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ABSTRACT OF THE DISSERTATION

Majorana Zero Modes in Superconducting Rings and Arrays

by

Ali Beyramzadeh Moghadam

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, December 2016

Dr. Kirill Shtengel, Chairperson

Majorana zero modes are zero energy excitations with unusual (non-Abelian) statistics

that offer a promising platform for quantum computation. These modes are theoretically expected

to exist in a variety of physical systems, most prominently in chiral p-wave superconductors. In the

case of a spinless (or spin-polarized) superconductor, a conventional vortex – a topological defect

that carrying one quantum of superconducting magnetic flux – would host such a zero mode. In the

presence of spin degrees of freedom, however, such a mode would require a half quantum vortex, i.e.

a vortex characterized by a half-integer number of the superconducting flux quanta. To guarantee

the single-valued nature of the order parameter, a non-trivial spin texture is required, which would

allow the order parameter to pick up an additional factor of −1 around the vortex.

Half-integer flux quantization has been observed in mesoscopic rings of superconducting

Sr2RuO4. This finding suggests a chiral p + ip nature of the superconducting order parameter.

Under the assumption that the d-vector (which parametrizes the triplet pairing) lies in the plane of

a 2D superconductor, such rings are expected to support Majorana zero modes at their inner and

outer edges. However, such modes have not been directly observed in experiments. More recently,
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H.-Y. Kee and M. Sigrist argued that the spin-orbit coupling in such systems can stabilize a different

spin texture, also consistent with half quantum vortices. That spin texture is characterized by the

presence of a so-called d-soliton –a radial domain wall between the regions where the d-vector is

oriented in the positive and negative z-directions.

Our theoretical investigation of superconducting rings with d-solitons confirms the exis-

tence of two Majorana zero modes, one at each boundary. Furthermore, the presence of a d-soliton

alter the hybridization between the localized Majorana modes at the inner and outer boundaries.

In addition to chiral p-wave superconductors, some index theorem-like arguments can be

used to predict Majorana zero modes in an array of vortices in chiral d-wave superconductors, our

numerical studies did not produce any evidence of Majorana zero modes in such systems.
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Chapter 1

Introduction

Recently Majorana zero modes have been attracting a lot of attention,1–3 both theoretical

and experimental, due to their unusual property – the non-Abelian braiding statistics.4 As a re-

sult, they offer a promising platform for topological quantum computation.5–7 One of the physical

systems predicted to support these zero modes is a chiral p+ ip superconductor.8, 9 If such a super-

conductor is effectively spinless (e.g., by the virtue of being spin-polarized), a Majorana zero mode

is bound to a vortex core. The presence of the spin degree of freedom, however, makes this situa-

tion more interesting and complex. In this case Majorana zero modes are hosted by half quantum

vortices, i.e. vortices where the phase of the superconducting order parameter winds by π (instead

of 2π) around the vortex core. The required single-valued nature of the order parameter is ensured

by a concomitant π-rotation of the spin quantization axis.4

Experimental search for half quantum vortices has been motivated by the suggestion that

the superconducting state in Sr2RuO4 may be described by the chiral p-wave order parameter.10

However, isolated half quantum vortices have not been seen in the bulk material. A possible rea-

1



son for their absence is that they may be energetically unfavorable in comparison to full quantum

vortices. This is because the spin current associated with a half quantum vortex is not screened at

large distances, unlike the conventional supercurrent.11 This consideration would rule out their ex-

istence in bulk samples. However, this still leaves us with two physical scenarios for realizing half

quantum vortices. Firstly, there is a possibility for their existence in compound objects, whereby

two half quantum vortices with opposite spin windings are paired together, thus canceling the spin

currents at large distances. The second, more interesting scenario can be realized by simply en-

forcing a physical cutoff for those currents, which would naturally happen in a mesoscopic sample.

It is therefore likely that this second possibility is in fact realized in mesoscopic rings where the

observation of half-height magnetization steps has been reported by Jang et al.12 However, there is

no direct evidence of Majorana zero modes in these systems, even though one would naı̈vely ex-

pect their existence whenever the flux through a ring is a half of the superconducting flux quantum.

Whether or not such Majorana zero modes actually exist in these rings is an interesting question in

light of the resent model put forward by Kee and Sigrist13 which proposes a different spin texture

for half quantum vortices in these experiments, compared to the one for which the existence of zero

modes had been theoretically established.4

In chapter two we review the basic concepts of superconductivity and introduce vortices

in type II superconductors and further we discuss the presence of excitation that are bonded to

the core of vortex while we focus on the low energy behavior of such states. Moreover, we talk

about spinless p + ip superconductors and their role to observe Majorana zero modes. We solve

the Bogoliubov-de Gennes(BdG) equations exactly for zero energy to demonstrate the behavior

of Majorana zero modes in this chirality. Afterwards, we study the topological characteristic of
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different phases and we show that only in topologically non-trivial phases Majorana zero modes

can be observed. we conclude the chapter by moving to spinful superconductors and effect of spin

on Majorana zero modes.The goal of chapter three is to demonstrate the existence of Majorana zero

modes in the model introduced by Kee and Sigrist. We will use numerical methods to solve BdG

equations in this model. In chapter four using the exact solution we found in chapter two we study

the energy splitting between two Majorana modes due to their hibridization across a narrow ring. In

chapter five, we look at a completely different problem to see if it is possible to observe Majorana

zero modes in d-wave superconductor.
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Chapter 2

Low energy behavior of states bonded to

the core of a vortex

In this chapter we briefly review the basic concepts of superconductivity while we focus

on p-wave superconductors. Further we study the system in presence of vortices- a vortex is a topo-

logical defect exhibited in type II superconductors- and we also mention energy spectrum of the

states that are bonded to a the core of a vortex. We will show that in the p-wave superconductors

there are modes with zero energies that are localized around the vortex core. Moreover we studies

the low energy behavior of such states and properties of their wavefunctions. Adding the pin to the

mixture would make things a lot lore interesting which results in making these zero modes unsta-

ble. To stabilize, we look at the configuration of half quantum vortices and the energy spectrum’s

alternation.
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2.1 s-wave superconductors

