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ABSTRACT: Accurately and rapidly acquiring the microscopic properties of a
material is crucial for catalysis and electrochemistry. Characterization tools, such as
spectroscopy, can be a valuable tool to infer these properties, and when combined with
machine learning tools, they can theoretically achieve fast and accurate prediction
results. However, on the path to practical applications, training a reliable machine
learning model is faced with the challenge of uneven data distribution in a vast array of
non-negligible solvent types. Herein, we employ a combination of the first-principles-
based approach and data-driven model. Specifically, we utilize density functional theory
(DFT) to calculate theoretical spectral data of CO−Ag adsorption in 23 different
solvent systems as a data source. Subsequently, we propose a hierarchical knowledge
extraction multiexpert neural network (HMNN) to bridge the knowledge gaps among
different solvent systems. HMNN undergoes two training tiers: in tier I, it learns
fundamental quantitative spectra−property relationships (QSPRs), and in tier II, it
inherits the fundamental QSPR knowledge from previous steps through a dynamic integration of expert modules and subsequently
captures the solvent differences. The results demonstrate HMNN’s superiority in estimating a range of molecular adsorbate
properties, with an error range of less than 0.008 eV for zero-shot predictions on unseen solvents. The findings underscore the
usability, reliability, and convenience of HMNN and could pave the way for real-time access to microscopic properties by exploiting
QSPR.

■ INTRODUCTION
As known to all, surface−adsorbate microscopic interaction
properties are crucial to catalysis, electrochemistry, surface
molecule recognition, etc.1−3 In fact, in material surface,
adsorbate properties on solid−liquid interfaces are even more
critical since the vast majority of chemical transformations
occur in the liquid phase,3 where the existing solvent can
significantly influence both catalytic and reaction activities,
hence leading to substantial variations in reaction rates and
efficiencies.4 Nevertheless, directly measuring these micro-
scopic properties is still impractical and challenging. Spectro-
scopic tools, which are capable of measuring the dipoles
carrying electronic levels and distribution information, offer the
potential to establish quantitative spectra−property relation-
ships (QSPRs) for material surface.5

Recently, machine and deep learning methods have sparked
a paradigm shift in the analyzing and processing of spectral
signal. Ultramodern studies have proposed a series of end-to-
end approaches that leverage the advantages of deep learning
(DL) technologies to effectively avoid the accumulation of
errors in mining QSPR in the gas phase.5,6 As a result, the
utilization of DL in exploring QSPR has gained significant
momentum across diverse fields, encompassing the identi-
fication mixture component,6 characterization of micro-

structures,7 nanostructured quantitative validation,8 and so
on.9 Additionally, using a regression-based method facilitates
learning an approximate formulaic mapping of QSPR, hence
addressing the obstacle of imperfect and limited data.10

However, regarding the learned end-to-end relationships,
their nature of low dimension and lack of chemical explanatory
factors determine the inevitably limited generalization abilities
of DL-based models.

Therefore, the routine DL approach could be arduous when
directly used in solvent systems due to the following two
hurdles: the diversity and complexity of solvent types in real
world and unbalanced distribution of available high-field data
for each individual solvent in both computational and
experimental perspectives. Furthermore, available high-quality
data is limited to a few specific systems (i.e., gas and aqueous
phases), but the majority of domain we are interested in (i.e.,
another phase) could differ significantly. There is a useful
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proposal for a model to leverage the chemical knowledge
obtained from several common systems, guiding the develop-
ment of a DL model for application to other, less common
systems.11 This is the essence of transfer learning, and the
model could possess superior generalization capability to
bridge the knowledge gaps among different solvent systems
through a hierarchical transfer learning process in principle.

To fully harness the capabilities of the DL model, it is
essential for it to learn as much helpful hidden knowledge from
the related scenes as possible for the target field. Nowadays,
individual expert module could be used to extract knowledge
from decentralized data, and different experts jointly contribute
to knowledge assembly through expert ensembles.12,13 This
collaborative process enables DL model to extend acquired
knowledge from a narrow field to a broader scope of
application.13−15 Herein, with the enlightenment of the
above-mentioned collaborative paradigm, we design and
employ a hierarchical knowledge extraction multiexpert neural
network (HMNN) to establish omniscient, interpretable, and
robust relationships between vibrational spectral information
and surface−adsorbate interaction properties on solid−liquid
interfaces.

Taking Ag metal as an example, we investigate the adsorbate
properties, while CO is adsorbed on Ag in 23 different solvent
systems. Infrared (IR) and Raman spectral data of CO with
various adsorption conformations are calculated by density
functional theory (DFT),16 which are combined with the
solvent dielectric constant as input features. This model

successively learns the fundamental knowledge of QSPR and
explores the chemical difference knowledge among solvents
from two tiers. The acquired knowledge is ensembled together
as a foundation for investigating solvent-specific variations
within multiple solvents. This approach is a multitasked,
universal, multimodule assembly17,18 that obtains physical
insight into the system.19,20 Based on the learned QSPR and
solvent difference knowledge, this proof-of-concept protocol
represents a significant milestone in predicting kinds of
adsorption properties on solid−liquid interfaces with chemical
precision for various adsorption conformations and previously
unseen solvent systems.

