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Structured Abstract

INTRODUCTION: Diverse phenotypes, including large brains relative to body size, group living, 

and vocal learning ability, have evolved multiple times throughout mammalian history. These 

shared phenotypes may have arisen repeatedly by means of common mechanisms discernible 

through genome comparisons.

RATIONALE: Protein-coding sequence differences have failed to fully explain the evolution of 

multiple mammalian phenotypes. This suggests that these phenotypes have evolved at least in part 

through changes in gene expression, meaning that their differences across species may be caused 

by differences in genome sequence at enhancer regions that control gene expression in specific 

tissues and cell types. Yet the enhancers involved in phenotype evolution are largely unknown. 

Sequence conservation–based approaches for identifying such enhancers are limited because 

enhancer activity can be conserved even when the individual nucleotides within the sequence 

are poorly conserved. This is due to an overwhelming number of cases where nucleotides turn 

over at a high rate, but a similar combination of transcription factor binding sites and other 

sequence features can be maintained across millions of years of evolution, allowing the function 

of the enhancer to be conserved in a particular cell type or tissue. Experimentally measuring 

the function of orthologous enhancers across dozens of species is currently infeasible, but new 

machine learning methods make it possible to make reliable sequence-based predictions of 

enhancer function across species in specific tissues and cell types.

RESULTS: To overcome the limits of studying individual nucleotides, we developed the Tissue-

Aware Conservation Inference Toolkit (TACIT). Rather than measuring the extent to which 

individual nucleotides are conserved across a region, TACIT uses machine learning to test 

whether the function of a given part of the genome is likely to be conserved. More specifically, 

convolutional neural networks learn the tissue- or cell type–specific regulatory code connecting 

genome sequence to enhancer activity using candidate enhancers identified from only a few 

species. This approach allows us to accurately associate differences between species in tissue or 

cell type–specific enhancer activity with genome sequence differences at enhancer orthologs. We 

then connect these predictions of enhancer function to phenotypes across hundreds of mammals in 

a way that accounts for species’ phylogenetic relatedness. We applied TACIT to identify candidate 

enhancers from motor cortex and parvalbumin neuron open chromatin data that are associated 

with brain size relative to body size, solitary living, and vocal learning across 222 mammals. 

Our results include the identification of multiple candidate enhancers associated with brain size 

relative to body size, several of which are located in linear or three-dimensional proximity to 
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genes whose protein-coding mutations have been implicated in microcephaly or macrocephaly in 

humans. We also identified candidate enhancers associated with the evolution of solitary living 

near a gene implicated in separation anxiety and other enhancers associated with the evolution of 

vocal learning ability. We obtained distinct results for bulk motor cortex and parvalbumin neurons, 

demonstrating the value in applying TACIT to both bulk tissue and specific minority cell type 

populations. To facilitate future analyses of our results and applications of TACIT, we released 

predicted enhancer activity of >400,000 candidate enhancers in each of 222 mammals and their 

associations with the phenotypes we investigated.

CONCLUSION: TACIT leverages predicted enhancer activity conservation rather than 

nucleotide-level conservation to connect genetic sequence differences between species to 

phenotypes across large numbers of mammals. TACIT can be applied to any phenotype with 

enhancer activity data available from at least a few species in a relevant tissue or cell type 

and a whole-genome alignment available across dozens of species with substantial phenotypic 

variation. Although we developed TACIT for transcriptional enhancers, it could also be applied 

to genomic regions involved in other components of gene regulation, such as promoters and 

splicing enhancers and silencers. As the number of sequenced genomes grows, machine learning 

approaches such as TACIT have the potential to help make sense of how conservation of, or 

changes in, subtle genome patterns can help explain phenotype evolution.

Tissue-Aware Conservation Inference Toolkit (TACIT) associates genetic differences between 
species with phenotypes. TACIT works by generating open chromatin data from a few species in 

a tissue related to a phenotype, using the sequences underlying open and closed chromatin regions 

to train a machine learning model for predicting tissue-specific open chromatin and associating 

open chromatin predictions across dozens of mammals with the phenotype. [Species silhouettes 

are from PhyloPic]

Abstract

Protein-coding differences between species often fail to explain phenotypic diversity, suggesting 

the involvement of genomic elements that regulate gene expression such as enhancers. Identifying 

associations between enhancers and phenotypes is challenging because enhancer activity can be 

tissue-dependent and functionally conserved despite low sequence conservation. We developed 

the Tissue-Aware Conservation Inference Toolkit (TACIT) to associate candidate enhancers with 

species’ phenotypes using predictions from machine learning models trained on specific tissues. 

Applying TACIT to associate motor cortex and parvalbumin-positive interneuron enhancers with 

neurological phenotypes revealed dozens of enhancer–phenotype associations, including brain 
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size–associated enhancers that interact with genes implicated in microcephaly or macrocephaly. 

TACIT provides a foundation for identifying enhancers associated with the evolution of any 

convergently evolved phenotype in any large group of species with aligned genomes.

Much of the phenotypic diversity across vertebrates is thought to have arisen from changes 

in how genes are expressed (1). Variation in phenotypes such as vocal learning (2) and 

longevity (3) has been linked to patterns of gene expression in relevant brain regions and 

tissues. Thus, at least some of the genetic differences associated with the evolution of 

these and other complex phenotypes are likely in enhancers, which we define as distal 

cis-regulatory genomic elements that are bound by transcription factor (TF) proteins and 

regulate the expression of associated genes, often through cell type–specific activation (4, 

5). For example, limblessness in snakes is associated with sequence divergence and activity 

loss in a critical enhancer near the Sonic hedgehog gene (6), and mutations in orthologs of 

this enhancer are associated with polydactyly in humans, mice, and cats (7, 8). Enhancer 

evolution has been associated with multiple other complex phenotypes, including whisker, 

penile spine, and brain growth (9).

Recent advances facilitate identifying relationships between enhancer activity and phenotype 

evolution (10–12). Community genome sequencing efforts such as the Zoonomia 

Consortium and the Vertebrate Genomes Project have constructed assemblies for hundreds 

of species from diverse mammalian and vertebrate clades (13, 14). Reference-free 

multispecies whole-genome alignments that can account for structural rearrangements 

and tools for extracting orthologs have vastly improved ortholog mapping for noncoding 

genomic regions (10, 15, 16). In addition, new phylogeny-aware statistical methods have 

been developed for identifying factors associated with phenotype evolution (17, 18).

