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Abstract of the Thesis

Learning Bayesian Networks via the Alternating

Direction Method of Multipliers

by

Jinchao Li

Master of Science in Statistics

University of California, Los Angeles, 2015

Professor Qing Zhou, Chair

This thesis develops a fast splitting method for estimating Gaussian Bayesian

networks from observational data. In Bayesian network, the directed acyclic graph

(DAG) structure is used to represent the causal interactions of the variables.

Without using prior knowledge about the network structure, we learn the structure

by cyclically augmenting new edges to the graph while forcing the structure to

be a DAG. For the given structure we learn the optimal edge coefficients using

Alternating Direction Method of Multipliers. Our approach is compared with the

most recent method of CDDr, and the experiment result shows that our method

outperforms CDDr significantly.
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CHAPTER 1

Introduction

A graphical model [Lau96] is a graph representation of the relation among a set

of random variables, where nodes are used to represent these variables and edges

are used to represent the conditional independence relations among them. It

has become an extremely popular tool for modeling as it provides a principled

approach to dealing with uncertainty through the use of probability theory, and

an effective approach to coping with complexity through the use of graph theory.

Based on whether the edges are directed or not, we can classify graphical

models as either directed or undirected. For instance, the Markov random field

is a special type of undirected graphical models and it has been used in many

applications in statistics and machine learning. In contrast, the Bayesian network

is a typical type of directed graphical models, where the joint distribution of the

nodes is factorized via a directed acyclic graph (DAG) [Dar09][KF09]. Bayesian

networks are very useful for data analysis due to a number of reasons. For example,

they can be used to learn causal relationships from data and can readily handle

incomplete data; they facilitate the combination of prior knowledge and data; they

are efficient methods for avoiding data overfitting [Hec95] in Bayesian network

learning.

Due to the wide applications of Bayesian networks, the development of fast

structure learning algorithms becomes important. However, this is difficult due

to the fact that the number of possible DAGs grows super-exponentially with the

number of nodes [Rob77]. A substantial amount of work has been devoted to
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structure learning of Bayesian networks, and can roughly be classified into three

categories:

Scored-based The scored-based approach defines a scoring function on the

space of DAGs, and searches for the structure that maximizes the score function.

The score functions are usually constructed based on posterior probability of the

network structure or using minimum description length [LB94, HGC95]. When

searching for the optimal network structure in the space of DAGs, various de-

terministic search strategies [HGC95, CB02] have been proposed. Alternatively,

network structure can be sampled from a Bayesian posterior distribution using

Monte Carlo methods [Dar09, KF09, EW08, Zho11]. Overall, the score-based

approach works well for small size Bayesian network, but it is computationally

impractical for large networks.

Constraint-based The constraint-based approach detects edges in a DAG with

repeated conditional independence tests under certain model assumptions. The

well-known examples in this category are the Peter-Clark (PC) algorithm [SG91,

KB07] and the MMPC algorithm [TBA06]. Compared with the scored-based

approach, the constraint-based approach is often faster since the independence

tests are computationally efficient. However, the assumptions used in the approach

are strict, which is a drawback of this approach.

Hybrid The hybrid approach is a mix of a score-based method and a constraint-

based method. It applies conditional independence tests to remove as many edges

as possible, and then use a score-based method to search for the optimal structure

in the reduced DAG space [TBA06, GMP12].

In recent years, more and more researchers become interested in sparse undi-

rected graphical models, and proposed all types of estimation methods, one of
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which is to estimate the graphical structure by applying an `1 regularization term

on the log-likelihood function [BGdN06, YL07, BGd08, FHT07], a method usu-

ally referred to as the graphical Lasso. This method converts the difficulty of

enumerating all possible topologies to a convex optimization problem with a tun-

ing parameter on the `1 penalty term, which controls the trade-off between data

fidelity and sparsity. However, an `1-regularized approach for Bayesian network

structure learning was developed very recently by Fu and Zhou [FZ13], and the

optimization is done by a clockwise coordinate descent algorithm. Since the loss

function in [FZ13] is concave after minimizing over noise variances, and DAG con-

straint is also non-convex, the search space is highly non-convex, and therefore

we can only guarantee local optimal. Aragam and Zhou [AZ15] obtain a convex

loss function via re-parametrization, and introduce concave penalization to pro-

mote sparse DAGs. Their method is quite fast, and has tested on graphs with

thousands of nodes.

In this article, based on the estimation framework by [FZ13] and [AZ15], we

propose a fast structure learning algorithm by incorporating the alternating direc-

tion method of multipliers in the optimization of the `1-penalized log-likelihood.

The new method can be orders of magnitude faster than coordinate descent for

both sparse and dense structures and for both high-dimensional and low-dimension

data. As one type of the score-based approach, our implementation also gives new

insights into accelerating score-based algorithms.

The organization of the rest of this paper is as follows: In Section 2, we

give a short introduction of Bayesian network and formulate the problem in a

convex form by re-parametrization. In Section 3, we give a brief overview of the

Alternating Direction Method of Multiplier (ADMM), and apply the ADMM to

our problem. In Section 4, we generate synthetic data and compare our algorithm

with the CCDr in [AZ15].
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CHAPTER 2

Problem Formulation

2.1 Background on Gaussian Bayesian Network

In a Bayesian network, the joint probability distribution of a set of random vari-

ables {X1, . . . , Xp} can be factorized as

p(X1, . . . , Xp) =

p∏
i=1

p(Xi|ΠGj ), (2.1)

where ΠGi denotes the set of parents of Xi. By utilizing the factorization form in

(2.1), the structure of a Bayesian network can be represented by a DAG G(V,E),

where V = {1, . . . , p} denotes the set of nodes in the graph, and E = {(i, j)|Xi ∈

ΠGj } denotes the set of directed edges from the parent node to the child node.