■ RESULTS AND DISCUSSION
A hybrid approach that combines data-driven methods with
first-principle-based approaches is employed. The adsorption
configurations of CO@Ag (CO adsorbed on Ag substrates)
with a total number of 5703 are generated and investigated
with first-principle calculations. To expand the data set’s spatial
distribution range, we considered variations in the distance
between C and the Ag surface plane (dAg−C), the C−O bond
length (dC−O), and adsorption angles (vertical plane: θv and
horizontal plane: θh), focusing on their impact on four target
properties on 23 distinct solvent systems (Table S1). On water
and gas phases, the dAg−C values include d0 − 0.2, d0 − 0.15, d0
− 0.1, d0 − 0.0, d0 − 0.1, d0 − 0.2, d0 − 0.3, d0 − 0.4, and d0 −
0.5 Å, where d0 represents the optimized structural distance.

Figure 1. Research scope. (A) Schematic of the CO@Ag structural model construction. (B) Different solvents and corresponding dielectric
constants. The dielectric constant (DC) of the gas phase is minimum and is 1.0, and the maximum dielectric constant is 181.6 in methyl
formamide. The size of the circle represents the amount of data quantities. The data of water and gas phases, which contains about 2205 and 2133
records, respectively, is sufficient. And (C) six key vibrational modes (the dotted mark position; f1−f6; I1−I6; R1−R6) including two CO wagging
modes, one Ag−CO stretching mode, two Ag−C−O bending modes, and one C−O-stretching mode. These six vibrational frequencies and IR and
Raman intensities corresponding to these frequencies are chosen as the descriptors.
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dC−O is closely associated with adsorption properties, which are
calculated from d0′ − 0.04 to d0′ + 0.04 Å, where d0′ is the C−O
bond length of the optimized configuration. The adsorption
angles in the vertical plane are incremented from 0 to 80° with
a small step size of 10° and in the horizontal plane are 0 and
90° (Table S2). These conformations are sampled uniformly.
Regarding the multisolvent data sets including additional 15
solvents, each solvent only contains 35 relevant top-site

adsorbed conformations for the training of tier II. Specifically,
the dAg−C is from d0 − 0.1 to d0 + 0.3 Å with a step size of 0.1
Å; dC−O is unchanged, and θv is only considered in 0°
condition. Six additional solvents are used to validate its
generalization ability in a zero-shot prediction manner. The 2-
propanol (IPA), dimethyl sulfoxide (DMSO), and ethylene
carbonate (EC) have the same 35 top-site adsorbed
conformations in tier II, while the cyclohexane (CyH), diethyl

Figure 2. Model architecture and training strategy. (A) DFT-calculated IR and Raman spectra along with solvent dielectric constant are applied
with the operations of embedding, dimension increasing, and concatenating, hence generating a unified representation of input features. (B) Tier I
process. An expert network and gate network integrated multitasking learning framework for learning fundamental QSPR knowledge from the gas
phase (same in the water phase). Trained experts are selected and frozen for subsequent ensemble. (C) Tier II process. Trained experts in gas and
water phases are assembled with untrained experts for capturing solvent difference knowledge on a multisolvent system, which includes 15 different
solvents. (D) Testing four target adsorption properties in unseen solvents.
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ether (Et2O), and tetrahydrofuran (THF) have much richer
structures, with dAg−C being from d0 − 0.1 to d0 + 0.5 Å, a small
step size of 0.1 Å, and θv is adjusted from 0 to 40° with
intervals of 10°.

The IR and Raman spectra of aforementioned conforma-
tions are computed and documented as descriptor signals to
explore QSPR, including the intensities (IR: I1−I6; Raman:
R1−R6) of the IR and Raman spectrum and six corresponding
vibrational frequencies ( f1−f6) (Figure 1C). These six
vibrational modes are most relevant for the CO@Ag system.5

These features exhibit a good fit with a normal distribution
(Figure S1). Regarding the frequency features, the numerical
values of the six frequency features ( f1−f6) gradually increase,
with the mean of f6 reaching around 2000 cm−1. In terms of
infrared and Raman spectral intensities, there is some overlap
in their distributions, but I6 and R6 have broader distributions
(Figure S2). The solvent dielectric constant is considered as an

additional feature for discriminating between solutions.
Eighteen vibrational spectral features and dielectric constant
values are utilized as input after appropriate processing, such as
direct splicing or paired input (Figure S3).

■ MODEL FRAMEWORK
The HMNN hierarchical-training strategy is depicted in Figure
2. Here, the input dielectric constant is embedded by an
individual network to achieve increasing dimensionality. The
raw feature includes the frequency values ( f1−f6), IR and
Raman-responsive intensity values (I1−I6, R1−R6), and a
dielectric constant value. We utilize 18 vibrational spectral
descriptors in combination with the dielectric constant value as
inputs, employing either direct splicing or paired input (Figure
2A). Two featurization approaches will be tested and selected
in the next step (Figure S3).