Despite these successes, identifying enhancer–phenotype relationships is still a major 

challenge. Widely used methods to identify conservation and convergent evolution across 

orthologous genome sequences measure the extent to which the nucleotides within a 

given region are the same across species (19–21). While these approaches have led 

to some exciting findings, including the identification of multiple eye enhancers whose 

functions are lost in blind subterranean mammals (22, 23), such approaches are limited 

because nucleotide-level sequence conservation is not required for or always sufficient for 

activity conservation at enhancer orthologs (24). In fact, most enhancer sequences and 

TF binding sites are under less sequence constraint than promoter and gene sequences 

(25, 26). For example, a recent study found that the Islet enhancer is conserved in its 

tissue-specific activation patterns despite low sequence conservation because its TF motifs 

are in different orders in different species (27, 28). Another study computed average 

PhastCons scores, which measure the probability that a region is conserved, for house 

mouse brain enhancers whose rhesus macaque orthologs are not brain enhancers and found 

a few hundred enhancers that have high sequence conservation (PhastCons scores > 0.5) 

despite their different activities between species (12, 29). These findings suggest that, even 

when enhancer sequences are not very conserved at the nucleotide level, they can contain 

conserved patterns, such as TF motif occurrences, that are predictive of enhancer activity.

Kaplow et al. Page 4

Science. Author manuscript; available in PMC 2023 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Previous studies showed that machine learning models that use DNA sequence to predict 

enhancer activity in a tissue of interest in one species can accurately predict clade-specific 

and tissue-specific enhancer activity in species from different mammalian clades (12, 30–

32). These findings demonstrate that the sequence patterns associated with enhancer activity 

in tissues including brain and liver are highly conserved across mammals, even though 

the patterns’ nucleotide-level conservation is not always high. Leveraging that principle, 

we recently developed a method for identifying conservation of enhancer activity based 

on tissue- or cell type–specific regulatory patterns learned by machine learning models 

rather than conservation of nucleotides (12). Here, we present a framework that builds on 

this previous work to quantify the association between enhancer activity conservation and 

specific phenotypes. We apply this framework to open chromatin regions (OCRs), which we 

use as a proxy for enhancers, to associate open chromatin with brain size and other neural 

phenotypes and find that many associated candidate enhancers are near relevant genes. This 

method provides new opportunities to investigate the interplay between DNA sequence and 

phenotype evolution through gene regulation.

Results

We developed a framework called the Tissue-Aware Conservation Inference Toolkit 

(TACIT), which identifies candidate enhancers associated with the evolution of phenotypes 

across multiple clades by integrating machine learning–based predictions of enhancer 

activity with other comparative genomics advances (13, 17, 18). TACIT uses sequences of 

candidate enhancers identified experimentally in a small number of species to train machine 

learning models that predict the probability of enhancer activity of sequences in other 

genomes at the orthologous regions (13). Models are trained in a specific tissue or cell type 

that is relevant to a phenotype of interest. TACIT then uses these predictions, treating the 

probability of enhancer activity as a continuous value, to link candidate enhancers to specific 

phenotypes while accounting for phylogeny (Fig. 1). In our first application of TACIT, we 

used OCRs as our candidate enhancers (12, 33–40), convolutional neural networks (CNNs) 

(41) for our machine learning models, and 222 aligned boreoeutherian mammalian genomes 

from Zoonomia to identify orthologs (10).

Nucleotide-level conservation-based metrics do not find brain size–associated genes or 
regulatory elements

The sequenced genomes and nucleotide alignments of the Zoonomia Project provide 

the foundation to link differences in genome sequence to differences in complex traits 

(13). We began by examining brain size, a complex and diverse trait across mammalian 

species that contributes to human cognitive ability (42). Specifically, we used the brain 

size residual (deviation of brain mass from the predicted value of brain mass from a 

regression on body mass) (43, 44) because brain size is highly correlated with overall 

body size (45, 46) and because we were able to obtain brain size residual annotations for 

158 boreoeutherianmammals (43, 44)—primates, lagomorphs, rodents, insectivores, bats, 

carnivores, pangolins, and ungulates. To explore the sufficiency of existing methods, we 

applied a previously developed nucleotide conservation–based method called RERconverge 

(21) to investigate whether there are proteins or motor cortex OCRs whose relative 
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evolutionary rates are associated with the evolution of brain size residual and found no 

associated proteins and only one associated OCR, which is close in linear but not three-

dimensional (3D) space to genes implicated in brain size (47–52).

Convolutional neural networks accurately predict open chromatin status of candidate 
enhancer OCR orthologs

As an alternative to these approaches, we used our new method, TACIT, which estimates 

conservation of enhancer activity on the basis of predicted tissue-specific regulatory 

signatures. We applied TACIT to the motor cortex and liver, both of which have open 

chromatin data from more than two species, as well as retina and motor cortex parvalbumin-

positive (PV+) interneurons, which have open chromatin from only two species; details 

about the setup for each model are given in the “Model encyclopedia” section of the 

supplementary text (52). For this first application of TACIT, we used OCRs because 

accessible regions of the genome are available for TF binding and therefore can serve as 

a proxy for enhancers. We chose OCRs instead of other metrics of enhancer activity, such 

as H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) regions, because open 

chromatin data are widely available in both tissue and single-cell applications, because 

OCRs pinpoint functional regulatory sequences with high resolution (16, 52–56), and 

because several recent studies have suggested that they are more indicative of enhancer 

activity (52, 57–59).

We limited our focus to OCRs that are likely to function as enhancers, which we defined 

as nonexonic OCRs that are sufficiently far from the nearest protein-coding transcription 

start site (TSS) that they would be unlikely to function as promoters and sufficiently short 

that they would be unlikely to function as super-enhancers (52). We decided to focus on 

candidate enhancers instead of all OCRs because enhancers and promoters have partially 

different regulatory codes (60, 61) and because enhancers tend to be better-assembled 

than promoters owing to their generally lower GC content (62, 63). We chose tissues 

and cell types that we thought would reveal relationships between open chromatin and 

complex phenotypes of interest. A logistic regression model trained using TF motif features 

performed suboptimally (table S1), so we decided to train CNNs, which can automatically 

learn sequence patterns and pattern combinations that are predictive of open chromatin, 

enabling them to learn sequences beyond those that match known TF motifs as well as 

combinations of TF motifs. Since the most-relevant CNN from our previous work (12) and 

the widely used DeepSEA Beluga model (64), which were trained for tasks related to motor 

cortex open chromatin prediction (brain and glioblastoma, respectively, open chromatin 

prediction), had suboptimal motor cortex test set performance (52), we trained models 

directly for our tasks.