In the Gaussian Bayesian Network (GBN) G(V,E), the relationships among

the random variables are modeled by linear regression as

Xj =
∑
i∈

∏G
j

βijXi + εj, j = 1, . . . , p

where εj ∼ N(0, σ2
j ), and βij is the coefficient representing the edge from Xi to

Xj . For analysis convenience, we also define B = (βij)
p×p to be the coefficient

matrix, where βij = 0 if i /∈ ΠGj , and the vector σ2 = (σ2
j )1×p as the variance

vector.

Given n independent and identically distributed observations of the Bayesian

network X = (x1, x2, . . . , xp), xj ∈ Rn, the negative log-likelihood can be ex-
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pressed as

L(B, σ|X) =

p∑
j=1

[
n

2
log(σ2

j ) +
1

2σ2
j

‖xj −Xβj‖2

]
, (2.2)

with the constraint that the graph G is acyclic. Note that (2.2) is a non-convex

function, computationally it is hard to obtain the global optimal value. By re-

defining ρj = 1/σj and φij = βij/σj, (2.2) turns into a convex form as

L(Φ, ρ|X) =

p∑
j=1

[
−n log(ρj) +

1

2
‖ρjxj −Xφj‖2

]
.

In most applications, the underlying Bayesian network structure is sparse. By

adding a regularization term on the objective function, sparsity can be promoted

and the estimated structure will be more interpretable. Furthermore, for cases

where the number of parameters is large, or the size of data is relatively small,

introducing the regularization term helps void over-fitting. Therefore, we are

interested in the following problem:

(Φ̂, ρ̂) = argmin
Φ,ρ

{L(Φ, ρ|X) + n
∑
i,j

pλ(|βij|) : B is a DAG}

= argmin
B,σ

{
p∑
j=1

[
−n log(ρj) +

1

2
‖ρjxj −Xφj‖2

]
+ n

∑
i,j

pλ(|βij|)} : B is a DAG},

(2.3)

where pλ(x) is the penalty function.

2.2 Choice of Penalty Function

The most popular choice of penalty is `1 (Lasso) penalty, which has the virtue

of sparsity promotion and fast computation. Therefore, the regularization term

can be simply formulated as p′λ(x) = λ|x|. For estimation problems, people are

always interested in their asymptotical properties as they manifest the estimators’

consistency. It has been shown [FP04] that a good procedure should satisfy oracle

properties, which include

• Identifies the true submodel, A = {i : β̂i 6= 0}.
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• The estimatior satisfies,
√
n(β̂A − β∗A) → N(0,Σ∗), where Σ∗ is the true

covariance matrix.

However, `1 penalized estimation problem enjoys oracle properties only when a

nontrivial condition is satisfied, and therefore under certain scenarios the `1 pe-

nalized problem is inconsistent. This can be circumvented by employing adaptive

Lasso [Zou06], in which adaptive weights are used for penalization. To be more

specific, p′λ(xi) is chosen as p′λ(xi) = λωi|xi|, where ωi is chosen separately for

different i’s. For instance, we can choose ωij = min
(
|β̂(OLS)
ij |−γ,Mγ

)
, where M is

a large positive number, and β̂
(OLS)
ij ’s are the OLS estimates. With this definition,

the objective function is

Q(Φ, ρ) =

p∑
j=1

[
−n log(ρj) +

1

2
‖ρjxj −Xφj‖2

]
+ nλ

∑
i,j

ωi|φij| (2.4)

By redefining φ̃ij = ωijφij and x̃hi = xhi/ωij for i 6= j, the objective function turns

into

Q(Φ̃, ρ) =

p∑
j=1

[
−n log(ρj) +

1

2
‖ρjxj − X̃φ̃j‖2

]
+ nλ

∑
i,j

|φ̃ij| (2.5)

Therefore (2.4) with wij = 1 and (2.5) can be solved by the same algorithm. Since

the main goal of this paper is developing fast algorithm, without loss of generality,

we set wij = 1 for all i, j in the following part of the paper, and effectively use

the `1 penalty pλ(φij) = λ|φij|.

2.3 Objective Function Reformulation

Objective Function with Ordering Note that Q(Φ, ρ) can be decomposed

as Q(Φ, ρ) =
∑p

j=1Qj(φj, ρj), where

Qj(φj, ρj) = −n log(ρj) +
1

2
‖ρjxj −Xφj‖2 + nλ‖φj‖1.
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Then the problem yields the following form:

(Φ̂, ρ̂) = argmin
Φ,ρ

{
p∑
j=1

Qj(φj, ρj) : Φ is a DAG}, (2.6)

where Φ = (φij)p×p, ρ = (ρj)1×p. Our original estimator can be obtained from

(B̂, σ̂) =


β̂ij = φ̂ij/ρ̂j, i 6= j

β̂ij = 0,

σ̂2
j = 1/ρ̂2

j , j = 1, . . . , p

Furthermore, given a sparsity pattern of φj (the parents of node j), the objective

function reduces to

Qj(φj, ρj) = −n log(ρj) +
1

2
‖ρjxj −Xπj(φj)πj‖2 + nλ‖(φj)πj‖1,

where πj means the set of parents of node j, (φj)πj denotes the non-zero parts of

φj, Xπj denotes the stack of column vectors xi’s where i ∈ πj. Therefore, given

all the parents sets πj, j = 1, . . . , p, minimization of Q can be decomposed into p

independent convex problems, and these problems can be solved independently.

