium Surgical). During

the test, the I/A tool is fixed by a swivel clamp under the OCT lens, and the volume scan of

its tip is taken n=30 times. The precision error is rms error of the measured tip location and

tool direction by the tool localization method, which is 15 µm and 0.035 deg respectively.

During the calibration experiment, the I/A tool cartridge is mounted on the robot. The

plastic cap on the I/A tooltip is removed. Then, the tip of the I/A tool is adjusted to

be placed under OCT sensing workspace (See Figure 7.3). For each data point, the robot
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Figure 7.1: IRISS v2 robot

Figure 7.2: IRISS v2 robot when tool cartridge is detached
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Figure 7.3: IRISS v2 and OCT setup

is commanded to a designated joint configuration. Then, the OCT volume scan and joint

encoder value are recorded. A total of 3 groups of data points are taken. The first group

(N1=60) is random points within the OCT working range. They are used as calibration

points. The second group (N2=60) is optimal points derived using optimal experiment

design and also used as calibration points (See Section 7.1.3 for detail). The last group

is random points but used as validation points (N3=60). Therefore, a total of 180 data

points are taken. These points, though generated differently, all fit certain Cartesian space

constraints described in Section 7.1.3.

7.1.2 modeling and identifiability analysis

Since the surgical robot would only handle light load, it is not needed to use the joint

compliance model to compensate for angle deflection induced by heavy load. Also, the

extended DH parameter is used for the last link. ZYZ Euler angle representation is used to
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represent CT parameters. Lastly, for this special robot, the tool frame is considered the same

as the flange frame, since there is no robot flange. This means that the tool transformation

matrix is f
tT = I4.

For Identifiability analysis, there are 6 unidentifiable parameters, d1, θ1, θ3, θ4, d4, and

a2, assuming nominal DH parameter. These unidentifiable parameters can be found by

examining the model function. θ3 and θ4 are redundant because their deviation would only

cause rotation along the tool axis, making no difference in the TCP and tool direction.

(d1, θ1) are unidentifiable due to the non-identifiability of the base frame. d4 is dependent

with d3 since joint 3 and 4 are parallel (α3 = 0, Parallel axis non-identifiability). Lastly, a2

and a3 are dependent since their deviation happens to cause the TCP to move in the same

direction.

The identifiability of parameters can also be determined by SVD of the Jacobian ma-

trix. To do that, 30 sets of joint variables, qi, are randomly selected. Then, the Jacobian

matrix is calculated using those joint configurations. Redundant parameters have to be

determined first by examining the norm of each Jacobian column. Redundant parameters

would have close to 0 norms. Recall that redundant parameters refer to a special kind of

non-identifiability, where the parameter is unidentifiable by itself and not dependent on other

parameters. In the case of the IRISS robot, the Jacobian column of θ3 and θ4 are 0 vectors;

thus, they are redundant. Secondly, dependent parameters are found by calculating the

scaled Jacobian matrix and examining its singular values and right singular vectors (Section

3.3.3). These unidentified parameters should then be fixed at their nominal values while

solving the calibration problem.

7.1.3 experiment design

For the optimal points, the point-by-point search method discussed in Section 4.1.2 is em-

ployed. The obtained optimal design points are shown in Figure 7.4 along with the random

points. Note that the optimal points tend to gather near the edge of the boundary. The
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(a) optimal calibration points

(b) random calibration points

Figure 7.4: calibration points for full calibration. The green cube is the specified boundary,

which is within OCT sensing workspace. The points are presented in the world frame (also

called the IRISS frame here).
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point-by-point method iteratively solves the following problem until a given data point num-

ber N is reached.

min
qk+1

−log(det(
k∑

i=1

Fi + Fk+1(qk+1)))

s.t. C(qk+1) ≤ 0

(7.1)

For the objective of the optimization problem, D-optimality is chosen. Recall that the

Fisher information matrix Fi(qi) is.