For motor cortex and liver, we trained CNN classifiers to distinguish whether a sequence is 

an OCR likely to function as an enhancer in one species (positive) or a non-OCR ortholog 

of a different species’ OCR (negative), as described previously (12). We initially trained 

CNNs using only house mouse sequences [motor cortex: MouseMotorCortexModel; liver: 

previously published (12)] to demonstrate that a CNN trained in one species could make 

accurate predictions in species with different levels of relatedness that were not used in 
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training (fig. S1 and tables S2 and S3) (52). We next trained multispecies CNNs for both 

motor cortex (MultiSpeciesMotorCortexModel) and liver (MultiSpeciesLiverModel) using 

data from house mouse (Mus musculus) and Norway rat (Rattus norvegicus) (both in the 

Glires clade) and from Rhesus macaque (Macaca mulatta) (Euarchonta clade). We also 

included motor cortex data from Egyptian fruit bat (Rousettus aegyptiacus) and liver data 

from the domestic cow (Bos taurus) and pig (Sus scrofa) (all Laurasiatheria clade). The 

models trained on these multispecies datasets achieved overall test set performance area 

under the receiver operating characteristic curve (AUC) of 0.91 and area under the precision-

recall curve (AUPRC) of 0.90 as well as lineage- and tissue-specific OCR accuracy AUC 

> 0.8 and area under the negative predictive value–specificity curve (AUNPV-Spec.) greater 

than the fraction of examples in smaller class for all metrics (indicated by white bars in 

figures) (Fig. 2, A and C; fig. S3A; and tables S4 and S5), far exceeding the performance of 

the logistic regression (table S1).

We also evaluated the phylogeny-matching correlations, which quantify the relationship 

between predictions at OCR orthologs and distance from the species in which an OCR 

was identified, a relationship that we would expect to be negative because open chromatin 

status is more likely to be different in a species that is more distantly related from the 

species in which the open chromatin was identified. The phylogeny-matching correlations 

were Pearson correlation coefficient (r) < −0.95 and Spearman correlation < −0.75 (figs. S2, 

A, C, and E, and S3, B to F). To determine whether our phylogeny-matching correlation 

results were likely to be explained by the models learning different sequence embeddings 

for different species, we computed the first principal component of the outputs of the 

first fully connected layer of each model and compared the distributions of these for 

house mouse positives with positives and negatives from each species for which we have 

open chromatin data, European rabbit (selected because it is the most distantly related 

Glires species from house mouse in Fig. 2C) orthologs, and bottlenose dolphin (selected 

because it has a large brain size residual, is a vocal learner, and is not closely related 

to any species with open chromatin data) orthologs. We found that the first principal 

component of these embeddings, which explained 34.2 and 34.9% of the variance for 

MultiSpeciesMotorCortexModel and MultiSpeciesLiverModel, respectively, tended to be 

more similar between house mouse positives and positives from other species than between 

house mouse positives and negatives, suggesting that the model is learning a consistent 

sequence embedding across species (Fig. 2E, fig. S3F, and tables S6 and S7). In addition, the 

values for the other Glires and bottlenose dolphin orthologs of house mouse positives tended 

to be distributed in between those of the mouse positives and negatives, with the bottlenose 

dolphin orthologs tending to have more values closer to those of house mouse negatives, 

suggesting that the model is learning that OCR orthologs in more distantly related species 

tend to have sequence compositions more similar to negatives than to positives, matching 

previously demonstrated trends (Fig. 2E; figs. S2, G, I, and K, and S3F; and tables S6 and 

S7) (49, 65, 66).

We then used the models to make predictions at house mouse motor cortex OCR orthologs, 

which we found using the Zoonomia Cactus alignment, as this alignment is reference-free 

and can account for multiple types of structural rearrangements, including translocations 

and inversions (10, 67). We obtained orthologs in 222 diverse boreoeutherian Zoonomia 
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mammal genomes, limiting ourselves to the clades for which open chromatin data were 

available instead of using all 240 mammalian genomes. To further evaluate the reliability 

of our predictions, we clustered the species hierarchically by comparing the vector of 

MultiSpeciesMotorCortexModel predictions made on all OCR orthologs in each species and 

found that the cluster hierarchy was similar to the phylogenetic tree (68), with all but a few 

species clustering correctly by clade (Fig. 3, fig. S4, and data S1) (52).

We then trained CNNs to predict open chromatin in PV+ interneurons and in retina, which 

required developing a new negative set construction approach owing to having data from 

only two species (figs. S1, S7, and S9 to S11, and tables S8 to S13) (52). We chose to train 

models for PV+ interneurons separately from those for bulk motor cortex because, while 

they are critical in cortical microcircuits and human brain disorders, including schizophrenia 

(69, 70), they are a minority population, representing 4 to 8% of neurons and 2 to 4% 

of the total cell population in the mouse cortex (71). Given this sparsity, our bulk motor 

cortex open chromatin data may not capture OCRs that are specific to PV+ interneurons. 

In fact, ~30% of mouse PV+ OCRs do not overlap any bulk motor cortex OCRs, including 

non-reproducible peaks. We began by quantifying the regulatory code conservation of PV+ 

interneurons and retina by running motif discovery (72) on OCRs from each species for 

which data were available. For each of PV+ interneurons and retina, we found motifs for 

many of the same TFs in both species, and some of these TFs have known regulatory roles in 

PV+ interneurons and retina, respectively (52, 65).

To ensure that CNNs for predicting PV+ interneuron and retina open chromatin could 

make accurate predictions in species not used for training, we first trained and evaluated 

CNNs to predict PV+ interneuron (MousePVModel) and retina (MouseRetinaModel) open 

chromatin using only house mouse sequences (52). We then trained CNNs to predict PV+ 

interneuron (MultiSpeciesPVModel) and retina (MultiSpeciesRetinaModel) open chromatin 

using sequences from both house mouse and human. Both MultiSpeciesPVModel and 

MultiSpeciesRetinaModel achieved AUC > 0.70 and AUPRC and AUNPV-Spec. greater 

than the fraction of examples in minority class for all criteria as well as phylogeny-matching 

Pearson r < −0.60 and Spearman correlation < −0.40 (Fig. 2, B, D, and F; figs. S2 and 

S5, A to F; and tables S14 to S17) (49, 65). Although this performance is not as strong 

as the performance of MultiSpeciesMotorCortexModel and MultiSpeciesLiverModel, our 

evaluation sets tended to have lower positive:negative ratios than our evaluation sets for 

the motor cortex and liver models (tables S8 and S9) owing to the human data being 

substantially shallower than the datasets for other combinations of tissues and species (37, 

40), and the performance is substantially better than would be expected from a randomly 

guessing model (Fig. 2B and fig. S5A).

We expect models for specific tissues to capture sequence signatures of motifs of TFs 

involved in those tissues. We evaluated this for our models by comparing the groups of 

nucleotides the models found to be important to datasets of known TF motifs (figs. S5G 

and S6 to S8) (52, 73–75). MultiSpeciesMotorCortexModel and MultiSpeciesLiverModel 

seemed to have learned sequence patterns similar to motifs of TFs involved in motor cortex 

and liver, respectively, such as MEF2C (myocyte-specific enhancer factor 2C) for motor 
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cortex (76, 77) and HNF4A (hepatocyte nuclear factor 4-alpha) (78, 79) for liver, as well as 

sequence patterns that do not match any known TF motif (figs. S6 to S8) (52).