Therefore, parallel computation can also be implemented for this algorithm.

2.4 Choice of Penalty Parameters and Regularization Paths

The estimation result is highly determined by the value of λ. To be specific,

as λ → 0, the estimation goes back to the unpenalized maximum likelihood.

Conversely, if λ → +∞, then Φ̂(λ) → 0. Practically speaking, we have no clue

about the optimal value of the penalty parameter λ. Thus, one way to address

this issue is to compute over a sequence of estimates {Φ̂(λi), ρ̂(λi)} for λi > λi+1 >

0, i = 0, 1, . . . , L and then apply model selection methods to choose the best λ.

Practically, we can choose λ0 so that Φ̂(λ0) = 0, and decrease the value of λi

in a log-scale. For those L + 1 pre-specified λ-values, the number of estimated
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edges increases when the value of λ decreases, and therefore more time is spent on

computing the model with small λ. In implementation, we use the optimal values

for the previous λ as the initial value for the current λ as a warm start.

Model Selection Criteria The information-theoretic model selection criteria

include the Akaike Information Criteria AIC, Second-Order Akaike AICc, and

Bayes Information Criteria BIC, defined as follows [BA10]:

AIC = −2L+ 2k, AICc = −2L+
2nk

n− k − 1
, BIC = −2L+ klogn, (2.7)

where L is the log-likelihood of the ML estimate, n is the sample size, and k is

the effective number of parameters. In our application, L is given by

L =

p∑
j=1

[
−n log(ρj) +

1

2
‖ρjxj −Xφj‖2

]
where {ρ,Φ} is the optimal solution of (2.6), and k is the number of structurally

non-zero variables in the model. By evaluating the models using information-

theoretic model selection criteria, we choose the one with the lowest score. Among

all these criteria, AIC is known to perform poorly if n is small compared with

parameter k, AICc is a correction to AIC for small n by placing a penalty on

models with high complexity, and BIC intends to choose simpler models than AIC

or AICc for large n. In this paper, we use BIC as the model selection criterion.
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CHAPTER 3

Algorithm

Although the objective function can be re-parameterized into a convex form, the

DAG constraint makes the problem non-convex again, and therefore traditional

convex optimization techniques are not directly applicable. In this paper, we

extend the algorithms in [FZ13, AZ15], and apply a cyclic block coordinate-descent

algorithm to enforce the DAG constraint, while minimizing (2.3) given a DAG

structure via the ADMM.

3.1 Algorithm overview

Instead of minimizing all the variables simultaneously, a block coordinate-descent

algorithm performs optimization over a subset (a block) of the full variables while

holding other variables constant, and cycles through the remaining variables. This

procedure continues until convergence. This algorithm has been proved successful

in different settings [FHHT07, WL08], and it works very well for cases where the

update for a block of variables can be performed efficiently. At a high level, the

proposed algorithm in our paper is a modified coordinate descent method. For

each iteration, the algorithm consists of three steps:

1. Fix the value of Φ, and optimize over ρ.

2. Fix the value of ρ, and cycle through blocks {φij, φji} for different i, j =

1, . . . , p with i 6= j sequentially.
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3. Given the DAG structure identified by Step 1-2, apply the ADMM to obtain

the optimal value of Φ and ρ.

The algorithm iterates though Step 1-3, and terminates until some stopping cri-

terion is met.

Step 1 Given φi, for each ρi, we need to solve the convex minimization problem

(3.1)

minimize
ρi

−n log(ρi) +
1

2
||ρixi −Xφi||2 (3.1)

to update ρi, i = 1, . . . , p. By taking derivative, we only need to solve

(xTi xi)ρ
2
i − (xTi Xφi)ρi − n = 0,

for which, the only non-negative solution is ρi = −b+
√
b2−4ac

2a
, where a = ‖xi‖2, b =

−(xTi Xφi) and c = −n.

Step 2 Due to the DAG constraint, we know that φij and φji can not be nonzero

in the same time. This means when we perform blockwise coordinate descent,

φij and φji should be considered as a block. We check whether it introduces a

cycle in the graph by adding the edge Xi → Xj. If so, φji is set to 0, and the

minimization is taken over φij. Otherwise, we proceed to check whether a cycle

will be introduced by adding the edge Xi → Xj. If it introduces a cycle, we set

φij = 0, and minimize over φji. If neither introduces a cycle, we choose the one

with a smaller objective value. In general, we update φij by

φ∗ij = argmin
φij

1

2
‖φijxi − (ρjxj −

∑
k 6=i

xkφkj)‖2 + nλ|φij|.

