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Summary (150 words)

In electrocatalysis, the rate of a reaction as a function of applied potential is governed by the

Tafel equation, which depends on two parameters: the Tafel slope and the exchange current density ( i0).

However, current methods to determine these parameters involve subjective removal of data due to the

convoluted effects of mass transfer and competitive surface or bulk reactions, resulting in unquantifiable

uncertainty. To overcome this challenge, we couple covariance matrix adaptation with a continuum model

of CO2 reduction (CO2R) that explicitly deconvolutes non-kinetic effects to extract kinetic parameters

associated with 27 literature datasets of CO2R over Ag and Sn catalysts. The fitted kinetic parameters do

not converge to a unique set of values, and the Tafel slope and i0 possess an apparent correlation, which

we suggest is a consequence of variations in catalyst preparation methods. This work facilitates rigorous

benchmarking of electrocatalysts in systems where mass transfer is relevant.
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Introduction

Electrochemical reduction of CO2 (CO2R) emitted from point sources (e.g., cement production,

separation from natural gas, iron and aluminum ore smelting, and fermentation of sugars) using electricity

from  renewable  resources  (e.g.,  wind  and  solar)  offers  a  means  for  recapturing  its  carbon  content.

Moreover, if the CO2 can be taken from the atmosphere and converted electrochemically to chemicals and

fuels, one could envision a closed carbon cycle.1–4 In order to produce desired products with high rates

and selectivity, it is important to understand how to design electrochemical cells that enable achievement

of  these  objectives.5–8 A  key  element  in  pursuit  of  this  goal  is  accurate  representation  of  individual

product formation rates and their dependence on reactant concentration, pH, and cathode potential. 

For the design and simulation of electrochemical processes, the current density (ij) for producing

product  j is most commonly based on the Butler-Volmer equation (Equation  (1)) or the simpler Tafel

equation  (Equation  (2)),  which  is  based  on  the  assumption  that  the  reaction  is  irreversible  at  large

overpotentials. In this work we only consider the Tafel equation for the cathodic direction. 

i j=i0 , j(−exp(
−αc , j F

RT η j)+exp(
α a , j F

RT η j)) (1)

i j=−i 0 , j exp(
−αc , j F

RT η j) (2)

Here R is the ideal gas constant, F is Faraday’s constant, η j is the overpotential or driving force for the

electrochemical reaction  j,  T is the absolute temperature,  αc , j is the transfer coefficient, and  i0 , j is the

exchange current density. In Equation (2), there are two important parameters, the transfer coefficient (

αc , j) that describes the sensitivity of the product current density to changes in the overpotential ( i.e., the

electrochemical driving force) and the exchange current density (i0 , j),  which is the pre-factor for the

exponential term.9 It is important to note that the exchange current density contains explicit concentration

dependences on the reactants and products of a given reaction, as derived in Supplemental Note S1.
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Many studies of electrochemical synthesis report the Tafel slope, which is directly related to the transfer

coefficient defined as the overpotential required to obtain a ten-fold increase in product current density.9,10 

Tafel Slope=
−ln (10 ) RT

αc , j F
=

−59.125 [mV dec−1 ]
αc , j

for T=298 K
(3)

For multi-step kinetics, the Tafel slope, or related the transfer coefficient c,j, has been used to infer which

elementary step is rate-limiting in the formation of a particular reaction product.11–13 

A commonly used method to calculate Tafel slopes involves a least-squares regression on the

linear portion of the logarithm of the measured current density vs cathode potential (i.e., the kinetic region

of the polarization curve). This approach involves manual exclusion of data that lie in the mass-transport

limited regime (Figure 1,  top).10 For the electrochemical reduction of CO2,  the mass-transport-limited

regime occurs at  potentials  for which the predicted rate of CO2 consumption by electrochemical  and

homogeneous chemical reactions becomes greater than the rate of CO2 transport to the surface. Mass-

transport limitations in CO2R are caused primarily by the low solubility and diffusion coefficient of CO2

in  the aqueous electrolyte.14,15 Because the regimes of  kinetic  control  and the onset  of  mass-transfer

control are defined arbitrarily, this method of identifying the regime of kinetic control is prone to human

error and leads to a reduction in the number of data points available for analysis. It is also notable that in

electrochemical  synthesis  the  product  must  be  quantified  at  every  applied  potential  through  time-

consuming  steady-state  measurements.  The  need  for  product  quantification  contrasts  with  water

electrolysis for which catalytic behavior can be measured rapidly at thousands of points via linear-sweep

voltammetry.  Because  data  in  electrochemical  synthesis  must  be  collected  by  steady-state

chronopotentiometry  or  chronoamperometry  to  generate  sufficient  product  for  quantification,  rapid

current-voltage sweeps are impractical if one wants to determine the partial current densities for each

product. In other words, the steady-state nature of electrochemical synthesis, in which multiple products

are formed, limits the number of available data points for each product. 
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Prior work has sought to address these concerns and provide rigorous methods for determining

kinetic  parameters.10,16,17 Recently,  Limaye  et  al.  have attempted  to  address  the  challenge  of  data

insufficiency in Tafel analysis for electrochemical CO2R by using a Bayesian learning algorithm,10 in

which current-voltage data are fit to a representation of the intrinsic reaction rate given by the Tafel

equation together with the effects of mass transfer. Using such a model enabled fitting of all experimental

data without the need to arbitrarily define the Tafel region, even for limited data sets (5-20 data points).