Applying TACIT to mammalian phenotypes A framework for associating predicted open 
chromatin with phenotypes

We applied TACIT to motor cortex and PV+ interneuron OCR orthologs to identify 

individual OCRs whose predicted open chromatin across species is associated with 

neurological phenotypes (Fig. 1, table S17, and data S2). We applied the phylolm and 

phyloglm methods (17) for continuous and binary traits, respectively. These methods are 

sped-up versions of phylogenetic generalized least squares (80, 81). We used them to test 

for a relationship between each OCR ortholog’s open chromatin predictions and relevant 

phenotype annotations across species that cannot be explained by the species phylogeny 

alone. To minimize false positives, we implemented phylogenetic permulations, which are 

permutation tests that preserve the general topology of the phenotype tree (18), enabling 

us to evaluate the significance of each OCR–phenotype relationship against a background 

distribution of shuffled phenotypes with similar phylogenetic structures (52).

TACIT identifies motor cortex OCRs associated with the evolution of brain size

Applying TACIT with MultiSpeciesMotorCortexModel (figs. S12, A and B, and S13; table 

S18; and data S3) (52) identified 49 brain size–associated motor cortex OCRs–OCRs 

associated with brain size residual after Benjamini-Hochberg false discovery rate (FDR) 

correction (q < 0.15) (82). We note that the 98,912 OCRs we tested with TACIT are the 

same OCRs that we tested with RERconverge [with the exception of 27 OCRs tested for 

TACIT that could not be tested for RERconverge with the settings we used (52)] (21), which 

identified only one association, so these two analyses had approximately the same multiple 

hypothesis testing burden. Moreover, we found almost no correlation between the TACIT P 
values and OCR orthologs’ phyloP scores [Pearson r < 0, coefficient of determination (R2) 

< 0.00129] or distances from the closest TSS (Pearson r < 0, R2 < 0.000286), demonstrating 

the value in leveraging candidate enhancer activity conservation instead of nucleotide-level 

conservation and proximity to TSSs in identifying candidate enhancers associated with 

phenotype evolution (tables S19 and S20) (19, 52, 83).

We then examined all genes with TSSs within 1 Mb of the 49 brain size–associated 

OCRs. Of these 49 OCRs, 42 are near genes whose encoded proteins have roles in brain 

development or brain tumor growth (listed in table S21); 22 of these 42 have orthologs 

that are physically close to one of those nearby genes in either human or mouse cortices 

according to chromatin conformation capture data (q < 0.05 for a test of an interaction with 

the 10-kb bin containing the TSS; 15 of 37 OCR-gene interactions tested in mouse and 13 

of 28 OCR-gene interactions tested in human; table S22), potentially reflecting functional 

enhancer-promoter looping (52, 84). We selected a tolerant FDR threshold of q < 0.15 

because we view the reported associations in part as hypotheses for further investigation, and 

we found potentially relevant gene neighborhoods and chromatin conformation capture data 

contacts for many OCRs with q values between 0.1 and 0.15 (table S22).
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Of the 42 brain size–associated OCRs near brain development and tumor growth genes, 

32 are near genes with human mutations implicated in neurological disorders, including 

14 OCRs near genes in which mutations have been reported to cause microcephaly or 

macrocephaly (table S21 and fig. S14, A to N) (52, 85). Furthermore, motor cortex OCRs 

with human orthologs near [within 1 Mb in Genome Reference Consortium Human Build 38 

(hg38) coordinates] genes mutated in microcephaly or macrocephaly tend to have stronger 

associations with brain size residual than other OCRs. Specifically, OCRs near genes 

mutated in microcephaly or macrocephaly exhibit a significantly shifted-lower distribution 

of the number of successful trials out of 10,000 than do other motor cortex OCRs with 

human orthologs (one-tailed Wilcoxon rank-sum test, P = 0.0127, statistic = −2.23; fig. 

S12A) (52), where a successful trial is a permulated phenotype that better correlates with 

the OCR’s predicted activity than the true phenotype. We note that this trend seems to be 

present but weaker for models with lower test set AUPRC across our evaluation criteria 

(tables S23 and S24) (52).

One of the brain size–associated OCRs, chr18: 81802310–81802951 (mm10), is ~800 kb 

downstream from the TSS of the gene Sall3 (spalt-like transcription factor 3). Sall3 is the 

closest gene upstream and fourth-closest gene overall to this OCR. The three closer genes 

are Galr1 (galanin receptor 1), Mbp (myelin basic protein), and Zfp236 (zinc finger protein 

236), of which Mbp also has a connection to brain development (86). Hi-C from adult 

human cortex (84) shows that the bin containing the human ortholog of this OCR is close to 

SALL3 in 3D space (FastHiC q = 1.30 × 10−11; table S22) (87) but does not significantly 

physically interact with MBP (q = 0.412). This OCR displays a positive association with 

brain size residual both overall (q = 0.059) and within mammalian clades with especially 

large variations in brain size residual, including the great apes and cetaceans (Fig. 4A). Sall3 

is a member of the conserved spalt-like family of transcription factors, which are important 

in development in metazoans, and loss of Sall3 in house mice is lethal because it causes a 

loss in cranial nerve development (88, 89). Although a specific role of Sall3 in the motor 

cortex has not been described, Sall3 regulates the maturation of neurons in other regions 

of the mouse brain (89, 90), and Sall3 or SALL3 is expressed in developing house mouse 

motor neurons (89) and the human cerebral cortex (91).

We also identified OCR chr2:75345159–75346046 (rheMac8) as having predicted open 

chromatin negatively associated with brain size residuals (q = 0.11), with an especially 

strong negative association in cetaceans and great apes (Fig. 4B). The closest gene to this 

OCR is LRIG1 (leucine rich repeats and immunoglobulin like domains 1), whose TSSs 

are ~250 kb upstream of the OCR. LRIG1 slows and delays the differentiation of neural 

stem cells (92, 93). While this OCR is also near other genes, none of those genes has a 

known role in brain size. This OCR is in physical proximity to Lrig1 in mouse cortical 

cells (FitHiC2 q= 0.0100; table S22). It also has strongly significant contact with LRIG1 
in the human cortex (FastHiC q = 3.31 × 10−14; table S22), suggesting that this OCR’s 3D 

connection to the gene it regulates may have been conserved more strongly than its activity 

in the motor cortex.

We additionally identified two brain size–associated motor cortex OCRs, mm10 chr17: 

52351209–52351928 and rheMac8 chr2:174466184–174466517, near SATB1 (SATB 
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homeobox 1)—a gene for which specific mutations can result in either microcephaly 

or macrocephaly (94) (Fig. 4, C and D, and fig. S14, E and I). For both associations, 

predicted open chromatin is associated with small brain size residual (q = 0.11 and 0.085, 

respectively). Their human orthologs are each ~500 kb from the TSS of the gene, where 

one is upstream and the other is downstream. Satb1/SATB1 is the second-closest gene to 

each, and the closer genes, Kcnh8 (potassium voltage-gated channel subfamily H member 

8) and TBC1D5 (TBC1 domain family member 5), have no known role in brain growth (95, 

96). The former OCR does contact Satb1 in mouse cortical cells (FitHiC2 q = 3.49 × 10−3; 

table S22). The latter OCR does not have an identified mouse ortholog, so we could not 

evaluate its proximity in mouse; it does not have a significant contact with SATB1 in human 

cortex (FastHiC q = 0.435; table S22), but, because the human OCR ortholog is predicted 

to be closed, this does not indicate a lack of relationship between this OCR and SATB1 in 

small-brained mammals.