Most theories of superconductivity are based on a theory first introduced by Bardeen,

Cooper and Schrieffer (BCS) in 1957.14, 15 The ground state can be presented as a Bose conden-

sate of pairs of electrons. The BCS mean-field theory assumes a underlying attractive interaction

between each pair of electrons. In s-wave superconductors the order parameter is taken to be a

spherical symmetric function that links two opposite spins(up and down) to each other. The effec-

tive BCS Hamiltonian can be written as

H =
∑
kσ

[
ξk c

†
kσckσ +

(
∆∗ c−k↓ck↑ + ∆ c†k↑c

†
−k↓

)]
(2.1)

where ξk = εk − µ, εk is the single-particle kinetic energy, µ is chemical potential, σ (↑ or ↓) runs

over spins and ∆ is the order parameter for the s-wave superconductors. In order to simplify the

notation we would employ the Nambu spinor representation

Ψ†k =

(
c†k↑ c−k↓

)
, Ψk =

 ck↑

c†−k↓

 (2.2)

and write the Hamiltonian as

H =
∑
k

Ψ†k

 ξk ∆

∆∗ −ξk

Ψk +
∑
k

ξk (2.3)

Using a so-called Bogoliubov (Unitary) transformation one can diagonalize the Hamiltonian (Eq.

2.3).  γk↑

γ†−k↓

 =

u∗k v∗k

vk −uk


 ck↑

c†−k↓

 (2.4)

Here the functions uk and vk are complex and to ensure Unitarity they should satisfy |uk|2 + |v2
k| =

1, so that the new operators,γk,σ, obey fermionic commutation rules {γk,σ, γ†k′,σ′} = δk,k′δσ,σ′ . The
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diagonalized Hamiltonian can be written as

H =
∑
kσ

Ekγ
†
kσγkσ +

∑
k

(ξk − Ek) (2.5)

withEk ≥ 0. Since the constant only shifts the energy we can drop it and determine the Hamiltonian

with its commutation rules

[H, γkσ] = −E γkσ (2.6)

[H, γ†kσ] = E γ†kσ (2.7)

In order to find the solution for Ek, uk and vk one obtains Bogoliubov-de Gennes (BdG) equations ξk ∆

∆∗ −ξk


uk
vk

 = Ek

uk
vk

 (2.8)

which result in

Ek =
√
ξ2 + |∆|2 (2.9)

vk/uk = (Ek − ξk)/∆ (2.10)

|uk|2 =
1

2

(
1 +

ξk
Ek

)
(2.11)

|vk|2 =
1

2

(
1− ξk

Ek

)
(2.12)

k

Ek

∆

Figure 2.1: Energy spectrum of a s-wave super-

conductors, Ek, as a function of k

These equations would determine the functions uk and vk up to a phase which does not change any

of the physics of the problem. Eq. 2.6 and Eq. 2.7 show that if there is a solution with energy Ek,

its particle-hole symmetric counterpart has energy of −Ek.
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Next we study the quasiparticle spectrum in the presence of vortices for s-wave supercon-

ductors. Vortices are topological defects which carry an integer flux quanta. In two dimensions a

vortex can be considered as a small circle with vanishing density at the center. For such a system,

the superconducting order parameter is given by

∆(r) = eimθf(r) (2.13)

where r and θ are polar coordinates centered on the vortex, f(r) is a real function of r that vanishes

at the center and would take the mean-field value of superconducting order parameter (∆0) as r →

∞ (see Fig. 2.2) and m is the winding number of the vortex (vorticity).

r

f(r)

∆0

ξ

Figure 2.2: Superconducting order parameter profile in presence of a vortex has been simulated with

f(r) = ∆0 tanh( rξ ) where ∆0 is the mean-field value of superconducting order parameter and ξ is

the vortex’s core radius.

For winding number, m = ±1 one can write the BdG equations (Eq. 2.8) in real space as
− 1

2m∇2 − µ eiθf(r)

e−iθf(r) 1
2m∇2 + µ



u(r)

v(r)

 = E


u(r)

v(r)

 (2.14)

which are a set of two differential equations and can be solved exactly.16 The low energy behavior

7



of the fermionic states bounded to the vortex core are quantized16 as

E = (n+
1

2
)ω0 (2.15)

where n is related to the angular momentum of the fermionic states8 and ω0 is the level spacing

which is much smaller than the energy gap, ω0 ∼ ∆2
0/EF � ∆0.

2.2 Majorana zero modes in the spinless p+ ip superconductors

Not long after BCS theory, it has been shown that the theory can also support non-zero

relative angular momentum for paring electrons. While in general a l-paired state can have gapless

point on its Fermi surface, one might find a particular pairing with completely gapped spectrum.

Focusing on p-wave superconductors, one can show p+ ip order parameter would show the gapped

states throughout the whole Fermi surface. In two dimensions, a spinless p+ ip superconductor can

be modeled as

H =

∫
d2r

{
ψ†(−∇

2

2m
− µ)ψ − ∆0

2

[
eiφψ† (∂x + i∂y)ψ

† + H.c.
]}

(2.16)

where m is the effective mass, µ is the chemical potential and ∆0 ≥ 0 is the p-wave pairing

amplitude while φ is the superconducting phase. One should notice that here unit of ∆0 in contrast

to s-wave is energy × length. Here we take superconductivity order parameter to be uniform to

find the bulk energy spectrum, though we relax this condition later when we talk about vortices.

