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Abstract

Metabolites control epigenetic mechanisms, and conversly, cell metabolism is regulated at the

epigenetic level in response to changes in the cellular environment. In recent years, this metabolo-

epigenetic control of gene expression has been implicated in the regulation of multiple stages

of embryonic development. The developmental potency of stem cells and their embryonic

counterparts is directly determined by metabolic rewiring. Here, we review the current knowledge

on the interplay between epigenetics and metabolism in the specific context of early germ cell

development. We explore the implications of metabolic rewiring in primordial germ cells in light

of their epigenetic remodeling during cell fate determination. Finally, we discuss the relevance

of concerted metabolic and epigenetic regulation of primordial germ cells in the context of

mammalian transgenerational epigenetic inheritance.

Summary sentence

The interplay between metabolism and epigenetics participates in the development of primordial

germ cells and may play a role in transgenerational epigenetic inheritance.

Key words: metabolism, epigenetics, primordial germ cells, alpha-ketoglutarate.

Introduction

Primordial germ cells (PGCs) are the embryonic precursors of
gametes in metazoans. As such, PGCs are at the origin of new
organisms and ensure the faithful passage of genetic and epigenetic
information across generations [1, 2]. During their development,
mammalian PGCs are subjected to a unique and comprehensive
epigenetic remodeling, coinciding with their transition toward
totipotency [3–6]. Indeed, while PGCs are unipotent progenitor
cells, they differentiate into gametes that possess the unique ability
to reacquire totipotency upon fertilization, leading some authors
to coin PGCs as dormant totipotent cells [7]. Similar to other stem

cells [8], the dynamic changes in PGC epigenome are considered of
crucial importance for their extended developmental potency and
their capacity to differentiate into gametes.

An increasing body of literature points toward the interplay of
metabolism and epigenetics in the acquisition and maintenance of
potency programs in stem cells [9–12]. This has allowed a new
paradigm to emerge where cellular metabolism, in addition to pro-
viding energy, also generates key metabolites for epigenetic modifi-
cations. Hence, the metabolic status of stem cells, rather than being
merely a consequence of their lineage commitment, acts as a driver
for cell fate decisions [9, 13]. As a consequence, harnessing metabolic
reprogramming to manipulate stem cell fate could pave the way
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for the development of novel therapies [9, 14]. In addition to the
metabolic control of epigenomes, metabolic pathways are conversely
regulated at the epigenetic level in response to environmental cues
[9]. While this research avenue is currently less explored in stem cells,
studies in cancer cells highlight the importance of the bidirectional
regulation between metabolism and epigenetics for the integration
of changes in the cellular microenvironment [15].

The metabolo-epigenetic control of cell fate is important at
several stages of mammalian embryonic development [16], including
during zygotic genome activation [17]. In addition, recent studies
have also started to address how cellular metabolism plays a role
in PGC development and their reacquisition of totipotency [7, 18].
Here, we review these findings and further discuss what the interplay
between metabolism and epigenetics might imply for the epigenetic
remodeling of PGCs and for the phenomenon of transgenerational
epigenetic inheritance.

Metabolic requirements during

PGC development

Energetic metabolism of stem cells

Mammalian cells produce energy under the form of adenosine
triphosphate (ATP) by varying the levels of glycolysis and oxida-
tive phosphorylation (OXPHOS, Figure 1) [19–21]. Glycolysis is a
metabolic pathway occurring in the cytoplasm during which glucose
transported from the outer cellular environment is progressively
reduced into pyruvate. In the presence of oxygen, pyruvate is carried
to the mitochondria where it is irreversibly converted into acetyl
coenzyme A (acetyl-CoA), which then enters the tricarboxylic acid
(TCA) cycle (or Krebs cycle, Figure 1). Successive oxidation of acetyl-
CoA in the TCA cycle generates only one molecule of ATP but
provokes the accumulation of electron donors (NADH and FADH2),
which feed the electron transport chain (ETC, Figure 1), ultimately
driving ATP synthesis. The net energetic yield of glycolysis is two
molecules of ATP per molecule of glucose, whereas OXPHOS pro-
vides up to 36 molecules of ATP per molecule of glucose. Purely in
terms of energetic yield and in aerobic conditions, relying solely on
glycolysis for energy production is thus inefficient. However, aerobic
glycolysis is predominant in multiple cell types that share prolifer-
ating characteristics because growth and division require building
materials in addition to energy. Indeed, glycolytic intermediates are
essential for anabolic reactions and participate in the synthesis of
fatty acids, amino acids, and nucleotides (reviewed in [19]).