Figure 3. Performance of HMNN on gas data set. Performances of HMNN on gas data set. (A) The test results of different featurization methods
of spectral descriptors. (B) Performances of different approaches in terms of MAE (Eads, Eb, and εd are in units of eV; Δe in e−). (C) The test
results of HMNN in Y-scrambling were in terms of MAE. (D) Performance comparison of multitask and single-task modes in MAPE (%) (E)
Performances of HMNN with various hyperparameter combinations; here, hyperparameters include the learning rate, expert numbers, representing
dimensions and embedding dimensions, dropout, and epochs. (F) Feature importance analysis for IR and Raman spectrum. (G) Analysis of feature
importance with regard to experts and expert contributions to tasks. (H) Contributions of different experts on each individual task (G1−G5: expert
modules in the gas phase).
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The training process included 2 tiers. In tier I, two
fundamental multiexpert networks are trained, respectively,
on gas and water phases, as illustrated in Figure 2B. The
multiexpert network contains 5 independent expert networks
to learn comprehensive representations of inputted features,
where the basic unit of the expert network is a two-layer fully
connected network. These expert modules share the same
initial input vector but operate independently without mutual
interference (Figure S4). A hidden similarity control module is
devised and employed in this fundamental network to ensure
the differentiation and specialization of each individual expert
by using the cosine similarities between every pair of expert
output representations as penalty items. The learned
representations are then inputted into 4 different gate networks
where each gate network plays a judging role by assigning
different weights to different expert networks with regard to a
specific individual target task (using a SoftMax function)
(Figure S5). These gate networks are initialized by utilizing the
original input features as initialization parameters and then
updated continually during training. Subsequently, regarding
different target tasks, trained expert modules are selected,
frozen, and then incorporated with some blank experts to
assemble a new network for fine-tuning in tier II (Figure 2C).
Fine-tuning is performed on a multisolvent system encompass-
ing 15 different solvents to capture solvent difference. Finally,
HMNN is estimated on six unseen solvents (Figure 2D).

Four molecular adsorbate properties, which are considered
here as the target tasks, are set as the ultimate outputs of
HMNN. In particular, they contain (1) the adsorption energy
(Eads) between the adsorbate and surface (Ag) and (2) the d-
band (εd) center of the metal surface layer that are often used
as indicators of catalytic activity;21 (3) the change in charge
(Δe), which is the amount of charge polarization or transfer
and indicates the degree of electronic coupling between the
molecule and catalyst; and finally, (4) the bond energy (Eb) of
an adsorbate that is often used to gauge the difficulty of bond
breakage. These four properties are commonly used metrics to
comprehensively describe the adsorption process,5 as deter-
mined by a combination of structural parameters and
calculated by the DFT protocol (Figure S6). The calculated
values align well with a normal distribution, as illustrated in
Figure S7.
Tier I: Learning Fundamental QSPR Knowledge on

Single-Solvent Systems. Five commonly used machine
learning (ML) models are chosen (i.e., extreme gradient
boosting (XGBoost), random forest (RF), support vector
machines (SVMs), K-nearest neighbor (KNN), and fully
connected neural networks (NNs)) as well as a shared-bottom
multitask framework in which parameters are shared among
various tasks as baselines. To evaluate the performances of all
approaches to learning the fundamental QSPR knowledge on
single-solvent systems, all of these baselines and HMNN are
trained and evaluated on gas-phase data set where the leave-
one-out cross-validation method is employed for evaluation
(Tables S3 and S4). Specifically, the data set is partitioned into
10 folds, with 9 folds utilized for training and the remaining
one-fold for testing. This process is repeated 30 times, and the
average result is reported as the final outcome. Initially, we
assessed the impact of different spectral feature input methods,
as illustrated in Figure 3A (Figure S8). Clearly, paired spectral
descriptors achieved a smaller prediction error (MAE result).
This is likely attributed to the intentional grouping of the
corresponding frequency and vibrational intensity pairs,

making it easier for the model to capture the information
embedded in the spectrum compared to direct concatenation
spectral descriptors, leading to an improved predictive
performance. Consequently, in subsequent experiments, we
adopted a grouped featurization approach. Compared with
other baselines, HMNN significantly outperforms all of them
in terms of mean absolute error (MAE) (Figure 3B). This
demonstrates that HMNN can accurately predict not only the
variation tendencies but also the detailed values of the four
adsorption properties (Tables S5 and S6 are for the water
phase). Furthermore, we conducted Y-scrambling validation
for HMNN, which is a method employed to assess whether the
model’s predictions are statistically significant. This validation
involves shuffling the target column, replacing correct feature-
target pairs with new, incorrect pairs, and then retraining the
model.22 As depicted in Figure 3C, the performance of HMNN
significantly deteriorates after Y-scrambling, indicating a sharp
decline in effectiveness. This suggests that the reliability of
HMNN results lies in its accurate capture of QSPR
relationships (detailed Y-scrambling validation results can be
found in Tables S7 and S8). Besides, HMNN exhibits its
absolute superiority in various tasks in a multitask manner, as
shown in Figure 3D, and it averagely reduces the error by 11%
in terms of MAPE on all four prediction tasks while comparing
with the suboptimal approach, i.e., the shared-bottom model.
Though the performances of HMNN are more superior in
predicting Eb and Eads in case it is running under a single-task
mode, we discover that HMNN can produce lesser MAPE
dispersion while it runs under a multitasking mode, and this
demonstrates that the embedded multitasking framework of
HMNN can satisfy the Pareto optimality by balancing diverse
tasks (the least area in Figure 3D), likely due to the promotion
of shared knowledge among tasks, facilitating learning for
certain tasks despite a sacrifice in the accuracy of individual
tasks.