This is equivalent to solving

φ∗ij = argmin
φij

1

2

(
φij −

xTi (ρjxj −
∑

k 6=i xkφkj)

‖xi‖2

)2

+
nλ

‖xi‖2
|φij|

= argmin
φij

1

2

(
φij −

ρjx
T
i xj + φij‖xi‖2 − xTi Xφj

‖xi‖2

)2

+
nλ

‖xi‖2
|φij|

(3.2)
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(3.2) is a standard soft-thresholding problem. Let us consider the problem

φ∗ij = argmin
φij

1

2
(φij − u)2 + t |φij|1

Here, φ∗ij can be obtained by a simple soft thresholding procedure:

φ∗ij =


u− t, u ≥ t

0, −t ≤ u ≤ t

u+ t, u ≤ −t

.

Therefore, the solution to (3.2) can be obtained by substituting t = nλ
‖xi‖2 and

u =
ρjx

T
i xj+φij‖xi‖2−xTi Xφj

‖xi‖2 .

Step 3 In Step 3, we obtain the optimal solution of (Φ, ρ) given the DAG

structure from step 2. For this `1 penalized minimization problem, it can be

solved by a series of monotone operator splitting methods, including the Douglas-

Rachford Splitting Method[EB92], the Alternating Direction Method of Multi-

pliers (ADMM) [BPC+11], the Forward-Backward Method [Tse00] and etc. In

this paper, we use the ADMM algorithm due to its popularity in `1 penalized

problems, with details provided in the next subsection.

3.2 Alternating Direction Method of Multipliers

The method of Alternating Direction Method of Multipliers (ADMM) has a long

history (as in [Gab83, Tse90, Tse91]), and has become increasingly popular for

large-scale applications in image processing [Ess10], distributed optimization, sta-

tistical learning [BPC+11], and some other areas. This algorithm is intended to

blend the decomposability of dual ascent with the robustness of the method of

multipliers.
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3.2.1 Overview of Alternating Direction Method of Multipliers

Suppose the function f(x) is convex and twice-differentiable, and the function h(x)

is convex and possibly non-differentiable. Let us consider the general problem

minimize
x,y

f(x) + h(y)

subject to Ax+By = b,

(3.3)

where x ∈ Rn, y ∈ Rm, A ∈ Rp×n, B ∈ Rp×m and b ∈ Rp. The augmented

Lagrangian is defined as

Lt(x, y, ν) = f(x) + h(y) + νT (Ax+By − b) +
1

2t
‖Ax+By − b‖2

2,

where t > 0 is called the penalty parameter. The ADMM method intends to

optimize over x and y sequentially, and then update ν. It can be written in the

following form:

xk+1 = argminx Lt(x, yk, νk)

yk+1 = argminy Lt(xk+1, y, νk)

νk+1 = νk + 1
t
(Axk+1 +Byk+1 − b).

(3.4)

Letting z = tν, instead of working on (3.4), we define

L̃t(x, y, z) = f(x) + h(y) +
1

2t
‖Ax+By − b+ z‖2

2,

and then the updates can be formulated as

xk+1 = argminx L̃t(x, yk, zk)

yk+1 = argminy L̃t(xk+1, y, zk)

zk+1 = zk + (Axk+1 +Byk+1 − b).

(3.5)

In practice, this algorithm may converge slowly to high accuracy. However, it can

converge to modest accuracy in a few iterations, and this is sufficient for many

applications and especially for large-scale problems.
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Choice of Penalty Parameter The penalty parameter ρ can be fixed (e.g.,

fixed as 1), or can vary for each iteration. The goal of using a varying penalty

parameter is to make the performance less dependent of the initial choice of the

penalty parameter, and improve the convergence. A simple method is to keep the

primal and dual residual norms within a factor of µ > 1 so as to make sure that

both converge to zero, which can be described as follows [HYW00]:

tk+1 =


τ incrtk if ‖rk‖2 < µ‖sk‖2,

tk/τdecr if ‖sk‖2 < µ‖rk‖2,

tk otherwise,

(3.6)

where τ incr and τdecr are the parameters used to control the change of the penalty

parameter. Typically we choose µ = 10 and τ incr = τdecr = 2.

3.2.2 Convergence of ADMM

There are many existing convergence literatures for ADMM under different as-

sumptions. The basic and general assumption is that the functions f and g are

closed, proper and convex. This assumption guarantees that the updates of xk

and yk in (3.4) are solvable. Another important assumption is that strong dual-

ity holds for the problem, which implies that when (x∗, y∗) attains the optimal

solution, the dual variable ν∗ also attains its optimal. The convergence of the

algorithm can be described as follows:

• Residual convergence: rk → 0 and sk → 0 as k →∞.

• Objective convergene: f(xk)+g(yk)→ p∗ as k →∞, where p∗ is the optimal

value

• Dual variable convergence: ν → ν∗ as k →∞, where ν∗ is the optimal dual

variable.
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The converge proof can be found in references such as [Gab83, EB92]. Practically,

since ADMM is a first order method, it converges slow to high accuracy. However,

it converges very fast (only a few tens of iterations) to modest accuracy, which

makes it practically very useful, and specially for applications that do not require

very high accuracy.

3.2.3 Optimality Condition and Stopping Criterion

The optimality conditions for problem (3.3) can be written as

primal feasibility : Ax∗ +By∗ − b = 0, (3.7)

dual feasibility : 0 ∈ ∂f(x∗) + ATν∗, (3.8)

0 ∈ ∂g(y∗) +BTν∗, (3.9)

where ∂ denotes the sub-differential operator, and if the function is differentiable,

∂ means the derivative. Define the primal residual at iteration k as

rk = Axk +Byk − b. (3.10)

Since xk+1 minimizes Lt(x, yk, νk), we have that

0 ∈ ∂f(xk+1) + ATνk +
1

t
AT (Axk+1 +Byk − b)

= ∂f(xk+1) + AT
(
νk + ρrk+1 +

1

t
B(yk − yk+1)

)
= ∂f(xk+1) + ATνk+1 +

1

t
ATB

(
yk − yk+1

)
.