Furthermore, the Bayesian learning model used in this work provided a distribution of potential Tafel

slopes and a defined uncertainty threshold. This approach revealed the human errors in involved fitting

Tafel slopes reported in the literature. A limitation of this work is that the physical model employed did

not account for coupling of mass transfer effects with competing electrochemical and homogeneous buffer

reactions that consume reactants and change local pH,18–20 as well as the complex dependences of the

intrinsic kinetics on species activities that affect observed kinetics, 6,19,21,22 preventing the approach from

capturing complex curvature in the CO2R polarization curve at higher applied potentials or deconvoluting

of contributions due to various surface reactions.

In this work, we present a one-dimensional, reaction-transport model of the CO2R to CO and H2

over Ag catalyst, as well as CO2R to HCOOH, CO, and H2 over an Sn catalyst, that is then used in

combination  with  covariance  matrix  adaptation  evolutionary  strategy  (CMA-ES),  an  advanced  data

analysis tool, to fit the Tafel parameters (i.e., c and i0) for a variety of Ag and Sn catalysts. This approach

provides a rigorous means for identifying the parameters required for continuum simulations without the

need for subjective human intervention while accounting for mass transfer,  which sensitivity analysis

elucidates is key to accurately determining kinetic parameters. Application of this approach to 18 data

sets for CO2R to CO on Ag, as well as 8 data sets for CO2R to CO and HCOOH on Sn, in similar

experimental  setups  reveals  that  the  fitted  rate  parameters  are  broadly  distributed,  probably  due  to

differences in catalyst morphology (i.e., distribution of surface facets and roughness) that we propose
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could be a result of variations in catalyst preparation across various studies. The methodology reported

here provides a rigorous approach for determining the Tafel parameters associated with product partial

current density vs. cathodic potential curves obtained for electrochemical processes that produce multiple

products.  This  finding  is  particularly  important  for  systems  in  which  the  formation  of  one  product

influences the rate of formation of other products through the effects of mass transfer and bulk reactions.

Results and Discussion

Continuum Modeling to Assess Traditional Tafel Fitting

To assess the impact of mass transport and bulk reactions on observed partial current densities, a

sensitivity analysis was carried out. By this means, the sensitivity of the product partial current densities

to changes in the kinetic parameters (αi ,c and ii , 0) is determined. (Supplemental Note S2) This procedure

enables an assessment of the degree of sensitivity between the outputs and input parameters in the model

(i.e., how much an output parameter changes when an input parameter is changed). When an output is

positively sensitive to an input, an increase in the input results in an increase in the output; when an

output is negatively sensitive to an input, an increase in the input results in a decrease in the output. The

sensitivity analysis revealed that the CO partial current density is highly negatively sensitive to mass

transfer (i.e., LBL) due to low availability of CO2 in the aqueous electrolyte;  however,  the H2  partial

current density is less sensitive to mass-transfer effects because of the high availability of solvent water,

which was assumed to be the proton source for HER. (Figures S3-5) We also observed that the CO

partial  current  density  was  positively  sensitive  to  i0 ,CO and  αCO,  but  more  interestingly,  negatively

sensitive to the HER kinetics (i0 , H 2and αH 2) (Figure S3). As the HER current increases, the pH rises due

to concomitant generation of OH−, and the generated OH− anions consume reactant CO2 via homogeneous

buffer reactions thereby reducing the COER partial current. 

Continuum simulations were then used to assess the accuracy of the traditional Tafel analysis (see

Section  S5,  Supplemental  Note  S3)  for  simulated  polarization  curves  where  mass  transport  or
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competitive  reactions  were  relevant.  Figure  2a-b depict  the  results  of  performing  traditional  Tafel

analysis to extract the kinetic parameters from CO polarization curves generated by the simulation, all of

which possess a constant CO Tafel slope but different values of  LBL(Figure 2a) or  i0 , H 2(Figure 2b). In

other words, these plots possess a constant value of the intrinsic kinetic parameters of COER (i0 ,CO and

αc , cO), but the value of LBL is changed from 0.5× to 1.5× its base value (Figure 2a), and the value of i0 , H 2

is changed from 1× to 100× its base value (Figure 2b). As can easily be seen, even though the CO Tafel

slope should be identical for all plotted polarization curves, the apparent Tafel slope as measured by a

traditional approach is different for every curve, revealing the extent to which mass transport affects the

apparent Tafel slope. Key to this sensitivity analysis is the recognition that concentration gradients in CO2

and  pH within  the  mass-transport  boundary  layer  are  quite  severe  (Figure  S6),  particularly  at  high

potentials, meaning that the concentration in the bulk is not the same as the concentration at the reaction

plane, and that the large gradients in reactant activity within the boundary layer necessitate the simulation

of mass transport to determine activities accurately at the reaction plane. Therefore, the continuum model

is  necessary  to  deconvolute  the  effects  of  mass  transport  from  the  intrinsic  kinetics  of  the  surface

reactions. 

Intriguingly, when the apparent CO Tafel slope (Figure 2c) and  i0 ,CO (Figure S7) are plotted

against LBL, they approach their intrinsic values as LBL approaches zero. In other words, in the limit of no

mass-transport losses of CO2,  traditional Tafel  fitting is sufficient  and accurate.  This finding suggests

traditional  assessment of Tafel  slopes could be done using data  that  are  minimally affected by mass

transfer.  Porous electrodes, which have boundary-layer thicknesses approaching the nanometer length

scale,  have also been suggested for determining the intrinsic kinetics of electrochemical  reactions. 3,39

However, the chemistry and morphology of such electrodes were found to impact observed kinetics in

non-trivial ways due to the potential of overlapping boundary layers, along with the complex multiphase

(gas, liquid, and sometimes solid-electrolyte phases) transport occurring in the porous medium.3 Rotating
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disk35 or rotating cylinder40,41 electrode systems can also aid in deconvoluting the effects of mass transfer.