The hyperparameters, including the learning rate, number of
experts, representation dimensions, embedding dimensions,
dropout rate, and number of epochs, were optimized using the
random search method, as outlined in Table S5. Figure 3E
illustrates the MAE results for the Eads predictions of the
HMNN model across different hyperparameter combinations.
Notably, hyperparameters such as the dropout ratio, number of
experts, and learning rate exhibit a diverse range of values for
each model type. Subsequently, a model is trained and tested
for each hyperparameter combination connected with lines,
and the corresponding results are reported. Within a series of
testing scenarios, the four tasks can be affected by different
hyperparameter combinations. In relative terms, smaller
dropout rates or higher learning rates are correlated with
increased errors. A smaller dropout rate, indicating that fewer
units are dropped out during training, may lead to potential
overfitting to the training data, resulting in poor performance
on unseen data. Conversely, if the learning rate is too high, the
model may overshoot optimal parameter values, impeding the
convergence of the training process (more hyperparameter test
result could be found in Figure S9).

Interestingly, we discover that the trained expert modules
are naturally equipped with initial chemical senses since a
subset of experts tend to learn and apply diverse spectral
information to satisfy a minority of specific tasks rather than
attempting to optimize performance over all tasks (Figure
3F,G). For example, in the gas phase, experts G4 and G5 have
jointly acquired about 97% of all required knowledge for
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predicting Eads, thus demonstrating their absolute importance
to Eads (Figure 3H). Further, from the perspective of input
features based on gradient-based analysis method23,24 (Figure
S10), an analysis reveals how the outputs of these experts are
generated from intuitive spectral information. Indeed, experts
G4 and G5 are significantly affected by the Ag−CO-stretching
vibrational mode, which is also a major contributor to Eads
(Figure 3G), and these two experts are also obviously affected
by the C−O-stretching vibrational mode, which can be viewed
as a direct contributor to Eb.

25 Therefore, in summary, various
expert networks freely focus on distinctly different knowledge
by paying different attention to different vibrational modes,

while gate networks organically combine different experts to
achieve knowledge synthesis on specific aspects. The
collaborations between experts and gate networks including
knowledge extracting, filtering, and integrating enlighten
primitive chemical logics of the HMNN, thus finally
supporting the accurate prediction of different tasks. For
instance, in the case of learning on gas-phase data, experiments
reveal that each task is significantly dominated by two top-
weighted experts (i.e., the total input weights of a specific task
from two top-weighted experts exceeds 90%) (similar results
are also observed for experiments on water-phase data set;
Figures S11 and S12). The powerful representation ability of

Figure 4. Ensemble process of HMNN in tier II for solvent difference knowledge learning and performances of ensemble network on multisolvent
data sets. 15-fold-cross-validation experiments are executed here and repeated 30 times. (A) Structure overview of the ensemble network. The top
two experts from both gas and water phases for each individual task are selected and frozen for subsequent network ensemble. Here, G1−G5 and
W1−W5 correspond to the trained experts, respectively, in gas and water phases. (B) Six different jury scenarios for assembling gas, water, and
untrained experts. W + G + U: combination of trained water and gas experts as well as untrained experts; W + U: combination of trained water and
untrained experts; G + U: combination of trained gas and untrained model’s experts; only W: trained experts on water solvent; only G: trained
experts on gas phase. Here, abbreviation “W, G” means trained expert modules in water solvent (W1−W5) and gas phase (G1−G5), and “U”
corresponds to the untrained module. (C) Average performances of different expert combinations in different tasks on selected solvents. (D) A
group cross-validation results for “W + G + U” in different tasks, and points with different colors correspond to the results on 14 selected solvents.
More results are presented in Table S10, and Y-scrambling validation results are presented in Table S11. (E) Weights of different categories of
experts (gas, water, and untrained) on 15 rounds of experiments. (F) T-distributed stochastic neighbor embedding (t-SNE) of various experts on
multisolvent data set (for Eads).
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HMNN during tier I, which originates from its multitasking
paradigm, is conducive to the learning of important spectral
knowledge, hence providing a fundamental knowledge skeleton
for the transfer learning process during tier II.
Tier II: Learning Solvent Difference Knowledge on

Multisolvent Systems. Some previous studies have indicated
that the performance of a trained model in a single-solvent
system including gas or water phase degrades significantly once
it is directly transferred to unseen systems or scenarios.5,10