In a system with periodic boundary condition along both x and y axes (i.e. on a torus), one can

diagonalize the Hamiltonian (Eq. 2.16) by going to momentum space. Defining Ψ†k = ( c†k c−k ),

8



one would get

H =
1

2

∑
k

Ψ†kHkΨk

Hk =


ξ(k) −i∆0e

iφ(kx + iky)

i∆0e
−iφ(kx − iky) −ξ(k)

 (2.17)

with ξ(k) = (k2/2m)− µ. A unitary transformation of form γk = ukc
†
k + vkc−k can diagonalize

the matrixHk with energy eigenvalues of

Ebulk(k) = ±
√
ξk + ∆2

0k
2 (2.18)

and in terms of these quasiparticle operators the Hamiltonian can be written as

H =
∑
k

Ebulk(k)γ†kγk . (2.19)

For any positive chemical potential the bulk is fully gaped (Egap = ∆0kF = ∆0

√
2m|µ|). As µ

decreases, one can see that the gap closes at µ = 0 due to the fact that Pauli exclusion prohibits

p-wave pairing at k = 0. The gap would open again as we go to negative chemical potential. It has

been shown that these two phases exhibit different topological phases.1, 9

To expose the topological differences of these two regimes, we consider a two dimensional

superconductor describe by a Hamiltonian of form17

H(k) = h(k) · σ (2.20)

where h(k) is non-zero for all values of k. One can map the 2D momentum space to a unit sphere

by defining a unit vector ĥ(k). The number of times that this map covers the entire unite sphere

9



defines Chern number which is topologically invariant. Formally one can write

C =

∫
d2k

4π
ĥ ·
(
∂kxĥ× ∂ky ĥ

)
(2.21)

the integrand measures the solid angle that ĥ(k) sweeps on the unit sphere. Taking the integral over

the all k would give an integer that is invariant under deformations of ĥ(k) as long as the gap does

not close. The Chern number can only change by closing the gap and making ĥ(k) ill-defied at

some point in the momentum space.

Considering Hamiltonian in Eq. 2.17 by taking φ = 0 (since we assumed φ is constant

this can be done by a gauge transformation) we can determine that hz(k) = ξ(k), hx(k) = ∆0ky

and hy(k) = ∆0kx. For µ < 0 phase, ξ is always positive and therefore the unit vector ĥ(k)

cannot sweep the lower hemisphere. One can conclude that the Chern number for negative chemical

potential has to be zero which means this phase is topologically trivial state. On the other hand, for

positive chemical potential the unit vector is pointing to the south pole at k = 0 (ĥ(0) = −ẑ) and

as we increase k it moves toward the to north pole when k →∞. By calculating the Chern number

using Eq. 2.21 one obtains C = −1 for p + ip superconductors which would prove that µ > 0 has

an non-trivial topological phase.18–20

Hamiltonian 2.16 can be diogonalized in the basis of quasiparticle operators γ† = uψ† +

vψ. The corresponding BdG equations can be written as

[H, γ†] = Eγ†. (2.22)

Due to presence of particle-hole symmetry one can show that if γ† is the solution for energy E

there is solution of form γ with Energy −E. This would prove that zero modes (solutions with zero

energy) are self-conjugate (Majorana) fermions

γ†(E = 0) = γ(E = 0) (2.23)

10



We should mention that Majorana zero modes exhibit non-Abelian statistics4 which would make

them a useful platform for topological quantum computation. Next search for Majorana zero modes

in different setups.

2.3 The exact solution for Majorana zero modes in the spinless p+ ip

superconductors

It has been shown that for p-wave superconductors with odd vorticity one can construct

a normalizable solution to support Majorana zero modes.8, 9 Here we will solve BdG differential

equations exactly to show the behavior of the Majorana zero modes. As we promised earlier now

we let order parameter to be a function of position and therefore we need to tweak Eq. 2.16 to be

symmetric for order parameter. Using the properties of Majorana zero modes (u = v∗) one can

write the BdG differential equations in real space as

− 1

2m
∇2u− µu−

√
∆ (∂x + i∂y)

√
∆u∗ = 0 (2.24)

Order parameter is assumed to have vorticity of one,

∆0e
iθ (2.25)

where θ is the polar angle and further we assume that ∆0 is constant everywhere except inside an

infinitesimally small core.

With a unitary transformation of u→ u eiθ/2, Eq. 2.24 transforms to

(
− 1

2m
∇2 +

1

2mr2
− µ

)
u−∆0

(
∂r +

i

r
∂θ +

1

2r

)
u∗ = 0. (2.26)

11



Further we assume that the solution is a spherically symmetric function u(r), reducing Eq. 2.26 to

(
− 1

2m
∂2
r −

1

2mr
∂r +

1

2mr2
− µ

)
u−∆0

(
∂r +

1

2r

)
u∗ = 0. (2.27)

Since u(r) is a complex function, one can write it as u(r) = u1(r)+iu2(r) and solve the differential

equations for real and imaginary parts separately. The solution for the real part u1(r) is

u1(r) = e−m∆0r


c1J1 (rα+) + c2Y1 (rα+) µ > 1

2m∆2
0

c3I1 (rα−) + c4K1 (rα−) µ < 1
2m∆2

0

(2.28)

with

α+ =
√

2mµ−m2∆2
0 , α− =

√
m2∆2

0 − 2mµ .

where J1(r) and Y1(r) are Bessel functions of first and second kind respectively and I1(r) and

K1(r) are modified Bessel functions. The only difference in the case of u2(r) is the sign of expo-

nent;

u2(r) = em∆0r


c1J1 (rα+) + c2Y1 (rα+) µ > 1

2m∆2
0

c3I1 (rα−) + c4K1 (rα−) µ < 1
2m∆2

0

. (2.29)

Since Y1 and K1 are not well-behaved at the origin we can put them aside for now and

focus on the behavior of functions J1 and I1. In Fig 2.321 a sketch of u1 and u2 is plotted. One can

notice that both solutions associated withu2 are not normalizable and therefore they are not valid.

