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Simple Recurrent Networks and Natural Language:
How Important is Starting Small?

Douglas L. T. Rohde (dr+ @cs.cmu.edu)
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213-3890

Abstract

Prediction is believed to be an important component of cogni-
tion, particularly in natural language processing. It has long
been accepted that recurrent neural networks are best able to
learn prediction tasks when trained on simple examples before
incrementally proceeding to more complex sentences. Fur-
thermore, the counter-intuitive suggestion has been made that
networks and, by implication, humans may be aided in learn-
ing by limited cognitive resources (Elman, 1993, Cognition).
The current work reports evidence that starting with simpli-
fied inputs is not necessary in training recurrent networks to
learn pseudo-natural languages: in fact, delayed introduction
of complex examples is often an impediment. We suggest that
the structure of natural language can be learned without special
teaching methods or limited cognitive resources.

Introduction

The question of how humans are able to learn a natural lan-
guage despite the apparent lack of adequate feedback has
long been a perplexing one. Baker (1979) argued that chil-
dren do not receive a sufficient amount of negative evidence
to properly infer the grammatical structure of language (also
see Marcus, 1993). Computational theory suggests that this is
indeed problematic, as Gold (1967) has shown that, without
negative examples, no superfinite class of languages is learn-
able, including the regular, context-free, and context-sensitive
language classes. Therefore, unless the set of possible natural
languages is highly restricted, it would appear that such lan-
guages are not learnable from positive examples. How, then,
are humans able to learn language? Must we rely on extensive
innate knowledge?

In fact, a frequently overlooked source of information is the
statistical structure of natural language. Language production
can be viewed as a stochastic process—some sentences and
grammatical constructions are more likely than others. The
learner can use these statistical properties as a form of im-
plicit negative evidence. Indeed, stochastic regular languages
and stochastic context-free languages are learnable using only
positive data (Angluin, 1988). One way the learner can take
advantage of these statistics is by attempting to predict the
next word in an observed sentence. By comparing these pre-
dictions to the actually occurring next word, feedback is im-
mediate and negative evidence derives from incorrect predic-
tions. Indeed, there is considerable empirical evidence that
humans generate expectations in processing natural language
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and that these play an active role in comprehension (sec, e.g.,
Neisser, 1967; Kutas & Hillyard, 1980; McClelland, 1988;
McClelland & O'Regan, 1981).

Elman (1991, 1993) provided an explicit formulation of
how a system might learn the grammatical structure of a lan-
guage on the basis of performing a word prediction task. He
trained a simple recurrent network to predict the next word
in sentences generated by an English-like artificial grammar
having number agreement, variable verb argument structure,
and embedded clauses. He found that the network was able to
learn the task but only if the training regimen or the network
itself was initially restricted in its complexity (i.e., it “started
small™). Specifically, the network could learn the task either
when it was trained first on simple sentences (without em-
beddings) and only later on a gradually increasing proportion
of complex sentences, or when it was trained on sentences
drawn from the full complexity of the language but it had an
initially faulty memory for context which gradually improved
over the course of training. By contrast, when the network
was given fully accurate memory and trained on the complex
grammar from the outset, it failed to learn the task. Elman
suggested that the limited cognitive resources of the child
may, paradoxically, be necessary for effective language ac-
quisition, in accordance with Newport’s (1990) “less is more”
proposal.

This paper reports on attempts to replicate of some of El-
man’s findings using similar networks but more sophisticated
languages. In contrast with his results, it was found that net-
works were able to learn quite readily even when confronted
with the full complexity of the language from the start. Only
under very contrived circumstances did starting with simple
sentences reliably aid learning and, in most conditions, it was
a hindrance, Furthermore, starting with the full language was
of even greater benefit when the grammar was made more
English-like by including statistical constraints between main
clauses and embeddings based on lexical semantics. We ar-
gue that, in the performance of realistic tasks including word
prediction in natural language, recurrent networks inherently
extract simple regularities before progressing to more com-
plex structures, and no manipulation of the training regimen
or internal memory is required to induce this property. Thus,
the current work calls into question support for the claim
that initially limited cognitive resources or other maturational
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§ —+ NPVI. | NPVTNP.

NP —+ N|NRC

RC —+ whoVI | who VT NP | who NP VT

N — boy | girl | cat | dog | Mary | John |
boys | girls | cats | dogs

VI — barks | sings | walks | bites | eats |
bark | sing | walk | bite | eat

VT — chases | feeds | walks | bites | eats |
chase | feed | walk | bite | eat

Table 1: The underlying context-free grammar. Transition proba-
bilities are specified and additional constraints are applied on top of
this framework.

constraints are required for effective language acquisition.