Therefore, to make sure that HMNN is omniscient to various
solvents, we design a subsequent learning process (tier II) to
extract solvent difference knowledge on a few-sample and
multisolvent data set.26 During tier II, for each individual task,
we select the top two important experts that have already
learned more than 90% of the required task knowledge in total
from both gas and water phases and freeze the four selected
experts (2 from gas phase and 2 from water phase) for
subsequent network assembling (Figure 4A). Meanwhile, two
untrained expert modules with the same structure are
initialized and assembled with the four previous frozen experts,
and these two new untrained experts mainly focus on
extracting the unlearned knowledge from pretrained experts,
hence making the ensembled network more omniscient
(Figure 4A). And the multitask learning framework is also
reserved and incorporated with multiple small data sets from
various solvent systems in this tier to enhance the learning of
solvation knowledge. Finally, the outputs of multiple decisive

experts (4 experts are from the previously trained model and 2
experts are the newly added untrained experts) are fed into
another round of gate networks to dynamically adjust weights
for the different tasks.

Taking advantage of the flexibility and adjustability of such
an ensemble learning paradigm, we have designed and tested a
variety of “jury scenarios” by assembling different expert
combinations (Figure 4B) and use such new combinations to
replace the most quintessential combination in Figure 4A, i.e.,
W + G + U. The reported results of the average performance
errors for different ensemble combinations undoubtedly
indicate that our employed combination W + G + U
significantly outperforms other alternative combinations
(Figure 4C) on all four tasks. This verifies the superiority of
our ensemble paradigm without challenge and simultaneously
demonstrates that the ensemble network can perform better
while knowledge from both gas and water phases is
comprehensively involved. Concretely, the prediction perform-
ances of ensemble network (W + G + U) in cross-validation
experiments demonstrate nearly perfect accuracy, and this
illustrates that the ensemble network of W + G + U has
captured fundamental QSPR as well as solvent difference
knowledge. The weights of different categories of experts
(categorized as gas, water, and untrained) in the final
representations are illustrated in Figure 4E. For 15-fold-
cross-validation experiments, the weights of different categories
of experts are all comparable to each other, and this indicates

Figure 5. Performance of HMNN on unseen solvents. (A) The first (upper) three subfigures demonstrate the zero-shot prediction performance of
HMNN on three solvents, ethylene carbonate (EC), dimethyl sulfoxide (DMSO), and 2-propanol (IPA). Each of these three solvents contains 35
data samples where each sample corresponds to the same adsorption structure that contained in the multisolvent system during tier II. The last
(lower) three subfigures illustrate the performance of HMNN on the solvents of cyclohexane (CyH), diethyl ether (Et2O), and tetrahydrofuran
(THF) where each solvent contains 245 different adsorption structures, which are only contained in previous gas and water phases. (B) Impacts of
different structural conditions on zero-shot predictions in the unseen solvents of CyH, Et2O, and THF.
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that the newly added untrained experts play a crucial
compensative role in learning new knowledge of solvent
differences to make up for the shortcomings of water and air
experts. Meanwhile, this figure also the embedded gate
network within the ensemble network can adaptively adjust
the weights of different categories of experts to make sure that
the ensemble network is adaptive to different solvent systems.
The T-SNE map in Figure 4F reveals that the three categories
of experts are capable of learning distinct knowledge, and this
also confirms the necessity of setting untrained experts.
Predicting Adsorption Properties in Unseen Solvents

with HMNN. The hierarchical learning strategy aims at
helping HMNN learn comprehensive solvent adsorption
knowledge from different perspectives. During tier I, the
model mostly focuses on constructing a fundamental mapping
relation from spectral information to adsorption properties, i.e.,
QSPR. During tier II, the trained experts are assembled with
untrained experts where the frozen trained experts are
responsible for inheriting and maintaining basic QSPR
knowledge and the newly added experts aim at learning the
impacts of solvents on QSPR, i.e., solvent difference knowl-
edge. So far, HMNN should have extensively learned and
integrated the hidden knowledge that is contained in dielectric
constant and spectral data. To investigate the potential of
HMNN on unknown solvent systems, we conducted a series of
zero-shot test experiments.

We first conduct a series of experiments on three previously
unseen solvent systems, i.e., isopropyl alcohol (IPA), dimethyl

sulfoxide (DMSO), and ethylene carbonate (EC). These
solvents are commonly used in various applications such as the
synthesis of pharmaceuticals and plastics. For all of these three
solvent systems, we evaluate the average performances of all 15
rounds of experiments, and the results verify the superior and
impressiveness of HMNN by achieving the chemical accuracy
for all tested unseen solvents (the upper part of Figure 5A).