The main characteristics of pluripotent stem cells (PSCs) are their
ability to differentiate into multiple cell types and to self-renew in
vitro [22], which is reflected in their metabolic needs [9–12]. In
the continuum of pluripotency, two stable pluripotent stem states
have been derived from the mouse embryo: a naïve pluripotent stem
state, such as embryonic stem cells (ESCs), and a primed pluripotent
stem state, such as epiblast stem cells (EpiSCs) [23–25]. Mouse ESCs
(mESCs) are derived from the inner cell mass of blastocysts and
represent immortalization of the preimplantation embryo, whereas
mouse EpiSCs (mEpiSCs) derived from the postimplantation epiblast
[23]. Hence, mESCs have a more extensive developmental potency
than mEpiSCs, as they can give rise to more cell types. In terms of
metabolic requirements, mESCs are metabolic bivalent: they rely on
both glycolysis and OXPHOS [26, 27]. Interestingly, the transition
from naïve to primed pluripotency is marked by a metabolic switch
toward aerobic glycolysis [26] and an increased activity of the pen-
tose phosphate pathway (Figure 1), which stimulates nucleotide and
lipid biosynthesis [12]. This metabolic switch sustaining anabolic
pathways is reminiscent of the one observed in cancer cells, an effect

Figure 1. Energy pathways in mammalian cells. Metabolic pathways involved

in energy production in mammalian cells. OXPHOS is the most efficient

pathway for ATP production. However, glycolysis in aerobic conditions has

been reported in cancer (where pyruvate is mainly fermented in lactate) and

in ESCs (where the pentose phosphate pathway is more active).

described in the early 1920s by Otto Warburg [28]. However, during
the so-called Warburg effect, metabolic rewiring of cancer cells
and dependence on glycolysis generates an accumulation of lactate
fermented from pyruvate [28]. Thus, metabolic rewiring in stem cells
and cancer cells appears to differ in terms of the relative diversion of
glycolytic metabolites to anabolic pathways, although it serves both
cell populations to accumulate sufficient building materials for their
proliferation.

PGCs development and in vitro modeling

In the mouse embryos, PGCs arise at the end of gastrulation, around
embryonic day 7.5 (E7.5), from a founder population of about 30
to 40 cells (reviewed in [1, 29–31], Figure 2). PGC specification in
the proximal epiblast is initiated by the signaling of WNT3 and
bone morphogenetic proteins (BMP4, BMP2, and BMP8b) from
the extraembryonic ectoderm and visceral endoderm. This signaling
results in the induction of germline transcriptional programs via the
transcription factors PRDM14, BLIMP1/PRDM1, and TFAP2C. As
they migrate through the hindgut endoderm and start to colonize
the genital ridge (from E9.5), PGCs proliferate and undergo a global
epigenetic reprogramming (Figure 2) [32]. PGC transition toward
totipotency is accompanied by a global loss of DNA methylation,
to the lowest reported levels of 5-methylcytosines in mammalian
epigenomes [33–39]. To preserve genomic stability, some loci,
corresponding to transposable elements, such as the retrotransposon
intracisternal A-particle, retain relatively higher levels of DNA
methylation on their long-terminal repeats, thereby resisting the
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Figure 2. Mouse PGCs development and metabolo-epigenetic remodeling. Schematic representation of early embryonic development of PGCs in mouse,

equivalent in vitro cell culture modeling, and main epigenetic remodeling events. mESCs and mouse PGCs (mPGCLCs) are both metabolically bivalent; however,

distinct metabolic signatures are observed, where mESCs promote more glycolysis and mPGCLCs more OXPHOS. On the contrary, the epiblast-like cells

intermediate (mEpiLCs) relies exclusively on glycolysis.

programmed global demethylation during PGC differentiation [5,
35]. Histone remodeling during PGCs transition to totipotency
is also proposed to be functionally coordinated to safeguard the
genome from DNA demethylation [4–6]. Indeed, there is an extensive
reprogramming of histone post-translational modifications [40–
42], including a progressive reduction in histone H3 lysine 9
dimethylation (H3K9me2) followed by an increase in H3 lysine 27
trimethylation (H3K27me3) and a decrease in symmetrical dimethy-
lation of arginine 3 on H2A and H4 (H2A/H4R3me2s) [40–42].