Simulation Methods

We begin by describing the grammars used in both Elman’s
work and the current study. We then describe the corpora
generated from these grammars, the architecture of the simple
recurrent networks trained on the corpora, and the methods
used in their training.

Grammars

The languages used in this work are similar in basic structure
to that used by Elman (1991), consisting of simple sentences
with the possibility of relative-clause modification of nouns.
Elman's grammar involved 10 nouns and 12 verbs, plus the
relative pronoun Who and an end-of-sentence marker. Four of
the verbs were transitive, four intransitive, and four optionally
transitive. Six of the nouns and six of the verbs were singular,
the others plural. Number agreement was enforced between
nouns and verbs where appropriate. Finally, two of the nouns
were proper and could not be modified.

Grammars such as this are of interest because they forces
a prediction network to form representations of potentially
complex syntactic structures and to remember information,
such as whether the noun was singular or plural, across po-
tentially long embeddings. Elman's grammar, however, was
essentially purely syntactic, involving little or no semantics.
Thus, the singular verbs all acted in the same way; likewise
for the sets of plural verbs and singular and plural nouns. Nat-
ural language is clearly far more complex, and the addition of
semantic relationships ought to have a profound effect on the
manner in which a language is learned and processed.

The underlying framework of the grammar used in this
study, shown in Table 1, is nearly identical to that designed
by Elman. They differ only in that the current grammar adds
one pair of mixed transitivity verbs and that it allows relative
clauses to modify proper nouns. However, several additional
constraints are applied on top of this framework. Primary
among these, aside from number agreement, is that individ-
ual nouns can engage only in certain actions and that transi-
tive verbs can operate only on certain objects. For example,
anyone can walk intransitively, but only humans can walk
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Verb || Intransitive | Transitive Objects
Subjects Subjects | if Transitive
chase || - any any
feed human animal
bite animal animal any
walk any human dog
eat any animal human
bark only dog
sing human or cat

Table 2: Semantic constraints on verb usage. Columns indicate legal
subject nouns when verbs are used transitively or intransitively and
legal object nouns when transitive.

something else and the thing walked must be a dog. These
constraints are listed in Table 2.

Another restriction is that proper nouns cannot act on them-
selves. For example Mary chases Mary would not be a legal
sentence. Finally, constructions of the form Boys who walk
walk are disallowed because of semantic redundancy. These
and the above constraints always apply within the main clause
of the sentence. Aside from number agreement, which affects
all nouns and verbs, the degree to which the constraints apply
between a clause and its subclause is variable. In this way
the level of information a noun’s modifying phrase contains
about the identity of the noun can be manipulated.

The basic structure shown in Table 1 becomes a stochastic
context-free grammar (SCFG) when probabilities are speci-
fied for the various productions. Additional structures were
also added to allow direct control of the percentage of com-
plex sentences generated by the grammar and the average
number of embeddings in a sentence. Finally, a program
was developed which takes the grammar, along with the addi-
tional syntactic and semantic constraints, and generates a new
SCFG with the constraints incorporated into the context-free
transitions. In this way, a single SCFG can be generated for
each version of the grammar. This is convenient not only for
generating example sentences but also because it allows us to
determine the optimal prediction behavior on the language.
Given the SCFG and the sentence context up to the current
point, it is possible to produce the theoretically optimal pre-
diction of the next word. This prediction is in the form of a
probability distribution over the 26 words in the vocabulary.
The ability to generate this distribution, and hence to model
the grammar, is what we expect the networks to learn.

Corpora

Cleeremans, Servan-Schreiber, and McClelland (1989)
showed that a simple recurrent network, when trained to pre-
dict a finite-state language involving embedded structure, was
aided when the embeddings were somewhat dependent on the
surrounding context. In order to study this effect on our lin-
guistic task, five classes of grammar were constructed. In
class A, semantic constraints do not apply between a clause
and its subclause, only within a clause. In class B, 25% of



the subclauses respect the semantic constraints, in class C,
50%, in class D, 75%, and in class E all of the subclauses are
constrained. Therefore, in class A, the contents of a relative
clause provide no information about the noun being modified
other than whether it is singular or plural, whereas class E
produces sentences which are presumably the most English-
like. Finally, a sixth class, N, was produced involving no
semantic constraints, only number agreement, much like El-
man’s grammar.