However,  the  use  of  these  techniques  does  not  eliminate  completely  mass  transfer  at  high  cathode

potentials and current densities. Therefore, modeling of mass transport and the kinetics of bulk reaction

occurring in an aqueous boundary layer (see below) will always be necessary for determination of Tafel

parameters. 

In addition to hydrodynamics, the presence of bulk reactions occurring in the thin boundary layer

can impact the apparent Tafel slopes. Figure 2b and S9 illustrate the effect of the HER current density on

apparent  CO kinetics,  demonstrating that  at  high current  densities for HER, the apparent  CO kinetic

parameters can be quite inaccurate. However, this competition for reactant CO2 is indirect and is a result

of consumption of HER-generated OHanions to form HCO3
- and CO3

2- anions in the boundary layer, as

opposed to direct electrochemical consumption. Indeed, many catalysts experience direct electrochemical

competition for reactant CO2. For instance, formate (HCOO—) forms competitively with CO on Cu,8 Pd,42

Sn43–45,  and  Ag,24 and  such  direct  competition  for  CO2 impacts  the  apparent  Tafel  slopes  for  these

products. As shown in Figure 2d, the occurrence of competing HCOO– formation dramatically increases

the apparent CO Tafel slope beyond its intrinsic value. For the largest i0 , HCOO−¿
¿ tested, corresponding to

roughly equal co-generation of CO and HCOO–, as has been observed on Cu8 and Pd42, the CO Tafel

slope is nearly 50 mV dec1 larger than the reference value employed in the model (93.55 mV dec 1).

i0 ,CO , αHCO O−¿ ,¿ and i0 , HCOO−¿
¿ exhibit similar inaccuracies. (Supplemental Note S3)

The transfer coefficient quantifies how much of the applied potential driving force goes to driving

the rate of a given electrochemical reaction. In electrochemical synthesis systems, the applied potential

driving force drives a suite of competitive surface reactions and overcomes losses attributable to low rates

of  mass  transfer  (i.e.,  Nernstian  losses).  Thus,  taking  kinetic  parameters  directly  from  measured

polarization data typically leads to an overestimation of the Tafel slope (and, hence, an underestimation of

the transfer coefficient due to their inverse proportionality) by neglecting the potential losses associated
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with mass transport and competitive surface reactions. As mass transfer improves, and in the limit of a

single surface reaction, the intrinsic kinetics can be measured experimentally. However, the presence of

competing electrochemical reactions and poor mass transfer is the norm in electrochemical synthesis,

rather  than  the  exception.  These  results  underscore  the  need  for  physiochemical  models  that  enable

determining the intrinsic Tafel parameters for individual reaction kinetics unaffected by the effects of

mass transport, bulk reactions occurring the mass-transfer boundary layer, or competing surface reactions.

Recent  work  has  attempted  to  delineate  more  accurately  the  kinetically  controlled  and mass

transport controlled regimes in polarization data by employing a technique known as differential Tafel

analysis, in which Tafel slopes and/or their derivatives are plotted as a function of potential. 46,48 However,

differential Tafel analysis requires substantial data collection and is quite challenging for electrochemical

synthesis application, for which product quantification as a functional of potential, particularly liquid-

phase products, limits data availability. Even if data insufficiency were not a concern, differential Tafel

analyses would not be able to fully deconvolute the contributions to partial current density from mass

transport and kinetics due to the significant impact of mass transfer in these CO2 reduction reactions at

nearly  all  relevant  applied  potentials  (Supplemental  Note  S4).  This  is  especially  true  for  minority

products such as HCOO− on Ag, for which there are no regions in which differential Tafel analysis can

identify kinetic control. By accounting for mass transfer effects directly in the mathematical model, the

method  reported  here  enables  direct  simulation  of  the  various  competing  phenomena  and,

correspondingly,  the extraction of kinetically relevant  Tafel  parameters for multiple surface reactions

simultaneously for CO2 reduction.

Fitted Tafel Parameters 

Having  established  that  our  model  and  approach  for  fitting  Tafel  parameters  is  capable  of

simultaneously fitting the parameters for CO and H2 formation for different sets of data taken from the

literature with high accuracy and quantified uncertainty without human intervention (see Section S7 for
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plots of all H2 and CO polarization curves and the corresponding fitted Tafel parameter values), we sought

to determine whether the fitted Tafel slopes and transfer coefficients converged to a set of unifying values.

Bockris and co-workers derived what they refer to as cardinal values for the transfer coefficient of αc=¿

0.5, 1.0, 1.5, etc.13 This can be done starting with Equation S62 and assuming integer values for s and q,

a ν of 1, and a symmetry factor of the rate determining step, β = 0.5. Correspondingly, cardinal values for

the Tafel slope (Equation S40) are 118, 59, 39, etc. Crucially, the symmetry factor, which is defined as

the fraction of the applied overpotential that goes towards lowering the barrier of the cathodic reaction (as

opposed to the anodic reaction),49 will likely not be 0.5 for inner sphere electrochemical reactions such as

CO2R and HER on Ag, where some potential is lost in the double layer,3 and the reaction intermediate is

likely  not  equidistant  in  free  energy from the  reactants  or  products.47 Nonetheless,  many theoretical

studies have employed the cardinal value of 0.5 for CO2R.10,50,51 It is also notable that the theoretical work

of Singh et al. employs density functional theory (DFT) and finds an effective cathodic transfer coefficient

of 0.49.47 They also find transfer coefficients of 0.23 and 0.05 for the Volmer and Heyrovsky steps,

respectively, where the latter is rate limiting.47 Due to the effects of surface roughness on the exchange

current density, there are no “cardinal values” for the exchange current density;  i0 is expected to vary

drastically based on the morphology of a given electrode.