On the other hand u1 is selecting the Majorana zero modes that are bonded to the core of vortex.

Now let us look at a little bit more closely to the phase with trivial topology. One would

expect not to observe any Majorana zero modes when chemical potential is negative. We should
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Figure 2.3: The well-behaved solutions to BdG equation at origin are plotted with parameters m =

.5, ∆ = .5 and two different value for chemical potential in order to respect the condition set by the

analytic results. For α+ chemical potential is chosen to be µ = .5 and µ = .05 for α−. (a) shows

that u1 is bonded to the core of the vortex while (b) reveals that functions associated to solution u2

are not normalizable.

examine the behavior of u1 for µ < 0 and see if we can observe any normalizable wavefunction.

The asymptotic behavior of u1 at large radii can be written as

u1(r) ∼ e(α−−m∆0)r (2.30)

In the case of µ < 0, α is greater thanm∆0 which makes u1(r) to go to infinity as r →∞ therefore

there is no valid solution for trivial topological region.
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2.4 Numerical results for Majorana zero modes in p + ip supercon-

ductor on an annulus

In order to numerically solve the BdG equation and search for Majorana zero modes, one

by discritizing the BdG Hamiltonian in the real space (Eq. 2.16) can write22

H =
∑
i

(4t− µ)ψ†iψi − t
∑
〈i,j〉

ψ†iψj −
1

2

∑
〈i,j〉

(
∆ijψ

†
iψ
†
j + H.c.

)
(2.31)

with

t =
1

2ma2
∆ij =

1

2
∆0 χij e

iθi↔j (2.32)

χij = ± δj,i±x̂ ± iδj,i±ŷ θi↔j =
1

2
(θi + θj) (2.33)

where a is the lattice constant, t is the unit of energy and χij is the chirality factor that implement

the p+ ip pairing. For the discretized Hamiltonian, the bulk energy can be written as

Ebulk(k) = ±
√
ε(k)2 + ∆2

0

[
sin2 (kx) + sin2 (ky)

]
(2.34)

with

ε(k) = 4t− µ− 2t [cos(kx) + cos(ky)] . (2.35)

The energy spectrum has gapless points at µ = 0, 4t, 8t. One can show that only 0 < µ < 4t and

4t < µ < 8t would show topologically non-trivial phase and therefore they are the subject to search

for Majorana zero modes. Moreover we can show that the mapping

µ→ 8t− µ , ψn → einπ ψn (2.36)

14
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Figure 2.4: The behavior of energy spectrum as a function of system size is plotted. The system

contains a p+ ip superconductor on an annulus with presence of a vortex at its origin. The chemical

potential is chosen so that the system exhibit a non-trivial topological phase. Here used µ/t = 2,

∆0/(at) = 1, R1/a = 40 and R2 is the outer radius of the annulus.

would transform each of these two region to another one while keeping the spectrum intact (H →

−H) therefore we only consider 0 < µ < 4t in our numerical studies.

The geometry we use here is an annulus with inner and outer radii of R1 and R2 respec-

tively. In Fig 2.4 we plotted the energy spectrum of the system while we only kept the positive

energies since the particle-hole symmetry can relate each of them to their counterpart with negative

energy. Here there are two types of modes, first the one whose energies remains constant as system

size increases. These are the modes which are localized around the inner edge of the system. These

15



modes are normalizable in thermodynamic limit (R2 → ∞) and are bonded to the core of the vor-

tices. Second, the modes which their energies are decreasing linearly with 1/R2. These modes are

the ones which are located around the outer ring and are not normalizable in the thermodynamic

limit.

Figure 2.5: The numerical result for one of Majorana zero modes which is localized around the

outer ring of annulus has been plotted. . (a) and (b) display the the square of the absolute value

of u and v respectively while In (c) and (d) we plotted the radial dependency of those mentioned

functions. The parameters are µ/t = 2, ∆0/(at) = 1, R1/a = 40 and R2 = 118.

Numerically we would find two distinct Majorana zero modes (two orthogonal state with

energy of zero), one of which is localized around the inner radius while the other one is located at

the outer edge. In Fig 2.5 and Fig 2.6 we plotted square of the absolute value of these eigenfunctions
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Figure 2.6: The numerical result shows that another one of Majorana zero modes is localized around

the inner ring of annulus. . (a) and (b) display the the square of the absolute value of u and v

respectively while In (c) and (d) we plotted the radial dependency of those mentioned functions. We

used the parameters µ/t = 2, ∆0/(at) = 1, R1/a = 40 and R2 = 118.

on the annulus also since the we plot them as a function of radius.

2.5 Spinful p-wave superconductors and half quantum vortices

Addition of spin make the problem subtle while much more interesting. Order parameter

can be written as a 2 × 2 matrix to support spin degrees of freedom. Formally, one can write the

order parameter for triplet spin paring as

17



∆αβ(k) = d(k) · (σiσy)αβ (2.37)

where σi(i = x, y, z) are Pauli matrices and vector d(k) determines the spin texture. Pauli exclusion

principle dictate d(k) to be an odd function of k. Explicitly for p + ip superconductor one can

write23

∆(k) = ∆0e
iφ

 −d̂x + id̂y d̂z

d̂z d̂x + id̂y

 (kx + iky) (2.38)

where ∆0 is the magnitude of the paring, φ is the phase of the superconductor and d̂ is the unit vector

on which the projection of Cooper pair spin is zero. introducing spin would make the excitation

spectrum to be two-fold degenerate (Ek,↑ = Ek,↓)

For triplet equal spin pairing, d̂ is in ẑ direction and to include the vortex we can use the

polar angle as the superconducting phase.

