UC Berkeley UC Berkeley Electronic Theses and Dissertations

Title

Interventions to Encourage and Facilitate Greener Industrial Chemicals Selection

Permalink https://escholarship.org/uc/item/4px4399n

Author Faulkner, David

Publication Date 2017

Peer reviewed|Thesis/dissertation

Interventions to Encourage and Facilitate Greener Industrial Chemicals Selection

by

David Michael Faulkner

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Molecular Toxicology

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Christopher D. Vulpe, Co-Chair Associate Professor Jen-Chywan Wang, Co-Chair Associate Professor Daniel K. Nomura Professor John Arnold

Fall 2017

Abstract

Interventions to Encourage and Facilitate Greener Industrial Chemicals Selection

by

David Michael Faulkner

Doctor of Philosophy in Molecular Toxicology

University of California, Berkeley

Professor Christopher D. Vulpe, Co-Chair

Associate Professor Jen-Chywan Wang, Co-Chair

Despite their ubiquity in modern life, industrial chemicals are poorly regulated in the United States. Statutory law defines industrial chemicals as chemicals that are not foods, drugs, cosmetics, nor pesticides, but may be used in consumer products, and this distinction places them under the purview of the Toxic Substances Control Act (TSCA), which received a substantial update when the US congress passed a revision of the act in 2016. The revised law, the Frank R. Lautenberg Chemical Safety for the 21st Century Act addresses many but not all of TSCA's failings, and rightfully emphasizes the development and adoption of high throughput screens, *in vitro*, and alternative assays to improve the process for registering new chemicals and to address the tens of thousands of untested chemicals currently in the TSCA inventory. As the discipline of toxicology gradually shifts from its' history as a reactive science (responding to problems after they've occurred) to a proactive science (attempting to predict and circumvent dangers to human and environmental health), two things become clear: 1.) traditional low throughput toxicological testing methodologies are inadequate to address both the volume of chemicals of interest and the pace of research: and 2.) the modern industrial chemical ecosystem is complex and no single testing solution will be appropriate for all the actors that populate that ecosystem.

To address these challenges, three interventions are proposed, each of which targets a different population within the industrial chemical ecosystem. The first intervention is a suite of computational toxicology methods targeted towards chemists in the initial phases of chemical design and development. The second intervention is an alternative assay, the yeast functional toxicogenomic assay, permits industrial or government labs to rapidly investigate differences in cytotoxic mechanism between different chemicals – even if they are structurally very similar. The third intervention explored in this work is a method for enhancing the metabolic capacity of cell lines currently used by regulators for high throughput cytotoxicity testing. These interventions individually are not necessarily appropriate for all actors across the US industrial chemicals ecosystem, but as bespoke solutions they may be quite useful, and, it is hoped, support a larger exploration of where and how similar efforts may be spent most effectively to reduce industrial chemical hazard.

Dedication page

I dedicate this dissertation to my mother and sister, whom I love most dearly.

Table of Contents

Abstract	1
Preliminary Pages	
Dedication	i
Table of Contents	ii
List of Figures and tables	iii
Acknowledgements	v
Main Text	
Chapter 1: Introduction to Green and Industrial Chemistry	1
Chapter 2: Computational Tools For Green Molecular Design	9
To Reduce Toxicological Risk	
Chapter 3: Functional Toxicogenomics and Combinatorial Chemistry	
For Greener Design	32
Chapter 4: Using CRISPR To Enhance The Metabolic Capacity Of Cell Lines	
Commonly Used In High Throughput Screening	79
Appendices	
Appendix 1: Mutants with altered growth in 2,5-DMF	114
Appendix 2: Mutants with altered growth in 2,3-DMF	118
Appendix 3: Mutants with altered growth in 2-MF	148
Appendix 4: Mutants with altered growth in 2-EF	181
Appendix 5: Yeast Functional Toxicogenomic Assay Sequencing Design	187

List of Figures and Tables

Chapter 2: Tools for Green Molecular Design to Reduce Toxicological Risk

Figure 2.1: Derek Nexus Can Assess the Level of Confidence in a Prediction

Figure 2.2: Derek Nexus Alert 351 Example

Figure 2.3: Hydrogen Compounds Used in Case Study

Figure 2.4: Compounds Generated From Second Iteration of Indoline

Figure 2.5: Example Workflows for Chemists

Chapter 3: Functional Toxicogenomics and Combinatorial Chemistry For Greener Design

 Table 3.1: 2.5-DMF
 15G Sensitive Strains GO Biological Process
 Table 3.2: 2,5-DMF 15G Sensitive Strains GO Cellular Component Table 3.3: 2,5-DMF 15G Sensitive Strains MIPS Functional Classification Table 3.4: 2.3-DMF 5G Resistant Strains MIPS Functional Classification Table 3.5: 2,3-DMF 10G Resistant Strains GO Molecular Function Table 3.6: 2,3-DMF 15G Resistant Strains GO Biological Process Table 3.7: 2,3-DMF 15G Resistant Strains GO Cellular Component Table 3.8: 2.3-DMF 15G Resistant Strains MIPS Functional Classification Table 3.9: 2,3-DMF 5G Sensitive Strains MIPS Functional Classification
 Table 3.10: 2,3-DMF
 5G Sensitive Strains GO Biological Process
 Table 3.11: 2,3-DMF 10G Sensitive Strains GO Biological Process Table 3.12: 2,3-DMF 15G Sensitive Strains GO Biological Process Table 3.13: 2,3-DMF Sensitive Strains Across All Time Points GO Biological Process Table 3.14: 2,3-DMF Sensitive Strains Across All Time Points GO Cellular Component Table 3.15: 2-MF 5G Resistant Strains GO Biological Process Table 3.16: 2-MF 5G Resistant Strains GO Cellular Component Table 3.17: 2-MF 5G Resistant Strains MIPS Functional Classification Table 3.18: 2-MF 10G Resistant GO Biological Process Table 3.19: 2-MF 10G Resistant GO Cellular Component Table 3.20: 2-MF 10G Resistant MIPS Functional Classification Table 3.21: 2-MF 15G Resistant GO Biological Process Table 3.22: 2-MF 15G Resistant GO Cellular Component Table 3.23: 2-MF 15G Resistant MIPS Functional Classification Table 3.24: 2-MF Resistant Across All Time Points GO Biological Process Table 3.25: 2-MF Resistant Across All Time Points GO Cellular Component Table 3.26: 2-MF Resistant across all time points MIPS Functional Classification Table 3.27: 2-MF 5G Sensitive Strains GO Biological Process Table 3.28: 2-MF 5G Sensitive Strains GO Cellular Component Table 3.29: 2-MF 5G Sensitive Strains MIPS Functional Classification Table 3.30: 2-MF 10G Sensitive Strains GO Biological Process Table 3.31: 2-MF 10G Sensitive Strains GO Cellular Component Table 3.32: 2-MF 10G Sensitive Strains GO MIPS Functional Classification Table 3.33: 2-MF 15G Sensitive GO Biological Process Table 3.34: 2-MF 15G Sensitive GO Cellular Component Table 3.35: 2-MF 15G Sensitive MIPS Functional Classification

Table 3.36; 2-MF Sensitive across all time points GO Biological Process Table 3.37: 2-MF Sensitive across all time points GO Cellular Component Table 3.38: 2-MF Sensitive across all time points MIPS Functional Classification Table 3.39: 2-EF 5G Resistant Strains MIPS Functional Classification Table 3.40: 2-EF 5G Sensitive Strains GO Biological Process Table 3.41: 2-EF 5G Sensitive Strains GO Cellular Component Table 3.42: 2-EF 5G Sensitive Strains MIPS Functional Classification Table 3.43: 2-EF 10G Sensitive Strains GO Biological Process Table 3.44: 2-EF 10G Sensitive Strains GO Cellular Component Table 3.45: 2-EF 10G Sensitive Strains MIPS Functional Classification Table 3.46: 2-EF 15G Sensitive Strains GO Biological Process Table 3.47: 2-EF 15G Sensitive Strains GO Cellular Component Table 3.48: 2-EF 15G Sensitive Strains MIPS Functional Classification Table 3.49: 2-EF Sensitive Strains Across All Time Points GO Molecular Function Table 3.50: 2-EF Sensitive Strains Across All Time Points GO Biological Process Table 3.51: 2-EF Sensitive Strains Across All Time Points MIPS Functional Classification

Chapter 4

Using CRISPR To Enhance The Metabolic Capacity Of Cell Lines Commonly Used In High Throughput Screening

Figure 4.1: CRISPRa Tests in HepG2 Cells

Figure 4.2: Guides Test for CYP1A2, CYP2E1, CYP3A4 and CYP2B6 in HEK293T Cells

Figure 4.3: Guides Test for UGT1A6 in HEK293T Cells

Figure 4.4: HEK293T Cells Transfected With Multiple CYPs Versus CYP3A4 Alone

Figure 4.5: Generation of HEK-SAM, a Cell Line Stably Expressing dCas9 and MS2-P65-HSF1 Figure 4.6: Expression of Proteins in the CYP3A4 Regulatory Pathway in the HEK293T Cell Line

Figure 4.7: Expression of Proteins in the CYP3A4 Regulatory Pathway in the HEK-SAM Cell Line

Figure 4.8: HNF4Ain the CYP3A4 Regulatory Pathway in the HEK293T Cell Line

Figure 4.9: DMSO treatment Decreases CYP Expression in CRISPRa-Transfected HEK293T Cells

Figure 4.10: CYP Expression in DMSO-Treated CRISPRa-Transfected HEK293T Cells is Much Lower Than In Primary Liver Cells

Figure 4.11: AZA Treatment Enchances CYP3A4 expression in HEK293T cells

Figure 4.12: Cytotoxicity Testing with Cyclophosphamide and Doxorubican Hydrochloride

Figure 4.13: Cytotoxicity Testing with Benzo[a]Pyrene and 2-naphthlamine

Figure 4.14: Cytotoxicity Testing with Acrylamide and Aflatoxin B1

Figure 4.15: Cytotoxicity Testing with 8-Methoxypsoran and 6-aminochrysene

Figure 4.16: Cytotoxicity Testing with 4-nitrophenol

Figure 4.17: CYP3A4 Activation with CRISPRa Increases sensitivity of HEK293T Cells to 8-Methoxypsoran and Aflatoxin B1

Figure 4.18: CYP3A4 Activation with CRISPRa Increases sensitivity of HEK293T Cells to 4nitrophenol

Acknowledgements

I cannot properly express my gratitude to all of the patient, generous, and loving people in my life who made this dissertation possible, to do so would necessitate at least the space of another one hundred and eighty or so pages, and even then I'm sure I'd be forgetting someone. Nevertheless:

Thank you Chris, first and foremost, for all of your support over these last four and a half years. Thank you for indulging my intellectual flights of fancy and for giving me so many opportunities to explore and grow. Your patient generosity and brilliance have been tremendous gifts during my time in the Vulpe lab, and I am profoundly indebted to you. I'll even forgive you for moving to Florida.

Thank you Mani, for all of your help and training in lab. It is no exaggeration to say that there's no way that any of this would have gotten done without your teaching and encouragement. I'll always treasure our lengthy and winding conversations about language, culture, history, and, of course, potatoes.

Thank you Vanessa, for being my friend and teaching me about the wide wonderful world of yeast work. My only regret is that we now live on opposite sides of the country!

Thank you Marty and Tom, for your support and for making the BCGC my adoptive home here on campus. I'm thrilled to be joining the Center in January.

Thank you Heather for your friendship, and for pulling me into so many new and exciting green chemistry projects. Your support and kindness over the last couple years have meant so much to me.

Thank you Faith for all of your help in lab, and for making Florida feel like home, at least for a little while. Us Michiganders have to stick together.

Thank you Brianna for all your help in getting the comptox project off the ground and for being a friend (and NST gossip buddy).

Thank you Amanda, Alexis, Devrah, Justine, Cody, Candice, and everyone else at CEHT for adopting me during my time in Florida.

Thank you Jon and Allison for all the bowling nights, the questionable skiing adventure, and Bay to Breakers.

Thank you to my family, for all of the love and encouragement.

And lastly, thank you to my second family: Joe, Nick Jarosz, Randy, Miyoko, Amy, Brett, Nick Beier, and Zach, for all the emotional and spiritual support over the years. I love you all.

Chapter 1 Introduction to Green and Industrial Chemistry

A Brief History Of The Green Chemicals Industry In Relation To Consumer Products

It is estimated that the global chemical manufacturing industry produces between 70,000 and 100,000 chemicals each year, and the US EPA reports that it receives roughly 1,000 new chemical pre-manufacture notices annually^{1,2}. Unfortunately, only a few thousand of the chemicals currently in trade in the United States have been thoroughly evaluated for chemical hazard due to the material and temporal cost of traditional toxicological methods. Increasing consumer demand and recent changes in chemical regulation in the US and Europe have spurred a renaissance in the field of hazard assessment, leading companies, regulators and researchers to develop new methods for rapid chemical hazard assessment and to further refine existing methods to improve cost, speed, and accuracy.

Consumer demand has been a powerful accelerant for the adoption of more comprehensive chemical testing, and most large producers of consumer products consider sustainability metrics when developing marketing materials³. Just as the modern environmental movement began with Rachel Carson's 1962 book "Silent Spring," and lead to the passing of the Clean Water Act, The Toxic Substances Control Act (TSCA), and the founding of the US EPA, increasing evidence of consumer exposure to, and absorption of, chemicals found in consumer products⁴ has spurred a transition from concerns about environmental restoration and protection to a more preemptive model of pollution prevention⁵. Recent studies have identified common antimicrobial compounds such as triclosan as well as brominated flame retardants and plasticizing compounds in body fluid samples from a representative sample of the American population⁶. Alarmingly, it is clear that exposure to brominated flame retardants - which have been linked to a variety of health effects related to endocrine disruption – commonly occurs through household dust generated in part by consumer products such as furniture or electrical appliances⁷. The furor that these findings have generated, as well as massive public backlash to chemicals commonly found in consumer products such as Bisphenol A⁸, have contributed to the groundswell of concern about industrial chemicals that has been fomenting for decades.

Part of the regulatory response to public concern about chemicals in consumer products is the Lautenberg amendment to the TSCA, which expands the EPAs regulatory authority over industrial chemicals, requiring that new chemicals must demonstrate safety before they can be brought to market and enabling the EPA to require additional safety testing for existing chemicals if there is insufficient data to evaluate chemical risk⁹. This brings the US chemical policy closer in line with the European Union's REACH regulation, which requires that companies register substances that they are using and to provide environmental and human health data for each substance¹⁰. In both regulatory schema, alternative – i.e. non-animal – testing strategies are encouraged, as both a means of reducing testing costs and as part of a larger effort to streamline the data collection process.

Of course, neither producers of consumer products nor the chemical industry are blind to these societal and regulatory changes and have over the past few decades bent in the direction of environmental sustainability through the embrace of "Green Chemistry¹¹." The

field of "Green Chemistry" has among its tenants the principle that chemicals should be "benign by design" – that is, they ought to possess the minimum necessary hazard to human and environmental health as can be achieved while preserving their function. Of the 12 principles of green chemistry articulated by Anastas and Warner¹², "benign by design" has proven to be the most difficult to achieve for obvious reasons: unlike improving atom economy or reducing solvent use, the process of developing less hazardous chemicals is spectacularly complex and fraught with all the peril that is endemic to the field of biology. Chemical reactions are complicated, but living organisms are worlds unto themselves. The challenge of reducing hazard while maintaining performance requires not only the faculties of a savvy toxicologist, but the investment of effort by chemists, engineers, and designers – hardly a trivial problem¹¹.

Despite the costs, the result of this combination of consumer demand, corporate strategy and shareholder fiat^{13,14} is that most of the worlds largest producers of consumer products have environmental sustainability and safer chemicals policies in various stages of development¹⁵. Microsoft freely distributes its list of substances restricted from use in its products¹⁶, while Amazon offers guarantees for responsible materials sourcing and conflict minerals disclosures¹⁷. Wal-Mart provides a thorough treatment of their chemicals policy which directly references the text and principles of Green Chemistry as formulated by Anastas and Werner¹² alongside announcements of joining The Chemical Footprint Project^{18,19} in 2017, and requirements for its suppliers to provide materials disclosures for priority chemicals in their products²⁰. These efforts pale in comparison to those of Apple, which has published Environment reports that detailing metrics for the company's energy, water, and raw materials usage since 2008, and as of this writing, all of these reports are still publically available on the company website²¹. While some of the early reports provide limited, basic information about energy and water usage, in recent years, the environmental safety reports have become incredibly thorough documents with surprising granularity of data disclosure, and more specialized reports are available for individual products. In 2016, the company announced its full materials disclosure (FMD) program, which sought to work up their supply chains and identify every chemical substance composing every part in every product. As of 2017, more than 20,000 chemicals have been identified, comprising nearly the entire repertoire of Apple products. This is a rare accomplishment among producers of consumer products, allowing Apple to join SeaGate as one of the few electronics companies to have completed an FMD program¹⁹. Such programs are by far the exception, rather than the rule, owing to the cost and difficulty of such projects. The result of such investments is that FMD provides companies the ability to improve their product chemistries as never before, because safer products cannot be developed if the product composition is not known¹⁹.

Once the constituent chemicals of a product have been identified, it becomes possible to perform alternatives assessments and determine which, if any chemicals might provide the same functionality with lower human and environmental health costs. An ecosystem of consulting firms, databases, and methodologies has developed to provide scientific support and certifications for companies with an interest in safer consumer chemistry. The Healthy Building Network, a 501 (c)(3) non-profit, developed Pharos, a database of chemicals commonly found in building materials, as well as the available human and environmental

health data for those chemicals²². Interested parties can use Pharos to compare the hazard endpoints of one chemical versus another, and use that information to guide their decision-making. Pharos incorporates the GreenScreen method of hazard assessment, a framework developed by Clean Production Action, another 501 (c)(3) organization²³, to provide simplified summaries of hazard endpoints for users without substantial toxicology expertise to ease the process of comparing chemicals.

The practical challenges of producing safe and sustainable products has led to "greenwashing" behaviors wherein companies make bold claims about a product's safety and environmental friendliness, but do not follow through on the important work of ensuring that these claims are accurate. As a result, eco-conscious consumers not only become disenchanted¹⁵, but may misuse a product or engage in unsafe product use practices due to inaccurate perceptions of its safety profile or health benefits²⁴. While there is room for optimism in some the recent market shifts towards environmental ethics in business practices^{25,26}, if the full environmental and public health potential of these changes are to be realized, more rigor and thoughtfulness must be applied to the practical challenges of developing new and alternative chemical solutions that are indeed "greener" but which also satisfy market and regulatory demands.

While the growth and development of the green chemistry industry is encouraging, and there are many signs of progress as producers of consumer products gradually emphasize safer product chemistries, significant challenges remain, particularly in the field of chemical hazard assessment. Data gaps continue to be a significant challenge for alternatives assessments, despite the proliferation of chemical hazard databases such as Pharos, the Chemical Footprint Project¹⁸, EPA's ToxCast²⁷ and Toxnet²⁸, and ECHA's Registered Substances Database²⁹. Though useful in narrow circumstances, these databases only house a fraction of the thousands of compounds used in the production of consumer products, and in many cases entries are limited to only a few hazard endpoints. To address this problem, significant developments in the field of chemicals testing are necessary, as is a willingness to implement them at crucial points in the development pipeline for consumer products.

The Necessity Of Bespoke Solutions

The modern industrial chemical system is sprawling and complex, resistant to any single palliative that will induce all synthetic chemists to generate benign compounds and also enable regulators to work through the backlog of chemicals awaiting investigation. To borrow a theoretical tool from the field of Public Health, one must meet the subject of an intervention where they are, and one must tailor the intervention to suit the needs of the subject, otherwise, no improvement may be expected^{30,31}. Therefore, this dissertation explores three different interventions, each intended to improve product chemical safety at a different part of the industrial chemical apparatus: The first, aimed at the earliest phase of synthetic chemistry, is an exploration of the computational tools which may enable chemical designers to incorporate reduced hazard into their lead compounds from the very beginning. Second, the utility of an alternative testing strategy, functional toxicogenomics, is presented to indicate that it may be used by industrial or regulatory actors to assess compounds for safety, and potentially improve the chemical design process. Finally, the

nascent CRISPR technology is examined to determine how it may be used to retrofit existing high throughput screens to improve predictive accuracy with minimal effort.

Computational Toxicological Tools For Greener Molecular Design

The most effective means of reducing chemical hazard is to avoid producing hazardous chemicals in the first place. This notion is not purely aphoristic, but rather, a statement of intent with regards to the first intervention strategy which is discussed: the use of computational toxicology programs to guide chemists in the design of new molecules. This chapter demonstrates that although very few computational toxicology programs are intended for designing industrial chemicals, some programs intended for pharmaceutical development and medicinal chemistry may be used to this end. A survey of computational toxicology platforms or models is presented to identify those tools which are most accessible to the average synthetic chemist who possesses minimal toxicological expertise, but is interested in designing safer molecules. Broadly speaking, the "green" chemist wishes to develop compounds without any of the properties which are prized by pharmacologists, and seeks to minimize a compounds' uptake, stability, and biological activity. Building on the work of Voutchkova et al^{32,33}, physicochemical properties that facilitate uptake, stability and biological activity of molecules are considered using principles derived from medicinal chemistry: size, number of hydrogen bonding moieties, polar surface area, pKa, and logP. Then, a set of three different workflows is developed to guide green chemists through the process of green molecular design¹¹, which accounts for their level of toxicological expertise and available funding. A version of this chapter has been published as a chapter in a textbook on computational pharmacology and toxicology³⁴.

Functional Toxicogenomics and Combinatorial Chemistry Streamline Hazard Evaluation

Once a chemical has been developed, it must be tested for potential hazards, a process which may take months or years using traditional models for hazard assessment. To remedy this, regulators have encouraged the development of alternative assays to streamline the process of screening chemicals, one of which is the yeast functional toxicogenomic assay. The yeast functional toxicogenomic assay has been used to identify mechanisms of cytotoxicity for thousands of chemicals and to dissect biochemical pathways in baker's yeast (*Saccharomyces cerevisiae*), improving both our understanding of chemical toxicity and of basic cellular biology³⁵⁻³⁸. Here, this assay to test the biofuel candidate compound 2,5-dimethylfuran as well as a series of related compounds to determine if minor modifications to the core furan ring would result in different mechanisms of cellular toxicity.

Because 2,5-dimethylfuran (2,5-DMF) has such promise as a biofuel, it is prudent to thoroughly evaluate it for toxicological hazard before adopting it as a replacement for petroleum, especially since there is some evidence that it may induce double-strand breaks in genomic DNA³⁹. However, merely testing 2,5-DMF does not help chemists working in the chemical space of simple furans, and there is ample evidence throughout the history of toxicology indicating that minor changes in structure may result in substantial changes in toxicity. Therefore, the related compounds 2-methylfuran, 2-ethylfuran, and 2,3-

dimethylfuran were also screened to see if changes to the functionalization of the furan ring ameliorated the genetic toxicity endpoint. Bar-Seq analysis of the data from the yeast functional toxicogenomic assay suggests that under chronic exposure conditions, 2,5-DMF does indeed result in DNA damage, including double strand breaks, likely as a result of DNA-protein cross-links, supporting earlier findings for 2,5-DMF's genotoxic properties. However, Bar-Seq data also indicate that these DNA damaging properties may be unique to 2,5-DMF, and that the other furan compounds tested here mediate their cytotoxic effects through nonspecific oxidative protein damage and interference with intracellular transport pathways. The implications of these findings are twofold: 1. the chapter demonstrates the validity of GMD as a means to develop functionally similar molecules with different toxicological properties, and 2. the work adds to the corpus of evidence supporting the use of the yeast functional toxicogenomic assay for rapid and scalable assessment of industrial compounds.

Use Of CRISPRa To Improve Metabolic Competence Of In Vitro Cultures For High-Throughput Screens

Regulators and industrial firms alike make use of mammalian cell culture and highthroughput screening (HTS) assays to provide baseline activity data and hazard assessment data for chemicals, often using immortalized human liver or kidney cell lines.⁴⁰ Unfortunately, it has been demonstrated that the metabolic capabilities of two cell lines commonly used for HTS, HEK293-T and HepG2, are far inferior to their primary cell equivalents - kidney and liver cells, respectively. This metabolic deficit means that bioactivated compounds may appear less toxic in HTS while detoxified compounds may appear more toxic. Several methods exist for restoring metabolic competence to cultured cells, including the use of DMSO⁴¹, mRNA, and (other techniques), but these techniques are invasive and often necessitate the use of adjuvants to work, which complicates and may confound testing done with them. As a drop-in solution, the CRISPRa method described by Konermann et al⁴². is employed to develop a simple transfection that will result in upregulated metabolism-related genes which are otherwise suppressed in HepG2 and HEK293T cell cultures. The development and optimization of this technique is presented, along with early evidence suggesting the potential for this technology to improve metabolic competence in HTS.

References

- 1. Clomburg, J. M., Crumbley, A. M. & Gonzalez, R. Industrial biomanufacturing: The future of chemical production. *Science* **355**, aag0804 (2017).
- 2. Card, M. L. *et al.* History of EPI Suite[™] and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments. *Env. Sci Process. Impacts* **19**, 203–212 (2017).
- 3. Hofenk, D., Birgelen, M. van, Bloemer, J. & Semeijn, J. How and When Retailers' Sustainability Efforts Translate into Positive Consumer Responses: The Interplay Between Personal and Social Factors. *J. Bus. Ethics* 1–20 (2017). doi:10.1007/s10551-017-3616-1
- 4. Wambaugh, J. F. *et al.* High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals. *Environ. Sci. Technol.* **48**, 12760–12767 (2014).
- 5. History of Green Chemistry. Available at: https://www.acs.org/content/acs/en/greenchemistry/what-is-greenchemistry/history-of-green-chemistry.html.
- 6. Crinnion, W. J. The CDC fourth national report on human exposure to environmental chemicals: what it tells us about our toxic burden and how it assist environmental medicine physicians. *Altern. Med. Rev. J. Clin. Ther.* **15**, 101–109 (2010).
- Fromme, H., Becher, G., Hilger, B. & Völkel, W. Brominated flame retardants Exposure and risk assessment for the general population. *Int. J. Hyg. Environ. Health* 219, 1–23 (2016).
- 8. Resnik, D. B. & Elliott, K. C. Bisphenol A and Risk Management Ethics. *Bioethics* **29**, 182–189 (2015).
- 9. USEPA. Highlights of Key Provisions in the Frank R. Lautenberg Chemical Safety for the 21st Century Act. *Assessing and Managing Chemicals Under TSCA* Available at: https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/highlights-key-provisions-frank-r-lautenberg-chemical.
- 10. European Agency For Safety At Work. REACH Regulation for Registration, Evaluation, Authorisation and Restriction of Chemicals. (2017). Available at: https://osha.europa.eu/en/themes/dangerous-substances/reach.
- 11. Coish, P. *et al.* Current Status and Future Challenges in Molecular Design for Reduced Hazard. *ACS Sustain. Chem. Eng.* **4**, 5900–5906 (2016).
- 12. Anastas, P. & Warner, J. *Green Chemistry: Theory and Practice, Oxford University Press: New York, 1998, p.30. By permission of Oxford University Press.* (Oxford University Press, 1998).
- 13. Scruggs, C. E. & Van Buren, H. J. Why Leading Consumer Product Companies Develop Proactive Chemical Management Strategies. *Bus. Soc.* **55**, 635–675 (2016).
- 14. IEHN Shareholder Resolutions. Available at: http://iehn.org/resolutions.shareholder.php. (Accessed: 11th December 2017)
- 15. Nyilasy, G., Gangadharbatla, H. & Paladino, A. Perceived Greenwashing: The Interactive Effects of Green Advertising and Corporate Environmental Performance on Consumer Reactions. *J. Bus. Ethics* **125**, 693–707 (2014).
- 16. Sustainable Production Process | Microsoft Environment. *Microsoft* Available at: https://www.microsoft.com/en-us/environment/product. (Accessed: 11th December 2017)

- 17. Sustainability-Responsible Sourcing. Available at: https://www.amazon.com/p/feature/uknj5z35m3ev8as. (Accessed: 11th December 2017)
- 18. The Chemical Footprint Project. Available at: http://www.chemicalfootprint.org/. (Accessed: 11th December 2017)
- 19. Konkel, L. Chemical Footprinting: Identifying Hidden Liabilities in Manufacturing Consumer Products. *Environ. Health Perspect.* **123**, A130–A133 (2015).
- 20. Walmart Commitment to Sustainable Chemistry Walmart Sustainability. Available at: https://www.walmartsustainabilityhub.com/sustainable-chemistry/sustainablechemistry-policy. (Accessed: 11th December 2017)
- 21. Environment Reports. *Apple* Available at: https://www.apple.com/environment/reports/. (Accessed: 11th December 2017)
- 22. Pharos Project. Available at: https://www.pharosproject.net/. (Accessed: 11th December 2017)
- 23. Chemicals, G. F. S. GreenScreen® For Safer Chemicals | An open, transparent, and publicly accessible.... Available at: https://www.greenscreenchemicals.org. (Accessed: 11th December 2017)
- 24. Royne, M. B., Levy, M. & Martinez, J. The Public Health Implications of Consumers' Environmental Concern and Their Willingness to Pay for an Eco-Friendly Product. *J. Consum. Aff.* **45**, 329–343 (2011).
- 25. The Sustainability Consortium Sustainable Products, Sustainable Planet. *The Sustainability Consortium* Available at: https://www.sustainabilityconsortium.org/. (Accessed: 10th December 2017)
- 26. Leonidou, C. N., Skarmeas, D. & Saridakis, C. Ethics, Sustainability, and Culture: A Review and Directions for Research. in *Advances in Global Marketing* 471–517 (Springer, Cham, 2018). doi:10.1007/978-3-319-61385-7_19
- 27. US EPA, O. Toxicity ForeCaster (ToxCast[™]) Data. US EPA (2015). Available at: https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data. (Accessed: 11th December 2017)
- 28. Toxnet. Toxnet: Toxicology Data Network Available at: http://toxnet.nlm.nih.gov/.
- 29. Registered substances ECHA. Available at: https://echa.europa.eu/information-onchemicals/registered-substances. (Accessed: 11th December 2017)
- 30. Craig, P. *et al.* Developing and evaluating complex interventions: the new Medical Research Council guidance. *BMJ* **337**, a1655 (2008).
- 31. Moore, G. *et al.* Process evaluation in complex public health intervention studies: the need for guidance. *J Epidemiol Community Health* **68**, 101–102 (2014).
- 32. Voutchkova, A. M., Ferris, L. A., Zimmerman, J. B. & Anastas, P. T. Toward molecular design for hazard reduction—fundamental relationships between chemical properties and toxicity. *Tetrahedron* **66**, 1031–1039 (2010).
- 33. Voutchkova, A. M., Osimitz, T. G. & Anastas, P. T. Toward a Comprehensive Molecular Design Framework for Reduced Hazard. *Chem. Rev.* **110**, 5845–5882 (2010).
- 34. Faulkner, D. et al. CHAPTER 3:Tools for Green Molecular Design to Reduce Toxicological Risk. in Computational Systems Pharmacology and Toxicology 36–59 (2017). doi:10.1039/9781782623731-00036
- 35. Hoepfner, D. *et al.* High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions. *Microbiol. Res.* **169**, 107–120 (2014).

- 36. Costanzo, M. *et al.* The Genetic Landscape of a Cell. *Science* **327**, 425–431 (2010).
- 37. Giaever, G. & Nislow, C. The Yeast Deletion Collection: A Decade of Functional Genomics. *Genetics* **197**, 451–465 (2014).
- 38. Chen, M., Zhang, M., Borlak, J. & Tong, W. A Decade of Toxicogenomic Research and Its Contribution to Toxicological Science. *Toxicol. Sci.* **130**, 217–228 (2012).
- 39. Fromowitz, M. *et al.* Bone marrow genotoxicity of 2,5-dimethylfuran, a green biofuel candidate. *Environ. Mol. Mutagen.* **53**, 488–491 (2012).
- 40. Krewski, D. *et al.* Toxicity Testing in the 21st Century: A Vision and a Strategy. *J. Toxicol. Environ. Health Part B* **13**, 51–138 (2010).
- 41. Nishimura, M., Ueda, N. & Naito, S. Effects of Dimethyl Sulfoxide on the Gene Induction of Cytochrome P450 Isoforms, UGT-Dependent Glucuronosyl Transferase Isoforms, and ABCB1 in Primary Culture of Human Hepatocytes. *Biol. Pharm. Bull.* **26**, 1052–1056 (2003).
- 42. Konermann, S. *et al.* Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. *Nature* **517**, 583–588 (2014).

Chapter 2 Tools for Green Molecular Design to Reduce Toxicological Risk

Introduction

The green chemistry design philosophy has proven useful in both academic and business settings^{1,2}, but some aspects have yet to be fully exploited during the earliest stages of chemical design. The fourth principle of green chemistry, which states chemicals should be "benign by design," is possibly the most difficult to achieve, because it relies on the ability to predict the behavior of a given compound in a biological system, including the degree and rate at which a chemical substance enters the systemic circulation and/or is present at the site of physiological or biochemical activity.

The aim of this chapter is to illustrate in practical terms how some of these tools might be used by bench chemists working in academic or government research settings to design molecules that are less bioavailable and less toxic. For those already comfortable with the fields of molecular biology or toxicology, more comprehensive resources are available,³ but for those without such backgrounds, this chapter provides an introduction to toxicological hazard reduction via rational molecular design. The chapter begins with a survey of currently available tools and a broad discussion of their attributes. Next, a case study using a panel of test molecules to is presented to demonstrate the utility and applicability of these tools. Several practical workflows are presented to help guide chemists in the early stages of molecule design, and then the chapter concludes with a meditation on the nature of the ideal green molecular design tool.

An Introduction to Green Molecular Design

Voutchkova and colleagues⁴ have discussed the three fundamental requirements for chemical toxicity in a living system: (1) there must be exposure of the chemical to the living system, (2) the chemical substance must be bioavailable (the degree and rate at which a chemical substance enters the systemic circulation and/or is present at the site of physiological or biochemical activity) by the route of exposure, and (3) the chemical and/or metabolites must be capable of directly or indirectly causing an alteration (initiating event) which leads to an adverse outcome. The physicochemical properties of the compound(s) play a large role in these factors. As an example, reducing or blocking potential bioavailability through chemical design has been shown to be a successful process in GMD⁴.

Fortunately for chemists, the field of computational toxicology has grown tremendously in recent years in response to several initiatives to anticipate and reduce toxic hazard, improve and accelerate toxicity testing of new chemicals, and reduce the use of animals in the testing process.^{5,6} While the field of computational toxicology owes its genesis to the fields of medicinal chemistry and drug development, both new and existing platforms can be harnessed to evaluate industrial chemicals as well. Importantly, in June 2016, the Frank R. Lautenberg Chemical Safety for the 21st Century Act was signed into law, which overhauls the United States' 40-year-old statute governing chemicals, The Toxic Substances Control Act. In summary, the law requires the U.S. EPA to ensure that no chemical in the U.S. commerce poses an unreasonable risk to human health or the

environment. The law also aims to reduce the use of laboratory animals in toxicology studies, and to develop, validate, and use reliable alternatives to animal studies. The alternatives, already in process, include computational toxicology and high-throughput cell-based assays. In addition, new technologies such as organ-on-a-chip assays will also be validated and used, which in several cases allows human endpoints to be incorporated into both research and regulatory efforts. These efforts will eventually create a large transparent information source (frequently called "Big Data") that can be harnessed into the GMD process. Data transparency is the key to these efforts, and it is anticipated that information will be available to create new and/or update existing platforms expanding past the chemical space of pharmaceutical compounds. In an effort to propose a new innovative tool for GMD, the authors have analyzed several on-line and subscription based tools involving chemical design and human health and environmental toxicological endpoints. Several of these tools are discussed in this chapter and a brief case study is presented using three tools individually. Based on these assessments, a new proposed GMD tool is outlined.

Physiochemical, Genotoxicity, and Blood Brain Barrier Passage Properties of Chemicals

The traditional model used by medicinal chemists, pharmacologists, and toxicologists to understand how xenobiotics (compounds not naturally produced by the body) enter and leave the body considers the Absorption, Metabolism, Distribution, Excretion, and Toxicity (ADMET) of the compound. Although remarkable progress has been made in recent years regarding the development of computational tools for predicting toxicological endpoints⁷, accurately anticipating toxicological hazard remains a significant challenge.⁸ Currently the most effective means to proactively reduce toxicological risk of environmental or industrial chemicals is to design molecules that are not readily absorbed by a biological system.^{3,4} An additional factor is to redesign structural motifs to avoid metabolism of compounds into more toxic intermediates.^{9,10}

A review by Raunio describes *in silico* procedures for predicting metabolic processes.¹¹ In drug research, medicinal chemists have developed models to predict which physicochemical properties make a molecule more "drug-like": that is, likely to be absorbed into the body, to be distributed within the body to certain targets, and to produce an effect.¹² Those same principles can provide guidance to design molecules that are less likely to interact with biological targets. These guiding principles are primarily concerned with the likelihood that a compound will be absorbed if it is administered orally, but they overlap significantly with the rules of dermal and respiratory absorption as well. Generally speaking, the rules that govern the likelihood of a compound crossing the cellular membrane are consistent across routes of exposure. *Lipinski's rules* are a commonly used set of five properties that are used to predict whether a compound is likely to be readily absorbed through oral ingestion. The rules are as follows: chemicals with (1) more than five hydrogen bond donors, (2) more than 10 hydrogen bond acceptors, (3) a molecular weight greater than 500 Da, or (4) a logP value (sometimes called $\log K_{ow}$) greater than 5 are unlikely to be well absorbed, unless the compound is (5) a substrate for a biological transporter, in which case can be an exception to the previous rules.¹³ A comparable analysis by Veber and colleagues similarly found that compounds with more than 10 rotatable bonds, more than 12 total hydrogen bond acceptors and donors, or a polar surface area greater than 140 Å were unlikely to be orally bioavailable in rats.¹⁴

While numerous properties are instrumental in the absorption of exogenous compounds, lipophilicity, charge, similarity to endogenous substances, blood-to gas partition molecular weight, and polar surface area appear to be of the greatest value when designing molecules.^{3,4} Therefore, molecules that are large, hydrophilic, charged at neutral pH, and that possess a large polar surface area are not readily absorbed in the GI tract. If the molecule of interest is not a substrate for a one of the body's many biological transport proteins, it may be actively transported into cells, and possibly distributed to the rest of the body. More complex and sophisticated models have been developed for predicting intestinal absorption based on *in vitro* data collected in the MCDK or Caco-2 cell lines, which are used as models for intestinal absorption.^{15,16} MCDK and Caco-2 permeability predictions are not included in many computational platforms but are notable when they appear, as they provide some direct suggestions about bioavailability. Given the importance of genetic toxicity in the evaluation of commercial compounds, computational tools that predict whether a chemical has mutagenic potential are common.^{10,17} The Ames test is an *in vitro* test which uses the bacterium *S. typhimurium* to determine the potential mutagenicity of chemicals.¹⁸⁻²⁰ A positive Ames result should prompt reconsideration of structural features (such as reactive nucleophiles) likely to elicit mutagenic activity, as well as additional chemical biotransformations that can change mutagenic potential. Currently, assessing the potential mutagenicity of metabolites is limited to specific computational platforms and in most cases, potential metabolite structures have to be assessed separately. Knowing if a chemical can cross the blood-brain barrier (BBB) is a significant aspect of drug design. The highly selective permeability of the BBB can make it challenging to deliver some drugs to the brain as intended, but it can also allow other compounds through that are not meant to affect the central nervous system (CNS), resulting in undesirable effects.²¹⁻²³ Predictive models for BBB permeability use lipophilicity, polar surface area, and whether the compound is a substrate for specific transporters to identify compounds that are likely to cross the BBB and potentially interact with neurological pathways. However, computational predictions of BBB permeability must be interpreted cautiously, because the BBB is a complex membrane that is difficult to model.^{24,25} The key knowledge required for a chemist wishing to use such predictive toxicology tools is to understand which molecular interactions and characteristics that are most benign or worrisome for a physiological system - concepts which are central to the design of medicinal compounds.

Tools for Green Molecular Design

Currently, several types of tools exist to predict the physicohemical properties and potential toxic effects of compounds; they may be broadly grouped into three categories: Expert Systems, Decision Trees, and (Quantitative) Structure-Activity Relationships (QSARs).

Expert Systems

Expert Systems use known relationships between chemical structures and toxicological outcomes to build rule-based predictive systems based on Structure-Activity Relationships (SARs).^{26,27} Assembly of an expert system requires development and curation of a large database of "toxicophores" – specific functional groups or fragments of molecular structures known to cause toxicity – and implementing a set of rules that connects known toxins and toxicophores to appropriate toxic endpoints. If a user searches for a chemical that isn't in the database, expert systems may employ "read-across," a technique which predicts hazard based on comparison to known toxins or toxicophores with similar structures.²⁸ It is anticipated that as new data become available, expert systems will be continually updated and may provide a more rapid path to validation of computational toxicology tools. Derek Nexus is an extensively used example of an expert system²⁹ and a detailed analysis of the system follows.

Derek Nexus is a proprietary reasoning-based expert system for the prediction of toxicity. Knowledge-based expert systems can be broadly placed into two categories: rule-based and reasoning based, with Derek Nexus being the latter. A rule-based system relies upon a series of rules that use "IF" and "THEN" statements to present the user with a prediction and the justification for it. However, there are limitations regarding the complexity of rules than can be encoded and the extent to which uncertainty can be handled thus limiting moderation of the outcome from a model. Reasoning based systems are capable of handling uncertainty to make predictions that take account of the interaction between rules which may themselves be imprecise.¹ The interactions between rules which agree or disagree result in a prediction being strengthened, weakened, overturned or contradicted,² and users are given information about confidence in the prediction, see Figure 1.

Derek Nexus makes predictions by using alerts which have been developed using appropriate data sources. The alerts are described by "patterns", or "Markush structures", which define the scope of the alert and in combination with reasoning rules allow Derek Nexus to make a prediction for or against toxicity for a given query compound and to advise on the level of confidence in it. They form a knowledge base covering over 50 toxicological endpoints including mutagenicity, carcinogenicity, teratogenicity and skin irritation. Each alert covers a specific area of chemical space by describing a chemical substructure, often referred to as a toxicophore, which is believed to be responsible for inducing a specific toxicological outcome. An alert often contains mitigating features or exclusions to ensure it is triggered only by the relevant toxicophore in the right structural environment.

Alerts are written by studying multiple data sources. They include toxicity data from relevant assays and chemical data such as reactivity as well as information about the biological mechanism of action and any mechanistic data. Mechanistic information is important since this is what drives toxicity and the information is included in the alert comments, which provide an expert summary of the molecular initiating event (MIE) and key events (KEs) linking it to a toxicological endpoint, thus describing in outline the adverse outcome pathway (AOP) for the alert. Metabolism data are taken into account, if

available, since this enables prediction for a compound which is not directly toxic but is metabolized to an active species, Figure 2.

In addition, rules are written about the species for which the alert is relevant and factors which influence the manifestation of toxicity such as physico-chemical properties (e.g. fatwater partition coefficients). These rules allow the inference engine to modulate the prediction for a query containing an alert and the result can range from a high expectation of activity all the way down to an explicit prediction of inactivity (as distinct from merely the absence of a prediction of activity). The use of human expertise is the key difference between a knowledge based system and a machine-learnt statistical system such as Sarah Nexus.⁸ Like a human expert, a knowledge based system can assess the level of confidence in predictions from an alert for a given type of query structure on the basis of a wide range of relevant information such as chemical reactivity, characteristics of an assay or an understanding of the likely mechanism, whereas a machine-learnt system bases its overall call only on a statistical analysis of the training data and the descriptors employed. The derivation of each alert in Derek Nexus is described in the alert commentary along with supporting references and example compounds to provide a transparent prediction. Historically, Derek Nexus alerts have been restricted to qualitative prediction of the hazards posed by a chemical. Advances in both human and machine-learnt knowledge mean that it is now possible for alerts to make at least semi-quantitative predictions. Derek Nexus can predict the skin sensitization potency class for a query compound in the local lymph node assay (LLNA), EC3, based on experimental data observed for the nearest neighbors, weighted by the Tanimoto similarity score, and selected from a set of compounds that exclusively fire the same alert as the query compound. The use of structural alerts for the prediction of toxicity is widely understood^{3,9} and has found application in many settings.¹⁰⁻¹⁴ Recent regulatory acceptance of *in silico* toxicity predictions is a significant milestone in the use of (Q)SAR for risk assessment. The ICH M7 guidelines allow the acceptance of negative computer predictions for the genotoxic risk assessment of low-level pharmaceutical impurities, provided that they come from two complementary (Q)SAR methodologies; one expert rule-based and one statistically based, for example Derek Nexus can be used in conjunction with Sarah Nexus. This dual approach reduces the risk that mutagens will be missed. In many cases, the development of new alerts and rules is supported by data sharing initiatives in which organizations pool relevant data. These consortia share knowledge and data with the aim of advancing scientific knowledge as opposed to a specific product. ICH M7 has prompted new data and knowledge sharing initiatives for which Derek Nexus has been utilized as a tool.¹² Derek Nexus has also been used as part of an integrated testing strategy (ITS) to predict for compounds outside the applicability domain of *in chemico/in vitro* assays¹³ and as a tool to develop novel methods for making negative predictions for mutagenicity.¹⁴ Derek Nexus is an example of computer prediction as a fast and green method with which to assess the toxicity of chemicals. The advent of stricter regulations on animal testing will increase the importance of computer models as predictive tools. As the models continue to improve and with increased sharing of data between companies, their predictions can be expected to become increasingly accurate and their use more commonplace.

Decision Trees

Decision trees use a series of Yes or No questions to classify and prioritize compounds based on their structural properties. The data for developing decision trees comes from mining the available literature and data of existing compounds and subsequently categorizing chemicals based on structural features and known toxic outcomes. An example is the Cramer Classification scheme, a common decision tree for ranking chemicals in terms of their expected oral toxicity. It consists of 33 questions that place chemicals in one of three classes: Class I - low oral toxicity, Class 2 - moderate oral toxicity, and Class 3 - high oral toxicity. The original decision tree was developed by Cramer and Ford³⁰ in the late seventies, but modifications were proposed in 2002 to improve the accuracy of classifications. Although some consider the Cramer scheme in need of additional revision,³⁰⁻³³ this decision tree has proven useful enough to be included in many computational tools such as *Toxtree* and the *OECD QSAR Toolbox*. Verhaar's scheme is yet another decision tree, developed to predict the likelihood of a chemical causing environmental toxicity.³⁴

QSAR Tools

QSARs (sometimes called quantitative structure-property relationships (QSPR)) model the relationship between a chemical structure and a specific biological endpoint.²⁶ QSAR processes are discussed in detail in another chapter in this book. There are many ways to create a QSAR, but the basic strategy is as follows: starting with a "training set" of molecules (compounds with known positive and negative values for an endpoint of interest), a variety of mathematical techniques are used. These include: multiple linear regression, partial least squares, neural networks, logistic regression, or linear discriminant analysis. Yee and Wei provide an excellent overview of various methods in a chapter on Statistical Modeling of Molecular Descriptors in QSAR/QSPR³⁵ to explain the variation in molecules in accordance with their values for that endpoint. QSARs are then validated with molecules that have known values for the endpoint, but which are not in the training set. The best computational tools provide information about the training sets used to build their QSARs, so that it is possible to determine how accurate their predictions are for a given molecule. If a molecule is very dissimilar from the compounds used in the training set, the QSAR will not generate a statistically meaningful prediction for that molecule. The chemical space for which a OSAR can provide statistically meaningful output is referred to as the "applicability domain." Examples of tools that use QSARs are programs like ACD Percepta, ADMET Predictor, Derek, Medchem Designer, The OECD QSAR Toolbox, Mobyle@RPBS, and QikProp.

Representative Tools

To assess the utility and accessibility of computational tools currently available for molecular designers, a representative list of available computational tools was generated using click2drug.org, an online "directory of computer-aided drug design tools" maintained by the Swiss Institute of Bioinformatics.³⁶ The list included single-function QSARs and collections of ADMET prediction models, with a mix of downloadable software, databases, and web-based platforms. The list includes the tools that the authors considered most useful and accommodating to general trends for the overlapping fields of

computational toxicology, computational chemistry, and computational medicinal chemistry.

ACD Percepta³⁷

This medicinal chemistry software is distributed by Advanced Chemistry Development, Inc.³⁷ The program accepts single and batch .sdf or .mol files and also allows users to draw structures directly in the software. The outputs include basic physicochemical parameters (logP, H-donors/acceptors, rotational bonds, rings, Lipinski's Rules violations, solubility) as well as ADME (Caco-2 permeability, Plasma Protein Binding, CNS Penetration), and some drug safety information (some CYP inhibition tests, Ames, hERG). The program provides color-coded interpretations of those outputs and indicates on sliding scales how drug-like a molecule is. Navigation is easy, and different compounds can be compared in convenient tables or tabular format. Saving and sharing data is simple through export into either .pdf or .csv format, and the user interface is aesthetically pleasing and easy to work with. Of particular utility is the *Structure Design Engine* module, as it allows the chemist to edit a molecule in a drawing window and observe how structural modifications affect predicted physicochemical and ADME properties in real time: as one modifies the molecule, sliders move and alerts appear based on structural changes. Additionally, this module is capable of proposing a set of analogs for a given molecule based on a set of desired physicochemical parameters - a feature which greatly simplifies the "iteration" phase of the workflows. It is worth noting that this (like most of the programs discussed herein) is intended for the development of pharmaceuticals, not industrial chemicals, so appropriate care must be taken when interpreting the results generated by ACD Percepta, as the molecule of interest may fall outside the training sets used to develop the predictive algorithms. For chemists looking to improve the ADMET profile for a compound, this software offers most of what is needed.

ADMET Predictor³⁸

A medicinal chemistry program distributed by Simulations Plus, this program contains a large number of QSARs capable of predicting ADME values, a plethora of toxicity endpoints, and numerous metabolism parameters including CYP metabolism kinetics.⁴⁵ Chemicals may be input as SMILES, .sdf, .rdf, or mdl files, and may be entered in single or batch format. Predictions are returned in the form of a table, and hovering over a prediction produces an explanatory tooltip to ease interpretation. ADMET Predictor includes several "summary" toxicity prediction models, which assign rankings and codes indicating the specific toxicity concern(s) to chemicals based on the data outputs from certain physicochemical or QSAR models. These indicate if, for example, a compound is predicted to cause acute toxicity or carcinogenicity in rodents, to cause hepatotoxicity in humans, or to be Ames positive. Aside from the physicochemical property predictions, these summary predictions are likely to be of the most interest to chemists because they greatly simplify data analysis. Prediction data is easily shared in the form of .tsv files. Like ACD Percepta, ADMET Predictor is intended for use in the development of pharmaceuticals, so predictions for the properties of industrial chemicals must be considered thoughtfully. The .tsv output files include "applicability of domain" statistics that indicate if the submitted molecule falls within the scope of the predictive model (based on the chemical structures used in the model training set). This feature provides a

degree of confidence of the prediction, and incorporates a degree of transparency into the software.

Medchem Designer³⁹

A chemical drawing program coupled with ADMET Predictor or available as a free standalone program, Medchem Designer, features basic predictions of drug-likeness and bioavailability of molecules.³⁹ Structures may be drawn or uploaded in SMILES, .mol, and .sdf formats. Predictions appear in table format below the workspace and are very easily exported to Excel. The interface is simple, clean, and can be learned quickly, making it ideal for the novice user. The program uses the same codes to indicate predicted toxicity as are used in ADMET Predictor. Although Medchem Designer has far fewer QSARs than ADMET Predictor, it is sufficient for collecting enough physicochemical and ADMET parameters to make iterative molecular design adjustments. One of the useful features of this program is the Optical Structure Recognition tool, which allows the user to draw a box around an onscreen chemical structure and import that structure into the program. This can be helpful when the .mol or .sdf file of a compound is not immediately available for import.

Lhasa Derek and Meteor Suites^{40,41}

Lhasa Limited distributes the *Nexus* software suite through which the Derek and Meteor products are licensed. The Derek platform is detailed earlier in 3.3.1.

As mentioned earlier, Derek provides expert, knowledge-based toxicity predictions using the Lhasa Knowledge Base, a curated database derived from literature and proprietary sources.^{30,47} Structures may be drawn in the workspace, imported singly, or imported in batch format from .mol files, SMILES strings, or any delimited structure file. Derek is capable of providing predictions for charged or metal-containing compounds – a feat few medicinal chemistry tools are capable of. Outputs are tabular and the program provides a list of species and endpoints, including both the plausibility of toxicity and a note for which structure features triggered the alert. This data can then be easily exported to a .tsv file for viewing in Excel. Toxicity plausibility predictions are classified according to likelihood from "IMPOSSIBLE" to "CERTAIN." If a structural feature does trigger an alert, the software highlights the offending moiety and offers detailed reasoning behind the alert, which may be used to inform design decisions. *Derek* also includes documentation to aid interpretation of predicted toxicophores or outcomes.

Meteor provides metabolism predictions in the form of tree diagrams, including the evidence-based rule for the reaction, a score indicating the likelihood of it occurring, and any intermediates that may be generated along the way.^{29,41} Toxic products and intermediates are indicated, as are moieties on the molecule that are most likely to be sites of metabolism. Clicking on a metabolite opens a series of tabs containing information about the series of transformations which lead to it, details about biotransformations, and the "Nearest Neighbors", chemical transformations documented in the literature which most closely resemble the reaction of interest. These predictions are helpful for identifying toxic biotransformation products and can be used to help make the necessary structural modifications to avoid them.

Qikprop⁴²

Qikprop is a predictive ADME module within the *Maestro* suite produced by Schrödinger, LLC.⁴² It accepts singular .sdf, .mol, and .pdb files, and batch files may be imported in a variety of formats. A variety of output formats, including .csv, are also available. The program offers several predictors for ADME including CNS penetration, QPPCAco (permeability across gut-blood barrier), QPPMDCK (kidney permeability), human oral absorption, Lipinski's Rule of Five, and JM (predicted maximum transdermal transport rate). Qikprop has an option to rank compounds on the basis of how drug-like they are. There is also an option that simplifies molecule-to-molecule comparisons by indicating how many of the predicted ADME values for the molecule fall outside the 95% range of similar values for known drugs – this is known as the "stars" mechanic, where more stars indicates a less drug-like molecule. Like ADMET Predictor, this program includes an array of predictive tools. Additionally, the documentation is extensive and thorough, and provides excellent information on the methods and training sets used to build the predictive models, so domain of applicability questions are easily answered.

OECD QSAR Toolbox⁴³

Produced by the Organization for Economic Cooperation and Development (OECD) for evaluating industrial chemicals, this platform includes a blend of decision trees, QSARS, and predictive metabolism modules.⁵⁰ Structures may be uploaded as .mol, .sdf, or SMILES files, searched by a name or CAS#, drawn as a structure, and may be uploaded in batch format. Output is in a tree-based layout, indicating violations of various rules and sources of evidence for why the rule violations may contribute to toxicity. Modules for simulating metabolism, oxidation, and hydrolysis are included as well, the latter two of which may be used as indirect measures of environmental persistence. Notably, the software is capable of profiling both the chemical structure entered and the predicted metabolites of that structure in the same run. Attempting to run all decision trees and QSAR predictions on a batch of compounds requires extra time, but can expedite the process of evaluating a set of chemicals. Each output is hot-linked and clicking through links provides information about the QSARS or decision trees used to generate the outputs, their interpretations, and what part of the molecular structure triggered them. If the compound of interest is in the EU database or has a CAS#, it is possible to search for charged compounds or metals – an advantage over medicinal chemistry software suites that do not handle any metals at all.

$Toxtree^{44}$

Toxtree provides basic toxicity evaluations, generally in the form of a binary "Toxic" or "Non-toxic" format or a simple ranked format, usually with three to five hazard rankings.⁴⁵ The Toxtree models include the two Cramer's rule sets,³⁰ Verhaar's schema,³⁴ the ISS decision trees, structural alerts for the *in vivo* micronucleus assay (a predictor of genetic toxicity), and the binding alerts trees.

Chemaxon Suite⁴⁶ (Marvin Sketch and Metabolizer)

The *Marvin Sketch* and *Marvin Space* are useful for creating, viewing, and editing chemical structure files. In addition to its drawing function, *Marvin Sketch* also includes models for calculating a variety of physicochemical properties with assessment utility for bioavailability: pKa, logP, logD, aqueous solubility, H-bond Donor/Acceptor, and Polar

surface area. The *Metabolizer* program included in the *Chemaxon Suite* provides metabolism predictions.

Chemicalize47

An online tool powered by Chemaxon's predictive algorithms, Chemicalize can be used to generate an array of physicochemical properties and a few drug likeness parameters. The data are easily exported and the layout allows a user to view multiple predictions at the same time. The interface allows the user to quickly modify chemical structures and generate physicochemical parameters.

AIM (Analog Identification Methodology)48

Produced and distributed by EPA, this tool accepts CAS#s, chemical names, SMILES, or structural drawings, and returns a .pdf report with links to any information publically available for that compound or its analogs in US or Canadian chemical hazard databases.⁴⁸ This can be particularly useful when iterating a compound as well as for gathering information about the chemical space surrounding a compound of interest.