Figure 3 illustrates the probability distribution functions (PDFs) and kernel density estimates

(KDEs) for (a) αCO, (b) log10(i0 ,CO), (c) α H 2, and (d) log10(i0 ,H 2
). These plots show that these parameters

do not converge to a single set of values, as further demonstrated by the cumulative distribution functions

shown  in  Figure  S10.  The  fitted  parameter  distributions  for  the  Tafel  slopes  and  boundary-layer

thicknesses are given in Figures S11 and S12. It is important to note that all fitted parameters lie within a

range of physically acceptable values,  and possess a tighter  range than those previously reported for

continuum models.3 Interestingly, the most probable values of the transfer coefficients for both CO and H2

(determined as the maxima of the KDEs (see  Table S12)) are quite far  from the so-called “cardinal
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values”, but lie relatively close to the values reported by Singh et al. that were obtained via DFT of CO2R

and HER on Ag (110) (difference of 0.10 for αCO, difference of 0.04 for the Volmer step α H 2).47 However,

this could just be coincidental, and greater effort should be employed to bridge the results observed in

continuum level and ab-initio level models.

Additionally,  consistent  with  the  analysis  above,  we  demonstrate  that  accounting  for  mass

transfer helps mitigate the overprediction of Tafel slopes, shifting the distribution towards lower values

when mass transfer is explicitly handled (Figure S13). It is important to note that the size of the data set

could simply be too small to observe a sharp distribution in the fit parameters due to small variabilities or

errors in the experimental measurements. Collecting more data in similar conditions could potentially

lead to the distribution better predicting theoretically expected values. Nonetheless, the broad distribution

of parameters makes it impossible to prescribe a unique set of values that are descriptive of the CO 2R on

all Ag catalysts and indicate that Tafel parameters need be fitted for each individual Ag catalyst.

To address the spread of values in the fitted parameters, we note that the transfer coefficient itself

may be a function of the applied potential as predicted by Marcus theory, 17 because at negative potential,

the transition state is more initial-state like (βRDS 0¿ and at positive potential the transition state is more

final-state like (βRDS 1).52 However, Marcus inversion is not expected to be significant over the relatively

small potential ranges studied experimentally, and all of the studies used were performed with nearly

identical potential ranges. Thus, Marcus theory is unlikely to explain the spread in fitted parameters, and

it is more likely that the observed spread in values is due to differences in surface morphology among

different samples of Ag cathodes.  The presence of a bicarbonate reduction pathway could also explain

some  of  the  observed  spread  in  parameters.  We  sought  to  determine  if  there  were  any  effects  of

bicarbonate concentration on the fit kinetics for HER, potentially due to proton donor effects. Notably,

when we plot  the fit  kinetic  parameters  for  HER as  a  function of  the bulk electrolyte  concentration

(Figure  S16),  we  observe  no  clear  trend  in  the  fit  kinetic  parameters  with  respect  to  bicarbonate
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concentration,  suggesting  that  the  bicarbonate  concentration  does  not  have  a  direct  impact  on  the

observed HER kinetic parameters.

We also compared the HER kinetic parameters taken from analyzing data obtained during CO 2R

on Ag catalysts to those obtained from an analysis of HER data acquired for polycrystalline Ag in 0.1 M

KHCO3 under an N2 atmosphere23
, as discussed in Supplemental Note S6. The fitted transfer coefficient

for the HER (αc , H 2
=0.199) acquired in the absence of dissolved CO2 is nearly identical to the most

probable value (αc , H 2 , MP=0.195) calculated with CO2R data. The exchange current density without CO2

(i0 , H 2
=10−3.16 mAcm−2)  is  also  comparable  to  that  obtained  from  the  most  probable  value  of  the

parameter distribution (i0 , H 2 , MP=10−2.49
[mAc m−2

]) from an analysis of the data for CO2R. 

Ultimately, we contend that differences in catalyst preparation for the studies examined are the

primary cause for  the broad distributions  observed (See Table S10  for  a detailed description of  the

preparation methods). Indeed, surface roughness is expected to contribute to the spread in fitted exchange

current densities, as the roughness factor is implicitly lumped into that parameter (Equation S79).3 The

Ag catalysts used in the studies we have examined are typically polycrystalline. Clark et al. have shown

that  different  Ag facets  on  polycrystalline Ag possess  different  intrinsic  activities  for  CO2R (Figure

S14).26 More recently, Gauthier  et al. have demonstrated that surface preparation and roughening affect

the intrinsic activity of a given catalyst for CO2R.53 Therefore, the spread in transfer coefficient (and thus

Tafel  slope) could reflect  the changes in the distribution of surface structuring for different  catalysts.