Because the in vivo scarcity of PGCs ordinarily precludes detailed
molecular analyses, much work has focused on developing and
improving in vitro models for PGCs. Direct differentiation of naïve
mESCs is inefficient [43]. However, the groundbreaking work of
Saitou and colleagues 10 years ago proved that by mimicking the
in vivo development and introducing an epiblast-like cells (EpiLCs)
intermediate, murine PGC-like cells (mPGCLCs) could be readily
derived in vitro [43, 44]. In this two-step model, mESCs are first
cultured with Activin A and FGF2 resulting in mEpiLCs that
resemble epiblasts from the post-implantation embryo [43, 44].
The induction of mPGCLCs from mEpiLCs requires supplementing
culture media with cytokines, mainly BMP4 and BMP8b (Figure 2).
Importantly, mPGCLCs have been found to accurately recapitulate

early developmental processes and epigenetic remodeling of mPGCs,
especially with the recent development of extended PGCLC in vitro
culture methods [39, 44, 45].

Metabolic remodeling of PGCs in the reacquisition

of totipotency

Pioneer studies 50 years ago attempted to determine the impor-
tance of metabolism to several phases of embryonic development,
including during PGC differentiation [46, 47]. Early biochemical
characterization in murine germ cells showed that E15 germ cells
oxidize 11 times more pyruvate than glucose, indicating that late
PGCs mainly rely on OXPHOS [46]. The advent of in vitro mPGC
modeling, enabling the acquisition of large numbers of cells, and
the development of high-throughput metabolomic techniques have
recently allowed the refinement of this observation over the span
of PGC early development [48]. Using combined metabolomic and
proteomic approaches, Hayashi et al. were able to examine the
differences in metabolites and proteins in E13.5 mPGCs, gonadal
somatic cells and mESCs [7]. These analyses revealed that both
mESCs and E13.5 mPGCs are metabolic bivalent. However, each
cell type has a distinct metabolomic and proteomic profile and, in
particular, mESCs were found to promote more glycolysis than E13.5
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mPGCs [7]. Furthermore, mPGCs accumulated more enzymes and
metabolites involved in the early part of the TCA cycle, compared to
gonadal somatic cells and mESCs [7], which further allows determin-
ing specific metabolic signatures for each cell type (Figure 2). The
authors also directly assessed OXPHOS activity by measuring the
oxygen consumption rate in mESCs, mPGCLCs (equivalent to E9.5
mPGCs), E11.5 mPGCs, and E13.5 mPGCs [7]. Higher consumption
of oxygen, indicative of higher OXPHOS activity, was observed in
the more differentiated PGCs (Figure 2) [7]. Interestingly, differences
in OXPHOS rate in E13.5 male and female mPGCs were also
observed [7], which indicate sexual dimorphism in the metabolism
of early germ cells [49]. Building on these data, Tischler et al.
investigated in further details how metabolic changes could facilitate
cell state transitions in the mPGCLC model [18]. By analyzing tran-
scriptional changes at the single-cell level during the differentiation
of mESCs into mEpiLCs, they first confirmed that the naïve-to-
primed transition was associated with an upregulation of glycolysis
and a decreased TCA cycle entry (Figure 2) [18]. In particular, the
level of the TCA cycle enzyme isocitrate dehydrogenase (Idh2) that
produces alpha-ketoglutarate (α-KG) was particularly downregu-
lated during mESCs to mEpiLC differentiation [18]. Alpha-KG has
been shown to crucially control developmental potency transition in
stem cells [50, 51]. Because mESCs and mPGCLCs share metabolic
and transcriptional similarities (both being metabolic bivalent and
both expressing naïve pluripotent genes) [7, 44], the authors next
studied the impact of α-KG on mPGCLC fate. Remarkably, the
addition of a cell-permeable and stable α-KG analogue led to a
50% increase in mPGCLC induction from mEpiLCs [18]. Beyond
the consideration of cell culture and the potential to facilitate the in
vitro differentiation of germ cells, these findings are important for a
better understanding of the metabolo-epigenetic control of germ cell
fate. Indeed, α-KG, a metabolite produced in the TCA cycle, is also an
important cofactor for epigenetic dioxygenases such as the enzymes
from the ten-eleven translocation (TET) family that participate in
DNA demethylation and the Jumonji C (JmjC) domain-containing
histone demethylases (JHDMs) [52, 53].