Chemspider⁴⁹

A chemistry search engine with built in physicochemical prediction capabilities. Several options for modeling are available: users may choose between models from ACD, ChemAxon, or EPA's EpiSuite.⁴⁹

Mobyle @RPBS⁵⁰

An online physicochemical profiler managed by the University of Paris Diderot, this modeling tool accepts .sdf or .mol files for individual compounds.^{51,52} Predictions can be saved in online user profiles or downloaded as a text file. The various physicochemical property predictive models are nested in a series of menu trees. Mobyle@RPBS provides references to source papers used to program the physicochemical models, which provides transparency to the tool.

Case Study

Improving Hazard Profiles of Fuel Cell Components Using GMD

As an example of how these tools may be put to use, a case study follows in which a collection of compounds with potential as hydrogen storage materials for protonexchange membrane (PEM) fuel cells⁵³⁻⁵⁶ are evaluated for their potential for human toxicity. The case study is centered on reduction of bioavailability and human hazard. The efficacy and performance of these compounds in PEM fuel cells has not been considered. Eight compounds were chosen for evaluation (Figure 3). The following tools were used to evaluate the compounds of interest: *Lhasa Derek* and *Meteor* Suites, *ADMET Predictor*, *ACD Percepta*.

ACD Percepta and *ADMET Predictor* agreed that all the compounds were predicted to penetrate the BBB and were likely to be orally bioavailable due to favorable LogP values (roughly between 2 and 5), low polarized surface area (all less than 16 Å²), and small size (all less than 400 Da). The *Derek* analysis highlighted *N*-ethylcarbazole as a CERTAIN Ames positive compound, and gave an EQUIVOCAL rating to *N*-

ethyldodecahydrocarbazole and dodecahydrocarbazole for causing phospholipidosis (a tissue-specific lipid metabolism disorder) in multiple species including humans. Indoline was selected for further iteration as it was the only compound among the initial 8 that was without negative predicted effects, was predicted to be Ames negative, and did not inhibit any CYPs. Using indoline as the base structure, a series of molecules was generated using the additions of alcohol, sulfite, or sulfate groups at various positions on the indoline core to generate less toxic and less bioavailable compounds. These groups and sites were chosen after interpreting the metabolism of indoline in humans as predicted by the *Meteor* suite, and with consideration of the metabolism of indole.⁵⁷ The second iteration of compounds is indicated in Figure 4. Running the compounds through *ADMET Predictor*, *ACD Profiler*, and *Derek* a second time revealed an improved overall profile for hazard and bioavailability for most of the compounds.

The *Derek* evaluation of the iterated compounds found, no structural alerts for mutagenicity at EQUIVOCAL or PROBABLE levels, although a four of the ten compounds did trigger 12% EC3 predictions (indicating the compound might be a weak skin sensitizer), each compound only had a single EC3 prediction to provide evidence. The second pass at the *ACD Profiler* indicated reduced GI absorption, fewer CYP interactions, reduced BBB absorption, and "hydrophilic" ratings for half of the compounds. An iterative run through *ADMET Predictor* yielded an improved profile for many of the compounds, although some were still predicted to cross the BBB or cause genotoxicity. Compound D, however, had a very promising profile: it was predicted to be poorly permeable to the BBB and the GI, charged at physiological pH, and was hydrophilic, suggesting that it would be cleared quickly. While this is not a complete re-design of the selected compound, it illustrates the value of the predictive tools selected for GMD.

Workflows

Based on an assessment of available tools, 3 workflows are outlined (Figure 5.) to serve as guides for applying a series of predictive tools to improve molecule design. The first step of each workflow is to survey the available literature and databases to ascertain the extent to which information is available for a compound of interest. The following steps depend on both the availability of resources and the chemist's degree of familiarity with biological systems. In all cases, the main purposes of using these tools are twofold:

1. Determine ADME and physicochemical properties of a compound so it can be modified to be less bioavailable

2. Identify known toxicophores and structures of concern so that they may be removed or modified.

Programs that predict metabolism are helpful for identifying potential modifications for successive iterations of molecular design. By understanding how the body is likely to attempt to break down and remove a chemical, it becomes clear which design choices will accelerate the passage of the molecule through the body if not prevent it from being taken up entirely.

It must be noted that these workflows do not account for how such modifications may impact the function of the compounds under development, and we acknowledge that the intended function of some compounds may be at odds with attempts to reduce its activity in biological systems. However, while a workflow may not necessarily provide an obvious solution to balancing functionality and hazard, it will necessarily provide insight into the physicochemical properties of a molecule, which may yet prove useful to the chemist.

Subscription-based workflow

The subscription-based workflow is intended for chemists aiming to collect a trove of information about their molecules of interest and who either have access to toxicology resources or some training in the discipline. This workflow is recommended for the design of chemicals produced and distributed in great volume or whose end use is likely to result in high levels of human exposure. Each of the programs has a high degree of utility and usability as well as other advantages such as more streamlined user interfaces, readily available technical support, and access to proprietary databases. However, since these tools are designed for drug developers, interpretation of the voluminous data sets requires technical knowledge in molecular biology and medicinal chemistry, which may not be readily available. *Derek* is used to identify known or predicted structural alerts, which may disgualify candidate compounds, especially if they are classified as PROBABLE or CERTAIN. ACD Percepta, ADMET Predictor, or QikProp may be used to collect data for ADME and toxicological risk. These programs provide a preponderance of data that can be used to eliminate compounds with unfavorably high likelihood of absorption, predicted inhibition of metabolic enzymes, or predicted risk of genetic toxicity. *Meteor* provides predictive metabolism and identification of potentially toxic metabolites or intermediates. Metabolism predictions are combined with ADME data from ACD Percepta, ADMET Predictor, or QikProp to design the next iteration of molecules, which share the features of likely metabolites so that they are less likely to be absorbed, and more likely to be excreted quickly.

Open-source workflow

The Open source workflow balances data volume with cost of effort, and is intended for chemists with an interest in toxicology but fewer financial resources. This workflow recommended for chemicals that will be produced at intermediate volumes and have moderate opportunity for human exposure. Open source options often have fewer features and provide less information about any given endpoint so more programs are needed to collect the same amount of data. In this workflow, the primary emphasis for toxicological risk is placed on the *OECD QSAR Toolbox*. Any compounds which trigger structural alerts in *OECD QSAR Toolbox* should be considered for removal, and kept only of the alert can be considered spurious (due to an erroneous SAR) or if their ADME profile is particularly good. Both *Medchem Designer*, and *OECD QSAR Toolbox* are used to predict physicochemical and ADME parameters. *Chemaxon Metabolizer* is used to predict metabolism, which can be combined with ADME data from *Medchem Designer* and *OECD QSAR Toolbox* to generate the next iteration of structure designs.

Minimalist workflow

The minimalist workflow is most useful for compounds that have highly specialized industrial uses, and which are not likely to be produced in great volume or distributed extensively. The goal of this workflow is to identify structural elements that pose a significant and likely hazard, and to provide basic information about the bioavailability and physicochemical properties of the molecule. Any structural features that trip toxicity alerts in *Toxtree or OECD QSAR Toolbox*, should be either removed or modified considerably. *Medchem Designer* is used to predict logP and the number of Lipinski's Rule of Five violations, indicating likely oral bioavailability. *Chemicalize* and *Mobyle @RPBS* provide additional physicochemical parameters and *Chemicalize* offers suggestions for similar structures, which may be useful for iteration purposes.

Conclusions

An Ideal Green Molecular Design Tool for Chemists

The ideal GMD tool for chemists of varying degrees of experience and knowledge, particularly of toxicological principles, would be an open-access front end with the ability to incorporate subscription-based tools for specific functionalities. This is typically referred to as a "freemium" model. The premium or subscription-based tools would depend on the institution or business where the chemist works or studies. In this chapter, we have highlighted tools available at the University of California, Berkeley. The GMD freemium tool would allow all possible entries of chemical structures, predict speciescentric metabolites, recommend multiple compounds with similar structures, and allow instant analysis of all compounds for structural alerts, physicochemical properties, and hazard identification. Based on these evaluations, structural motifs could be modified in the tool to provide multiple options for GMD based on the hazard profiles predicted. It is anticipated that several screens are/or will be available for rapid evaluation of hazard categories. Ultimately, the predicted results and screening results could be used to create local OSAR or OSTR models similar to models based on close structural analogues. These models could be used along with the initial structural alert and physicochemical property predictions. This process would supercede the use of global QSAR models where chemical space and applicability domain can become an issue.

Notably absent from most of these tools (and largely from this review) are methods for designing compounds with reduced environmental impact; there are two primary reasons for this: 1) The greatest effort has been spent developing tools to predict how chemicals may adversely affect human health, and 2) Quantitatively measuring adverse effects on the environment is a complex and challenging task. Tools like *PBT Profiler*⁵⁸, *EcoSAR*⁵⁹, and *EPIsuite*⁶⁰ predict a few endpoints of environmental consequence such as persistence, bioaccumulation, and toxicity values for fish, water fleas, and algae; and the Verhaar scheme³⁵²⁸ functions similarly to the Cramer scheme, but for evaluating and categorizing environmental pollutants. These tools are helpful for filtering out some of the chemicals with the greatest potential for environmental hazard, but they are not nearly as developed as medicinal chemistry tools, and they generally lack the sophistication to distinguish between mild and moderate environmental toxicants. Although a number of research groups have published models for predicting or describing the physicochemical characteristics of environmental toxicants⁶¹⁻⁶³ they, too, are bespoke models that only

characterize one or a few environmental health endpoints at a time. A more comprehensive toolbox needs to be developed with expanded capacity for predicting the environmental fate and effects of a large number of chemical classes. The nearest solution presently available is the *OECD QSAR Toolbox* which includes numerous environmental health parameters, but the endpoints examined are far from exhaustive.

The green molecular design of chemicals involves the ability to use several tools both in chemical design and toxicological evaluation. There is a need for a new and innovative tools that allow chemists the ability to add proposed chemical structures in a variety of formats and to automatically calculate and predict key human and environmental health endpoints to aid in new chemical design. A proposed "freemium" model that provides an on-line interface with the ability to be coupled with various open-access and subscription based tools would be ideal. This ideal design tool could be used in academic, government, and industry labs and would provide an exceptional educational model for chemistry students, reinforcing a key principle of GMD: safety and efficacy need not be mutually exclusive.

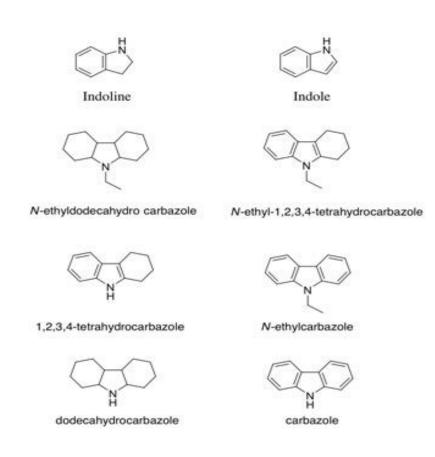


Figure 2.1: Derek Nexus can assess the level of confidence in a prediction To expressed by a likelihood level (from certain to impossible). The darker shades on the colour scale represent the increased confidence of a prediction being correct.

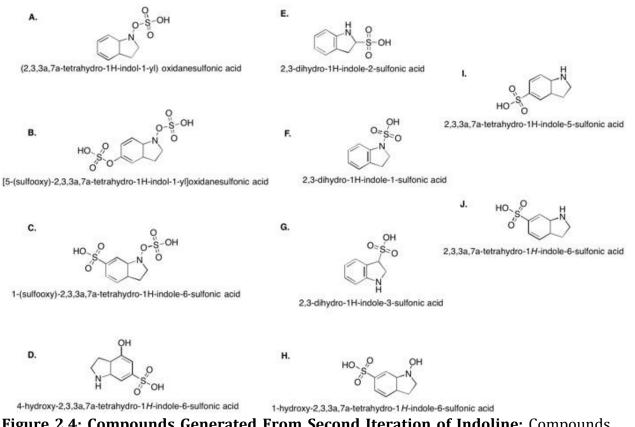

Alert 351: Aromatic amine or amide

Figure 2.2: Derek Nexus Alert 351 Example Many aromatic amines exhibit mutagenicity in the Ames test. The mechanism of action is generally considered to involve N-hydroxylation, typically mediated by cytochrome P450 1A2, and subsequent O-esterification.⁶⁴ The resulting esterified product may then give rise to a reactive nitrenium ion which is capable of binding to cellular nucleophiles such as DNA.

Figure 2.3: Hydrogen Compounds Used in Case Study Hydrogen compounds utilized in case study to evaluate predictive tools and workflow.

Figure 2.4: Compounds Generated From Second Iteration of Indoline: Compounds generated from second iteration of indoline

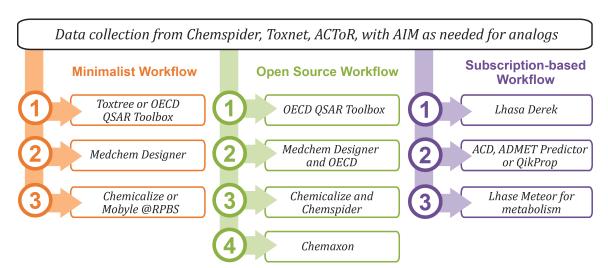


Figure 2.5 Example Workflows for Chemists: Example workflows for chemists.

Sources Cited

- 1. Dunn, P. J. The importance of green chemistry in process research and development. *Chem. Soc. Rev.* **41**, 1452–1461 (2012).
- Mulvihill, M. J., Beach, E. S., Zimmerman, J. B. & Anastas, P. T. Green Chemistry and Green Engineering: A Framework for Sustainable Technology Development. *Annu. Rev. Environ. Resour.* 36, 271–293 (2011).
- 3. Voutchkova, A. M., Ferris, L. A., Zimmerman, J. B. & Anastas, P. T. Toward molecular design for hazard reduction—fundamental relationships between chemical properties and toxicity. *Tetrahedron* **66**, 1031–1039 (2010).
- 4. Voutchkova, A. M., Osimitz, T. G. & Anastas, P. T. Toward a Comprehensive Molecular Design Framework for Reduced Hazard. *Chem. Rev.* **110**, 5845–5882 (2010).
- 5. Andersen, M. E. & Krewski, D. The Vision of Toxicity Testing in the 21st Century: Moving from Discussion to Action. *Toxicol. Sci.* **117**, 17–24 (2010).
- 6. Krewski, D. *et al.* Toxicity Testing in the 21st Century: A Vision and a Strategy. *J. Toxicol. Environ. Health Part B* **13**, 51–138 (2010).
- 7. Worth, A. *et al. Alternative methods for regulatory toxicology a state-of-the-art review.* (Publications Office, 2014).
- Russom, C. L. *et al.* Predicting modes of toxic action from chemical structure: Predicting modes of toxic action from chemical structure. *Environ. Toxicol. Chem.* **32**, 1441–1442 (2013).
- 9. Casarett and Doull's toxicology: the basic science of poisons. (McGraw-Hill, 2008).
- Bakhtyari, N. G., Raitano, G., Benfenati, E., Martin, T. & Young, D. Comparison of In Silico Models for Prediction of Mutagenicity. *J. Environ. Sci. Health Part C* 31, 45–66 (2013).
- 11. Raunio, H. In Silico Toxicology Non-Testing Methods. *Front. Pharmacol.* **2**, (2011).
- 12. Hou, T., Wang, J., Zhang, W. & Xu, X. ADME Evaluation in Drug Discovery. 6. Can Oral Bioavailability in Humans Be Effectively Predicted by Simple Molecular Property-Based Rules? *J. Chem. Inf. Model.* **47**, 460–463 (2007).
- 13. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Adv. Drug Deliv. Rev.* **64**, 4–17 (1997).
- 14. Veber, D. F. *et al.* Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. *J. Med. Chem.* **45**, 2615–2623 (2002).
- 15. Irvine, J. D. *et al.* MDCK (Madin-Darby Canine Kidney) Cells: A Tool for Membrane Permeability Screening. *J. Pharm. Sci.* **88**, 28–33 (1999).
- 16. Ungell, A.-L. B. Caco-2 replace or refine? *Drug Discov. Today Technol.* **1**, 423–430 (2004).
- 17. Cassano, A. *et al.* Evaluation of QSAR Models for the Prediction of Ames Genotoxicity: A Retrospective Exercise on the Chemical Substances Registered Under the EU REACH Regulation. *J. Environ. Sci. Health Part C* **32**, 273–298 (2014).
- McCann, J. & Ames, B. N. Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals: discussion. *Proc. Natl. Acad. Sci.* 73, 950–954 (1976).
- 19. Walmsley, R. M. & Billinton, N. How accurate is in vitro prediction of carcinogenicity?: Genotoxicity testing. *Br. J. Pharmacol.* **162**, 1250–1258 (2011).

- 20. Kirkland, D., Aardema, M., Henderson, L. & Müller, L. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. *Mutat. Res. Toxicol. Environ. Mutagen.* **584**, 1–256 (2005).
- 21. Abbott, N. J. Blood–brain barrier structure and function and the challenges for CNS drug delivery. *J. Inherit. Metab. Dis.* **36**, 437–449 (2013).
- 22. Aungst, B. J. Absorption Enhancers: Applications and Advances. *AAPS J.* **14**, 10–18 (2012).
- 23. Obermeier, B., Daneman, R. & Ransohoff, R. M. Development, maintenance and disruption of the blood-brain barrier. *Nat. Med.* **19**, 1584–1596 (2013).
- 24. Strazielle, N. & Ghersi-Egea, J.-F. Factors affecting delivery of antiviral drugs to the brain. *Rev. Med. Virol.* **15**, 105–133 (2005).
- 25. Suenderhauf, C., Hammann, F. & Huwyler, J. Computational Prediction of Blood-Brain Barrier Permeability Using Decision Tree Induction. *Molecules* **17**, 10429–10445 (2012).
- 26. Modi, S., Hughes, M., Garrow, A. & White, A. The value of in silico chemistry in the safety assessment of chemicals in the consumer goods and pharmaceutical industries. *Drug Discov. Today* **17**, 135–142 (2012).
- 27. Sutter, A. *et al.* Use of in silico systems and expert knowledge for structure-based assessment of potentially mutagenic impurities. *Regul. Toxicol. Pharmacol.* **67**, 39–52 (2013).
- 28. Low, Y. *et al.* Integrative Chemical–Biological Read-Across Approach for Chemical Hazard Classification. *Chem. Res. Toxicol.* **26**, 1199–1208 (2013).
- 29. Marchant, C. A., Briggs, K. A. & Long, A. In Silico Tools for Sharing Data and Knowledge on Toxicity and Metabolism: Derek for Windows, Meteor, and Vitic. *Toxicol. Mech. Methods* **18**, 177–187 (2008).
- 30. Cramer, G. M., Ford, R. A. & Hall, R. L. Estimation of toxic hazard—A decision tree approach. *Food Cosmet. Toxicol.* **16**, 255–276 (1976).
- 31. Lapenna, S., Worth, A. & Institute for Health and Consumer Protection. *Analysis of the Cramer classification scheme for oral systemic toxicity implications for its implementation in Toxtree.* (Publications Office, 2011).
- 32. Bhatia, S. *et al.* Comparison of Cramer classification between Toxtree, the OECD QSAR Toolbox and expert judgment. *Regul. Toxicol. Pharmacol.* **71**, 52–62 (2015).
- 33. Kalkhof, H., Herzler, M., Stahlmann, R. & Gundert-Remy, U. Threshold of toxicological concern values for non-genotoxic effects in industrial chemicals: re-evaluation of the Cramer classification. *Arch. Toxicol.* **86**, 17–25 (2012).
- 34. Verhaar, H. J. M., van Leeuwen, C. J. & Hermens, J. L. M. Classifying environmental pollutants. *Chemosphere* **25**, 471–491 (1992).
- 35. Parker, R. E. & Isaacs, N. S. Mechanisms Of Epoxide Reactions. *Chem. Rev.* **59**, 737–799 (1959).
- 36. Click2Drug. Available at: http://click2drug.org/.
- 37. *ACD Percepta*. (Advanced Chemistry Development).
- 38. *ADMET Predictor*. (Simulations Plus Inc.).
- 39. Medchem Designer. (2014).
- 40. *Derek*. (Lhasa Limited).
- 41. *Meteor*. (Lhasa Limited).
- 42. *QikProp*. (Schrodinger).

- 43. *OECD QSAR Toolbox.* (Organization for Economic Co-operation and Development).
- 44. *Toxtree*. (Ideaconsult Ltd.).
- 45. Patlewicz, G., Jeliazkova, N., Safford, R. J., Worth, A. P. & Aleksiev, B. An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. *SAR QSAR Environ. Res.* **19**, 495–524 (2008).
- 46. ChemAxon Software Solutions and Services for Chemistry & Biology. Available at: https://www.chemaxon.com/. (Accessed: 6th December 2017)
- 47. Chemicalize. *Chemicalize.org* Available at: http://www.chemicalize.org/.
- 48. *AIM: Analog Identification Methodology*. (U.S. EPA, Risk Assessment Division).
- 49. Chemspider. *Chemspider: Search and Share Chemistry* Available at: www.chemspider.com.
- 50. Mobyle@RPBS. *Mobyle@RPBS* Available at: http://mobyle.rpbs.univ-parisdiderot.fr/cgi-bin/portal.py#welcome.
- 51. Néron, B. *et al.* Mobyle: a new full web bioinformatics framework. *Bioinformatics* **25**, 3005–3011 (2009).
- 52. Alland, C. *et al.* RPBS: a web resource for structural bioinformatics. *Nucleic Acids Res.* **33**, W44–W49 (2005).
- 53. Moores, A., Poyatos, M., Luo, Y. & Crabtree, R. H. Catalysed low temperature H2 release from nitrogen heterocycles. *New J. Chem.* **30**, 1675 (2006).
- 54. Clot, E., Eisenstein, O. & Crabtree, R. H. Computational structure?activity relationships in H2 storage: how placement of N atoms affects release temperatures in organic liquid storage materials. *Chem. Commun.* 2231 (2007). doi:10.1039/b705037b
- 55. Araujo, C. M. *et al.* Fuel selection for a regenerative organic fuel cell/flow battery: thermodynamic considerations. *Energy Environ. Sci.* **5**, 9534 (2012).
- 56. Driscoll, P. F., Deunf, E., Rubin, L., Arnold, J. & Kerr, J. B. Electrochemical Redox Catalysis for Electrochemical Dehydrogenation of Liquid Hydrogen Carrier Fuels for Energy Storage and Conversion. *J. Electrochem. Soc.* **160**, G3152–G3158 (2013).
- 57. INDOLE-3-ALDEHYDE. Org. Synth. 39, 30 (1959).
- 58. PBT Profiler. *Persisten, Bioaccumulative, and Toxic Profiles Estimated for Organic Chemicals* Available at: http://www.pbtprofiler.net/.
- 59. US EPA, O. Ecological Structure Activity Relationships (ECOSAR) Predictive Model. *US EPA* (2015). Available at: https://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-predictive-model. (Accessed: 7th December 2017)
- 60. Card, M. L. *et al.* History of EPI Suite[™] and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments. *Env. Sci Process. Impacts* **19**, 203–212 (2017).
- 61. Ceriani, L., Papa, E., Kovarich, S., Boethling, R. & Gramatica, P. Modeling ready biodegradability of fragrance materials: QSAR prediction of ready biodegradability of fragrances. *Environ. Toxicol. Chem.* **34**, 1224–1231 (2015).
- 62. Barber, M. C. A REVIEW AND COMPARISON OF MODELS FOR PREDICTING DYNAMIC CHEMICAL BIOCONCENTRATION IN FISH. *Environ. Toxicol. Chem.* **22**, 1963 (2003).
- 63. Cappelli, C. I., Benfenati, E. & Cester, J. Evaluation of QSAR models for predicting the partition coefficient (logP) of chemicals under the REACH regulation. *Environ. Res.* **143**, 26–32 (2015).

64. Colvin, M. E., Hatch, F. T. & Felton, J. S. Chemical and biological factors affecting mutagen potency. *Mutat. Res. Mol. Mech. Mutagen.* **400**, 479–492 (1998).

Chapter 3 Functional Toxicogenomics and Combinatorial Chemistry For Greener Design

This chapter explores the early phases of development for the biofuel 2,5-dimethylfuran (DMF) and how yeast functional toxicogenomics can be used to generate mechanistic toxicity data for DMF and related compounds so as to streamline the hazard assessment process, and to provide valuable insight for chemists developing new furan-based compounds. While the single example of the biofuel DMF is considered here, the general framework and development process used to evaluate it and several related compounds provide an example of how functional toxicogenomics and combinatorial chemistry approaches may be used to provide desperately-needed hazard data to the process of chemical design. With proper application, this functional toxicogenomics/combinatorial chemistry testing paradigm can help academic, commercial, and governmental labs develop greener chemicals much more quickly and effectively.

Energy Resources Are A Critical Element In The Transportation Sector

Since the advent of the industrial era, petroleum and petroleum products have taken on progressively greater importance in our daily lives, not the least of which is their value as a source of fuel. Indeed, the transportation sector accounts for over 60% of the oil consumed on an annual basis, and as the demand for consumer goods and personal transport increases worldwide, fuel demand can only be expected to rise.¹ Concerns over resource availability and security have prompted investigations into alternative liquid fuel sources^{2,3}, the most prominent of which, bioethanol, has failed to live up to expectations. Compared to gasoline, ethanol has "low energy density (reducing driving distance), high latent heat of vaporization and low vapor pressure (making engine cold start difficult), and water miscibility,"¹ prompting investigations into a more effective alternative.

While electric vehicles are a technology of growing promise, widespread adoption of the technology will likely take several decades⁴. Though desirable to consumers⁵, the high cost of electric vehicles⁶ and lack of critical infrastructure will delay a fully electrified transportation sector for the foreseeable future⁴. These limitations are further compounded by a resource bottleneck where the cost and availability of lithium and cobalt exert powerful influence on the ability to produce batteries for electric vehicles⁷. None of these problems are insurmountable, and with prudent implementation of transportation policy decisions they are likely to be overcome within the next few decades.

DMF is emerging as a prominent biofuel candidate compound

Until a fully electrified transportation sector can be achieved, however, a "bridge" technology is needed to span the gap between the fossil fuels of the past and our battery-powered future: Biofuels. Several recent advances in the production of DMF suggest it as a promising biofuel candidate: it can be readily and renewably produced from lignocellulose, it is immiscible in water, it can be mixed with gasoline without any additives, and it has a 34% greater energy density than ethanol^{3,8}. However, while many research papers have been published about refining DMF production³ and exploring its effectiveness as a fuel⁸, only a handful of studies have investigated the hazard potential of DMF⁹⁻¹¹. To address the data gaps in the DMF hazard profile, we consider the use of two high throughput

methodologies: metabolomics and yeast toxicogenomics to rapidly elucidate any extant mechanisms of toxicity.

Identifying mechanisms of toxicity for DMF

There is very little information about the metabolism or toxicity of DMF, but the structurally similar compound, furan, is well studied, and provides a starting point for the evaluation of DMF. Furan is classified as a "probable human carcinogen" in the most recent *Report on Carcinogens* from the National Toxicology Program ¹² and "possibly carcinogenic to humans" by IARC¹³. It is a highly biologically-active structure ¹⁴ which is readily oxidized by CYP2E1¹⁵ to produce toxic epoxide or *cis*-enedione metabolites¹⁶. Furan studies in rats have shown that its metabolites preferentially bind to lysine residues on cytosolic proteins and mitochondrial proteins, particularly cytochromes^{14,17}, as well as proteins involved in gluconeogenesis and glucose and fatty acid metabolism¹⁸. By one report, furan activated to *cis*-2-butene-1,4-dial was shown to be mutagenic in an Ames assay using an aldehydesensitive strain¹⁹, but these results have not been independently reproduced²⁰. As noted by Moro et al²¹, while DNA adducts have been reported in mouse, rat, and turkey egg liver models, there is no consensus as to whether furan and its metabolites cause enough, if any, direct DNA damage to induce genotoxicity, or if the observed toxicity is secondary to mitochondrial damage^{17-19,21-27}.

Human exposure to and metabolism of furan compounds

Furan and DMF are both formed through the heating of sugars²⁸ and are common contaminants in cooked foods, especially coffee²⁹. They are also found at low doses in cigarette smoke and have can be used as biomarkers for cigarette smoke exposure^{30,31}. Metabolism of furans occurs primarily in liver, where they are activated by CYP2E1 and conjugated by glutathione for urinary excretion. (Fig. 2) The half-life of dietary furan is estimated to be less than six hours in rats ²¹, but no human toxicokinetic data exists for furan, and there is no toxicokinetic data whatsoever for DMF.

As with furan, there is insufficient mechanistic evidence to determine if DMF is genotoxic, and if it is, if the observed toxicity is secondary to another toxic endpoint – i.e. mitochondrial damage in the case of furan. Whatever the case, uncertainty about DMFs toxicological properties is due to a dearth of data, while furan's mechanism of action for carcinogenicity remains unclear in the face of dozens of genotoxicity studies due to inconsistent assay results²¹. Since no additional information is available for the hexene-diketone metabolite of DMF, it is unclear which, if any, modes of toxicity may be expected from DMF or its metabolites. Indeed, as evidenced by the metabolites of *n*-hexane, not all compounds of a chemical class necessarily share the same mechanisms of toxicity. It is likely that if DMF, its metabolites, or related furan compounds have toxicological properties, they are different than those of furan.

Very limited data is available for DMF metabolism

It has been established that the metabolism plays a key role in the toxicity of furan^{18,19,32,33}, but the importance of bioactivation in DMF toxicity is unclear^{9,11}. Significantly less data is available for DMF than for furan: only two *in vitro* toxicity assays have been performed – a mutagenicity assay and a genotoxicity assay. The experiments have provided seemingly

discordant results for DMF: the compound was not observed to be mutagenic in the Ames assay (although it is not clear if DMF was metabolically activated by liver S9 fraction in the study)³⁴, but work by Fromowitz et al⁹ indicated that DMF appeared to have clastogenic properties in an *in vitro* mouse erythropoietic micronucleus assay – with or without metabolic activation. However, this does not indicate that S9-activated DMF does not produce toxic metabolites, only that the metabolites did not affect the genotoxic endpoint being tested. It is worth noting that DMF itself is a metabolite and blood and urinary biomarker of hexane, a known neurotoxicant, although the possible role of DMF in hexane metabolism or mode of action is unknown.³⁵⁻³⁷ The primary metabolite of DMF is predicted to be 3-hexene-2,5-dione^{16,38}, which has not been not been assessed for toxicity. One of the other breakdown products of hexane, hexane 2,5- γ -diketone, demonstrates delayed neuropathy and is a potent protein cross-linking agent in humans, while another hexane breakdown product, a 2,3- α -diketone, is benign and a commonly observed flavoring component in many foods³⁹. This suggests that furans and their metabolites likely have very different toxicity profiles, and that they must be investigated individually.

Existing genotoxicity assay results for furan are inconsistent and provide insufficient mechanistic information

Since previous efforts have indicated roles for both furan and DMF as potential genotoxicants, special attention will paid to the assessment of genotoxicity. As noted earlier, the classical genotoxicity tests have provided conflicting or inconclusive evidence as to whether furan is mutagenic, genotoxic, or merely carcinogenic²¹. Furan was subjected to many of the most common *in vitro* mammalian methods for genotoxicity assessment: Chinese hamster ovary chromosomal aberration assay, mouse lymphoma $Tk^{+/-}$ gene assay, *Hprt* assay – all of which have been the subject of recent scrutiny for their inability to accurately predict human and rodent carcinogenicity ⁴⁰⁻⁴². Further, these assays provide little mechanistic information, so by optimizing a compound to minimize genotoxicity as measured by any single assay, one risks enhancing genotoxicity as measured by another assay – what is often referred to as a "regrettable substitution."⁴³ To combat regrettable substitutions, recent trends in toxicological assessment have turned towards –omics technologies, particularly genomics, to determine toxicological mechanism and to increase throughput⁴⁴⁻⁴⁶.

A Holistic Approach To Testing

The state of California Code of Regulations (Title 22, Division 4.5, Chapter 54) lists over 40 different hazard endpoints that should be considered during green chemistry research – a truly daunting number that defies any single assay and challenges researchers to develop more comprehensive chemical testing strategies⁴⁷. While some of the endpoints necessitate individual investigation (e.g. it is unlikely that the endpoints for phytotoxicity and neurotoxicity will be effectively probed using the same assay), it may be possible to consolidate the work for some endpoints if a suitable assay can be developed to probe mechanisms of action in eukaryotic cells in an unbiased way. Unbiased (also called "agnostic," or "hazard-generating") test strategies help researchers or regulators narrow their focus in hazard assessments, allowing them to identify adverse outcome pathways and body systems relevant to the chemical at hand. Testing every compound for every endpoint is unrealistic, expensive, and not necessarily informative, but an unbiased screen

for mechanisms of eukaryotic cell toxicity could provide significant insight that would permit fewer and more targeted toxicity tests for chemicals of interest. The ideal testing system would be a simulated human-on-a-chip, and this technology is currently in development^{48,49}, but it is decidedly low-throughput and likely many years from optimization and widespread adoption. Fortunately, there exists a bridge technology – in the form of functional toxicogenomics – that has tremendous potential as an alternative assay or component of an integrated testing strategy.

Unbiased toxicogenomic yeast screens have demonstrated utility

Toxicogenomic screening methods, i.e. unbiased screening approaches, are advantaged over assays that only allow for the interrogation of a single endpoint in that toxicogenomic screens allow the evaluation of multiple toxic endpoints in a single experiment. Among the toxicogenomic assays, the yeast (Saccharomyces cerevisiae) deletion libraries first generated and characterized by Winzeler et al⁵⁰ and Giaever et al⁵¹ have demonstrated tremendous utility as functional toxicological screening tools^{52–55}. As an unbiased screen, the yeast functional toxicogenomic system offers high-throughput detection of any assayable phenotypes in the yeast system, rather than the singular endpoints measured by the standard battery of test systems. Two yeast screening technologies, the haploinsufficiency profiling (HIP) and the homozygous deletion profiling (HOP) assays have been used to elucidate mechanisms of genetic toxicity and identify genes required for chemical tolerance in humans, due to the high level of genetic conservation between yeast and man^{56–61}. The HIP and HOP assays identify which mutant strains demonstrate growth defect in the presence of DMF or its isolated metabolites. Between the HIP and the HOP assays, 97% of the open reading frames (ORFs) in the genome of *S. cerevisiae* have been deleted using barcodes can be tested for their functional importance for growth in the presence of a toxicant using Bar-seq⁵⁵. Clustering patterns of the genes responsible for altered growth in the presence of DMF and its metabolites are then used to elucidate mechanisms of toxicity.

A Combinatorial Chemistry Approach To Biofuel Design

Given that placement of the double bonds in hexane breakdown products has significant effects on the toxicity of the compounds, it is likely that placement of double bonds in DMF breakdown products will be of similar importance, since both sets of breakdown products include diketones. Further, it is expected that the breakdown products of 2,5-dimethylfuran would differ from those of similar furans such as 2,3-dimethylfuran because the altered positions of the methyl groups would sterically hinder oxidation of different carbons. Therefore, we took a combinatorial chemistry approach to the question of biofuel design and used a yeast functional toxicogenomic system to screen 2,5-DMF, 2,3-DMF, 2-methylfuran (2-MF), and 2-ethylfuran (2-EF) to determine the effects of different functionalization schemes of the furan ring. It was anticipated that by shifting the location of the methyl groups or lengthening the alkyl chain, we could manipulate the stability and structure of reactive intermediates and products – thereby altering the degree and mechanisms of toxicity.

Rational molecular design is the notion that chemicals can be developed from the atoms up to ensure that function is balanced with toxicity, and that is the approach that is taken here.

Just as a mechanical engineer may produce several similar, but subtly different prototypes of a part for testing, we propose the use of combinatorial chemistry and functional toxicogenomics to quickly evaluate and define the chemical space around a structure of interest. This data can be collected relatively quickly in a scalable HTS fashion, providing green chemists with valuable information about the effects of their prototype chemicals in a whole-cell eukaryotic test system, and allowing them to make informed decisions about the trade-offs of one molecule over another.

Materials and Methods

Growth curve assays

Growth curves for yeast culture were determined as in North et al 2014⁵⁴. Briefly: Cultures of *S. cerevisiae* with the BY4743 background were grown in YPD media (1% yeast extract, 2% peptone, 2% dextrose) to mid log-phase, diluted to an optical density at 600nm (OD600) of 0.0165, and dispensed into 96-well Greiner polypropylene plates (Sigma-Aldrich M9810) at 100µL per well. Wells were dosed with test compounds prepared in dilutions of DMSO such that each well received no more than 1% DMSO by volume. Compounds tested: 2,5-dimethylfuran (CAS#625-86-5, Santa Cruz Biotech sc-238384), 2methylfuran (CAS#534-22-5, Tokyo Chemical Industry Co. MFCD00003248), 2-ethylfuran (CAS#3208-16-0, Tokyo Chemical Industry Co. MFCD00003259), 2,3-dimethylfuran (CAS#14920-89-9, Tokyo Chemical Industry Co. MFCD00153893). Each chemical was tested with six replicates at each concentration and compared to control wells dosed with either 1µL water or 1µL DMSO. Doses were tested in the range of 0.1µM - 30µL based on Fromowitz et al 2012⁹. Plates were incubated in Tecan microplate readers⁶² set to 30°C with shaking and OD595 measurements were taken every 15min for 95 cycles (approximately 24 hrs). Treated wells were compared to DMSO control wells and the area under the curve was calculated to determine the degree of inhibition.

The IC20 value is the dose used in our studies

The concentration of the test compound necessary to reduce yeast growth by 20% as measured by optical density readings (the IC20 value) was determined in the yeast background strain BY4743 to establish a baseline for growth inhibition. IC20 was used rather than IC50 because it increases the sensitivity of the assays, allowing for more effective identification of "sickly" strains that grow more slowly than others due to the importance of their mutated gene for basic cell growth processes⁵⁵.

HOP assays to observe differential strain sensitivity

HOP screens are performed using best practices outlined in Pierce et al. 2007⁶³using a pool of 4,653 BY4743 strains (ThermoFisher Life Sciences 95401.H1POOL), each with a different homozygous gene deletion, representing the totality of viable knockouts possible for *S. cerevisiae* with this background⁶⁴. Pools are cultured overnight in YPD in a 30°C incubator shaker and then diluted to 0.0625 OD600 in YPD growth media. Pools were exposed to IC20 concentrations of test compounds (10mM for 2-MF, 7mM for 2,3-DMF, 8mM for 2,5-DMF, and 3mM for 2-EF) and samples were saved at 5, 10, and 15 generations, to allow for discrimination between early and late effects of toxicant exposure. Exposure to

DMSO is used as a control, and each well received no more than 1% DMSO by volume. Samples of pools were taken after 5 doubling generations (5G), 10 doubling generations (10G), and 15 doubling generations (15G), to yield three different time points. By analyzing sensitivity or resistance to chemical exposures at different time points, it is possible to determine which genes and biological processes are required for tolerance at acute, sub-chronic, and chronic exposures.

DNA Extraction, Purification, Sequencing

DNA is extracted from each pool using YeaStar Genomic DNA extraction kit (Zymo D2002) following experimental exposure⁶⁵. The barcodes are amplified using PCR according to the protocols described in Robinson et al 2014⁶⁶. Briefly: each well received 1.67 μ L of 5 μ M common primer, either

Reverse Up sequence: CAAGCAGAAGACGGCATACGAGCTCTTCCGATCTGCACGTCAAGACTGTCAAGG or

Forward Down:

CAAGCAGAAGACGGCATACGAGCTCTTCCGATCTCAATCGTATGTGAATGCTGG),

and $2\mu L$ of 5 μM INDEX primer sequence:

ACACTCTTTCCCTACACGACGCTCTTCCGATCT+ index sequence as detailed on Appendix 5.

and 3.13µL of 24 ng/µL Genomic DNA, 43.2 µL Invitrogen Platinum PCR Supermix (Catalog #11306-016)⁶⁷. The PCR was run for 3 minutes at 95°C, then 30 cycles of: 30 seconds at 94°C, 30 seconds at 55°C, 30 seconds at 72°C, then 3 minutes at 72°C. Primer product was purified, concentrated, and sequenced by Berkeley's Vincent J. Coates Genomics Sequencing Laboratory on an Illumina HiSeq2500 rapid flowcell. Sequencing data was analyzed as described in Robinson et al 2014⁶⁶, with the following comparisons computed using Fastq DESeq and a false discovery rate of (FDR) of 0.05.

Bar-seq analysis

Samples from the four furan test compounds were compared with DMSO controls at each of the three time points: 5G, 10G, and 15G. The enhancement or defect of growth was assessed using differential strain sensitivity analysis, and growth was measured by log₂ fold change (log₂ FC) in number of strain-specific barcodes compared to DMSO control, using a false discovery rate of >0.05⁶⁸ and pathways were constructed from statistically significant (P value >0.01 with Bonferroni correction) genes using the Funspec⁶⁹, AmiGo 2⁷⁰, and Saccharomyces Genome Database⁷¹ web-based gene clustering tools to identify enriched gene ontology (GO) pathways. GO pathways marked as "enriched" by Funspec, but which only included a single gene from our dataset were not considered significantly enriched in this analysis.

<u>Results</u>

2,5-DMF Gene Enrichment Analysis

As noted earlier, the primary metabolite of DMF is known to be 3-hexene-2,5-dione^{16,38} (3-HD), a compound without any available toxicity data. A similar compound, 2,5-hexanedione, causes neurotoxicity in rodents models³⁵, likely through oxidative stress of neurons^{39,72}.

Null Mutants With Resistance to 2,5-DMF

No mutants were consistently resistant to 2,5-DMF across all time points. Five strains with known gene deletions and two with deletions of genes of unknown function were resistant at the 5G time point. The genes did not appear to be related and are involved in various functions including tRNA export (Sol2)⁷³, ubiquitin-dependent endocytosis (Rog3), budding (Bud9 and Prm10), and sterol synthesis regulation (Spt23)⁷⁴. The deleted gene in the *BUD9* Δ strain is associated with resistance to aneuploidy, a condition which might be expected in the event of oxidative insult to the DNA⁷⁵. The resistant strains at the 10G and 15G time points displayed only minor increases in log₂ fold change and Funspec analysis did not indicate any enriched gene ontologies.

Null Mutants With Sensitivity to 2,5-DMF

Three sensitive strains at 10G were mutants for genes involved in response to oxidative stress: *YAP1* Δ , *IMP2* Δ (involved in preventing DNA damage against oxidants), *OYE2* Δ (a flavin mononucleotide NADPH oxidoreductase) and *MNR2* Δ (a metal ion transporter, the overexpression of which is necessary for resistance to manganese and other oxidative metals⁷⁶). Other genes required for tolerance to 2,5-DMF at this time point were involved in DNA replication and cell cycle: LTE1 regulates mitotic spindle formation and Csm1 is vital for homolog segregation. Both Tat1 and Stp1 are important for cell amino acid transport^{77,78}, which may be expected given likely GSH flux^{33,79} in the presence of known oxidizers like 2,5-DMF and 3-HD.

At the "chronic exposure" 15G time point, we observed that among the genes required for 2,5-DMF tolerance, there was GO enrichment of genes coding for oxidative stress response (*YAP1* and *WHI2*) and the often-related pathways of DNA repair (*WSS1*, *RAD57*, and *APN1*) and chromosome segregation (*CSM1* Δ and *LRS4* Δ).⁸⁰ (Table 3.1) Cadet and Davies note that Wss1 (homologous to the human Spartan enzyme), is necessary for tolerance to formaldehyde, A canonical DNA cross-linking agent⁸¹, and Allam et al report that Wss1 is vital for repairing DNA-protein cross-links and maintaining genomic integrity.⁸² *RAD57* belongs to the *RAD51* subgroup of genes required for successful non-homologous endjoining repair of double strand breaks.⁸³ Apn1 is a major enzyme in the base excision repair pathway, responsible for mending apurinic lesions in DNA that result from alkylation, oxidation, or hydrolysis of DNA bases.⁸⁴ Taken together with the sensitivity observed in the *CSM1* Δ and *LRS4* Δ , our data suggests that chronic 2,5-DMF exposure results in DNA damage and genomic instability in yeast.

DNA damage is not the only mechanism of toxicity we observe, however: GO pathways for protein recycling were also enriched with susceptible mutants at 15G (*IRS4*Δ, *DOA1*Δ,

*FIS1*Δ, *VID28*Δ, and *VTC1*Δ). Loss of inter- and intra-cellular transport proteins (Get1, Sys1, Tlg2, Vac7, Vtc1) and amino acid transport proteins such as Tat1 and Thr4 confers sensitivity to 2,5-DMF as well, likely due to increased need for raw materials to replaced damaged proteins and other macromolecules.

The only strain consistently sensitive to 2,5-DMF across all three time points was the YAP1∆ strain (Table 3.6). Yap1 is an important transcription factor controlling a regulon of dozens of genes critical for oxidative stress tolerance⁸⁵. It is activated by indirectly by oxidizing compounds, relying on peroxidases such as Gpx3 to decouple it from Crm1⁸⁶, which facilitates Yap1 export from the nucleus in the absence of oxidative stress.^{87,88} This suggests that the primary mechanism of toxicity of 2,5-DMF is oxidative stress, which may be induced by its reaction with cellular proteins, likely lysines and cysteines^{33,79,89}. However, the loss of representation among genes related to DNA repair at the 15G time point supports the findings of Fromowitz et al⁹. Significant loss of representation among the APN1A, RAD57A, and WSS1A strains suggest that chronic exposure to 2.5-DMF or its primary metabolite 3-HD causes non-specific DNA-protein adducts. Such adducts would also likely cause genomic instability and double strand breaks, which accounts for the sensitivity of the WSS1A, CSM1A, and LRS4A strains. At sub-chronic and chronic exposure levels, we observed that protein synthesis and recycling pathways became important for 2,5-DMF tolerance as well, suggesting that acute 2,5-DMF exposures cause oxidative damage, and that over time that damage begins to affect protein function and eventually DNA integrity.

2,3-DMF Gene Enrichment Analysis

Null Mutants With Sensitivity to 2,3-DMF

Taking the metabolism of 2,5-DMF as a guide, we may anticipate that the primary metabolite of 2,3-DMF to be 2-Methyl-4-oxo-2-pentenal. The structure of 2-Methyl-4-oxo-2-pentenal (2-MOP) is consistent with the reaction schema put forth by Peterson et al¹⁶, although a review of the literature indicates that the primary synthesis route for 2-MOP is through the oxidation of *m*-xylene⁹⁰. Unfortunately, there is a paucity of literature on 2,3-DMF, and even less on 2-MOP. No toxicity data exists for either compound.

MIPS Functional classification yields several significantly enriched pathways wherein the loss of certain genes promotes resistance to 2,3-DMF at the 5G time point: Peroxisomal transport; lipid, fatty acid, and isoprenoid metabolism; and protein synthesis. However, we interpret these pathways with caution because only five of the 44 resistant strains showed a log₂ FC in growth greater than 1.5: *ACE2A* (log₂ FC 1.665), *FPS1A* (log₂ FC 1.801), *GIN4A* (log₂ FC 2.010), *MMS2A* (log₂ FC 2.552), and *SWR1A* (log₂ FC 1.759848). (Table 3.9)

There are no clear mechanistic reasons based on the chemistry of simple furans that indicate why loss of these genes results in increased cellular growth and proliferation. Acb1 is normally only expressed under starvation conditions, and the null mutant has been observed to replicate extensively under these conditions.⁹¹ Increased proliferation here may occur by a similar mechanism, with cell stress resulting from furan exposure rather than starvation conditions. Deletion of *FPS1* reduces glycerol permeability at the plasma

membrane, alters plasma membrane composition, improves xylose fermentation, and enhances cell resistance to osmotic shock.^{92,93}. Two resistant genes, Mms2 and Doa1, work together to play an important role in ubiquitin-mediated proliferating cell nuclear antigen (PCNA) degradation – a crucial pathway for DNA damage response under conditions of cell stress⁹⁴.

While 81 ORFs were determined to be statistically significantly overrepresented at the 10G time point, only 68 identified genes were among them, and of those, only genes for proteinlysine N-methyltransferase activity were enriched for this condition and time point, and only two strains, *FPR2A* and *VAC14A* showed log₂ FC in growth greater than 1.5 (1.727 and 2.001, respectively). (Appendix 2) Fpr2 is an ER membrane protein that exacerbates cell sensitivity to stress caused by protein aggregates⁹⁵ – as might be formed upon treatment with a reactive furan compound. The absence of a consistent pattern or pathway suggests that the mechanism of action is non-specific.

Intriguingly, loss of a variety of genes related to homeostasis of iron confers resistance at the latest time point: *ARN2Δ*, *FET3Δ*, *FTR1Δ* strains all showed growth improvement at 15G.⁹⁶ GO enrichment for genes related to iron and other metals is seen at the level of biological processes, cellular components, molecular function, and MIPS classification. This is consistent with the hypothesis that 2,3-DMF is a potent oxidizing agent within the cell, as extended exposure to 2,3-DMF may shift redox conditions within the cell to such a point as to make iron and other metals to be too reactive and dangerous within the cell. Other researchers have noted the potency of iron as an oxidizing agent within yeast cells⁶⁸.

Only sixteen mutants were resistant to 2,3-DMF across all three time points (Appendix 2), of which, four corresponded to unverified or uncharacterized ORFs, leaving twelve genes whose null genotype confers resistance. No meaningful GO enrichment is observed among these genes, although a few potential mechanisms of resistance may be inferred from gene function. *DOA1, FPR2,* and *LMO1* all relocate to different cellular compartments under oxidative or DNA replication stress conditions, and as noted earlier *ACB1*'s null phenotype is prone to increased proliferation during periods of cell stress. Similarly, the null mutant for BSC2 is known to have an increased translation rate, which may promote resistance through more rapid replacement of damaged proteins⁹⁷. *PRY3* codes for a cysteine-rich cell wall protein⁹⁸, so the null mutant may have more cysteine on hand to replace sulfurswitches damaged through oxidative stress, improving cell viability. Mechanisms for the resistant phenotype observed in the remaining null mutants are not readily apparent.

Null Mutants With Sensitivity to 2,3-DMF

Enriched GO pathways for Cytoplasm-to-vacuole (CVT) pathway, ER membrane proteins, Golgi membrane proteins, N-terminal protein acylation, and cellular protein localization and transport are observed in the 5G time point, and consistently across later time points. (Table 3.10) Get1, Get2, Cog5, Cog6, Trs95, Sys1, and Tlg2 are all involved at different stages of the trans-Golgi network^{99,100} Trs85 and Irs4 both play roles in the formation of the autophagosome, an important protein recycling structure^{101,102}, both proteins also work with Cog5, Cog6, and Tlg2 to facilitate the CVT pathway – the vacuole being the other major protein recycling organelle.¹⁰³

The list of 2,3-DMF-sensitive mutants at the 10G time point is very contains many of the same strains as that of the 5G time point – only expanded to include yet more genes related to oxidative stress and protein metabolism. Cog7, Cog8, Get3, Sec22, Sso2, and Snc2 are added to the lists of CVT, trans-Golgi network and vesicle-mediated transport proteins whose null mutants experience adverse growth in the presence of 2,3-DMF. This seems to indicate that at sub-chronic exposure, these pathways become significantly more sensitive to 2,3-DMF exposure. The *YAP1A* strain also demonstrated decreased viability at this time point. (Appendix 2)

After 15G growth, the sensitive strains at this time point cover a similar range of cellular responses to oxidative stress and general protein production to earlier time points. Null mutants for genes related to Golgi and ER structure and function are significant here. as they were in the 10G time point, and mechanisms that disrupt transit between them or the integration of membrane proteins are significantly in the GO for biological processes. (Table 3.12) Additionally, pathways involved inter- and intra-cellular transport continue to be significant for 2,3-DMF tolerance. One possible explanation is that these pathways are vital to transporting damaged proteins for recycling and importing the raw materials necessary to replace them. GO for pathways related to cell cycle progression were not observed among to the sensitive mutants of earlier time points, but are found here, with noticeable growth defects in the ACE2A and MSA1A strains. The Ace2 transcription factor is necessary for cell cycle progression and septum destruction following cytokinesis. It has been noted by other groups that Ace2 is necessary for tolerance to furural and hydroxyfurural, and that overexpression of Ace2 can confer resistance to yeast prompted to produce these fuel compounds in bioreactors – although no mechanistic explanation exists as to why.^{104,105}

Thirty mutants were found to be sensitive to 2,3-DMF across all time points, and of those, 6 ORFs were uncharacterized or unverified and did not correspond to known genes. The remaining 24 genes belonged to the previously observed pathways for protein recycling and transport, ER and Golgi function, and oxidative stress response. These findings were consistent with the hypothesis that the primary mechanism of 2,3-DMF cellular toxicity is through oxidative protein damage. Strains lacking proteins related to oxidative stress pathways (Apj1, Dbf2, Skn7, and Mga2) and protein synthesis (Get1, Get2, Irs4, Mak10, Mak3, Sys1, Tlg2, Trs85) and recycling (Rpn4) pathways were sensitive to 2,3-DMF across all three time points (Appendix 2). Although genes for oxidative stress and protein metabolism pathways are consistent across time points, some variation in the particular strains that display resistance is observed.

2-MF Gene Enrichment Analysis

Previous work by Ravindranath and Boyd indicates that the primary metabolite of 2-MF is acetylacrolein, and that acetylacrolein preferentially binds cysteine moieties over the oxidant-scavenging glutathione, although it binds both groups of molecules with great efficacy.²⁹

Of the many strains with increased representation at the 5G time point for 2-MF exposure, only *PRM2A*, *STP1A*, *ELO3A*, *TUP1A*, *VPS27A*, and *YCK3A* had a log₂ FC increase greater than 1.5. (Appendix 3) *PRM2* is poorly characterized but seems to have something to do with nuclear fusion in mating yeast¹⁰⁶. *ELO3* encodes a fatty acid elongase involved in sphingolipid metabolism, and the null mutant accumulates inositol phosphoceramide¹⁰⁷. Perhaps the accumulated fatty acid precursors act as a sponge to react with the 2-MF, preventing additional damage to cellular components. *TUP1* encodes a transcriptional repressor^{108,109} that suppresses cell cycle progression in response to DNA damage. Vps27p is an endosomal protein necessary for sorting and recycling proteins¹¹⁰, and Yck3p is responsible for regulating vesicle fusion to the vacuole¹¹¹ – both proteins play important roles in the alkaline phosphatase pathway as well as ESCRT complex endosomal recruitment¹¹².

At this and the other time points, enriched Gene ontologies for cellular components including the ESCRT II complex, endosome membrane, endosome, ESCRT III complex, and general membrane proteins were observed among the resistant strains. ESCRT complexes have been linked to yeast survival in conditions with altered glutathione availability.^{113,114} Comparing lists of resistant strains across all time points, we see that although there are considerably more mutants with enhanced tolerance to 2-MF than we see among the other test compounds, the log₂ FC increases tend to be small, and the same GO pathways appear across the three time points. (Tables 3.15, 3.18, 3.21, 3.24) Null mutants for genes involved in protein processing, targeting, and transport to the vacuole; as well as genes involved in cellular response to stress, anoxia, and pH; carbohydrate metabolism, and a handful of transcription repressors are consistently resistant to 2-MF.

Among the sensitive mutants, a few GO pathways are enriched for cellular features related to oxidative stress (DBF2, YAP1) and cellular protein synthesis (CVT pathway, glutathione synthesis pathway, and Golgi transport) – pathways also observed among the strains sensitive to other test compounds. The mutants sensitive to 2-MF include strains lacking genes involved in phosphate homeostasis, signal transduction, chromatin silencing at telomeres, and nuclear deacetylation. Chromatin structure maintenance appears to be significant for tolerance across all time points. (Table 3.38) Relatedly, genes related to ribonucleotide processing (mRNA export from the nucleus, negative regulation of transcription from RNA Pol I promoter, purine ribonucleotide monophosphate biosynthesis), are necessary to thrive under 2-MF exposure.

2-EF Gene Enrichment Analysis

Based on the furan degradation pathways worked out by Peterson et al¹⁶, the likely breakdown product of 2-EF in a cellular milieu would be expected to be 2E)-4-oxo-2hexenal (4-OHE), and indeed other researchers have confirmed that this is the case.¹¹⁵ A 2010 review by Long and Picklo¹¹⁶ describes 4-OHE as a potent oxidizing agent with similar properties to *trans*-4-hydroxy-2-nonenal (HNE), a well-characterized lipid peroxidation product. 4-OHE can be generated through oxidation of polyunsaturated fatty acids, and is suspected to be more reactive than HNE. Although mutagenic in *S. typhimurium*¹¹⁷, oral administration of tritiated 4-OHE to rats revealed no detectable DNA adducts, although high levels of liver protein adduct formation were detected up to 16 hours after exposure¹¹⁸.