Differences in surface coverage by poisons may also impact the observed kinetic parameters.54 

Compensation Effects in Electrocatalytic CO2R on Ag

An important question is whether the transfer coefficients, exchange current densities, and the

boundary-layer thickness (αc , H 2,  αc , CO,  i0 , H 2,  i0 ,CO,  and  LBL) are correlated with each other. We first

sought  to  assess  whether  the  bulk  electrolyte  concentration  and  the  boundary-layer  thickness  are
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correlated with the fitted transfer coefficients and exchange current densities, which should be intrinsic to

the catalyst.  Figures S15-S16 confirm that the lack of correlation between these parameters for all the

fitted data. We next explored the correlation between the fitted values of αc and i0 for each reaction. The

parameters αc and log10¿¿) should exhibit a negative, linear correlation with the slope of the correlation

line  related  to  the  reaction  order  of  the  reactant  and  product  species  and  their  activity  in  the  bulk

electrolyte because the expression for i0 is referenced to the activities of species in the bulk electrolyte

(Supplemental Note S7).  While a negative correlation is  observed for both reactions (Figure 4),  the

slopes are much more negative than would be expected from the derivation in  Supplemental Note S7.

Additionally, these data were carried out using different bulk electrolyte concentrations and Ag electrodes

having different roughness factors. As can be seen in  Equation S89  both factors impact the exchange

current density. These effects are not explicitly deconvoluted from the correlation observed in  Figure 4

(roughness factors are seldom reported), so one should not expect any correlation in the plotted data.

Vetter performed traditional Tafel analysis on various HER catalysts and demonstrated that while α H 2 was

somewhat consistent across all tested catalysts, the log10(i0 ,H 2¿)¿ varied across these catalysts varied by

many orders of magnitude and were uncorrelated with α H 2.9,55 Therefore, the apparent correlation between

the fit αc and log10(i0¿)¿ is unexplained.

We note that a correlation has been observed in thermal catalysis between the pre-exponential

factor and the activation energy, and is referred to as the “compensation effect”.56–60 Barrie has discussed

the  mathematical  origins  of  this  effect  and  its  relationship  to  random  experimental  errors.60 In  this

connection,  Bond  et  al. have proposed a  set  of  guidelines  to  establish when the effect  is  physically

meaningful.57 First,  the dataset of interest must be sufficiently large; the range of transfer coefficients

should be such that the largest value is at least 50% greater than the smallest. Second, the effects of the

reaction order and bulk species concentration must be properly accounted for (Figure S17). Lastly, we

add that, for electrocatalysis, the effects of active surface area should be properly deconvoluted. For the
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data fit in this work, experiments were all reported based on geometric surface area of the cathode rather

than the electrochemically active surface area (ECSA), making roughness effects difficult to deconvolute.

Lastly,  to  account  for  any  effects  of  bicarbonate  rate  order,  we  also  explicitly  color-code  the

compensation plots by bicarbonate concentration, showing that the compensation phenomenon still exists

when accounting for differences in bulk bicarbonate concentration (Figure S18).

All considered, the existence of an apparent correlation likely suggests that, among other factors,

a lack of standardization in catalyst preparation leads to apparent compensation effects that contribute to

the broad distribution of the fitted parameters observed above. Future work should use more sophisticated

objective functions that weigh data points according to their associated uncertainty, but the underlying

issue is that many reports in CO2R do not report  sufficient polarization data with defined error bars.

Additionally,  reporting  electrochemical  data  with  respect  to  ECSA or  using  less-complex  electrodes

would also improve data quality for model fitting by deconvoluting the effects of surface roughness from

the exchange current density, better enabling analysis of apparent compensation phenomena. Indeed, the

need for more easily interpretable electrocatalytic measurements has been well-documented in recent

work.61 Lastly,  recent  studies  have demonstrated the impact  of  forced  convection on  observed Tafel

slopes.62 Correspondingly, future work should aim to implement the developed method with rotating disk

electrode experiments and a rigorous continuum model of a rotating disk electrode to validate continuum

theory over multiple regimes of mass transport and explore the effects of forced convection on observed

kinetics. The analysis presented here further underscores the need for better standards and protocols for

acquisition of experimental data that can then be used to validate results obtained by theoreticians. 

Extension of Method for Analysis of CO2R over Sn Catalysts

To  demonstrate  the  extension  of  the  developed  method  to  more  complex  electrochemical  synthesis

systems, the coupled CMA-ES continuum modeling approach was applied to 8 additional datasets of
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CO2R over Sn catalysts acquired in H-cells. Sn catalysts add complexity compared to Ag because they

additionally generate HCOO— along with CO and H2. However, similar to Ag, they weakly bind CO and

H,  so  explicit  adsorbate  coverage  effects  are  still  negligible.8 To  enable  fitting  of  these  data,  the

continuum model was updated to capture the physics related to HCOO– formation. As shown in Figure

S19, our method is highly capable of determining kinetic parameters and can reproduce experimental data

simultaneously for CO, H2, and HCOO– over Sn with high accuracy and quantified uncertainty. 

The distribution of kinetic parameters shown in  Figure 5 for Sn are similarly broad to those

collected on Ag, again likely due to large variations in catalyst preparation used by different investigators

(Table  S21).  Interestingly,  the  distribution  of  fitted  HER kinetic  parameters  looks  like  that  for  Ag,

suggesting that HER on Sn occurs through a similar pathway on Sn and Ag. Conversely, the distribution

of fitted parameters for CO formed on Sn and Ag looks quite different, suggesting different mechanistic

pathways or energetics for CO on the two metals. 

Future work should implement the effects of adsorbate coverages into the continuum model to

assess more complex CO2R catalysts where intermediate binding is important and variable, such as Cu.