This means that 1
t
ATB(yk+1 − yk) ∈ ∂f(xk+1) + ATνk+1. By utilizing the opti-

mality condition of (3.8), we can define the dual residual at iteration k + 1 as

sk+1 =
1

t
ATB(yk+1 − yk). (3.11)

Similarly, since yk+1 minimizes Lt(xk, y, νk), we have that

0 ∈ ∂g(yk+1) +BTνk +
1

t
BT (Axk+1 +Byk+1 − b)

= ∂g(yk+1) +BTνk +
1

t
BT rk+1

= ∂g(yk+1) +BTνk+1.
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This means that {yk+1, νk+1} always satisfy the optimality condition (3.9). There-

fore, the primal and dual residuals can be defined as in (3.10) and (3.11) respec-

tively.

Stopping Criteria With above definitions of residuals, a reasonable stopping

criterion can be defined as

‖rk‖ ≤ εpri and ‖sk‖ ≤ εdual, (3.12)

where εpri > 0 and εdual are feasibility tolerance for primal optimality and dual

optimality condition, respectively. In [BPC+11], the tolerances are chosen with

the combination of an absolute and relative criterion as

εpri =
√
pεabs + εrel max{‖Axk‖2, ‖Byk‖2, ‖b‖2},

εdual =
√
nεabs + εrel‖ATνk‖2,

where εabs > 0 is an absolute tolerance and εrel > 0 is a relative tolerance. Typi-

cally, εrel is chosen as 10−3 or 10−4.

3.3 ADMM Applied on the Inner Loop

Let Vactive be the set of edges in a DAG and A(Φ) be the edge set of the coefficient

matrix Φ. In order to apply ADMM method to (2.4) restricted to the edge set

Vactive, we reformulate the problem in a convex form as follows:

minimize
Φ,Ψ,ρ

∑p
j=1

[
−n log(ρj) + 1

2
‖ρjxj −Xφj‖2

]
+ n

∑
i,j pλ(|ψij|) + δVactive(ψ)

subject to φ = ψ
,

(3.13)

where the indicator function δVactive(ψ) is defined as

δVactive(ψ) =


0 if A(ψ) ⊂ Vactive,

+∞ otherwise.

(3.14)
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Let us denote

f(φ, ρ) =

p∑
j=1

(
−n log(ρj) +

1

2
‖ρjxj −Xφj‖2

)
+ δVactive(φ),

and

g(ψ) = n
∑
i,j

pλ(|ψij|) + δVactive(ψ).

Then f(φ, ρ) is convex and differentiable, and g(ψ) is convex and non-differentiable.

Apply ADMM updates as in (3.4), the iterations can be formulated as

{φk+1, ρk+1} = argmin
φ,ρ

f(φ, ρ) +
1

2t
‖φ− ψk + ηk‖2

F , (3.15)

ψk+1 = argmin
ψ

g(ψ) +
1

2t
‖φk+1 − ψ + ηk‖2

F , (3.16)

ηk+1 = ηk + (φk+1 − ψk+1). (3.17)

The update of (3.17) is straightforward. For (3.15) and (3.16), since we already

know the active set, we only apply the updates on the active set. The detailed

minimization of (3.15) and (3.16) are discussed in details in what follows.

Proximal Operators The proximal operator proxtf of f is defined by

proxtf (v) = argmin
x

(
f(x) +

1

2t
‖x− v‖2

2

)
.

This operator aims to find a point close to the minimizer of f while keeping it

close to v. It is often referred to as an implicit gradient descent step with stepsize

t (compared with the gradient descent method). In order to solve for (3.15) and

(3.16), we have to evaluate two prox-operators: proxtf (φ, ρ) and proxtg(φ). If

these two operators can be evaluated efficiently, then each iteration of ADMM

can be computed easily.

Evaluation of proxtf (φ, ρ) Since {φi, ρi} and {φj, ρj} are not coupled for i 6= j,

the problem (3.15) can be decomposed into p independent problems,

minimize
φj ,ρj

−n log ρj +
1

2
‖ρjxj −Xφj‖2

2 +
1

2t
‖φj − ψkj + ηkj ‖2

2 + δπj(φj) (3.18)
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for j = 1, . . . , p. Denote by πj the parents of node j, and let Xπj be the stack of

columns πj of X. Solving (3.18) is equivalent to

minimize
(φj)πj ,ρj

−n log ρj+
1

2
‖ρjxj−Xπj(φj)πj‖2

2+
1

2t
‖(φj)πj−(ψj)

k
πj

+(ηj)
k
πj
‖2

2. (3.19)

By taking partial derivatives over φπjj and ρj, the results can be obtained by

solving

−XT
πj

(
ρjxj −Xπj(φj)πj

)
+

1

t

(
(φj)πj − (ψj)

k
πj

+ (ηj)
k
πj

)
= 0, (3.20)

‖xj‖2ρ2
j − xTj Xπj(φj)πjρj − n = 0. (3.21)