Elman (1991) first trained his network on a corpus of
10,000 sentences, 75% of which were complex. He reported
that the network was “unable to learn the task” despite various
choices of initial conditions and learning parameters. Three
additional corpora containing 0%, 25%, and 50% complex
sentences were then constructed. When trained for 5 epochs
on each of the corpora in increasing order of complexity, the
network “achieved a high level of performance.” As in El-
man's experiment, four versions of each class were created in
the current work in order to produce languages of increasing
complexity. Grammars Ag, Azs, Aso, and Azs, for example,
produce 0%, 25%, 50%, and 75% complex sentences, respec-
tively. In addition, for each level of complexity, the probabil-
ity of relative clause modification was adjusted to match the
average sentence length in Elman’s corpora.

For each of the 24 grammars (six classes of semantic con-
straints crossed with four percentages of complex sentences),
two corpora of 10,000 sentences were generated, one for
training and the other for testing. Corpora of this size are
quite representative of the statistics of the full language for
all but the longest sentences, which are relatively infrequent.
Sentences longer than 16 words were discarded in generating
the corpora, but these were so rare (< 0.2%) that their loss
should have negligible effects. In order to perform well, a
network could not possibly “memorize” the training corpus
but must learn the structure of the language.

Network Architecture

The architecture of the simple recurrent network used both by
Elman and in the current work is illustrated in Figure 1. The
network contained 6,936 trainable weights, including a fully
connected projection from “context” units whose activations
are copied from hidden units at the previous time step. Each
of the 26 input words was represented by a separate (localist)
input unit. One word was presented on each time step. Al-
though the desired output of the network is a probability dis-
tribution indicating the expected next word, the target output
during training consisted of the actual next word occurring in
the sentence.

The current simulations were performed with softmax con-
straints (Luce, 1986) which normalize the output vector to a
sum of 1.0, as opposed to the sigmoid output units used by El-
man. Specifically, the activation a; of each output unit j was
set to exp(z;)/ 3", exp(z;) where z; is the total input to unit
j. All other used the standard sigmoid activation function
1+ ezp(—:z:j))_l. Error feedback was provide to the net-
work in terms of the divergence (Hinton, 1989) between each
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Figure 1: Network architecture. Each solid arrow represents full
connectivity between layers (with numbers of units in parentheses).
Hidden unit states are copied to corresponding context units (dashed
arrow) after each word is processed.

output unit’s target value t; and its activation, t; log(t;/a;).
Note that when the target is 0, this value is by convention 0 as
well. Therefore, error is injected only at the unit representing
the actual next word in the sentence, which is perhaps more
plausible than other functions which provide feedback on ev-
ery word in the vocabulary. Errors were not back-propagated
through time, only through the current time step, and were
therefore also relatively local in time. Hidden layer activation
was not reset between sentences; however, sentence bound-
aries were indicated clearly by end-of-sentence markers.

Experiments

For each of the six language classes, two training regimens
were carried out. In the complex regimen, the network was
trained on the 75% complex corpus for 25 epochs with a fixed
learning rate. The learning rate was then reduced and the net-
work was trained for one final pass through the corpus. In the
simple regimen, the network was trained for five epochs on
each of the first three corpora in increasing order of complex-
ity (0, 25, and 50% complex sentences). It was then trained
on the fourth corpus (75% complex) for 10 epochs, followed
by a final epoch at the reduced learning rate. The six extra
epochs of training on the fourth corpus (not included in El-
man’s design) were included to allow performance with the
simple regimen to reach asymptote. The network was evalu-
ated on the test corpus produced by the same grammar as the
final training corpus.

A wide range of training parameters were searched be-
fore finding a set which consistently achieved the best per-
formance under nearly all conditions. The network used mo-
mentum descent with a learning rate of 0.004 (reduced to
0.0003), momentum of 0.9, and initial weights sampled uni-
formly between +1.0. Softmax output constraints were ap-
plied with a divergence error function. By contrast, the pa-
rameters selected by Elman included a learning rate of 0.1
(reduced to 0.06), no momentum, and initial weights in the
+0.001 range; also, softmax constraints were not used and
squared error was employed during training.

Both complex and simple trials were run for each of the
six grammar classes. Twenty replications of each condition
were performed, resulting in 240 total trials. Although the
actual next word occurring in the sentence served as the target
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Figure 2: Final divergence error—note that lower values correspond
to better performance. Means and standard error bars were com-
puted for the best 16 of 20 trials.

output during training, the network was expected to produce
a probability distribution over all possible words. The target
vectors in the testing corpora consisted of the theoretically
correct distributions give the grammar and the sentence up to
that point. Because the grammars are stochastic and context-
free, these expectations are straightforward to generate.