To  do  so  requires  the  use  of  microkinetic  models  of  CO2R  that  are  validated  by  independent

spectroscopic  data.  We  also  note  that  the  present  approach  is  not  limited  to  CO2R  but  should  be

applicable to for other electrochemical reactions, such as carboxylation63,  epoxidation64,  and ammonia

synthesis.65
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Conclusions

The present study describes a method for fitting Tafel parameters for multiple reactions occurring

during  the  electrochemical  reduction  of  CO2 over  Ag  catalysts.  This  approach  combines  continuum

modeling and advanced data-science methods (covariance matrix adaptation-evolutionary strategy (CMA-

ES)) to fit the parameters appearing in the Tafel equations used to describe the kinetics of CO and H 2

formation. The method developed here avoids unquantifiable uncertainty associated with the subjective

demarcation  between the portions  of  the product  polarization  curves  associated  purely  with reaction

kinetics and that convoluted with the effects of mass transfer and buffer reactions. A continuum model is

employed to account for mass transport and bulk-phase homogeneous buffer reactions. We show that

neglecting these phenomena leads to systematic overprediction of the Tafel slope and exchange current

density obtained using traditional methods of analysis. 

The coupled CMA-ES continuum modeling approach is applied to 18 data sets for CO2R on Ag,

obtained  in  similar  electrochemical  cells  and  using  KHCO3 as  the  electrolyte,  to  determine  rate

parameters for CO2R to CO and H2, and a broad distribution of fitted Tafel parameters is observed. The

distribution  of  values  of  the  transfer  coefficient  and  the  exchange  current  density  are  attributed  to

differences  in  the  structure  and  morphology  of  different  Ag  catalysts  due  to  differences  in  catalyst

preparation methods used by various authors. Lastly, we show that our method of data analysis can easily

be adapted to more complex reaction systems by employing the method to perform a similar analysis of

the kinetic parameters for CO2R on Sn catalyst, which produces HCOO– along with CO and H2. The Tafel

parameters  for  Sn  were  broadly  distributed  in  a  manner  like  those  for  Ag.  Ultimately,  this  work

demonstrates and quantifies the need to account for the effects of mass transfer and buffer kinetics in the

analysis of product partial current densities obtained for the electrochemical reduction of CO2.

Experimental Procedures
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Continuum Model

Figure 6Error: Reference source not found illustrates the one-dimensional (1-D) model used to simulate

mass transport and reaction occurring in an electrochemical cell performing CO2R. The modeled domain

consists  of  a  planar  Ag  electrode,  an  aqueous  potassium  bicarbonate  (KHCO3)  electrolyte,  and  the

associated mass-transport boundary layer. The bulk concentration of the KHCO3 electrolyte is chosen to

coincide with that used in the experimental data set to be fitted, and the thickness of the associated mass-

transport boundary layer (LBL) is fit along with the kinetic parameters. We note further that all of the

experimental data examined in this study were acquired using a flow cell ( i.e., an ) with well-defined

hydrodynamics and a reference electrode located in the potassium bicarbonate electrolyte (Figure 6Error:

Reference source not founda).23–32 The decision to consider only Ag or Sn catalysts used under similar

experimental conditions limits the amount of available data in literature but enables deconvolution of the

catalytic behavior from other variables. Additionally, we choose these catalysts because they bind CO and

H weakly.8 This justifies the assumption of near unity empty site coverage invoked when using a global

Butler Volmer or Tafel kinetic rate law, as is done here.12 Additionally, any effects of coverage will be

embedded in the fit values for the parameters obtained. To extend this method to catalysts such as Cu that

bind CO or H stronger requires explicit consideration of coverage effects. We note that previous work has

shown that a 1-D representation is capable of capturing the requisite concentration and potential gradients

needed to model aqueous CO2R on planar catalysts.14,33,34 

The CO and H2 evolution reactions (COER and HER) occur at the surface of the Ag electrode,

with the following stoichiometries and standard potentials.

2 H2 O+2 e−¿ → H 2+2 OH−¿,U CO
o

=0V ¿
¿ vs. SHE (4)

C O 2+H 2 O+2 e−¿ →CO+2 O H
−¿ ,U H2

o
=−0.11 V ¿

¿ vs. SHE (5)

A concentration dependent  Tafel  expression was used for  each product  to  model  the kinetics  of  the

competing reactions (for which the kinetic parameters will be fit),
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iCO=(
aC O 2

aC O 2

bulk )
− γC O2 ,CO

¿¿ (6)

iH2
=¿¿ (7)

where i0 , j and  αc , j are  the exchange  current  density  and cathodic  transfer  coefficient  for  product  j,

respectively.  These  parameters  are  obtained  by  our  fitting  method  described  in  the  Experimental

Procedures. γ i , j represents the rate order of species i in the reaction to form species j and is constrained

by its relationships to the transfer coefficients, as given by Equations S10-14. It is important to note that

the effects of the electrolyte cation, which are important for COER kinetics, will be implicitly captured by

the fit exchange current density (Equation S79),35 given the fact that all data considered in this work

employ the same electrolyte cation (K+). Additionally, recent work has suggested that the reduction of

bicarbonate to form H2 could also contribute to HER current density.23,36 However, the extent to which the

proton donor dictates HER is still  up to substantial debate, with most works only attributing a small

current density feature at moderate applied potentials to bicarbonate reduction.23 These studies suggest

that H2O will likely be the dominant proton donor at all applied potentials relevant to CO2R.23 Therefore,

for simplicity, we only consider water as a proton donor. 