Interplay of metabolism and epigenetics

Metabolic control of epigenetic mechanisms

Epigenetic marks refer to the reversible and heritable modifications
of gene function and/or chromatin states without changes into
the primary nucleotide sequence [54, 55]. Epigenetic mechanisms
include the positioning and remodeling of nucleosomes, histone post-
translational modifications, chemical modifications of DNA itself,
noncoding RNA-mediated modifications of the chromatin structure,
and the three-dimensional organization of chromatin domains in
the nucleus. Chemical modifications of the chromatin by epige-
netic enzymes are metabolically regulated [56, 57]. Indeed, several
metabolites act as cofactors for chromatin modifications (reviewed
in [58, 59]). Here we briefly summarize current knowledge of the
metabolic control in the best-studied cases of chromatin (DNA or
histones) methylation and in the dynamics of histone acetylation.
Of note, multiple new histone post-translational modifications have
been described in recent years that are directly connected with
metabolism. These include different forms of lysine acylation such
as crotonylation [60, 61], malonylation, succinylation, and glutary-
lation [62].

Chromatin methylation refers to the chemical addition of methyl
groups to DNA or to histone tails and is linked to one-carbon

metabolism and the TCA cycle. DNA methylation in mammals
occurs onto the C5 position of cytosine pyrimidine rings (5mC),
mainly in the context of CpG dinucleotides [63, 64]. CpGs can be
found in specific genomic regions termed CpG islands (CGIs) that are
often associated with core promoters of housekeeping genes [65].
Methylation of promoter CGIs generally leads to transcriptional
repression [66], and this epigenetic mechanism has been involved in
a variety of biological processes [64, 67, 68]. Methylation of histone
tails consists in the addition of one, two, or three methyl groups, on
either lysine or arginine residues of histone tails [69]. Similar to DNA
methylation, the outcome of histone methylation on transcription is
locus-specific, depending on the methylated cis-regulatory region
[69]. Importantly, methyltransferases responsible for DNA and
histone methylation solely rely on S-adenosylmethionine (SAM)
as a universal methyl group donor [64]. SAM production derives
from the one-carbon metabolism, a series of interlinked pathways
including the folate and methionine cycles (Figure 3) [70]. Hence,
changes in the one-carbon metabolism will affect SAM levels, with
epigenetic consequences on DNA and histone methylation [15, 70].
For instance, one study found that mESCs derived SAM mostly
from threonine metabolism and that threonine restriction in culture
medium decreased global levels of H3K4me3, leading to slower
growth and loss of pluripotency [71]. Chromatin methylation
is reversible, and the removal of methyl groups is catalyzed by
demethylases. Active DNA demethylation involves TET enzymes,
which iteratively oxidize 5mC into 5-hydroxymethylcytosine
(5hmC), then into 5-formylcytosine (5fC) and 5-carboxylcytosine
(5caC), that can be efficiently removed by base-excision DNA
repair machinery [72]. Histone demethylation can be achieved by
two major types of chemical reactions that have led to categorize
histone demethylases in two classes: the lysine-specific demethylases
(LSD/KDMs) and the JHDMs [73]. As mentioned above, the TCA
intermediate α-KG (that can also be produced by transamination of
glutamate) serves as cofactor for TET and JHDMs (Figure 3) [52,
53]. Again, metabolic changes in α-KG have been found to affect
epigenetic and transcriptional programs both during development
and in tumorigenesis [9, 15]. For instance, mESCs actively use
glucose and glutamate to maintain high levels of α-KG [50].
Exogenous supplementation of α-KG during mESC culture leads
to the demethylation of repressive chromatin marks such as DNA
methylation and H3K9me3, H3K27me3, and H4K20me3, in turn
promoting the self-renewal of naïve pluripotency [50]. The example
of mESCs combined use of SAM metabolism and α-KG metabolism
to epigenetically promote pluripotency programs is particularly
revealing of the complexity of the interplay between metabolism
and epigenetics. Not only are epigenetic marks combinatorial but
metabolic pathways are also interlinked. Hence, methylation and
demethylation of certain loci can be coordinated in the control of
cell fate and in response to environmental changes as dynamically
sensed by metabolic pathways.