Results and Discussion

Figure 2 shows the mean divergence error per word on the
testing corpora, averaged over the 16 trials yielding the best
performance in each condition. Overall, the complex training
regimen produced better performance than the simple regi-
men, F(1,180)=72.8, p<.001. Under no condition did the
simple training regimen outperform the complex training reg-
imen. Moreover, the advantage in starting complex increased
with the proportion of fully constrained relative clauses (A vs.
E: F(1,60)=8.55, p=.005). This conforms with the idea that
starting small is most effective when important dependencies
span uninformative clauses. Nevertheless, against expecta-
tions, starting small failed to improve performance even in
class A in which relative clauses are not semantically con-
strained by the head noun. Starting small was a particular
hindrance on the purely syntactic grammar, N.

It is important to establish that the network was able to
master the task to a reasonable degree of proficiency in the
complex regimen. Otherwise, it may be the case that none
of the networks were truly able to learn. Average divergence
error was 0.068 for networks trained on corpus Azs, 0.092 on
corpus Eys, and 0.024 on N7s5, compared with an initial error
of 2.6. Informally, the networks appear to perform nearly
perfectly on sentences with up to one relative clause and quite
well on sentences with two relative clauses.

Figure 3 compares the output of a network trained exclu-
sively on corpus E7s with the optimal outputs for that gram-
mar. The behavior of the network is illustrated for the sen-

tences Boy who chases girls who sing walks and Dogs
who chase girls who sing walk. Note, in particular, the pre-
diction of the main verb following Sing. Predictions of this
verb are not significantly degraded even after two embedded
clauses. The network is clearly able to recall the number of
the main noun and has a basic grasp of the different actions
allowed to dogs and humans. It nearly mastered the rule that
dogs cannot walk something else. It is, however, still unsure
that boys do not bite and that dogs may bark, but not sing.
Otherwise, the predictions appear to be nearly optimal.

For sentences with three or four clauses, such as Dog who
dogs who boy who dogs bite walks bite chases cat who
Mary feeds, performance was considerably worse. To be
fair, however, humans have difficulty parsing such sentences
without multiple readings. In addition, fewer than 5% of
the sentences in the most complex corpora were over nine
words long. This was necessary in order to match the average
sentence-length statistics in Elman’s corpora, but it did not
provide the network sufficient exposure to such sentences for
any hope of learning them well. Additionally, the network,
which was originally designed to learn the pure-syntax lan-
guage, may have had too few hidden units to easily represent
all the information necessary to process long, semantically-
constrained sentences.

The best measure of network performance would appear
to be a direct comparison with the results published by El-
man (1991). However, there are problems with this approach.
Because Elman did not use a standard form stochastic gram-
mar, it was not possible to produce the theoretically correct
predictions against which to rate the model. Instead, empir-
ically derived probabilities given the sentence context were
calculated. Presumably, these probabilities were compiled
over many sentences generated by the grammar. Unfortu-
nately, this type of empirically based language model tends
to “memorize” the often unique, long sentences in the train-
ing corpus and generalizes poorly.

We therefore trained an empirical model on the N5 testing
corpus, as well as 240,000 additional sentences produced by
the same grammar. Elman reported a final error of 0.177 for
his network (using, we believe, Minkowski-1 or city-block
distance). Our best 16 networks trained on the N5 corpus had
an average error of 0.285 when evaluated against the model,
which would seem to be considerably worse. However, city-
block distance is not well-suited for probability distributions.
A better measure (in addition to divergence) is the mean co-
sine of the angle between target and output vectors. The
selected network had an average cosine of 0.929, which is
somewhat better than the value of 0.852 that Elman reported.

Nevertheless, comparison of the empirically derived pre-
dictions against the theoretically derived predictions, which
represent the true desired behavior of the network, indicate
that the empirical predictions are actually quite poor. When
evaluated against the theoretical predictions, the empirical
model, which had been trained on 250,000 sentences, had a
mean divergence of 1.086, a city-block distance of 0.246, and
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Figure 4: Strength of illegal (ungrammatical) predictions versus
word position. Values are averaged over the best 16 of 20 networks
trained in each condition.

a cosine of 0.934. In contrast, when compared against the
same correct predictions, the networks had a divergence of
0.024, a distance of 0.088, and a cosine of 0.992. Thus, by all
measures, the network's performance is better than that of the
empirical model. Therefore, such a model is not a good ba-
sis for evaluating the network or for comparing the network’s
behavior to that of Elman’s network.