The associations seem to be driven in large part by cetaceans (Fig. 4C) and great apes (Fig. 

4D), both of which have a large variation in brain size residual (97). In particular, the latter 

OCR (Fig. 4D) is predicted to be active in all great apes except for humans, the great ape 

with the largest brain size residual. In humans, most reported cases of SATB1-associated 

macrocephaly at birth were associated with a mutation that disrupts a large portion of 

the protein product, whereas microcephaly was usually associated with SATB1 missense 

mutations (94). This pattern is consistent with the significant negative associations between 

predicted open chromatin and brain size residual, assuming that the OCRs we identified 

activate the expression of SATB1. Determining whether an OCR activates or represses gene 

expression is difficult because many OCRs are bound by both activating and repressive 

TFs, the motifs of many repressive TFs have never been assayed, and both activation and 

repression can be done by cofactor proteins that do not directly bind DNA (98–100).

Among the other motor cortex OCRs near genes mutated in macro- and microcephaly is 

the negatively associated (q = 0.12) OCR chr2:11867277–11867712 (rn6), which is only 

69 kb from the Mef2c gene. This OCR has a strong Hi-C contact to MEF2C in human 

(FastHiC q = 1.16 × 10−23; table S22). In addition to being mutated in a neurodevelopmental 

disorder that frequently includes microcephaly (76, 101), Mef2c is known to be a critical 

transcription factor in the brain (76, 102, 103), and its motif was learned by our motor cortex 

models (figs. S6 and S7).

TACIT identifies PV+ interneuron OCRs associated with the evolution of brain size

We also applied TACIT with MultiSpeciesPVModel to identify PV+ interneuron OCRs 

whose predicted activities across Euarchontoglires (the clade with primates, rodents, and 

their closest relatives—we did not have PV+ interneuron open chromatin data from other 

clades) are associated with brain size residual according to phylolm with phylogenetic 

permulations (fig. S12C; tables S18 and S25; and data S3). We identified 15 OCRs whose 

PV+ interneuron predicted open chromatin has an association with species’ brain size 

residuals after a FDR correction (q < 0.15) (table S25), 12 of which are house mouse OCRs 

for which predicted open chromatin is associated with having a smaller brain size residual. 

We identified four PV+ interneuron OCRs that are significantly negatively associated with 
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brain size residual and are within 1 Mb of a gene that is mutated in macrocephaly or 

microcephaly (fig. S14, O to R, and table S25). Two of those OCRs—chr13:114757413–

114757913 (mm10; q = 0.092) and chr13:114793237–114793737 (mm10; q = 0.035)—are, 

respectively, ~60 kb and ~25 kb from the Mocs2 (molybdenum cofactor synthesis 2) gene, 

which is the closest gene to both. Both have strong associations with brain size residual 

within Euarchonta (primates and their closest relatives), especially great apes, and the 

first also has some association within Glires (rodents and their closest relatives) (Fig. 5 

and fig. S14, O and Q). Mocs2 is one of four genes involved in molybdenum cofactor 

biosynthesis (104). Molybdenum cofactor deficiency in humans is a rare, fatal disease 

marked by intractable seizures, hypoxia, and microcephaly (105). We also identified an 

OCR, chr1:95762160–95762660 (mm10; q = 0.041), that is ~100 kb away from the gene 

St8sia4 (ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4), which is important 

for the development and density of interneurons—including PV+ interneurons—in the 

cortex (106, 107).

Notably, there is no overlap between the bulk motor cortex OCRs and PV+ interneuron 

OCRs with predicted activity that are significantly associated with brain size residual. In 

fact, no house mouse OCR ortholog from either set is within 3 Mb of a house mouse OCR 

ortholog from the other set, suggesting that the OCRs are involved in regulating different 

genes. We also used MultiSpeciesLiverModel to identify liver OCRs associated with brain 

size residual (q < 0.15) and found that none of those OCRs overlapped the associated 

motor cortex OCRs (tables S18 and S27 and data S3) (52); only one liver OCR is within 1 

Mb of a motor cortex or a PV+ interneuron OCR with an association. This highlights the 

complementary information provided by using TACIT OCRs from different tissues as well 

as from using both bulk and specific cell type data.

TACIT identifies PV+ interneuron and motor cortex OCRs in loci associated with the 
evolution of solitary and group living

Next, we used TACIT with a targeted approach to examine relationships between predicted 

PV+ interneuron open chromatin from MultiSpeciesPVModel and social organization 

including solitary living, which we define as spending little time with nonprogeny 

members of the same species outside of mating, as well as heterogeneous group-living 

lifestyles (108). PV+ interneurons are implicated in regulating social behaviors and in 

neuropsychiatric disorders with social components such as autism spectrum disorder (ASD) 

and schizophrenia in humans (109). Molecular evidence for PV+ interneuron involvement 

suggests associated transcriptional changes. For example, PVALB was the most strongly 

down-regulated transcript in ASD brain tissue compared with healthy controls and in animal 

models of monogenetic neurodevelopmental syndromic disorders (110, 111), and single-

nucleus RNA sequencing performed on brain tissue of humans with schizophrenia revealed 

substantially affected gene expression in PV+ interneurons (112, 113). Manipulation of 

psychiatric genes in PV+ interneurons induced social deficits in mice, whereas similar 

manipulations in other neuronal cell types had different effects (114). Given the impact 

of PV+ interneuron gene expression on social behaviors, we hypothesized that selection 

on PV+ interneuron open chromatin may be associated with social structure transitions in 

mammals.
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Before investigating our results, we evaluated the presence of a biologically plausible 

signal within TACIT results for PV+ interneurons and solitary living using the 

MultiSpeciesPVModel enhancer activity predictions genome-wide with 10,000 trials (table 

S18 and data S3). To define a set of candidate enhancers likely to be enriched for neuronal 

function and potentially social function, we divided PV+ OCRs into two groups: those that 

overlapped a schizophrenia-associated genetic variant (115) and those that did not. Despite 

a small foreground size, the set of PV+ interneuron OCRs with schizophrenia-associated 

variants had a somewhat shifted-lower distribution of number of successful trials out of 

10,000 for association with solitary living compared with the distribution for other PV+ 

interneuron OCRs (one-tailed Wilcoxon rank-sum, P = 0.078, statistic = −1.42; fig. S12D) 

(52). That is, OCRs overlapping schizophrenia-associated single-nucleotide polymorphisms 

were, overall, more likely to have a stronger association with solitary living than with a null 

phenotype with a similar tree topology compared with other OCRs, lending support to the 

candidate enhancer-phenotype prediction outputs from TACIT.