The regulation of histone acetylation and deacetylation is tightly
controlled by acetyl-CoA and NAD+ levels and represents another
well-studied example of the interplay between metabolism and epi-
genetics in gene expression. Acetylation of histone tail lysines neu-
tralizes their positive charge, weakening DNA:histones electrostatic
interactions and resulting in an accessible chromatin structure gener-
ally favorable for transcription [74]. Acetylation is catalyzed by his-
tone acetyltransferases that transfer an acetyl group from acetyl-CoA
[74]. Acetyl-CoA can be synthesized in different cellular compart-
ments from multiple sources, as a product from glycolysis through
pyruvate, but also from translocation of mitochondrial citrate or
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Figure 3. Metabolic control of epigenetic mechanisms. Four main metabolites are important in chromatin dynamics. Chromatin methylation depends on the

nuclear level of SAM, deriving from the one-carbon metabolism, and nuclear levels of alpha-ketoglutarate (α-KG), deriving from glutamine or the TCA cycle.

Histone acetylation, catalyzed by histone acetyltransferases (HATs) is dependent upon the levels of acetyl-coA (Ac-CoA), obtained by oxidation of pyruvate or

fatty acids in the mitochondrion. One class of HDACs relies on NAD+ for its enzymatic activity.

from fatty acid through β-oxidation (Figure 3). However, glucose
remains an important source for acetyl-CoA as a decrease of the
glycolytic flux has been shown to significantly reduce intracellular
levels of acetyl-CoA and acetylation of multiple histone lysines
[75]. In fact, aerobic glycolysis in PSCs is crucial for maintaining
acetyl-CoA levels and histone acetylation (particularly on H3K9 and
H3K27), thereby promoting pluripotency programs [27]. Histone
acetylation is reversible and histone deacetylases (HDACs) are a
group of four classes of enzymes that erase the acetylation of lysines

[76]. Of particular importance for the current topic, class III HDACs
(or sirtuins) use NAD+ as a cofactor and can therefore directly
integrate the cells energetic state into epigenetic remodeling [77]
(Figure 3). During glycolysis, NAD+ is reduced to NADH, leading
to lower NAD+/NADH ratios. Therefore, aerobic glycolysis is pro-
posed to reduce sirtuin activity leading to histone hyperacetylation
[15]. Indeed, studies showed that SIRT1 regulates pluripotency by
promoting deacetylation of histones [78] and that during the naïve-
to-primed transition SIRT1 activity is reduced [79]. However, the
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compartmentalization of both sirtuins and enzymes involved in
NAD+ metabolism complexifies the role of sirtuins as sensors of
cellular energetic states [59].

Epigenetic control of cell metabolism

The relationship between epigenetics and metabolism is bidirectional
with examples of metabolic genes being regulated at the epigenetic
level, particularly in several types of cancer [15]. For instance, the
hexokinase isoform 2 (HK2), a key enzyme in glycolysis, is upreg-
ulated through DNA demethylation of their promoter-associated
CGIs in liver cancer [80]. In addition, environment factors, such as
stress, toxicant exposures, or nutrition, can modulate metabolism
via epigenetic mechanisms [81–83]. For example, high-fat diet in
rats results in increased DNA methylation and epigenetic silencing
of hepatic enzymes promoters [84–86]. Ethanol exposure limits the
availability of SAM, thereby altering DNA methylation profiles [87].

Few studies have addressed the environment-mediated epigenetic
control of stem cell metabolism and how this affects potency pro-
grams. Indeed, studies on the impact of the surrounding environment
on stem cell metabolism through epigenetic mechanisms have been
motivated by in vitro culture systems, with metabolites increasing
reprogramming efficiency of induced PSCs [14] or facilitating ESC
culture [18, 50]. This is also true for the embryonic counterparts
of stem cells, since studies on the environmental and epigenetic
effects on the preimplantation embryo metabolism have largely been
motivated by increased use of assisted reproductive technologies
[88]. In this context, a fundamental understanding of how epigenetic
mechanisms integrate environment changes in the metabolic control
of cell fate is needed. For PGCs, this will provide insights both in
their homeostatic development in utero and in their contribution to
transgenerational inheritance of certain phenotypic traits.