Define D(πj; t) , (XT
πj
Xπj + 1

t
Iπj)

−1. Then from (3.20), we have

φj = D(πj; t)(X
T
πj
xj)ρj +

1

t
D(πj; t)

(
(ψj)

k
πj
− (ηj)

k
πj

)
(3.22)

By substituting (3.22) to (3.21), we can obtain(
‖xj‖2 − xTj XπjD(πj; t)X

T
πj
xj

)
ρ2
j −

1

t
xTj XπjD(πj; t)

(
(ψj)

k
πj
− (ηj)

k
πj

)
ρj − n = 0

(3.23)

Solve (3.23) for ρj, and substitute the result back to (3.22), we can obtain the

solution for (φj)πj . Note that we can precompute XTX, and choose the corre-

sponding elements to construct ‖xj‖2, XT
πj
xj and XT

πj
Xπj , thus avoiding repeated

computation. For the inverse matrix D(πj; t) = (XT
πj
Xπj + 1

t
Iπj)

−1, since the

subset πj usually is very small, the computation does not take much time.

Evaluation of proxtg(ψ) If pλ(|φij|) = λ|φij|, then prox-operator is a simple

soft-thresholding. From the indicator function (3.14), we know that φij = 0 for

(i, j) 6∈ Vactive. Otherwise, the result can be obtained by applying soft-thresholding

for all (i, j) ∈ Vactive,

ψij =


(φk+1

ij + ηkij)− λtn, (φk+1
ij + ηkij) > λtn,

0, −λtn ≤ (φk+1
ij + ηkij) ≤ λtn,

(φk+1
ij + ηkij) + λtn, (φk+1

ij + ηkij) < −λtn.
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3.4 Full Algorithm

The complete algorithm is given in Algorithm 1. Compared with CCDr in [AZ15],

both algorithms run the cyclic coordinate descent method to obtain the active set.

The difference is that we apply the ADMM to obtain the optimal solution given

the active set, while [AZ15] still applies coordinate descent.
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Algorithm 1 Coordinate Descent with ADMM Algorithm (CDAM)

Initialization:

• Initial estimate (Φ0, ρ0), a sequence of penalty parameters λ0 > λ1 > · · · >

λL, error tolerance ε > 0.

• Normalize the data so that ‖xj‖2 = 1 for all j’s, compute XTX and save

the result for later usage.

For each λi:

1. For i > 0, set (Φ0(λi), ρ
0(λi)) = (Φ(λi−1), ρ(λi−1))

2. Fix Φ, and minimize (2.6) with respect to ρ as in (3.1).

3. Cycle through the p(p − 1)/2 blocks {φij, φji} for i, j = 1, . . . , i 6= j,

minimizing with respect to each block as in (3.2), and identify the active

edge set Vactive:

(a) If φij = 0, then minimize (2.6) with respect to φji, and set (φij, φji) =

(0, φ∗ji).

(b) If φji = 0, then minimize (2.6) with respect to φij, and set (φij, φji) =

(φ∗ij, 0).

(c) If neither of them apply, then choose the updates which leads to the

smaller value.

4. For the structure as identified in the active set, apply the ADMM on the

following convex optimization problem over (Φ, ρ):

minimizes
∑p

j=1

[
−n log(ρj) + 1

2
‖ρjxj −Xφj‖2

]
+ n

∑
i,j pλ(|φij|)

subject to A(Φ) ⊂ Vactive
(3.24)

5. Repeat (2-4), until the active set does not change. Save the current optimal

values as
(

Φ̂(λi), ρ̂(λi)
)

Transform the final estimates
(

Φ̂(λi), ρ̂(λi)
)

back to the original parameter

space
(
B̂(λi), σ̂(λi)

)
.
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CHAPTER 4

Simulation

In [AZ15], the algorithm of CCDr has been compared with classic algorithms in-

cluding the PC algorithm [SG91], the GES algorithm [Chi03], the HC algorithm

[HGC95] and the MMHC algorithm [TBA06]. In this paper, the proposed algo-

rithm CDAM is a modified version of the CCDr in [AZ15].The main difference

between them is that step 4 in Algorithm 1. for the CDAM is replaced by co-

ordinate descent in the CCDr. In this section, the experimental comparison is

between the CDAM and the original CCDr algorithm. The data generation part

is implemented using R and C, and the algorithm part is implemented using C++.

For matrix operations, we use the C++ library eigen, which provides fast and ver-

satile data structures/operations implementation for (sparse) matrices. All of the

tests were performed on a mid 2014 Apple MacBookPro with a 2.5GHz Intel Core

i7 processor and 16GB 1600MHz DDR3, running Mac OS X 10.10.1.

4.1 Pre-calculation

As described in Algorithm 1, we need to calculate xTi xj for i, j,= 1, . . . , p, and

use the values for multiple times. Pre-calculation of those values in the beginning

of the algorithm and storing the values for later use can reduce time complex-

ity significantly. Moreover, for the ADMM algorithm, in contrast to coordinate

descent, we need to calculate (XT
πj
Xπj + 1

t
Iπj)

−1 for each active set. The set πj

usually is very small due to the sparsity in the estimated Bayesian network, so the

inverse does not take much time. Furthermore, for our algorithm, we only need
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to identify the active set several times until the structure converges. Therefore,

the inverse operations are usually evaluated only a few times, and thus increase

the time complexity slightly.