Our findings support the hypothesis that 2-EF toxicity is mediated through a mechanism of non-specific protein adduct formation and oxidative stress due to depleted GSH stores. No gene deletions or pathways demonstrated improved tolerance to 2-EF across any time point. However, mutants for genes related to oxidative stress response and amino acid uptake were sensitive across all time points and showed decreased fitness when exposed to 2-EF. Strains lacking the oxidative stress response factors Skn7 and Yap1 consistently demonstrated decreased fitness (Table 3.49), which is consistent with the evidence of 2-EF and 4-OHE as oxidative agents. At the 5G and 10G time points, genes involved in Golgi function and membrane trafficking such as Cog5, Cog6, and Sys1 were seen to be necessary for 2-EF tolerance (Tables 3.41 and 3.45), however, slightly different Golgi membrane and transport genes were required for tolerance at the 15G time point: Drs2, Erv14, Get1, Gyp1, Trs65, Trs85, Tlg2, Snc2, and Vps13. (Appendix 4) Similarly, a fully functioning Cytosolvesicle transport pathway was necessary for 2-EF tolerance at all time points, but again, different sets of genes appeared to be necessary for tolerance at early (5 and 10G) versus late (15G) time points. (Appendix 4). Protein transport between the Golgi and other cellular compartments and between the cytosol and the vacuole is critical for protein synthesis, maturation, and recycling in the cell.¹¹⁹⁻¹²¹

These data indicates that systems related to protein flux through the cell are particularly sensitive to 2-EF and its likely metabolite, 4-OHE, and that these systems are adaptive – the yeast are responding to chronic exposure. By the final time point, the same three oxidative stress gene mutants (*SKN7Δ*, *YAP1Δ*, *IRS4Δ*) showed loss of fitness as in the other time points, but a larger and different suite of Golgi proteins were highlighted along with a smattering of genes for ER structure. Nine mutants for genes related to the structure of the Golgi apparatus were significantly less abundant, as well as roughly half a dozen genes for trans-Golgi network (TGN) vesicle trafficking including SNARE and TRAPP complexes. (Tables 3.48-3.51)

Discussion

These experiments demonstrated that very minor changes to chemical structure – in this case, the re-positioning of a methyl group – could result in significant changes to the mechanisms of action. Although the cellular pathways required for resistance to 2,5-DMF, 2,3-DMF, and 2-EF (oxidative stress response and protein metabolism pathways) were broadly similar, there were nuances in their suites of affected genes that seem to account for the different IC20 values of the various compounds: 7mM for 2,3-DMF, 8mM for 2,5-DMF, and 3mM for 2-EF.

There were, as expected quite a few similarities among the tolerance/susceptibility profiles of the different compounds, particularly among 2,5-DMF, 2,3-DMF, and 2-EF. Null mutants for ER and Golgi structural proteins related to vesicle transport are particularly vulnerable to 2,3-DMF exposure, while deletions among the proteins involved in the CVT pathway consistently produced sensitivity to 2-EF. The Cog proteins are evolutionarily conserved to

a significant degree⁹⁹ and defects in these proteins are associated with developmental and neurological disorders¹⁰⁰. This is particularly interesting given the similarity between 3-hexene-2,5-dione and hexane 2,5- γ -diketone, the later of which is associated with delayed neuropathies. Interestingly, loss of the Cog genes did not result in sensitivity to 2,5-DMF exposure, although null mutants for Cog genes were sensitive to both 2,3-DMF and 2-EF. There are no obvious mechanistic reasons, however as to why mutants for vacuole transport proteins are more tolerant to 2-MF.

Kim and Hahn 2013¹⁰⁴ and Thi My Nguyen et al¹²² both examine the importance of *YAP1* for furfural tolerance, so it is not surprising to see that *YAP1* is vital for tolerance to these furans as well – even in the case of 2-MF. Indeed, only the *YAP1* Δ strains showed reduced representation across all furan treatment conditions and all time points compared to control. An excellent review by Witz notes that while α , β -unsaturated aldehydes tend to bind glutathione or other protein sulfhydryl moieties, these compounds are also capable of causing significant lipid peroxidation as well¹²³, which may account for some of the differences we observe between the different furan compounds.

Conclusion

Replacing the petroleum-based transportation economy with a renewable biofuel is a laudable goal, and certainly worthy of further exploration; however, supplanting such a large industry requires prudence, and it is prudent to identify undesired activity in a proposed replacement compound so as to avoid the scenario of a regrettable substitution. 2,5-dimethylfuran has many enticing properties, but as demonstrated in this report, a rather significant drawback as well. Using the principles of green molecular design and the power of functional toxicogenomics, we have tested a series of potential alternatives to 2,5-DMF, which are potentially similar enough so as to be produced through similar synthesis pathways, but which are structurally different enough so as to not have the same hazard profile. By shifting the position of a single methyl group, we have changed the toxicological properties of our chemical of interest – in the case of 2-MF, rather dramatically.

While the doses we tested were high by the standards of most environmental chemicals, they may be considered fit for purpose in this case, since the interest of 2,5-DMF as a biofuel presupposes that the chemical would become widely available, and that if so adopted, exposures to high concentrations of the compound are not only possible, but likely. That being the case, it is prudent to consider the possible consequences of mass-producing a compound that appears to produce oxidative DNA damage under certain exposure conditions. The genetic evidence we have collected points to a possible mechanism of 2,5-DMF toxicity through DNA damage through non-specific oxidative damage leading to DNA-protein adduct formation. 2,5-DMF, for example, appears to be a more potent toxicant at 15G to strains lacking various DNA repair proteins, while none of the other furans tested here share that feature. These results suggest two conclusions, the first being that there is toxicogenomic support for the role of 2,5-DMF as a DNA damaging agent, and the second being that the pairing of functional toxicogenomics and combinatorial chemistry can yield powerful and informative results.

Tables

2,5-DMF 15G S	ensitive Strain	s GO Biological Process		
Category	p-value	In Category from Cluster	k	f
protein localization to nucleolar rDNA repeats [GO:0034503]	0.000148	CSM1, LRS4	2	5
homologous chromosome segregation [GO:0045143]	0.000221	CSM1, LRS4	2	6
rDNA condensation [GO:0070550]	0.000309	CSM1, LRS4	2	7
negative regulation of gluconeogenesis [GO:0045721]	0.000527	UBC8, VID28	2	9
response to heat [GO:0009408]	0.001955	YAP1, WHI2	2	17
chromatin silencing at rDNA [GO:0000183]	0.002990	LRS4, IRS4	2	21
apoptosis [GO:0006915]	0.003281	OYE2, FIS1	2	22
endocytosis [G0:0006897]	0.003906	THR4, TLG2, WHI2	3	82
proteasomal ubiquitin-dependent protein catabolic process [GO:0043161]	0.006877	UBC8, VID28	2	32
CVT pathway [GO:0032258]	0.009124	IRS4, TLG2	2	37

 Table 3.1: 2,5-DMF
 15G Sensitive Strains GO Biological Process

2,5-DMF 15G Sensitive Strains GO Cellular Component				
Category	p-value	In Category from Cluster	k	f
monopolin complex [GO:0033551]	8.90E-05	CSM1, LRS4	2	4
trans-Golgi network [GO:0005802]	0.004230	SYS1, TLG2	2	25

 Table 3.2: 2,5-DMF
 15G Sensitive Strains GO Cellular Component

2,5-DMF 15G Sensitive Strains MIPS Functional Classification					
Categoryp-valueIn Category from Clusterkf					
regulation of glycolysis and gluconeogenesis [02.01.03]	0.002446	UBC8, VID28	2	19	

 Table 3.3: 2,5-DMF
 15G Sensitive Strains MIPS Functional Classification

2,3-DMF 5G Resistant Strains MIPS Functional Classification					
Category	p-value	In Category from Cluster	k	f	
peroxisomal transport [20.09.03]	0.000248	DJP1, CAT2, ANT1	3	19	
lipid, fatty acid and isoprenoid metabolism [01.06]	0.001777	SUR2, ACB1, DOA1, FPS1, CAT2	5	133	
PROTEIN SYNTHESIS [12]	0.009211	SR09, PET130	2	22	

Table 3.4: 2,3-DMF 5G Resistant Strains MIPS Functional Classification MIPS Functional classification yields a handful of significantly enriched pathways: Peroxisomal transport; lipid fatty acid, and isoprenoid metabolism; and protein synthesis. There are no clear mechanistic reasons, based on likely 2,3-DMF metabolites that indicate why loss of these genes results in increased cellular growth and proliferation. ACB1 is normally only expressed under starvation conditions, and the null mutant has been observed to replicate extensively under these conditions. Increased proliferation here may occur by a similar mechanism, with cell stress resulting from furan exposure rather than starvation conditions. DOA1 has an important role in ubiquitin-mediated protein degradation, deletion of FPS1 improves xylose fermentation, and CAT2 may play a role in other fermentation-related shunt pathways.

2,3-DMF 10G Resistant Strains GO Molecular Function				
Category	p-value	In Category from Cluster	k	f
protein-lysine N-methyltransferase activity [GO:0016279]	0.002926	RKM4, SEE1	2	7

Table 3.5: 2,3-DMF 10G Resistant Strains GO Molecular Function While 81 ORFs were determined to be statistically significantly overrepresented, only 68 identified genes were among them, and of those, only genes for protein-lysine N-methyltransferase activity were enriched for this condition and time point.

2,3-DMF 15	G Resistant S	trains GO Biological Process		
Category	p-value	In Category from Cluster	k	f
iron ion homeostasis [GO:0055072]	0.000120	YDR506C, SIT1, FTR1, ARN2, FET3	5	26
iron assimilation by reduction and transport [GO:0033215]	0.000372	FTR1, FET3	2	2
high-affinity iron ion transport [GO:0006827]	0.002180	FTR1, FET3	2	4
response to copper ion [GO:0046688]	0.003588	YCR102C, FET3	2	5
ion transport [GO:0006811]	0.004572	YDR506C, SIT1, FTR1, ARN2, TOK1, FET3, ANT1	7	107
siderophore transport [GO:0015891]	0.009671	SIT1, ARN2	2	8

 Table 3.6: 2,3-DMF
 15G Resistant Strains GO Biological Process

2,3-DMF 15G Resistant Strains GO Cellular Component				
Category p-value In Category from Cluster k				
high affinity iron permease complex [GO:0033573]	0.000372	FTR1, FET3	2	2

 Table 3.7: 2,3-DMF
 15G Resistant Strains GO Cellular Component

2,3-DMF 15G Resistant Strains MIPS Functional Classification					
Category	p-value	In Category from Cluster	k	f	
siderophore-iron transport [20.01.01.01.01]	5.91E-05	SIT1, FTR1, ARN2, FET3	4	12	
homeostasis of metal ions (Na, K, Ca etc.) [34.01.01.01]	0.000584	YDR506C, SIT1, FTR1, TOS8, ARN2, TOK1, FET3, IZH2	8	98	
protein folding and stabilization [14.01]	0.009095	HSP26, HSP78, FPR2, DJP1, JJJ1, RBL2	6	93	

Table 3.8: 2,3-DMF 15G Resistant Strains MIPS Functional Classification Loss of a variety of genes related to homeostasis of iron and other metals confers resistance at this time point. GO enrichment for genes related to iron and other metals is seen at the level of biological processes, cellular components, molecular function, and MIPS classification. This is consistent with the hypothesis that 2,3-DMF is a potent oxidizing agent within the cell, as extended exposure to 2,3-DMF may shift redox conditions within the cell to such a point as to make iron and other metals to be too reactive and dangerous within the cell. Other researchers have noted the potency of iron as an oxidizing agent within yeast cells⁶⁸.

2,3-DMF 5G Sensitive Strains MIPS Functional Classification					
Category	p-value	In Category from Cluster	k	f	
modification by acetylation, deacetylation [14.07.04]	0.005381	MAK10, SPT8, SAP30, MAK3	4	69	
cAMP/cGMP mediated signal transduction [30.01.09.07]	0.006452	CYR1, RAS2	2	12	

Table 3.9: 2,3-DMF 5G Sensitive Strains MIPS Functional Classification Only a 16 mutants were resistant to 2,3-DMF across all three time points, of which, 4 corresponded to unverified or uncharacterized ORFs, leaving 12 genes whose null genotype confers resistance. No meaningful GO enrichment is observed among these genes, although a few potential mechanisms of resistance may be inferred from gene function. DOA1, FPR2, and LMO1 all relocate to different cellular compartments under oxidative or DNA replication stress conditions, and as noted earlier ACB1's null phenotype is prone to increased proliferation. Similarly, the null mutant for BSC2 is known to have an increased translation rate, which may promote resistance through more rapid replacement of damaged proteins. PRY3 codes for a cysteine-rich protein, so the null mutant may have more cysteine on hand to replace sulfur-switches damaged through oxidative stress, improving cell viability. Mechanisms for the resistant phenotype observed in the remaining null mutants are not readily apparent.

2,3-DMF 5G 5	Sensitive Strain	s GO Biological Process		
Category	p-value	In Category from Cluster	k	f
CVT pathway [GO:0032258]	3.37E-05	TRS85, IRS4, COG6, COG5, TLG2	5	37
protein insertion into ER membrane [GO:0045048]	0.001024	GET2, GET1	2	5
N-terminal protein amino acid acetylation [GO:0006474]	0.001526	MAK10, MAK3	2	6
Golgi apparatus [GO:0005794]	9.28E-08	TRS85, VPS52, GET2, GET1, SYS1, COG6, COG5, TLG2	8	213
Golgi membrane [GO:0000139]	2.01E-05	GET2, GET1, SYS1, COG6, COG5	5	117
GET complex [GO:0043529]	2.61E-05	GET2, GET1	2	3
Golgi transport complex [GO:0017119]	0.000241	COG6, COG5	2	8
pre-autophagosomal structure [GO:0000407]	0.002122	TRS85, IRS4	2	23
trans-Golgi network [GO:0005802]	0.002508	SYS1, TLG2	2	25
cellular protein localization [GO:0034613]	0.0028114	GET2, GET1	2	8
transport [GO:0006810]	0.0029983	ATP1, TRS85, RAV2, YDR338C, VPS52, GET2, GET1, YOR1, SYS1, MOG1, FRE8, PH084, COG6, COG5, BRE5, TLG2, YOL075C	17	815

Table 3.10: 2,3-DMF 5G Sensitive Strains GO Biological Process

2,3-DMF 10G	Sensitive Stra	ins GO Biological Process		
Category	p-value	In Category from Cluster	k	f
CVT pathway [GO:0032258]	6.39E-07	<i>TRS85, COG7, IRS4, COG8, COG6, COG5, TLG2</i>	7	37
vesicle-mediated transport [GO:0016192]	2.40E-05	LTE1, GET3, TRS85, GET2, GET1, SEC22, SSO2, TLG2, GYP1, SNC2	10	140
protein insertion into ER membrane [GO:0045048]	2.65E-05	GET3, GET2, GET1	3	5
intra-Golgi vesicle-mediated transport [GO:0006891]	0.000315	<i>COG7, COG8, COG6, COG5</i>	4	24
response to arsenic-containing substance [GO:0046685]	0.000411	RPN4, GET3, YAP1	3	11
retrograde vesicle-mediated transport, Golgi to ER [GO:0006890]	0.000582	GET3, GET2, GET1, SEC22	4	28
vesicle fusion [GO:0006906]	0.000582	SEC22, SSO2, TLG2, SNC2	4	28
response to singlet oxygen [GO:0000304]	0.001156	SKN7, YAP1	2	4
regulation of transcription from RNA polymerase II promoter in response to oxidative stress [GO:0043619]	0.001156	SKN7, YAP1	2	4
positive regulation of transcription from RNA polymerase II promoter [GO:0045944]	0.002734	STP1, PHO4, AFT1, MGA2, SPT8, SAP30	6	100
response to metal ion [GO:0010038]	0.002837	GET3, YAP1	2	6
N-terminal protein amino acid acetylation [GO:0006474]	0.002837	MAK10, MAK3	2	6
cellular protein localization [GO:0034613]	0.005200	GET2, GET1	2	8

 Table 3.11: 2,3-DMF 10G Sensitive Strains GO Biological Process

2,3-DMF 15	5G Sensitive S	Strains GO Biological Process		
Category	p-value	In Category from Cluster	k	f
vesicle-mediated transport [GO:0016192]	5.87E-06	APM3, FEN1, GET3, ARF1, TRS85, GET2, GET1, APS3, SEC22, SSO2, TLG2, GYP1, RUD3, SNC2	14	140
response to arsenic-containing substance [GO:0046685]	9.36E-05	RPN4, GET3, HOG1, YAP1	4	11
protein insertion into ER membrane [GO:0045048]	0.000132	GET3, GET2, GET1	3	5
response to heat [GO:0009408]	0.000603	GET3, YAP1, WSC2, LSP1	4	17
ER to Golgi vesicle-mediated transport [GO:0006888]	0.000631	ARF1, TRS85, TCA17, BST1, EMP47, ERV14, SEC22, RUD3	8	80
vesicle organization [GO:0016050]	0.002568	TRS85, BST1, SYS1	3	12
response to singlet oxygen [GO:0000304]	0.003349	SKN7, YAP1	2	4
regulation of transcription from RNA polymerase II promoter in response to oxidative stress [G0:0043619]	0.003349	SKN7, YAP1	2	4
retrograde vesicle-mediated transport, Golgi to ER [GO:0006890]	0.004222	GET3, GET2, GET1, SEC22	4	28
vesicle fusion [GO:0006906]	0.004222	SEC22, SSO2, TLG2, SNC2	4	28
response to metal ion [GO:0010038]	0.008110	GET3, YAP1	2	6
negative regulation of transcription from RNA polymerase I promoter [GO:0016479]	0.008110	SAP30, PHO23	2	6
regulation of transcription involved in G1 phase of mitotic cell cycle [G0:0000114]	0.008110	ACE2, MSA1	2	6
N-terminal protein amino acid acetylation [GO:0006474]	0.008110	MAK10, MAK3	2	6
osmosensory signaling pathway [G0:0007231]	0.008110	PBS2, HOG1	2	6

 Table 3.12: 2,3-DMF
 15G Sensitive Strains GO Biological Process

2,3-DMF Sensitive Str	ains Across All	Time Points GO Biological Proc	ess	
Category	p-value	In Category from Cluster	k	f
protein insertion into ER membrane [GO:0045048]	0.000197	GET2, GET1	2	5
N-terminal protein amino acid acetylation [GO:0006474]	0.000295	MAK10, MAK3	2	6
cellular protein localization [GO:0034613]	0.000549	GET2, GET1	2	8
CVT pathway [G0:0032258]	0.000592	TRS85, IRS4, TLG2	3	37
vesicle organization [GO:0016050]	0.001280	TRS85, SYS1	2	12
Ras protein signal transduction [GO:0007265]	0.001508	CYR1, RAS2	2	13
vesicle-mediated transport [GO:0016192]	0.003456	TRS85, GET2, GET1, TLG2	4	140

Table 3.13: 2,3-DMF Sensitive Strains Across All Time Points GO Biological Process

2,3-DMF Sensitive Strains Across All Time Points GO Cellular Component					
Category	p-value	In Category from Cluster	k	f	
NatC complex [G0:0031417]	5.97E-05	MAK10, MAK3	2	3	
GET complex [GO:0043529]	5.97E-05	GET2, GET1	2	3	
Golgi apparatus [GO:0005794]	0.002457	TRS85, GET2, GET1, SYS1, TLG2	5	213	
pre-autophagosomal structure [GO:0000407]	0.004758	TRS85, IRS4	2	23	
trans-Golgi network [GO:0005802]	0.005610	SYS1, TLG2	2	25	

 Table 3.14: 2,3-DMF Sensitive Strains Across All Time Points GO Cellular Component

2-MF 5G Re	sistant Strair	s GO Biological Process		
Category	p-value	In Category from Cluster	k	f
ubiquitin-dependent protein catabolic process via the multivesicular body sorting pathway [GO:0043162]	2.14E-08	STP22, VPS25, SNF7, VPS36, VPS20, SNF8	6	15
negative regulation of transcription from RNA polymerase II promoter by glucose [GO:0000433]	7.70E-05	VPS25, VPS36, SNF8	3	7
late endosome to vacuole transport [GO:0045324]	0.000121	STP22, SNF7, VPS20, VPS27	4	20
protein targeting to vacuole [GO:0006623]	0.000192	STP22, VPS25, VPS36, VPS27, SNF8	5	41
cellular response to anoxia [GO:0071454]	0.001035	RIM101, SNF7	2	4
response to pH [GO:0009268]	0.001710	BPH1, RIM101	2	5
intralumenal vesicle formation [GO:0070676]	0.001710	SNF7, VPS20	2	5
negative regulation of transcription, DNA-dependent [GO:0045892]	0.007372	TUP1, RGT1	2	10
protein retention in Golgi apparatus [G0:0045053]	0.008932	VPS36, VPS27	2	11

 Table 3.15: 2-MF
 5G Resistant Strains GO Biological Process

2-MF 5G Resistant Strains GO Cellular Component					
Category	p-value	In Category from Cluster	k	f	
ESCRT II complex [GO:0000814]	2.29E-06	VPS25, VPS36, SNF8	3	3	
endosome membrane [GO:0010008]	9.93E-05	VPS25, SNF7, VPS36, VPS20, VPS27, SNF8	6	57	
endosome [GO:0005768]	0.000550	<i>STP22, VPS25, SNF7, VPS36, VPS20, VPS27, SNF8</i>	7	108	
internal side of plasma membrane [GO:0009898]	0.001035	STP22, RIM8	2	4	
ESCRT III complex [GO:0000815]	0.001035	SNF7, VPS20	2	4	
cytosolic large ribosomal subunit [GO:0022625]	0.006171	RPL35B, RPL34A, RPL26B, RPL16A, RPL40B	5	88	
membrane [GO:0016020]	0.007320	BAP2, TAT1, YBR090C, RTC2, STP22, HSP30, BPH1, ARE1, YET3, YDR282C, STP1, MNN1, ISC1, YCK3, GEP7, TIM21, ANS1, PRM2, YIL067C, PRY3, IML2, YJL132W, VPS25, BCH2, CAF4, SNF7, YLR050C, SUR4, VPS36, VPS20, TGL3, VPS27, SNF8	33	1671	

Table 3.16: 2-MF 5G Resistant Strains GO Cellular Component

2-MF 5G Resistant Strains MIPS Functional Classification					
Category	p-value	In Category from Cluster	k	f	
transcription repression [11.02.03.04.03]	2.89E-05	TUP1, RIM101, VPS25, VPS36, SNF8	5	28	
pH response [34.11.03.11]	0.000522	BPH1, RIM101	2	3	
regulation of C-compound and carbohydrate metabolism [01.05.25]	0.001374	PCL7, VPS25, RGT1, HAP4, SNF7, VPS36, SNF8	7	126	
vacuolar/lysosomal transport [20.09.13]	0.004132	<i>STP22, VPS25, SNF7, VPS36, VPS20, VPS27, SNF8</i>	7	153	
pH stress response [32.01.04]	0.004667	BPH1, RIM101	2	8	
lipid, fatty acid and isoprenoid metabolism [01.06]	0.008385	DPL1, ISC1, ACB1, YJL132W, TGL3, SPS19	6	133	

Table 3.17: 2-MF 5G Resistant Strains MIPS Functional Classification More surprising are the enriched Gene ontologies for cellular components including the ESCRT II complex, endosome membrane, endosome, ESCRT III complex, and general membrane proteins. ESCRT complexes have been linked to yeast survival in conditions with altered glutathione availability^{109,110} GO enrichment is also observed in several MIPS functional classifications: transcription repression, pH response, carbohydrate metabolism regulation, pH stress response, and lipid metabolism. These observations run counter to the general mechanisms of protein flux that are required for tolerance to other furans.

2-MF 10G Resistant GO Biological Process						
Category	p-value	In Category from Cluster	k	f		
ubiquitin-dependent protein catabolic process via the multivesicular body sorting pathway [GO:0043162]	4.18E-09	STP22, VPS25, SNF7, VPS36, VPS20, SNF8, VPS28	7	15		
protein processing [GO:0016485]	5.39E-05	RIM8, RIM13, DFG16, RIM20,	4	12		
response to pH [GO:0009268]	6.44E-05	BPH1, RIM101, RIM20	3	5		
protein targeting to vacuole [GO:0006623]	0.000106	<i>STP22, VPS25, VPS36, VPS27,</i> <i>SNF8, VPS28</i>	6	41		
negative regulation of transcription from RNA polymerase II promoter by glucose [GO:0000433]	0.000219	VPS25, VPS36, SNF8	3	7		
late endosome to vacuole transport [GO:0045324]	0.000468	STP22, SNF7, VPS20, VPS27	4	20		
cellular response to anoxia [GO:0071454]	0.002080	RIM101, SNF7	2	4		
protein targeting to membrane [GO:0006612]	0.002551	AST1, STP22, VPS28	3	15		
intralumenal vesicle formation [GO:0070676]	0.003424	SNF7, VPS20	2	5		
protein catabolic process [GO:0030163]	0.005142	BLM10, YSP3, SUE1	3	19		

Table 3.18: 2-MF 10G Resistant GO Biological Process

2-MF 10G Resistant GO Cellular Component						
Category	p-value	In Category from Cluster	k	f		
cytosolic large ribosomal subunit [GO:0022625]	5.34E-06	RPL35B, RPL27B, RPL34A, RPL24A, RPL9A, RPL16A, RPL17B, RPL40B, RPL16B, RPL33B	10	88		
ESCRT II complex [GO:0000814]	6.63E-06	VPS25, VPS36, SNF8	3	3		
endosome membrane [GO:0010008]	0.000672	VPS25, SNF7, VPS36, VPS20, VPS27, SNF8	6	57		
endosome [GO:0005768]	0.000953	<i>STP22, VPS25, SNF7, VPS36, VPS20, VPS27, SNF8, VPS28</i>	8	108		
ESCRT I complex [GO:0000813]	0.002080	STP22, VPS28	2	4		
internal side of plasma membrane [GO:0009898]	0.002080	STP22, RIM8	2	4		
ESCRT III complex [GO:0000815]	0.002080	SNF7, VPS20	2	4		
large ribosomal subunit [GO:0015934]	0.003097	RPL16A, RPL17B, RPL16B	3	16		
late endosome membrane [G0:0031902]	0.007841	STP22, GTR2, VPS28	3	22		

Table 3.19: 2-MF 10G Resistant GO Cellular Component

2-MF 10G Resistant MIPS Functional Classification					
Category	p-value	In Category from Cluster	k	f	
transcription repression [11.02.03.04.03]	0.000155	TUP1, RIM101, VPS25, VPS36, SNF8	5	28	
vacuolar/lysosomal transport [20.09.13]	0.000601	GEM1, STP22, PIB2, VPS25, SNF7, VPS36, VPS20, VPS27, SNF8, VPS28	10	153	
pH response [34.11.03.11]	0.001053	BPH1, RIM101	2	3	
ribosomal proteins [12.01.01]	0.006692	RPL35B, RPL27B, RPL34A, RPL24A, DBP3, RPL9A, RPL16A, RPL17B, RPL40B, RPL16B, RPL33B	11	246	
pH stress response [32.01.04]	0.009238	BPH1, RIM101	2	8	
C-compound and carbohydrate metabolism [01.05]	0.009422	AAD3, GPD1, DLD2, LYS20, MNN1, RGT1, BCH2, YKR096W, GAL80, SUR1	10	223	

Table 3.20: 2-MF 10G Resistant MIPS Functional Classification Significant enrichment is observed in mutant strains lacking genes related to ubiquitin-dependent protein catabolism, the ESCRT complexes I-III, cytosolic large ribosomal subunit, and intracellular transit, particularly endosomal and vacuolar transport. Strains with mutations in genes for transcription repression and pH stress response were also significantly overrepresented compared to control.

2-MF 15G Resistant GO Biological Process					
Category	p-value	In Category from Cluster	k	f	
ubiquitin-dependent protein catabolic process via the multivesicular body sorting pathway [G0:0043162]	6.81E-09	STP22, VPS25, SNF7, VPS36, VPS20, SNF8, VPS28	7	15	
protein processing [GO:0016485]	7.08E-05	RIM8, RIM13, DFG16, RIM20	4	12	
response to pH [GO:0009268]	7.93E-05	BPH1, RIM101, RIM20	3	5	
protein targeting to vacuole [GO:0006623]	0.000156	<i>STP22, VPS25, VPS36, VPS27,</i> <i>SNF8, VPS28</i>	6	41	
negative regulation of transcription from RNA polymerase II promoter by glucose [GO:0000433]	0.000269	VPS25, VPS36, SNF8	3	7	
late endosome to vacuole transport [GO:0045324]	0.000610	STP22, SNF7, VPS20, VPS27	4	20	
negative regulation of transcription from RNA polymerase II promoter by pheromones [GO:0046020]	0.000627	DIG2, ITC1, ISW2	3	9	
chromatin silencing at telomere [GO:0006348]	0.001063	DPB4, ITC1, DLS1, RTT106, ISW2, HAT1	6	58	
glycosphingolipid biosynthetic process [GO:0006688]	0.001210	CSG2, SUR1	2	3	
trehalose catabolic process [GO:0005993]	0.001210	NTH1, ATH1	2	3	
cellular response to anoxia [GO:0071454]	0.002388	RIM101, SNF7	2	4	
regulation of transcription, DNA- dependent [GO:0006355]	0.002897	<i>TBS1, TUP1, DPB4, JHD1, TOS8, ITC1, NUT1, RIM101, SKN7, VHR1, DLS1, RGT1, BAS1, CHS5, RTT106, HAL9, HIR2, ISW2, NT01, ROX1</i>	20	507	
regulation of cell size [GO:0008361]	0.002950	GPA2, SSF1, SKN7, PTK2	4	30	
sphingolipid biosynthetic process [GO:0030148]	0.003109	LCB3, SUR4, SUR1	3	15	
intralumenal vesicle formation [GO:0070676]	0.003927	SNF7, VPS20	2	5	
cellular process [GO:0009987]	0.008029	MAP2, ARX1	2	7	

Table 3.21: 2-MF 15G Resistant GO Biological Process

2-MF 15G Resistant GO Cellular Component					
Category	p-value	In Category from Cluster	k	f	
chromatin accessibility complex [GO:0008623]	1.62E-07	DPB4, ITC1, DLS1, ISW2	4	4	
cytosolic large ribosomal subunit [GO:0022625]	1.64E-07	RPL21A, RPL35B, ARX1, RPL27B, RPL34A, RPL29, RPL9A, RPL26B, RPL24B, RPL40B, RPL26A, RPL16B,	12	88	
ESCRT II complex [GO:0000814]	8.18E-06	VPS25, VPS36, SNF8	3	3	
endosome membrane [GO:0010008]	0.000969	<i>VPS25, SNF7, VPS36, VPS20,</i> <i>VPS27, SNF8</i>	6	57	
endosome [GO:0005768]	0.001495	<i>STP22, VPS25, SNF7, VPS36, VPS20, VPS27, SNF8, VPS28</i>	8	108	
internal side of plasma membrane [GO:0009898]	0.002388	STP22, RIM8	2	4	
ESCRT I complex [GO:0000813]	0.002388	STP22, VPS28	2	4	
ESCRT III complex [GO:0000815]	0.002388	SNF7, VPS20	2	4	
large ribosomal subunit [GO:0015934]	0.003771	RPL26B, RPL26A, RPL16B	3	16	
exomer complex [G0:0034044]	0.003927	BCH2, CHS5	2	5	
ribosome [GO:0005840]	0.009908	RPL21A, RPL35B, RPL27B, RPL34A, RPL29, RPL9A, RPL26B, YGR054W, RPL24B, RPL40B, YKR096W, RPL26A, RPL16B	13	310	

Table 3.22: 2-MF 15G Resistant GO Cellular Component

2-MF 15G Resistant MIPS Functional Classification					
Category	p-value	In Category from Cluster	k	f	
transcription repression [11.02.03.04.03]	1.63E-05	<i>TUP1, RIM101, VPS25, VPS36, SNF8, ROX1</i>	6	28	
ribosomal proteins [12.01.01]	0.000432	RPL21A, RPL35B, RPL27B, RPL34A, RPL29, DBP3, RPL9A, RPL26B, YGR054W, RPL24B, SSF1, RPL40B, RPL26A, RPL16B	14	246	
vacuolar/lysosomal transport [20.09.13]	0.001035	GEM1, STP22, LST7 VPS25, SNF7, VPS36, VPS20, VPS27, SNF8, VPS28	10	153	
pH response [34.11.03.11]	0.001210	BPH1, RIM101	2	3	

Table 3.23: 2-MF 15G Resistant MIPS Functional Classification Similar to the 10G time point, pathways related to ubiquitin-dependent protein catabolism, intracellular transport, and ribosomal function were significantly enriched. All three ESCRT complexes were enriched. Additional GO enrichment was observed in protein processing, chromatin silencing, sphingolipid biosynthesis, glycosphingolipid biosynthesis, trehalose catabolism, cell size regulation, and various plasma membrane proteins. Mechanistic explanations for this remain elusive.

2-MF Resistant Across All Time Points GO Biological Process					
Category	p-value	In Category from Cluster	k	f	
ubiquitin-dependent protein catabolic process via the multivesicular body sorting pathway [GO:0043162]	2.19E-10	STP22, VPS25, SNF7, VPS36, VPS20, SNF8	6	15	
protein targeting to vacuole [GO:0006623]	5.16E-06	STP22, VPS25, VPS36, VPS27, SNF8	5	41	
late endosome to vacuole transport [GO:0045324]	6.37E-06	<i>STP22, SNF7, VPS20, VPS27</i>	4	20	
negative regulation of transcription from RNA polymerase II promoter by glucose [GO:0000433]	8.23E-06	VPS25, VPS36, SNF8	3	7	
cellular response to anoxia [GO:0071454]	0.000235	RIM101, SNF7	2	4	
response to pH [GO:0009268]	0.000390	BPH1, RIM101	2	5	
intralumenal vesicle formation [GO:0070676]	0.000390	SNF7, VPS20	2	5	
negative regulation of transcription, DNA-dependent [GO:0045892]	0.001721	TUP1, RGT1	2	10	
protein retention in Golgi apparatus [GO:0045053]	0.002094	VPS36, VPS27	2	11	
protein transport [GO:0015031]	0.002305	STP22, YET3, VPS25, BCH2, SNF7, VPS36, VPS20, SNF8	8	379	
protein processing [GO:0016485]	0.002503	RIM8, RIM13	2	12	

Table 3.24: 2-MF Resistant Across All Time Points GO Biological Process

2-MF Resistant Across All Time Points GO Cellular Component					
Category	p-value	In Category from Cluster	k	f	
ESCRT II complex [GO:0000814]	2.39E-07	VPS25, VPS36, SNF8	3	3	
endosome membrane [GO:0010008]	1.30E-06	VPS25, SNF7, VPS36, VPS20, VPS27, SNF8	6	57	
endosome [GO:0005768]	4.34E-06	<i>STP22, VPS25, SNF7, VPS36, VPS20, VPS27, SNF8</i>	7	108	
ESCRT III complex [GO:0000815]	0.000235	SNF7, VPS20	2	4	
internal side of plasma membrane [GO:0009898]	0.000235	STP22, RIM8	2	4	

 Table 3.25: 2-MF Resistant Across All Time Points GO Cellular Component

2-MF Resistant across all time points MIPS Functional Classification					
Category	p-value	In Category from Cluster	k	f	
transcription repression [11.02.03.04.03]	7.19E-07	TUP1, RIM101, VPS25, VPS36, SNF8	5	28	
vacuolar/lysosomal transport [20.09.13]	4.27E-05	<i>STP22, VPS25, SNF7, VPS36, VPS20, VPS27, SNF8</i>	7	153	
pH response [34.11.03.11]	0.000118	BPH1, RIM101	2	3	
pH stress response [32.01.04]	0.001079	BPH1, RIM101	2	8	
regulation of C-compound and carbohydrate metabolism [01.05.25]	0.001129	VPS25, RGT1, SNF7, VPS36, SNF8	5	126	
development of asco- basidio- or zygospore [43.01.03.09]	0.003790	ARE1, GPA2, RIM101, SNF7, RIM13	5	166	
protein processing (proteolytic) [14.07.11]	0.007292	MAP2, RIM8, RIM13	3	63	
protein targeting, sorting and translocation [14.04]	0.008120	STP22, VPS25, SNF7, VPS36, VPS27, SNF8	6	281	

Table 3.26: 2-MF Resistant across all time points MIPS Functional Classification in contrast to other test compounds, mutants for genes related to protein synthesis and degradation confers tolerance to 2-MF across all time points. Additional GO enrichment was observed in negative regulation of RNA Pol II (as opposed to in sensitive strains, in which loss of positive RNA Pol II regulation reduced fitness), anoxic response, pH response, and Golgi-related transport pathways. Loss of transcription repression and loss of sporeformation pathways also appears to improve resistance to 2-MF.

2-MF 5G Sensitive Strains GO Biological Process					
Category	p-value	In Category from Cluster	k	f	
CVT pathway [G0:0032258]	0.000346	IRS4, ATG16, COG6, COG5	4	37	
negative regulation of transcription from RNA polymerase I promoter [GO:0016479]	0.001229	SAP30, PHO23	2	6	
glutathione metabolic process [GO:0006749]	0.003602	GTT2, GTO3	2	10	
response to arsenic-containing substance [GO:0046685]	0.004376	RPN4, YAP1	2	11	
negative regulation of chromatin silencing at telomere [GO:0031939]	0.004376	SAP30, PHO23	2	11	
Ras protein signal transduction [GO:0007265]	0.006133	CYR1, RAS2	2	13	

 Table 3.27: 2-MF
 5G Sensitive Strains GO Biological Process

2-MF 5G Sensitive Strains GO Cellular Component					
Category	p-value	In Category from Cluster	k	f	
histone deacetylase complex [GO:0000118]	0.001711	SAP30, PHO23	2	7	
Golgi transport complex [GO:0017119]	0.002268	COG6, COG5	2	8	
Rpd3L complex [G0:0033698]	0.007113	SAP30, PH023	2	14	

 Table 3.28: 2-MF
 5G Sensitive Strains GO Cellular Component

2-MF 5G Sensitive Strains MIPS Functional Classification					
Category	p-value	In Category from Cluster	k	f	
homeostasis of phosphate [34.01.03.03]	0.002898	NPP1, PHO84	2	9	
intra Golgi transport [20.09.07.05]	0.003360	SEC22, COG6, COG5	3	33	
nuclear division [10.03.04.07]	0.004376	TOM1, DBF2	2	11	
cAMP/cGMP mediated signal transduction [30.01.09.07]	0.005220	CYR1, RAS2	2	12	

 Table 3.29: 2-MF
 5G Sensitive Strains MIPS Functional Classification

2-MF 10G Sensitive Strains GO Biological Process					
Category	p-value	In Category from Cluster	k	f	
negative regulation of transcription					
from RNA polymerase I promoter	0.000159	SAP30, PHO23, UME1	3	6	
[GO:0016479]					
mRNA export from nucleus	0.000213	NUP170, NPL3, SGF73, THP2,	6	43	
[GO:0006406]	0.000215	NUP2, MFT1	0	-15	
apoptosis [GO:0006915]	0.000918	OYE2, FIS1, CPR3, NMA111	4	22	
negative regulation of chromatin					
silencing at telomere	0.001222	SAP30, PHO23, UME1	3	11	
[GO:0031939]					
purine ribonucleoside					
monophosphate biosynthetic	0.002423	YBR284W, AMD1	2	4	
process [GO:0009168]					
cellular carbohydrate metabolic	0.004607	MAL33, IMP2', YMR099C	3	17	
process [GO:0044262]	0.004007	MALSS, IMI 2, IMR0990	5	17	
response to heat [GO:0009408]	0.004607	NBP2, YAP1, WHI2	3	17	
accounts formation [CO.0020427]	0.005026	SPT3, NEM1, VID28, RAS2,	F	57	
ascospore formation [GO:0030437]	0.005926	MCK1	5	57	
chromatin modification	0.000560	SPT3, SGF73, SPT8, SAP30,	7	114	
[GO:0016568]	0.008568	PHO23, EAF7, UME1		114	

 Table 3.30: 2-MF 10G Sensitive Strains GO Biological Process

2-MF 10G Sensitive Strains GO Cellular Component					
Category	p-value	In Category from Cluster	k	f	
nucleoplasmic THO complex [GO:0000446]	0.002423	THP2, MFT1	2	4	
THO complex part of transcription export complex [GO:0000445]	0.002423	THP2, MFT1	2	4	
Rpd3L complex [GO:0033698]	0.002579	SAP30, PH023, UME1	3	14	
Rpd3L-Expanded complex [GO:0070210]	0.006372	SAP30, PHO23, UME1	3	19	
SAGA complex [GO:0000124]	0.007385	SPT3, SGF73, SPT8	3	20	
histone deacetylase complex [GO:0000118]	0.008146	SAP30, PHO23	2	7	

 Table 3.31: 2-MF 10G Sensitive Strains GO Cellular Component

2-MF 10G Sensitive Strains GO MIPS Functional Classification					
Category	p-value	In Category from Cluster	k	f	
modification by acetylation, deacetylation [14.07.04]	0.000479	SPT3, MAK10, SGF73, SPT8, SAP30, PH023, EAF7	7	69	
regulator of transcription factor [18.02.09]	0.000854	SPT3, OPI1, IMP2', SPT8, UME1	5	37	
cAMP/cGMP mediated signal transduction [30.01.09.07]	0.001606	SOK1, CYR1, RAS2	3	12	
development of asco- basidio- or zygospore [43.01.03.09]	0.006740	FEN1, TRS85, SPT3, NEM1, CYR1, SAP30, RAS2, SLZ1, MCK1	9	166	

Table 3.32: 2-MF 10G Sensitive Strains GO MIPS Functional Classification GO enrichment is observed in pathways and cellular components for genes related to ribonucleotide processing (mRNA export from the nucleus, negative regulation of transcription from RNA Pol I promoter, purine ribonucleotide monophosphate biosynthesis), oxidative stress, an chromatin structure maintenance (negative regulation of chromatin silencing at telomere, chromatin modification). Genes involved in acylation were also significantly enriched.

2-MF 15G Sensitive GO Biological Process					
Category	p-value	In Category from Cluster	k	f	
positive regulation of transcription from RNA polymerase II promoter [GO:0045944]	0.000393	OPI1, VID28, SUB1, SAP30. PHO23	5	100	
ascospore formation [GO:0030437]	0.000438	SPT3, NEM1, VID28, MCK1	4	57	
negative regulation of transcription from RNA polymerase I promoter [GO:0016479]	0.000583	SAP30, PHO23	2	6	
regulation of transcription from RNA polymerase II promoter in response to stress [GO:0043618]	0.001382	MSN2, SUB1	2	9	
negative regulation of chromatin silencing at telomere [GO:0031939]	0.002095	SAP30, PH023	2	11	
response to stress [GO:0006950]	0.002590	MSN2, OCA1, MCK1, IRA2, WHI2	5	152	
M phase of mitotic cell cycle [GO:0000087]	0.002299	NAP1, MIH1	2	3	
metal ion transport [GO:0030001]	0.006271	BSD2, PCA1, COX19	3	14	
cAMP-mediated signaling [GO:0019933]	0.007384	SOK1, PDE2	2	5	
protein insertion into ER membrane [GO:0045048]	0.007384	GET2, GET1	2	5	

Table 3.33: 2-MF 15G Sensitive GO Biological Process

2-MF 15G Sensitive GO Cellular Component					
Category	p-value	In Category from Cluster	k	f	
histone deacetylase complex [GO:0000118]	0.000813	SAP30, PH023	2	7	
NatC complex [GO:0031417]	0.002299	MAK10, MAK3	2	3	
GET complex [GO:0043529]	0.002299	GET2, GET1	2	3	
retromer complex, inner shell [GO:0030906]	0.002299	PEP8, VPS35	2	3	
nuclear envelope [GO:0005635]	0.007292	RRT12, OPI1, WSS1	3	63	
nuclear membrane [GO:0031965]	0.008293	NUP170, OPI1, NEM1	3	66	
Golgi apparatus [GO:0005794]	0.006613	ATG15, ARF1, TCA17, GET2, GET1, SYS1, GEF1, SEC22, VPS38, NPR1, TLG2, GYP1, LDB19	13	213	
retromer complex [GO:0030904]	0.007384	PEP8, VPS35	2	5	

Table 3.34: 2-MF 15G Sensitive GO Cellular Component

2-MF 15G Sensitive MIPS Functional Classification					
Category	p-value	In Category from Cluster	k	f	
transcriptional control [11.02.03.04]	0.000255	SPT3, PGD1, DBF2, OPI1, ZAP1, DAT1, MSN2, SUB1, SAP30, PH023	10	426	
regulator of transcription factor [18.02.09]	0.001600	SPT3 OPI1 SUB1	3	37	
metabolism of cyclic and unusual nucleotides [01.03.10]	0.005057	PUS2 IRA2	2	17	
regulation of glycolysis and gluconeogenesis [02.01.03]	0.006307	VID28 FBP26	2	19	
modification by acetylation, deacetylation [14.07.04]	0.009371	SPT3 SAP30 PH023	3	69	

Table 3.35: 2-MF 15G Sensitive MIPS Functional Classification surprisingly few GOenriched pathways and cell components compared to other compounds at the 15G time point. Primarily, sensitivity genes are clustered in pathways for RNA Polymerase I and II transcriptional regulation, cell stress response, cell cycle, cell signaling pathways, and cell cycle. Loss of some structural components of the Golgi and the nucleus were found to reduce tolerance to 2-MF. A unifying mechanistic explanation for these observations is not forthcoming.

2-MF Sensitive across all time points GO Biological Process					
Category	p-value	In Category from Cluster	k	f	
negative regulation of transcription from RNA polymerase I promoter [G0:0016479]	0.000239	SAP30, PHO23	2	6	
response to arsenic-containing substance [GO:0046685]	0.000865	RPN4, YAP1	2	11	
negative regulation of chromatin silencing at telomere [GO:0031939]	0.000865	SAP30, PHO23	2	11	
regulation of transcription, DNA- dependent [GO:0006355]	0.003458	RPN4, TOM1, SPT8, YAP1, MFT1, SAP30, PH023	7	507	
transcription, DNA-dependent [GO:0006351]	0.004919	RPN4, TOM1, SPT8, YAP1, MFT1, SAP30, PHO23	7	540	
histone deacetylation [GO:0016575]	0.005306	SAP30, PHO23	2	27	
regulation of cell size [GO:0008361]	0.006527	YCR061W, TOM1	2	30	
positive regulation of transcription from RNA polymerase II promoter [GO:0045944]	0.007573	SPT8, SAP30, PHO23	3	100	

Table 3.36; 2-MF Sensitive across all time points GO Biological Process

2-MF Sensitive across all time points GO Cellular Component					
Category	p-value	In Category from Cluster	k	f	
histone deacetylase complex [GO:0000118]	0.000333	SAP30, PHO23	2	7	
Rpd3L complex [GO:0033698]	0.001421	SAP30, PHO23	2	14	
Rpd3L-Expanded complex [GO:0070210]	0.002638	SAP30, PHO23	2	19	

Table 3.37: 2-MF Sensitive across all time points GO Cellular Component

2-MF Sensitive across all time points MIPS Functional Classification					
Category	p-value	In Category from Cluster	k	f	
nuclear division [10.03.04.07]	0.000865	TOM1, DBF2	2	11	
modification by acetylation, deacetylation [14.07.04]	0.002669	SPT8, SAP30, PHO23	3	69	
DNA conformation modification (e.g. chromatin) [10.01.09.05]	0.006686	IRS4, SPT8, SAP30, PHO23	4	188	

Table 3.38: 2-MF Sensitive across all time points MIPS Functional Classification As noted before, significantly fewer genes conferred susceptibility to 2-MF compared to other strains. Strains with mutations for genes in pathways for positive regulation of transcription from RNA Pol II promoter, histone deacetylation, and DNA packaging/modification pathways were more sensitive across all time points for 2-MF.

2-EF 5G Resistant Strains MIPS Functional Classification				
Category	p-value	In Category from Cluster	k	f
vesicular transport (Golgi network, etc.) [20.09.07]	0.008462	CHS6, VPS17	2	72

Table 3.39: 2-EF 5G Resistant Strains MIPS Functional Classification

2-EF 5G Sen	sitive Strains	s GO Biological Process		
Category	p-value	In Category from Cluster	k	f
response to singlet oxygen [GO:0000304]	2.50E-05	SKN7, YAP1	2	4
regulation of transcription from RNA polymerase II promoter in response to oxidative stress [GO:0043619]	2.50E-05	SKN7, YAP1	2	4
CVT pathway [G0:0032258]	5.65E-05	IRS4, COG6, COG5	3	37
response to arsenic-containing substance [GO:0046685]	0.0002271 32	RPN4, YAP1	2	11
positive regulation of transcription, DNA-dependent [G0:0045893]	0.0007761 25	RPN4, STP1	2	20
intra-Golgi vesicle-mediated transport [G0:0006891]	0.0011219 7	COG6, COG5	2	24

 Table 3.40: 2-EF 5G Sensitive Strains GO Biological Process

2-EF 5G Sensitive Strains GO Cellular Component					
Category	p-value	In Category from Cluster	k	f	
Golgi transport complex [GO:0017119]	0.000116	COG6, COG5	2	8	
Golgi membrane [GO:0000139]	0.001711	SYS1, COG6, COG5	3	117	
Golgi apparatus [GO:0005794]	0.009259	SYS1, COG6, COG5	3	213	

 Table 3.41: 2-EF 5G Sensitive Strains GO Cellular Component

2-EF 5G Sensitive Strains MIPS Functional Classification					
Category	p-value	In Category from Cluster	k	f	
transcription activation [11.02.03.04.01]	8.30E-05	RPN4, THI3, ACE2	3	42	
cellular signalling [30.01]	0.002123	SKN7, IRS4	2	33	
intra Golgi transport [20.09.07.05]	0.002123	<i>COG6, COG5</i>	2	33	
oxidative stress response [32.01.01]	0.005814	SKN7, YAP1	2	55	
cell wall [42.01]	0.009259	RAD23, INP51, IRS4	3	213	

Table 3.42: 2-EF 5G Sensitive Strains MIPS Functional Classification

2-EF 10G Sensitive Strains GO Biological Process					
Category	p-value	In Category from Cluster	k	f	
regulation of transcription from RNA polymerase II promoter in response to oxidative stress [GO:0043619]	3.29E-05	SKN7, YAP1	2	4	
response to singlet oxygen [GO:0000304]	3.29E-05	SKN7, YAP1	2	4	
CVT pathway [GO:0032258]	8.63E-05	IRS4, COG8, COG6	3	37	
intra-Golgi vesicle-mediated transport [GO:0006891]	0.001472	COG8, COG6	2	24	

Table 3.43: 2-EF 10G Sensitive Strains GO Biological Process

2-EF 10G Sensitive Strains GO Cellular Component				
Category	p-value	In Category from Cluster	k	f
Golgi transport complex [GO:0017119]	0.000152	COG8, COG6	2	8
Golgi membrane [GO:0000139]	0.002565	SYS1, COG8, COG6	3	117

Table 3.44: 2-EF 10G Sensitive Strains GO Cellular Component

2-EF 10G Sensitive Strains MIPS Functional Classification					
Category	p-value	In Category from Cluster	k	f	
intra Golgi transport [20.09.07.05]	0.002782	<i>COG8, COG6</i>	2	33	
cellular signalling [30.01]	0.002782	SKN7, IRS4	2	33	
metabolism of secondary products derived from primary amino acids [01.20.17]	0.007252	MAK10	1	3	
oxidative stress response [32.01.01]	0.007585	SKN7, YAP1	2	55	

Table 3.45: 2-EF 10G Sensitive Strains MIPS Functional Classification Although sixteen mutants were significantly underrepresented at this time point, three of those lacked proteins whose functions are unknown. Pathway enrichment for sensitive mutants is very similar to the 5G time point for 2-EF exposure, except that the fold-change is more severe, and the *STP1* Δ strain appears as well. The Stp1 is an important transcription factor for pathways related to import of extracellular amino acids.

2-EF 15G Sensitive Strains GO Biological Process						
Category	p-value	In Category from Cluster	k	f		
CVT pathway [GO:0032258]	0.000147	TRS85, SNX4, IRS4, TLG2	4	37		
regulation of transcription from RNA polymerase II promoter in response to oxidative stress [GO:0043619]	0.000320	SKN7, YAP1	2	4		
response to singlet oxygen [GO:0000304]	0.000320	SKN7 ,YAP1	2	4		
endocytosis [GO:0006897]	0.000324	DRS2, THR4, TLG2, WHI2, SNC2	5	82		
vesicle-mediated transport [GO:0016192]	0.000538	FEN1, TRS85, GET1, TLG2, GYP1, SNC2	6	140		
ascospore formation [GO:0030437]	0.000792	ERV14, NEM1, VID28, VPS13	4	57		
mitochondrion degradation [GO:0000422]	0.001225	PTC6, SNX4, WHI2	3	29		
response to arsenic-containing substance [GO:0046685]	0.002843	RPN4, YAP1	2	11		
vacuolar protein catabolic process [GO:0007039]	0.003395	<i>VID28, VPS13</i>	2	12		
vesicle organization [GO:0016050]	0.003395	TRS85, SYS1	2	12		
response to heat [GO:0009408]	0.006833	YAP1, WHI2	2	17		

 Table 3.46: 2-EF 15G Sensitive Strains GO Biological Process

2-EF 15G Sensitive Strains GO Cellular Component					
Category	p-value	In Category from Cluster	k	f	
trans-Golgi network [G0:0005802]	8.68E-07	DRS2, TRS65, SYS1, TLG2, SNC2	5	25	
Golgi apparatus [GO:0005794]	2.14E-05	DRS2, TRS85, GET1, ERV14, TRS65 SYS1, VPS13, TLG2, GYP1	9	213	
pre-autophagosomal structure [GO:0000407]	0.000612	TRS85, SNX4, IRS4	3	23	
SNARE complex [GO:0031201]	0.000787	MSO1, TLG2, SNC2	3	25	
TRAPP complex [GO:0030008]	0.002843	TRS85, TRS65	2	11	
integral to endosome membrane [GO:0031303]	0.007420	TLG2	1	1	
endosome [GO:0005768]	0.008151	SNX4, VPS13, TLG2, SNC2	4	108	
endoplasmic reticulum membrane [GO:0005789]	0.008451	FEN1, YPS7, GET1, CWH41, ERV14, NEM1, RCE1	7	318	

 Table 3.47: 2-EF 15G Sensitive Strains GO Cellular Component

2-EF 15G Sensitive Strains MIPS Functional Classification				
Category	p-value	In Category from Cluster	k	f
protein/peptide degradation [14.13]	0.000377	RRT12, AFG3, SNX4, RCE1	4	47
transcription activation [11.02.03.04.01]	0.003598	RPN4, ACE2, MSN1	3	42
development of asco- basidio- or zygospore [43.01.03.09]	0.007381	FEN1, TRS85, ERV14, NEM1, MSO1	5	166
endocytosis [20.09.18.09.01]	0.009330	THR4, WHI2, SNC2	3	59

Table 3.48: 2-EF 15G Sensitive Strains MIPS Functional Classification Oxidative stress response pathways as well as Golgi structure and trafficking components are once again the most significantly enriched GO pathways, cellular components, and functional classifications. At this time point, the same three oxidative stress genes were activated as in the other time points, but a larger and different suite of Golgi proteins were highlighted along with a smattering of genes for ER structure. Nine mutants for genes related to the structure of the Golgi apparatus were significantly less abundant, as well as roughly half a dozen genes for trans-Golgi network (TGN) vesicle trafficking including SNARE and TRAPP complexes.

2-EF Sensitive Strains Across All Time Points GO Molecular Function				
Category	p-value	In Category from Cluster	k	f
sequence-specific DNA binding [GO:0043565]	0.000289	SKN7, ACE2, YAP1	3	165
DNA binding [GO:0003677]	0.005349	SKN7, ACE2, YAP1	3	449
sequence-specific DNA binding transcription factor activity [GO:0003700]	0.006156	SKN7, YAP1	2	138

Table 3.49: 2-EF Sensitive Strains Across All Time Points GO Molecular Function

2-EF Sensitive Strains Across All Time Points GO Biological Process					
Category	p-value	In Category from Cluster	k	f	
regulation of transcription from RNA polymerase II promoter in response to oxidative stress [GO:0043619]	4.13E-06	SKN7 YAP1	2	4	
response to singlet oxygen [GO:0000304]	4.13E-06	SKN7 YAP1	2	4	

Table 3.50: 2-EF Sensitive Strains Across All Time Points GO Biological Process

2-EF Sensitive Strains Across All Time Points MIPS Functional Classification				
Category	p-value	In Category from Cluster	k	f
cellular signaling [30.01]	0.000358	SKN7 IRS4	2	33
oxidative stress response [32.01.01]	0.001000	SKN7 YAP1	2	55

Table 3.51: 2-EF Sensitive Strains Across All Time Points MIPS Functional Classification Mutants for genes related to oxidative stress response and amino acid uptake were sensitive across all time points and showed decreased fitness when exposed to 2-EF. This observation, coupled by the observed increased potency of 2-EF suggests that the compound and its likely metabolites cause oxidative damage to the cell. That mutants for genes involved in protein synthesis and recycling were also consistently sensitive to 2-EF suggests that the targets of 2-EF's oxidative attack are cell proteins and that the damage is non-specific. Since the pathways involved in protein flux are consistently sensitive to 2-EF, but few genes are consistently sensitive across all time points.