Implications for PGCs development and

transgenerational epigenetic inheritance

What causes metabolic switches during PGC reacquisition of totipo-
tency in homeostatic conditions still needs to be answered. The
metabolic switch occurring during naïve-to-primed transition has
been proposed to be the result of the hypoxic environment of the
endometrium where the blastocyst is implanted relative to the uterine
cavity [26]. However, in this context, why OXPHOS progressively
increases during PGC development is still unknown but appears
important to actively promote germ cell epigenetic remodeling in a
deterministic manner. Indeed, the reliance of TET and JHMDs on
OXPHOS, and particularly on α-KG, suggests that they are involved
in the chromatin demethylation observed during PGC reacquisition
of totipotency (Figure 2). Both TET1 and TET2 participate in PGCs
DNA demethylation [36] and α-KG elevation correlates with lower
levels of the DNA methyltransferases DNMT3A/DNMT3B [18].
Thus, α-KG could stimulate active DNA demethylation while pre-
venting de novo DNA methylation. Furthermore, α-KG elevation
also correlates with both a global increase in H3K27me3 and a
global decrease in H3K9me2 in EpiLCs [18], although the epige-
netic enzymes involved have not been characterized. Interestingly,
a recent study reported that JMJD1B (also known as KDM3B)
possesses an arginine demethylase activity for H4R3me2s in addition
to its lysine demethylase activity for H3K9me2 [89]. As JMJD1B
demethylase activity is dependent on α-KG [89] and because both
histone marks decrease along PGC development ([40–42], Figure 2),
JMJD1B appears as an interesting candidate for the observed histone

remodeling in PGCs. In addition to these global changes, local chro-
matin changes are expected to occur [15, 90], especially on certain
cis-regulatory regions participating in the control of germline mark-
ers. Thus, current data, despite incomplete, support that actively
promoting OXPHOS during PGC development facilitates their epi-
genetic remodeling.

In addition to these fundamental mechanistic questions, another
unclear aspect is how the environment can affect PGC epigenetic
remodeling through changes in the metabolism. The concept of envi-
ronmental transgenerational epigenetic inheritance (TEI) proposes
that environmental exposures can affect the phenotypes of succes-
sive generations in the absence of continued direct environmental
influences and through germline epigenetic mechanisms (reviewed
in [91]). While multiple studies report mammalian transgenerational
inheritance in response to toxicants such as the agricultural fungicide
vinclozolin, plastic-derived compound (such as bisphenol A), or
hydrocarbons, the epigenetic mechanisms at play remain elusive [92–
94]. So far, most studies have focused on later developmental stages
of germ cells, such as mature gametes [95], with little attention
to PGCs. However, PGCs epigenetic remodeling could constitute
a sensitive developmental window for exposure memory. In addi-
tion, while most toxicants are known to impact metabolism, TEI
mechanisms in PGCs have not been examined in light of metabolo-
epigenetic control of gene expression. In this sense, the metabolism
acts as an intermediate between environmental changes and epige-
netic remodeling in the germline and its potential transmission to the
next generation. Proving this hypothesis would, however, necessitate
the identification of the epigenetic mechanisms of transgenerational
inheritance through the early developmental stage of PGCs, whether
they occur in specific loci in the endovirome [96] acting as hotspots
for TEI [92, 97] and/or involving a concerted epigenetic and tran-
scriptional control of gene expression [98].

Conclusion

An increasing number of studies points toward the importance of
a metabolo-epigenetic control of developmental potency of stem
cells. This is underlined by the conservation of the interplay between
epigenetics and metabolism along development, and its relevancy
at different embryonic stages and in different embryonic lineages,
including now in germ cells. Crucial fundamental questions still
need to be answered, including why is metabolism rewired and
what are the consequences of these metabolic switches on PGC
epigenetic and transcriptional programs. The metabolo-epigenetic
control of germline fate also brings an additional layer of complexity
in studies on environment exposures that alter cell metabolism
and their potential transgenerational inheritance. Finally, harnessing
metabolism in cell differentiation constitutes a formidable tool for in
vitro differentiation of stem cells, which in the context of germ cells
could provide therapeutic options in the treatment of infertility [47,
99].
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