4.2 Comparison on Random Graphs

In this section we provide detailed comparison between the performance of our

algorithm and the CCDr algorithm in [AZ15]. In order to give a fair comparison,

we adopt some settings in [AZ15]. The difference between our algorithm and

the CCDr algorithm is the method used in the inner loop (step 4) given a fixed

active set: we use the ADMM, while [AZ15] uses coordinate descent. Therefore,

we compare both the inner loops and the full algorithm. For the comparison,

note that in the ADMM algorithm, the parameter t was fixed to 2.0, and the λ

was chosen as the same optimal value as that in the CCDr for the corresponding

setting. The setting for the comparison includes the number of nodes (variables)

p, the number of edges s0, and number of random samples n. We generate random

graphs using pcalg package (randomDAG, rmvDAG) with the following settings:

p ∈ {50, 200}, s0/p ∈ {0.2, 0.5, 1.0, 2.0}, n/p ∈ {0.2, 1, 5}.

These parameters cover both low (n > p) and high (p > n) dimensional cases and

a range of sparsity levels (s0/p). In order to compare the ADMM and coordinate

descent for our application, we record for each setting the running time for the

inner loops (step 4 in Algorithm 1) and the total time of the CCDr and the CDAM

algorithms. Table 4.1 and Table 4.2 show the results for these comparisons with

p = 50 and p = 200 respectively. In particular, Fig.4.1 shows the convergence of

one outer iteration for both algorithms. We see that the ADMM runs much faster

than coordinate descent. When the problem size becomes larger, the advantage of

the ADMM is even more significant. In terms of the full algorithm (including the

common cyclic DAG check part), the CDAM can be twice faster. That’s because
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p s0/p n/p λ
Total Inner Iteration (s) Total Time (s)

CCDr CDAM CCDr
CDAM

CCDr CDAM CCDr
CDAM

50 0.2 0.2 0.25 0.00388 0.00195 1.99 0.01383 0.01190 1.16

1 0.055 0.00764 0.00191 3.99 0.01611 0.01038 1.55

5 0.012 0.01992 0.00361 5.51 0.03766 0.02136 1.76

0.5 0.2 0.22 0.00790 0.00285 2.78 0.02285 0.01779 1.28

1 0.047 0.02080 0.00705 2.95 0.05307 0.03931 1.35

5 0.01 0.03582 0.00891 4.02 0.08578 0.05887 1.46

1.0 0.2 0.2 0.02263 0.01515 1.49 0.11941 0.11193 1.07

1 0.045 0.03383 0.00746 4.53 0.07896 0.05260 1.50

5 0.01 0.11521 0.02957 3.90 0.22858 0.14295 1.60

2.0 0.2 0.2 0.01235 0.00413 2.99 0.03637 0.02815 1.29

1 0.04 0.09827 0.03018 3.26 0.29442 0.22632 1.30

5 0.01 0.08944 0.02568 3.48 0.23174 0.16799 1.38

Average 0.039 0.0115 3.38 0.1016 0.0741 1.37

Table 4.1: Small Graph: p = 50

the time spent on cyclic DAG check takes up to 20% - 60% of the full algorithm.

In the previous comparison, the value of λ is fixed (chosen as the optimal value)

for each setting. Since in real applications, we have to run through different λ’s,

and choose the optimal one by a model selection method, the effect of different

λ’s on the efficiency of the algorithms is of great interest. Next, we aim to test

the case of large sparse graphs with high-dimensional data: the number of nodes

(variables) p is large, while the number of edges (connectivity of the variables) so

is small. Besides, the number of samples n is small compared with the number of
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p s0/p n/p λ
Total Inner Iteration (s) Total Time (s)