References

- 1. Wei, H. *et al.* Experimental investigation on the combustion and emissions characteristics of 2-methylfuran gasoline blend fuel in spark-ignition engine. *Appl. Energy* **132**, 317–324 (2014).
- Costagliola, M. A., De Simio, L., Iannaccone, S. & Prati, M. V. Combustion efficiency and engine out emissions of a S.I. engine fueled with alcohol/gasoline blends. *Appl. Energy* 111, 1162–1171 (2013).
- 3. Qian, Y., Zhu, L., Wang, Y. & Lu, X. Recent progress in the development of biofuel 2,5dimethylfuran. *Renew. Sustain. Energy Rev.* **41**, 633–646 (2015).
- 4. Yildiz, B., Hagos, M., De, S., Kim, J. & Daim, T. Technology Forecasting: Case of Electric Vehicle Technology. in *Research and Development Management* 125–136 (Springer, Cham, 2017). doi:10.1007/978-3-319-54537-0_8
- 5. Jansson, J., Pettersson, T., Mannberg, A., Brännlund, R. & Lindgren, U. Adoption of alternative fuel vehicles: Influence from neighbors, family and coworkers. *Transp. Res. Part Transp. Environ.* **54**, 61–73 (2017).
- 6. Adepetu, A. & Keshav, S. The relative importance of price and driving range on electric vehicle adoption: Los Angeles case study. *Transportation* **44**, 353–373 (2017).
- 7. Olivetti, E. A., Ceder, G., Gaustad, G. G. & Fu, X. Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals. *Joule* **1**, 229–243 (2017).
- 8. Feller, D. & Simmie, J. M. High-Level ab Initio Enthalpies of Formation of 2,5-Dimethylfuran, 2-Methylfuran, and Furan. *J. Phys. Chem. A* **116**, 11768–11775 (2012).
- 9. Fromowitz, M. *et al.* Bone marrow genotoxicity of 2,5-dimethylfuran, a green biofuel candidate. *Environ. Mol. Mutagen.* **53**, 488–491 (2012).
- 10. Phuong, J., Kim, S., Thomas, R. & Zhang, L. Predicted toxicity of the biofuel candidate 2,5dimethylfuran in environmental and biological systems. *Environ. Mol. Mutagen.* **53**, 478–487 (2012).
- 11. Simmie, J. M. & Würmel, J. Harmonising Production, Properties and Environmental Consequences of Liquid Transport Fuels from Biomass-2,5-Dimethylfuran as a Case Study. *ChemSusChem* **6**, 36–41 (2013).
- 12. NTP, (National Toxicology Program). *Report on Carcinogens, Thirteenth Edition*. (Departmenth of Health And Human Services, Public Health Service, 2014).
- 13. Dry Cleaning, Some Chlorinated Solvents And Other Industrial Chemicals. 393–407 (World Health Organization International Agency For Research On Cancer).
- 14. Taxak, N., Kalra, S. & Bharatam, P. V. Mechanism-Based Inactivation of Cytochromes by Furan Epoxide: Unraveling the Molecular Mechanism. *Inorg. Chem.* **52**, 13496–13508 (2013).
- 15. Gates, L. A., Lu, D. & Peterson, L. A. Trapping of cis-2-Butene-1,4-dial to Measure Furan Metabolism in Human Liver Microsomes by Cytochrome P450 Enzymes. *Drug Metab. Dispos.* **40**, 596–601 (2012).
- 16. Peterson, L. A. Reactive Metabolites in the Biotransformation of Molecules Containing a Furan Ring. *Chem. Res. Toxicol.* **26**, 6–25 (2013).
- 17. Phillips, M. B., Sullivan, M. M., Villalta, P. W. & Peterson, L. A. Covalent Modification of Cytochrome *c* by Reactive Metabolites of Furan. *Chem. Res. Toxicol.* **27**, 129–135 (2014).

- 18. Moro, S. *et al.* Identification and Pathway Mapping of Furan Target Proteins Reveal Mitochondrial Energy Production and Redox Regulation as Critical Targets of Furan Toxicity. *Toxicol. Sci.* **126**, 336–352 (2012).
- 19. Peterson, L. A., Naruko, K. C. & Predecki, D. P. A Reactive Metabolite of Furan, *cis* -2-Butene-1,4-dial, Is Mutagenic in the Ames Assay. *Chem. Res. Toxicol.* **13**, 531–534 (2000).
- 20. Kellert, M., Brink, A., Richter, I., Schlatter, J. & Lutz, W. K. Tests for genotoxicity and mutagenicity of furan and its metabolite cis-2-butene-1,4-dial in L5178Y tk+/– mouse lymphoma cells. *Mutat. Res. Toxicol. Environ. Mutagen.* **657**, 127–132 (2008).
- 21. Moro, S. *et al.* Furan in heat-treated foods: Formation, exposure, toxicity, and aspects of risk assessment. *Mol. Nutr. Food Res.* **56**, 1197–1211 (2012).
- 22. Durling, L., Svensson, K. & Abramssonzetterberg, L. Furan is not genotoxic in the micronucleus assay in vivo or in vitro. *Toxicol. Lett.* **169**, 43–50 (2007).
- 23. Jeffrey, A. M., Brunnemann, K. D., Duan, J.-D., Schlatter, J. & Williams, G. M. Furan induction of DNA cross-linking and strand breaks in turkey fetal liver in comparison to 1,3-propanediol. *Food Chem. Toxicol.* **50**, 675–678 (2012).
- 24. McDaniel, L. P. *et al.* Genotoxicity of furan in Big Blue rats. *Mutat. Res. Toxicol. Environ. Mutagen.* **742**, 72–78 (2012).
- 25. Ding, W. *et al.* In vivo genotoxicity of furan in F344 rats at cancer bioassay doses. *Toxicol. Appl. Pharmacol.* **261**, 164–171 (2012).
- 26. Neuwirth, C. *et al.* Furan carcinogenicity: DNA binding and genotoxicity of furan in rats in vivo. *Mol. Nutr. Food Res.* **56**, 1363–1374 (2012).
- 27. Terrell, A. N. *et al.* Mutagenicity of furan in female Big Blue B6C3F1 mice. *Mutat. Res. Toxicol. Environ. Mutagen.* **770**, 46–54 (2014).
- 28. Mariotti, M. S., Granby, K., Rozowski, J. & Pedreschi, F. Furan: a critical heat induced dietary contaminant. *Food Funct.* **4**, 1001 (2013).
- 29. Ravindranath, V. & Boyd, M. R. Metabolic activation of 2-methylfuran by rat microsomal systems. *Toxicol. Appl. Pharmacol.* **78**, 370–376 (1985).
- 30. Mochalski, P. *et al.* Blood and breath levels of selected volatile organic compounds in healthy volunteers. *The Analyst* **138**, 2134 (2013).
- 31. Perbellini, L., Princivalle, A., Cerpelloni, M., Pasini, F. & Brugnone, F. Comparison of breath, blood and urine concentrations in the biomonitoring of environmental exposure to 1,3-butadiene, 2,5-dimethylfuran, and benzene. *Int. Arch. Occup. Environ. Health* **76**, 461–466 (2003).
- 32. Peterson, L. A. Electrophilic Intermediates Produced by Bioactivation of Furan*. *Drug Metab. Rev.* **38**, 615–626 (2006).
- 33. Lu, D. & Peterson, L. A. Identification of Furan Metabolites Derived from Cysteine– *cis* 2-Butene-1,4-dial–Lysine Cross-Links. *Chem. Res. Toxicol.* **23**, 142–151 (2010).
- Zeiger, E., Anderson, B., Haworth, S., Lawlor, T. & Mortelmans, K. Salmonella mutagenicity tests: V. Results from the testing of 311 chemicals. *Environ. Mol. Mutagen.* 19, 2–141 (1992).
- 35. Couri, D. & Milks, M. Toxicity and metabolism of the neurotoxic hexacarbons n-hexane, 2-hexanone, and 2,5-hexanedione. *Annu. Rev. Pharmacol. Toxicol.* **22**, 145–166 (1982).
- 36. Kovacic, P. & Somanathan, R. Nervous About Developments in Electron Transfer-Reactive Oxygen Species-Oxidative Stress Mechanisms of Neurotoxicity? in *Systems*

Biology of Free Radicals and Antioxidants (ed. Laher, I.) 1925–1944 (Springer Berlin Heidelberg, 2014).

- 37. LoPachin, R. M. & Gavin, T. Toxic neuropathies: Mechanistic insights based on a chemical perspective. *Neurosci. Lett.* (2014). doi:10.1016/j.neulet.2014.08.054
- Wang, K., Zheng, L., Peng, Y., Song, J. & Zheng, J. Selective and Sensitive Platform for Function-Based Screening of Potentially Harmful Furans. *Anal. Chem.* 86, 10755–10762 (2014).
- 39. Iwasaki, K. & Tsuruta, H. Molecular mechanism of hexane neuropathy: Significant differences in pharmacokinetics between 2.3-, 2.4-, and 2.5-hexanedione. *Ind. Health* **22**, 177–187 (1984).
- 40. Kirkland, D. *et al.* Can in vitro mammalian cell genotoxicity test results be used to complement positive results in the Ames test and help predict carcinogenic or in vivo genotoxic activity? I. Reports of individual databases presented at an EURL ECVAM Workshop. *Mutat. Res. Toxicol. Environ. Mutagen.* **775–776**, 55–68 (2014).
- 41. Ellis, P. *et al.* Where will genetic toxicology testing be in 30 years' time? Summary report of the 25th Industrial Genotoxicity Group Meeting, Royal Society of Medicine, London, November 9, 2011. *Mutagenesis* **29**, 73–77 (2014).
- 42. Fowler, P. *et al.* Reduction of misleading ("false") positive results in mammalian cell genotoxicity assays. I. Choice of cell type. *Mutat. Res. Toxicol. Environ. Mutagen.* **742**, 11–25 (2012).
- 43. Wilson, M. P. & Schwarzman, M. R. Toward a New U.S. Chemicals Policy: Rebuilding the Foundation to Advance New Science, Green Chemistry, and Environmental Health. *Environ. Health Perspect.* **117**, 1202–1209 (2009).
- 44. Waters, M. D., Jackson, M. & Lea, I. Characterizing and predicting carcinogenicity and mode of action using conventional and toxicogenomics methods. *Mutat. Res. Mutat. Res.* **705**, 184–200 (2010).
- 45. Chen, M., Zhang, M., Borlak, J. & Tong, W. A Decade of Toxicogenomic Research and Its Contribution to Toxicological Science. *Toxicol. Sci.* **130**, 217–228 (2012).
- 46. Gusenleitner, D. *et al.* Genomic Models of Short-Term Exposure Accurately Predict Long-Term Chemical Carcinogenicity and Identify Putative Mechanisms of Action. *PLoS ONE* **9**, e102579 (2014).
- 47. Browse California Code of Regulations. Available at: https://govt.westlaw.com/calregs/Browse/Home/California/CaliforniaCodeofRegulati ons?guid=I6E0E45C032A411E186A4EF11E7983D17&originationContext=documentto c&transitionType=Default&contextData=(sc.Default). (Accessed: 16th November 2017)
- 48. Fatehullah, A., Tan, S. H. & Barker, N. Organoids as an in vitro model of human development and disease. *Nat. Cell Biol.* **18**, 246–254 (2016).
- 49. Bongartz, R. *et al.* Living Cell Microarrays: An Overview of Concepts. *Microarrays* **5**, 11 (2016).
- 50. Winzeler, E. A. Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. *Science* **285**, 901–906 (1999).
- 51. Giaever, G. *et al.* Functional profiling of the Saccharomyces cerevisiae genome. *Nature* **418**, 387–391 (2002).
- 52. Lee, A. Y. *et al.* Mapping the Cellular Response to Small Molecules Using Chemogenomic Fitness Signatures. *Science* **344**, 208–211 (2014).

- 53. Hoepfner, D. *et al.* High-resolution chemical dissection of a model eukaryote reveals targets, pathways and gene functions. *Microbiol. Res.* **169**, 107–120 (2014).
- 54. North, M. *et al.* Genome-Wide Functional Profiling Identifies Genes and Processes Important for Zinc-Limited Growth of Saccharomyces cerevisiae. *PLoS Genet.* **8**, e1002699 (2012).
- 55. Giaever, G. & Nislow, C. The Yeast Deletion Collection: A Decade of Functional Genomics. *Genetics* **197**, 451–465 (2014).
- 56. Gaytán, B. D. & Vulpe, C. D. Functional toxicology: tools to advance the future of toxicity testing. *Front. Genet.* **5**, (2014).
- 57. Steinmetz, L. M. *et al.* Systematic screen for human disease genes in yeast. *Nat. Genet.* (2002). doi:10.1038/ng929
- 58. McHale, C. M., Smith, M. T. & Zhang, L. Application of toxicogenomic profiling to evaluate effects of benzene and formaldehyde: from yeast to human: Yeast and human toxicogenomic approaches. *Ann. N. Y. Acad. Sci.* **1310**, 74–83 (2014).
- 59. Mahadevan, B. *et al.* Genetic toxicology in the 21st century: Reflections and future directions. *Environ. Mol. Mutagen.* **52**, 339–354 (2011).
- 60. McHale, C. M., Zhang, L., Hubbard, A. E. & Smith, M. T. Toxicogenomic profiling of chemically exposed humans in risk assessment. *Mutat. Res. Mutat. Res.* **705**, 172–183 (2010).
- 61. Li, H.-H., Aubrecht, J. & Fornace, A. J. Toxicogenomics: Overview and potential applications for the study of non-covalent DNA interacting chemicals. *Mutat. Res. Mol. Mech. Mutagen.* **623**, 98–108 (2007).
- 62. Ltd, T. G. Microplate Readers. Available at: https://lifesciences.tecan.com/microplate-readers. (Accessed: 17th November 2017)
- 63. Pierce, S. E., Davis, R. W., Nislow, C. & Giaever, G. Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures. *Nat. Protoc.* **2**, 2958–2974 (2007).
- 64. 95401.H1POOL (yeast deletion pools) Thermo Fisher Scientific. Available at: https://www.thermofisher.com/order/catalog/product/95401.H1POOL. (Accessed: 17th November 2017)
- 65. YeaStar[™] Genomic DNA Kit Bacterial & Fungal DNA Microbial & Environmental DNA Isolation - DNA. Available at: https://www.zymoresearch.com/dna/microbialenvironmental-dna-isolation-1/bacterial-fungal-dna/yeastar-genomic-dna-kit. (Accessed: 17th November 2017)
- 66. Robinson, D. G., Chen, W., Storey, J. D. & Gresham, D. Design and Analysis of Bar-seq Experiments. *G358 GenesGenomesGenetics* **4**, 11–18 (2014).
- 67. Platinum PCR SuperMix High Fidelity Thermo Fisher Scientific. Available at: https://www.thermofisher.com/order/catalog/product/12532016. (Accessed: 18th November 2017)
- 68. Jo, W. J. *et al.* Comparative Functional Genomic Analysis Identifies Distinct and Overlapping Sets of Genes Required for Resistance to Monomethylarsonous Acid (MMAIII) and Arsenite (AsIII) in Yeast. *Toxicol. Sci.* **111**, 424–436 (2009).
- 69. Robinson, M. D., Grigull, J., Mohammad, N. & Hughes, T. R. FunSpec: a web-based cluster interpreter for yeast. *BMC Bioinformatics* **3**, 35 (2002).
- 70. AmiGO 2: Welcome. Available at: http://amigo.geneontology.org/amigo/landing. (Accessed: 20th November 2017)

- 71. Saccharomyces Genome Database | SGD. Available at: https://www.yeastgenome.org/. (Accessed: 20th November 2017)
- 72. Abolaji, A. O. *et al.* Exposure to 2,5-hexanedione is accompanied by ovarian and uterine oxidative stress and disruption of endocrine balance in rats. *Drug Chem. Toxicol.* **38**, 400–407 (2015).
- 73. Stanford, D. R. *et al.* Division of Labor Among the Yeast Sol Proteins Implicated in tRNA Nuclear Export and Carbohydrate Metabolism. *Genetics* **168**, 117–127 (2004).
- 74. Rape, M. *et al.* Mobilization of Processed, Membrane-Tethered SPT23 Transcription Factor by CDC48UFD1/NPL4, a Ubiquitin-Selective Chaperone. *Cell* **107**, 667–677 (2001).
- 75. Torres, E. M. *et al.* Identification of Aneuploidy-Tolerating Mutations. *Cell* **143**, 71–83 (2010).
- 76. Kim, H. J., Ishidou, E., Kitagawa, E., Momose, Y. & Iwahashi, H. A Yeast DNA Microarray for the Evaluation of Toxicity in Environmental Water Containing Burned Ash. *Environ. Monit. Assess.* **92**, 253–272 (2004).
- 77. Omnus, D. J. & Ljungdahl, P. O. Latency of transcription factor Stp1 depends on a modular regulatory motif that functions as cytoplasmic retention determinant and nuclear degron. *Mol. Biol. Cell* **25**, 3823–3833 (2014).
- 78. Schmidt, A., Hall, M. N. & Koller, A. Two FK506 resistance-conferring genes in Saccharomyces cerevisiae, TAT1 and TAT2, encode amino acid permeases mediating tyrosine and tryptophan uptake. *Mol. Cell. Biol.* **14**, 6597–6606 (1994).
- 79. Wang, K., Li, W., Chen, J., Peng, Y. & Zheng, J. Detection of cysteine- and lysine-based protein adductions by reactive metabolites of 2,5-dimethylfuran. *Anal. Chim. Acta* **896**, 93–101 (2015).
- 80. Brito, I., Monje-Casas, F. & Amon, A. The Lrs4-Csm1 monopolin complex associates with kinetochores during anaphase and is required for accurate chromosome segregation. *Cell Cycle* **9**, 3611–3618 (2010).
- 81. Cadet, J. & Davies, K. J. A. Oxidative DNA damage & repair: An introduction. *Free Radic. Biol. Med.* **107**, 2–12 (2017).
- 82. Allam, W. R., Ashour, M. E., Waly, A. A. & El-Khamisy, S. Role of Protein Linked DNA Breaks in Cancer. in *Personalised Medicine* 41–58 (Springer, Cham, 2017). doi:10.1007/978-3-319-60733-7_3
- 83. Tsutsui, Y., Morishita, T., Iwasaki, H., Toh, H. & Shinagawa, H. A Recombination Repair Gene of Schizosaccharomyces pombe, rhp57, Is a Functional Homolog of the Saccharomyces cerevisiae RAD57 Gene and Is Phylogenetically Related to the Human XRCC3 Gene. *Genetics* **154**, 1451–1461 (2000).
- 84. Morris, L. P. *et al.* Saccharomyces cerevisiae Apn1 mutation affecting stable protein expression mimics catalytic activity impairment: Implications for assessing DNA repair capacity in humans. *DNA Repair* **11**, 753–765 (2012).
- 85. Lee, J. *et al.* Yap1 and Skn7 Control Two Specialized Oxidative Stress Response Regulons in Yeast. *J. Biol. Chem.* **274**, 16040–16046 (1999).
- 86. Apel, K. & Hirt, H. REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. *Annu. Rev. Plant Biol.* **55**, 373–399 (2004).
- 87. Yan, C., Lee, L. H. & Davis, L. I. Crm1p mediates regulated nuclear export of a yeast AP-1like transcription factor. *EMBO J.* **17**, 7416–7429 (1998).

- 88. Herrero, E., Ros, J., Bellí, G. & Cabiscol, E. Redox control and oxidative stress in yeast cells. *Biochim. Biophys. Acta BBA Gen. Subj.* **1780**, 1217–1235 (2008).
- 89. McIntyre, J. & Woodgate, R. Regulation of translesion DNA synthesis: Posttranslational modification of lysine residues in key proteins. *DNA Repair* (2015). doi:10.1016/j.dnarep.2015.02.011
- 90. Zhao, J., Zhang, R., Misawa, K. & Shibuya, K. Experimental product study of the OHinitiated oxidation of m-xylene. *J. Photochem. Photobiol. Chem.* **176**, 199–207 (2005).
- 91. Gaigg, B. *et al.* Depletion of Acyl-Coenzyme A-Binding Protein Affects Sphingolipid Synthesis and Causes Vesicle Accumulation and Membrane Defects inSaccharomyces cerevisiae. *Mol. Biol. Cell* **12**, 1147–1160 (2001).
- 92. Sutherland, F. C. *et al.* Characteristics of Fps1-dependent and -independent glycerol transport in Saccharomyces cerevisiae. *J. Bacteriol.* **179**, 7790–7795 (1997).
- 93. Toh, T.-H. *et al.* Implications of FPS1 deletion and membrane ergosterol content for glycerol efflux from Saccharomyces cerevisiae. *FEMS Yeast Res.* **1**, 205–211 (2001).
- 94. Lis, E. T. & Romesberg, F. E. Role of Doa1 in the Saccharomyces cerevisiae DNA Damage Response. *Mol. Cell. Biol.* **26**, 4122–4133 (2006).
- 95. Willingham, S., Outeiro, T. F., DeVit, M. J., Lindquist, S. L. & Muchowski, P. J. Yeast Genes That Enhance the Toxicity of a Mutant Huntingtin Fragment or α-Synuclein. *Science* **302**, 1769–1772 (2003).
- 96. Yun, C.-W., Tiedeman, J. S., Moore, R. E. & Philpott, C. C. Siderophore-Iron Uptake in Saccharomyces cerevisiae IDENTIFICATION OF FERRICHROME AND FUSARININE TRANSPORTERS. *J. Biol. Chem.* **275**, 16354–16359 (2000).
- 97. Samanfar, B. *et al.* A global investigation of gene deletion strains that affect premature stop codon bypass in yeast, Saccharomyces cerevisiae. *Mol. Biosyst.* **10**, 916–924 (2014).
- 98. Choudhary, V. & Schneiter, R. Pathogen-Related Yeast (PRY) proteins and members of the CAP superfamily are secreted sterol-binding proteins. *Proc. Natl. Acad. Sci.* **109**, 16882–16887 (2012).
- 99. Smith, R. D. & Lupashin, V. V. Role of the conserved oligomeric Golgi (COG) complex in protein glycosylation. *Carbohydr. Res.* **343**, 2024–2031 (2008).
- 100. Climer, L. K., Hendrix, R. D. & Lupashin, V. V. Conserved Oligomeric Golgi and Neuronal Vesicular Trafficking. in *SpringerLink* 1–21 (Springer, Berlin, Heidelberg, 2017). doi:10.1007/164_2017_65
- 101. Bugnicourt, A., Mari, M., Reggiori, F., Haguenauer-Tsapis, R. & Galan, J.-M. Irs4p and Tax4p: Two Redundant EH Domain Proteins Involved in Autophagy. *Traffic* 9, 755–769 (2008).
- 102. Lynch-Day, M. A. *et al.* Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. *Proc. Natl. Acad. Sci.* **107**, 7811–7816 (2010).
- 103. Lynch-Day, M. A. & Klionsky, D. J. The Cvt pathway as a model for selective autophagy. *FEBS Lett.* **584**, 1359–1366 (2010).
- 104. Kim, D. & Hahn, J.-S. Roles of Yap1 transcription factor and antioxidants in yeast tolerance to furfural and 5-hydroxymetylfurfural that function as thiol-reactive electrophiles generating oxidative stress. *Appl. Environ. Microbiol.* AEM.00643-13 (2013). doi:10.1128/AEM.00643-13

- 105. Parnell, E. J. *et al.* The Rts1 Regulatory Subunit of PP2A Phosphatase Controls Expression of the HO Endonuclease via Localization of the Ace2 Transcription Factor. *J. Biol. Chem.* **289**, 35431–35437 (2014).
- 106. Heiman, M. G. & Walter, P. Prm1p, a Pheromone-Regulated Multispanning Membrane Protein, Facilitates Plasma Membrane Fusion during Yeast Mating. *J. Cell Biol.* **151**, 719–730 (2000).
- 107. Oh, C.-S., Toke, D. A., Mandala, S. & Martin, C. E. ELO2 and ELO3, Homologues of theSaccharomyces cerevisiae ELO1 Gene, Function in Fatty Acid Elongation and Are Required for Sphingolipid Formation. *J. Biol. Chem.* **272**, 17376–17384 (1997).
- 108. Huang, M., Zhou, Z. & Elledge, S. J. The DNA Replication and Damage Checkpoint Pathways Induce Transcription by Inhibition of the Crt1 Repressor. *Cell* **94**, 595–605 (1998).
- 109. Zhang, Z. & Reese, J. C. Redundant Mechanisms Are Used by Ssn6-Tup1 in Repressing Chromosomal Gene Transcription in Saccharomyces cerevisiae. *J. Biol. Chem.* **279**, 39240–39250 (2004).
- 110. Robinson, J. S., Klionsky, D. J., Banta, L. M. & Emr, S. D. Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. *Mol. Cell. Biol.* **8**, 4936–4948 (1988).
- 111. Anand, V. C., Daboussi, L., Lorenz, T. C. & Payne, G. S. Genome-wide Analysis of AP-3– dependent Protein Transport in Yeast. *Mol. Biol. Cell* **20**, 1592–1604 (2009).
- 112. Morvan, J., Rinaldi, B. & Friant, S. Pkh1/2-dependent phosphorylation of Vps27 regulates ESCRT-I recruitment to endosomes. *Mol. Biol. Cell* **23**, 4054–4064 (2012).
- 113. Thorsen, M. *et al.* Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae. *BMC Genomics* **10**, 105 (2009).
- 114. Perrone, G. G., Grant, C. M. & Dawes, I. W. Genetic and Environmental Factors Influencing Glutathione Homeostasis in Saccharomyces cerevisiae. *Mol. Biol. Cell* **16**, 218–230 (2005).
- 115. Hidalgo, F. J., Alcón, E. & Zamora, R. Reactive Carbonyl-Scavenging Ability of 2-Aminoimidazoles: 2-Amino-1-methylbenzimidazole and 2-Amino-1-methyl-6phenylimidazo[4,5-b]pyridine (PhIP). *J. Agric. Food Chem.* **62**, 12045–12051 (2014).
- 116. Long, E. K. & Picklo, M. J. Trans-4-hydroxy-2-hexenal, a product of n-3 fatty acid peroxidation: Make some room HNE.... *Free Radic. Biol. Med.* **49**, 1–8 (2010).
- 117. Kasai, H. & Kawai, K. 4-Oxo-2-hexenal, a mutagen formed by ω-3 fat peroxidation: Occurrence, detection and adduct formation. *Mutat. Res. Mutat. Res.* **659**, 56–59 (2008).
- 118. Grasse, L. D., Lamé, M. W. & Segall, H. J. In vivo covalent binding of trans-4-hydroxy-2-hexenal to rat liver macromolecules. *Toxicol. Lett.* **29**, 43–49 (1985).
- 119. Dinter, A. & Berger, E. G. Golgi-disturbing agents. *Histochem. Cell Biol.* **109**, 571–590 (1998).
- 120. Oka, T. & Krieger, M. Multi-Component Protein Complexes and Golgi Membrane Trafficking. *J. Biochem. (Tokyo)* **137**, 109–114 (2005).
- 121. Losev, E. *et al.* Golgi maturation visualized in living yeast. *Nature* **441**, 1002 (2006).
- 122. Nguyen, T. T. M., Iwaki, A., Ohya, Y. & Izawa, S. Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae. *J. Biosci. Bioeng.* **117**, 33–38 (2014).
- 123. Witz, G. Biological interactions of α ,β-unsaturated aldehydes. *Free Radic. Biol. Med.* **7**, 333–349 (1989).

124. Birrell, G. W. *et al.* Transcriptional response of Saccharomyces cerevisiae to DNAdamaging agents does not identify the genes that protect against these agents. *Proc. Natl. Acad. Sci.* **99**, 8778–8783 (2002).

Chapter 4

Using CRISPR To Enhance The Metabolic Capacity Of Cell Lines Commonly Used In High Throughput Screening

Adoption of High-Throughput Methods For Regulatory Use

Regulatory agencies both in the US and abroad have been shifting to High Throughput Screening (HTS) strategies for chemical evaluation over the last few decades¹⁻⁶ to both accelerate the pace of and reduce the cost of hazard testing for industrial chemicals. From large-scale international regulatory schema such as the European Union's Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH)⁷ program, to the recent amendments to the United States Toxic Substances Control Act (the 2016 Frank R. Lautenberg Chemical Safety for the 21st Century Act)⁸, regulations banning the use of animal testing under certain circumstances (as is the case of REACH) or encouraging the use of in vitro and alternative methods (both REACH and the Lautenberg Act) have provided the statutory impetus for regulatory bodies to more fully embrace HTS. This is not to say that regulators haven't recognized the power and necessity of HTS for some time: the National Research Council's landmark 2007 report *Toxicity Testing in the* 21st Century: A Vision and a Strategy⁹ spawned the massive Tox21¹⁰ and ToxCast¹¹ initiatives led by the US Environmental Protection Agency within years of its publication. These programs, as well as the more narrowly-focused Endocrine Disruptor Screening Program (EDSP)^{6,12} represent a fundamental paradigm shift in the field of toxicology from being reactive to being proactive. This shift was made possible through the marriage of *in vitro* testing strategies based around intellectual advancements in molecular toxicology with the substantial technological groundwork laid by the pharmaceutical industry over the last two decades.

Since the technology boom began in the 1990s, pharmaceutical companies had been developing tools that combined automation, microfluidics, multi-well plates, and in vitro assays to identify drug candidate compounds and generate safety data; the commercialization of these high-throughput systems lead to their adaption – and eventually, adoption – for the purpose of screening industrial chemicals. Drug companies also pushed for the acceptance of many *in vitro* tests for regulatory purposes by submitting so much *in vitro* assay data to various regulatory agencies in the late 90s that the FDA was prompted to issue standardized guidance for *in vitro* safety data¹³. Recognizing the potential opportunities of these new technologies and the breakneck pace at which the field of molecular biology was advancing, in 2004, the NIH established dozens of programs and spent billions of dollars on its' Roadmap initiatives, many of which offered awards for the development of HTS and *in vitro* testing methodologies^{14,15}. In 2005, the Government Accounting Office estimated the number of chemicals in US commerce listed on the TSCA inventory to be around 82,000, a sobering figure which prompted researchers and regulators to emphasize the development of test methods to prioritize chemicals for additional testing¹⁶. (The TSCA inventory lists roughly 85,000 as of this writing¹⁷) The 2007 NRC report correctly recognized HTS as not only the most effective strategy for prioritizing and assessing industrial chemicals, but also the only practical means of doing so. Hence, the ToxCast program prioritized an initial list of about 10,000 "Antimicrobials, [*sic*] pesticidal inerts, high production volume (HPV: > 1 million lbs/year) chemicals, inventory update rule (> 10,000 lbs/year, < 1 million lbs/year) chemicals, and drinking water contaminant candidate list chemicals,"¹⁶ which lack extensive toxicological data to be run through a battery of high-throughput *in vitro* assays.

As of this writing, slightly fewer than half of the 10,000 chemicals prioritized by ToxCast have been run through the program's HTS battery, but even these data have generated myriad and various analyses^{11,5,18,19,12,6,20}. Over the course of the programs' existence, the number and type of ToxCast assays has shifted²¹, but the HTS battery has yet to effectively incorporate the metabolism of test compounds as an aspect of chemical toxicity.

Relevance Of in vitro Hepatic Models To High-Throughput Screens

Immortalized cell lines, useful though they may be for many biological applications, are noted to have wildly different, and in most cases, deficient, levels of Phase I and Phase II metabolic enzymes^{22–24}. Depending on the application and the *in vitro* assay one wishes to perform, this may not present a significant barrier, but in the case of HTS toxicity testing, the problem is grave indeed. The liver is the primary metabolic organ and is principally responsible for detoxification of xenobiotic compounds, so any *in vitro* liver system unable to facilitate biotransformation or detoxification of test compounds is liable to either over- or under-estimate the potency of a compound for a given endpoint²⁴. A myriad of possible solutions to this problem have been explored, and there are some very promising *in vitro* liver assay technologies under development. However, existing liver cell lines and *in vitro* liver systems are inadequate solutions for HTS either due to insufficient metabolic capacity or due to practical limitations.

An excellent review *in vitro* liver technologies is provided by Soldatow et al.²⁵, but a brief overview of historical and contemporary systems and their applicability to HTS is provided here.

Liver slices are perhaps the oldest, most metabolically-relevant, and most straightforward *in vitro* liver model, but due to their cost and complexity they are also the lowest throughput and least common.²⁵ Primary liver cells harvested from donors provide the most physiologically-relevant metabolic and toxicity data for *in vitro* experiments. However, primary liver cells are not only infeasible due to the logistical challenges of obtaining them in large quantity, there are also questions of generalizability of the results due to inter-individual variability in enzyme expression.²⁶ Further, unlike the liver slice model, primary liver cells lose the liver metabolic phenotype within 24-48 hours of extraction, expressing significantly fewer Phase I and Phase II enzymes, diminishing their predictive power for drugs, industrial chemicals, and environmental contaminants²⁷.

A growing variety of *in vitro* techniques have been developed in an attempt to recapitulate the spatial environments that hepatocytes experience in the body, as there is ample research that mechanical forces and spatial orientation can affect the phenotype of cultured hepatocytes²⁶. Substrates such as murine sarcoma extract and human collagen have been used to provide a three-dimensional (3-D) matrix for cultured hepatocytes, but are both recognized as being of limited use in hepatocyte cell culture at scale, albeit for different reasons: the former, being of animal tumor origin and immunogenic, the latter having physicochemical properties that limit its utility²⁸. Sandwich cultures, which are *in vitro* configurations wherein a layer of hepatocytes is cultured between two layers of collagen, help cultured hepatocytes maintain their polarity and many phenotypic features, including metabolism²⁸⁻³⁰. However, sandwich cultures are costly, low-throughput, and eventually lose metabolic parity with primary cells²⁵.

Spheroid and 3-D cultures capitalize on our growing understanding of the importance of cellular microenvironments for the regulation of cell metabolism and homeostasis. Through these techniques, researchers have demonstrated improved metabolic competence of cultured cells, but the resources required to produce the culture render them impractical as part of an HTS strategy. Related technologies such as organs-on-a-chip and liver organoid cultures similarly employ 3-D culture techniques as well as microfluidics and nanofabricated substrates to restore "primary-like" metabolic capacity, but these, too, are not (as of this writing) suitably scalable or cost-effective for HTS.

Metabolic Competence In Hepatoma Cell Lines

The HepaRG and HepG2 cell lines are two of the commonest hepatoma cell lines, each seeing broad use across a range of biomedical applications. But while both cell lines demonstrate expression of some Phase I and Phase II detoxification enzymes, neither achieves expression levels approaching those of primary cells.

The USEPA considers the HepG2 cell line "metabolically competent" for the purposes of HTS studies, even though HepG2 cells are notably deficient in key the phase I and Phase II metabolic enzymes compared to fresh hepatocytes^{31,32}. HepaRG cells have been shown to be more sensitive to model hepatotoxicants and have more "primary-like" expression levels for xenobiotic metabolism enzymes, but they are more sensitive to culture conditions and are much more time-consuming to work with than HepG2, requiring weeks of DMSO treatment before they differentiate towards a hepatocyte phenotype^{24,33}.

While some of *in vitro* liver technologies described thus far may eventually prove scalable to the point of adoption for HTS, cost and logistical considerations for the present regulatory environment necessitate a solution using a metabolically active immortalized cell line. Aside from treating HepaRG cells with DMSO for extended periods of time and growing them in the aforementioned 3D systems, other, more traditional molecular biology techniques have been used to induce Phase I and/or Phase II metabolic enzymes in hepatoma cell lines, primarily those in the

cytochrome P450 (CYP) family of monooxygenases. Adenoviral^{34,35} and SV40 transfection vectors^{36,37} with CYP-containing plasmids, *piggyBac* transposition and monoclonal expansion³⁸, and simple transformation protocols using cloned human CYP cDNA³⁹ have all been used with varying success to coax hepatoma cell lines to express more Phase I enzymes. Unfortunately, these techniques tend to be labor-intensive, limited to the activation of one or a handful of genes, and when successful, generally lead to constitutive massive overexpression of the genes in question, limiting their utility for screening purposes.

Ultimately, these technologies do not constitute a holistic solution to the problem, and therefore, many research groups have approached this challenge of metabolic insufficiency in cultured hepatocytes using a range of tactics, from simple adjuvant treatments to total cell reprogramming. Classic inducers of metabolic enzymes in HepG2 cells include beta-naphthophenone, phenobarbital, and rifampicin⁴⁰, but concerns about how their mechanisms of action might confound toxicity tests have limited their use in regulatory and HTS contexts. Fully differentiated hepatocytes expressing near-physiological levels of CYPs, UGTs, and other nuclear receptors have been derived from iPSCs⁴¹. Mitani et al⁴² recently demonstrated that modulation of the Wnt pathway allowed them to generate iPSC hepatocytes with zone-specific phenotypes. Though promising, these methods are still decidedly low throughput due to cost and effort, and the challenge of maintaining consistent enzyme levels across differentiated cultures remains^{25,43}. Other groups have explored the relationships of between induction nuclear receptors CAR, PXR, RXR, VDR, FXR, LXR and PPAR and the activation of CYPs. The result of this work is a model wherein agonists or antagonists could be specific compounds in nuclear receptor signaling pathways to induce CYP expression without producing as many off-target effects as existing adjuvants^{44,45}. Epigenetic factors such as methylation content have been shown to affect profoundly affect CYP expression⁴⁶, and there is evidence that treatment with demethylating agents such as 5-azacytidine can significantly enhance expression in cultured hepatocytes⁴⁷. Our work aims to build on these myriad strategies and adopt the aspects of each which are most effective so as to develop a cheap, scalable, minimally-invasive method for enhancing CYP expression in cultured hepatocytes.

CRISPRa as a Strategy to Improve Metabolic Competence in Cell Lines

CRISPR is a powerful gene-editing tool responsible for the current renaissance in cell biology, with a sprawling range of applications, many of which are still being discovered. We have adapted the technology to tackle the problem of metabolic competence in HTS *in vitro* testing and develop a minimally-invasive protocol for improving CYP expression using the tandem catalytically-deactivated Cas9 enzyme and transcriptional activator system described in Konerman et al (2014)⁴⁸. This system, called CRISPR activation system (CRISPRa) takes advantage of the Cas9 enzyme's potent targeting ability to bind the promoter sequences of various genes for xenobiotic-metabolizing enzymes in the CYP and UGT families. Three components are used to activate the genes: a Cas9 enzyme (dCas9-VP64-Blast, or dCas9) modified to retain its sequence-specific binding capabilities but lack DNA

cleaving functionality, a synergistic activation mediator (hereafter called "SAM," MS2-P65-HSF1-Hygro) and guide RNA (sgRNA or "activation guides") specific to the promoter region of any gene one wishes to activate. Plasmids containing the sequences for the dCas9 and the SAM complex are available from Addgene, and any cloning lab can make sgRNA plasmids quickly and cheaply. A simple transfection with these three components produces transient activation of the gene or genes specified by the sgRNA, with activation peaking at about 48 hours.

In the initial paper, this method was used to activate up to 12 genes simultaneously, raising exciting possibilities for restoring metabolic competence to cell lines. While this discussion primarily concerns the expression of CYPs in hepatocytes, CRISPRa technology, once optimized, could be used to generate metabolic "mimics" of other tissue types, expanding the range of *in vitro* applications. Since this method requires only a single transfection step that could easily be incorporated into existing HTS with no additional requirement for inducers or adjuvants, it is an appealing strategy for improving the efficacy of HTS data gathering by inducing more "primary-like" metabolism.

We chose target enzymes for activation in our pilot study based on literature evidence for their role in xenobiotic metabolism and selected CYP1A1/1A2 (these enzymes have a bidirectional promoter, so induction of one or the other is somewhat trivial, given their closely related functions⁴⁹), CYP3A4, CYP2E1, CYP2B6, and UGT1A6 given the importance of these enzymes for Phase I and Phase II transformations in the liver ^{50–52}. Our initial experiments focused on HepG2 cells, but we found that these cells were not as responsive to transfection as desired, so we continued our work in HEK293T cells and used these experiments to optimize our transfection strategy and to probe mechanisms of CYP regulation in cultured cells.

Materials and Methods

Designing the CRISPRa component plasmids

Plasmids containing the CRISPRa components were acquired through two sources: Addgene and the Berkeley q3 macrolab. The dCas9-VP64 (addegene# 61425) and MS2-P65-HSF1 activator helper complex (Addgene# 61426) were purchased from Addgene, while the guide RNA plasmid was generated by the macrolab by cloning the promoter target sequence for the gene of interest into a lenti sgRNA(MS2)_zeo backbone (Addgene#61427). Promoter target sequences were generated using the Cas9 Activator tool created by the Zhang Lab^{48,53}. Three sgRNA sequences were generated for each gene of interest and tested individually by RT-qPCR to identify the most effective sgRNA for gene activation. Activation was measured

Generation of CRISPRa component plasmids

Each guide was cloned individually in the lenti sgRNA(MS2)_zeocin plasmid (Addgene# 61427) using the Golden-Gate sgRNA method described in detail in Konermann S et al. 2014.⁴⁸ After selection, bacteria were cultured flasks of liquid

LB-Amp and on LB-Amp agar plates. Maxi Preps of plasmid were made from bacteria cultured in flasks of liquid LB-AMP using Qiagen Plasmid kits⁵⁴.

Production of transiently transfected HEK293T cells

HEK293T cells were maintained in Dulbecco's Modified Eagle Medium (DMEM) with 10% FBS and 1% Penicillin/Streptomycin. The day before transfection, cells were trypsinized and counted. Cells were seeded in a 24-well at 1.25×105 cells per well in 0.5 ml of complete growth medium. Cell density was 50-80% confluent on the day of transfection. Using a 24-well plate, 0.5 µg of dCas9 plasmid, 0.5 µg of SAM plasmid, and up to 0.5 µg of sgRNA plasmid, not exceeding a total of 1.5 µg per well for a 24-well plate, was added to a volume of Optimem equal to 50 µL for each well to be transfected. This mixture and additional reagents were prepared as directed by the Lipofectamine 3000 kit (Thermofisher Cat. L3000015). Cells were then incubated at 37 C in a CO2 incubator.

Production of stably transfected HEK293T cells

Stable HEK293T cells for the SAM component were generated by lentiviral transduction. Lentiviruses were produced for each of the SAM components and packaged by co-transfecting using lipofectamine 3000 and each of the following lentiviral plasmids: Addegene# 61425 (dCas9-VP64), Addgene# 61426 (MS2-P65-HSF1 activator helper complex), or guide RNA plasmid (Addegene# 61427 harboring a cloned CYP activation sgRNA), with the psPAX2 packaging and pMD2.G envelope plasmids. The day after the transfection, the cell culture medium was replaced with fresh medium (DMEM, 10% FBS). After 48H of culture, the medium (containing the lentivirus) was collected, filtered using 0.45 µM sterile syringe filters. The 293T cells were seeded in 6-well plates and infected with 250 µl of the lentiviral solution in the presence of 8µg/ml polybrene to enhance the infection rate. After 24H, the media was changed and the cells were allowed to grow for another 24H before starting the selection against the appropriate antibiotics. HEK293T cells were transduced either with dCas9-VP64 alone to generate 293T-Cas9-VP64 (blasticidin selection) or with both dCas9-VP64 and MS2-P65-HSF1 lentiviruses (blasticidin and hygromycin B selection) to generate 293T-SAM. To generate 293T-CYP3A5/1A1/3A4-SAM cells, 293T cells were co-transduced with the two previous components and with lentiviruses for three different CYP3A5 activation guides (blasticin, hygromycin B, and zeocin selection). The cells were then transduced as described above with CY3A4 and CY1A1 lentiviruses (for all guides gRNA).

Gene expression by real-time PCR:

Gene expression was determined at 48 hours post-transfection using RT-qPCR. RNA was extracted from cells using Qiagen RNeasy Mini Kit (Cat No./ID: 74104) using manufacturer's instructions. RNA was quantified on Infinite 200 NanoQuant plate reader (Tecan). cDNA was obtained using a Bio-Rad T100 Thermal Cycler and iScript[™] Reverse Transcription Supermix kit (Bio-Rad 1708841) with 1 µg of RNA per sample (volume varied by sample, due to different volumes of RNA extracted), 4µL of iScript RT Supermix and enough water to reach 20µL per reaction. Following the manufacturer's instructions, reactions were run at 5 minutes at 25°C, 20

minutes at 46°C, and 1 minute at 95°C. Using the generated cDNA, we ran qPCR experiments on a Bio-Rad CFX Connect Real-Time System using SsoFast[™] EvaGreen® Supermix (Bio-Rad 1725201). Each reaction consisted of 10µL of Ssofast EvagGreen supermix, 0.1µL forward primer, 0.1µL reverese primer, 2µL cDNA, and 7.8µL DNase-free water and was run for 35 cycles. The program initialized for 30 seconds at 95°C and each cycle had the following steps: 5 seconds at 98°C and 5 seconds at 65°C. Expression data was normalized ($\Delta\Delta$ Cq) to RPL19, and we compared the fold expression of enzyme transcripts against no treatment controls and controls receiving Cas9 and SAM components but no sgRNA plasmids. Initial testing of the sgRNA plasmids used three sgRNA sequence variants and the plasmid with the sequence that generated the highest expression level as measured by RT-qPCR was used for subsequent transfection experiments.

Generation of stable 293T cells for the SAM components

Stable 293T cells for the SAM component were generated by lentiviral transduction. Lentiviruses were produced for each of the SAM components: they were packaged by co-transfecting each of the following lentiviral plasmids: Addegene# 61425 (dCas9-VP64), Addgene# 61426 (MS2-P65-HSF1 activator helper complex), or guide RNA plasmid (addegene#61427 harboring a cloned CYP activation gRNA), with the psPAX2 packaging and pMD2.G envelope plasmids.

Cytotoxicity Assay

Ten 25cc flasks with 4 mL DMEM containing 1x10^6 HEK293T cells, where N is the number of conditions to be evaluated in the cytotoxicity assay, transfect each flask using the "6-well plate" parameters as outlined in the manufacturer's instructions for Lipofectamine 3000 kit (Thermofisher Cat. L3000015). Briefly: 800 ng of dCas9, SAM, and sgRNA plasmids are added to 10µL P3000 Reagent and 250µL of Optim-MEM. To this mixture, 250µL Optim-MEM and 11.25µL Lipofectamine was added, and the larger mixture was allowed to incubate for 15 minutes. After 15 minutes. 500µL of the Lipofectamine/DNA/Optim-MEM mixture was added to a well in the 6well plate. In the 6-well plate, one well received no transfection (No-treatment control), one well received only the dCas9 and SAM plasmids (SAM control), and one well each received dCas9, SAM, and an sgRNA plasmid for CYP1A2, CYP2E1, or CYP3A4. After each transfection, the plate was agitated gently by hand and then placed in the cell culture incubator. 24 hours after transfection, cells from each well were trypsinized and seeded into separate 384-well plates at 3500 cells/25 µL of fresh DMEM per well, cells were allowed to settle for 24 hours. DMEM negative control media was prepared with 1% DMSO (2X dosing concentration). Test chemicals were prepared at 2X dosing concentrations of 500 µM, 250 µM, 125 µM, μ M, 15.625 μ M, 7.81 μ M, and 3.90 μ M. Test chemicals: 62.5 μM, 31.25 Benzo[a]pyrene (CAS #: 50-32-8), Aflatoxin B1 (CAS # 1162-65-8), Cyclophosphamide monohydrate (CAS #: 6055-19-2), 2-naphthylamine (CAS #: 91-51-8), Acrylamide (CAS #: 79-06-1), Doxorubicin hydrochloride (CAS #: 25316-40-9), 6-aminochyrsene (CAS #: 2642-98-0), Methoxypsoralen (CAS #: 298-81-7), and 4-nitrophenol (CAS #: 100-02-7). Negative control wells and background wells were dosed with 25 μ L DMEM control media with 1% DMSO (final DMSO concentration: 0.5%; 5 replicates per control). Treatment wells were dosed with 25 μ L of appropriate 2X chemical dose in triplicates (final dosing concentrations of 250 μ M, 125 μ M, 62.5 μ M, 31.25 μ M, 15.625 μ M, 7.81 μ M, and 3.90 μ M, and 1.95 μ M). After dosing, plates were incubated at 37°C/5% CO₂ for 24 hours. After 24 hours, cells were removed from incubator and allowed to equilibrate to room temperature for 30 minutes. 40 μ L of CellTiter-Glo (Promega) was added to each well (~1:1 ratio with media) and mixed by shaking. The plate was incubated at room temperature for ~15 minutes. Luminescence was recorded on a BioTek Synergy H1 Hybrid Reader. The cell viability was expressed as percentage of the control (DMSO vehicle control).

Results

HepG2 was an obvious choice for using CRISPRa, since it is a hepatic cell line, and the aim was to improve metabolic competence in HTS cell lines. However, this cell line has not been known to be easily transfected, and we have confirmed that here. As indicated in Figure 1, we were unable to induce expression of CYPs beyond the cell line's meager background levels, which are significantly lower than in the liver standard. We therefore used HEK293T because it is readily transfected and is known to effectively express transfected CYP proteins (Figures 2 and 3)^{55,56}. As recommended in Konermann et al 2014⁴⁸ and in general in the CRISPR literature, we tested several variants of the sgRNA sequences to identify the most effective guides for transfection. Not all the sgRNA variants we tested were equally effective for inducing CYPs and for the CYP2B6 and UGT1A6, two rounds of sgRNA design were necessary before functional guides were identified (Figure 2A, Figure 3).

Unfortunately, we observed that we were not able to achieve expression on par with the liver standard, even in the HEK293T cell line, so we took the aim of exploring methods to enhance CYP expression in our system. To do this, we focused on the CYP3A4 construct that produced the greatest induction of CYP3A4 mRNA transcripts in HEK293T cells (Figure 2A). We observed improved expression efficiency for CYP3A4 when we co-transfected with sgRNA for CYP1A2, CYP3A4, and CYP2E1 simultaneously, versus CYP3A4 alone (Figure 4).

Since each CRISPRa transfection required transfection with plasmids for at least three different components: the dCas9 enzyme, the SAM complex, and the sgRNA for the gene of interest, we created a cell line that stably expressed the dCas9 and SAM protein products so that we would only need to transfect with the sgRNA of interest. This would both save effort in future experiments and had the potential to improve expression in our cell lines. We created the HEK-SAM cell line through lentiviral transduction and were able to successfully induce transfection with sgRNA plasmids alone (Figure 5). However, this system did not produce improved mRNA expression as we hoped. This could be the result of a poor integration location or low expression of the dCas9 and SAM components.

Regulation of CYP450s occurs at multiple layers and there are many co-regulatory proteins that are involved in the expression of these Phase I enzymes. We selected a handful of these co-regulators in an attempt to stimulate production of important proteins the CYP3A4 regulatory pathway: FOXA3, SREBF, CEBPA, HNF1A, PXR, HNF4A, and PPAR γ^{57-62} to determine if up-regulating one of these factors would improve CYP3A4 expression. (Figures 6-8) We also included in our experiments a single treatment condition wherein we transfected HEK293T cells with sgRNA guides for CYP3A4, the CRISPRa components (in the HEK293T cell line, HEK-SAM cells only received CYP3A4 plasmid) and each of the different regulatory proteins. This condition was referred to as the "Big Mix" condition due to its myriad contents (Figures 6 and 7). We did not observe meaningful up-regulation of CYP3A4 expression in any of these treatment conditions, for either the HEK293T cells or the HEK-SAM cell line. Among the regulators we transfected the cells with, only HNF4A demonstrated increased expression (Figure 8), and this was only in the HEK293T cell line. It is not clear whether this is the result of poor sgRNA targeting or if additional regulatory mechanisms are involved. In the initial Konermann paper, the researchers activated up to twelve genes simultaneously with this method of gene activation⁴⁸, so we do not believe that the poor expression is the result of overwhelming the cells with transfection material.

Since DMSO co-treatment is vital to the successful induction of Phase I and Phase II enzymes in HepaRG cells³³, we co-treated HEK293T cells with DMSO and transfected them with CRISPRa and sgRNA for CYP3A4. The results of this experiment (Figures 9 and 10) indicated no improved expression for CYP3A4, but rather, a dose-response decrease of expression. This could have been attributable to DMSO-induced cytotoxicity or to some suppressive mechanism. Intrigued, we repeated the experiment using the sgRNA for CYP1A2 and observed a similar pattern, although the cells transfected with CYP1A2 sgRNA demonstrated greater resistance to DMSO treatment than cells transfected with CYP3A4 sgRNA. From our results, it is possible to conclude that treatment with DMSO decreases CYP3A4 expression in HEK293T cells. If future studies bear this out, then it may be advisable to reconsider *in vitro* chemical testing strategies that use DMSO as a solvent.

Several studies have noted the role of DNA methylation in the epigenetic regulation of CYP450 enzymes^{59,63-65}, and this may account for the rapid and significant phenotypic changes observed in cell lines compared to primary cells. We hypothesized that treatment with a methylation inhibitor azacytidine (AZA) may facilitate greater CYP expression, so we co-treated HEK293T cells with doses of 1, 3, 5, 10, and 20 mM of AZA and a CRISPRa transfection to activate CYP3A4 (Figure 11). We observed a dose-dependent increase, then decrease in CYP3A4 mRNA, with the highest levels of induction occurring at 1 mM AZA, and lower levels of induction at all higher doses. The improvement in expression was not to the level of primary liver cells (Figure 11B), but the results of this experiment suggest that methylation may be a target for future experiments to improve the expression of Phase I and Phase II xenobiotic metabolism enzymes in cultured cells.

Having had some, albiet limited, success improving CYP expression in previous experiments, we decided to perform a few functional examinations to see if the CYP levels that we were inducing were sufficient to affect the sensitivity of the cell lines to canonical bioactivated toxins. (Figures 12-18) Although the CYP expression levels that we were able to induce in HEK293T cells were not at physiological levels, we suspected that due to the potent enzymatic activity of CYPs. Cells transfected with CYP1A2 and CYP2E1 did not indicate clear differences in cytotoxicity across any treatment concentrations. However, CYP3A4-transfected HEK293T cells treated with 4-nitrophenol demonstrated a noticeable decrease in viability compared to control at the 15.63 μ M dose, and the same was true for cells treated with Aflatoxin B1 or 8-methoxypsoran for all doses above 15.63 μ M (Figures 17 and 18).

Discussion

High-throughput screening methods are a vital component in drug development, regulatory toxicology, and industrial chemicals testing, particularly in their use to predict liver injury. As the major metabolic organ, the liver is the subject of intense interest for scientists working in all areas of the modern chemical ecosystem, and many talented researchers have devoted themselves to generating *in vitro* liver models to provide faster, cheaper, and more accurate testing. Common practice in current test methods, however, have not successfully merged HTS screening with physiologically-relevant metabolism in cultured cells, and the test batteries used by the EPA currently suffer from a lack of metabolic competence. A relatively small number of enzymes are responsible for a substantial portion (but by no means all) of the xenobiotic metabolism that occurs in the human liver, so inducing cultured cell lines to express these CYPs and UGTs at physiological levels has tremendous potential for improving the rate and accuracy of HTS for industrial chemicals.

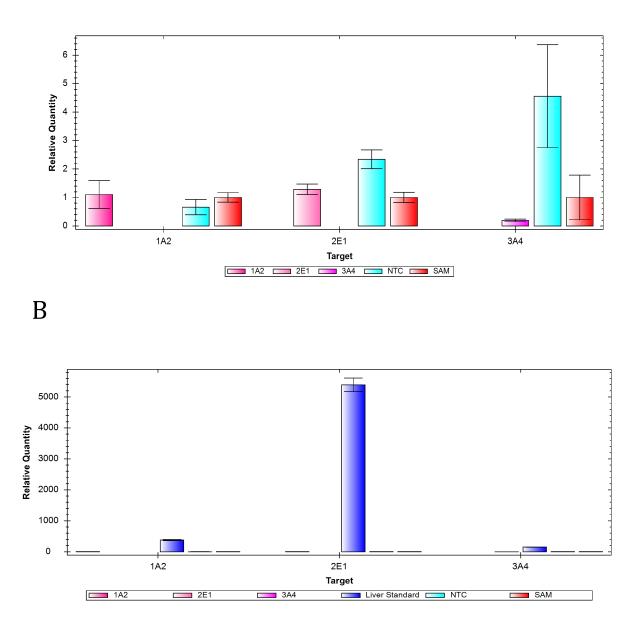
Using a novel CRISPRa-based transfection method, we attempted to improve CYP and UGT expression in HepG2 cells, but found that the cell line did not seem to accept the transfection well and we could not induce CYP expression much higher than the cell line background. (Figure 1) We began experimenting with the HEK293T cell line, as that cell line has been demonstrated to readily accommodate transfections and express exogenous plasmids. Through transfections with the CRISPRa components, we observed considerable up-regulation of CYPS and UGTs above background levels in the HEK293T cell line. (Figures 2-4) We then used lentiviral transduction to create a stably-transfected cell line that constitutively expressed the dCas9 enzyme and the MS2-P65-HSF1 activator helper complex that we called HEK-SAM. (Figure 5) The HEK-SAM cell line only needed to be transfected with the sgRNA plasmid of interest to achieve CRISPRa-modulated gene expression.

Unfortunately, even in our most successful transfections, we could not achieve the level of expression observed in primary liver cells. To further explore the mechanisms involved in CYP suppression in cultured cells, we focused on the HEK293T cell line and the CYP3A4 enzyme.