In  the  above  expressions,  ai represents  the  activity  of  species  i locally  at  the  electrode  surface,  as

calculated by the reaction-transport simulation, and  ai
bulk represents the activity of species  i in the bulk

electrolyte. Activities are used as the driving force for both electrochemical reactions (Section S1.2) and

homogeneous bulk reactions occurring within the boundary layer (Section S1.3).  These activities are

determined by accounting for the excess chemical potential due to long- and short-range electrostatics

through the Davies activity coefficient model for ionic species. Changes to the CO 2 solubility due to

species-species interactions are accounted for through the Sechenov activity coefficient model for CO2

(Section S1.2). The terms involving the ratio of the surface and bulk activity account for mass-transport

and concentration gradients within the boundary layer (Section S4). ηs , i is the surface overpotential for a

given electrochemical reaction defined in Equations S19-S21 in the SI. Ultimately, the inclusion of these
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effects allows for the accurate calculation of species activities at  the reaction plane for CO 2R, which

determine  the  rates  of  the  electrochemical  reactions  occurring  at  the  electrode  surface.  A  detailed

description of the physics employed in the model, as well as a generalized derivation of the kinetic model,

can be found in the Supplemental Experimental Procedures.

Covariance Matrix Adaptation Evolution Strategy

To minimize the objective function, which in this case is the mean square error (MSE) of the fit to

the CO and H2 specific polarization curves, the covariance matrix adaptation evolutionary strategy (CMA-

ES) was employed (shown schematically in Figure 7). CMA-ES is a global, derivative-free optimization

method that operates by forming a parametric distribution over the solution space. It samples a population

of solution candidates iteratively,  typically  from a multivariate gaussian distribution.37 This objective

function is then evaluated for each candidate set of parameters. After evaluating the objective function for

each point in each generation of solution candidates, the solutions are sorted by the magnitude of the

objective function and the distribution parameters (the mean vector and covariance matrix) are updated

based  on  the  ranking  of  objective  function  values.  The  goal  is  to  search  for  the  optimum  set  of

parameters, such that the objective function is a minimum. The method stops once the change in error

across generations has dropped below a certain tolerance (in this study, a tolerance of 1 ×10−11 was used,

which is the default in CMA-ES algorithm in MATLAB.) It is critical to note that CMA-ES is gradient-

free since the objective function used for fitting the Tafel kinetic is non-convex, so there exist many local

minima in which a gradient-descent method can get trapped. Notably, previous work has shown that small

changes in the fitted Tafel parameters can lead to local minima that approximately fit experimental data. 17

We also note (Section S1.9) that using a gradient-descent method (e.g., MATLAB’s fmincon) in lieu of

the CMA-ES method ultimately fails to fit experimental polarization data (Section S6). 

Description of Fitting Method
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The process shown schematically in  Figure 8 was used to fit the experimental data. First, the

reported cathode potentials (usually referenced to a reversible hydrogen electrode (RHE)) were shifted to

the standard hydrogen electrode (SHE) potential, by (see Figure 8b):

ϕ c [ V vs . SHE ]=ϕc [V vs . RHE ]−0.059× pH bulk (8)

This change of reference makes the experimentally measured potentials consistent with the potentials

used in the model (Sections S1.1-1.3). 

Next, the parameters for each reaction were fitted one reaction at a time in order to separate the

((2k × 2k )+1) dimensional optimization problem (where  k is the number of competing reactions and

the  +  1  is  due  to  fitting  LBL)  into  (k−1) 2-dimensional  optimizations  and  a  single  3-dimensional

optimization (in which the thickness of the boundary layer is fit). This procedure makes the problem more

tractable and avoids the so-called “curse of dimensionality” in optimizations.37 It is also important to note

that fitting the boundary layer was necessary to provide the best fit for the CO data, as the boundary-layer

thickness  dictates  the  mass-transport-limiting  plateau  (see  Figure  S2),  and  is  seldom  measured  or

reported for CO2R current densities measured using a flow cell. We note that the fitted mass-transport

boundary-layer  thicknesses  generally  agree  in  terms  of  order  of  magnitude  with  values  reported  in

previous flow cell studies;15,38 any discrepancies are likely due to assumed Sherwood relationships for the

calculation  of  the  mass-transfer  coefficient,  which,  in  most  cases,  do  not  account  for  the  effects  of

homogeneous buffer reactions and multi-ion transport.15 Additionally, these boundary layer thicknesses

also vary quite substantially with cell design.15,38 For all the reasons noted, we choose to fit the apparent or

effective boundary-layer thickness (LBL) as an adjustable parameter.

To fit the kinetics for CO formation, the reference-shifted experimental data for H2 partial current

density versus voltage are imported into the CMA-ES algorithm and are held fixed. Doing so  is critical for

calculating  the  kinetic  parameters  for  CO formation  because  H2 data  enable  the  model  to  calculate
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changes in the local pH and CO2 concentration that result from HER, which, in turn, affect kinetics of CO

formation. The initial guesses for fitting are shown in Figure S1. The COER current density is defined by

Equation (6). The CMA-ES algorithm then uses the transport and reaction model to obtain the best values

of αc , CO ,i 0 ,CO, and LBL that give the best fit to the data (Figure 8c). Once the CO kinetic parameters and

LBL are determined, they are fixed to their fitted values and the parameter for the HER partial current, αH 2

and i0 , H 2, described by Equation (7) are fitted using the CMA-ES algorithm (Figure 8d). Post processing

of the CMA-ES distributions provides the uncertainty. This process can be easily generalized to a system

containing a  greater  number  of  competing reactions  as  described in  Sections S1.10-1.11.  While  this

overall process could be repeated to further reduce error, doing so results in only a minor change in the

fitted parameters (< 0.1% change in  α, < 0.2% change in  LBL, and < 0.7% change in  i0) and comes at

greater computational expense. Thus, for this work, the fitting process was run once through each product.