∆(k) = ∆0e
iθ

 0 1

1 0

 (kx + iky) (2.39)

By looking for Majorana zero modes one can show that there are two orthogonal modes that are

bonded to the core of vortices which would make them unstable for observation24 (any perturbation

like Zeeman splitting or spin-orbit interaction would destroy the Majorana zero mode in full quan-

tum vortices). half quantum was introduced to stabilize Majorana zero modes. In the half quantum

vortices , phase of superconducting order parameter winds by π( instead of 2π) around the vortex

core. For a half quantum vortex to exist, the vector d̂ must be able to rotate to ensure the single-

valuedness of order parameter. The Order parameter would map to itself under change of sign of

vector d̂ and shift of the phase φ by π : (φ, d̂) 7→ (φ + π,−d̂). The simplest half quantum vortex

18



can be written as

φ = θ/2, d̂ = cos(θ/2)x̂+ sin(θ/2)ŷ . (2.40)

these parameters would simplify the order parameter as

∆ = ∆0

−1 0

0 eiθ

 (kx + iky) (2.41)

which shows only one full vortex in the down spin and no vortex in the up spin. Consequently in this

configuration only one Majorana zero mode can be observed for each boundaries of the topological

region.

Although, Majorana zero modes in the systems exhibiting half quantum vortices are sta-

ble to any local perturbation (including spin orbit interaction and Zeeman splitting), isolated half

quantum vortices have not been seen in the bulk material. In the next chapter we talk about the

possible reasoning why they have not been observe and how to overcome them.
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Figure 2.7: A system supporting half quantum vortex exhibit only one Majorana zero mode for each

boundaries of the system. One can see that only down spin here display the Majorana zero modes

on the boundaries. For the numerical calculation we used ∆0/(at) = .5, µ/t = 2, R1/a = 20 and

R2/a = 165
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Chapter 3

Majorana zero modes in p+ip

superconducting rings with half

quantum flux in the presence of

d-solitons

As we mentioned in the chapter 2, isolated half quantum vortices have not been observed

in the bulk material. One of the reasons can be that the spin current unlike the normal suppercurrent

does not screened at large distances and that would increase the energy of a half quantum vortex

compare to a full quantum vortex. One using a mesoscopic rings can put a cutoff on the logarithmic

term in energy due to spin current and resolve the problem.

The other problem for observing half quantum vortices is presence of the spin orbit in-

teraction.25 In reality any material has non-zero spin orbit coupling that would contribute to the
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energy

Eso = −λso(d̂ · l̂)2 (3.1)

Where λso is spin orbit coupling, d̂ is the spin texture and l̂ is a preferred direction in the orbital space

giving the direction of the Cooper pair angular momentum. For p + ip pairing l̂ is in ẑ direction

and for a half quantum vortex d̂ lies in x − y plane which shows that the Eso is at its maximum

(Eso = 0).

A Model has been proposed by Kee and Sigrist13 to show that half quantum vortex can

have lower energy than a full quantum vortex in presence of in plain magnetic field and non-zero

spin orbit coupling.

3.1 The Model

In General the BdG Hamiltonian in Nambu-spinor notation in momentum space can be

written as

HBdG =
1

2

 ε(k)σ0 ∆(k)

∆†(k) −ε∗(k)σ0

 (3.2)

where

ε(k) =
(
~2k2/2m− µ

)
(3.3)

is the single particle kinetic energy, µ is the chemical potential, m is mass and for p+ ip supercon-

ductors ∆(k) is define in Eqs. (4.8) and (4.9) while d̂ and φ are given by

d̂ = ẑ cos (αθ) + θ̂ sin (αθ)

φ = −4 sr arctan [eθ/l] + (sr +
1

2
)× (θ + π) (3.4)
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with

αθ = 2 arctan [eθ/l] (3.5)

l =

√
K

λsoR2
in

(1− 4s2
r) (3.6)

where−π < θ < π is the polar angle, sr is the radial component of the in-plane spin magnetization,

K is the stiffness, Rin is the inner radius of the annulus and λso is spin-orbit coupling.

In this model in order to guarantee the single-valuedness of order parameter l has to be

small, l � π, therefore α and φ are bounded between 0 and π. By this formulation αθ varies such

that around θ = 0 the d-vector changes from ẑ to −ẑ this is a d-soliton centered around θ = 0 (see

Fig. 3.1). This would result in having a half quantum vortex.

−π 0 π
θ

0

π
2

π

φ

αθ

Figure 3.1: The behavior of αθ and φ are shown as a function of θ. For illustration we took λsoR
2
in =

5K and sr = 1/8. The d-soliton is centered around θ = 0

The bulk excitation energies are given by

Ebulk(k) = ±1

2

√
ε(k)2 + ∆2

0k
2 (3.7)
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This equation shows that the bulk energy spectrum is gapped and for µ > m∆2
0/~2 the gap would

be given by EGap = ∆0kF . For positive µ the system is in a topological parameter region.

3.2 The Solution

In this section we will use numerical calculation to find the energy spectrum and the

behavior of the ground state in this model. The goal is to show that the energy of Majorana zero

mode would go to zero exponentially as a function of system size. In order to solve this problem

numerically one should write the BdG Hamiltonian in the real space discretizwe and diagonalized

the Hamiltonian. The BdG Hamiltonian in the real space can be written as

HBdG =
1

2

 (−t∇2 − µ)σ0 −i∆(r) (∂x + i∂y)

−i∆∗(r) (∂x − i∂y) −(−t∇2 − µ)σ0

 (3.8)

where t = ~2
2m is the hopping parameter and ∆(r) is a 2× 2 matrix

∆αβ(r) = ∆0e
iφd̂ · (σiσy)αβ (3.9)

where φ and d̂ are defied in Eq. 4.11

By discretizing the BdG equations we can exactly diagonalize the Hamiltonian and look

for the lowest energies.