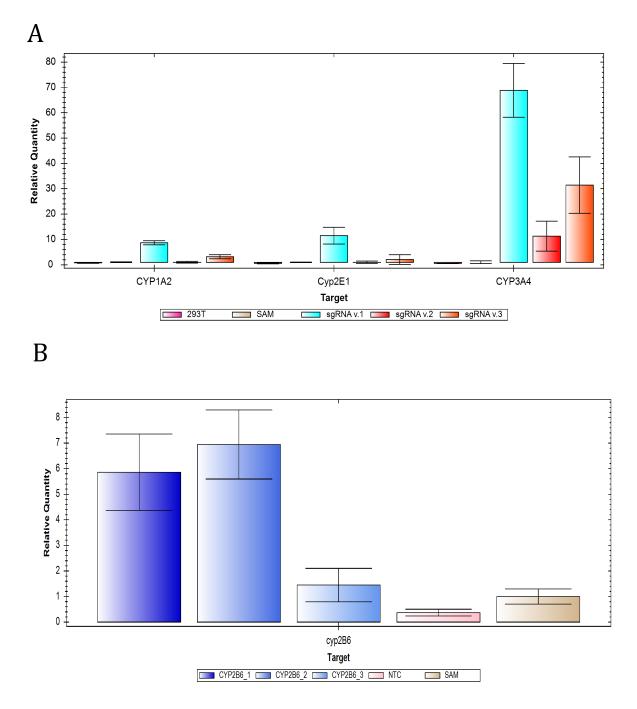
Co-transfection with CYP1A2, CYP2E1, and CYP3A4 sgRNAs resulted in increased activation for all those genes, suggesting a synergistic effect. However, co-transfecting with a range of CYP3A4 regulatory genes did not appear to improve expression of CYP3A4, and in fact seems to have reduced expression, likely as a result of the many regulatory feedback mechanisms involved in CYP3A4 expression. Additionally, this may indicate that loss of metabolic competence in cultured cells is the result of other epigenetic or post-transcriptional mechanisms of suppression are at work, a possibility which we explored by treating the CYP3A4-transfected HEk293T cells with 5-azacytidine.

Figure 11 indicates that 5-azacytidine treatment increased expression of CYP3A4 over that of control at doses of 1,3, 5, and 10 mM, but not at 20 mM. This experiment suggests that the role of epigenetic methylation-based silencing mechanisms are more significant than the cell signaling and transcriptional activator pathways (as explored in Figures 6-8) in the phenotypic shift observed in cultured liver cells. This finding confirms in the HEK293T cell line observations other researchers have previously described, with respect to the suppressive effects of methylation on the CYP3A4 promoter in HepG2 cells⁶⁶. It has also been demonstrated that inhibition of the DNA methyltransferase 1 (DNMT1) in HepG2 cells with the compound Zebularine results in up-regulated CYP expression⁶⁷, so the next step in this investigation will likely involve using CRISPR technology to knock down DNMT1. Rather than using CRISPR to excise the DNMT1 gene, or dose the cells with anticancer drugs, it may be possible to achieve DNMT1 knockdown by inducing microRNA expression. DNMT1 suppression has been accomplished using miR-29b⁶⁸. which affects DNMT1 indirectly, and through the synergistic use of miR-152 and miR-185, which targets DNMT1 indirectly⁶⁹. Transfecting cells with the CRISPRa components, the CYP3A4 sgRNA plasmids, and the appropriate sgRNA plasmids to induce these microRNAs, and lead to DNMT1 suppression, which would in turn result in up-regulation of our desired CYPs. Either stable or transient transfections would be possible, and both would provide an improvement on existing HTS cell cultures. And based on the cytotoxicity data shown in Figures 17 and 18, our efforts may be further along than we initially realized.

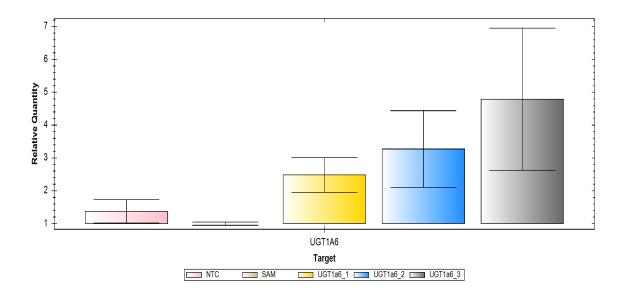
Although we've yet to achieve physiological levels of CYP or UGT expression, this level of enzyme induction may not be necessary to improve the cell line metabolic competence to the point of usefulness. Despite the apparently minor change in CYP3A4 levels compared to primary liver cells, Figures 17 and 18 provide evidence that our CRISPRa methods resulted in increased sensitivity to canonical liver toxicants. This raises an interesting question: how much induction do we need to create "physiologically-relevant" metabolism? In the case of HEK293T cells, it seems that even rather modest increases in relative enzyme quantity improve sensitivity to an observable level. If we are then able to further enhance CYP production through the addition of DNMT1 inhibitors, the result may be a technique for conferring the metabolic phenotype of hepatocytes to HEK293T cells, with respect to bioactivation-induced cytotoxicity.

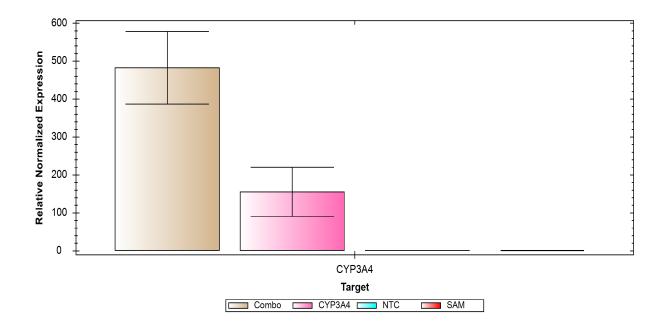

Conclusion

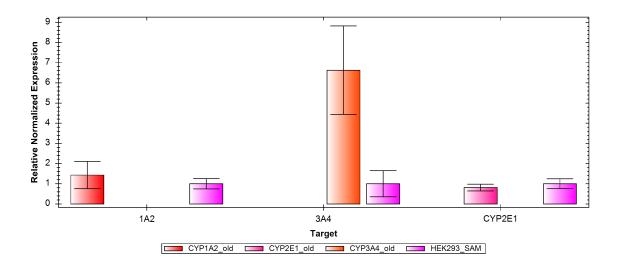
High Throughput Screening is the necessary and inevitable future of chemicals research and regulation. It is only through rapid, scalable technologies that we will be able to populate the gaps in our chemical hazard data sets and make informed decisions about the use of industrial chemicals. Of course, for these screens to be useful, they must demonstrate biological, and therefore, metabolic parity with the low throughput systems that they are intended to replace. The liver's role as the principle metabolic organ in mammals has given it a special status among screening systems, unfortunately, the development of *in vitro* hepatic HTS has not been commensurate with its necessity, and the HepG2 cell lines used in large scale industrial chemical screening programs such as the EPA's ToxCast program do not express CYPS or UGTs, key Phase I and II enzymes, at levels comparable to primary hepatocytes. As a result, use of these cell lines for cytotoxicity testing results in either an overestimation of toxicity in the case of chemicals which would otherwise be detoxified in the liver, or underestimation of toxicity, as in the case of chemicals which would otherwise be bioactivated.

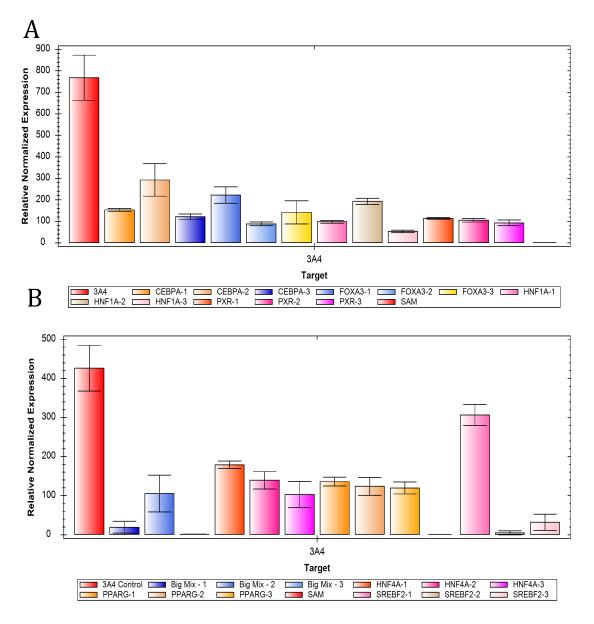

We used a variant of CRISPR technology called CRISPRa to target a transcriptional activator to metabolic genes of interest in HepG2 and HEK293T cell lines. Although we saw very little induction of CYPs or UGTs in the HepG2 cells (Figure 1), we observed impressive induction in HEK23T cell lines (Figures 2 and 4). Simultaneous transfection with multiple sgRNA sequences targeting multiple CYPs resulted in enhanced this effect. Co-treatment of transiently transfected cells with components to induce CYP3A4 as well as the demethylating agent 5-azacytidine also enhanced CYP3A4 expression along a dose curve (Figure 11), while co-treatment with DMSO reduced CYP3A4 in a linear dose-dependent fashion (Figure 9). We were able to generate a stably-transfected HEK293T cell line that constitutively expressed dCas9 and the MS2-P65-HSF1 activator helper complex; we named this cell line HEK-SAM (Figure 5). Although HEK-SAM did not display as great of an increase in CYP expression as the HEK293T cell line, a series of experiments with canonical bioactivated toxins indicated that the modest increases in CYP expression we achieved in HEK293T cells were sufficient to meaningfully alter the metabolic behavior of those cells. This pilot study illustrates the potential of CRISPRa technology as a drop-in modification for HTS to improve metabolic competence. Although we were unable to induce CYPs in HepG2 cells, the malleability of the HEK293T cell line makes it an excellent candidate cell line to refine and optimize this technique, which may then be readily applied to HTS systems, improving the quality of data collection.

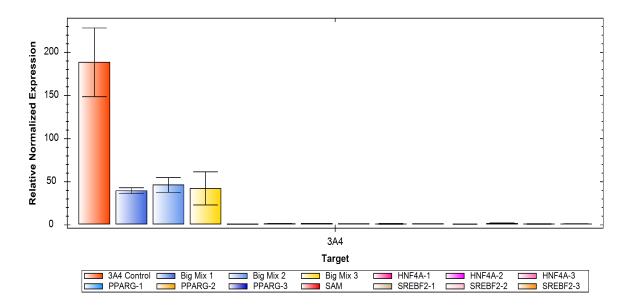
Figures

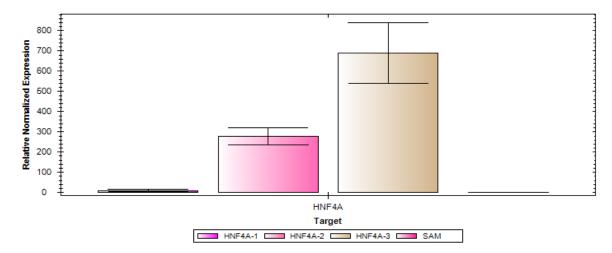

A

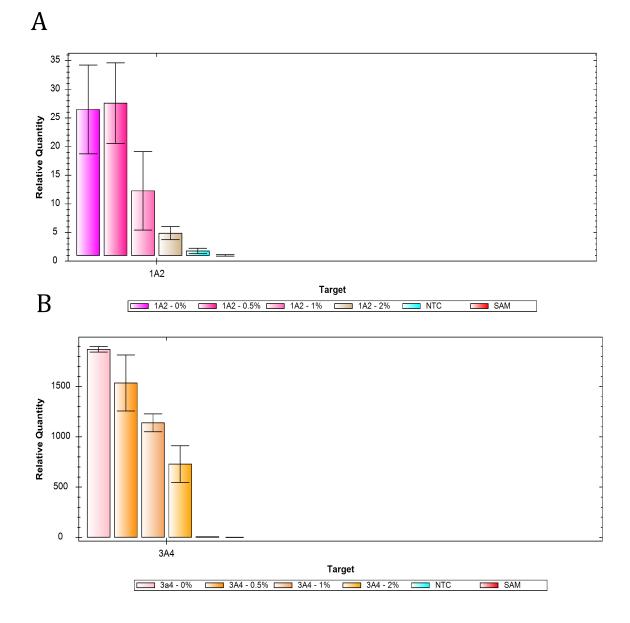

Figure 4.1: CRISPRa Tests in HepG2 Cells Transfection of HepG2 cell line with dCas9, MS2-P65-HSF1, and sgRNAs for different individual CYP1A2, CYP3A4, and CYP2E1 guide sequences. Presented are data from RT-qPCR experiments (using RPL19 to normalize expression) comparing mRNA transcripts of these CYPs versus a) the untreated cell line and b) versus RNA extracted from a primary liver cell sample. Columns represent the average of 3 replicates, error bars indicate a single standard deviation.

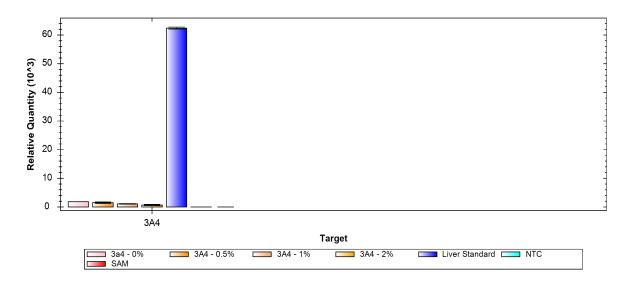

Figure 4.2: Guides Test for CYP1A2, CYP2E1, CYP3A4 and CYP2B6 in HEK293T Cells HEK293T cells were transfected with dCas9, MS2-P65-HSF1, and three different test sgRNA for A) individual CYP1A2, CYP3A4, CYP2E1 guide sequences, or B) CYP2B6 guides, to identify the most effective candidate sgRNA for inducing gene expression. Presented are data from RT-qPCR experiments measuring relative quantity of mRNA transcripts for CYPs compared to untreated HEK-293T cells and DMSO-treated HEK-293T cells. RPL19 was used to normalize the mRNA between samples. Columns represent the average of 3 replicates, error bars indicate a single standard deviation.


Figure 4.3: Guides Test for UGT1A6 in HEK293T Cells HEK293T cells were transfected with dCas9, MS2-P65-HSF1, and three different test sgRNA for guides, to identify the most effective candidate sgRNA for inducing gene expression. Presented are data from RT-qPCR experiments measuring relative quantity of mRNA transcripts for CYP and UGT genes compared to untreated HEK-293T cells and DMSO-treated HEK-293T cells. RPL19 was used to normalize the mRNA between samples. Columns represent the average of 3 replicates, error bars indicate a single standard deviation.


Figure 4.4: **HEK293T Cells Transfected With Multiple CYPs Versus CYP3A4 Alone** HEK293T cell line were transfected with combination of dCas9, MS2-P65-HSF1, and sgRNA for either a "combo" of CYP1A2, CYP2E1, and CYP3A4or only CYP3A4. Presented are data from RT-qPCR experiments (using RPL19 as a standard) comparing induction of CYP3A4 in cells transfected with the multi-CYP combo versus cells transfected with guides for CYP3A4 alone. The "combo" treatments resulted in increased activation for CYP3A4, suggesting a synergistic effect. Columns represent the average of 3 replicates, error bars indicate a single standard deviation.


Figure 4.5: Generation of HEK-SAM, a Cell Line Stably Expressing dCas9 and MS2-P65-HSF1 Lentiviral transduction was used to create a stably-transfected cell line that constitutively expressed the dCas9 enzyme and the MS2-P65-HSF1 activator helper complex that we called HEK-SAM. The cells in this experiment were transfected only with the sgRNA for either CYP1A2, CYP2E1, or CYP3A4. Presented are data from RT-qPCR experiments measuring relative quantity of mRNA transcripts for CYPs compared to untreated and DMSO-treated HEK-SAM cells. RPL19 was used to normalize the mRNA between samples. Columns represent the average of 3 replicates, error bars indicate a single standard deviation. The "old" label in the figure legend indicates that the sgRNAs used in this experiment were the same as those used in Figures 2 and 3 to measure activity in HEK293T cells.


Figure 4.6: Expression of Proteins in the CYP3A4 Regulatory Pathway in the HEK293T Cell Line The HEK293T cell line was transfected with the dCas9 and MS2-P65-HSF1 plus sgRNAs for CYP3A4 and one of seven regulatory proteins as indicated in A) CEBPA, FOXA3, HNF1A, and PXR, and B) HNF4A, SREBF, or PPARγ. As in previous experiments, we tested multiple possible guide sequences per gene. The "Big Mix" condition included sgRNAs for CYP3A4 as well as FOXA3, SREBF, CEBPA, HNF1A, PXR, SREBF, HNF4A, and PPARγ. Presented are data from RT-qPCR experiments measuring relative quantity of mRNA transcripts for CYPs compared to untreated and DMSO-treated HEK293T cells. RPL19 was used to normalize the mRNA between samples. Columns represent the average of 3 replicates, error bars indicate a single standard deviation.


Figure 4.7: Expression of Proteins in the CYP3A4 Regulatory Pathway in the HEK-SAM Cell Line HEK-SAM cells were transfected with the sgRNAs for CYP3A4 and one of seven regulatory proteins as indicated in A) CEBPA, FOXA3, HNF1A, and PXR, and B) HNF4A, SREBF, or PPARγ. As in previous experiments, we tested multiple possible guide sequences per gene. The "Big Mix" condition included sgRNAs for CYP3A4 as well as FOXA3, SREBF, CEBPA, HNF1A, PXR, SREBF, HNF4A, and PPARγ. Presented are data from RT-qPCR experiments measuring relative quantity of mRNA transcripts for CYPs compared to untreated and DMSO-treated HEK293T cells. RPL19 was used to normalize the mRNA between samples. Columns represent the average of 3 replicates, error bars indicate a single standard deviation.

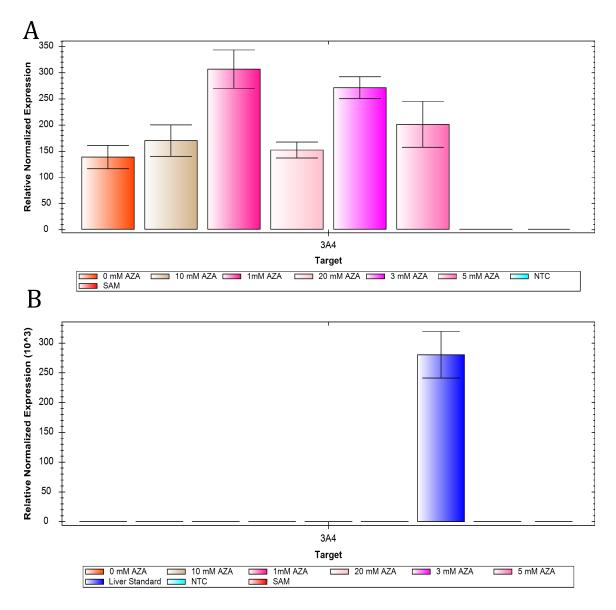

Figure 4.8: HNF4Ain the CYP3A4 Regulatory Pathway in the HEK293T Cell Line HEK293T cells were transfected dCas9 and MS2-P65-HSF1 plus sgRNAs for CYP3A4 and HNF4A. Presented are data from RT-qPCR experiments measuring relative quantity of mRNA transcripts for CYPs compared to untreated and DMSO-treated HEK293T cells. RPL19 was used to normalize the mRNA between samples. Columns represent the average of 3 replicates, error bars indicate a single standard deviation.

Figure 4.9: DMSO treatment Decreases CYP Expression in CRISPRa-Transfected HEK293T Cells HEK293T cells were co-treated with varying concentrations of DMSO and transfected with dCas9, MS2-P65-HSF1, and sgRNA for either A) CYP1A2 or B) CYP3A4. Percentages denote percent composition of DMSO in media. Notably, there is diminished CYP1A2 and CYP3A4 expression at 1% DMSO concentrations – concentrations not uncommonly found in cell culture studies. Presented are data from RT-qPCR experiments measuring relative quantity of mRNA transcripts for CYPs compared to untreated HEK-293T cells and DMSO-treated HEK-293T cells. RPL19 was used to normalize the mRNA between samples. Columns represent the average of 3 replicates, error bars indicate a single standard deviation.

Figure 4.10: CYP Expression in DMSO-Treated CRISPRa-Transfected HEK293T Cells is Much Lower Than In Primary Liver Cells HEK293T cells were co-treated with varying concentrations of DMSO and dCas9, MS2-P65-HSF1, and sgRNA for CYP3A4. Percentages denote percent composition of DMSO in media. Neither CYP1A2 nor CYP3A4 induction was close to levels found in primary liver cells. Presented are data from RT-qPCR experiments measuring relative quantity of mRNA transcripts for CYPs compared to untreated HEK-293T cells and DMSO-treated HEK-293T cells. RPL19 was used to normalize the mRNA between samples. Columns represent the average of 3 replicates, error bars indicate a single standard deviation.

Figure 4.11: AZA Treatment Enchances CYP3A4 expression in HEK293T cells HEK293T cells were co-treated HEK293T cells transfected with dCas9, MS2-P65-HSF1, and CYP3A4, and varying amounts of Azacytidine (AZA). A) Presents a comparison of CYP3A4 expression among the different doses of AZA, while B) compares CYP3A4 expression at these doses to CYP3A4 in primary liver samples. The optimal dosing seemed to be around the 1-3 mM AZA concentrations. However, these increases in expression still pale in comparison to the expression of CYP3A4 in primary liver cells. Presented are data from RT-qPCR experiments measuring relative quantity of mRNA transcripts for CYPs compared to untreated HEK-293T cells and DMSO-treated HEK-293T cells. RPL19 was used to normalize the mRNA between samples. Columns represent the average of 3 replicates, error bars indicate a single standard deviation. Note that although the axes of the graphs seem similar, that the *y* axis on B is expressed in multiples of 10^3 .

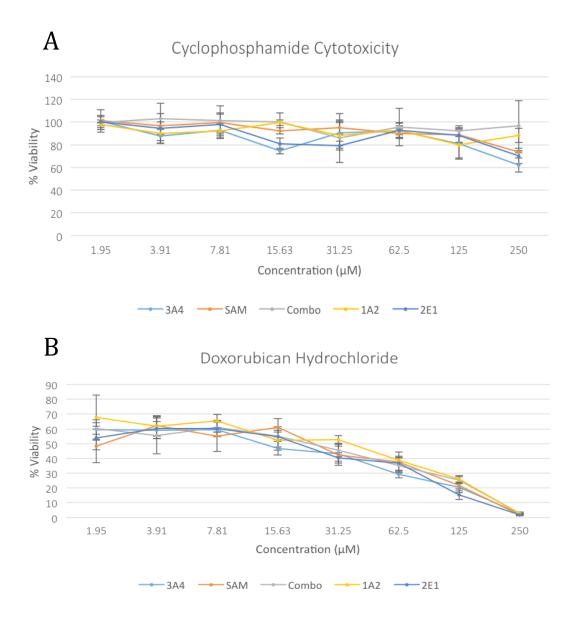
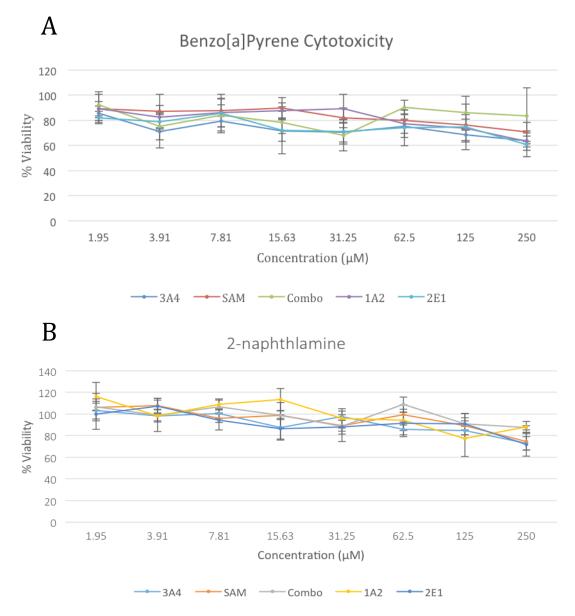
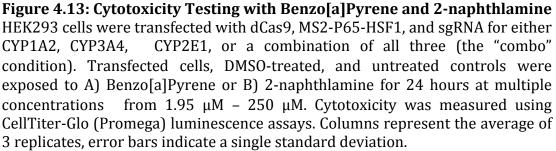
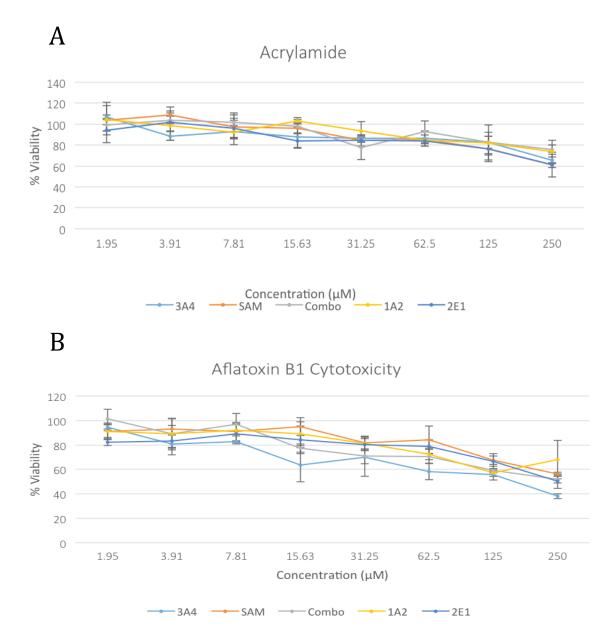





Figure 4.12: Cytotoxicity Testing with Cyclophosphamide and Doxorubican Hydrochloride HEK293 cells were transfected with dCas9, MS2-P65-HSF1, and sgRNA for either CYP1A2, CYP3A4, CYP2E1, or a combination of all three (the "combo" condition). Transfected cells, DMSO-treated, and untreated controls were exposed to A) Cyclophosphamide or B) Doxorubican for 24 hours at multiple concentrations from 1.95 μ M – 250 μ M. Cytotoxicity was measured using CellTiter-Glo (Promega) luminescence assays. Columns represent the average of 3 replicates, error bars indicate a single standard deviation.

Figure 4.14: Cytotoxicity Testing with Acrylamide and Aflatoxin B1 HEK293 cells were transfected with dCas9, MS2-P65-HSF1, and sgRNA for either CYP1A2, CYP3A4, CYP2E1, or a combination of all three (the "combo" condition). Transfected cells, DMSO-treated, and untreated controls were exposed to A) Acrylamide or B) Aflatoxin B1 for 24 hours at multiple concentrations from 1.95 μ M – 250 μ M. Cytotoxicity was measured using CellTiter-Glo (Promega) luminescence assays. Columns represent the average of 3 replicates, error bars indicate a single standard deviation.

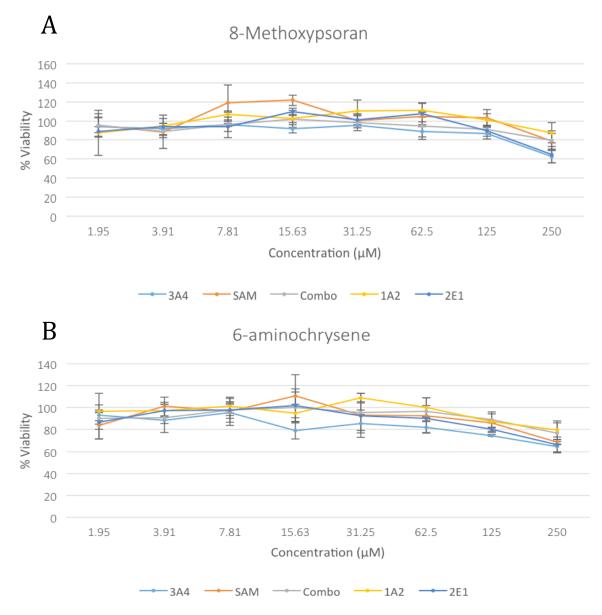
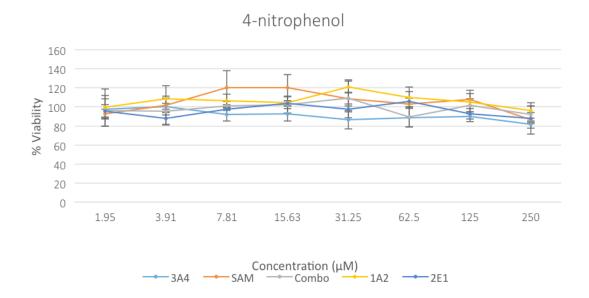



Figure 4.15: Cytotoxicity Testing with 8-Methoxypsoran and 6aminochrysene HEK293 cells were transfected with dCas9, MS2-P65-HSF1, and sgRNA for either CYP1A2, CYP3A4, CYP2E1, or a combination of all three (the "combo" condition). Transfected cells, DMSO-treated, and untreated controls were exposed to A) 8-Methoxypsoran or B) 6-aminochrysene for 24 hours at multiple concentrations from 1.95 μ M – 250 μ M. Cytotoxicity was measured using CellTiter-Glo (Promega) luminescence assays. Columns represent the average of 3 replicates, error bars indicate a single standard deviation.

Figure 4.16: Cytotoxicity Testing with 4-nitrophenol HEK293 cells were transfected with dCas9, MS2-P65-HSF1, and sgRNA for either CYP1A2, CYP3A4, CYP2E1, or a combination of all three (the "combo" condition). Transfected cells, DMSO-treated, and untreated controls were exposed to 4-nitrophenol for 24 hours at multiple concentrations from 1.95 μ M – 250 μ M. Cytotoxicity was measured using CellTiter-Glo (Promega) luminescence assays. Columns represent the average of 3 replicates, error bars indicate a single standard deviation.

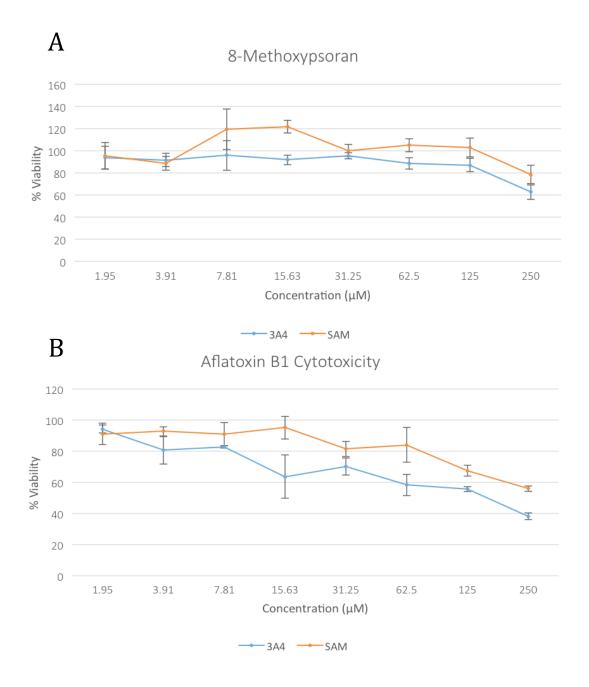


Figure 4.17: CYP3A4 Activation with CRISPRa Increases sensitivity of HEK293T Cells to 8-Methoxypsoran and Aflatoxin B1 HEK293 cells were transfected with dCas9, MS2-P65-HSF1, and sgRNA for CYP3A4. Transfected cells, DMSO-treated, and untreated controls were exposed to A) 8-Methoxypsoran or B) Aflatoxin B1 for 24 hours at multiple concentrations from 1.95 μ M – 250 μ M. Cytotoxicity was measured using CellTiter-Glo (Promega) luminescence assays. Columns represent the average of 3 replicates, error bars indicate a single standard deviation.

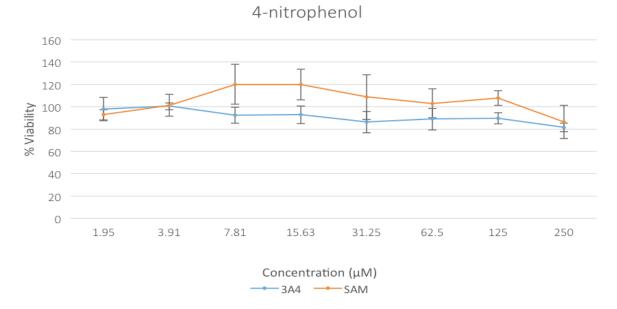


Figure 4.18: CYP3A4 Activation with CRISPRa Increases sensitivity of HEK293T Cells to 4-nitrophenol HEK293 cells were transfected with dCas9, MS2-P65-HSF1, and sgRNA for CYP3A4. Transfected cells, DMSO-treated, and untreated controls were exposed to A) 8-Methoxypsoran or B) Aflatoxin B1 for 24 hours at multiple concentrations from 1.95 μ M – 250 μ M. Cytotoxicity was measured using CellTiter-Glo (Promega) luminescence assays. Columns represent the average of 3 replicates, error bars indicate a single standard deviation.

Sources cited

- 1. Andersen, M. E. & Krewski, D. The Vision of Toxicity Testing in the 21st Century: Moving from Discussion to Action. *Toxicol. Sci.* **117**, 17–24 (2010).
- 2. Mulvihill, M. J., Beach, E. S., Zimmerman, J. B. & Anastas, P. T. Green Chemistry and Green Engineering: A Framework for Sustainable Technology Development. *Annu. Rev. Environ. Resour.* **36**, 271–293 (2011).
- 3. Guidance Document on Considerations for Waiving or Bridging of Mammalian Acute Toxicity Tests. (2016).
- 4. DiMasi, J. A., Grabowski, H. G. & Hansen, R. W. Innovation in the pharmaceutical industry: New estimates of R&D costs. *J. Health Econ.* **47**, 20–33 (2016).
- 5. Kavlock, R. *et al.* Update on EPA's ToxCast Program: Providing High Throughput Decision Support Tools for Chemical Risk Management. *Chem. Res. Toxicol.* **25**, 1287–1302 (2012).
- 6. Lynch, C. *et al.* Identifying environmental chemicals as agonists of the androgen receptor by using a quantitative high-throughput screening platform. *Toxicology* **385**, 48–58 (2017).
- 7. European Agency For Safety At Work. REACH Regulation for Registration, Evaluation, Authorisation and Restriction of Chemicals. (2017). Available at: https://osha.europa.eu/en/themes/dangerous-substances/reach.
- 8. USEPA. Highlights of Key Provisions in the Frank R. Lautenberg Chemical Safety for the 21st Century Act. *Assessing and Managing Chemicals Under TSCA* Available at: https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/highlights-key-provisions-frank-r-lautenberg-chemical.
- 9. *Toxicity Testing in the 21st Century: A Vision and a Strategy*. (National Academies Press, 2007).
- 10. Shukla, S. J., Huang, R., Austin, C. P. & Xia, M. The future of toxicity testing: a focus on in vitro methods using a quantitative high-throughput screening platform. *Drug Discov. Today* **15**, 997–1007 (2010).
- Judson, R. S. *et al.* In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project. *Environ. Health Perspect.* 118, 485–492 (2009).
- 12. Kleinstreuer, N. C. *et al.* Development and Validation of a Computational Model for Androgen Receptor Activity. *Chem. Res. Toxicol.* **30**, 946–964 (2017).
- 13. Rodrigues, A. D. Preclinical drug metabolism in the age of high-throughput screening: an industrial perspective. *Pharm. Res.* **14**, 1504–1510 (1997).
- NIH Roadmap and Roadmap-affiliated Initiatives. *National Institute of Environmental Health Services* Available at: https://www.niehs.nih.gov/funding/grants/announcements/roadmap/index.cf m. (Accessed: 5th November 2017)
- Zerhouni, E. A. Clinical research at a crossroads: the NIH roadmap. J. Investig. Med. Off. Publ. Am. Fed. Clin. Res. 54, 171–173 (2006).
- 16. Dix, D. J. *et al.* The ToxCast Program for Prioritizing Toxicity Testing of Environmental Chemicals. *Toxicol. Sci.* **95**, 5–12 (2007).
- 17. US EPA, O. About the TSCA Chemical Substance Inventory. *US EPA* (2015). Available at: https://www.epa.gov/tsca-inventory/about-tsca-chemicalsubstance-inventory. (Accessed: 5th November 2017)

- 18. Sipes, N. S. *et al.* Profiling 976 ToxCast Chemicals across 331 Enzymatic and Receptor Signaling Assays. *Chem. Res. Toxicol.* **26**, 878–895 (2013).
- 19. Shah, I. *et al.* Using ToxCast[™] Data to Reconstruct Dynamic Cell State Trajectories and Estimate Toxicological Points of Departure. *Environ. Health Perspect.* **124**, (2015).
- 20. Sipes, N. S. *et al.* An Intuitive Approach for Predicting Potential Human Health Risk with the Tox21 10k Library. *Environ. Sci. Technol.* **51**, 10786–10796 (2017).
- 21. Richard, A. M. *et al.* ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology. *Chem. Res. Toxicol.* **29**, 1225–1251 (2016).
- 22. Bell, C. C. *et al.* Transcriptional, Functional, and Mechanistic Comparisons of Stem Cell–Derived Hepatocytes, HepaRG Cells, and Three-Dimensional Human Hepatocyte Spheroids as Predictive In Vitro Systems for Drug-Induced Liver Injury. *Drug Metab. Dispos.* **45**, 419–429 (2017).
- 23. Chang, T. T. & Hughes-Fulford, M. Monolayer and Spheroid Culture of Human Liver Hepatocellular Carcinoma Cell Line Cells Demonstrate Distinct Global Gene Expression Patterns and Functional Phenotypes. *Tissue Eng. Part A* **15**, 559–567 (2009).
- 24. Gómez-Lechón, M. J., Tolosa, L., Conde, I. & Donato, M. T. Competency of different cell models to predict human hepatotoxic drugs. *Expert Opin. Drug Metab. Toxicol.* **10**, 1553–1568 (2014).
- 25. Soldatow, V. Y., LeCluyse, E. L., Griffith, L. G. & Rusyn, I. In vitro models for liver toxicity testing. *Toxicol Res* **2**, 23–39 (2013).
- 26. Bale, S. S., Moore, L., Yarmush, M. & Jindal, R. Emerging *In Vitro* Liver Technologies for Drug Metabolism and Inter-Organ Interactions. *Tissue Eng. Part B Rev.* **22**, 383–394 (2016).
- Guillouzo, A. Liver cell models in in vitro toxicology. *Environ. Health Perspect.* 106, 511–532 (1998).
- 28. Meng, Q. Three-dimensional culture of hepatocytes for prediction of druginduced hepatotoxicity. *Expert Opin. Drug Metab. Toxicol.* **6**, 733–746 (2010).
- 29. Dunn, J. C. Y., Tompkins, R. G. & Yarmush, M. L. Long-Term in Vitro Function of Adult Hepatocytes in a Collagen Sandwich Configuration. *Biotechnol. Prog.* **7**, 237–245 (1991).
- 30. Mathijs, K. *et al.* Assessing the Metabolic Competence of Sandwich-Cultured Mouse Primary Hepatocytes. *Drug Metab. Dispos.* **37**, 1305–1311 (2009).
- 31. Westerink, W. M. A. & Schoonen, W. G. E. J. Cytochrome P450 enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. *Toxicol. In Vitro* **21**, 1581–1591 (2007).
- 32. Westerink, W. M. A. & Schoonen, W. G. E. J. Phase II enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. *Toxicol. In Vitro* **21**, 1592–1602 (2007).
- 33. Aninat, C. EXPRESSION OF CYTOCHROMES P450, CONJUGATING ENZYMES AND NUCLEAR RECEPTORS IN HUMAN HEPATOMA HepaRG CELLS. *Drug Metab. Dispos.* **34**, 75–83 (2005).
- 34. Tolosa, L., Donato, M. T., Pérez-Cataldo, G., Castell, J. V. & Gómez-Lechón, M. J. Upgrading cytochrome P450 activity in HepG2 cells co-transfected with

adenoviral vectors for drug hepatotoxicity assessment. *Toxicol. In Vitro* **26**, 1272–1277 (2012).

- 35. Tolosa, L., Gómez-Lechón, M. J., Pérez-Cataldo, G., Castell, J. V. & Donato, M. T. HepG2 cells simultaneously expressing five P450 enzymes for the screening of hepatotoxicity: identification of bioactivable drugs and the potential mechanism of toxicity involved. *Arch. Toxicol.* **87**, 1115–1127 (2013).
- 36. Dambach, D. M., Andrews, B. A. & Moulin, F. New Technologies and Screening Strategies for Hepatotoxicity: Use of In Vitro Models. *Toxicol. Pathol.* **33**, 17–26 (2005).
- 37. Gustafsson, F., Foster, A. J., Sarda, S., Bridgland-Taylor, M. H. & Kenna, J. G. A correlation between the in vitro drug toxicity of drugs to cell lines that express human P450s and their propensity to cause liver injury in humans. *Toxicol. Sci. Off. J. Soc. Toxicol.* **137**, 189–211 (2014).
- 38. Huang, L. *et al.* Development of an optimized cytotoxicity assay system for CYP3A4-mediated metabolic activation via modified piggyBac transposition. *Toxicol. In Vitro* **32**, 132–137 (2016).
- 39. Yoshitomi, S. *et al.* Establishment of the transformants expressing human cytochrome P450 subtypes in HepG2, and their applications on drug metabolism and toxicology. *Toxicol. In Vitro* **15**, 245–256 (2001).
- 40. Gerets, H. H. J. *et al.* Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. *Cell Biol. Toxicol.* **28**, 69–87 (2012).
- 41. Ma, X. *et al.* Highly Efficient Differentiation of Functional Hepatocytes From Human Induced Pluripotent Stem Cells. *STEM CELLS Transl. Med.* **2**, 409–419 (2013).
- 42. Mitani, S. *et al.* Human ESC/iPSC-Derived Hepatocyte-like Cells Achieve Zone-Specific Hepatic Properties by Modulation of WNT Signaling. *Mol. Ther.* **25**, 1420– 1433 (2017).
- 43. Jozefczuk, J., Prigione, A., Chavez, L. & Adjaye, J. Comparative Analysis of Human Embryonic Stem Cell and Induced Pluripotent Stem Cell-Derived Hepatocyte-Like Cells Reveals Current Drawbacks and Possible Strategies for Improved Differentiation. *Stem Cells Dev.* **20**, 1259–1275 (2010).
- 44. Czekaj, P. & Skowronek, R. Transcription Factors Potentially Involved in Regulation of Cytochrome P450 Gene Expression. in *Topics on Drug Metabolism* (ed. Paxton, J.) (InTech, 2012). doi:10.5772/27817
- 45. Rodríguez-Antona, C. *et al.* Cytochrome P450 expression in human hepatocytes and hepatoma cell lines: molecular mechanisms that determine lower expression in cultured cells. *Xenobiotica* **32**, 505–520 (2002).
- 46. Kim, I.-W., Han, N., Burckart, G. J. & Oh, J. M. Epigenetic Changes in Gene Expression for Drug-Metabolizing Enzymes and Transporters. *Pharmacother. J. Hum. Pharmacol. Drug Ther.* **34**, 140–150 (2014).
- 47. Gailhouste, L. *et al.* Epigenetic Reprogramming of Human Hepatoma Cells: A Low-Cost Option for Drug Metabolism Assessment. *Cell. Mol. Gastroenterol. Hepatol.* (2017). doi:10.1016/j.jcmgh.2017.11.006

- 48. Konermann, S. *et al.* Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. *Nature* **517**, 583–588 (2014).
- 49. Ueda, R. *et al.* A Common Regulatory Region Functions Bidirectionally in Transcriptional Activation of the Human CYP1A1 and CYP1A2 Genes. *Mol. Pharmacol.* **69**, 1924–1930 (2006).
- 50. Reed, J. R. & Backes, W. L. The functional effects of physical interactions involving cytochromes P450: putative mechanisms of action and the extent of these effects in biological membranes. *Drug Metab. Rev.* **48**, 453–469 (2016).
- 51. Guengerich, F. P. A malleable catalyst dominates the metabolism of drugs. *Proc. Natl. Acad. Sci.* **103**, 13565–13566 (2006).
- 52. Guengerich, F. P. *et al.* Heterologous expression of human drug-metabolizing enzymes. *Drug Metab. Dispos. Biol. Fate Chem.* **25**, 1234–1241 (1997).
- 53. Cas9 Activator Tool. (2016). Available at: http://sam.genomeengineering.org/database.
- 54. (EN) QIAGEN Plasmid Purification Handbook April 2012. Available at: https://www.qiagen.com/us/resources/resourcedetail?id=46205595-0440-459e-9d93-50eb02e5707e&lang=en. (Accessed: 8th November 2017)
- 55. Thomas, P. & Smart, T. G. HEK293 cell line: A vehicle for the expression of recombinant proteins. *J. Pharmacol. Toxicol. Methods* **51**, 187–200 (2005).
- 56. Dai, D. P. *et al.* 293FT is a highly suitable mammalian cell line for the in vitro enzymatic activity analysis of typical P450 proteins. 33–37 (2015). doi:10.1691/ph.2015.4067
- 57. Snykers, S. *et al.* Role of epigenetics in liver-specific gene transcription, hepatocyte differentiation and stem cell reprogrammation. *J. Hepatol.* **51**, 187–211 (2009).
- 58. Aitken, A. E., Richardson, T. A. & Morgan, E. T. REGULATION OF DRUG-METABOLIZING ENZYMES AND TRANSPORTERS IN INFLAMMATION. *Annu. Rev. Pharmacol. Toxicol.* **46**, 123–149 (2006).
- 59. Burns, K. E., Shepherd, P., Finlay, G., Tingle, M. D. & Helsby, N. A. Indirect regulation of CYP2C19 gene expression via DNA methylation. *Xenobiotica* **0**, 1–12 (2017).
- 60. Chen, F. *et al.* Up-Regulating CYP3A4 Expression in C3A Cells by Transfection with a Novel Chimeric Regulator of hPXR-p53-AD. *PLoS ONE* **9**, e95752 (2014).
- 61. Kumagai, T. *et al.* Indirubin, a component of Ban-Lan-Gen, activates CYP3A4 gene transcription through the human pregnane X receptor. *Drug Metab. Pharmacokinet.* **31**, 139–145 (2016).
- 62. Horton, J. D., Goldstein, J. L. & Brown, M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. *J. Clin. Invest.* **109**, 1125–1131 (2002).
- 63. Tokizane, T. *et al.* Cytochrome P450 1B1 Is Overexpressed and Regulated by Hypomethylation in Prostate Cancer. *Clin. Cancer Res.* **11**, 5793–5801 (2005).
- 64. Jo, W. J. *et al.* Comparative Functional Genomic Analysis Identifies Distinct and Overlapping Sets of Genes Required for Resistance to Monomethylarsonous Acid (MMAIII) and Arsenite (AsIII) in Yeast. *Toxicol. Sci.* **111**, 424–436 (2009).

- 65. Habano, W. *et al.* Analysis of DNA methylation landscape reveals the roles of DNA methylation in the regulation of drug metabolizing enzymes. *Clin. Epigenetics* **7**, 105 (2015).
- 66. Kacevska, M. *et al.* DNA methylation dynamics in the hepatic CYP3A4 gene promoter. *Biochimie* **94**, 2338–2344 (2012).
- 67. Nakamura, K., Aizawa, K., Aung, K. H., Yamauchi, J. & Tanoue, A. Zebularine upregulates expression of CYP genes through inhibition of DNMT1 and PKR in HepG2 cells. *Sci. Rep.* **7**, (2017).
- 68. Garzon, R. *et al.* MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. *Blood* **113**, 6411–6418 (2009).
- 69. Xiang, Y. *et al.* MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of decitabine. *Oncogene* **33**, 378 (2014).

Appendix 1: Mutants with altered growth in 2,5-DMF

2,5-DMF 5G Resistant

	2,5-DMF 5G Resistant Strains				
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function		
YKL020C	2.917449	BUD9	Protein involved in bud-site selection; mutant has increased aneuploidy tolerance		
YFR022W	3.494680	PRM10	Pheromone-regulated protein; proposed to be involved in mating		
YGR041W	2.608475	ROG3	Alpha-arrestin involved in ubiquitin-dependent endocytosis		
YCR073W- A	3.416565	SOL2	Protein with possible role in tRNA export		
YJL108C	1.943484	SPT23	ER membrane protein involved in regulation of OLE1 transcription		
YCR006C	1.008867	-	Putative protein of unknown function		
YNL058C	5.424345	-	Putative protein of unknown function		

2,5-DMF 10G Resistant

	2,5-DMF 10G Resistant Strains			
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function	
YNR067C	0.625615	DSE4	Daughter cell-specific secreted protein with similarity to glucanases; degrades cell wall from the daughter side causing daughter to separate from mother	

2,5-DMF 15G Resistant

	2,5-DMF 15G Resistant Strains			
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function	
YPL154C	0.857534	PEP4	Vacuolar aspartyl protease (proteinase A); required for posttranslational precursor maturation of vacuolar proteinases; important for protein turnover after oxidative damage	

	2,5-DMF 15G Resistant Strains (continued)			
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function	
YDL072C	1.535777	VPS21	Endosomal Rab family GTPase; required for endocytic transport and sorting of vacuolar hydrolases; required for endosomal localization of the CORVET complex; required with YPT52 for MVB biogenesis and sorting; involved in autophagy and ionic stress tolerance;	
YMR090W	0.944358	YET3	Protein of unknown function; YET3 null mutant decreases the level of secreted invertase; homolog of human BAP31 protein	
YDL086W	0.716625	-	Putative protein of unknown function	
YOR089C	0.975989	-	Putative carboxymethylenebutenolidase	
YBR242W	1.124726	-	Putative protein of unknown function	

2,5-DMF 5G Sensitive

	2,5-DMF 5G Sensitive Strains			
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function	
YML007W	-1.280161	YAP1	Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stress	

2,5-DMF 10G Sensitive

2,5-DMF 10G Sensitive Strains			
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function
YCR086W	-2.273000	CSM1	Nucleolar protein that mediates homolog segregation during meiosis I
YIL154C	-1.704455	IMP2'	Transcriptional activator involved in maintenance of ion homeostasis; also involved in protection against DNA damage caused by bleomycin and other oxidants
YAL024C	-3.986959	LTE1	Protein similar to GDP/GTP exchange factors; without detectable GEF activity
YKL064W	-1.114260	MNR2	Vacuolar membrane protein required for magnesium homeostasis; putative magnesium transporter
YHR179W	-1.100554	OYE2	Conserved NADPH oxidoreductase containing flavin mononucleotide (FMN)

	2,5-DMF 10G Sensitive Strains (continued)				
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name		
YDR463W	-3.289455	STP1	Transcription factor; contains a N-terminal regulatory motif (RI) that acts as a cytoplasmic retention determinant and as an Asi dependent degron in the nucleus		
YBR069C	-1.810932	TAT1	Amino acid transporter for valine, leucine, isoleucine, and tyrosine; low-affinity tryptophan and histidine transporter		
YML007W	-1.223951	YAP1	Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stress		
YLR202C	-2.858706	undefined ORF	Dubious open reading frame		
YGR035C	-1.696455	undefined ORF	Putative protein of unknown function		

2,5-DMF 15G Sensitive

	2,5-DMF 15G Sensitive Strains				
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function		
YKL114C	-6.262799	APN1	Major apurinic/apyrimidinic endonuclease; 3'-repair diesterase; involved in repair of DNA damage by oxidation and alkylating agents; also functions as a 3'-5' exonuclease to repair 7,8-dihydro-8-oxodeoxyguanosine		
YCR086W	-3.806423	CSM1	Nucleolar protein that mediates homolog segregation during meiosis I		
YKL213C	-1.209951	DOA1	WD repeat protein required for ubiquitin-mediated protein degradation		
YIL065C	-1.413206	FIS1	Protein involved in mitochondrial fission and peroxisome abundance		
YGL020C	-2.892588	GET1	Subunit of the GET complex; involved in insertion of proteins into the ER membrane		
YKR019C	-4.003128	IRS4	EH domain-containing protein; involved in regulating phosphatidylinositol 4,5-bisphosphate levels and autophagy		
YDR439W	-2.934677	LRS4	Nucleolar protein that forms a complex with Csm1p		
YGL035C	-0.645629	MIG1	Transcription factor involved in glucose repression		
YEL007W	-1.205716	MIT1	Transcriptional regulator of pseudohyphal growth		
YKL064W	-1.515564	MNR2	Vacuolar membrane protein required for magnesium homeostasis		

	2,5-DMF 15G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YHR179W	-1.582784	OYE2	Conserved NADPH oxidoreductase containing flavin mononucleotide (FMN)	
YDR004W	-1.718706	RAD57	Protein that stimulates strand exchange; stimulates strand exchange by stabilizing the binding of Rad51p to single- stranded DNA	
YJL004C	-2.258376	SYS1	Integral membrane protein of the Golgi	
YBR069C	-2.170562	TAT1	Amino acid transporter for valine, leucine, isoleucine, and tyrosine	
YCR053W	-1.661451	THR4	Threonine synthase	
YOL018C	-2.169236	TLG2	Syntaxin-like t-SNARE	
YEL012W	-5.053212	UBC8	Ubiquitin-conjugating enzyme that regulates gluconeogenesis	
YNL054W	-2.484237	VAC7	Integral vacuolar membrane protein	
YIL017C	-2.583924	VID28	GID Complex subunit, serves as adaptor for regulatory subunit Vid24p	
YER072W	-1.039239	VTC1	Regulatory subunit of the vacuolar transporter chaperone (VTC) complexvacuolar fusion	
YOR043W	-1.189910	WHI2	Protein required for full activation of the general stress response	
YHR134W	-4.384623	WSS1	Metalloprotease involved in DNA repair, removes DNA- protein crosslinks at stalled replication forks during replication of damaged DNA	
YML007W	-1.510256	YAP1	Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stress	
YOR364W	-1.755933	-	Dubious open reading frame	
YIL077C	-1.659320	-	Putative protein of unknown function	

2,5-DMF Sensitive across all time points

	2,5-DMF Sensitive Strains Across All Time Points			
Deleted ORF	Deleted ORF Deleted Deleted Conce Function			
Name	Gene Name	Deleted Gene Function		
YML007W	YAP1	Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stress		

Appendix 2: Mutants with altered growth in 2,3-DMF

2,3-DMF 5G Resistant

2,3-DMF 5G Resistant Strains			
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function
YGR037C	0.838921	ACB1	Acyl-CoA-binding protein
YLR131C	1.665009	ACE2	Transcription factor required for septum destruction after cytokinesis
YDL073W	0.998191	AHK1	Scaffold protein in the HKR1 sub-branch of the Hog1p- signaling pathway
YHR126C	1.393973	ANS1	Putative GPI protein; SWAT-GFP and mCherry fusion proteins localize to the vacuole; transcription dependent upon Azf1p
YPR128C	1.193388	ANT1	Peroxisomal adenine nucleotide transporter; involved in beta-oxidation of medium-chain fatty acid; required for peroxisome proliferation
YDR275W	1.322754	BSC2	Protein of unknown function
YML042W	1.021996	CAT2	Carnitine acetyl-CoA transferase; present in both mitochondria and peroxisomes
YPR013C	0.857573	CMR3	Putative zinc finger protein; YPR013C is not an essential gene
YIR004W	0.977763	DJP1	Cytosolic J-domain-containing protein; required for peroxisomal protein import and involved in peroxisome assembly
YKL213C	0.966467	DOA1	WD repeat protein required for ubiquitin-mediated protein degradation
YDR519W	1.466857	FPR2	Membrane-bound peptidyl-prolyl cis-trans isomerase (PPIase)
YLL043W	1.801699	FPS1	Aquaglyceroporin, plasma membrane channel
YER145C	1.058331	FTR1	High affinity iron permease; involved in the transport of iron across the plasma membrane
YDR507C	2.010428	GIN4	Protein kinase involved in bud growth and assembly of the septin ring
YER020W	0.604779	GPA2	Nucleotide binding alpha subunit of the heterotrimeric G protein
YPR179C	0.892709	HDA3	Subunit of the HDA1 histone deacetylase complex
YHR158C	0.764921	KEL1	Protein required for proper cell fusion and cell morphology
YLR239C	1.309906	LIP2	Lipoyl ligase; involved in the modification of mitochondrial enzymes by the attachment of lipoic acid groups

	2,3-DMF 5G Resistant Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YLL007C	1.138447	LMO1	Homolog of mammalian ELMO (Engulfment and celL MOtility); upstream component for regulation through the small GTPase Rho5p	
YGL087C	2.522190	MMS2	Ubiquitin-conjugating enzyme variant; involved in error- free postreplication repair; forms a heteromeric complex with Ubc13p, an active ubiquitin-conjugating enzyme	
YPL013C	0.909683	MRPS16	Mitochondrial ribosomal protein of the small subunit	
YHR195W	0.886093	NVJ1	Nuclear envelope protein; anchored to the nuclear inner membrane	
YBR129C	0.855971	OPY1	Protein of unknown function; overproduction blocks cell cycle arrest in the presence of mating pheromone	
YJL023C	0.878661	PET130	Protein required for respiratory growth; the authentic, non-tagged protein is detected in highly purified mitochondria in high-throughput studies	
YBL068W	0.806861	PRS4	5-phospho-ribosyl-1(alpha)-pyrophosphate synthetase, synthesizes PRPP	
YJL078C	0.595059	PRY3	Cell wall-associated protein involved in export of acetylated sterols	
YDR419W	0.988646	RAD30	DNA polymerase eta; involved in translesion synthesis during post-replication repair	
YDR279W	1.105300	RNH202	Ribonuclease H2 subunit; required for RNase H2 activity	
YLR325C	1.178127	RPL38	Ribosomal 60S subunit protein L38; homologous to mammalian ribosomal protein L38, no bacterial homolog	
YDR389W	1.282906	SAC7	GTPase activating protein (GAP) for Rho1p	
YMR140W	0.617454	SIP5	Protein of unknown function; interacts with both the Reg1p/Glc7p phosphatase and the Snf1p kinase	
YNL086W	0.848602	SNN1	Subunit of the BLOC-1 complex involved in endosomal maturation	
YER115C	1.027114	SPR6	Protein of unknown function	
YCL037C	1.392603	SRO9	Cytoplasmic RNA-binding protein; shuttles between nucleus and cytoplasm and is exported from the nucleus in an mRNA export-dependent manner	
YDR297W	0.903066	SUR2	Sphinganine C4-hydroxylase; catalyses the conversion of sphinganine to phytosphingosine in sphingolipid biosyntheis	
YDR334W	1.759848	SWR1	Swi2/Snf2-related ATPase; structural component of the SWR1 complex, which exchanges histone variant H2AZ (Htz1p) for chromatin-bound histone H2A	
YPR156C	1.024701	TPO3	Polyamine transporter of the major facilitator superfamily; member of the 12-spanner drug:H(+) antiporter DHA1 family	