Fi(qi) = JTV −1
e J (7.2)

As discussed in Section 5.2, the calculation of Jacobian requires both joint value and model

parameter as input. However, the model parameter is unknown. Therefore, for the DH

parameter, the nominal value is used instead. For the CT parameter, an experiment is done

ahead to obtain the initial guess (Section 5.2 and Section 5.5.2). Recall that, Ve is (Section

2.2)

Ve = Vy + JxVxJ
T
x (7.3)

See (2.7) for the definition of Vy and Vx. Vy is the OCT measurement noise covariance matrix,

which is the position and orientation measurement noise of the tool localization method using

OCT V-scan (Section 5.4). A precision test is done ahead to determine Vy. The test shows

that the tooltip position measurement noise has a standard deviation of 0.015 mm, and an

orientation noise standard deviation of 0.035 deg. As for Vx, it is the input noise covariance

matrix, which arises from the uncertainty due to the resolution of the joint encoder. Such

uncertainty (4.5e-4 deg for joint 1 and 2, 0.07 um for joint 3, and 0.09 deg for joint 4) and its

effect on tool movement are assumed small compared to OCT measurement noise. Therefore,

Vx is assumed 0 for simplicity.
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Figure 7.5: definition of tool angle ϕ and cube constraint

For the constraint function C(q), there are three constraints that the data point must

satisfy in order to obtain valid OCT measurement. The first constraint is the joint angle

constraint, meaning the joint angle must be within some fixed bound for safety reasons. The

second constraint is that the tooltip position must be within the OCT working range. This

is done by enforcing its location estimated by FK to be within a cube (L = 4 mm) defined

relative to the OCT frame. This is demonstrated by Figure 7.5.

p̂m(q) ∈ Scube (7.4)

The third constraint is that the angle ϕ between the tool axis and the OCT axis can not

be smaller than a given angle ϕth (See Figure 7.5); otherwise, the V-scan would have bad

quality (See Figure 7.6).

[
0 0 1

]
ẑm(q)− cos(ϕth) ≤ 0 (7.5)
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(a) good quality OCT V-scan (b) bad quality OCT V-scan

Figure 7.6: OCT V-scan comparison. Note that the bad OCT V-scan has loose point cloud

density (See blue points).

For random points, each coordinate of the point is selected by uniform distribution within

the cube. IK is then performed to obtain the joint configuration. If the angle constraint

mentioned above is not satisfied, then discard the point and repeat the process until the

specified amount of points is found.

7.1.4 Result

Nested scheme is used to identify the model parameters. The weight between is chosen to

be the ratio between the standard deviations of position noise and orientation noise.

w =
σp

σz

=
0.015mm

0.035deg
= 0.024m (7.6)

The identified parameters are shown in Table 7.1 and 7.2. The residual error of the validation

points after calibration is shown in Table 7.3. It can be seen that the results for both random
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Table 7.1: identified DH parameter deviation after full calibration of surgical robot

calibration point joint 1 2 3 4

δd - 0.15 -0.46 -

δθ - 0.87 - -

optimal δa -0.32 - 1.13 -0.34

point δα 0.91 -3.13 1.50 0.18

δb N.A. N.A. N.A. -0.04

δβ N.A. N.A. N.A. -1.50

δd - 0.20 -0.45 -

δθ - 0.76 - -

random δa -0.33 - 1.12 -0.34

point δα 1.00 -2.83 1.33 0.17

δb N.A. N.A. N.A. -0.04

δβ N.A. N.A. N.A. -1.43

a Unit for angle is in deg, length in mm.

b hyphen ”-” means fixed parameter. Its value is 0

points and optimal points are similar

To further compare the result between optimally designed points and random points. See