On the other hand, we notice that, for all previously tested
solvent systems, the reactant adsorption structures of catalyst
surfaces are the same as the structures in the small data of
multisolvent system during tier II. This naturally brings us a
question: is HMNN capable of predicting adsorption proper-
ties for an unseen solvent system, which has different
adsorption structures from the structures contained in the
small data of multisolvent system? This question also reflects
another issue: has the knowledge learned during two different
tiers been really and deeply integrated? To investigate this
issue, we employ HMNN on three additional unknown solvent
systems (cyclohexane (CyH), diethyl ether (Et2O), and
tetrahydrofuran (THF)) with 245 different adsorption
structures for each individual solvent system (Table S2). As
shown in the lower part of Figure 5A, the MAE prediction
errors for Eads, Δe, Eb, and εd are all lower than 0.05 (units of
Eads, Eb, and εd are in eV and of Δe are in e−), indicating that
HMNN can stably achieve zero-shot predictions of these four
adsorption properties at the level of chemical accuracy. We
further analyze the MAE results of HMNN for different
structural conditions (with different dAg−C, dC−O, and θV;

Figure 6. Interpretability analysis and control experiments. (A) Process diagram of 4 HMNN variants generated by using different training
strategies. (B) Performance comparisons of these 4 variants and HMNN. (C) Performance comparisons of two additional variants and HMNN
(taking the prediction of Eads on the CyH data set as an example). Variant HPMN-W is HMNN performed without a dielectric constant (ε), and
variant HPMN-E corresponds to HMNN with an erroneous dielectric constant (ε).
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Figure 5B). Actually, as can be directly observed, the
prediction results are significantly impacted by several
imbalanced adsorption configurations where dAg−C, dC−O, or
θV deviates from the equilibrium conformation, respectively
(Figure 5B). However, for most conformations and most tasks,
HMNN can still achieve chemical accuracy. This also
demonstrates that, in principle, HMNN could achieve
chemical precision level property predictions for various
adsorption conformations in unknown solvents with only
limited spectral information and dielectric constant.
Various Training Strategy Validations and Portability

Analysis of the Framework. In this section, we delve into
the factors contributing to HMNN’s superior performance and
explore the feasibility of transferring this framework to other
ML methods. To investigate this, we first conduct a series of
controlled experiments to estimate the effectiveness of our
hierarchical knowledge extraction, and four new variants are
generated based on HMNN (Figure 6A): (1) only tier I, which

undergoes only tier I training period before being directly used
to the final test; (2) only tier II, which is similar to the variant
of only tier I by only employing tier II learning during its
training process; (3) HMNN-R, wherein the data used in the
previous two tiers is exchanged, tier I only trains 5 experts
based on an integrated data set of all 15 solvents, and the top
two experts with regard to a specific task are selected, frozen,
and assembled with two untrained experts for subsequent
training on a gas and water merged data set; and (4) HMNN-
M, a HMNN variant without hierarchical training where all
data sets are merged together for one integrated training
period.

Obviously, the results demonstrate the importance and
necessity of employing hierarchical knowledge extraction
(Figure 6B). Notably, there are significant performance gaps
between HMNN and the one-tier networks (only tier I and
only tier II). Regarding only tier I, its performance is mostly
the worst, and this indicates the importance of extracting and

Figure 7. Hierarchical pretraining process for various ML methods and direct test results of various models for three distinct scenarios. (A)
Diagram illustrating the workflow process. Tests on (B) CyH, (C) Et2O, and (D) THF data sets. Test I: freezing the pretrained model (originating
from air or water phases) and conducting a direct test. Test II: the pretrained models from air and water phases are frozen, ensembled, and fine-
tuned using multisolvent data sets before subsequent testing.
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involving solvent difference knowledge, and training only on
gas and water data sets will eventually lead to the poor
generalization ability of variant only tier I. However, the variant
of only tier II outperforms the variant of HMNN-M.
Considering that the data that used in only tier II is just a
subset of the data used in HMNN-M, it is a puzzling issue that
why the increase of data eventually leads to the decrease of
performance? The reason may contain two aspects: (1) the
extreme data disequilibrium among different solvents within
the mixed data set used in HMNN-M may eventually lead to
the increasing of learning bias. We think that an integrated
model cannot effectively capture QSPR from such a complex
and imbalanced data set; and (2) the multisolvent data set
used in only tier II contains partial but insufficient useful
information with regard to downstream tasks, and such
information can be effectively captured by an integrated
model and is of varying importance to target variables.
Interestingly, this phenomenon exactly verifies the effectiveness
of our hierarchical knowledge extraction. Regarding HMNN-R,
even though the data sets used in two knowledge extraction
tiers are exchanged, it still shows its superiority to only stage-I,
and the reason maybe it can still partially capture fundamental
QSPR as well as solvent difference knowledge due to its
hierarchical learning nature. In summary, we can learn two
things from this part: (1) solvent difference knowledge, which
uses dielectric constant (ε) as an indication, is of great
significance to downstream tasks and (2) a hierarchical
knowledge extraction framework is crucial for HMNN to
comprehensively extract knowledge from different dimension-
alities and perspectives.

To further investigate the impacts of dielectric constant and
its implicated chemical knowledge, we then generated and
tested two new variants of HMNN, HMNN-W and HMNN-E,
by, respectively, removing its input of dielectric constant or
employing a wrong one. The evaluation results are reported in
Figure 6C. As demonstrated, the performances of HMNN-E
are better than those of HMNN-W in most tasks, and a
possible explanation is that a randomly chosen dielectric
constant may also enable the distinguishing among various
solvents to a certain extent, hence providing some predictive
information. This series of experiments cross-validate that, as
an indicator, the dielectric constant is of great significance on
distinguishing solvent difference and simultaneously emphasize
the importance of employing a correct dielectric constant as
well.