YDR092W	0.988425	UBC13	E2 ubiquitin-conjugating enzyme; involved in the error- free DNA postreplication repair pathway
YBR058C	0.701915	UBP14	Ubiquitin-specific protease
YDL091C	0.999012	UBX3	Clathrin-coated vesicle component, regulator of endocytosis
YDL034W	0.650114	-	Dubious open reading frame
YLL020C	0.811845	-	Dubious open reading frame
YKR018C	0.967791	-	Protein of unknown function
YCR022C	1.393580	-	Protein of unknown function

2,3-DMF 10G Resistant

	2,3-DMF 10G Resistant Strains			
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function	
YCR088W	0.705663	ABP1	Actin-binding protein of the cortical actin cytoskeleton; important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization	
YNR033W	1.125465	ABZ1	Para-aminobenzoate (PABA) synthase	
YGR037C	1.036195	ACB1	Acyl-CoA-binding protein; transports newly synthesized acyl-CoA esters from fatty acid synthetase (Fas1p-Fas2p) to acyl-CoA-consuming processes	
YGL180W	1.516110	ATG1	Protein serine/threonine kinase; required for vesicle formation in autophagy and the cytoplasm-to-vacuole targeting (Cvt) pathway	
YOR152C	0.623584	ATG40	Autophagy receptor with a role in endoplasmic reticulum degradation; involved specifically in autophagy of cortical and cytoplasmic ER in response to nitrogen starvation or rapamycin treatment	
YCR032W	1.155791	BPH1	Protein homologous to Chediak-Higashi syndrome and Beige proteins	
YDR275W	1.520321	BSC2	Protein of unknown function	
YMR055C	0.877054	BUB2	Mitotic exit network regulator	
YML042W	1.078828	CAT2	Carnitine acetyl-CoA transferase; present in both mitochondria and peroxisomes	
YPR013C	0.906810	CMR3	Putative zinc finger protein	
YER130C	0.989395	СОМ2	Transcription factor that binds IME1 Upstream Activation Signal (UAS)ru	
YKR034W	1.193822	DAL80	Negative regulator of genes in multiple nitrogen degradation pathways	
YIR004W	0.981755	DJP1	Cytosolic J-domain-containing protein; required for peroxisomal protein import and involved in peroxisome assembly	
YDL174C	0.546207	DLD1	Major mitochondrial D-lactate dehydrogenase	

	2,3-DMF 10G Resistant Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YKL213C	1.243369	DOA1	WD repeat protein required for ubiquitin-mediated protein degradation	
YIL064W	0.956157	EFM4	Lysine methyltransferase	
YCL045C	1.181235	EMC1	Member of conserved endoplasmic reticulum membrane complex	
YPR037C	0.824014	ERV2	Flavin-linked sulfhydryl oxidase localized to the ER lumen; involved in disulfide bond formation within the endoplasmic reticulum (ER)	
YIL065C	0.901891	FIS1	Protein involved in mitochondrial fission and peroxisome abundance	
YDR519W	1.727919	FPR2	Membrane-bound peptidyl-prolyl cis-trans isomerase (PPIase); binds to the drugs FK506 and rapamycin	
YAL022C	1.231956	FUN26	High affinity, broad selectivity, nucleoside/nucleobase transporter	
YER020W	1.076537	GPA2	Nucleotide binding alpha subunit of the heterotrimeric G protein	
YDL022W	1.325735	GPD1	NAD-dependent glycerol-3-phosphate dehydrogenase; key enzyme of glycerol synthesis, essential for growth under osmotic stress	
YKL109W	1.281778	HAP4	Transcription factor; subunit of the heme-activated, glucose-repressed Hap2p/3p/4p/5p CCAAT-binding complex	
YPL001W	0.856329	HAT1	Catalytic subunit of the Hat1p-Hat2p histone acetyltransferase complex	
YDR305C	1.133255	HNT2	Dinucleoside triphosphate hydrolase	
YDR258C	0.954653	HSP78	Oligomeric mitochondrial matrix chaperone	
YJL051W	0.741940	IRC8	Bud tip localized protein of unknown function	
YIL085C	0.739010	KTR7	Putative mannosyltransferase involved in protein glycosylation	
YLL007C	1.025227	LMO1	Homolog of mammalian ELMO (Engulfment and celL MOtility)	
YOR142W	0.744547	LSC1	Alpha subunit of succinyl-CoA ligase; succinyl-CoA ligase is a mitochondrial enzyme of the TCA cycle that catalyzes the nucleotide-dependent conversion of succinyl-CoA to succinate	
YGL154C	1.076493	LYS5	Phosphopantetheinyl transferase involved in lysine biosynthesis	
YER001W	1.176455	MNN1	Alpha-1,3-mannosyltransferase	
YPL013C	1.184731	MRPS16	Mitochondrial ribosomal protein of the small subunit	
YDL027C	1.466174	MRX9	Protein that associates with mitochondrial ribosome	

	2,3-DMF 10G Resistant Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YJL116C	0.836433	NCA3	Protein involved in mitochondrion organization	
YKL151C	1.209968	NNR2	Widely-conserved NADHX dehydratase; converts (S)- NADHX to NADH in ATP-dependent manner	
YHR195W	0.876481	NVJ1	Nuclear envelope protein	
YGL094C	0.734275	PAN2	Catalytic subunit of the Pan2p-Pan3p poly(A)- ribonuclease complex	
YIL050W	0.918297	PCL7	Pho85p cyclin of the Pho80p subfamily; forms a functional kinase complex with Pho85p which phosphorylates Mmr1p and is regulated by Pho81p	
YOL100W	1.136155	PKH2	Serine/threonine protein kinase; involved in sphingolipid- mediated signaling pathway that controls endocytosis	
YOR161C	0.803839	PNS1	Protein of unknown function	
YML047C	1.112164	PRM6	Potassium transporter that mediates K+ influx; activates high-affinity Ca2+ influx system (HACS) during mating pheromone response	
YGL053W	0.900690	PRM8	Pheromone-regulated protein; contains with 2 predicted transmembrane segments and an FF sequence, a motif involved in COPII binding	
YJL078C	0.738385	PRY3	Cell wall-associated protein involved in export of acetylated sterols	
YDR257C	1.282331	RKM4	Ribosomal lysine methyltransferase	
YDR465C	1.111731	RMT2	Arginine N5 methyltransferase; methylates ribosomal protein Rpl12 (L12) on Arg67	
YCL028W	1.171583	RNQ1	[PIN(+)] prion; an infectious protein conformation that is generally an ordered protein aggregate	
YIL066C	0.569618	RNR3	Minor isoform of large subunit of ribonucleotide- diphosphate reductase	
YLR325C	1.310320	RPL38	Ribosomal 60S subunit protein L38	
YMR074C	0.789708	SDD2	Protein with homology to human PDCD5; PDCD5 is involved in programmed cell death	
YMR140W	0.904082	SIP5	Protein of unknown function	
YNL047C	1.097793	SLM2	Phosphoinositide PI4,5P(2) binding protein, forms a complex with Slm1p	
YNL086W	0.819439	SNN1	Subunit of the BLOC-1 complex involved in endosomal maturation	
YGL131C	0.965289	SNT2	Subunit of Snt2C complex, RING finger ubiquitin ligase (E3)	
YKL184W	1.053011	SPE1	Ornithine decarboxylase; catalyzes the first step in polyamine biosynthesis	

		2,3-DMF 10	G Resistant Strains (continued)
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YIL073C	0.925329	SP022	Meiosis-specific protein essential for chromosome synapsis
YGR059W	0.413457	SPR3	Sporulation-specific homolog of the CDC3/10/11/12 family of genes
YPR151C	0.856022	SUE1	Protein required for degradation of unstable forms of cytochrome c
YPR156C	1.186842	ТРОЗ	Polyamine transporter of the major facilitator superfamily
YFR010W	1.147452	UBP6	Ubiquitin-specific protease; situated in the base subcomplex of the 26S proteasome, releases free ubiquitin from branched polyubiquitin chains en bloc, rather than from the distal tip of the chain
YLR386W	2.001068	VAC14	Enzyme regulator; involved in synthesis of phosphatidylinositol 3,5-bisphosphate, in control of trafficking of some proteins to the vacuole lumen via the MVB, and in maintenance of vacuole size and acidity
YCL069W	1.078316	VBA3	Permease of basic amino acids in the vacuolar membrane
YER128W	0.841194	VFA1	Protein that interacts with Vps4p and has a role in vacuolar sorting
YOR083W	0.730495	WHI5	Repressor of G1 transcription; binds to SCB binding factor (SBF) at SCB target promoters in early G1
YDR259C	1.072535	YAP6	Basic leucine zipper (bZIP) transcription factor; physically interacts with the Tup1-Cyc8 complex and recruits Tup1p to its targets
YDL072C	1.199146	YET3	Protein of unknown function; YET3 null mutant decreases the level of secreted invertase
YGR054W	0.576241	-	Eukaryotic initiation factor eIF2A; associates specifically with both 40S subunits and 80 S ribosomes, and interacts genetically with both eIF5b and eIF4E
YOR325W	0.697116	-	Dubious open reading frame; unlikely to encode a functional protein, based on available experimental and comparative sequence data
YEL068C	0.771487	-	Protein of unknown function; expressed at both mRNA and protein levels
YDL121C	0.907863	-	Putative protein of unknown function
YDL034W	0.930035	-	Dubious open reading frame
YLL020C	0.960599	-	Dubious open reading frame
YDL023C	0.980155	-	Dubious open reading frame
YIL077C	1.010735	-	Putative protein of unknown function
YKL066W	1.019045	-	Dubious open reading frame
YGL109W	1.120340	-	Dubious open reading frame
YCR022C	1.308430	-	Putative protein of unknown function

	2,3-DMF 10G Resistant Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YOR139C	1.349639	-	Dubious open reading frame	
YGL081W	1.381750	-	Putative protein of unknown function	

2,3-DMF 15G Resistant

	2,3-DMF 15G Resistant Strains				
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function		
YCR088W	0.752527	ABP1	Actin-binding protein of the cortical actin cytoskeleton		
			Acyl-CoA-binding protein; transports newly synthesized		
YGR037C	1.129270	ACB1	acyl-CoA esters from fatty acid synthetase (Fas1p-Fas2p)		
			to acyl-CoA-consuming processes		
YGL032C	1.121650	AGA2	Adhesion subunit of a-agglutinin of a-cells		
YPR021C	0.902986	AGC1	Mitochondrial amino acid transporter; acts both as a glutamate uniporter and as an aspartate-glutamate exchanger		
YHR199C	0.743028	AIM46	Protein of unknown function; the authentic, non-tagged protein is detected in highly purified mitochondria in high-throughput studies		
YJL084C	0.660857	ALY2	Alpha arrestin; controls nutrient-mediated intracellular sorting of permease Gap1p		
YHR126C	1.301665	ANS1	Putative GPI protein; SWAT-GFP and mCherry fusion proteins localize to the vacuole		
YPR128C	1.292918	ANT1	Peroxisomal adenine nucleotide transporter; involved in beta-oxidation of medium-chain fatty acid; required for peroxisome proliferation		
YDR530C	1.205663	APA2	Diadenosine 5',5'''-P1,P4-tetraphosphate phosphorylase II		
YCR048W	0.841336	ARE1	Acyl-CoA:sterol acyltransferase; endoplasmic reticulum enzyme that contributes the major sterol esterification activity in the absence of oxygen		
YHL047C	1.354465	ARN2	Transporter; member of the ARN family of transporters that specifically recognize siderophore-iron chelates		
YHR137W	0.890741	ARO9	Aromatic aminotransferase II; catalyzes the first step of tryptophan, phenylalanine, and tyrosine catabolism		
YGL180W	1.218934	ATG1	Protein serine/threonine kinase; required for vesicle formation in autophagy and the cytoplasm-to-vacuole targeting (Cvt) pathway		
YOR152C	0.438283	ATG40	Autophagy receptor with a role in endoplasmic reticulum degradation		
YLR412W	1.888104	BER1	Protein involved in microtubule-related processes		

	2,3-DMF 15G Resistant Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YDR275W	1.178372	BSC2	Protein of unknown function; ORF exhibits genomic organization compatible with a translational readthrough- dependent mode of expression	
YGR041W	0.447530	BUD9	Protein involved in bud-site selection; mutant has increased aneuploidy tolerance	
YIL083C	0.930752	CAB2	Subunit of the CoA-Synthesizing Protein Complex (CoA-SPC)	
YPR013C	1.034299	CMR3	Putative zinc finger protein; YPR013C is not an essential gene	
YMR244C- A	2.188208	COA6	Protein involved in cytochrome c oxidase (Complex IV) assembly; involved in delivery of copper to Complex IV	
YIL111W	1.004974	COX5B	Subunit Vb of cytochrome c oxidase; cytochrome c oxidase is the terminal member of the mitochondrial inner membrane electron transport chain	
YOR303W	0.614698	CPA1	Small subunit of carbamoyl phosphate synthetase	
YHR109W	0.962441	CTM1	Cytochrome c lysine methyltransferase	
YER143W	0.958496	DDI1	DNA damage-inducible v-SNARE binding protein; role in suppression of protein secretion	
YDR403W	1.438155	DIT1	Sporulation-specific enzyme required for spore wall maturation	
YIR004W	1.062476	DJP1	Cytosolic J-domain-containing protein	
YDL174C	0.489053	DLD1	Major mitochondrial D-lactate dehydrogenase	
YKL213C	0.833262	DOA1	WD repeat protein required for ubiquitin-mediated protein degradation; ubiquitin binding cofactor that complexes with Cdc48p; required for ribophagy	
YDR446W	1.195093	ECM11	Meiosis-specific protein; component of the Synaptonemal Complex (SC) along with Gmc2p	
YIL064W	1.115680	EFM4	Lysine methyltransferase	
YNL024C	1.086366	EFM6	Putative S-adenosylmethionine-dependent lysine methyltransferase	
YLR206W	1.118795	ENT2	Epsin-like protein required for endocytosis and actin patch assembly	
YMR058W	1.018959	FET3	Ferro-O2-oxidoreductase; multicopper oxidase that oxidizes ferrous (Fe2+) to ferric iron (Fe3+) for subsequent cellular uptake by transmembrane permease Ftr1p	
YDR519W	1.587633	FPR2	Membrane-bound peptidyl-prolyl cis-trans isomerase (PPIase)	
YER145C	0.952464	FTR1	High affinity iron permease; involved in the transport of iron across the plasma membrane	

	2,3-DMF 15G Resistant Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YDR506C	1.121662	GMC1	Protein involved in meiotic progression	
YER020W	1.394784	GPA2	Nucleotide binding alpha subunit of the heterotrimeric G protein	
YPL189W	1.168801	GUP2	Probable membrane protein	
YKL109W	1.310380	HAP4	Transcription factor; subunit of the heme-activated, glucose-repressed Hap2p/3p/4p/5p CCAAT-binding complex	
YML075C	0.908144	HMG1	HMG-CoA reductase; catalyzes conversion of HMG-CoA to mevalonate, which is a rate-limiting step in sterol biosynthesis	
YOL155C	0.637568	HPF1	Haze-protective mannoprotein	
YIL110W	1.315206	HPM1	AdoMet-dependent methyltransferase	
YBR072W	0.868595	HSP26	Small heat shock protein (sHSP) with chaperone activity	
YDR258C	0.798028	HSP78	Oligomeric mitochondrial matrix chaperone	
YJL051W	0.743465	IRC8	Bud tip localized protein of unknown function	
YOR155C	0.681009	ISN1	Inosine 5'-monophosphate (IMP)-specific 5'-nucleotidase	
YOL002C	1.440972	IZH2	Plasma membrane receptor for plant antifungal osmotin	
YNL227C	2.101595]]]1	Co-chaperone that stimulates the ATPase activity of Ssa1p	
YDR148C	1.069452	KGD2	Dihydrolipoyl transsuccinylase	
YPL155C	0.615888	KIP2	Kinesin-related motor protein involved in mitotic spindle positioning	
YKR061W	0.915108	KTR2	Mannosyltransferase involved in N-linked protein glycosylation	
YLL007C	1.181845	LMO1	Homolog of mammalian ELMO (Engulfment and celL MOtility	
YOR142W	0.815504	LSC1	Alpha subunit of succinyl-CoA ligase -dependent conversion of succinyl-CoA to succinate	
YIL094C	1.091424	LYS12	Homo-isocitrate dehydrogenase; an NAD-linked mitochondrial enzyme	
YGL154C	1.119934	LYS5	Phosphopantetheinyl transferase involved in lysine biosynthesis	
YDL027C	0.977450	MRX9	Protein that associates with mitochondrial ribosome	
YCR092C	1.203733	MSH3	Mismatch repair protein; forms dimers with Msh2p that mediate repair of insertion or deletion mutations and removal of nonhomologous DNA ends	
YBR255W	0.884745	MTC4	Protein of unknown function	
YKL151C	0.993247	NNR2	Widely-conserved NADHX dehydratase	
YGL151W	1.568784	NUT1	Component of the RNA polymerase II mediator complex	
YHR195W	0.848331	NVJ1	Nuclear envelope protein	

		2,3-DMF 15	G Resistant Strains (continued)
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YPR091C	0.950980	NVJ2	Lipid-binding ER protein, enriched at nucleus-vacuolar junctions (NVJ)
YGL094C	0.538516	PAN2	Catalytic subunit of the Pan2p-Pan3p poly(A)- ribonuclease complex
YIL071C	0.817978	PCI8	Possible shared subunit of Cop9 signalosome (CSN) and eIF3
YGR087C	0.918940	PDC6	Minor isoform of pyruvate decarboxylase; decarboxylates pyruvate to acetaldehyde, involved in amino acid catabolism; transcription is glucose- and ethanol- dependent, and is strongly induced during sulfur limitation
YOR161C	0.851129	PNS1	Protein of unknown function; has similarity to Torpedo californica tCTL1p, which is postulated to be a choline transporter
YML047C	1.155697	PRM6	Potassium transporter that mediates K+ influx
YBL068W	1.350950	PRS4	5-phospho-ribosyl-1(alpha)-pyrophosphate synthetase, synthesizes PRPP
YJL078C	0.655987	PRY3	Cell wall-associated protein involved in export of acetylated sterols
YNL201C	0.782810	PSY2	Subunit of protein phosphatase PP4 complex
YER089C	0.746334	PTC2	Type 2C protein phosphatase (PP2C); dephosphorylates Hog1p to limit maximal osmostress induced kinase activity
YDR419W	1.036992	RAD30	DNA polymerase eta; involved in translesion synthesis during post-replication repair; catalyzes the synthesis of DNA opposite cyclobutane pyrimidine dimers and other lesions; involved in formation of post-replicative damage- induced genome-wide cohesion; may also have a role in protection against mitochondrial mutagenesis; mutations in human pol eta are responsible for XPV
YDL059C	1.184554	RAD59	Protein involved DNA double-strand break repair; repairs breaks in DNA during vegetative growth via recombination and single-strand annealing; anneals complementary single-stranded DNA; forms nuclear foci upon DNA replication stress; required for loading of Rad52p to DSBs; regulates replication fork progression in DNA ligase I-deficient cells; paralog of Rad52p
YOR265W	1.038245	RBL2	Protein involved in microtubule morphogenesis
YDR379W	0.921755	RGA2	GTPase-activating protein for polarity-establishment protein Cdc42p
YIL057C	0.723975	RGI2	Protein of unknown function

		2,3-DMF 15	G Resistant Strains (continued)
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YDR257C	0.960625	RKM4	Ribosomal lysine methyltransferase
YDR465C	0.802613	RMT2	Arginine N5 methyltransferase
YDR279W	1.133031	RNH202	Ribonuclease H2 subunit; required for RNase H2 activity
YIL066C	0.484629	RNR3	Minor isoform of large subunit of ribonucleotide- diphosphate reductase
YFL034C-A	0.977646	RPL22B	Ribosomal 60S subunit protein L22A
YDL136W	0.632150	RPL35B	Ribosomal 60S subunit protein L35B; homologous to mammalian ribosomal protein L35
YLR325C	1.260014	RPL38	Ribosomal 60S subunit protein L38; homologous to mammalian ribosomal protein L38
YBL066C	0.976522	SEF1	Putative transcription factor; has homolog in Kluyveromyces lactis
YMR140W	0.720635	SIP5	Protein of unknown function
YEL065W	0.719452	SIT1	Ferrioxamine B transporter; member of the ARN family of transporters that specifically recognize siderophore-iron chelates
YNL047C	0.948829	SLM2	Phosphoinositide PI4,5P(2) binding protein, forms a complex with Slm1p
YHR030C	0.980646	SLT2	Serine/threonine MAP kinase; coordinates expression of all 19S regulatory particle assembly-chaperones (RACs) to control proteasome abundance
YNL086W	1.410124	SNN1	Subunit of the BLOC-1 complex involved in endosomal maturation
YGL131C	1.110632	SNT2	Subunit of Snt2C complex, RING finger ubiquitin ligase (E3)
YIL073C	0.753199	SP022	Meiosis-specific protein essential for chromosome synapsis
YGR059W	0.347663	SPR3	Sporulation-specific homolog of the CDC3/10/11/12 family of genes
YPR151C	0.829205	SUE1	Protein required for degradation of unstable forms of cytochrome c
YDR297W	0.886634	SUR2	Sphinganine C4-hydroxylase; catalyses the conversion of sphinganine to phytosphingosine in sphingolipid biosyntheis
YIL137C	0.729602	TMA108	Ribosome-associated, nascent chain binding factor; binds N-terminal region of nascent peptides during translation
YJL093C	0.593966	TOK1	Outward-rectifier potassium channel of the plasma membrane
YGL096W	0.808417	TOS8	Homeodomain-containing protein and putative transcription factor; found associated with chromatin
YKL166C	1.375181	ТРКЗ	cAMP-dependent protein kinase catalytic subunit

	2,3-DMF 15G Resistant Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YDR092W	0.864283	UBC13	E2 ubiquitin-conjugating enzyme; involved in the error- free DNA postreplication repair pathway	
YLL039C	0.930752	UBI4	Ubiquitin; becomes conjugated to proteins, marking them for selective degradation via the ubiquitin-26S proteasome system; essential for the cellular stress response	
YDL091C	0.882922	UBX3	Clathrin-coated vesicle component, regulator of endocytosis; copurifies with the DSC ubiquitin ligase complex	
YIL017C	1.099921	VID28	GID Complex subunit, serves as adaptor for regulatory subunit Vid24p	
YLR410W	0.971720	VIP1	Inositol hexakisphosphate and inositol heptakisphosphate kinase	
YDL072C	0.825793	YET3	Protein of unknown function	
YDR319C	1.111615	YFT2	Protein required for normal ER membrane biosynthesis	
YKR014C	1.065498	YPT52	Endosomal Rab family GTPase; required for vacuolar protein sorting, endocytosis and multivesicular body (MVB) biogenesis and sorting	
YNL058C	0.657045	-	Putative protein of unknown function	
YPR064W	0.685975	-	Putative protein of unknown function	
YDL034W	0.757243	-	Dubious open reading frame	
YBR225W	0.793997	-	Putative protein of unknown function	
YDL121C	0.807392	-	Putative protein of unknown function	
YGR291C	0.810272	-	Dubious open reading frame	
YDR467C	0.945695	-	Dubious open reading frame	
YGR054W	0.950759	-	Eukaryotic initiation factor eIF2A	
YHR210C	0.983847	-	Putative aldose 1-epimerase superfamily protein	
YPR117W	1.008556	-	Putative protein of unknown function	
YDL023C	1.053316	-	Dubious open reading frame	
YLL020C	1.059517	-	Dubious open reading frame	
YGL140C	1.127625	-	Putative protein of unknown function	
YCR102C	1.171009	-	Putative protein of unknown function	
YCR101C	1.215706	-	Putative protein of unknown function	
YGL081W	1.249041	-	Putative protein of unknown function	
YCR022C	1.298300	-	Putative protein of unknown function	
YDL086W	1.352890	-	Putative carboxymethylenebutenolidase	
YOR139C	1.366406	-	Dubious open reading frame	
YPR114W	1.401512	-	Putative protein of unknown function	
YDL062W	1.796456	-	Dubious open reading frame	
YKR078W	3.604044	-	Cytoplasmic protein of unknown function	

2,3- DMF Resistant across all time points

	2,3-DMF Resistant Strains Across All Time Points			
Deleted ORF Name	Deleted Gene Name	Deleted Gene Function		
YGR037C	ACB1	Acyl-CoA-binding protein		
YDR275W	BSC2	Protein of unknown function		
YPR013C	CMR3	Putative zinc finger protein		
YIR004W	DJP1	Cytosolic J-domain-containing protein; required for peroxisomal protein import and involved in peroxisome assembly		
YKL213C	DOA1	WD repeat protein required for ubiquitin-mediated protein degradation		
YDR519W	FPR2	Membrane-bound peptidyl-prolyl cis-trans isomerase (PPIase)		
YER020W	GPA2	Nucleotide binding alpha subunit of the heterotrimeric G protein		
YLL007C	LMO1	Homolog of mammalian ELMO (Engulfment and celL MOtility)		
YHR195W	NVJ1	Nuclear envelope protein		
YJL078C	PRY3	Cell wall-associated protein involved in export of acetylated sterols		
YLR325C	RPL38	Ribosomal 60S subunit protein L38		
YMR140W	SIP5	Protein of unknown function		
YNL086W	SNN1	Subunit of the BLOC-1 complex involved in endosomal maturation		
YDL034W	-	Dubious ORF; unlikely to encode a functional protein		
YLL020C	-	Dubious ORF; unlikely to encode a functional protein		
YCR022C	-	Putative protein of unknown function		

2,3-DMF 5G Sensitive

2,3-DMF 5G Sensitive Strains			
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function
YMR303C	-0.971537	ADH2	Glucose-repressible alcohol dehydrogenase II
YBR286W	-0.833081	APE3	Vacuolar aminopeptidase Y; processed to mature form by Prb1p
YNL077W	-1.535892	APJ1	Chaperone with a role in SUMO-mediated protein degradation; member of the DnaJ-like family; conserved across eukaryotes
YBL099W	-1.179454	ATP1	Alpha subunit of the F1 sector of mitochondrial F1F0 ATP synthase; which is a large, evolutionarily conserved enzyme complex required for ATP synthesis
YLR015W	-0.950723	BRE2	Subunit of COMPASS (Set1C) complex; COMPASS methylates Lys4 of histone H3 and functions in silencing at telomeres

2,3-DMF 5G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YNR051C	-1.278724	BRE5	Ubiquitin protease cofactor; forms deubiquitination complex with Ubp3p that coregulates anterograde and retrograde transport between the endoplasmic reticulum and Golgi compartments
YOR125C	-1.522010	CAT5	Protein required for ubiquinone (Coenzyme Q) biosynthesis
YNL051W	-2.910711	COG5	Component of the conserved oligomeric Golgi complex
YNL041C	-2.929606	COG6	Component of the conserved oligomeric Golgi complex
YJL005W	-1.599749	CYR1	Adenylate cyclase; required for cAMP production and cAMP-dependent protein kinase signaling
YGR092W	-2.806373	DBF2	Ser/Thr kinase involved in transcription and stress response; functions as part of a network of genes in exit from mitosis
YDL219W	-0.612812	DTD1	D-Tyr-tRNA(Tyr) deacylase; functions in protein translation, may affect nonsense suppression via alteration of the protein synthesis machinery; ubiquitous among eukaryotes
YMR299C	-1.539484	DYN3	Dynein light intermediate chain (LIC); localizes with dynein, null mutant is defective in nuclear migration
YLR047C	-0.835818	FRE8	Protein with sequence similarity to iron/copper reductases; involved in iron homeostasis; deletion mutant has iron deficiency/accumulation growth defects
YGL020C	-1.961348	GET1	Subunit of the GET complex; involved in insertion of proteins into the ER membrane; required for the retrieval of HDEL proteins from the Golgi to the ER in an ERD2 dependent fashion and for normal mitochondrial morphology and inheritance
YER083C	-2.765680	GET2	Subunit of the GET complex; involved in insertion of proteins into the ER membrane; required for the retrieval of HDEL proteins from the Golgi to the ER in an ERD2 dependent fashion and for meiotic nuclear division
YIR037W	-1.020394	HYR1	Thiol peroxidase; functions as a hydroperoxide receptor to sense intracellular hydroperoxide levels and transduce a redox signal to the Yap1p transcription factor
YIR024C	-0.720088	INA22	F1F0 ATP synthase peripheral stalk assembly factor
YKR019C	-3.971788	IRS4	EH domain-containing protein; involved in regulating phosphatidylinositol 4,5-bisphosphate levels and autophagy
YJR097W	-1.419853	<i>]]]</i> 3	Protein of unknown function; contains a CSL Zn finger and a DnaJ-domain; involved in diphthamide biosynthesis; ortholog human Dph4

2,3-DMF 5G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YDR005C	-1.495639	MAF1	Highly conserved negative regulator of RNA polymerase III
YEL053C	-0.874518	MAK10	Non-catalytic subunit of the NatC N-terminal acetyltransferase
YPR051W	-1.355698	МАКЗ	Catalytic subunit of the NatC type N-terminal acetyltransferase (NAT)
YGL219C	-1.316541	MDM34	Mitochondrial component of the ERMES complex; links the ER to mitochondria
YIR033W	-1.962927	MGA2	ER membrane protein involved in regulation of OLE1 transcription
YJR074W	-2.376334	MOG1	Conserved nuclear protein that interacts with GTP-Gsp1p
YGR028W	-0.863340	MSP1	Highly-conserved N-terminally anchored AAA-ATPase
YGR089W	-0.708472	NNF2	Protein that exhibits physical and genetic interactions with Rpb8p
YNL099C	-0.936782	OCA1	Putative protein tyrosine phosphatase; required for cell cycle arrest in response to oxidative damage of DNA
YOR017W	-0.729197	PET127	Protein with a role in 5'-end processing of mitochondrial RNAs; located in the mitochondrial membrane
YNL329C	-1.122094	PEX6	AAA-peroxin
YJR153W	-0.720847	PGU1	Endo-polygalacturonase; pectolytic enzyme that hydrolyzes the alpha-1,4-glycosidic bonds in the rhamnogalacturonan chains in pectins
YFR034C	-1.054225	РНО4	Basic helix-loop-helix (bHLH) transcription factor of the myc-family; activates transcription cooperatively with Pho2p in response to phosphate limitation
YML123C	-1.161148	PH084	High-affinity inorganic phosphate (Pi) transporter
YNL098C	-1.387257	RAS2	GTP-binding protein; regulates nitrogen starvation response, sporulation, and filamentous growth
YDR202C	-1.119030	RAV2	Subunit of RAVE complex (Rav1p, Rav2p, Skp1p)
YMR283C	-0.904050	RIT1	Initiator methionine 2'-O-ribosyl phosphate transferase
YDL020C	-1.968369	RPN4	Transcription factor that stimulates expression of proteasome genes
YDL216C	-0.708152	RRI1	Catalytic subunit of the COP9 signalosome (CSN) complex
YMR263W	-1.230442	SAP30	Component of Rpd3L histone deacetylase complex
YDR077W	-0.943983	SED1	Major stress-induced structural GPI-cell wall glycoprotein
YLR079W	-2.719011	SIC1	Cyclin-dependent kinase inhibitor (CKI)
YHR206W	-1.145970	SKN7	Nuclear response regulator and transcription factor
YLR055C	-1.442292	SPT8	Subunit of the SAGA transcriptional regulatory complex

2,3-DMF 5G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YDR463W	-2.473489	STP1	Transcription factor; contains a N-terminal regulatory motif (RI) that acts as a cytoplasmic retention determinant and as an Asi dependent degron in the nucleus
YJL004C	-3.121976	SYS1	Integral membrane protein of the Golgi; required for targeting of the Arf-like GTPase Arl3p to the Golgi
YPR074C	-1.640505	TKL1	Transketolase
YOL018C	-5.186796	TLG2	Syntaxin-like t-SNARE; forms a complex with Tlg1p and Vti1p and mediates fusion of endosome-derived vesicles with the late Golgi
YDR108W	-2.457089	TRS85	Component of transport protein particle (TRAPP) complex III
YKR088C	-0.675722	TVP38	Integral membrane protein; localized to late Golgi vesicles along with the v-SNARE Tlg2p; required for asymmetric localization of Kar9p during mitosis
YKR098C	-0.965617	UBP11	Ubiquitin-specific protease; cleaves ubiquitin from ubiquitinated proteins
YDR484W	-4.556583	VPS52	Component of the GARP (Golgi-associated retrograde protein) complex; GARP is required for the recycling of proteins from endosomes to the late Golgi, and for mitosis after DNA damage induced checkpoint arrest
YFR007W	-0.976674	YFH7	Putative kinase with similarity to the PRK/URK/PANK kinase subfamily
YGR281W	-1.155185	YOR1	Plasma membrane ATP-binding cassette (ABC) transporter
YML122C	-2.689283	-	Putative protein of unknown function
YJL120W	-1.869174	-	Dubious open reading frame
YNR042W	-1.463566	-	Dubious open reading frame
YPL150W	-1.427868	-	Protein kinase of unknown cellular role
YDR048C	-1.414127	-	Dubious open reading frame
YOR008C- A	-1.162266	-	Putative protein of unknown function
YOL075C	-1.042813	-	Putative ABC transporter
YGL042C	-0.997619	-	Dubious open reading frame
YDR338C	-0.981416	-	Putative protein of unknown function
YBR292C	-0.963285	-	Dubious open reading frame
YGL214W	-0.877412	-	Dubious open reading frame
YDR102C	-0.796059	-	Putative protein of unknown function
YNL122C	-0.767971	-	Mitochondrial ribosomal protein of the large subunit
YIR016W	-0.615145	-	Putative protein of unknown function

2,3-DMF 10G Sensitive

2,3-DMF 10G Sensitive Strains			
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function
YGL071W	-2.735213	AFT1	Transcription factor involved in iron utilization and homeostasis
YBR286W	-1.288483	APE3	Vacuolar aminopeptidase Y; processed to mature form by Prb1p
YNL077W	-1.491120	APJ1	Chaperone with a role in SUMO-mediated protein degradation; member of the DnaJ-like family; conserved across eukaryotes forms nuclear foci upon DNA replication stress
YNL315C	-2.222232	ATP11	Molecular chaperone; required for the assembly of alpha and beta subunits into the F1 sector of mitochondrial F1F0 ATP synthase; N-terminally propionylated in vivo
YGR286C	-0.943762	BIO2	Biotin synthase; catalyzes the conversion of dethiobiotin to biotin, which is the last step of the biotin biosynthesis pathway; complements E. coli bioB mutant
YNR051C	-1.919521	BRE5	Ubiquitin protease cofactor
YOR125C	-1.290148	CAT5	Protein required for ubiquinone (Coenzyme Q) biosynthesis
YKL208W	-1.257861	CBT1	Protein involved in 5' RNA end processing
YOR039W	-2.267557	CKB2	Beta' regulatory subunit of casein kinase 2 (CK2)
YNL051W	-6.892976	COG5	Component of the conserved oligomeric Golgi complex
YNL041C	-7.300942	COG6	Component of the conserved oligomeric Golgi complex
YGL005C	-7.321791	COG7	Component of the conserved oligomeric Golgi complex
YML071C	-7.832654	COG8	Component of the conserved oligomeric Golgi complex
YCR086W	-1.824835	CSM1	Nucleolar protein that mediates homolog segregation during meiosis I
YBR291C	-1.484676	CTP1	Mitochondrial inner membrane citrate transporter
YJL005W	-1.799016	CYR1	Adenylate cyclase; required for cAMP production and cAMP-dependent protein kinase signaling
YGR092W	-4.787526	DBF2	Ser/Thr kinase involved in transcription and stress response
YDL160C	-2.337756	DHH1	Cytoplasmic DEAD-box helicase, stimulates mRNA decapping
YBR278W	-1.582657	DPB3	Third-largest subunit of DNA polymerase II (DNA polymerase epsilon); required to maintain fidelity of chromosomal replication and also for inheritance of telomeric silencing
YBR281C	-1.267645	DUG2	Component of glutamine amidotransferase (GATase II)
YMR299C	-1.337928	DYN3	Dynein light intermediate chain (LIC); localizes with dynein, null mutant is defective in nuclear migration

	2,3-DMF 10G Sensitive Strains (continued) Deleted			
Deleted ORF Name	Deleted ORF Name	ORF Name	Deleted ORF Name	
YGL020C	-6.358921	GET1	Subunit of the GET complex; involved in insertion of	
-0.33092	0.000721	GLII	proteins into the ER membrane	
YER083C	-5.764015	GET2	Subunit of the GET complex; involved in insertion of	
			proteins into the ER membrane	
YDL100C	-1.944567	GET3	Guanine nucleotide exchange factor for Gpa1p; amplifies (protein signaling; functions as a chaperone under ATP- depleted oxidative stress conditions; subunit of GET complex, involved in ATP dependent Golgi to ER trafficking and insertion of tail-anchored (TA) proteins into ER membrane under non-stress conditions	
YOR070C	-2.382902	GYP1	Cis-golgi GTPase-activating protein (GAP) for yeast Rabs	
YNL281W	-0.790311	НСН1	Heat shock protein regulator; binds to Hsp90p and may stimulate ATPase activity	
YKR019C	-7.686402	IRS4	EH domain-containing protein; involved in regulating phosphatidylinositol 4,5-bisphosphate levels and autophagy	
YJR097W	-1.485647	JJJ3	Protein of unknown function	
YAL024C	-4.607979	LTE1	Protein similar to GDP/GTP exchange factors	
YEL053C	-1.821274	MAK10	Non-catalytic subunit of the NatC N-terminal acetyltransferase; required for replication of dsRNA virus expression is glucose-repressible	
YPR051W	-2.271533	MAK3	Catalytic subunit of the NatC type N-terminal acetyltransferase (NAT	
YOL027C	-1.317384	MDM38	Mitochondrial protein; forms a complex with Mba1p to facilitate recruitment of mRNA-specific translational activators to ribosomes	
YML062C	-1.648295	MFT1	Subunit of the THO complex	
YIR033W	-4.325982	MGA2	ER membrane protein involved in regulation of OLE1 transcription	
YMR115W	-1.403710	MGR3	Subunit of the mitochondrial (mt) i-AAA protease supercomplex	
YFR011C	-0.784141	MIC19	Component of the MICOS complex	
YDR347W	-3.109173	MRP1	Mitochondrial ribosomal protein of the small subunit	
YNL005C	-1.453042	MRP7	Mitochondrial ribosomal protein of the large subunit	
YMR193W	-4.393036	MRPL24	Mitochondrial ribosomal protein of the large subunit	
YML009C	-1.212511	MRPL39	Mitochondrial ribosomal protein of the large subunit	
YPL174C	-1.430655	NIP100	Large subunit of the dynactin complex	
YNL056W	-1.185107	OCA2	Protein of unknown function	
YJR073C	-1.439331	OPI3	Methylene-fatty-acyl-phospholipid synthase	
YFR034C	-1.376279	PHO4	Basic helix-loop-helix (bHLH) transcription factor of the myc-family	

Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	OG Sensitive Strains (continued) Deleted ORF Name
YDR435C	-1.929866	PPM1	Carboxyl methyltransferase; methylates the C terminus of the protein phosphatase 2A catalytic subunit (Pph21p or Pph22p), which is important for complex formation with regulatory subunits
YLR204W	-1.693130	QRI5	Mitochondrial inner membrane protein; required for accumulation of spliced COX1 mRNA; may have an additional role in translation of COX1 mRNA
YNL098C	-2.107583	RAS2	GTP-binding protein; regulates nitrogen starvation response, sporulation, and filamentous growth
YCR036W	-1.839380	RBK1	Putative ribokinase
YMR274C	-0.968692	RCE1	Type II CAAX prenyl protease
YJL217W	-0.930888	REE1	Cytoplasmic protein involved in the regulation of enolase (ENO1)
YMR283C	-0.818155	RIT1	Initiator methionine 2'-O-ribosyl phosphate transferase
YBR030W	-1.197373	RKM3	Ribosomal lysine methyltransferase
YNL248C	-2.805783	RPA49	RNA polymerase I subunit A49
YDL133C- A	-1.262419	RPL41B	Ribosomal 60S subunit protein L41B
YDL020C	-4.664259	RPN4	Transcription factor that stimulates expression of proteasome genes
YIL153W	-1.222704	RRD1	Peptidyl-prolyl cis/trans-isomerase; activator of the phosphotyrosyl phosphatase activity of PP2A
YMR263W	-1.358035	SAP30	Component of Rpd3L histone deacetylase complex
YLR268W	-7.261507	SEC22	R-SNARE protein; assembles into SNARE complex with Bet1p, Bos1p and Sed5p; cycles between the ER and Golgi complex
YHR206W	-1.783726	SKN7	Nuclear response regulator and transcription factor; physically interacts with the Tup1-Cyc8 complex and recruits Tup1p to its targets
YOR327C	-1.382896	SNC2	Vesicle membrane receptor protein (v-SNARE); involved in the fusion between Golgi-derived secretory vesicles with the plasma membrane
YLR055C	-1.527220	SPT8	Subunit of the SAGA transcriptional regulatory complex
YBR283C	-4.080281	SSH1	Subunit of the Ssh1 translocon complex
YMR183C	-1.240148	SSO2	Plasma membrane t-SNARE; involved in fusion of secretory vesicles at the plasma membrane
YLR452C	-1.064612	SST2	GTPase-activating protein for Gpa1p; regulates desensitization to alpha factor pheromone

	2,3-DMF 10G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YDR463W	-6.338989	STP1	Transcription factor; contains a N-terminal regulatory motif (RI) that acts as a cytoplasmic retention determinant and as an Asi dependent degron in the nucleus	
YJL004C	-6.715130	SYS1	Integral membrane protein of the Golgi; required for targeting of the Arf-like GTPase Arl3p to the Golgi	
YBR069C	-2.211228	TAT1	Amino acid transporter for valine, leucine, isoleucine, and tyrosine	
YPR074C	-3.455886	TKL1	Transketolase; catalyzes conversion of xylulose-5- phosphate and ribose-5-phosphate to sedoheptulose-7- phosphate and glyceraldehyde-3-phosphate in the pentose phosphate pathway	
YOL018C	-8.282081	TLG2	Syntaxin-like t-SNARE; forms a complex with Tlg1p and Vti1p and mediates fusion of endosome-derived vesicles with the late Golgi; required along with VPS45 for an early step of the constitutive CVT pathway	
YDR120C	-1.915219	TRM1	tRNA methyltransferase	
YDR108W	-4.368972	TRS85	Component of transport protein particle (TRAPP) complex III	
YML028W	-1.603424	TSA1	Thioredoxin peroxidase; acts as both ribosome-associated and free cytoplasmic antioxidant	
YOR006C	-1.761923	TSR3	Protein required for 20S pre-rRNA processing	
YBR006W	-1.246184	UGA2	Succinate semialdehyde dehydrogenase	
YDR484W	-6.356575	VPS52	Component of the GARP (Golgi-associated retrograde protein) complex	
YML007W	-1.583690	YAP1	Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stress	
YFR007W	-1.418923	YFH7	Putative kinase with similarity to the PRK/URK/PANK kinase subfamily	
YGR281W	-1.045704	YOR1	Plasma membrane ATP-binding cassette (ABC) transporter	
YNL093W	-0.813317	YPT53	Stress-induced Rab family GTPase; required for vacuolar protein sorting and endocytosis; involved in ionic stress tolerance	
YML122C	-4.851465	-	Putative protein of unknown function	
YDR149C	-2.027454	-	Dubious open reading frame	
YNL120C	-1.804663	-	Dubious open reading frame	
YGR035C	-1.746188	-	Putative protein of unknown function	
YPR050C	-1.474772	-	Dubious open reading frame	
YCR087W	-1.398220	-	Dubious open reading frame	

	2,3-DMF 10G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YGL214W	-1.379099	-	Dubious open reading frame	
YCR050C	-1.311811	-	Non-essential protein of unknown function	
YBR292C	-1.265182	-	Dubious open reading frame	
YHL044W	-1.184607	-	Putative integral membrane protein	
YOR008C- A	-1.120812	-	Putative protein of unknown function	
YNL115C	-1.032246	-	Putative protein of unknown function	
YJR026W	-0.980077	-	Putative protein of unknown function	
YGL042C	-0.979831	-	Dubious open reading frame	
YIR016W	-0.752606	-	Putative protein of unknown function	

2,3-DMF 15G Sensitive

	2,3-DMF 15G Sensitive Strains			
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function	
YLR131C	-5.474887	ACE2	Transcription factor required for septum destruction after cytokinesis	
YMR120C	-1.029601	ADE17	Enzyme of 'de novo' purine biosynthesis	
YMR282C	-3.615445	AEP2	Mitochondrial protein; likely involved in translation of the mitochondrial OLI1 mRNA	
YER017C	-4.115650	AFG3	Mitochondrial inner membrane m-AAA protease component	
YHR093W	-1.549456	AHT1	Dubious open reading frame	
YOR067C	-1.070793	ALG8	Glucosyl transferase; involved in N-linked glycosylation	
YBR286W	-0.946290	APE3	Vacuolar aminopeptidase Y; processed to mature form by Prb1p	
YNL077W	-1.237276	APJ1	Chaperone with a role in SUMO-mediated protein degradation; member of the DnaJ-like family; conserved across eukaryotes	
YBR288C	-1.399158	АРМЗ	Mu3-like subunit of the clathrin associated protein complex (AP-3); functions in transport of alkaline phosphatase to the vacuole via the alternate pathway	
YJL024C	-1.447442	APS3	Small subunit of the clathrin-associated adaptor complex AP-3; involved in vacuolar protein sorting	
YDL192W	-4.828171	ARF1	ADP-ribosylation factor; GTPase of the Ras superfamily involved in regulation of coated vesicle formation in intracellular trafficking within the Golgi	

2,3-DMF 15G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YCR068W	-2.132727	ATG15	Phospholipase; preferentially hydrolyses phosphatidylserine, with minor activity against cardiolipin and phosphatidylethanolamine
YIL088C	-0.991925	AVT7	Putative transporter; member of a family of seven S. cerevisiae genes (AVT1-7) related to vesicular GABA- glycine transporters
YJL020C	-0.853276	BBC1	Protein possibly involved in assembly of actin patches
YGR286C	-0.819173	BIO2	Biotin synthase; catalyzes the conversion of dethiobiotin to biotin, which is the last step of the biotin biosynthesis pathway; complements E. coli bioB mutant
YLR015W	-1.344640	BRE2	Subunit of COMPASS (Set1C) complex; COMPASS methylates Lys4 of histone H3 and functions in silencing at telomeres
YNR051C	-2.048330	BRE5	Ubiquitin protease cofactor; forms deubiquitination complex with Ubp3p that coregulates anterograde and retrograde transport between the endoplasmic reticulum and Golgi compartments
YFL025C	-4.079415	BST1	GPI inositol deacylase of the endoplasmic reticulum (ER); negatively regulates COPII vesicle formation; prevents production of vesicles with defective subunits
YLR319C	-1.437797	BUD6	Actin- and formin-interacting protein; participates in actin cable assembly and organization as a nucleation- promoting factor (NPF) for formins Bni1p and Bnr1p
YMR275C	-1.676364	BUL1	Ubiquitin-binding component of the Rsp5p E3-ubiquitin ligase complex
YOR125C	-1.495594	CAT5	Protein required for ubiquinone (Coenzyme Q) biosynthesis
YCR005C	-1.302360	CIT2	Citrate synthase, peroxisomal isozyme involved in glyoxylate cycle; catalyzes condensation of acetyl coenzyme A and oxaloacetate to form citrate
YNR041C	-1.283001	COQ2	Para hydroxybenzoate polyprenyl transferase; catalyzes the second step in ubiquinone (coenzyme Q) biosynthesis
YLR087C	-2.463395	CSF1	Protein required for fermentation at low temperature; plays a role in the maturation of secretory proteins
YDR179C	-1.040380	CSN9	Subunit of the Cop9 signalosome
YBR291C	-1.972605	CTP1	Mitochondrial inner membrane citrate transporter
YLR286C	-0.892555	CTS1	Endochitinase; required for cell separation after mitosis
YJL005W	-1.908016	CYR1	Adenylate cyclase; required for cAMP production and cAMP-dependent protein kinase signaling
YML113W	-1.116362	DAT1	DNA binding protein that recognizes oligo(dA).oligo(dT) tracts

2,3-DMF 15G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YGR092W	-6.868667	DBF2	Ser/Thr kinase involved in transcription and stress
101007270	-0.000007	DDIZ	response
YPL265W	-2.073181	DIP5	Dicarboxylic amino acid permease; mediates high-affinity and high-capacity transport of L-glutamate and L- aspartate
YBR278W	-1.793029	DPB3	Third-largest subunit of DNA polymerase II (DNA polymerase epsilon); required to maintain fidelity of chromosomal replication and also for inheritance of telomeric silencing
YBR281C	-1.253103	DUG2	Component of glutamine amidotransferase (GATase II)
YMR299C	-1.428060	DYN3	Dynein light intermediate chain (LIC)
YCR034W	-1.130975	ELO2	Fatty acid elongase, involved in sphingolipid biosynthesis; acts on fatty acids of up to 24 carbons in length
YFL048C	-0.986428	EMP47	Integral membrane component of ER-derived COPII- coated vesicles; functionS in ER to Golgi transport
YJR125C	-0.846133	ENT3	Protein containing an N-terminal epsin-like domain; involved in clathrin recruitment and traffic between the Golgi and endosomes
YMR015C	-1.441653	ERG5	C-22 sterol desaturase; a cytochrome P450 enzyme that catalyzes the formation of the C-22(23) double bond in the sterol side chain in ergosterol biosynthesis
YGL054C	-2.335261	ERV14	COPII-coated vesicle protein; involved in vesicle formation and incorporation of specific secretory cargo
YFR008W	-1.780069	FAR7	Protein involved in recovery from pheromone-induced cell cycle arrest
YPL248C	-1.297858	GAL4	DNA-binding transcription factor required for activating GAL genes
YGL020C	-7.201491	GET1	Subunit of the GET complex; insertion of proteins into the ER membrane
YER083C	-5.725994	GET2	Subunit of the GET complex; insertion of proteins into the ER membrane
YDL100C	-1.974779	GET3	Guanine nucleotide exchange factor for Gpa1p; amplifies G protein signaling
YMR135C	-1.192951	GID8	Subunit of GID Complex, binds strongly to central component Vid30p
YOR070C	-2.845722	GYP1	Cis-golgi GTPase-activating protein (GAP) for yeast Rabs
YNL281W	-0.884462	HCH1	Heat shock protein regulator; binds to Hsp90p and may stimulate ATPase activity
YGR187C	-2.556753	HGH1	Nonessential protein of unknown function

	2,3-DMF 15G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YLR113W	-1.309326	HOG1	Mitogen-activated protein kinase involved in osmoregulation; controls global reallocation of RNAPII during osmotic shock	
YJR036C	-0.843981	HUL4	Protein with similarity to hect domain E3 ubiquitin- protein ligases	
YPR006C	-1.169679	ICL2	2-methylisocitrate lyase of the mitochondrial matrix	
YIR024C	-0.824788	INA22	F1F0 ATP synthase peripheral stalk assembly factor	
YKR019C	-8.243924	IRS4	EH domain-containing protein	
YJR097W	-1.752606	<i>]]]3</i>	Protein of unknown function; contains a CSL Zn finger and a DnaJ-domain	
YNL322C	-1.176025	KRE1	Cell wall glycoprotein involved in beta-glucan assembly	
YNL323W	-1.665462	LEM3	Membrane protein of the plasma membrane and ER	
YPL004C	-1.131886	LSP1	Eisosome core component	
YEL053C	-2.484753	MAK10	Non-catalytic subunit of the NatC N-terminal acetyltransferase	
YPR051W	-3.336516	МАКЗ	Catalytic subunit of the NatC type N-terminal acetyltransferase (NAT	
YBR298C	-1.294671	MAL31	Maltose permease; high-affinity maltose transporter (alpha-glucoside transporter)	
YBR297W	-1.183519	MAL33	MAL-activator protein; part of complex locus MAL3	
YNL307C	-1.291941	МСК1	Dual-specificity ser/thr and tyrosine protein kinase	
YJR137C	-0.746921	MET5	Sulfite reductase beta subunit; involved in amino acid biosynthesis, transcription repressed by methionine	
YML062C	-1.970496	MFT1	Subunit of the THO complex; THO is a nuclear complex comprised of Hpr1p, Mft1p, Rlr1p, and Thp2p, that is involved in transcription elongation and mitotic recombination; involved in telomere maintenance	
YIR033W	-5.567892	MGA2	ER membrane protein involved in regulation of OLE1 transcription	
YFR011C	-0.635537	MIC19	Component of the MICOS complex	
YNL005C	-1.337731	MRP7	Mitochondrial ribosomal protein of the large subunit	
YML009C	-0.886252	MRPL39	Mitochondrial ribosomal protein of the large subunit	
YOR066W	-1.007462	MSA1	Activator of G1-specific transcription factors MBF and SBF	
YGR028W	-0.939018	MSP1	Highly-conserved N-terminally anchored AAA-ATPase	
YKR048C	-2.105289	NAP1	Histone chaperone; involved in histone exchange by removing and replacing histone H2A-H2B dimers or histone variant dimers from assembled nucleosomes	
YMR285C	-0.762354	NGL2	Protein involved in 5.8S rRNA processing; Ccr4p-like RNase required for correct 3'-end formation of 5.8S rRNA at site E	

	Γ		G Sensitive Strains (continued)
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YNR009W	-0.800896	NRM1	Transcriptional co-repressor of MBF-regulated gene expression
YBL079W	-2.011578	NUP170	Subunit of inner ring of nuclear pore complex (NPC);
YNL099C	-0.869513	OCA1	Putative protein tyrosine phosphatase; required for cell cycle arrest in response to oxidative damage of DNA
YNL056W	-1.071552	OCA2	Protein of unknown function
YJR073C	-2.937260	OPI3	Methylene-fatty-acyl-phospholipid synthase
YPL272C	-1.685850	PBI1	Putative protein of unknown function
YJL128C	-1.080331	PBS2	MAP kinase kinase of the HOG signaling pathway
YJL053W	-2.273779	PEP8	Vacuolar protein component of the retromer
YLR064W	-1.092421	PER33	Protein that localizes to the endoplasmic reticulum
YOR017W	-0.953320	PET127	Protein with a role in 5'-end processing of mitochondrial RNAs
YDL106C	-6.411557	PHO2	Homeobox transcription factor; regulatory targets include genes involved in phosphate metabolism
YNL097C	-2.897726	PH023	Component of the Rpd3L histone deacetylase complex
YCR024C- A	-1.405870	PMP1	Regulatory subunit for the plasma membrane H(+)- ATPase Pma1p
YMR278W	-0.755640	PRM15	Phosphoribomutase; catalyzes interconversion of ribose- 1-phosphate and ribose-5-phosphate
YCR079W	-0.948109	PTC6	Mitochondrial type 2C protein phosphatase (PP2C)
YDR004W	-1.502502	RAD57	Protein that stimulates strand exchange; stimulates strand exchange by stabilizing the binding of Rad51p to single- stranded DNA; involved in the recombinational repair of double-strand breaks in DNA during vegetative growth and meiosis
YNL098C	-2.202599	RAS2	GTP-binding protein; regulates nitrogen starvation response, sporulation, and filamentous growth
YCR036W	-1.358981	RBK1	Putative ribokinase
YMR274C	-1.918059	RCE1	Type II CAAX prenyl protease
YDR028C	-4.667586	REG1	Regulatory subunit of type 1 protein phosphatase Glc7p
YLR059C	-0.676246	REX2	3'-5' RNA exonuclease; involved in 3'-end processing of U4 and U5 snRNAs, 5S and 5.8S rRNAs, and RNase P and RNase MRP RNA
YOL080C	-0.965479	REX4	Putative RNA exonuclease
YMR283C	-1.088724	RIT1	Initiator methionine 2'-O-ribosyl phosphate transferase
YDL020C	-7.652667	RPN4	Transcription factor that stimulates expression of proteasome genes
YGR215W	-5.946229	RSM27	Mitochondrial ribosomal protein of the small subunit
YOR216C	-1.899614	RUD3	Golgi matrix protein; involved in the structural organization of the cis-Golgi