Figure 7.7, Figure 7.8 and Figure 7.9. With the increase in the number of calibration points

used, the rms error of the validation points using optimal design decreases slightly faster

than that using the random points.
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Table 7.2: identified CT parameter after full calibration of surgical robot

calibration point pmb,x pmb,y pmb,z rmb,z rmb,y rmb,z

optimal point 5.96 11.16 2.64 26.39 -89.03 -179.21

random point 5.98 11.22 2.64 26.24 -89.08 -179.51

a Unit for angle is in deg, length in mm

Table 7.3: residual error of validation points after full calibration of surgical robot

calibration point error type rms max std

optimal
position [µm] 44 93 19

orientation [deg] 0.23 0.55 0.11

random
position [µm] 45 93 21

orientation [deg] 0.24 0.77 0.13
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Figure 7.7: weighted error (ew = ep + wez) vs N for full calibration
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Figure 7.8: position error (ep) vs N for full calibration
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Figure 7.9: orientation error (ez) vs N for full calibration

7.2 In situ partial calibration on instrument

7.2.1 background

The goal of in situ partial calibration is to calibrate the DH parameters of the last 2 links.

This need comes from the special mechanism of IRISS v2. Its tool cartridge can be detached

and replaced with other tools in order to perform various surgical operations. After a tool

exchange happens, the axis of the last joint and the tool would not be the same as before,

which corresponds to the change in DH parameters of the last 2 links (η3 and η4). This

could lead to an unacceptably large position error ( 1 mm) for most surgical operations.

The proposed calibration workflow is listed as followed. This workflow is also drawn in a

flowchart in Figure 7.10.

1. perform full calibration to identify all DH parameters (ηi, i = 1 ∼ 4) and CT parame-

ters (tmb)
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2. perform a surgical operation

3. continue if there are still operations left undone

4. exchange tool for next surgical operation

5. perform in situ partial calibration to identify DH parameters of the last 2 links (η3 and

η4)

6. go back to step 2.

The FK model and experiment procedure to collect data for in situ operation are the

same as full calibration (Section 7.1). The difference is that full calibration only needs to

be performed once prior to all surgical operations, while partial calibration needs to be

performed each time tool exchange happens. Another difference is that partial calibration

only calibrates the last 2 sets of DH parameters while the CT parameter and first 2 sets of

DH parameters are assumed known from full calibration. This setup reduces the number

of parameters to be calibrated in partial calibration and, in theory, reduces the data points

needed to achieve the same accuracy. Ideally, the less time spent on partial calibration,

the better. Therefore, this reduction of data points needed is beneficial to streamlining the

surgical operation.

7.2.2 experiment setup and design

The experiment setup including the tool, the CMM, and the robot are the same as in

Section 7.1. To simulate the workflow presented in Figure 7.10, full calibration has to be

done ahead. This is achieved by using the identified parameters η1 η2 and tmb from the

previous section (Table 7.2 and Table 7.1). Then, the tool cartridge is dismounted and

replaced with a different I/A tool. After that, three groups of points, including 60 optimal

calibration points, 60 random calibration points, and 60 validation points, are taken.
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Figure 7.10: proposed calibration workflow
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Figure 7.11: comparison of joint 3 range

The constraint for all the points remains the same as in Section 7.1.3. Also, the method

to generate the random points is the same as in Section 7.1.3. However, for optimal points,

an extra term is added to the objective of the original optimal design problem (7.1). Its

purpose is to increase the randomness of joint 3. If not, joint 3 of all the optimal points

would have a very small distribution range (See original optimal points in Figure 7.11). It

has been observed that this would cause the calibration with optimal points to have a much

worse result than random calibration points. The reason is suspected to be that concentrated

joint 3 value would not be able to capture all the unmodeled behavior of joint 3.