Additionally, we conducted portability validation experi-
ments with various ML models. Specifically, we initially froze
these pretrained ML models on water and air phases and
directly tested them on unseen solvents CyH, Et2O, and THF.
Subsequently, the same hierarchical pretraining strategies are
employed for a second round of testing to compare the
prediction errors between the two instances (Figure 7A).

Certainly, several machine learning models, such as random
forest and boosting algorithms, exhibit remarkable perform-
ance in single-solvent systems, particularly in water and air
phases (Figure 3B), where ample training data is available.
However, their performance noticeably degrades when directly
applied to unseen systems, as illustrated in Figure 7 (in a zero-
shot manner). We ensembled the pretrained model and
applied the same hierarchical pretraining strategy on these
models (Figure 7A). It is evident that, following hierarchical
pretraining, the testing results of these models showed a
significant improvement, accompanied by a notable reduction

in the MAE metric. This enhancement is particularly
pronounced for the SVM model, indicating a substantial
improvement in its performance. This suggests that HMNN is
also a versatile and effective conceptual framework by allowing
multiple models to learn and integrate knowledge from
decentralized and related domains and then fine-tuned with
few data to enhance its generalization, thereby ensuring
predictive capabilities in unseen scenarios.

■ CONCLUSIONS
In summary, ML emerges as a valuable tool for QSPR, and we
extended its applicability by incorporating considerations for
solvent systems. The challenge stemming from data imbalances
as well as the absence or scarcity of data among solvent
systems has limited the development of ML models. Here, we
leverage multiple experts to take advantage of knowledge
learned from available data in related systems. Subsequently,
through a hierarchical pretraining approach, we achieve a
superior zero-shot prediction performance on unseen solvent
systems with various adsorption structures. This implies that
we can “borrow” knowledge from related systems by using a
hierarchical knowledge extraction framework for the target
domain. More importantly, this framework is portable, flexible,
and versatile. It can be effectively combined with other ML
algorithms to enhance the model’s generalization ability in the
target domain. Although the current experimental validation is
based on DFT theoretical calculations of spectral data, the
application of this proof-of-principle work, in theory, should be
able to extend beyond solvation and holds great potential for
practical applications. It could be viewed as a universal tool by
holding the promise of addressing data imbalance challenges in
areas such as solute rejection in solvent nanofiltration,27

catalytic activity predictions for nanozymes,28 and electro-
catalyst design,29 among others.

However, it is worth noting that high-quality data still forms
the core of data-driven models.30,31 Even though we can
employ state-of-the-art techniques and models to mitigate their
data requirements and enhance their out-of-distribution
generalization, the scarcity or absence of data remains a
bottleneck in the wider application of machine learning
models. On the other hand, the current HMNN framework
necessitates the training of multiple expert networks to capture
domain-specific knowledge and involves multistage fine-tuning
processes. This also implies that the model is larger,
demanding increased computational resources and a longer
training time.

■ MATERIALS AND METHODS
The model consists of three modules: an embedding module, an
expert and gate network integrated learning module, and an output
module. The raw inputted features only contain IR and Raman
spectra and dielectric constants, which are mapped and concatenated
to embedding vectors related to chemical information by the
embedding module. Then, in the learning module, expert networks
are in charge of generating a corresponding representation for each
data sample, and gate networks are responsible for generating a
specific task representation for each task using both experts’ outputs
and raw input features. Finally, a task-specific layer, i.e., the output
module, extracts information from task representations and completes
the prediction. We describe the implementation of each individual
module in detail in the following subsections.
Data Generation. Structural optimizations and electronic

descriptors were computed at the density functional theory (DFT)
level implemented by the Vienna Ab Initio Simulation Package
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(VASP) with the frozen-core all-electron projector augmented wave
(PAW) model32 and Perdew−Burke−Ernzerhof (PBE) functions.33 A
kinetic energy cutoff of 400 eV was used for the plane-wave expansion
of the electronic wave function, and the convergence criteria of force
and energy were set to 0.01 eV Å−1 and 10−5 eV, respectively. A
Gaussian smearing of 0.1 eV was applied for optimizations and a k-
point grid with a 3 × 3 × 1 γ centered mesh for sampling the first
Brillouin zone. The slab models of metal surfaces contain 4 layers of a
4 × 4 × 1 supercell, in which the bottom 2 layers were fixed at the
bulk crystal geometry during structural optimization. To avoid
artificial interactions between layers, a vacuum spacing of ∼20 Å
was applied. The effect of solvent was taken into account with an
implicit solvation model.16

Adsorption energy is calculated by Eads = Esur + Emol − Esur−mol, in
which Esur, Emol, and Esur−mol represent the energies of the pristine
metal surface, the free-standing CO molecule, and the adsorbed
configurations, respectively. Cluster models cut from the periodic
models were applied for the spectral calculations, as depicted in
Figure 1C. IR and Raman calculations were computed with Gaussian
16 using the PBEPBE functional with the 6-31+G* basis set for the
main elements and the pseudo-LANL2DA basis set for Ag atoms.34