	2,3-DMF 15G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YMR263W	-1.762057	SAP30	Component of Rpd3L histone deacetylase complex	
YLR268W	-5.598313	SEC22	R-SNARE protein; assembles into SNARE complex with Bet1p, Bos1p and Sed5p	
YDR077W	-0.894212	SED1	Major stress-induced structural GPI-cell wall glycoprotein	
YOR021C	-0.741516	SFM1	SPOUT methyltransferase; catalyzes omega- monomethylation of Rps3p on Arg-146; not an essential gene	
YDR078C	-1.156823	SHU2	Component of Shu complex (aka PCSS complex	
YNL032W	-1.404055	SIW14	Tyrosine phosphatase involved in actin organization and endocytosis	
YKR100C	-1.007535	SKG1	Transmembrane protein with a role in cell wall polymer composition	
YHR206W	-2.048764	SKN7	Nuclear response regulator and transcription factor	
YOR327C	-1.752104	SNC2	Vesicle membrane receptor protein (v-SNARE	
YMR107W	-1.230816	SPG4	Protein required for high temperature survival during stationary phase	
YDR218C	-0.859372	SPR28	Sporulation-specific homolog of the CDC3/10/11/12 family of genes	
YBR283C	-6.271840	SSH1	Subunit of the Ssh1 translocon complex	
YMR183C	-2.156262	SSO2	Plasma membrane t-SNARE; involved in fusion of secretory vesicles at the plasma membrane	
YJL004C	-5.691171	SYS1	Integral membrane protein of the Golgi	
YBR069C	-2.550501	TAT1	Amino acid transporter for valine, leucine, isoleucine, and tyrosine; low-affinity tryptophan and histidine transporter	
YEL048C	-0.843165	TCA17	Component of transport protein particle (TRAPP) complex II	
YJR116W	-0.778804	TDA4	Putative protein of unknown function	
YOL018C	-7.793015	TLG2	Syntaxin-like t-SNARE; forms a complex with Tlg1p and Vti1p and mediates fusion of endosome-derived vesicles with the late Golgi	
YNL273W	-1.512969	TOF1	Subunit of a replication-pausing checkpoint complex	
YNL300W	-1.015088	TOS6	Glycosylphosphatidylinositol-dependent cell wall protein	
YDR120C	-2.246689	TRM1	tRNA methyltransferase; two forms of protein are made by alternative translation starts	
YGR166W	-1.243164	TRS65	Component of transport protein particle (TRAPP) complex II	
YDR108W	-4.886154	TRS85	Component of transport protein particle (TRAPP) complex III	

	2,3-DMF 15G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YDL190C	-0.541939	UFD2	Ubiquitin chain assembly factor (E4); cooperates with a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin protein ligase (E3) to conjugate ubiquitin to substrates; also functions as an E3	
YOR068C	-0.953911	VAM10	Protein involved in vacuole morphogenesis; acts at an early step of homotypic vacuole fusion that is required for vacuole tethering	
YJL154C	-1.717544	VPS35	Endosomal subunit of membrane-associated retromer complex	
YNL283C	-3.128723	WSC2	Sensor-transducer of the stress-activated PKC1-MPK1 signaling pathway	
YJR133W	-0.855397	XPT1	Xanthine-guanine phosphoribosyl transferase; required for xanthine utilization and for optimal utilization of guanine	
YML007W	-2.151902	YAP1	Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stress	
YHL009C	-1.151434	YAP3	Basic leucine zipper (bZIP) transcription factor	
YLR020C	-1.250598	YEH2	Steryl ester hydrolase; catalyzes steryl ester hydrolysis at the plasma membrane	
YFR007W	-0.975740	YFH7	Putative kinase with similarity to the PRK/URK/PANK kinase subfamily	
YCR059C	-1.304332	YIH1	Negative regulator of eIF2 kinase Gcn2p	
YGR281W	-1.077599	YOR1	Plasma membrane ATP-binding cassette (ABC) transporter	
YML122C	-8.102209	-	Putative protein of unknown function	
YPR050C	-2.026034	-	Dubious open reading frame	
YCR050C	-1.983362	-	Non-essential protein of unknown function	
YCL001W- A	-1.974990	-	Putative protein of unknown function	
YCR061W	-1.899767	-	Protein of unknown function	
YOR008C- A	-1.780504	-	Putative protein of unknown function	
YJL193W	-1.753162	-	Putative protein of unknown function	
YKL023W	-1.744617	-	Putative protein of unknown function	
YDR149C	-1.718523	-	Dubious open reading frame	
YCR085W	-1.547682	-	Putative protein of unknown function	
YHR079C- B	-1.342525	-	Dubious open reading frame	
YPR053C	-1.289874	-	Putative protein of unknown function	
YJR142W	-1.286881	YJR142W	8-oxo-dGTP diphosphatase of the Nudix hydrolase family	

2,3-DMF 15G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YOL075C	-1.230936	-	Putative ABC transporter
YGL042C	-1.196844	-	Dubious open reading frame
YAL058C-A	-1.184683	-	Dubious open reading frame
YGL214W	-1.135707	-	Dubious open reading frame
YBR292C	-1.078380	-	Dubious open reading frame
YLR046C	-1.056413	-	Putative membrane protein
YJR026W	-1.031693	-	Transposable element gene
YDL050C	-0.973306	-	Dubious open reading frame
YNL035C	-0.927139	-	Nuclear protein of unknown function
YNR021W	-0.899226	-	Putative protein of unknown function
YBR284W	-0.888252	-	Putative metallo-dependent hydrolase superfamily protein
YGR018C	-0.828899	-	Protein of unknown function
YLR112W	-0.788112	-	Dubious open reading frame
YGR022C	-0.761221	-	Dubious open reading frame
YDR102C	-0.754136	-	Putative protein of unknown function
YMR153C- A	-0.726078	-	Dubious open reading frame
YIR016W	-0.665132	-	Putative protein of unknown function

2,3-DMF Sensitive across all time points

	2,3-DMF Sensitive Strains Across All Time Points				
Deleted ORF Name	Deleted Gene Name	Deleted Gene Function			
YBR286W	APE3	Vacuolar aminopeptidase Y			
YNL077W	APJ1	Chaperone with a role in SUMO-mediated protein degradation			
YNR051C	BRE5	Ubiquitin protease cofactor			
YOR125C	CAT5	Protein required for ubiquinone (Coenzyme Q) biosynthesis			
YJL005W	CYR1	Adenylate cyclase			
YGR092W	DBF2	Ser/Thr kinase involved in transcription and stress response			
YMR299C	DYN3	Dynein light intermediate chain (LIC)			
YGL020C	GET1	Subunit of the GET complex			
YER083C	GET2	Subunit of the GET complex			
YKR019C	IRS4	EH domain-containing protein			
YJR097W	JJJ3	Protein of unknown function			
YEL053C	MAK10	Non-catalytic subunit of the NatC N-terminal acetyltransferase			
YPR051W	MAK3	Catalytic subunit of the NatC type N-terminal acetyltransferase (NAT			
YIR033W	MGA2	ER membrane protein involved in regulation of OLE1 transcription			

	2,3-DMF Sensitive Strains Across All Time Points (continued)				
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name			
YNL098C	RAS2	GTP-binding protein			
YMR283C	RIT1	Initiator methionine 2'-O-ribosyl phosphate transferase			
YDL020C	RPN4	Transcription factor that stimulates expression of proteasome genes			
YMR263W	SAP30	Component of Rpd3L histone deacetylase complex			
YHR206W	SKN7	Nuclear response regulator and transcription factor			
YJL004C	SYS1	Integral membrane protein of the Golgi			
YOL018C	TLG2	Syntaxin-like t-SNARE; forms a complex with Tlg1p and Vti1p and mediates fusion of endosome-derived vesicles with the late Golgi			
YDR108W	TRS85	Component of transport protein particle (TRAPP) complex III			
YFR007W	YFH7	Putative kinase with similarity to the PRK/URK/PANK kinase subfamily			
YGR281W	YOR1	Plasma membrane ATP-binding cassette (ABC) transporter			
YML122C	-	Putative protein of unknown function			
YOR008C-A	-	Putative protein of unknown function			
YGL042C	-	Dubious open reading frame			
YBR292C	-	Dubious open reading frame			
YGL214W	-	Dubious open reading frame			
YIR016W	-	Putative protein of unknown function			

Appendix 3: Mutants with altered growth in 2-MF

2-MF 5G Resistant

2-MF 5G Resistant Strains			
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function
YGR037C	0.861899	ACB1	Acyl-CoA-binding protein; transports newly synthesized acyl-CoA esters from fatty acid synthetase (Fas1p-Fas2p) to acyl-CoA-consuming processes
YHR126C	1.332337	ANS1	Putative GPI protein
YCR048W	0.915686	ARE1	Acyl-CoA:sterol acyltransferase; endoplasmic reticulum enzyme
YBR068C	0.758662	BAP2	High-affinity leucine permease
YKR027W	1.113822	BCH2	Member of the ChAPs (Chs5p-Arf1p-binding proteins) family
YCR032W	1.090285	BPH1	Protein homologous to Chediak-Higashi syndrome and Beige proteins
YKR036C	1.287047	CAF4	WD40 repeat-containing protein associated with the CCR4-NOT complex
YPR013C	0.776348	CMR3	Putative zinc finger protein; YPR013C is not an essential gene
YOR303W	0.632355	CPA1	Small subunit of carbamoyl phosphate synthetase
YGL078C	1.354602	DBP3	RNA-Dependent ATPase, member of DExD/H-box family
YIR004W	0.966997	DJP1	Cytosolic J-domain-containing protein; required for peroxisomal protein import and involved in peroxisome assembly
YDR294C	1.006600	DPL1	Dihydrosphingosine phosphate lyase
YLR372W	2.122839	ELO3	Elongase; involved in fatty acid and sphingolipid biosynthesis
YGL057C	0.788809	GEP7	Protein of unknown function
YER020W	0.963924	GPA2	Nucleotide binding alpha subunit of the heterotrimeric G protein
YBR244W	0.424950	GPX2	Phospholipid hydroperoxide glutathione peroxidase; protects cells from phospholipid hydroperoxides and nonphospholipid peroxides during oxidative stress; induced by glucose starvation; protein abundance increases in response to DNA replication stress
YJL165C	1.095023	HAL5	Putative protein kinase
YKL109W	1.263131	HAP4	Transcription factor; subunit of the heme-activated, glucose-repressed Hap2p/3p/4p/5p CCAAT-binding complex
YGL033W	0.504466	HOP2	Meiosis-specific protein that localizes to chromosomes

	2-MF 5G Resistant Strains (continue)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YCR021C	0.936182	HSP30	Negative regulator of the H(+)-ATPase Pma1p; stress- responsive protein	
YJL082W	0.895780	IML2	Protein required for clearance of inclusion bodies; localizes to the inclusion bodies formed under protein misfolding stress	
YER019W	1.890192	ISC1	Inositol phosphosphingolipid phospholipase C; mitochondrial membrane localized	
YLR239C	0.971188	LIP2	Lipoyl ligase; involved in the modification of mitochondrial enzymes by the attachment of lipoic acid groups	
YOR142W	0.560119	LSC1	Alpha subunit of succinyl-CoA ligase	
YJL124C	1.096419	LSM1	Lsm (Like Sm) protein	
YIL070C	0.746344	MAM33	Specific translational activator for the mitochondrial COX1 mRNA	
YBL091C	1.164116	MAP2	Methionine aminopeptidase; catalyzes the cotranslational removal of N-terminal methionine from nascent polypeptides	
YER001W	0.944140	MNN1	Alpha-1,3-mannosyltransferase; integral membrane glycoprotein of the Golgi complex, required for addition of alpha1,3-mannose linkages to N-linked and O-linked oligosaccharides, one of five S. cerevisiae proteins of the MNN1 family	
YOL090W	1.053158	MRX10	Mitochondrial inner membrane protein of unknown function	
YOL090W	0.876705	MSH2	Protein that binds to DNA mismatches	
YIL007C	0.582793	NAS2	Evolutionarily conserved 19S regulatory particle assembly-chaperone	
YOL041C	1.156315	NOP12	Nucleolar protein involved in pre-25S rRNA processing	
YIL038C	0.832525	NOT3	Component of the CCR4-NOT core complex, involved in mRNA decapping	
YDR001C	0.742001	NTH1	Neutral trehalase, degrades trehalose; required for thermotolerance and may mediate resistance to other cellular stresses	
YDL053C	0.935003	PBP4	Pbp1p binding protein; interacts strongly with Pab1p- binding protein 1 (Pbp1p) in the yeast two-hybrid system	
YIL050W	0.751064	PCL7	Pho85p cyclin of the Pho80p subfamily; forms a functional kinase complex with Pho85p which phosphorylates Mmr1p and is regulated by Pho81p	
YIL037C	1.587038	PRM2	Pheromone-regulated protein	

	2-MF 5G Resistant Strains (continue)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YJL078C	0.562116	PRY3	Cell wall-associated protein involved in export of acetylated sterols	
YKL038W	1.013758	RGT1	Glucose-responsive transcription factor	
YHL027W	0.773971	<i>RIM101</i>	Cys2His2 zinc-finger transcriptional repressor	
YMR154C	0.863577	RIM13	Calpain-like cysteine protease; involved in proteolytic activation of Rim101p in response to alkaline pH	
YGL045W	1.294868	RIM8	Protein involved in proteolytic activation of Rim101p; part of response to alkaline pH; interacts with ESCRT-1 subunits Stp22p and Vps28p	
YIL133C	1.041550	RPL16A	Ribosomal 60S subunit protein L16A; N-terminally acetylated, binds 5.8 S rRNA	
YGR034W	0.976025	RPL26B	Ribosomal 60S subunit protein L26B; binds to 5.8S rRNA	
YER056C- A	1.419492	RPL34A	Ribosomal 60S subunit protein L34A; homologous to mammalian ribosomal protein L34, no bacterial homolog	
YDL136W	0.705646	RPL35B	Ribosomal 60S subunit protein L35B; homologous to mammalian ribosomal protein L35 and bacterial L29	
YKR094C	1.064640	RPL40B	Ubiquitin-ribosomal 60S subunit protein L40B fusion protein; cleaved to yield ubiquitin and ribosomal protein L40B	
YIL069C	0.899697	RPS24B	Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S24, no bacterial homolog	
YBR147W	0.904173	RTC2	Putative vacuolar membrane transporter for cationic amino acids	
YMR140W	0.644718	SIP5	Protein of unknown function; interacts with both the Reg1p/Glc7p phosphatase and the Snf1p kinase; forms cytoplasmic foci upon DNA replication stress	
YLR025W	1.344478	SNF7	One of four subunits of the ESCRT-III complex; involved in the sorting of transmembrane proteins into the multivesicular body (MVB) pathway	
YPL002C	1.222533	SNF8	Component of the ESCRT-II complex; ESCRT-II is involved in ubiquitin-dependent sorting of proteins into the endosome	
YNL202W	1.183504	SPS19	Peroxisomal 2,4-dienoyl-CoA reductase	
YDR463W	1.643277	STP1	Transcription factor; contains a N-terminal regulatory motif (RI) that acts as a cytoplasmic retention determinant and as an Asi dependent degron in the nucleus	

	2-MF 5G Resistant Strains (continue)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YCL008C	1.406259	STP22	Component of the ESCRT-I complex; ESCRT-I is involved in ubiquitin-dependent sorting of proteins into the endosome	
YLR372W	1.528722	SYO1	Transport adaptor or symportin; facilitates synchronized nuclear coimport of the two 5S-rRNA binding proteins Rpl5p and Rpl11p	
YBR069C	1.347894	TAT1	Amino acid transporter for valine, leucine, isoleucine, and tyrosine; low-affinity tryptophan and histidine transporter	
YHR003C	0.806800	TCD1	tRNA threonylcarbamoyladenosine dehydratase	
YMR313C	1.176192	TGL3	Bifunctional triacylglycerol lipase and LPE acyltransferase	
YGR033C	0.531786	<i>TIM21</i>	Nonessential component of the TIM23 complex	
YER175C	1.300788	TMT1	Trans-aconitate methyltransferase	
YCR084C	2.470599	TUP1	General repressor of transcription	
YDR092W	1.069309	UBC13	E2 ubiquitin-conjugating enzyme; involved in the error- free DNA postreplication repair pathway; interacts with Mms2p to assemble ubiquitin chains at the Ub Lys-63 residue; DNA damage triggers redistribution from the cytoplasm to the nucleus	
YDL091C	1.014029	UBX3	Clathrin-coated vesicle component, regulator of endocytosis; copurifies with the DSC ubiquitin ligase complex	
YMR077C	1.572156	VPS20	Myristoylated subunit of the ESCRT-III complex	
YJR102C	1.236798	VPS25	Component of the ESCRT-II complex; ESCRT-II is involved in ubiquitin-dependent sorting of proteins into the endosome	
YNR006W	1.700811	VPS27	Endosomal protein that forms a complex with Hse1p; required for recycling Golgi proteins	
YLR417W	1.147501	VPS36	Component of the ESCRT-II complex; contains the GLUE (GRAM Like Ubiquitin binding in EAP45) domain which is involved in interactions with ESCRT-I and ubiquitin- dependent sorting of proteins into the endosome	
YPR087W	1.150295	VPS69	Dubious open reading frame; unlikely to encode a functional protein, based on available experimental and comparative sequence data	
YER123W	2.157933	<i>ҮСКЗ</i>	Palmitoylated vacuolar membrane-localized casein kinase I isoform	
YDL072C	0.969937	YET3	Protein of unknown function	
YBR090C	0.478962	-	Dubious open reading frame	
YCR022C	0.573108	-	Dubious open reading frame	

	2-MF 5G Resistant Strains (continue)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YDL063C	0.633821	-	Protein of unknown function	
YDL187C	0.773123	-	Putative protein of unknown function	
YDR282C	0.890066	-	Uncharacterized protein of unknown function	
YDR286C	0.930466	-	Putative protein of unknown function	
YDR417C	0.944626	-	Putative protein of unknown function	
YGL088W	1.020849	-	Putative protein of unknown function	
YGR122W	1.121476	-	Putative protein of unknown function	
YHR003C	1.222179	-	Dubious open reading frame	
YIL054W	1.229369	-	Dubious open reading frame	
YIL067C	1.393537	-	Protein that may be involved in pH regulation	
YJL132W	1.408255	-	Dubious open reading frame	
YKR047W	1.437846	-	Dubious open reading frame	
YLR050C	1.482371	-	Putative protein of unknown function	
YNL109W	1.583849	-	Dubious open reading frame	
YNL226W	1.664121	-	Dubious open reading frame	

2-MF 10G Resistant

	2-MF 10G Resistant Strains				
Deleted ORF Name	Log2 Fold Change	Deleted Gene Name	Deleted Gene Function		
YCR107W	0.823396	AAD3	Putative aryl-alcohol dehydrogenase		
YCR088W	0.696176	ABP1	Actin-binding protein of the cortical actin cytoskeleton; important for activation of the Arp2/3 complex that plays a key role actin in cytoskeleton organization		
YNR033W	0.940598	ABZ1	Para-aminobenzoate (PABA) synthase; protein abundance increases in response to DNA replication stress		
YLR040C	0.977940	AFB1	MATalpha-specific a-factor blocker		
YCL050C	0.895886	APA1	AP4A phosphorylase; bifunctional diadenosine 5',5'''- P1,P4-tetraphosphate phosphorylase and ADP sulfurylase involved in catabolism of bis(5'-nucleosidyl) tetraphosphates		
YCR048W	1.018289	ARE1	Acyl-CoA:sterol acyltransferase		
YBL069W	0.881994	AST1	Lipid raft associated protein		
YFL010W- A	0.891854	AUA1	Protein required for the negative regulation by ammonia of Gap1p; Gap1p is a general amino acid permease		

2-MF 10G Resistant Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YBR068C	0.806415	BAP2	High-affinity leucine permease; functions as a branched- chain amino acid permease involved in uptake of leucine, isoleucine and valine
YKR099W	0.958811	BAS1	Myb-related transcription factor; involved in regulating basal and induced expression of genes of the purine and histidine biosynthesis pathways
YKR027W	1.000190	BCH2	Member of the ChAPs (Chs5p-Arf1p-binding proteins) family
YFL007W	1.091339	BLM10	Proteasome activator
YCR032W	1.547986	BPH1	Protein homologous to Chediak-Higashi syndrome and Beige protein
YDR275W	1.342521	BSC2	Protein of unknown function
YDL151C	2.314531	BUD30	Dubious open reading frame
YKR036C	1.164941	CAF4	WD40 repeat-containing protein associated with the CCR4-NOT complex
YOR061W	1.002724	CKA2	Alpha' catalytic subunit of casein kinase 2 (CK2); CK2 is a Ser/Thr protein kinase with roles in cell growth and proliferation
YOR303W	0.694967	CPA1	Small subunit of carbamoyl phosphate synthetase; carbamoyl phosphate synthetase catalyzes a step in the synthesis of citrulline, an arginine precursor
YHR146W	0.861997	CRP1	Protein that binds to cruciform DNA structures
YIL132C	0.790177	CSM2	Component of Shu complex (aka PCSS complex); Shu complex also includes Psy3, Shu1, Shu2, and promotes error-free DNA repair
YGL078C	1.328866	DBP3	RNA-Dependent ATPase, member of DExD/H-box family
YLR422W	1.015083	DCK1	Dock family protein (Dedicator Of CytoKinesis), homolog of human DOCK1
YOR030W	1.742333	DFG16	Probable multiple transmembrane protein
YIR004W	1.028459	DJP1	Cytosolic J-domain-containing protein; required for peroxisomal protein import and involved in peroxisome assembly
YDL178W	0.489152	DLD2	D-2-hydroxyglutarate dehydrogenase, and minor D- lactate dehydrogenase
YMR126C	1.037315	DLT1	Protein of unknown function
YNL024C	1.678058	EFM6	Putative S-adenosylmethionine-dependent lysine methyltransferase
YLR372W	2.185969	ELO3	Elongase; involved in fatty acid and sphingolipid biosynthesis;
YKR096W	0.952516	ESL2	hEST1A/B (SMG5/6)-like protein; contributes to environment-sensing adaptive gene expression responses

2-MF 10G Resistant Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YML051W	0.668564	GAL80	Transcriptional regulator involved in the repression of GAL genes
YAL048C	1.041528	GEM1	Outer mitochondrial membrane GTPase, subunit of the ERMES complex
YGL057C	0.870683	GEP7	Protein of unknown function
YER020W	1.093352	GPA2	Nucleotide binding alpha subunit of the heterotrimeric G protein
YDL022W	1.132977	GPD1	NAD-dependent glycerol-3-phosphate dehydrogenase; key enzyme of glycerol synthesis, essential for growth under osmotic stress
YGR163W	1.974387	GTR2	Subunit of a TORC1-stimulating GTPase complex
YPL001W	0.905596	HAT1	Catalytic subunit of the Hat1p-Hat2p histone acetyltransferase complex
YGL033W	0.731266	HOP2	Meiosis-specific protein that localizes to chromosomes; prevents synapsis between nonhomologous chromosomes and ensures synapsis between homologs
YJL082W	1.093158	IML2	Protein required for clearance of inclusion bodies; localizes to the inclusion bodies formed under protein misfolding stress
YJL051W	0.811875	IRC8	Bud tip localized protein of unknown function
YGL133W	1.317653	ITC1	Subunit of ATP-dependent Isw2p-Itc1p chromatin remodeling complex;
YLR451W	1.219118	LEU3	Zinc-knuckle transcription factor, repressor and activator
YLL007C	1.301549	LMO1	Homolog of mammalian ELMO (Engulfment and celL MOtility)
YOR142W	0.897092	LSC1	Alpha subunit of succinyl-CoA ligase
YDL182W	0.646976	LYS20	Homocitrate synthase isozyme and functions in DNA repair
YIL070C	0.934593	MAM33	Specific translational activator for the mitochondrial COX1 mRNA
YBL091C	1.451405	MAP2	Methionine aminopeptidase
YPR153W	1.381125	MAY24	Protein of unknown function
YER001W	1.320033	MNN1	Alpha-1,3-mannosyltransferase; integral membrane glycoprotein of the Golgi complex, required for addition of alpha1,3-mannose linkages to N-linked and O-linked oligosaccharides
YOL090W	0.876784	MSH2	Protein that binds to DNA mismatches; forms heterodimers with Msh3p and Msh6p that bind to DNA mismatches to initiate the mismatch repair process
YBR255W	0.707760	MTC4	Protein of unknown function; required for normal growth rate at 15 degrees C

	•	2-MF 10G	Resistant Strains (continued)
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YHR151C	1.020187	MTC6	Protein of unknown function
YIL007C	0.653050	NAS2	Evolutionarily conserved 19S regulatory particle assembly-chaperone
YKL151C	1.348943	NNR2	Widely-conserved NADHX dehydratase
YOL041C	1.168498	NOP12	Nucleolar protein involved in pre-25S rRNA processing
YDR001C	0.929250	NTH1	Neutral trehalase, degrades trehalose; required for thermotolerance and may mediate resistance to other cellular stresses
YGL151W	1.417570	NUT1	Component of the RNA polymerase II mediator complex
YER037W	0.706209	PHM8	Lysophosphatidic acid (LPA) phosphatase, nucleotidase
YGL023C	0.969040	PIB2	Protein of unknown function; contains FYVE domain; similar to Fab1 and Vps27
YGL037C	0.568543	PNC1	Nicotinamidase that converts nicotinamide to nicotinic acid; part of the NAD(+) salvage pathway
YOR161C	0.787003	PNS1	Protein of unknown function
YBL068W	0.932497	PRS4	5-phospho-ribosyl-1(alpha)-pyrophosphate synthetase, synthesizes PRPP; which is required for nucleotide, histidine, and tryptophan biosynthesis
YBR125C	1.512033	PTC4	Cytoplasmic type 2C protein phosphatase (PP2C)
YDL036C	1.351622	PUS9	Mitochondrial tRNA:pseudouridine synthase
YKL038W	1.079869	RGT1	Glucose-responsive transcription factor
YHL027W	1.931559	<i>RIM101</i>	Cys2His2 zinc-finger transcriptional repressor
YMR154C	2.158045	RIM13	Calpain-like cysteine protease
YOR275C	2.012190	RIM20	Protein involved in proteolytic activation of Rim101p
YNL294C	1.967248	RIM21	pH sensor molecule, component of the RIM101 pathway
YGL045W	2.382535	RIM8	Protein involved in proteolytic activation of Rim101p
YIL133C	0.810479	RPL16A	Ribosomal 60S subunit protein L16A; N-terminally acetylated, binds 5.8 S rRNA
YNL069C	1.651146	RPL16B	Ribosomal 60S subunit protein L16B; N-terminally acetylated, binds 5.8 S rRNA
YJL177W	1.535398	RPL17B	Ribosomal 60S subunit protein L17B; required for processing of 27SB pre-rRNA and formation of stable 66S assembly intermediates
YGL031C	1.814550	RPL24A	Ribosomal 60S subunit protein L24A
YDR471W	1.381398	RPL27B	Ribosomal 60S subunit protein L27B
YOR234C	1.485380	RPL33B	Ribosomal 60S subunit protein L33B
YER056C- A	1.319150	RPL34A	Ribosomal 60S subunit protein L34A
YDL136W	1.211105	RPL35B	Ribosomal 60S subunit protein L35B

	1		Resistant Strains (continued)
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YKR094C	1.455254	RPL40B	Ubiquitin-ribosomal 60S subunit protein L40B fusion protein
YGL147C	1.198569	RPL9A	Ribosomal 60S subunit protein L9A
YNL206C	0.879954	<i>RTT106</i>	Histone chaperone
YPR129W	1.011860	SCD6	Repressor of translation initiation
YPR022C	0.623750	SDD4	Putative transcription factor, as suggested by computational analysis
YNL047C	1.003923	SLM2	Phosphoinositide PI4,5P(2) binding protein, forms a complex with Slm1p
YPL027W	0.638867	SMA1	Protein of unknown function
YLR025W	2.525267	SNF7	One of four subunits of the ESCRT-III complex
YPL002C	2.609805	SNF8	Component of the ESCRT-II complex
YDR463W	2.017219	STP1	Transcription factor; contains a N-terminal regulatory motif (RI) that acts as a cytoplasmic retention determinant and as an Asi dependent degron in the nucleus
YCL008C	2.985180	STP22	Component of the ESCRT-I complex
YPR151C	0.730487	SUE1	Protein required for degradation of unstable forms of cytochrome c
YPL057C	1.534464	SUR1	Mannosylinositol phosphorylceramide (MIPC) synthase catalytic subunit
YDL063C	1.608369	SYO1	Transport adaptor or symportin
YBR069C	1.117648	TAT1	Amino acid transporter for valine, leucine, isoleucine, and tyrosine
YBR083W	1.103002	TEC1	Transcription factor targeting filamentation genes and Ty1 expression
YMR313C	1.329278	TGL3	Bifunctional triacylglycerol lipase and LPE acyltransferase; major lipid particle-localized triacylglycerol (TAG) lipase
YGL179C	1.083416	TOS3	Protein kinase; related to and functionally redundant with Elm1p and Sak1p for the phosphorylation and activation of Snf1p
YGL096W	0.615299	TOS8	Homeodomain-containing protein and putative transcription factor
YPR156C	0.969790	TPO3	Polyamine transporter of the major facilitator superfamily
YNL299W	1.092556	TRF5	Non-canonical poly(A) polymerase
YCR084C	3.486019	TUP1	General repressor of transcription; forms complex with Cyc8p, involved in the establishment of repressive chromatin structure through interactions with histones H3 and H4, appears to enhance expression of some genes

	2-MF 10G Resistant Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YGR080W	0.807046	TWF1	Twinfilin; highly conserved actin monomer-sequestering protein involved in regulation of the cortical actin cytoskeleton	
YIL156W	0.671430	UBP7	Ubiquitin-specific protease that cleaves ubiquitin-protein fusions	
YIL056W	0.785656	VHR1	Transcriptional activator; required for the vitamin H- responsive element (VHRE) mediated induction of VHT1 (Vitamin H transporter) and BIO5 (biotin biosynthesis intermediate transporter) in response to low biotin concentrations	
YMR077C	3.159319	VPS20	Myristoylated subunit of the ESCRT-III complex	
YJR102C	2.875490	VPS25	Component of the ESCRT-II complex	
YNR006W	1.700430	VPS27	Endosomal protein that forms a complex with Hse1p	
YPL065W	2.346278	VPS28	Component of the ESCRT-I complex	
YLR417W	2.781907	VPS36	Component of the ESCRT-II complex	
YDL072C	1.450249	YET3	Protein of unknown function	
YOR003W	0.846431	YSP3	Putative precursor of the subtilisin-like protease III	
YDL180W	0.483389	-	Putative protein of unknown function	
YDL187C	0.637092	-	Dubious open reading frame	
YOR325W	0.677892	-	Dubious open reading frame	
YIL089W	0.716185	-	Protein of unknown function	
YJL132W	0.839923	-	Putative protein of unknown function	
YJL064W	0.898393	-	Dubious open reading frame	
YLR108C	0.934379	-	Protein of unknown function	
YGL081W	0.969411	-	Putative protein of unknown function	
YDL034W	1.074698	-	Dubious open reading frame	
YPR064W	1.182479	-	Putative protein of unknown function	
YPR114W	1.197710	-	Putative protein of unknown function	
YCR022C	1.229342	-	Putative protein of unknown function	
YOR139C	1.406996	-	Dubious open reading frame	
YDL062W	1.967881	-	Dubious open reading frame	
YNL226W	2.035067	-	Dubious open reading frame	
YGR122W	2.260126	-	Putative protein of unknown function	

2-MF 15G Resistant

	2-MF 15G Resistant Strains			
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function	
YCR088W	0.803360	ABP1	Actin-binding protein of the cortical actin cytoskeleton	
YBR059C	1.146950	AKL1	Ser-Thr protein kinase; member (with Ark1p and Prk1p) of the Ark kinase family	
YCR048W	1.097544	ARE1	Acyl-CoA:sterol acyltransferase	
YDR101C	1.593369	ARX1	Nuclear export factor for the ribosomal pre-60S subunit	
YPR026W	1.073300	ATH1	Acid trehalase required for utilization of extracellular trehalose	
YKR099W	1.096564	BAS1	Myb-related transcription factor	
YKR027W	1.474396	BCH2	Member of the ChAPs (Chs5p-Arf1p-binding proteins) family	
YCR032W	1.289379	BPH1	Protein homologous to Chediak-Higashi syndrome and Beige proteins	
YDL151C	3.537701	BUD30	Dubious open reading frame	
YKR036C	1.263340	CAF4	WD40 repeat-containing protein associated with the CCR4-NOT complex	
YLR330W	1.568143	CHS5	Component of the exomer complex	
YPR013C	0.943588	CMR3	Putative zinc finger protein	
YOR303W	0.802635	CPA1	Small subunit of carbamoyl phosphate synthetase	
YCR069W	1.040735	CPR4	Peptidyl-prolyl cis-trans isomerase (cyclophilin)	
YBR036C	1.464484	CSG2	Endoplasmic reticulum membrane protein; protein abundance increases in response to DNA replication stress	
YGL078C	1.923856	DBP3	RNA-Dependent ATPase, member of DExD/H-box family	
YOR030W	3.031828	DFG16	Probable multiple transmembrane protein	
YDR480W	1.200336	DIG2	MAP kinase-responsive inhibitor of the Ste12p transcription factor	
YIR004W	1.309252	DJP1	Cytosolic J-domain-containing protein	
YJL065C	0.955465	DLS1	Subunit of ISW2/yCHRAC chromatin accessibility complex	
YMR126C	1.059443	DLT1	Protein of unknown function	
YDR121W	1.579941	DPB4	Subunit of DNA pol epsilon and of ISW2 chromatin accessibility complex	
YGR054W	3.510106	ELF2A	Eukaryotic initiation factor eIF2A	
YLR372W	1.305546	ELO3	Elongase; involved in fatty acid and sphingolipid biosynthesis	
YOR246C	1.364227	ENV9	Protein proposed to be involved in vacuolar functions	

	2-MF 15G Resistant Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YKR096W	1.542110	ESL2	hEST1A/B (SMG5/6)-like protein; contributes to environment-sensing adaptive gene expression responses; Esl2p and Esl1p contain a 14-3-3-like domain and a putative PilT N-terminus ribonuclease domain	
YAL048C	0.841839	GEM1	Outer mitochondrial membrane GTPase, subunit of the ERMES complex	
YGL057C	1.053351	GEP7	Protein of unknown function	
YDR506C	1.299463	GMC1	Protein involved in meiotic progression	
YER020W	1.163441	GPA2	Nucleotide binding alpha subunit of the heterotrimeric G protein	
YDL022W	1.067153	GPD1	NAD-dependent glycerol-3-phosphate dehydrogenase	
YJL101C	1.135304	GSH1	Gamma glutamylcysteine synthetase	
YOL089C	0.805418	HAL9	Putative transcription factor containing a zinc finger	
YPL001W	1.357867	HAT1	Catalytic subunit of the Hat1p-Hat2p histone acetyltransferase complex	
YOR038C	0.661511	HIR2	Subunit of HIR nucleosome assembly complex	
YGL033W	0.824843	HOP2	Meiosis-specific protein that localizes to chromosomes	
YJL082W	0.915485	IML2	Protein required for clearance of inclusion bodies	
YJL051W	0.599250	IRC8	Bud tip localized protein of unknown function	
YOR155C	1.325880	ISN1	Inosine 5'-monophosphate (IMP)-specific 5'-nucleotidase	
YOR304W	1.612346	ISW2	ATP-dependent DNA translocase involved in chromatin remodeling	
YGL133W	0.890151	ITC1	Subunit of ATP-dependent Isw2p-Itc1p chromatin remodeling complex	
YER051W	0.938402	JHD1	JmjC domain family histone demethylase specific for H3- K36	
YJL134W	1.358630	LCB3	Long-chain base-1-phosphate phosphatase	
YPL056C	1.288599	LCL1	Putative protein of unknown function	
YLL007C	0.817264	LMO1	Homolog of mammalian ELMO (Engulfment and celL MOtility)	
YOR142W	1.168585	LSC1	Alpha subunit of succinyl-CoA ligase	
YGR057C	1.189185	LST7	Subunit of the Lst4p-Lst7p GTPase activating protein complex for Gtr2p	
YIL094C	0.751935	LYS12	Homo-isocitrate dehydrogenase	
YIL070C	1.219028	MAM33	Specific translational activator for the mitochondrial COX1 mRNA	
YBL091C	1.367231	MAP2	Methionine aminopeptidase	
YPR153W	1.045356	MAY24	Protein of unknown function	
YOL090W	0.428841	MSH2	Protein that binds to DNA mismatches	

	2-MF 15G Resistant Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YDL154W	1.201669	MSH5	Protein of the MutS family; forms a dimer with Msh4p that facilitates crossovers between homologs during meiosis	
YKL098W	1.002371	MTC2	Protein of unknown function	
YBR255W	0.916276	MTC4	Protein of unknown function	
YDR128W	1.208440	MTC5	Subunit of SEACAT, a subcomplex of the SEA complex	
YHR151C	1.569802	MTC6	Protein of unknown function	
YMR100W	0.762446	MUB1	MYND domain-containing protein	
YDR493W	2.327581	MZM1	Protein required for assembly of the cytochrome bc(1) complex	
YNL119W	0.828344	NCS2	Protein required for uridine thiolation of Lys(UUU) and Glu(UUC) tRNAs	
YIL164C	1.200851	NIT1	Nitrilase; member of the nitrilase branch of the nitrilase superfamily	
YKL151C	0.945846	NNR2	Widely-conserved NADHX dehydratase; converts (S)- NADHX to NADH in ATP-dependent manner; YKL151C promoter contains STREs (stress response elements) and expression is induced by heat shock or methyl methanesulfonate	
YDR001C	1.103327	NTH1	Neutral trehalase, degrades trehalose; required for thermotolerance and may mediate resistance to other cellular stresses	
YPR031W	2.003914	NTO1	Subunit of the NuA3 histone acetyltransferase complex	
YGL151W	1.946072	NUT1	Component of the RNA polymerase II mediator complex	
YIL136W	1.001251	OM45	Mitochondrial outer membrane protein of unknown function; major constituent of the outer membrane, extending into the intermembrane space	
YBR125C	1.047572	PTC4	Cytoplasmic type 2C protein phosphatase (PP2C)	
YJR059W	1.109999	PTK2	Serine/threonine protein kinase; involved in regulation of ion transport across plasma membrane	
YKL038W	2.831222	RGT1	Glucose-responsive transcription factor	
YHL027W	3.015097	RIM101	Cys2His2 zinc-finger transcriptional repressor	
YMR154C	2.919111	RIM13	Calpain-like cysteine protease	
YOR275C	2.784632	RIM20	Protein involved in proteolytic activation of Rim101p	
YNL294C	3.463998	RIM21	pH sensor molecule, component of the RIM101 pathway	
YGL045W	1.368262	RIM8	Protein involved in proteolytic activation of Rim101p	
YPR065W	2.125339	ROX1	Heme-dependent repressor of hypoxic genes	
YNL069C	2.798573	RPL16B	Ribosomal 60S subunit protein L16B	
YBR191W	1.241494	RPL21A	Ribosomal 60S subunit protein L21A	
YGR148C	1.545440	RPL24B	Ribosomal 60S subunit protein L24B	

	2-MF 15G Resistant Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YLR344W	1.073808	RPL26A	Ribosomal 60S subunit protein L26A	
YGR034W	1.817811	RPL26B	Ribosomal 60S subunit protein L26B	
YDR471W	1.721161	RPL27B	Ribosomal 60S subunit protein L27B	
YFR032C-A	1.593129	RPL29	Ribosomal 60S subunit protein L29	
YER056C- A	1.288523	RPL34A	Ribosomal 60S subunit protein L34A	
YDL136W	1.393456	RPL35B	Ribosomal 60S subunit protein L35B	
YKR094C	1.144230	RPL40B	Ubiquitin-ribosomal 60S subunit protein L40B fusion protein	
YGL147C	0.869991	RPL9A	Ribosomal 60S subunit protein L9A	
YBR147W	1.420287	RTC2	Putative vacuolar membrane transporter for cationic amino acids	
YNL206C	0.972681	RTT106	Histone chaperone; involved in regulation of chromatin structure in both transcribed and silenced chromosomal regions	
YHR206W	2.816944	SKN7	Nuclear response regulator and transcription factor	
YBR266C	3.563277	SLM6	Protein with a potential role in actin cytoskeleton organization	
YLR025W	3.584327	SNF7	One of four subunits of the ESCRT-III complex	
YPL002C	1.007838	SNF8	Component of the ESCRT-II complex	
YHR136C	1.964533	SPL2	Protein with similarity to cyclin-dependent kinase inhibitors	
YHR066W	4.240095	SSF1	Constituent of 66S pre-ribosomal particles	
YDR463W	2.802924	STP1	Transcription factor; contains a N-terminal regulatory motif (RI) that acts as a cytoplasmic retention determinant and as an Asi dependent degron in the nucleus	
YCL008C	1.926004	STP22	Component of the ESCRT-I complex; ESCRT-I is involved in ubiquitin-dependent sorting of proteins into the endosome	
YPL057C	2.142227	SUR1	Mannosylinositol phosphorylceramide (MIPC) synthase catalytic subunit;	
YDL063C	1.468225	SYO1	Transport adaptor or symportin	
YBR069C	2.351491	TAT1	Amino acid transporter for valine, leucine, isoleucine, and tyrosine	
YBR150C	1.886792	TBS1	Protein of unknown function	
YJL052W	1.296469	TDH1	Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), isozyme 1	
YMR313C	0.669662	TGL3	Bifunctional triacylglycerol lipase and LPE acyltransferase	

	2-MF 15G Resistant Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YGL096W	1.716590	TOS8	Homeodomain-containing protein and putative transcription factor	
YNL299W	4.435195	TRF5	Non-canonical poly(A) polymerase	
YCR084C	1.026937	TUP1	General repressor of transcription	
YGR080W	1.039559	TWF1	Twinfilin; highly conserved actin monomer-sequestering protein involved in regulation of the cortical actin cytoskeleton	
YDL091C	0.761976	UBX3	Clathrin-coated vesicle component, regulator of endocytosis	
YIL056W	1.143755	VHR1	Transcriptional activator; required for the vitamin H- responsive element (VHRE) mediated induction of VHT1 (Vitamin H transporter) and BIO5 (biotin biosynthesis intermediate transporter) in response to low biotin concentrations	
YLR410W	4.372946	VIP1	Inositol hexakisphosphate and inositol heptakisphosphate kinase	
YMR077C	3.243955	VPS20	Myristoylated subunit of the ESCRT-III complex	
YJR102C	2.520390	VPS25	Component of the ESCRT-II complex	
YNR006W	3.270868	VPS27	Endosomal protein that forms a complex with Hse1p	
YPL065W	3.534697	VPS28	Component of the ESCRT-I complex	
YLR417W	0.856668	VPS36	Component of the ESCRT-II complex	
YDR089W	1.383326	VTC5	Novel subunit of the vacuolar transporter chaperone complex	
YDL072C	0.541111	YET3	Protein of unknown function	
YDL180W	0.677139	-	Putative protein of unknown function	
YDL187C	0.739914	-	Dubious open reading frame	
YJL132W	0.830627	-	Putative protein of unknown function	
YIL089W	0.920996	-	Protein of unknown function	
YJL064W	1.029887	-	Dubious open reading frame	
YLR108C	1.048183	-	Protein of unknown function	
YGL081W	1.067312	-	Putative protein of unknown function	
YDR491C	1.192663	-	Dubious open reading frame	
YLR434C	1.203335	-	Dubious open reading frame	
YOR364W	1.286407	-	Dubious open reading frame	
YCR022C	1.325904	-	Putative protein of unknown function	
YPR114W	1.557578	-	Putative protein of unknown function	
YOR139C	1.566757	-	Dubious open reading frame	
YPR064W	1.607261	-	Putative protein of unknown function	
YNL109W	1.653033	-	Dubious open reading frame	

2-MF 15G Resistant Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YDL062W	2.143351	-	Dubious open reading frame
YNL226W	2.943941	-	Dubious open reading frame
YGR122W	3.020169	-	Putative protein of unknown function

2-MF Resistant across all time points

	2-MF Resistant Across All Time Points			
ORF Name	Gene Name	Deleted Gene Function		
YCR048W	ARE1	Acyl-CoA:sterol acyltransferase		
YKR027W	BCH2	Member of the ChAPs (Chs5p-Arf1p-binding proteins) family		
YCR032W	BPH1	Protein homologous to Chediak-Higashi syndrome and Beige proteins		
YKR036C	CAF4	WD40 repeat-containing protein associated with the CCR4-NOT complex		
YOR303W	CPA1	Small subunit of carbamoyl phosphate synthetase		
YGL078C	DBP3	RNA-Dependent ATPase, member of DExD/H-box family		
YIR004W	DJP1	Cytosolic J-domain-containing protein; required for peroxisomal protein import and involved in peroxisome assembly		
YLR372W	ELO3	Elongase; involved in fatty acid and sphingolipid biosynthesis		
YGL057C	GEP7	Protein of unknown function		
YER020W	GPA2	Nucleotide binding alpha subunit of the heterotrimeric G protein		
YGL033W	HOP2	Meiosis-specific protein that localizes to chromosomes; complexes with Mnd1p to promote homolog pairing and meiotic double-strand break repair		
YJL082W	IML2	Protein required for clearance of inclusion bodies; localizes to the inclusion bodies formed under protein misfolding stress		
YOR142W	LSC1	Alpha subunit of succinyl-CoA ligase		
YIL070C	MAM33	Specific translational activator for the mitochondrial COX1 mRNA		
YBL091C	MAP2	Methionine aminopeptidase; catalyzes the cotranslational removal of N-terminal methionine from nascent polypeptides		
YOL090W	MSH2	Protein that binds to DNA mismatches; forms heterodimers with Msh3p and Msh6p that bind to DNA mismatches to initiate the mismatch repair process		
YDR001C	NTH1	Neutral trehalase, degrades trehalose; required for thermotolerance and may mediate resistance to other cellular stresses		
YKL038W	RGT1	Glucose-responsive transcription factor		
YHL027W	<i>RIM101</i>	Cys2His2 zinc-finger transcriptional repressor		
YMR154C	RIM13	Calpain-like cysteine protease; involved in proteolytic activation of Rim101p in response to alkaline pH		

2-MF Resistant Across All Time Points			
ORF Name	ORF Name	ORF Name	
YGL045W	RIM8	Protein involved in proteolytic activation of Rim101p	
YER056C-A	RPL34A	Ribosomal 60S subunit protein L34A	
YDL136W	RPL35B	Ribosomal 60S subunit protein L35B	
YKR094C	RPL40B	Ubiquitin-ribosomal 60S subunit protein L40B fusion protein	
YLR025W	SNF7	One of four subunits of the ESCRT-III complex	
YPL002C	SNF8	Component of the ESCRT-II complex	
YDR463W	STP1	Transcription factor; contains a N-terminal regulatory motif (RI) that acts as a cytoplasmic retention determinant and as an Asi dependent degron in the nucleus	
YCL008C	<i>STP22</i>	Component of the ESCRT-I complex	
YDL063C	SYO1	Transport adaptor or symportin; facilitates synchronized nuclear coimport of the two 5S-rRNA binding proteins Rpl5p and Rpl11p	
YBR069C	TAT1	Amino acid transporter for valine, leucine, isoleucine, and tyrosine	
YMR313C	TGL3	Bifunctional triacylglycerol lipase and LPE acyltransferase	
YCR084C	TUP1	General repressor of transcription	
YMR077C	VPS20	Myristoylated subunit of the ESCRT-III complex	
YJR102C	VPS25	Component of the ESCRT-II complex	
YNR006W	VPS27	Endosomal protein that forms a complex with Hse1p	
YLR417W	VPS36	Component of the ESCRT-II complex	
YDL072C	YET3	Protein of unknown function	
YCR022C	-	Putative protein of unknown function	
YGR122W	-	Protein that may be involved in pH regulation	
YNL226W	-	Dubious open reading frame	
YJL132W	-	Putative protein of unknown function	
YDL187C	-	Dubious open reading frame	

2-MF 5G Sensitive

	2-MF 5G Sensitive Strains			
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function	
YNL077W	-1.579608	APJ1	Chaperone with a role in SUMO-mediated protein degradation; member of the DnaJ-like family; conserved across eukaryotes	
YDR035W	-1.602356	ARO3	3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase	
YMR159C	-0.781731	ATG16	Conserved protein involved in autophagy	
YBR290W	-1.188367	BSD2	Heavy metal ion homeostasis protein	
YKL005C	-1.213721	BYE1	Negative regulator of transcription elongation	

	2-MF 5G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YOR125C	-0.759814	CAT5	Protein required for ubiquinone (Coenzyme Q) biosynthesis	
YNL051W	-1.595877	COG5	Component of the conserved oligomeric Golgi complex	
YNL041C	-2.209737	COG6	Component of the conserved oligomeric Golgi complex	
YPL200W	-3.032029	CSM4	Protein required for accurate chromosome segregation during meiosis	
YJL005W	-1.425142	CYR1	Adenylate cyclase	
YGR092W	-1.188071	DBF2	Ser/Thr kinase involved in transcription and stress response; functions as part of a network of genes in exit from mitosis; localization is cell cycle regulated	
YPL265W	-1.504607	DIP5	Dicarboxylic amino acid permease	
YMR299C	-1.640758	DYN3	Dynein light intermediate chain (LIC)	
YGL020C	-1.308598	GET1	Subunit of the GET complex	
YDR096W	-0.924255	GIS1	Histone demethylase and transcription factor	
YMR251W	-1.653073	GTO3	Omega class glutathione transferase; putative cytosolic localization	
YLL060C	-0.969112	GTT2	Glutathione S-transferase capable of homodimerization	
YKR019C	-1.028624	IRS4	EH domain-containing protein; involved in regulating phosphatidylinositol 4,5-bisphosphate levels and autophagy	
YFR024C-A	-0.949540	LSB3	Protein containing a C-terminal SH3 domain	
YBR298C	-1.435891	MAL31	Maltose permease; high-affinity maltose transporter (alpha-glucoside transporter)	
YNL307C	-1.079643	MCK1	Dual-specificity ser/thr and tyrosine protein kinase	
YML062C	-1.260572	MFT1	Subunit of the THO complex	
YMR115W	-1.142667	MGR3	Subunit of the mitochondrial (mt) i-AAA protease supercomplex	
YGL209W	-1.207690	MIG2	Zinc finger transcriptional repressor	
YDR144C	-1.360318	МКС7	GPI-anchored aspartyl protease	
YJR074W	-1.157446	MOG1	Conserved nuclear protein that interacts with GTP-Gsp1p	
YKL138C	-1.186758	MRPL31	Mitochondrial ribosomal protein of the large subunit	
YCR026C	-2.697337	NPP1	Nucleotide pyrophosphatase/phosphodiesterase	
YHR179W	-2.125392	OYE2	Conserved NADPH oxidoreductase containing flavin mononucleotide (FMN); may be involved in sterol metabolism, oxidative stress response, and programmed cell death; protein abundance increases in response to DNA replication stress	
YGR222W	-1.117719	PET54	Mitochondrial inner membrane protein	

	2-MF 5G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YGR077C	-1.132406	PEX8	Intraperoxisomal organizer of the peroxisomal import machinery	
YNL097C	-1.071814	PH023	Component of the Rpd3L histone deacetylase complex	
YML123C	-1.231401	PH084	High-affinity inorganic phosphate (Pi) transporter	
YGR086C	-2.096025	PIL1	Eisosome core component	
YNL098C	-0.992745	RAS2	GTP-binding protein	
YDR202C	-1.118695	RAV2	Subunit of RAVE complex (Rav1p, Rav2p, Skp1p)	
YMR247C	-1.299218	RKR1	RING domain E3 ubiquitin ligase	
YMR242C	-1.072786	RPL20A	Ribosomal 60S subunit protein L20A	
YDL020C	-0.877670	RPN4	Transcription factor that stimulates expression of proteasome genes	
YER074W	-2.141142	RPS24A	Protein component of the small (40S) ribosomal subunit	
YDL204W	-3.010831	RTN2	Reticulon protein; involved in nuclear pore assembly and maintenance of tubular ER morphology	
YMR263W	-2.684506	SAP30	Component of Rpd3L histone deacetylase complex; involved in silencing at telomeres, rDNA, and silent mating-type loci; involved in telomere maintenance	
YLR268W	-0.770286	SEC22	R-SNARE protein; assembles into SNARE complex with Bet1p, Bos1p and Sed5p	
YNL012W	-2.353499	SP01	Meiosis-specific prospore protein	
YLR055C	-2.926154	SPT8	Subunit of the SAGA transcriptional regulatory complex	
YHL007C	-1.000644	STE20	Cdc42p-activated signal transducing kinase	
YDR457W	-1.250520	TOM1	E3 ubiquitin ligase of the hect-domain class	
YGR194C	-1.461274	XKS1	Xylulokinase; converts D-xylulose and ATP to xylulose 5- phosphate and ADP	
YML007W	-1.855474	YAP1	Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; activated by H2O2 through the multistep formation of disulfide bonds and transit from the cytoplasm to the nucleus; Yap1p is degraded in the nucleus after the oxidative stress has passed; mediates resistance to cadmium; relative distribution to the nucleus increases upon DNA replication stress; YAP1 has a paralog, CAD1, that arose from the whole genome duplication	
YCR059C	-0.883926	YIH1	Negative regulator of eIF2 kinase Gcn2p	

	2-MF 5G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YLR262C	-1.531928	YPT6	Rab family GTPase; required for endosome-to-Golgii, intra-Golgi retrograde, and retrograde Golgi-to-ER transport; temporarily at the Golgi, dissociating into the cytosol on arrival of the late Golgi GTPase Ypt32p; Golgi- localized form is GTP bound, while cytosolic form is GDP- bound; required for delivery of Atg9p to the phagophore assembly site during autophagy under heat stress, with Ypt6p for starvation induced autophagy and for the CVT pathway; homolog of mammalian Rab6	
YMR099C	-1.164334	YMR099C	Dubious open reading frame; unlikely to encode a functional protein, based on available experimental and comparative sequence data; completely overlaps verified gene COQ2	
YCR061W	-3.662968	-	Glucose-6-phosphate 1-epimerase (hexose-6-phosphate mutarotase)	
YDR048C	-2.033354	-	Protein of unknown function	
YJL185C	-1.449976	-	Dubious open reading frame	
YJR128W	-1.397281	-	Dubious open reading frame	
YJR129C	-1.389779	-	Dubious open reading frame	
YMR244W	-1.012968	-	Putative protein of unknown function	
YNR042W	-0.996287	-	Putative protein of unknown function	
YNR061C	-0.949444	-	Putative protein of unknown function	
YPR039W	-0.848692	-	Putative protein of unknown function	

2-MF 10G Sensitive

	2-MF 10G Sensitive Strains			
Deleted ORF Name	Log2 Fold Change	Deleted Gene Name	Deleted Gene Function	
YBR194W	-6.320242	AIM4	Protein proposed to be associated with the nuclear pore complex	
YLR131C	-2.119451	ACE2	Transcription factor required for septum destruction after cytokinesis	
YIL087C	-1.024901	AIM19	Protein of unknown function; mitochondrial protein that physically interacts with Tim23p	
YML035C	-4.041456	AMD1	AMP deaminase; tetrameric enzyme that catalyzes the deamination of AMP to form IMP and ammonia; thought to be involved in regulation of intracellular purine (adenine, guanine, and inosine) nucleotide pools	

2-MF 10G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YBR286W	-1.049249	APE3	Vacuolar aminopeptidase Y; processed to mature form by Prb1p
YNL077W	-2.502452	APJ1	Chaperone with a role in SUMO-mediated protein degradation; member of the DnaJ-like family
YCR068W	-2.400323	ATG15	Phospholipase; preferentially hydrolyses phosphatidylserine, with minor activity against cardiolipin and phosphatidylethanolamine
YPL078C	-1.647820	ATP4	Subunit b of the stator stalk of mitochondrial F1F0 ATP synthase
YBR290W	-2.851730	BSD2	Heavy metal ion homeostasis protein; facilitates trafficking of Smf1p and Smf2p metal transporters to vacuole where they are degraded
YNL288W	-1.049398	CAF40	Component of the CCR4-NOT transcriptional complex
YOR125C	-1.598811	CAT5	Protein required for ubiquinone (Coenzyme Q) biosynthesis
YDR357C	-1.172977	CNL1	Subunit of the BLOC-1 complex involved in endosomal maturation
YML110C	-1.172318	COQ5	2-hexaprenyl-6-methoxy-1,4-benzoquinone methyltransferase; involved in ubiquinone (Coenzyme Q) biosynthesis
YML078W	-0.749314	CPR3	Mitochondrial peptidyl-prolyl cis-trans isomerase (cyclophilin)
YOL159C	-0.767503	CSS3	Protein of unknown function
YBR291C	-2.456760	CTP1	Mitochondrial inner membrane citrate transporter; member of the mitochondrial carrier family
YDL117W	-2.859789	СҮКЗ	SH3-domain protein located in the bud neck and cytokinetic actin ring
YJL005W	-1.300689	CYR1	Adenylate cyclase
YGR092W	-3.206381	DBF2	Ser/Thr kinase involved in transcription and stress response
YPL265W	-2.468472	DIP5	Dicarboxylic amino acid permease; mediates high-affinity and high-capacity transport of L-glutamate and L- aspartate
YBR278W	-1.369949	DPB3	Third-largest subunit of DNA polymerase II (DNA polymerase epsilon); required to maintain fidelity of chromosomal replication and also for inheritance of telomeric silencing
YMR276W	-0.696092	DSK2	Nuclear-enriched ubiquitin-like polyubiquitin-binding protein
YBR281C	-1.433802	DUG2	Component of glutamine amidotransferase (GATase II)
YMR299C	-1.643736	DYN3	Dynein light intermediate chain (LIC)