One challenge of using TACIT is that tens to hundreds of thousands of OCRs are tested, 

so substantial multiple hypothesis correction is necessary. The number of tested OCRs 

can be limited ifa small number of genomic loci have been hypothesized to be involved 

in a trait. For solitary living and group living, we chose to focus on the 1,661,222-bp 

Williams-Beuren Syndrome (WBS) deletion region (Fig. 6A), where haploinsufficiency 

causes increased sociability, intellectual disability, and enhanced verbal fluency in human 

patients and deletion causes a decrease in nose-to-nose sniffing in mice (116). This region 

has also been proposed to be associated with sociability differences between dogs and 

wolves (117), but this is not functionally resolved owing to fully confounded phylogenetic 

relationships and social traits in canines. TACIT provides an opportunity to assess social 

living strategy-enhancer associations within the WBS locus across many mammals while 

accounting for phylogenetic relationships.

When applying TACIT to only the WBS locus, we identified a house mouse PV+ 

interneuron OCR (out of two OCRs in this locus) 29 kb upstream of Gtf2ird1 (general 

transcription factor II I repeat domain–containing 1) and ~168 kb upstream of Gtf2i 
(general transcription factor II I) that was positively associated with group living (q = 

0.043) and negatively associated with solitary living (q = 0.14) (Fig. 6B, table S18, 

and data S3). To evaluate whether this association was limited to PV+ interneurons, we 

also evaluated the relationship between predicted bulk motor cortex open chromatin from 

MultiSpeciesMotorCortexModel and solitary as well as group living (table S18 and data 

S3). We found one OCR with both a significant negative association with solitary living 

(q = 8.5 × 10−3) (Fig. 6C) and a significant positive association with group living (q 
= 0.016). This OCR’s human ortholog (OCR was originally found in macaque) is in an 

intron of GTF2IRD1 that is ~27 kb from its nearest TSS and ~177 kb from the TSS for 

GTF2I but does not overlap the OCR identified for PV+ interneurons. We also found a 

second OCR with some negative association (q = 0.094) with group living. Of the 27 

protein-coding genes in the WBS locus, Gtf2i is the only gene with a duplication associated 

with separation anxiety and a heterozygous deletion associated with increased nose-to-nose 

contact in mice (118, 119). We additionally evaluated the relationship between predicted 
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liver open chromatin and solitary as well as group living using MultiSpeciesLiverModel but 

did not obtain any statistically significant relationships after multiple hypothesis correction.

TACIT identifies OCRs associated with the evolution of vocal learning

We applied TACIT to vocal learning, the ability to modify vocal output as a result of 

social experience, which has convergently evolved across mammals and been associated 

with convergent patterns of gene expression in the motor cortex (2, 120, 121). We identified 

dozens of OCRs displaying convergent patterns of predicted open chromatin after FDR 

correction (q < 0.15) for motor cortex tissue (MultiSpeciesMotorCortexModel) and for 

PV+ interneurons (MultiSpeciesPVModel), which are described in more depth in our other 

manuscript (35). One of the motor cortex OCRs lies 88 kb from Vip (vasoactive intestinal 

peptide), whose expression in the motor cortex has been associated with vocal learning 

(2). Another OCR is 715 kb from TSHZ3 (teashirt zinc finger homeobox 3) (35). TSHZ3 
is involved in the formation of corticostriatal circuits, which play a central role in vocal 

learning behavior in mammals and birds, and its disruption in the human population is 

associated with a form of autism that includes delayed or disrupted speech acquisition (121, 

122).

Discussion

We sought to use the hundreds of aligned genomes of the Zoonomia project to discover 

genetic variation across placental mammals associated with the evolution of complex 

neural phenotypes. We first applied RERconverge (21, 22, 123) to identify brain size 

residual–associated accelerated or constrained nucleotide-level conservation across genes 

and candidate enhancers for 158 species. Despite the large number of genomes and reliable 

phenotype annotations, we found only one significantly associated locus, although we 

cannot rule out that alternative methods for detecting convergent evolution in aligned genes 

or enhancers could still find associated regions. While RERconverge and other nucleotide-

level conservation-based approaches have identified enhancers associated with phenotypes 

that overlap some of the most conserved noncoding regions of the genome (22, 124), we 

realized that such methods’ utility is limited in regions with high functional conservation but 

low to moderate nucleotide-level conservation.

To overcome the limitations in using the alignment of individual nucleotides as a proxy 

for conservation, we present TACIT, a method for associating genotypes to phenotypes 

using machine learning predictions of tissue- or cell type–specific open chromatin. 

TACIT accounts for the conservation of enhancer activity in the presence of low 

sequence conservation and can capture the tissue- and cell type–specificity of enhancer 

activity (12) through machine learning models that learn the conserved regulatory code 

underlying enhancer activity in a tissue or cell type of interest. We provide a community 

resource of annotated predicted open chromatin for more than 400,000 OCRs from four 

tissues and cell types across 222 mammalian species by making it available on the 

University of California, Santa Cruz (UCSC) Genome Browser (https://genome.ucsc.edu/

cgi-bin/hgGateway?genome=Homo_sapiens&hubUrl=https://cgl.gi.ucsc.edu/data/cactus/

241=mammalian-2020v2-hub/hub.txt) (125).
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We applied TACIT to identify tissue- and cell type–specific OCRs whose predicted open 

chromatin status across species is associated with brain size residual, solitary living, group 

living, and vocal learning, including OCRs near genes that were previously implicated 

in these phenotypes, providing potential mechanisms for how these genes are regulated. 

Specifically, we identified motor cortex and PV+ interneuron OCRs associated with brain 

size residual that are near genes whose mutations are associated with microcephaly and 

macrocephaly in humans. While many of these genes are known for roles in brain 

development that may influence brain size, the OCRs that regulate them may continue to be 

open in the adult brain. We also found motor cortex OCRs with a strong brain size residual 

association in cetaceans, providing candidate mechanisms for the evolution of brain size 

beyond human-specific deletions identified in earlier work (9). In addition, OCRs within the 

WBS deletion region that are associated with solitary living reside near a critical gene for 