H =
∑
i,σ

(4t− µ)ψ†i,σψi,σ − t
∑
〈i,j〉

ψ†i,σψj,σ+

1

2

∑
〈i,j〉σσ′

∆σσ′
ij ψ†i,σψ

†
j,σ′ + H.c. (3.10)
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where

∆αβ
ij =

1

2
χij∆αβ (3.11)

χij = ∓i δj,i±x̂ ± δj,i±ŷ (3.12)

where χij is taking care of the p+ ip chirality. After discretizing the dispersion of bulk energy can

be reduced to

ε(k) = 4t− µ− 2t [cos(kx) + cos(ky)] (3.13)

Ebulk(k) = ±1

2

√
ε(k)2 + ∆2

0

[
sin2 (kx) + sin2 (ky)

]
(3.14)

The spectrum has gapless points for µ = 0, 4t, 8t. Therefore one can show that the

system is in topological phase for 0 < µ < 4t or 4t < µ < 8t. Since by shifting chemical potential

µ→ 8t− µ and a unitary transformation ψn,σ → einπψn,σ Hamiltonian would take a negative sign

H → −H , there is a mapping between these two topological regions and therefore we can focus

our attention attentions only on the region 0 < µ < 4t. Moreover, in order to make sure magnitude

of order parameter ,∆0, keeps its physical meaning, i.e. bulk gap being proportional to magnitude

of order parameter ,EGap ∼ ∆0 the chemical potential is restricted to

∆2
0

2t
< µ < 4t− ∆2

0

2t
(3.15)

In this limits one can show the bulk gap is given by

EGap = ∆0

√
µ

t
− µ2

4t2
(3.16)

Using exact diagonalization one can find the energy spectrum of the well localized modes

on a annulus. Our investigation shows that there is one Majorana zero mode for each boundary
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Figure 3.2: The energy spectrum for localized modes as a function of inverse of the outer radius

1/Rout. Here we took µ/t = 2, ∆0/t = 0.5 and Rin = 40

of the system. As shown in the Fig. 3.2 there are two degenerate zero modes due to particle-hole

symmetry which are localized on inner and outer rings of the system. The modes with energies

that goes to zero linearly as a function of inverse of outer radius, i. e. 1/Rout , are localized on the

outer edge and are not normalizable in the thermodynamic limit. On the other hand the modes that

are localized on the inner radius of the system have constant energies as we increase the size of the

system.

In the simplest half quantum vortex on an annulus, the energy of the inner-edge modes are
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quantized as Evortex ∼ n∆0/Rin where n is an integer and Rin is the inner radius of the annulus.1

By generalizing the result, one can show that for the Majorana modes localized at the inner annulus

edge, the energy spectrum can be simplified as

Ein = nω, ω =
∆0

Rin

√
1− µ

4t
(3.17)

which was confirmed numerically.
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Chapter 4

Energy splitting of two Majorana zero

modes in finite size systems

It has been shown that Majorana zero modes can display energy splitting due to intra-

vortex tunneling in p + ip superconductors. By preparing two vortices and looking at the energy

splitting behavior as a function of distance between them, one would observe an oscillation on top

of exponentially decaying function.26

In this chapter our goal is to find the energy splitting of Majorana zero modes in finite size

systems due to small but non-zero overlap between them. Let us prepare a system on an annulus

whose chemical potential is positive (topological) in the middle and negative elsewhere (see Fig.

4.1).

µ(r) =



µout r < R1

µin R1 ≤ r ≤ R2

µout r > R2

(4.1)
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Topological

Trivial

Trivial

Figure 4.1: The shaded region represent a positive (topological) chemical potential on an annulus.

The presence of a vortex at the origin forces a branch cut which is represented as a wavy line while

γ1 and γ2 illustrate the expected location of Majorana zero modes.

of a place where where µin > 0 and µout < 0.

First we numerically solve this problem to find both energy spectrum and ground state

wavefunctions (|GS〉). In order to make unitless quantities, in our numerical calculations we take

t and a to be unit of energy and length respectively. In Fig. 4.2 we plotted the two components of

ground state in Nambu spinor notation (|GS〉 = (u, v)T ). We also plotted u as a function of width of

annulus (see Fig. 4.3) which would exhibit the fact that Majorana modes are localized around each

boundaries of the system (R1 andR2). Now we can cook up two wavefunctions with approximately

zero energy expectation values with similar properties to Majorana modes. Therefore each function

should be approximately zero, around one of the edges, whereas they remain non-zero around the

other edge. Notice that these functions are not eigenfunctions of Hamiltonian and consequently they

would have non-zero crossing term i.e. 〈ψ2|H|ψ1〉 which would give rise to the energy splitting

between them.
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Figure 4.2: Plot of the numerical results for the ground state of a system with µin/t = 0.5 , µout/t =

100, ∆0/(ta) = 0.2, R1/a = 30 and R2/a = 100. u and v are the two component of spinor |GS〉

Since we would want the expectation energy to be approximately zero we will use the

solutions we got section 2.3. First we start by writing the wavefunction that would be maximized

around the inner ring of the annulus i.e. ψ1.

which is monotonically increasing from origin to the inner ring(R1) of the sample and

exponentially decreasing in radii that are greater than R1.

ψ1 = e−m∆0r


c1I1 (rαout) r < R1

c2J1 (rαin) + c3Y1 (rαin) r > R1

(4.2)

with

αin =
√

2mµin −m2∆2
0

αout =
√
m2∆2

0 − 2mµout

where c1, c2 and c3 are constants and will be fixed by normalization and boundary conditions at R1.
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Figure 4.3: Radial dependency of ground state (|GS〉) with µin/t = 0.5 , µout/t = 100, ∆0/(ta) =

0.2, R1/a = 30 and R2/a = 100. (a) is the plot of absolute value of the ground state while (b) and

(c) are the real part and imaginary part of ground state respectively.
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This wavefunction is monotonically increasing as we approach the inner ring and would exponen-

tially decays afterwards. Since all of our boundaries are far from origin we can use the asymptomatic

behavior of Bessel functions.