One possibility is that, although networks trained in the
small regimen might have worse performance overall, they
may nonetheless have learned long-distance dependencies
better than networks trained the complex regimen. To test this
hypothesis, we computed the total probability assigned by the

network to predictions that could not, in fact, be the next word
in the sentence, as a function of position in the sentence (see
Figure 4). In general, fewer than 8 of the 26 words are legal
at any pointin a sentence produced by grammar E75. Overall,
performance declines (ungrammatical predictions increase)
with word position, except for position 16 which can only
be end-of-sentence. However, even 21% of the total out-
put activation spread over 18 illegal words is respectable,
considering that randomized weights produce about 71% il-
legal predictions. More importantly, the complex-regimen
networks outperform the simple-regimen networks at each
sentence position between 5-14 (typically involving embed-
dings; F(1,15)>4.31, p<.031, for each position).

Although “starting small” failed to prove effective in the
main experiments, we attempted to find conditions under
which the simple training regimen would provide an ad-
vantage. First, we constructed conditions for which one
might expect starting small to be beneficial: a sixth class
of grammars, A, with no dependencies between main and
embedded clauses (including number agreement), and cor-
pora composed entirely of complex sentences. However, the
complex training regimen continued to yield equivalent per-
formance to the simple regimen (mean divergence: 0.079
vs. 0.080 for A%y, F(1,30)=0.135, p=0.716; 0.078 vs. 0.081
for Ajgo, F(1,22)=1.14, p=0.298; 0.112 vs. 0.120 for Ejqo,
F(1,22)=1.46, p=0.241). Only in the extreme case of Al
did starting small yield a significant benefit (0.105 complex
vs. 0.064 simple, F(1,22)=6.99, p=0.015).

A remaining possibility is that the difference in training
parameters, or slight differences in corpora, between our ex-
periments and Elman’s were responsible for our discrepant
results. Therefore, we eliminated all known differences be-
tween grammar class N and Elman's and trained networks
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without momentum, without the use of softmax constraints,
with a squared error measure, rather than divergence, with a
learning rate of 0.1 and initial weights in the £0.001 range.
These parameters are similar to those chosen by Elman. The
results revealed an advantage for starting large (squared crror:
0.088 vs. 0.107, F(1,22)=246.986, p<0.001), however these
networks did not perform nearly as well as those trained on
corpus N with the original training methods (squared error:
0.0042). In learning grammars similar to Elman’s, we have
yet to find conditions under which starting small is beneficial.

Conclusions

It is apparent that simple recurrent networks are able to learn
quite well when trained exclusively on a language with only a
small proportion of simple sentences. The benefit of starting
small does not appear to be a robust phenomenon for lan-
guages of this type and starting small often proves to be a
significant hindrance. It is not necessary to present simplified
inputs to aid the network in learning short-term dependen-
cies initially. Simple recurrent networks learn this way nat-
urally, first extracting short-range correlations and building
up to longer-range correlations one step at a time (see, e.g.,
Servan-Schreiber, Cleeremans & McClelland, 1991). Start-
ing with simplified inputs allows the network to develop inef-
ficient representations which must be restructured to handle
new syntactic complexity.

An important aspect of Elman’s (1993) findings was that a
network was able to learn when the full range of data was
presented initially and the network's memory was limited.
Although the current work did not address this technique
directly, Elman reported that networks trained with limited
memory did not learn as effectively as those trained with sim-
plified input. Given that, in the current work, we found the
simple training regimen inferior to training on the full com-
plex grammar from the outset, it is unlikely that hindering the
network’s memory would be of any benefit. Indeed, prelimi-
nary results not reported here seem to bear out this prediction.

It should be acknowledged, however, that there are situa-
tions in which starting with simplified inputs may be neces-
sary. So-called “latching” tasks (Bengio, Simard & Frasconi,
1994; Lin, Horne & Giles, 1996) require networks to remem-
ber information for extended periods with no correlated in-
puts. Bengio and colleagues have argued that recurrent net-
works will have difficulty solving such problems because the
propagated error signals decay exponentially. This is taken
as theoretical evidence that an incremental learning strategy
is more likely to converge (Giles & Omlin, 1995). However,
such situations, in which dependencies span long, uninforma-
tive regions, are not at all representative of natural language.

Important contingencies in language and other natural time
series problems tend to span regions of input which are them-
selves correlated with the contingent information. In these
cases, recurrent networks are able to leverage the weak short-
range correlations to learn the stronger long-range correla-
tions. Only in unnatural situations is it necessary to train a
network initially on simplified input, and doing so may be

harmful in most circumstances. The ability of such a simpli-
fied network model to learn a relatively complex prediction
task leads one to conclude that it is quite plausible for a hu-
man infant to learn the structure of language despite a lack of
negative evidence, despite experiencing unsimplified gram-
matical structures, and despite detailed, innate knowledge of
language.
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