In light of this joint 3 issue, an improved optimal design problem incorporating an extra

term is proposed below.

min
qk+1

−log(det(
k∑

i=1

Fi + Fk+1(qk+1)))− h log(c(σ3(q), σ3,th, r))

s.t. C(qk+1) ≤ 0

(7.7)

, where σ3(q) means the standard deviation of the joint 3 value of all joint configurations, and
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Figure 7.12: illustration of clip function c(·)

h is a weighting factor set as h = 0.04. (σ3,th,r) = (1.3mm,0.2mm) is the clipping threshold

and margin of smoothness of the clipping function c(·) : R × R × R → R. The illustration

of c(·) is drawn in Figure 7.12, and its expression is listed below

c(x, a, r) =


x x ≤ a− r

2

− 1

2r
(x− a− r

2
)2 + a a+

r

2
> x > a− r

2

a x ≥ a+
r

2

(7.8)

The main purpose of this clip function is to clip the input x to a specified threshold a, while

still maintaining first-order differentiability by introducing the margin of smoothness r. If

r = 0, the clip function is no longer first-order differentiable. The overall effect on the optimal

design problem is that, after σ3 has been increased to σ3,th, the optimization stops considering

maximizing the randomness of joint 3 as an objective. This is to prevent the optimization

from over-stretching the distribution range of joint 3 and ignoring the original objective.

After this improvement, the joint 3 distribution range of the optimal points increases and is

similar to that of the random points (See Figure 7.11). The generated optimal and random
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points are shown in Figure 7.13. Note that the optimal points have a more concentrated

point spread than random points.

7.2.3 result

Instead of the nested scheme, the generic optimization scheme is employed for partial calibra-

tion since the CT parameter tmb has already been given from the full calibration (Table 7.2).

Also, the DH parameter of joint 1 and 2 is given from full calibration as well (Table 7.1).

The identified parameters of partial calibration are shown in Table 7.4. The residual error

of the validation points after calibration is shown in Table 7.5. As in the full calibration, the

results for both random points and optimal points are similar.

See Figure 7.14, Figure 7.15, and Figure 7.16. It can be seen that, despite the initial

quicker error convergence with increasing data point numbers, the optimal points eventually

have slightly larger errors (weighted error difference ∼ 7µm). This shows that the opti-

mal design is better for small amount of calibration points but worse for large amount of

calibration points.

This outcome may be due to the trade-off between information drawn from data points

and the randomness of those data points. Ideally, suppose the model is correct, the opti-

mally designed point would definitely have a larger fisher information matrix (in terms of

D-optimality) and better parameter estimation precision. However, there is always some

unmodeled error. In order to account for this unmodeled behavior, the calibration points

should be spread wide enough (to increase randomness), whether in Cartesian space or in

joint space, to capture all the behavior of the robot. When the calibration point number

is small, the random calibration points might not have enough randomness to outperform

the larger information obtained from the optimal points. However, with the increase in data

points number, the randomness of the random points would eventually prevail. It can be

seen that in Figure 7.4 the spread of random points in Cartesian space is larger than that

of optimal points. This might be the reason why optimal points fail to outperform random
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(a) optimal calibration points

(b) random calibration points

Figure 7.13: calibration points for partial calibration
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Table 7.4: identified DH parameter deviation after partial calibration of surgical robot

calibration point joint 3 4

δd -0.42 -

δθ - -

optimal δa 1.09 0.62

point δα 1.45 2.17

δb N.A. -0.44

δβ N.A. 2.07

δd -0.42 -

δθ - -

random δa 1.07 0.62

point δα 1.39 2.17

δb N.A. -0.43

δβ N.A. 2.07

a Unit for angle is in deg, length in mm.

b hyphen ”-” means fixed parameter. Its value is 0.

Table 7.5: residual error of validation points after partial calibration of surgical robot

calibration point error type rms max std

optimal
position [µm] 59 108 23

orientation [deg] 0.22 0.48 0.10

random
position [µm] 56 100 20

orientation [deg] 0.21 0.49 0.10
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Figure 7.14: weighted error (ew = ep + wez) vs N for partial calibration

points when the data point number is large.
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Figure 7.15: position error (ep) vs N for partial calibration
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Figure 7.16: orientation error (ez) vs N for partial calibration
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