J1(z) ∼
√

2

πz

(
cos(z − 3π

4
)

)
Y1(z) ∼

√
2

πz

(
sin(z − 3π

4
)

)
I1(z) ∼ 1√

2πz
ez

K1(z) ∼
√

π

2z
e−z

Now we will find the expectation value of the Hamiltonian, i.e. 〈ψ1|H|ψ1〉. Since we used

the exact solution for zero energy for radii less that R2, we only need to compute the expectation

outside of the annulus. Also, because we are only changing chemical potential at the boundary, the

differential equation 2.27 would tell us that ψ1 is an eigenfunction of H in the outside region. The

expectation value would simplify to

〈ψ1|H|ψ1〉 = (µin − µout)

∫ ∞
R2

r |ψ1(r)|2 dr ∼ e−2(R2−R1)/ξ (4.3)

where ξ = 1
m∆0

. Since we are working in the limit of (R2 − R1) � ξ, we only would keep up to

first order in e−(R2−R1)/ξ and therefore we would neglect this term.

Next we will use the solution for u2 (Eq. 2.29) to write another solution which would be

localized around R2.
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Figure 4.4: Illustration of the wavefunctions ψ1 and ψ2 after normalization and matching boundary

conditions. Since ψ1 is real and ψ2 is pure imaginary, the real and imaginary part are plotted

respectively in (a) and (b).
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ψ2 = ie+m∆0r


c̃1J1 (rαin) + c̃2Y1 (rαin) r < R2

c̃3K1 (rαout) r > R2

(4.4)

Here c̃1, c̃2 and c̃3 are constants and will be fixed by boundary conditions at R2 and

normalization of the wavefunction. Although this wavefunction is not well-behaved at the origin,

but this should not worry us due to presence of vortex at the origin which has a non-zero core radius.

Energy expectation value can be written as

its behavior near the origin.

〈ψ2|H|ψ2〉 = (µin − µout)

∫ R1

ξ
r |ψ2(r)|2 dr ∼ e−2(R2−R1)/ξ (4.5)

which again will be neglected.

In order to calculate the energy we need to find the crossing term between these two

solution.

∆E = 2 i 〈ψ2|H|ψ1〉 = 2 i (µin − µout)

∫ ∞
R2

r ψ2(r)∗ ψ1(r) dr

= −8 m ∆0 µin (∆0m− αout) e
−m∆0(R2−R1) sin [(R2 −R1)αin + φ0]

(∆0m+ αout)αin
(4.6)

where

φ0 = arctan

(
2αinαout

α2
out − α2

in

)
Now we can take the limit of µout → −∞ which would simplify the energy splitting to

∆E =
8 m ∆0 µin e

−m∆0(R2−R1) sin [(R2 −R1)αin]

αin
(4.7)
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Figure 4.5: Energy splitting of two Majorana modes as a function of width of annulus(R2 − R1).

Here we take µin/t = 0.5 , µout/t = 100 and ∆0/(ta) = 0.2. The dotted line would display

the numerical results of absolute value of splitting while the solid line would show the fitting with

absolute value of the analytic result Eq. 4.7 and the dashed line is the analytic result without taking

absolute value.

35



here we can see the energy splitting on top of decaying exponentially has a oscillation as a function

of width of annulus (R2 −R1). The numerical result would fit perfectly with Eq. 4.7 (see Fig. 4.5)

4.1 Energy splitting of two Majorana zero modes in finite size systems

in the presence of d-solitons

Let us briefly review what we know about the model presented by Kee and Sigrist to have

a half quantum vortex with presence of d-soliton.The superconducting order parameter in this model

can be written as

∆αβ(k) = d(k) · (σiσy)αβ (4.8)

where σµ(µ = x, y, z) are Pauli matrices and here d(k) can be written as

d(k) = ∆0e
iφd̂(kx + iky) (4.9)

where ∆0 is the magnitude of the order parameter, φ is the phase angle and d̂ is the unit vector on

which the projection of Cooper pair spin is zero.

d̂ = ẑ cos (αθ) + θ̂ sin (αθ) (4.10)

φ = −4 sr arctan [eθ/l] + (sr +
1

2
)× (θ + π) (4.11)

with

αθ = 2 arctan [eθ/l], l =

√
K

λsoR2
in

(1− 4s2
r) (4.12)

where −π < θ < π is the polar angle, sr is the radial component of in-plane spin magnetization,

K is the stiffness , Rin is the inner radius of the annulus and λso is spin-orbit coupling. We define a
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Figure 4.6: (a) αθ is plotted for different values of c. By increasing c, sharpness in αθ has, been

increased. (b) The Illustration of φ as a function of θ. Here sr (radial magnetization) is taken to be

1/4.

coefficient c that controls the sharpness in αθ.

c =
λsoR

2
in

K
(4.13)

In Fig. 4.6 αθ and φ are plotted versus θ for different values of c. would change by increasing c.

Our goal in this section is to study the energy splitting of Majorana zero modes and ob-

served that how well they matched with analytic results we got in section 4.1 for a normal half

quantum vortex (Eq. 4.7). correspondingly we numerically calculate energy of Majorana zero
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modes for different values of c. Using the analytic solution we try to find the best fit within our

error of numerical calculation. The setup of the problem is very similar to section 4.1 where the

geometry is a annulus which would divide the space to three region. Only middle is a topological

region (µ > 0) and other regions have negative chemical potential.