The Raman cross section was calculated by
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Featurization and Embedding of Spectra and Dielectric
Constant. Generally, a spectrum is a two-dimensional curve wherein
each point represents two values: frequency and responsive intensity.
Herein, we formalize the points on a spectral curve as a binary array
and then input the array into the embedding layer. The raw feature is
an 18-dimensional vector (the frequency values, and IR and Raman-
responsive intensity values of the different vibrational modes, as
illustrated in Figure 1); to make better use of these data, we perform
some feature processing based on chemical knowledge. Specifically,
we reassemble these 18 features into 12 feature pairs (pi) (i is the pair
number ranging from 1 to 12) by choosing a frequency and the
corresponding responsive value of one spectrum. Each feature pair is
used as a descriptor for passing through a two-layer fully connected
network, and we eventually get 12 pairs of embedding vectors. Then,
we concatenate them with a raw feature x as the final embedding
vector result (e), i.e.

e x p p pFC( ) FC( ) FC( )1 2 12= || || || ··· ||

where the function FC corresponds to a fully connected neural
network and || denotes the operation of concatenation.

Each dielectric constant (ε) is a single value, and for a specific
solvent, there exists only one corresponding dielectric constant value.
So, a two-layer fully connected neural network is used here to
generate a 20-dimensional vector (more details in the Supporting
Information), which is then concatenated with e, i.e.

m e FC( )=

where the function FC corresponds to a fully connected neural
network and || denotes the operation of concatenation.
Expert and Gate Network Integrated Learning Module. This

module can be divided into two parts: an expert submodule and a gate
submodule.35 To begin, we use 5 expert networks f i() (i indexes the
number of expert networks and is from 1 to 5) to learn the final
embedding vector result and use this result to obtain different hidden
representations. An expert network consists of a multilayer perceptron
with the LeakReLU activation function and a normalization layer35

and finally outputs representations with regard to this expert. Second,
after obtaining all 5 experts’ representations, gate networks Gj (j here
indexes the number of gate networks, which also corresponds to task
indexes one by one and ranges from 1 to 4) are trained to learn how
to “score the opinions of different experts”, meaning gate networks

can assign weights to different experts to meet the needs of different
tasks. Specifically, a gate network, which is a series of linear
transformations with a SoftMax, utilizes the original input features
as initialization parameters and keeps updating during training. For a
specific task, the gate network can be calculated by

G xSoftMax FC( )j = [ ]

where FC is a two-layer fully connected network. Here, Gj is a five-
element weight parameter array, which can also be written as Gj = [g1j g
2
j g3j g4j g5j ], and naturally, the sum of all weights within Gj satisfies
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where j is the task index, and i is the expert module index. Then, the
final representation with regard to the jth task, i.e., tj, is calculated by
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Thus, by integrating gate networks with expert networks, each task is
associated with an exclusive task-specific representation tj (j is the
number of gate networks ranging from 1 to 4 and also corresponds to
task indexes one by one). To ensure the diversity among different
experts, we further introduce a cosine similarity-based similarity
control (SC) module. It is a penalty term, which is calculated during
forward propagation and minimized by backward propagation to
reduce the similarities between task-specific representations, i.e.

t t
t t

t t
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j k

j k
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·
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where a∥·a∥ indicates L2 normalization.
Feature Weight Calculation. We calculated the features’ weight

based on gradient-based analysis method23,24 (Figure S10).
Specifically, we computed the absolute value of its corresponding
gradient and summed the absolute gradient values of features

C L
wi

j

m

ij1

=
=

This sum represents the overall sensitivity of the model to all of the
input features.

Here, i represents the input feature, m is the number of nodes in
the hidden layer, j represents the hidden layer nodes, and w signifies
the weights from input features to hidden layer nodes. Consequently,
the contribution P of n features can be calculated using the following
formula
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n
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Output Module. This module aims to decode the representations
from task-specific gate networks and finally output prediction results.
Each task-specific output module includes three same-stacked block
submodules where each block submodule consists of one fully
connected layer, one LayerNorm layer, and a LeakReLu activation
function. An additional fully connected layer is employed as the final
layer following the three stacked blocks to output the final result.
Loss Function. For a single prediction task, MSE is a good metric

for evaluation; therefore, we use such a metric here. However, when
evaluating multiple tasks, it is trivial to maintain the balance between
the losses of different tasks since they may have different
measurement scales. Therefore, we here introduce an elegant way,36

which is also a principled way of combining multiple loss functions to
simultaneously learn multiple objectives by using homoscedastic
uncertainty.
Architecture of Ensemble Network in Tier II. The ensemble

network has nearly the same architecture as the raw expert and gate
network integrated learning model, except the number of experts
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differs. Several trained experts with frozen parameters in parallel are
contained in a previously trained model to involve the extraction of
fundamental QSPR knowledge. Simultaneously, several untrained
experts with the same structure are also integrated to extract solvent
difference knowledge during subsequent training.
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