WBS presentation and a gene associated with social behavior in mice (118, 119). Genome 

wide, the associations of PV+ interneuron OCRs with solitary living are correlated with 

whether the OCR overlaps a genome-wide association study (GWAS) hit for schizophrenia, 

which suggests that OCRs involved in the evolution of phenotypes may also be involved in 

related disorders. To be confident that the OCRs we identified have enhancer activity that 

differs between species, we would need to use reporter assays to test the OCR orthologs’ 

enhancer activity in multiple species. Unfortunately, current technology limits largescale 

reporter assays to cell lines, and there is no cell line that captures the transcriptional 

regulatory program of motor cortex and PV+ interneurons or protocol for differentiating 

these specific cell types from induced pluripotent stem cells. In addition, to thoroughly 

demonstrate that these OCRs regulate the nearby genes associated with the phenotypes, we 

would need to do experiments such as CRISPR followed by RNA quantitative polymerase 

chain reaction to knock out the OCR and show that the knockout causes a change in the 

expression of the nearby gene, but doing such experiments for more than one OCR at a time 

is currently feasible in only cell lines. Furthermore, considering genes with TSSs within 1 

Mb may limit our ability to identify real gene–OCR relationships (126), and data measuring 

3D genome interactions is not currently available from motor cortex in species other than 

human and house mouse or from PV+ interneurons in any species. As such data become 

available at higher resolution and in additional species, tissues, and cell types, our ability to 

link candidate enhancers associated with phenotypes to the genes they likely regulate will 

improve.

While we previously used data from at least three species for model training (12), in 

this study, we developed a strategy for negative set construction that allowed us to train 

accurate models using data from only two species. This enabled us to train models that 

accurately predict whether sequence differences across species in PV+ interneuron OCR 

orthologs are associated with PV+ interneuron open chromatin changes, demonstrating that 

the regulatory code is conserved across Euarchontoglires not only at the bulk tissue level 

but also in a specific neuronal cell type. We have found that, when the relevant data 

were available, including data from more clades enabled us to accurately predict OCRs 

in more distantly related species (12). With our confident predictions in diverse clades, 

we identified OCRs associated with phenotypes in a variety of clades, such as the OCR 

near Lrig1 associated with the evolution of brain size residual in the Cetacea infraorder 
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within Laurasiatheria (the clade that includes bats, carnivorans, ungulates, and their close 

relatives). Predictions in more species also provide us with the power to identify OCRs 

exhibiting weaker associations with a phenotype across multiple lineages, such as the OCR 

near SALL3 associated with the evolution of brain size residual in both Euarchonta and 

Laurasiatheria.

Unlike phyloP or PhastCons scores, the broad application of TACIT is limited by the 

availability of high-quality enhancer activity data from the same tissue or cell type in 

multiple species. TACIT requires enhancer activity data from at least two species for 

evaluating the corresponding machine learning models, and different datasets may need to 

be filtered differently depending on data quality and genome size. Biases due to data quality 

and filtering need to be evaluated before model evaluations are done on held-out test sets. 

Additionally, predictions are currently limited to identifiable orthologs of experimentally 

identified candidate enhancers, meaning that we are not able to capture enhancers that 

are not active in the experimentally assayed species, cell types, developmental stages, or 

conditions or use enhancers that cannot be aligned with existing alignment methods, which 

are more common when applying TACIT to more distantly related species. Furthermore, 

our approach assumes that the evolution of a phenotype is controlled by the same candidate 

enhancer across species. There are likely many phenotypes controlled by genes that are 

not activated by the same enhancer in every species, as previous studies have shown 

that many enhancers are deleted or inserted via transposable elements in some species 

despite the expression of the genes they regulate being conserved (127, 128). We also treat 

missing or unusable OCR orthologs as missing data, but some of these may have been lost 

during evolution, making them negatives. Moreover, neither our models nor our phenotype 

annotations are perfect, which could cause incorrect association results, and our lack of 

known positive and negative open chromatin–phenotype associations often makes evaluating 

the amount of noise that TACIT can tolerate infeasible. Finally, our approach assumes that 

the regulatory code in our tissue or cell type of interest is conserved across the species in 

which we are making predictions, an assumption that may be violated in some tissues and 

cell types. For example, this may explain the suboptimal performance of MouseRetinaModel 

in predicting Euarchonta-specific open and closed chromatin (129, 130).

Exciting extensions to our approach include training models to predict whether sequence 

differences cause changes in candidate enhancer activity genome-wide, jointly modeling 

cross-species predicted activity of enhancers near the same gene, using genome quality and 

the predicted open chromatin of OCRs in closely related species to determine when a lack 

of a usable OCR ortholog should be treated as a non-OCR, and evaluating more-lenient 

definitions of an enhancer for smaller genomes. TACIT could also be extended to identify 

promoters or noncoding RNAs associated with phenotype evolution by training models to 

predict the promoter or noncoding RNA activity at these elements’ orthologs.

With the Zoonomia Cactus alignment of >200 mammalian genomes (10) and the wealth 

of publicly available enhancer activity data from matching tissues and cell types in human, 

house mouse, and other species, TACIT can currently be applied to identify candidate 

enhancers associated with the evolution of many mammalian phenotypes. Because TACIT 

requires enhancer activity data from tissues or cell types of interest in only a few species, 
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it can be used to associate losses of enhancer activity with changes in a phenotype even in 

challenging-to-study species for which we have genomes but cannot collect tissue samples. 

In addition, although we trained our models for TACIT using open chromatin and CNNs, 

TACIT can also be applied using other assays of enhancer activity, such as H3K27ac and 

EP300 ChIP-seq, and using other machine learning modeling methods, such as support 

vector machines (30). Candidate enhancers associated with the evolution of phenotypes 

near genes with mutations or expression differences involved in diseases related to those 

phenotypes may provide mechanistic insights. We anticipate that, as more genomes and 

regulatory genomics data become available, TACIT will allow us to discover regulatory 

mechanisms governing a wide range of phenotypes.

Methods summary

We obtained open chromatin data from motor cortex, liver, PV+ interneurons, and 

retina from multiple species, mapped and filtered the reads, called peaks, and obtained 

reproducible peaks. We used the sequences underlying the reproducible peaks to train 

a machine learning model for predicting open chromatin in each tissue and cell type. 

We identified orthologs of the reproducible peaks from each tissue and cell type in 222 

boreoeutherian mammals and used the corresponding machine learning models to predict 

open chromatin in that tissue or cell type in each species. We associated the predictions 

with phenotype annotations for brain size, solitary and group living, and vocal learning using 

phylolm for continuous and phyloglm for binary traits, computed empirical P values using 

phylogenetic permulations, and corrected P values using the Benjamini-Hochberg procedure 

(17, 18, 82).
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Fig. 1. Overview of TACIT.
We trained a machine learning model using sequences underlying candidate enhancers 

(indicated in dark red) and non-enhancers (not pictured) to predict enhancer activity in a 

tissue or cell type of interest. We used the model to predict enhancer activity (darker red 

arrows indicate higher predicted activity) in that tissue or cell type in hundreds of genomes 

(13). We associated our predictions with phenotypes using a phylogeny-aware regression 

and then quantified the significance of the association using an empirical P value. [All 

silhouettes are from PhyloPic, and the silhouette of Orcinus orca was created by Chris Huh 