CCDr CDAM CCDr
CDAM

CCDr CDAM CCDr
CDAM

200 0.2 0.2 0.075 1.0582 0.01979 53.46 2.1538 1.1153 1.93

1 0.016 1.2932 0.01702 76.00 2.0387 0.7625 2.67

5 0.0033 2.6886 0.04830 55.66 4.4193 1.7790 2.48

0.5 0.2 0.07 1.0830 0.03203 33.81 2.5953 1.5444 1.68

1 0.015 3.2306 0.05646 57.22 5.3544 2.1803 2.46

5 0.003 2.6356 0.04915 53.63 4.1407 1.5543 2.66

1.0 0.2 0.065 1.8535 0.06204 29.88 4.9813 3.1899 1.56

1 0.014 3.6196 0.08745 41.39 7.1491 3.6170 1.98

5 0.003 5.7699 0.12874 44.98 9.8960 4.2544 2.33

2.0 0.2 0.058 3.9474 0.17941 22.00 12.997 9.2289 1.41

1 0.013 6.7901 0.20160 33.68 14.827 8.2388 1.80

5 0.0028 12.599 0.32794 38.41 23.917 11.648 2.05

Average 3.8807 0.1008 38.50 7.8725 4.0927 1.92

Table 4.2: Small Graph: p = 200

23



time (second)
0 0.1 0.2 0.3 0.4

O
b
je
ct
iv
e
V
a
lu
e

×10
4

-1.0767

-1.0767

-1.0766

-1.0765

-1.0765

-1.0764

-1.0764

-1.0764

s0/p = 0.2, n/p = 0.2

ADMM
Coordinate Descent

time (second)
0 0.1 0.2 0.3 0.4

O
b
je
ct
iv
e
V
a
lu
e

×10
5

-5.933

-5.932

-5.931

-5.93

-5.929

-5.928

-5.927

s0/p = 0.2, n/p = 5

ADMM
Coordinate Descent

time (second)
0 0.1 0.2 0.3 0.4 0.5 0.6

O
b
je
ct
iv
e
V
al
u
e

×10
4

-1.095

-1.094

-1.093

-1.092

-1.091

-1.09

-1.089

-1.088

-1.087

s0/p = 2, n/p = 0.2

ADMM
Coordinate Descent

time (second)
0 0.2 0.4 0.6 0.8 1

O
b
je
ct
iv
e
V
al
u
e

×10
5

-6.12

-6.11

-6.1

-6.09

-6.08

-6.07

-6.06

-6.05

-6.04

-6.03

s0/p = 2, n/p = 5

ADMM
Coordinate Descent

Figure 4.1: Convergene Rate Comparison

nodes. The settings are as follows:

p ∈ {500, 1000}, s0/p = 0.2, n/p = 0.2.

From Table 4.3, we can see that for the same setting, a large λ puts large penalty

on the structure, and therefore few edges are introduced in the graph. This makes

structure identification procedure faster. Besides, with the increase of problem

size, the advantage of the ADMM becomes more significant with two to three

orders of magnitude faster than coordinate descent. The time spent on the ADMM

iterations is so small that it is totally ignorable compared to the time of cyclic

DAG check. This essentially makes the time complexity of our algorithm only

depends on the cyclic DAG check part.

Remark For a given active set, the ADMM outperforms coordinate descent

significantly. This is more obvious when the number of edges is large (it can
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p λ
Total Inner Iteration (s) Total Time (s)

Est. Edges

CCDr CDAM CCDr
CDAM

CCDr CDAM CCDr
CDAM

500 0.04 13.631 0.04085 333.66 22.440 8.8499 2.54 41

0.033 18.927 0.05257 360.03 29.427 10.552 2.79 122

0.025 36.858 0.52228 70.57 182.44 146.10 1.25 1382

1000 0.05 20.696 0.05991 345.43 49.619 28.983 1.71 3

0.018 204.71 0.24044 851.37 360.95 156.49 2.30 236

0.015 259.26 0.62561 414.42 798.42 539.78 1.48 1417

Table 4.3: Large Graph

be at least 10x faster). The bottleneck for the full algorithm is the active set

identification part, which requires check for the cycles when an edge is added or

reversed. This will be rather slow for large graphs. The focus of further work

should be put on how to optimize this step.

4.3 Comparison on Real Networks

While in this previous section, we tested our algorithm based on random struc-

tures, those random graphs may not be representative of real networks. Therefore,

in this section, we use the network structures from the Bayesian Network Repos-

itory 1, which is used as a benchmark for structure learning methods. To be

specific, we load the structure using the bnlearn package, and use rmvDAG in

pcalg package to generate the data. We focus on high-dimensional estimation

and fix the number of samples as n = 50. The networks hailfinder, win95pts,

pathfinder, andes are tested. Table 4.4 shows the results for the comparisons with

1http://www.cs.huji.ac.il/site/labs/compbio/Repository/
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Name p s0 λ
Total Inner Iteration (s) Total Time (s)

CCDr CDAM CCDr
CDAM

CCDr CDAM CCDr
CDAM

hailfinder 56 66 0.12 0.2244 0.0203 11.03 0.2767 0.0726 3.81

win95pts 76 112 0.05 2.4765 0.1737 14.26 3.5301 1.2274 2.87

pathfinder 109 195 0.11 9.4376 0.4894 19.28 12.5235 3.5753 3.50

andes 223 338 0.1414 5.3723 0.5120 10.49 17.2736 12.4134 1.39

hepar2 70 123

munin1 186 273

pigs 441 592

diabetes 413 602

Table 4.4: Real Network

those real networks. We see that CDAM outperforms CCDr in the same scale as

in the random graphs.
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CHAPTER 5

Discussion

In this paper, we have shown that by applying the ADMM algorithm on the inner

loop of CCDr, the speed of the new algorithm CDAM can be better than doubled

in various cases. When the scale of the network increases, the improvement can

be more manifest.

For the future work, in addition to applying the ADMM method, there are

some other commonly used first order splitting methods including Douglas Rach-

ford on the primal, primal-dual Douglas Rachford, and etc.. Although those

methods have the same order of convergence rates in general, the real conver-

gence rates vary case by case, and therefore they are still worth trying as an

alternative method for the ADMM algorithm.
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[FHHT07] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coor-

dinate optimization. Annals of Applied Statistics, 2007.

[FHT07] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance

estimation with the graphical lasso. Biostatistics, 2007.

[FP04] J. Fan and H. Peng. On non-concave penalized likelihood with diverg-

ing number of parameters. The annals of statistics, 32, 2004.

[FZ13] F. Fu and Q. Zhou. Learning sparse causal gaussian networks with ex-

perimental intervention: Regularization and coordinate descent. Jour-

nal of the American Statistical Association, 108(501):288–300, 2013.

[Gab83] D. Gabay. Applications of the method of multipliers to variational

inequalities. In M. Fortin and R. Glowinski, editors, Augmented La-

grangian methods: Applications to the numerical solution of boundary-

value problems. Elsevier Science Ltd, 1983.
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