When fitting for Sn, because HCOO– was the major product, HCOO– was fit first, followed by CO, and

lastly finishing the fitting process with H2 (Section S1.10). This process could be similarly generalized for

catalysts with a greater number of surface reactions by similarly adding more fitting steps as was done for

Sn (Section S1.11). 
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Figure Legends
Figure 1: Traditional Tafel analysis possesses unquantifiable uncertainty that is addressable using a
coupled continuum modeling, covariance matrix adaptation approach. Schematic of (top) traditional
method of processing electrochemical data via Tafel analysis and its associated, unquantifiable human
error, and (bottom) proposed robust kinetic fitting approach which uses detailed physical models inform
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data analysis tools to obtain kinetic parameters with quantifiable uncertainty.

Figure  2: Mass transport limits the applicability of traditional Tafel  analysis.  Accuracy of Tafel
analysis under varying mass-transport regimes with a constant CO Tafel slope. Effect of (a) LBLand (b)
i0 , H 2 on CO Tafel analysis. Solid lines represent simulations where all parameters are fixed except for (a)
LBLor (b) i0 , H 2. In (a) and (b) dashed lines represent linear regression fits from traditional Tafel analysis
(see  Section S1.13)  (Tafel  region  in  blue,  and  mass  transport  region  in  green).  (c) Convergence  of
apparent  Tafel  slope  to  actual  Tafel  slope  value  as  LBL approaches  zero.  (d) Impact  of  competing
HCOOH reaction on apparent Tafel slope. In  (c) and  (d) dashed lines represent the value of the Tafel
slope as defined in the continuum model as representative of the intrinsic COER kinetics.

Figure  3:  CMA-ES fit  kinetic  parameters  are  broadly  distributed  across  literature.  Probability
distribution  functions  (PDF)  (histogram)  and  kernel  density  estimates  (KDEs)  (solid  lines)  of  fit
parameters across literature for (a) αCO, (b) log10(i0 ,CO), (c) αH 2, and (d) log10(i0 ,H 2

). The PDF depicts a
histogram of the fitted parameters that has been scaled such that the integrated total of the bars adds to
unity. The KDE represents a smoothed version of the PDF in which each bar is assigned a scaled basis
function and these basis functions are superimposed to generate the smooth curve.  Red dashed lines
represent  so-called  “cardinal  values”  of  the  transfer  coefficient  as  determined  by  analysis  shown in
Equation S62.

Figure  4:  Fit exchange current density and transfer coefficient exhibit an apparent compensation
phenomenon. Correlation  plots  for  the  fit  cathodic  transfer  coefficients  and  the  logarithm of  the  fit
exchange  current  densities  of  (a) CO,  and  (b) H2.  The  R2 values  for  these  fits  are  0.75  and  0.89,
respectively.

Figure  5:  The  continuum,  CMA-ES  method  is  extendable  to  other  CO2 reduction  catalysts.
Probability distribution functions (PDF) (histogram) and kernel density estimates (KDEs) (solid lines) of
the fit (a) αCO, (b) log10(i0 ,CO), (c) α H 2, (d) log10(i0 ,H 2

), (e) αHCOO−¿
¿, (f) log10¿¿ for CO2R on over a Sn

catalyst. The PDF depicts a histogram of the fitted parameters that has been scaled such that the integrated
total of the bars adds to unity. The KDE represents a smoothed version of the PDF in which each bar is
assigned a scaled basis function and these basis functions are superimposed to generate the smooth curve.
Red dashed lines represent “cardinal values” of the transfer coefficient as determined by analysis shown
in Equation S62.

Figure 6: Standard electrochemical compression cell and corresponding physical model. Schematic
representation  (a) a  typical  experimental  set  up,  and  (b) the  corresponding modeled  domain  for  the
boundary layer model.

Figure  7:  Schematic  process  of  a  typical  evolution  process  in  CMA-ES  for  a  two-parameter
optimization. In the first generation (Generation 1), the CMA-ES creates a generation of points with
values of the parameters assigned by an initial Gaussian distribution with a mean at the center of given
elliptical bounds and the radii of the ellipse determined by the standard deviations of the distribution (red-
dashed lines).  CMA-ES ranks the points in terms of how close they are to minimizing the objective
function (white locus of the plots) and moves the distribution in the direction of the points with the best
ranking regarding objective minimization. In the following generations, the (Generations 2-5) this process
is repeated and continues. As the points move closer to the global minimum, the CMA-ES begins to
shrink the standard deviation and converge upon the global minimum. The process stops (Generation 6)
when the standard deviation of the points reaches a specified, small value, indicating that the generated
points all converge upon the global minima.
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Figure  8:  Process  diagram  depicting  the  inputs,  outputs,  and  steps  taken  to  extract  kinetic
parameters  from  a  given  set  of  experiments  using  the  developed  method.  (a) Extraction  of
experimental Tafel data. (b) Shifting of Tafel data to standard conditions. (c) (Top to bottom) Fixing of
H2 current density in COMSOL simulation, fitting CO kinetic parameters with CMA-ES, and quantifying
uncertainty.  (d) (Top to bottom) Using fit CO kinetics from  (c) in the COMSOL model and running
CMA-ES to fit H2 kinetic parameters and extract uncertainty. In panels (c) and (d), i0 ,k , MT represents the
product  of the traditional  i0 ,k  and the mass-transport activity terms in the Tafel expression shown in
Equations (6) and (7).
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