(license: https://creativecommons.org/licenses/by-sa/3.0/) and was not modified (132)]
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Fig. 2. MultiSpeciesMotorCortexModel and MultiSpeciesPVModel performance.
(A and B) Area under the receiver operating characteristic curve (AUC), area under 

the negative predictive value-specificity curve (AUNPV-Spec.), and area under the 

precision-recall curve (AUPRC). Results are for the full test set, clade-specific OCRs 

and non-OCRs, and OCRs shared with another tissue/brain region/cell type (positive) 

versus tissue/brain region/cell type-specific OCRs in that other tissue/brain region/cell 

type (negative) [described in the “Detailed description of model performance figures” 

section of the supplementary materials (52)] for MultiSpeciesMotorCortexModel (A) and 

MultiSpeciesPVModel (B). Orths., orthologs. The ideal performance is 1, and the horizontal 

white bar indicates the performance that would be expected from a randomly guessing 

model, which is the fraction of examples in the minority class for AUNPV-Spec. and 

AUPRC. (The AUC from random guessing is 0.5.) (C and D) The negative relationship 

between the average house mouse OCR ortholog MultiSpeciesMotorCortexModel (C) 
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and MultiSpeciesPVModel (D) predictions for Glires species and the time [millions of 

years ago (MYA)] at which each species diverged from house mouse, where each point 

corresponds to a different species. The dashed line is the average prediction for the negative 

test set across all species used to train the model. Prediction standard deviations for 

MultiSpeciesMotorCortexModel and MultiSpeciesPVModel are given in fig. S2, C and 

D, respectively. (E and F) Violin plots comparing the first principal component for the 

embeddings from the first fully connected layer of MultiSpeciesMotorCortexModel (E) and 

MultiSpeciesPVModel (F) for positives and negatives from each species as well as European 

rabbit and bottlenose dolphin orthologs of house mouse positives.
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Fig. 3. Heatmap of MultiSpeciesMotorCortexModel predictions for a subset of 1000 OCRs, 
clustered by OCR with predictions as features.
Predictions of OCR ortholog open chromatin are shown for 1000 randomly selected motor 

cortex OCRs with orthologs in at least 75% of species, with each row corresponding to 

one OCR and each column corresponding to one species. Predictions are shown on a white 

(closed) to red (open) scale, with missing (species, OCR) pairs shown in light gray. The 

OCRs (rows) are ordered according to the results of a hierarchical clustering with Ward’s 

minimum variance method, where the distance between two OCRs was defined as the cosine 

similarity of activity predictions in species for which both OCRs have usable orthologs (12). 

Species are ordered by their position in the phylogenetic tree; the approximate positions of 

species in selected clades are shown along the bottom, and illustrated species are listed in 

table S26, with the exception of the bat, which is an Egyptian fruit bat. Species colored 

black are those with data used in model training, and species colored dark gray are those for 

which we have only predicted open chromatin.
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Fig. 4. Examples of associations between predicted motor cortex OCR ortholog open chromatin 
and brain size residual.
(A to D) Each point represents an ortholog of the OCR in question in one species; species 

are grouped along the x axis by clade, as shown by the silhouettes and tree below (C) and 

(D) (table S26). Points are colored by brain size residual following the scale at the bottom 

of the figure. The permulations-based Benjamini-Hochberg q-values and the coefficient on 

the predicted open chromatin returned by phylolm are in the lower right of each panel. 

The hominoid and cetacean clades are highlighted by gray boxes in each panel, and 

scatterplots of predicted motor cortex open chromatin versus brain size residual for these 

clades are in the inset plots in each panel. Note that the lines in the inset plots are not 

based on the phylogenetic regression we used for TACIT, which we ran across all 222 

Boreoeutherian mammals and not in specific clades, are for illustration purposes only. (A) 

Positive association between predicted motor cortex open chromatin and brain size residual 

for a motor cortex OCR in the Sall3 locus, chr18:81802310–81802951 (mm10). (B) Positive 
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association between predicted motor cortex open chromatin and brain size residual for a 

motor cortex OCR in the Lrig1 locus, chr15:40082805–40083380 (mm10). [(C) and (D)] 

Negative association between predicted motor cortex open chromatin and brain size residual 

for two motor cortex OCRs in the SATB1 locus, chr17:52351209–52351928 (mm10) 

and chr2:174466184–174466517 (rheMac8), within Laurasiatheria and Euarchontoglires, 

respectively. The latter OCR has no orthologs in Lagomorpha, which is omitted from (D). 

Boreoeutherian mammal-wide panels are shown in fig. S15.
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Fig. 5. Examples of associations between predicted PV+ interneuron OCR ortholog open 
chromatin and brain size residual.
(A and B) Each point represents an ortholog of the OCR in question in one species; 

species are grouped along the x axis by clade, as shown by the silhouettes and tree below 

(table S26). Points are colored by brain size residual following the scale at the bottom of 

the figure. The permulations-based Benjamini-Hochberg q-values the coefficient and the 

predicted open chromatin returned by phylolm are in the lower right of each panel. Negative 

association within Euarchontoglires between predicted PV+ interneuron open chromatin and 

brain size residual of two PV+ interneuron OCRs in the Mocs2 locus, chr13:114757413–

114757913 (mm10) (A) and chr13:114793237–114793737 (mm10) (B), respectively. The 

hominoid clade is highlighted by a gray box in each panel, and scatterplots of predicted PV+ 

interneuron open chromatin versus brain size residual in Hominoidea are in the inset plots. 

Note that the lines in the inset plots are for illustration purposes only and are not based on 

the phylogenetic regression we used for TACIT; we ran the phylogenetic regression across 

all Euarchontoglires and not in specific clades.
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Fig. 6. Associations between predicted PV+ interneuron and motor cortex OCR ortholog open 
chromatin and solitary living.
(A) Human WBS deletion region. The locations of the PV+ interneuron and motor cortex 

OCRs [(B) and (C)] near the gene GTF2IRD1 are in yellow and green, respectively. (B) 

Marginal negative association between predicted PV+ interneuron open chromatin and 

solitary living of a PV+ interneuron OCR near GTF2IRD1 and GTF2I, chr5:134485808–

134486308 (mm10). (C) Negative association between predicted motor cortex open 

chromatin and solitary living of a motor cortex OCR near GTF2IRD1 and GTF2I, 
chr3:42408296–42408946 (rheMac8). In (B) and (C), each point represents an ortholog 

in one species; points are grouped along the x axis by the clade of the species represented, 

as shown by the silhouettes and tree below (C) (table S26). Points are colored to indicate 

solitary versus nonsolitary living following the key at the lower right. The permulations-

Kaplow et al. Page 35

Science. Author manuscript; available in PMC 2023 July 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



based Benjamini-Hochberg q-value and the coefficient for the predicted open chromatin 

returned by phyloglm are shown in the lower right of (B) and (C).
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