(a) Analytic results

c=3

(b) c=200

(c) c=500

30 35 40 45 50 55 60 65 70

(d) c=1000

0.0 0.2 0.4 0.6 0.8 1.0

(R2 −R1)/a

0.0

0.2

0.4

0.6

0.8

1.0

|∆
E
|/t

Figure 4.7: Energy splitting of Majorana zero modes in presence of a d-soltion for different values

of c, sharpness, has been plotted to show how well the analytic solution would agree with them. We

take µin/t = 0.5 , µout/t = 100 and ∆0/(ta) = 0.2. The dots are the numerical result and the

solid(blue) line would show the best fit using analytic expression that has been calculated for a half

quantum vortex without having any d-soliton.
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Although, for small values of c the analytic solution for half quantum vortex would per-

fectly describe the system with d-soliton, but as we increase c the analytic result (Eq. 4.7) cannot

explain the numerical results very well. In Fig. 4.7 the numerical results of calculation for energy

splitting fitted with analytic solution has been plotted.

Figure 4.8: Wavefunction of Majorana zero mode in presence of the d-soliton for a large

sharpness(c = 1000). In the numerical calculation we take R1/a = 30, R2/a = 100, µin/t = 0.5 ,

µout/t = 100 and ∆/(ta) = .5, where a and t are units of length and energy respectively.

It is instructive to look at the wave function of Majorana zero mode in presence of d-

soliton for a very large sharpness coefficient (c). Since the system has two spins (↓ and ↑) and due
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to particle-hole symmetry, we have four different components for each eigenfunction. In Fig. 4.8

we plotted all four components of the ground state for c = 1000. The plot would show that most

of the wavefunction on the outer ring (R2) are concentrated around the d-soliton while in the inner

ring the wavefunction is repelled from position of d-soliton
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Chapter 5

Array of vortices in the d-wave

superconductors

In this chapter we consider an array of vortices in a d-wave superconductor and we search

for Majorana zero modes. There are arguments27–29 supported by index theorem that talk about

existence of stable Majorana zero modes when the product of vorticity and the perpendicular com-

ponent of orbital angular momentum to the plane of superconductor (lz) is an half odd integer. This

argument is definitely true for the case of half quantum vortex in a p+ ip superconductor since the

the vorticity is a half and the z component of angular momentum is one. The next logical place

to check this theory is a d-wave superconductor where orbital angular momentum normal to the

plane is two (lz = 2). Consequently, we need one quarter of a quantum vortex to check the theory.

While isolated one quarter vortices are not allowed due to single-valuedness of order parameter, we

effectively can create one in an array of vortices.

Before we move on to setting up the problem, we need to show that the spectrum of the
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d-wave order parameter is fully gapped and also we have to calculate the Chern number to make

sure that we are working in a non-trivial phase.

In d-wave superconductor we have singlet paring and therefore the BdG Hamiltonian in

nambu notation can be written as

HBdG =

 ξk ∆k

∆∗k −ξk

 (5.1)

where ξk is counting for the single particle Hamiltonian, and ∆k is the order parameter.

The order parameter for d+ id superconductor is written as

∆k = ∆0(k2
x − k2

y + ikxky) (5.2)

where ∆0 is order parameter magnitude which is constant. One should notice here that the unit of

∆0 is energy× Length2. Hamiltonian (5.1) can be diagonalized using a Bogoliubov transformation

to get the energy spectrum

Ek =
√

∆2
0

(
k4
x + k4

y − k2
xk

2
y

)
+ ξ2

k (5.3)

which shows that the spectrum is fully gapped (see Fig. 5.1)

Using HBdG(k) = h(k) ·σ one should be able to construct the unit vector ĥ(k) and map

the 2D space of momentum to a unit sphere. For the case of positive chemical potential, µ > 0, we

can show that at k = 0, the unit vector is pointing toward the south pole and as we go to k → ∞,

the unit vector is parallel to ẑ. Therefore, one can realize that at least this phase would not be

topologically trivial. One using Eq. 2.21 can show that the Chern number for this system is 2.

As we promised, we would introduce an array of vortices that effectively can carry one

quarter of quantum flux by adding a defect to the system. In Fig. 5.2 one can see a configuration that
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Figure 5.1: The spectrum of the d+ id superconductors. One can notice that the spectrum is gapped

everywhere.

has a defect in the middle. On each corner of that defect we would expect to observe a Majorana

zero mode since the effective vorticity is one quarter.

By writing BdG equations in real space for d + id superconductors and using the order

parameter for an array of vortices as

∆(r) = ∆0

∏
j∈Vortices

eiθ(r−rj) (5.4)

where the product runs over all vortices, ∆0 is the magnitude of order parameter, rj is the position of

the vortex j and θ(r−rj) would give us the polar angle at point r when the origin is set at rj . Using
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Lattice site Voretx Voretx

Figure 5.2: The configuration of an array vortices with a defect. The effective vorticity for each

corner of the defect is 1
4 and therefore we expect to observe a Majorana zero mode for each of the

corners.

numerical calculation one can compute the energy spectrum of the system with the configuration

explained above to see if we could observe any Majorana zero modes. In Fig. 5.3 we plotted the

energy spectrum with respect to the inverse of the system size. One can notice that the energy

spectrum would not show any evidence of Majorana zero modes. Also ground state wavefunction

does not indicate presence of the Majorana zero modes (see Fig. 5.4)

44



4066109179

1/L (L is labeled )

0.000

0.001

0.002

0.003

0.004

0.005

E
n

er
gy

ev 0

ev 2

ev 4

ev 6

ev 8

ev 10

ev 12

Figure 5.3: The energy spectrum of an array of vortices in a d+ id superconductor as a function of

1/L where L is the size of the system. The parameter we used are µ/t = 2 and ∆0/(a
2t) = .2

45



Figure 5.4: The ground state wavefunction of an array of vortices in d+ id superconductor. We can

not observe any Majorana zero modes in this ground state. The system size is taken to beL/a = 179

while the other parameters we used are µ/t = 2 and ∆0/(a
2t) = .2
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