		2-MF 10G	Sensitive Strains (continued)
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YNL136W	-2.170030	EAF7	Subunit of the NuA4 histone acetyltransferase complex
YLR436C	-0.898310	ECM30	Protein of unknown function
YJR129C	-1.523496	EFM3	S-adenosylmethionine-dependent methyltransferase
YCR034W	-1.259304	ELO2	Fatty acid elongase, involved in sphingolipid biosynthesis
YLR318W	-1.420056	EST2	Reverse transcriptase subunit of the telomerase holoenzyme
YJL155C	-1.672388	FBP26	Fructose-2,6-bisphosphatase, required for glucose metabolism
YIL065C	-1.785777	FIS1	Protein involved in mitochondrial fission and peroxisome abundance
YOR070C	-1.819124	GYP1	Cis-golgi GTPase-activating protein (GAP) for yeast Rabs
YPL244C	-1.487653	HUT1	Protein with a role in UDP-galactose transport to the Golgi lumen
YIL154C	-2.485199	IMP2'	Transcriptional activator involved in maintenance of ion homeostasis
YMR044W	-1.843268	<i>I0C4</i>	Member of a complex (Isw1b) with Isw1p and Ioc2p
YOL081W	-3.276626	IRA2	GTPase-activating protein; negatively regulates RAS by converting it from the GTP- to the GDP-bound inactive form
YKR019C	-2.443888	IRS4	EH domain-containing protein; involved in regulating phosphatidylinositol 4,5-bisphosphate levels and autophagy
YJL162C	-1.460199	<i>]]]2</i>	Protein of unknown function
YGL203C	-1.106996	KEX1	Cell death protease essential for hypochlorite-induced apoptosis
YGL216W	-1.233412	KIP3	Kinesin-related antiparallel sliding motor protein
YNL322C	-1.339237	KRE1	Cell wall glycoprotein involved in beta-glucan assembly
YNL323W	-2.476411	LEM3	Membrane protein of the plasma membrane and ER
YFR024C-A	-1.219669	LSB3	Protein containing a C-terminal SH3 domain
YAL024C	-4.649803	LTE1	Protein similar to GDP/GTP exchange factors
YEL053C	-1.131493	MAK10	Non-catalytic subunit of the NatC N-terminal acetyltransferase
YBR298C	-2.053853	MAL31	Maltose permease; high-affinity maltose transporter (alpha-glucoside transporter)
YBR297W	-1.288892	MAL33	MAL-activator protein
YNL307C	-1.577446	MCK1	Dual-specificity ser/thr and tyrosine protein kinase
YML062C	-1.884985	MFT1	Subunit of the THO complex; involved in telomere maintenance
YMR115W	-2.957041	MGR3	Subunit of the mitochondrial (mt) i-AAA protease supercomplex; i-AAA degrades misfolded mitochondrial proteins

		2-MF 10G	Sensitive Strains (continued)
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YNL100W	-0.903292	MIC27	Component of the MICOS complex
YMR036C	-1.002473	MIH1	Protein tyrosine phosphatase involved in cell cycle control
YEL007W	-1.580623	MIT1	Transcriptional regulator of pseudohyphal growth
YLR035C	-1.077794	MLH2	Protein involved in mismatch repair and meiotic recombination
YJR074W	-6.226682	MOG1	Conserved nuclear protein that interacts with GTP-Gsp1p
YDR162C	-4.373172	NBP2	Protein involved in the HOG (high osmolarity glycerol) pathway
YHR004C	-1.794501	NEM1	Probable catalytic subunit of Nem1p-Spo7p phosphatase holoenzyme
YNL123W	-1.637548	NMA111	Serine protease and general molecular chaperone; involved in response to heat stress and promotion of apoptosis
YDR432W	-6.182218	NPL3	RNA-binding protein; promotes elongation, regulates termination, and carries poly(A) mRNA from nucleus to cytoplasm
YCR026C	-1.769405	NPP1	Nucleotide pyrophosphatase/phosphodiesterase; mediates extracellular nucleotide phosphate hydrolysis along with Npp2p and Pho5p
YBR188C	-1.130229	NTC20	Member of the NineTeen Complex (NTC)
YBL079W	-3.119160	NUP170	Subunit of inner ring of nuclear pore complex (NPC)
YLR335W	-1.111987	NUP2	Nucleoporin involved in nucleocytoplasmic transport
YNL099C	-1.061782	OCA1	Putative protein tyrosine phosphatase; required for cell cycle arrest in response to oxidative damage of DNA
YHL020C	-2.891999	OPI1	Transcriptional regulator of a variety of genes
YHR179W	-2.580863	OYE2	Conserved NADPH oxidoreductase containing flavin mononucleotide (FMN); may be involved in sterol metabolism, oxidative stress response, and programmed cell death; protein abundance increases in response to DNA replication stress
YBR295W	-1.542771	PCA1	Cadmium transporting P-type ATPase
YNR045W	-1.759150	PET494	Mitochondrial translational activator specific for the COX3 mRNA
YNL097C	-3.586818	PH023	Component of the Rpd3L histone deacetylase complex
YBR296C	-1.034167	РНО89	Plasma membrane Na+/Pi cotransporter; active in early growth phase
YCR024C- A	-1.693138	PMP1	Regulatory subunit for the plasma membrane H(+)- ATPase Pma1p
YAL023C	-4.893265	PMT2	Protein O-mannosyltransferase of the ER membrane

2-MF 10G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YBR022W	-1.178734	POA1	Phosphatase that is highly specific for ADP-ribose 1''- phosphate; a tRNA splicing metabolite; may have a role in regulation of tRNA splicing
YDL134C	-0.992481	PPH21	Catalytic subunit of protein phosphatase 2A (PP2A)
YNL098C	-1.615861	RAS2	GTP-binding protein; regulates nitrogen starvation response, sporulation, and filamentous growth
YJL217W	-1.151717	REE1	Cytoplasmic protein involved in the regulation of enolase (ENO1)
YGL250W	-2.139808	RMR1	Protein required for meiotic recombination and gene conversion
YIL148W	-1.437976	RPL40A	Ubiquitin-ribosomal 60S subunit protein L40A fusion protein
YDL020C	-3.985606	RPN4	Transcription factor that stimulates expression of proteasome genes
YCR045C	-1.587381	<i>RRT12</i>	Probable subtilisin-family protease
YMR263W	-3.397736	SAP30	Component of Rpd3L histone deacetylase complex; involved in silencing at telomeres, rDNA, and silent mating-type loci; involved in telomere maintenance
YMR305C	-1.208042	SCW10	Cell wall protein with similarity to glucanases
YLR268W	-7.230171	SEC22	R-SNARE protein; assembles into SNARE complex with Bet1p, Bos1p and Sed5p
YGL066W	-2.585032	SGF73	Subunit of DUBm module of SAGA and SLIK
YNL196C	-1.252873	SLZ1	Sporulation-specific protein with a leucine zipper motif
YDR006C	-1.081862	SOK1	Protein of unknown function
YDR392W	-2.764275	SPT3	Subunit of the SAGA and SAGA-like transcriptional regulatory complexes
YLR055C	-2.137948	SPT8	Subunit of the SAGA transcriptional regulatory complex
YHL007C	-2.448635	STE20	Cdc42p-activated signal transducing kinase
YJL004C	-2.040557	SYS1	Integral membrane protein of the Golgi
YHR167W	-2.153594	THP2	Subunit of the THO and TREX complexes
YPR074C	-4.096908	TKL1	Transketolase; catalyzes conversion of xylulose-5- phosphate and ribose-5-phosphate to sedoheptulose-7- phosphate and glyceraldehyde-3-phosphate in the pentose phosphate pathway
YDR457W	-3.634043	TOM1	E3 ubiquitin ligase of the hect-domain class
YDR120C	-1.847102	TRM1	tRNA methyltransferase
YDR108W	-1.838352	TRS85	Component of transport protein particle (TRAPP) complex III
YDL190C	-0.869943	UFD2	Ubiquitin chain assembly factor (E4)
YBR006W	-1.798114	UGA2	Succinate semialdehyde dehydrogenase

	•	2-MF 10G	Sensitive Strains (continued)
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YPL139C	-1.565075	UME1	Component of both the Rpd3S and Rpd3L histone deacetylase complexes
YIL017C	-2.181051	VID28	GID Complex subunit, serves as adaptor for regulatory subunit Vid24p;
YOR069W	-1.618123	VPS5	Nexin-1 homolog; required for localizing membrane proteins from a prevacuolar/late endosomal compartment back to late Golgi
YOR043W	-2.069352	WHI2	Protein required for full activation of the general stress response
YGR194C	-0.977812	XKS1	Xylulokinase; converts D-xylulose and ATP to xylulose 5- phosphate and ADP
YML007W	-3.703475	YAP1	Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stress
YLR020C	-1.585105	YEH2	Steryl ester hydrolase
YER041W	-1.175374	YEN1	Holliday junction resolvase
YFR007W	-1.923440	YFH7	Putative kinase with similarity to the PRK/URK/PANK kinase subfamily
YCR059C	-1.570233	YIH1	Negative regulator of eIF2 kinase Gcn2p
YNL237W	-1.781428	YTP1	Probable type-III integral membrane protein of unknown function
YBR284W	-2.845409	YBR284W	Putative metallo-dependent hydrolase superfamily protein
YMR099C	-2.265864	YMR099C	Glucose-6-phosphate 1-epimerase (hexose-6-phosphate mutarotase)
YDL183C	-2.178185	YDL183C	Protein that may form an active mitochondrial KHE system
YBL100C	-1.884527	-	Dubious open reading frame
YJL193W	-1.857588	-	Putative protein of unknown function
YCR061W	-1.711321	-	Protein of unknown function
YCR087W	-1.661878	-	Dubious open reading frame
YDR149C	-1.660672	-	Dubious open reading frame
YCR050C	-1.655101	-	Non-essential protein of unknown function
YOL163W	-1.570261	-	Putative protein of unknown function
YDR537C	-1.521862	-	Dubious open reading frame
YCR087C- A	-1.501218	-	Putative protein of unknown function
YNR042W	-1.498250	-	Dubious open reading frame
YPR146C	-1.468608	-	Dubious open reading frame
YDR431W	-1.345096	-	Dubious open reading frame

	2-MF 10G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YGR035C	-1.337407	-	Putative protein of unknown function	
YNL013C	-1.279017	-	Dubious open reading frame	
YBR292C	-1.236470	-	Dubious open reading frame	
YCR085W	-1.137312	-	Putative protein of unknown function	
YOR225W	-1.112290	-	Dubious open reading frame	
YNL115C	-1.087630	-	Putative protein of unknown function	
YGR259C	-1.023921	-	Dubious open reading frame	
YDR048C	-1.003763	-	Dubious open reading frame	
YGL042C	-0.985340	-	Dubious open reading frame	
YCR049C	-0.942974	-	Dubious open reading frame	
YOL085C	-0.890584	-	Putative protein of unknown function	
YNR061C	-0.797835	-	Protein of unknown function	

2-MF 15G Sensitive

	2-MF 15G Sensitive Strains			
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function	
YFL056Ca	-7.415635	AAD6	Putative aryl-alcohol dehydrogenase	
YLR131C	-1.278635	ACE2	Transcription factor required for septum destruction after cytokinesis	
YIL087C	-1.220251	AIM19	Protein of unknown function	
YBR286W	-2.649220	APE3	Vacuolar aminopeptidase Y	
YNL077W	-6.859713	APJ1	Chaperone with a role in SUMO-mediated protein degradation	
YDL192W	-0.830221	ARF1	ADP-ribosylation factor; GTPase of the Ras superfamily involved in regulation of coated vesicle formation in intracellular trafficking within the Golgi	
YIL130W	-2.699690	ASG1	Zinc cluster protein proposed to be a transcriptional regulator; regulator involved in the stress response	
YCR068W	-5.218744	ATG15	Phospholipase; preferentially hydrolyses phosphatidylserine, with minor activity against cardiolipin and phosphatidylethanolamine	
YPL078C	-4.002264	ATP4	Subunit b of the stator stalk of mitochondrial F1F0 ATP synthase	
YBR290W	-1.386475	BSD2	Heavy metal ion homeostasis protein	
YLR319C	-1.222312	BUD6	Actin- and formin-interacting protein	
YMR275C	-1.825758	BUL1	Ubiquitin-binding component of the Rsp5p E3-ubiquitin ligase complex	

	2-MF 15G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YOR125C	-1.864373	CAT5	Protein required for ubiquinone (Coenzyme Q) biosynthesis	
YKL208W	-1.635037	CBT1	Protein involved in 5' RNA end processing	
YDR254W	-2.064220	CHL4	Outer kinetochore protein required for chromosome stability	
YPL241C	-1.071311	CIN2	GTPase-activating protein (GAP) for Cin4p	
YNR001C	-1.597698	CIT1	Citrate synthase; catalyzes the condensation of acetyl coenzyme A and oxaloacetate to form citrate	
YML110C	-1.350594	COQ5	2-hexaprenyl-6-methoxy-1,4-benzoquinone methyltransferase	
YPL172C	-0.909607	COX10	Heme A:farnesyltransferase; catalyzes first step in conversion of protoheme to heme A prosthetic group required for cytochrome c oxidase activity	
YLR038C	-1.970031	<i>COX12</i>	Subunit VIb of cytochrome c oxidase	
YLL018C-A	-0.993821	<i>COX19</i>	Protein required for cytochrome c oxidase assembly	
YML078W	-3.356079	CPR3	Mitochondrial peptidyl-prolyl cis-trans isomerase (cyclophilin)	
YLR087C	-2.220065	CSF1	Protein required for fermentation at low temperature	
YCR086W	-0.817225	CSM1	Nucleolar protein that mediates homolog segregation during meiosis I	
YOL159C	-3.048299	CSS3	Protein of unknown function	
YBR291C	-1.481115	CTP1	Mitochondrial inner membrane citrate transporter	
YML113W	-6.795769	DAT1	DNA binding protein that recognizes oligo(dA).oligo(dT) tracts	
YGR092W	-3.931766	DBF2	Ser/Thr kinase involved in transcription and stress response; functions as part of a network of genes in exit from mitosis	
YPL265W	-1.348863	DIP5	Dicarboxylic amino acid permease; mediates high-affinity and high-capacity transport of L-glutamate and L- aspartate	
YMR276W	-1.423329	DSK2	Nuclear-enriched ubiquitin-like polyubiquitin-binding protein	
YBR281C	-1.237421	DUG2	Component of glutamine amidotransferase (GATase II)	
YMR299C	-5.688198	DYN3	Dynein light intermediate chain (LIC)	
YNL136W	-1.186960	EAF7	Subunit of the NuA4 histone acetyltransferase complex	
YLR436C	-2.570277	ЕСМ30	Protein of unknown function	
YJR129C	-2.019021	EFM3	S-adenosylmethionine-dependent methyltransferase	
YCR034W	-2.028307	ELO2	Fatty acid elongase, involved in sphingolipid biosynthesis	
YMR015C	-2.536330	ERG5	C-22 sterol desaturase	

Deleted	Deleted	Deleted ORF	Sensitive Strains (continued)
ORF Name	ORF Name	Name	Deleted ORF Name
			Fructose-2,6-bisphosphatase, required for glucose
YJL155C	-3.144793	FBP26	metabolism; protein abundance increases in response to
			DNA replication stress
YIL065C	-0.895339	FIS1	Protein involved in mitochondrial fission and peroxisome abundance
YLR454W	-1.432406	FMP27	Putative protein of unknown function
YJR040W	-4.754243	GEF1	Voltage-gated chloride channel
YGL020C	-5.765378	GET1	Subunit of the GET complex
YER083C	-1.135675	GET2	Subunit of the GET complex
YMR311C	-0.976193	GLC8	Regulatory subunit of protein phosphatase 1 (Glc7p)
YLL060C	-1.824773	GTT2	Glutathione S-transferase capable of homodimerization
YOR070C	-2.072129	GYP1	Cis-golgi GTPase-activating protein (GAP) for yeast Rabs
YGR187C	-1.821889	HGH1	Nonessential protein of unknown function
YDL066W	-1.256462	IDP1	Mitochondrial NADP-specific isocitrate dehydrogenase
VMDO2EW	-0.873326	IMD2	Catalytic subunit of mitochondrial inner membrane
YMR035W	-0.873326	IMP2	peptidase complex
YIR024C	-5.755591	INA22	F1F0 ATP synthase peripheral stalk assembly factor
YOL081W	-4.567548	IRA2	GTPase-activating protein
		IRS4	EH domain-containing protein; involved in regulating
YKR019C	-1.263834		phosphatidylinositol 4,5-bisphosphate levels and
			autophagy
YPL145C	-1.278238	KES1	One of seven members of the yeast oxysterol binding protein family
			Kinesin-related motor protein involved in mitotic spindle
YPL155C	-1.992579	KIP2	positioning; stabilizes microtubules by targeting Bik1p to
			the plus end
YNL322C	-3.367964	KRE1	Cell wall glycoprotein involved in beta-glucan assembly
YOR322C	-2.385248	LDB19	Alpha-arrestin involved in ubiquitin-dependent endocytosis
YNL323W	-1.421697	LEM3	Membrane protein of the plasma membrane and ER
YFR024C-A	-1.471976	LSB3	Protein containing a C-terminal SH3 domain
			Non-catalytic subunit of the NatC N-terminal
YEL053C	-1.844089	MAK10	acetyltransferase
YPR051W	-2.774235	MAK3	Catalytic subunit of the NatC type N-terminal
			acetyltransferase (NAT)
YBR298C	-2.177613	MAL31	Maltose permease
YBR297W	-2.461836	MAL33	MAL-activator protein;
YNL307C	-3.944692	MCK1	Dual-specificity ser/thr and tyrosine protein kinase
YML062C	-1.473154	MFT1	Subunit of the THO complex

			Sensitive Strains (continued)
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YMR036C	-2.313372	MIH1	Protein tyrosine phosphatase involved in cell cycle control
YEL007W	-1.487157	MIT1	Transcriptional regulator of pseudohyphal growth
YMR070W	-1.053629	МОТЗ	Transcriptional repressor, activator; role in cellular adjustment to osmotic stress including modulation of mating efficiency
YMR037C	-4.302750	MSN2	Stress-responsive transcriptional activator; activated in stochastic pulses of nuclear localization in response to various stress conditions; binds DNA at stress response elements of responsive genes
YKR048C	-3.171312	NAP1	Histone chaperone
YHR004C	-3.200743	NEM1	Probable catalytic subunit of Nem1p-Spo7p phosphatase holoenzyme
YCR026C	-1.919325	NPP1	Nucleotide pyrophosphatase/phosphodiesterase
YNL183C	-7.553306	NPR1	Protein kinase; stabilizes several plasma membrane amino acid transporters by antagonizing their ubiquitin- mediated degradation; phosphorylates Aly2p
YBL079W	-4.114137	NUP170	Subunit of inner ring of nuclear pore complex (NPC)
YLR335W	-1.087515	NUP2	Nucleoporin involved in nucleocytoplasmic transport
YNL099C	-6.775693	OCA1	Putative protein tyrosine phosphatase; required for cell cycle arrest in response to oxidative damage of DNA
YHL020C	-3.807469	OPI1	Transcriptional regulator of a variety of genes
YHR179W	-1.977984	OYE2	Conserved NADPH oxidoreductase containing flavin mononucleotide (FMN)
YBR295W	-2.343834	PCA1	Cadmium transporting P-type ATPase
YOR360C	-2.566723	PDE2	High-affinity cyclic AMP phosphodiesterase
YJL053W	-1.548599	PEP8	Vacuolar protein component of the retromer
YNR045W	-1.501973	PET494	Mitochondrial translational activator specific for the COX3 mRNA
YGR077C	-6.251252	PEX8	Intraperoxisomal organizer of the peroxisomal import machinery
YGL025C	-3.299959	PGD1	Subunit of the RNA polymerase II mediator complex
YNL097C	-1.581213	PH023	Component of the Rpd3L histone deacetylase complex
YBR296C	-2.489030	PH089	Plasma membrane Na+/Pi cotransporter
YCR024C- A	-1.430018	PMP1	Regulatory subunit for the plasma membrane H(+)- ATPase Pma1p
YGL063W	-3.377646	PUS2	Mitochondrial tRNA:pseudouridine synthase
YLR204W	-1.487115	QRI5	Mitochondrial inner membrane protein
YNL098C	-1.626706	RAS2	GTP-binding protein; regulates nitrogen starvation response, sporulation, and filamentous growth

	1		Sensitive Strains (continued)
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YDR202C	-3.245415	RAV2	Subunit of RAVE complex (Rav1p, Rav2p, Skp1p)
YCR036W	-1.141943	RBK1	Putative ribokinase
YMR274C	-1.868680	RCE1	Type II CAAX prenyl protease
YLR248W	-1.473914	RCK2	Protein kinase involved in response to oxidative and osmotic stress
YNL022C	-1.088232	RCM1	rRNA m5C methyltransferase
YJL217W	-2.387224	REE1	Cytoplasmic protein involved in the regulation of enolase (ENO1)
YGL250W	-1.945067	RMR1	Protein required for meiotic recombination and gene conversion
YIL148W	-7.692187	RPL40A	Ubiquitin-ribosomal 60S subunit protein L40A fusion protein
YDL020C	-1.895597	RPN4	Transcription factor that stimulates expression of proteasome genes
YCR045C	-4.039654	<i>RRT12</i>	Probable subtilisin-family protease
YMR263W	-5.638795	SAP30	Component of Rpd3L histone deacetylase complex
YLR268W	-1.042550	SEC22	R-SNARE protein; assembles into SNARE complex with Bet1p, Bos1p and Sed5p
YGR208W	-1.310761	SER2	Phosphoserine phosphatase of the phosphoglycerate pathway
YDL225W	-4.259420	SHS1	Component of the septin ring that is required for cytokinesis
YNL236W	-1.055804	SIN4	Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA polymerase II holoenzyme
YGR271W	-1.548723	SLH1	Putative RNA helicase related to Ski2p
YDR006C	-1.196946	SOK1	Protein of unknown function
YNL012W	-7.164570	SP01	Meiosis-specific prospore protein
YDR392W	-3.049240	SPT3	Subunit of the SAGA and SAGA-like transcriptional regulatory complexes
YLR055C	-1.271974	SPT8	Subunit of the SAGA transcriptional regulatory complex
YAL005C	-1.276398	SSA1	ATPase involved in protein folding and NLS-directed nuclear transport
YLL024C	-2.974996	SSA2	HSP70 family ATP-binding protein; involved in protein folding, vacuolar import of proteins
YHL007C	-1.072217	STE20	Cdc42p-activated signal transducing kinase
YMR039C	-3.085640	SUB1	Transcriptional regulator; facilitates elongation through factors that modify RNAP II; role in peroxide resistance involving Rad2p

		2-MF 15G	Sensitive Strains (continued)
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YJL004C	-1.144495	SYS1	Integral membrane protein of the Golgi; required for targeting of the Arf-like GTPase Arl3p to the Golgi; multicopy suppressor of ypt6 null mutation
YEL048C	-2.595533	TCA17	Component of transport protein particle (TRAPP) complex II
YCR053W	-2.161817	THR4	Threonine synthase; conserved protein that catalyzes formation of threonine from 0-phosphohomoserine
YOL018C	-4.504234	TLG2	Syntaxin-like t-SNARE; forms a complex with Tlg1p and Vti1p and mediates fusion of endosome-derived vesicles with the late Golgi
YDR457W	-1.884953	TOM1	E3 ubiquitin ligase of the hect-domain class; has a role in mRNA export from the nucleus and may regulate transcriptional coactivators
YNL070W	-2.884919	TOM7	Component of the TOM (translocase of outer membrane) complex
YDR120C	-1.021030	TRM1	tRNA methyltransferase
YBR058C	-1.060611	UBP14	Ubiquitin-specific protease; specifically disassembles unanchored ubiquitin chains; involved in fructose-1,6- bisphosphatase (Fbp1p) degradation; similar to human isopeptidase T
YDL190C	-1.140738	UFD2	Ubiquitin chain assembly factor (E4)
YKL010C	-2.027636	UFD4	Ubiquitin-protein ligase (E3)
YBR006W	-1.706890	UGA2	Succinate semialdehyde dehydrogenase
YML021C	-1.184874	UNG1	Uracil-DNA glycosylase; required for repair of uracil in DNA formed by spontaneous cytosine deamination; efficiently excises uracil from single-stranded DNA in vivo; not required for strand-specific mismatch repair; cell- cycle regulated, expressed in late G1; localizes to mitochondria and nucleus
YJL130C	-1.476761	URA2	Bifunctional carbamoylphosphate synthetase/aspartate transcarbamylase
YJR049C	-1.970408	UTR1	ATP-NADH kinase; phosphorylates both NAD and NADH
YOR068C	-2.652752	VAM10	Protein involved in vacuole morphogenesis
YIL017C	-7.748956	VID28	GID Complex subunit, serves as adaptor for regulatory subunit Vid24p
YPL253C	-2.240708	VIK1	Protein that forms a kinesin-14 heterodimeric motor with Kar3p; localizes Kar3p at mitotic spindle poles
YJL154C	-1.749445	VPS35	Endosomal subunit of membrane-associated retromer complex
YLR360W	-3.246014	VPS38	Part of a Vps34p phosphatidylinositol 3-kinase complex

		2-MF 15G	Sensitive Strains (continued)
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name
YOR043W	-4.119905	WHI2	Protein required for full activation of the general stress response
YHR134W	-5.972651	WSS1	Metalloprotease involved in DNA repair, removes DNA- protein crosslinks at stalled replication forks during replication of damaged DNA; localizes to a single spot on the nuclear periphery of mother cells but not daughters; interacts genetically with SMT3; activated by DNA binding
YML007W	-1.323049	YAP1	Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stress
YHL009C	-1.588694	YAP3	Basic leucine zipper (bZIP) transcription factor
YBR216C	-1.635419	YBP1	Protein involved in cellular response to oxidative stress; required for oxidation of specific cysteine residues of transcription factor Yap1p
YLR020C	-2.303755	YEH2	Steryl ester hydrolase; catalyzes steryl ester hydrolysis at the plasma membrane
YER041W	-1.928270	YEN1	Holliday junction resolvase; promotes template switching during break-induced replication (BIR), causing non- reciprocal translocations (NRTs)
YFR007W	-2.042895	YFH7	Putative kinase with similarity to the PRK/URK/PANK kinase subfamily
YCR059C	-1.191655	YIH1	Negative regulator of eIF2 kinase Gcn2p
YJR142W	-2.037867	YJR142W	8-oxo-dGTP diphosphatase of the Nudix hydrolase family
YHL014C	-3.175322	YLF2	Protein of unknown function
YMR099C	-1.770541	YMR099C	Glucose-6-phosphate 1-epimerase (hexose-6-phosphate mutarotase)
YDR349C	-4.760298	YPS7	Putative GPI-anchored aspartic protease
YNL237W	-3.431980	YTP1	Protein of unknown function
YJL056C	-3.177184	ZAP1	Zinc-regulated transcription factor
YBL100C	-3.165495	-	Dubious open reading frame
YKR047W	-3.020315	-	Dubious open reading frame
YCR087C- A	-2.887457	-	Putative protein of unknown function
YCR061W	-2.764908	-	Protein of unknown function
YCL001W- A	-2.629919	-	Putative protein of unknown function
YJL193W	-2.591022	-	Putative protein of unknown function
YCR087W	-2.462803	-	Dubious open reading frame
YCR050C	-2.304166	-	Protein of unknown function
YIL077C	-2.247159	-	Putative protein of unknown function

	2-MF 15G Sensitive Strains (continued)			
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	
YOL050C	-2.061481	-	Dubious open reading frame	
YGR164W	-1.978256	-	Dubious open reading frame	
YDR537C	-1.966123	-	Dubious open reading frame	
YDR431W	-1.944835	-	Dubious open reading frame	
YDL183C	-1.872611	-	Protein of unknown function	
YCR085W	-1.838758	-	Putative protein of unknown function	
YGR035C	-1.800752	-	Putative protein of unknown function	
YDL023C	-1.735333	-	Dubious open reading frame	
YCR025C	-1.663695	-	Dubious open reading frame	
YPR146C	-1.600185	-	Dubious open reading frame	
YPR197C	-1.596537	-	Dubious open reading frame	
YDR149C	-1.543165	-	Dubious open reading frame	
YKL023W	-1.540832	-	Putative protein of unknown function	
YNL013C	-1.386039	-	Dubious open reading frame	
YPL182C	-1.372995	-	Dubious open reading frame	
YCR049C	-1.325314	-	Dubious open reading frame	
YAL004W	-1.297270	-	Dubious open reading frame	
YNL115C	-1.247412	-	Putative protein of unknown function	
YBR284W	-1.245773	-	Putative metallo-dependent hydrolase superfamily protein	
YPR039W	-1.238496	-	Dubious open reading frame	
YNL205C	-1.155408	-	Dubious open reading frame	
YBR292C	-1.134037	-	Dubious open reading frame	
YGR259C	-1.097749	-	Dubious open reading frame	
YJL215C	-1.024835	-	Dubious open reading frame	
YJR128W	-1.005754	-	Dubious open reading frame	
YAL058C-A	-0.983666	-	Dubious open reading frame	
YJR087W	-0.890169	-	Dubious open reading frame;	
YOL085C	-0.841583	-	Putative protein of unknown function	
YNR061C	-0.727857	-	Protein of unknown function	
YGR022C	-0.663654	-	Dubious open reading frame	

2-MF Sensitive across all time points

		2-MF Sensitive across all time points	
ORF Name	Gene Name	Deleted Gene Function	
YNL077W	APJ1	Chaperone with a role in SUMO-mediated protein degradation	
YBR290W	BSD2	Heavy metal ion homeostasis protein	
YOR125C	CAT5	Protein required for ubiquinone (Coenzyme Q) biosynthesis	
VCD002W	DBF2	Ser/Thr kinase involved in transcription and stress response;	
YGR092W	DDFZ	functions as part of a network of genes in exit from mitosis	
YPL265W	DIP5	Dicarboxylic amino acid permease; mediates high-affinity and high- capacity transport of L-glutamate and L-aspartate	
YMR299C	DYN3	Dynein light intermediate chain (LIC)	
YJR129C	EFM3	S-adenosylmethionine-dependent methyltransferase	
YKR019C	IRS4	EH domain-containing protein; involved in regulating phosphatidylinositol 4,5-bisphosphate levels and autophagy	
YFR024C-A	LSB3	Protein containing a C-terminal SH3 domain	
YBR298C	MAL31	Maltose permease; high-affinity maltose transporter (alpha-glucoside transporter)	
YNL307C	MCK1	Dual-specificity ser/thr and tyrosine protein kinase	
YML062C	MFT1	Subunit of the THO complex	
YCR026C	NPP1	Nucleotide pyrophosphatase/phosphodiesterase	
YHR179W	OYE2	Conserved NADPH oxidoreductase containing flavin mononucleotide (FMN)	
YNL097C	PH023	Component of the Rpd3L histone deacetylase complex	
YNL098C	RAS2	GTP-binding protein	
YDL020C	RPN4	Transcription factor that stimulates expression of proteasome genes	
YMR263W	SAP30	Component of Rpd3L histone deacetylase complex	
YLR268W	SEC22	R-SNARE protein	
YLR055C	SPT8	Subunit of the SAGA transcriptional regulatory complex	
YHL007C	STE20	Cdc42p-activated signal transducing kinase	
YDR457W	TOM1	E3 ubiquitin ligase of the hect-domain class	
YML007W	YAP1	Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stress	
YCR059C	YIH1	Negative regulator of eIF2 kinase Gcn2p	
YMR099C	YMR099C	Glucose-6-phosphate 1-epimerase (hexose-6-phosphate mutarotase)	
YNR061C	-	Protein of unknown function	
YCR061W	-	Protein of unknown function	

Appendix 4: Mutants with altered growth in 2-EF

2-EF 5G Resistant

2-EF 5G Resistant Strains			
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function
YGR041W	2.628554	BUD9	Protein involved in bud-site selection
YNL278W	1.488499	CAF120	Part of the CCR4-NOT transcriptional regulatory complex
YJL099W	3.400330	CHS6	Member of the ChAPs (Chs5p-Arf1p-binding proteins) family
YGL002W	1.730549	ERP6	Member of the p24 family involved in ER to Golgi transport
YJR030C	0.979189	RBH2	Putative protein of unknown function
YKL020C	1.931782	SPT23	ER membrane protein involved in regulation of OLE1 transcription
YBR044C	2.444186	TCM62	Protein involved in assembly of the succinate dehydrogenase complex
YOR132W	1.803843	VPS17	Subunit of the membrane-associated retromer complex
YPR059C	1.261990	-	Dubious open reading frame
YMR310C	1.330129	-	Putative protein of unknown function
YLR269C	1.332697	-	Dubious open reading frame
YOL163W	1.370128	-	Putative protein of unknown function
YOR364W	2.496378	-	Dubious open reading frame

2-EF 15G Resistant

2-EF 15G Resistant Strains			
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function
YHR094C	1.021111	HXT1	Low-affinity glucose transporter of the major facilitator superfamily
YOL122C	0.859951	SMF1	Divalent metal ion transporter; broad specificity for divalent and trivalent metals
YDR109C	1.342878	-	Putative kinase
YLR012C	0.880762	-	Putative protein of unknown function
YLR434C	1.246196	-	Dubious open reading frame
YEL023C	1.140432	-	Putative protein of unknown function
YDL086W	1.221329	-	Putative protein of unknown function

2-EF 5G Sensitive

2-EF 5G Sensitive Strains					
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function		
YLR131C	-2.153724	ACE2	Transcription factor required for septum destruction after cytokinesis		
YNL051W	-3.386425	COG5	Component of the conserved oligomeric Golgi complex		
YNL041C	-2.093056	COG6	Component of the conserved oligomeric Golgi complex		
YIL002C	-1.146930	INP51	Phosphatidylinositol 4,5-bisphosphate 5-phosphatase		
YKR019C	-2.351672	IRS4	EH domain-containing protein; involved in regulating phosphatidylinositol 4,5-bisphosphate levels and autophagy		
YEL037C	-0.874186	RAD23	Protein with ubiquitin-like N terminus; subunit of Nuclear Excision Repair Factor 2 (NEF2) with Rad4p that binds damaged DNA; enhances protein deglycosylation activity of Png1p; also involved, with Rad4p, in ubiquitylated protein turnover; Rad4p-Rad23p heterodimer binds to promoters of DNA damage response genes to repress their transcription in the absence of DNA damage		
YDL020C	-1.921801	RPN4	Transcription factor that stimulates expression of proteasome genes upon DNA replication stress		
YHR206W	-1.578703	SKN7	Nuclear response regulator and transcription factor		
YDR463W	-3.244005	STP1	Transcription factor; contains a N-terminal regulatory motif (RI) that acts as a cytoplasmic retention determinant and as an Asi dependent degron in the nucleus		
YJL004C	-2.466030	SYS1	Integral membrane protein of the Golgi		
YBR069C	-1.752176	TAT1	Amino acid transporter for valine, leucine, isoleucine, and tyrosine		
YDL080C	-1.397818	THI3	Regulatory protein that binds Pdc2p and Thi2p transcription factors		
YML007W	-1.187031	YAP1	Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stress		
YNL237W	-0.994653	YTP1	Protein of unknown function		

2-EF 10G Sensitive

2-EF 10G Sensitive Strains						
Deleted ORF Name	Log ₂ Fold Change	Deleted Gene Name	Deleted Gene Function			
YLR131C	-2.949282	ACE2	Transcription factor required for septum destruction after cytokinesis			
YDR101C	-1.767640	ARX1	Nuclear export factor for the ribosomal pre-60S subunit			
YNL041C	-7.168183	COG6	Component of the conserved oligomeric Golgi complex			
YML071C	-5.526670	COG8	Component of the conserved oligomeric Golgi complex			
YCR071C	-2.437157	IMG2	Mitochondrial ribosomal protein of the large subunit			
YKR019C	-4.587350	IRS4	EH domain-containing protein; involved in regulating phosphatidylinositol 4,5-bisphosphate levels and autophagy			
YAL024C	-4.947588	LTE1	Protein similar to GDP/GTP exchange factors			
YEL053C	-1.468892	MAK10	Non-catalytic subunit of the NatC N-terminal acetyltransferase			
YHR206W	-1.802560	SKN7	Nuclear response regulator and transcription factor			
YDR463W	-7.957441	STP1	Transcription factor; contains a N-terminal regulatory motif (RI) that acts as a cytoplasmic retention determinant and as an Asi dependent degron in the nucleus			
YJL004C	-3.690139	SYS1	Integral membrane protein of the Golgi			
YBR069C	-3.626629	TAT1	Amino acid transporter for valine, leucine, isoleucine, and tyrosine			
YML007W	-1.662550	YAP1	Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stress			
YMR262W	-2.355676	-	Protein of unknown function			
YMR141C	-1.376591	-	Putative protein of unknown function			
YGR035C	-1.101691	-	Putative protein of unknown function			

2-EF 15G Sensitive

2-EF 15G Sensitive Strains					
DeletedLog2 FoldDeletedORF NameChangeDeletedDeleted Gene Function					
YLR131C	-7.399615	ACE2	Transcription factor required for septum destruction after cytokinesis		
YER017C	-6.230796 AFG3		Mitochondrial inner membrane m-AAA protease component		

2-EF 15G Sensitive Strains (continued)					
Deleted ORF Name	Deleted ORF Name	Deleted ORF Name	Deleted ORF Name		
YER167W	-3.764460	BCK2	Serine/threonine-rich protein involved in PKC1 signaling pathway		
YAR014C	-2.708735	BUD14	Protein involved in bud-site selection		
YGL027C	-1.138990	CWH41	Processing alpha glucosidase I; ER type II integral membrane N-glycoprotein		
YAL026C	-2.130574	DRS2	Trans-golgi network aminophospholipid translocase (flippase)		
YMR276W	-1.795741	DSK2	Nuclear-enriched ubiquitin-like polyubiquitin-binding protein		
YCR034W	-1.240562	ELO2	Fatty acid elongase, involved in sphingolipid biosynthesis		
YGL054C	-2.875402	ERV14	COPII-coated vesicle protein		
YIL065C	-0.931000	FIS1	Protein involved in mitochondrial fission and peroxisome abundance		
YGL020C	-6.128761	GET1	Subunit of the GET complex		
YOR070C	-1.758608	GYP1	Cis-golgi GTPase-activating protein (GAP) for yeast Rabs		
YOL081W	-2.700860	IRA2	GTPase-activating protein		
YKR019C	-8.159027	IRS4	EH domain-containing protein; involved in regulating phosphatidylinositol 4,5-bisphosphate levels and autophagy		
YEL053C	-2.250082	MAK10	Non-catalytic subunit of the NatC N-terminal acetyltransferase		
YOL116W	-1.239047	MSN1	Transcriptional activator; involved in regulation of invertase and glucoamylase expression, invasive growth and pseudohyphal differentiation, iron uptake, chromium accumulation, and response to osmotic stress		
YNR049C	-1.784849	MSO1	Lipid-interacting protein in SNARE complex assembly machinery		
YMR080C	-2.193308	NAM7	ATP-dependent RNA helicase of the SFI superfamily		
YHR004C	-1.717609	NEM1	Probable catalytic subunit of Nem1p-Spo7p phosphatase holoenzyme		
YBL079W	-3.181725	NUP170	Subunit of inner ring of nuclear pore complex (NPC)		
YCR079W	-1.047813	PTC6	Mitochondrial type 2C protein phosphatase (PP2C)		
YMR274C	-2.707464	RCE1	Type II CAAX prenyl protease		
YDL020C	-3.434714	RPN4	Transcription factor that stimulates expression of proteasome genes		
YCR045C	-1.065848	<i>RRT12</i>	Probable subtilisin-family protease		
YJL047C	-2.464907	RTT101	Cullin subunit of a Roc1p-dependent E3 ubiquitin ligase complex		
YHR206W	-2.748666	SKN7	Nuclear response regulator and transcription factor		
YOR327C	-1.598279	SNC2	Vesicle membrane receptor protein (v-SNARE)		

YIL036W-0.982127SNX4Sorting nexin; involved in Petrieval or late-obgr SNARSS from post-Golg endosomes to the trans-Golg network and in cytoplasm to vacuole transportYIL04C-7.359825SYS1Integral membrane protein of the GolgiYBR069C-4.552861TAT1Amino acid transporter for valine, leucine, isoleucine, and tyrosineYCR053W-2.018128THR4Threonine synthase; conserved protein that catalyzes formation of threonine from O-phosphohomoserine Syntaxin-like t-SNARE; forms a complex with Tg1 p and Vt1 p and mediates fusion of endosome-derived vesicles with the late GolgiYNL300W-1.113109T056Glycosylphosphatidylinositol-dependent cell wall protein IIYDR120C-1.530404TRM1tRNA methyltransferaseYGR166W-1.730845TRS65Component of transport protein particle (TRAPP) complex IIYJR049C-1.923595UTR1ATP-NADH kinase; phosphorylates both NAD and NADH IIIYIL017C-1.511648VID28GliD Complex subunit, serves as adaptor for regulatory subunit Vid24pYHR134W-5.585626WS51Protein involved in prospore membrane morphogenesis responseYNL007W-2.302138YAP1Basic leucine zipper (bZIP) transcription factor; required for widative stress tolerance; relative distribution to the nucleus increases upon DNA; protein crusined apartic proteaseYNL007W-2.83579-Dubious open reading frameYPR050C-1.963367-Dubious open reading frameYR050C-1.963367-Dubious open reading frameYNL025C <th></th> <th></th> <th>Γ</th> <th>Conting navin, involved in notrieval of late Calai CNADE-</th>			Γ	Conting navin, involved in notrieval of late Calai CNADE-		
YIL004C-7.359825SYS1Integral membrane protein of the GolgiYBR069C-4.552861TAT1Amino acid transporter for valine, leucine, isoleucine, and tyrosineYCR053W-2.018128THR4Threonine synthase; conserved protein that catalyzes formation of threonine from O-phosphohomoserineYCR053W-2.018128THR4Threonine synthase; conserved protein that catalyzes formation of threonine from O-phosphohomoserineYOL018C-4.553734TLG2Syntaxin-like t-SNARE; forms a complex with Tlg1p and Vti1p and mediates fusion of endosome-derived vesicles with the late GolgiYNL300W-1.113109TOS6Glycosylphosphatidylinositol-dependent cell wall protein IIYDR108W-1.730845TRS65Component of transport protein particle (TRAPP) complex IIIYDR108W-2.035670TRS85Component of transport protein particle (TRAPP) complex IIIYIL047C-1.423604VPS13Protein involved in prospore membrane morphogenesisYOR043W-1.012060WH12Protein required for full activation of the general stress responseYHR134W-5.585626WSS1replication of damaged DNA; localizes to a single spot on the nuclear periphery of mother cells but not daughters; interacts genetically with SMT3; activated by DNA bindingYHL047C-1.801126YPS7Putative GPI-anchored aspartic proteaseYOR043W-1.012060WF71Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stress interacts genetically with SMT3; activ	VILODOW	-0.982127	SNX4	Sorting nexin; involved in retrieval of late-Golgi SNAREs		
YJL004C-7.359825SYS1Integral membrane protein of the GolgiYBR069C-4.552861TAT1Amino acid transporter for valine, leucine, isoleucine, and tyrosineYCR053W-2.018128THR4Threonine synthase; conserved protein that catalyzes formation of threonine from 0-phosphohomoserineYOL018C-4.553734TLG2Syntaxin-like t-SNARE; forms a complex with Tlg1p and Wt1p and mediates fusion of endosome-derived vesicles with the late GolgiYNL300W-1.113109TOS6Glycosylphosphatidylinositol-dependent cell wall protein YDR120CYDR120C-1.530404TRM1tRNA methyltransferaseYGR166W-1.730845TRS65Component of transport protein particle (TRAPP) complex IIYDR108W-2.035670TRS85Component of transport protein particle (TRAPP) complex IIIYIL017C-1.511648VID28GID Complex subunit, serves as adaptor for regulatory subunit Vid24pYLL040C-1.423604VPS13Protein involved in prospore membrane morphogenesis responseYNR043W-5.585626WSS1metalloprotease involved in DNA repair, removes DNA- protein crosslinks at stalled replication forks during replication of damaged DNA; localizes to a single spot on the nuclear piphery of mother cells but not daughters; interacts genetically with SMT3; activated by DNA bindingYML007W-2.302138YAP1Saic leucine zipper (bZIP) transcription factor; required for outdaive stress tolerance; relative distribution to the nucleus increases upon DNA replication stressYDR349C-1.801126YPS7Putative GPI-anchored aspartic pro	YJLU36W					
YBR069C-4.552861TAT1Amino acid transporter for valine, leucine, isoleucine, and tyrosineYCR053W-2.018128THR4Threonine synthase; conserved protein that catalyzes formation of threonine from 0-phosphohomoserineY0L018C-4.553734TLG2Syntaxin-like t-SNARE; forms a complex with Tlg1p and Vt1p and mediates fusion of endosome-derived vesicles with the late GolgiYNL300W-1.113109TDS6Glycosylphosphatidylinositol-dependent cell wall protein YDR120CYDR120C-1.530404TRM1tRNA methyltransferaseYGR166W-1.730845TRS65Component of transport protein particle (TRAPP) complex IIYDR108W-2.035670TRS85Component of transport protein particle (TRAPP) complex IIYIL017C-1.511648VID28GD Complex subunit, serves as adaptor for regulatory subunit Vid24pYLL040C-1.423604VPS13Protein involved in prospore membrane morphogenesis responseYNR134W-5.585626WSS1Retalloprotease involved in DNA repair, removes DNA- protein crosslinks at stalled replication forks during replication of damaged DNA; localizes to a single spot on the nuclear periphery of mother cells but not daughters; interacts genetically with SMT3; activated by DNA bindingYML007W-2.302138YAP1for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stressYDR349C-1.801126YPS7Putative GPI-anchored aspartic proteaseYDL026C-1.85325ZAP1Zinc-regulated transcription factorYDR366C-1.985367- <t< td=""><td>VIL 004C</td><td>7 250025</td><td>CVC1</td><td colspan="3"></td></t<>	VIL 004C	7 250025	CVC1			
TBR009C14.5320011711tyrosineYCR053W-2.018128THR4Threonine synthase; conserved protein that catalyzes formation of threonine from 0-phosphohomoserine formation of threonine from 0-phosphohomoserineYOL018C-4.553734TLG2Syntaxin-like t-SNARE; forms a complex with Tlg1p and Vt1p and mediates fusion of endosome-derived vesicles with the late GolgiYNL300W-1.113109TOS6Glycosylphosphatidylinositol-dependent cell wall protein protein particle (TRAPP) complex IIYDR108W-1.730845TRS65Component of transport protein particle (TRAPP) complex IIIYDR108W-2.035670TRS85Component of transport protein particle (TRAPP) complex IIIYIL017C-1.511648VID28GID Complex subunit, serves as adaptor for regulatory subunit Vid24pYLL040C-1.423604VPS13Protein required for full activation of the general stress responseYHR134W-5.585626WSS1Retalloprotease involved in DNA repair, removes DNA- protein crosslinks at stalled replication forks during replication of damaged DNA; localizes to a single spot on the nuclear periphery of mother cells but not daughters; interacts genetically with SMT3; activated by DNA binding Basic leucine zipper (bZIP) transcription factor; required for suidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stressYDR349C-1.801126YPS7Putative GPI-anchored aspartic proteaseYDL05C-1.455325ZAP1Zinc-regulated transcription factorYDR050C-1.985367-Dubious open reading frameYPR050C<	IJL004C	-7.359825	5151			
YCR053W-2.018128THR4formation of threonine from 0-phosphohomoserineY0L018C-4.553734TLG2Syntaxin-like t-SNARE; forms a complex with Tlg1p and Vt1p and mediates fusion of endosome-derived vesicles with the late GolgiYNL300W-1.113109TOS6Glycosylphosphatidylinositol-dependent cell wall protein WTR120CYDR120C-1.530404TRM1tRNA methyltransferaseYGR166W-1.730845TRS65Component of transport protein particle (TRAPP) complex IIIYDR108W-2.035670TRS85Component of transport protein particle (TRAPP) complex IIIYIR049C-1.923595UTR1ATP-NADH kinase; phosphorylates both NAD and NADHYIL017C-1.511648VID28GID Complex subunit, serves as adaptor for regulatory subunit Vid24pYIL040C-1.423604VPS13Protein required for full activation of the general stress responseYOR043W-1.012060WH12Protein required for full activation of the general stress responseYHR134W-5.585626WSS1Protein crosslinks at stalled replication forks during replication of damaged DNA; localizes to a single spot on the nuclear periphery of moth cells but not daughters; interacts genetically with SMT3; activated by DNA bindingYML007W-2.302138YAP1Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stressYDR349C-1.801126YPS7Putative GPI-anchored aspartic proteaseYJL05C6-1.455325ZAP1Zinc-regulated transcrip	YBR069C	-4.552861	TAT1	tyrosine		
YOL018C-4.553734TLG2Iormation of threonine from O-phosphonomoserine Syntaxin-like t-SNARE; forms a complex with Tlg1p and Vi1p and mediates fusion of endosome-derived vesicles with the late GolgiYNL300W-1.113109TOS6Glycosylphosphatidylinositol-dependent cell wall protein TRN1YDR120C-1.530404TRM1tRNA methyltransferaseYGR166W-1.730845TRS65Component of transport protein particle (TRAPP) complex IIYDR108W-2.035670TRS85Component of transport protein particle (TRAPP) complex IIIYIR049C-1.923595UTR1ATP-NADH kinase; phosphorylates both NAD and NADH GID Complex subunit, serves as adaptor for regulatory subunit Vid24pYLL040C-1.423604VPS13Protein involved in prospore membrane morphogenesisYOR043W-1.012060WH12Protein required for full activation of the general stress responseYHR134W-5.585626WSS1Metalloprotease involved in DNA repair, removes DNA- protein crosslinks at stalled replication forks during replication of damaged DNA; localizes to a single spot on the nuclear periphery of mother cells but not daughters; interacts genetically with SMT3; activated by DNA bindingYML007W-2.302138YAP1For coxiditive stress tolerance; relative distribution to the nucleus increases upon DNA replication stressYDR349C-1.801126YPS7Putative GPI-anchored aspartic proteaseYDR349C-1.801126YPS7Putative GPI-anchored aspartic proteaseYDR364W-2.583798-Dubious open reading frameYPR050C-1.984337 </td <td>YCR053W</td> <td>-2 018128</td> <td>THR4</td> <td></td>	YCR053W	-2 018128	THR4			
YOL018C-4.553734 <i>TLG2</i> Vti1p and mediates fusion of endosome-derived vesicles with the late GolgiYNL300W-1.113109 <i>TOS6</i> Glycosylphosphatidylinositol-dependent cell wall proteinYDR120C-1.530404 <i>TRM1</i> tRNA methyltransferaseYGR166W-1.730845 <i>TRS65</i> Component of transport protein particle (TRAPP) complex IIYDR108W-2.035670 <i>TRS85</i> Component of transport protein particle (TRAPP) complex IIIYJR049C-1.923595 <i>UTR1</i> ATP-NADH kinase; phosphorylates both NAD and NADHYIL017C-1.511648 <i>VID28</i> GID Complex subunit, serves as adaptor for regulatory subunit Vid24pYLL040C-1.423604 <i>VPS13</i> Protein involved in prospore membrane morphogenesisYOR043W-1.012060 <i>WHI2</i> Protein crosslinks at stalled replication of the general stress responseYHR134W-5.585626 <i>WSS1</i> Metalloprotease involved in DNA repair, removes DNA- protein crosslinks at stalled replication forks during replication of damaged DNA; localizes to a single spot on the nuclear periphery of mother cells but not daughters; interacts genetically with SMT3; activated by DNA binding Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stressYDR349C-1.801126 <i>YPS7</i> Putative GPI-anchored aspartic proteaseYJL050C-1.455325 <i>ZAP1</i> Zinc-regulated transcription factorYR050C-1.985367-Dubious open reading frameYPR050C-1.985367-Dubious open r	10100501	2.010120	1111(1			
YNL300W-1.113109TOS6Glycosylphosphatidylinositol-dependent cell wall proteinYDR120C-1.530404TRM1tRNA methyltransferaseYGR166W-1.730845TRS65Component of transport protein particle (TRAPP) complex IIYDR108W-2.035670TRS85Component of transport protein particle (TRAPP) complex IIIYJR049C-1.923595UTR1ATP-NADH kinase; phosphorylates both NAD and NADHYIL017C-1.511648VID28GID Complex subunit, serves as adaptor for regulatory subunit Vid24pYLL040C-1.423604VPS13Protein involved in prospore membrane morphogenesisYOR043W-1.012060WH12Protein required for full activation of the general stress responseYHR134W-5.585626WSS1Metalloprotease involved in DNA repair, removes DNA- protein crosslinks at stalled replication forks during replication of damaged DNA; localizes to a single spot on the nuclear periphery of mother cells but not daughters; interacts genetically with SMT3; activated by DNA bindingYML007W-2.302138YAP1Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stressYDR349C-1.801126YPS7Putative GPI-anchored aspartic proteaseYIL056C-1.455325ZAP1Zinc-regulated transcription factorYOR364W-2.583798-Dubious open reading frameYPR050C-1.985367-Dubious open reading frameYPR050C-1.346337-Dubious open reading frame<	YOL018C	-4.553734	TLG2	Vti1p and mediates fusion of endosome-derived vesicles		
YDR120C-1.530404TRM1tRNA methyltransferaseYGR166W-1.730845TRS65Component of transport protein particle (TRAPP) complex IIYDR108W-2.035670TRS85Component of transport protein particle (TRAPP) complex IIIYJR049C-1.923595UTR1ATP-NADH kinase; phosphorylates both NAD and NADHYIL017C-1.511648VID28GID Complex subunit, serves as adaptor for regulatory subunit Vid24pYLL040C-1.423604VPS13Protein involved in prospore membrane morphogenesisYOR043W-1.012060WHI2Protein required for full activation of the general stress responseYHR134W-5.585626WSS1Metalloprotease involved in DNA repair, removes DNA- protein crosslinks at stalled replication forks during replication of damaged DNA; localizes to a single spot on the nuclear periphery of mother cells but not daughters; interacts genetically with SMT3; activated by DNA bindingYML007W-2.302138YAP1Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stressYDR349C-1.801126YPS7Putative GPI-anchored aspartic proteaseYJL056C-1.455325ZAP1Zinc-regulated transcription factorYOR364W-2.583798-Dubious open reading frameYPR050C-1.985367-Dubious open reading frameYL022W-1.346337-Dubious open reading frameYL022W-1.264936-Protein of unknown function	YNL300W	-1.113109	TOS6			
YGR166W-1.730845TRS65Component of transport protein particle (TRAPP) complex IIYDR108W-2.035670TRS85Component of transport protein particle (TRAPP) complex IIIYJR049C-1.923595UTR1ATP-NADH kinase; phosphorylates both NAD and NADHYIL017C-1.511648VID28GID Complex subunit, serves as adaptor for regulatory subunit Vid24pYLL040C-1.423604VPS13Protein involved in prospore membrane morphogenesis responseYOR043W-1.012060WH12Protein required for full activation of the general stress responseYHR134W-5.585626WSS1Metalloprotease involved in DNA repair, removes DNA- protein crosslinks at stalled replication forks during replication of damaged DNA; localizes to a single spot on the nuclear periphery of mother cells but not daughters; interacts genetically with SMT3; activated by DNA bindingYML007W-2.302138YAP1Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stressYDR349C-1.801126YPS7Putative GPI-anchored aspartic proteaseYIL056C-1.455325ZAP1Zinc-regulated transcription factorYOR364W-2.583798-Dubious open reading frameYPR050C-1.985367-Dubious open reading frameYL022W-1.346337-Dubious open reading frame						
YDR108W-2.035670 <i>IRS85</i> IIIYJR049C-1.923595 <i>UTR1</i> ATP-NADH kinase; phosphorylates both NAD and NADHYIL017C-1.511648 <i>VID28</i> GID Complex subunit, serves as adaptor for regulatory subunit Vid24pYLL040C-1.423604 <i>VPS13</i> Protein involved in prospore membrane morphogenesisYOR043W-1.012060 <i>WH12</i> Protein required for full activation of the general stress responseYHR134W-5.585626 <i>WSS1</i> Metalloprotease involved in DNA repair, removes DNA- protein crosslinks at stalled replication forks during replication of damaged DNA; localizes to a single spot on the nuclear periphery of mother cells but not daughters; interacts genetically with SMT3; activated by DNA bindingYML007W-2.302138 <i>YAP1</i> Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stressYDR349C-1.801126 <i>YPS7</i> Putative GPI-anchored aspartic proteaseYJL056C-1.455325 <i>ZAP1</i> Zinc-regulated transcription factorYOR364W-2.583798-Dubious open reading frameYJL022W-1.346337-Dubious open reading frameYL022W-1.346337-Dubious open reading frameYCR050C-1.264936-Protein of unknown function				Component of transport protein particle (TRAPP) complex		
YIL017C-1.511648VID28GID Complex subunit, serves as adaptor for regulatory subunit Vid24pYLL040C-1.423604VPS13Protein involved in prospore membrane morphogenesisYOR043W-1.012060WHI2Protein required for full activation of the general stress responseYHR134W-5.585626WSS1Metalloprotease involved in DNA repair, removes DNA- protein crosslinks at stalled replication forks during replication of damaged DNA; localizes to a single spot on the nuclear periphery of mother cells but not daughters; interacts genetically with SMT3; activated by DNA binding Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stressYDR349C-1.801126YPS7Putative GPI-anchored aspartic proteaseYJL056C-1.455325ZAP1Zinc-regulated transcription factorYOR364W-2.583798-Dubious open reading frameYPR050C-1.985367-Dubious open reading frameYLL022W-1.264936-Protein of unknown function	YDR108W	-2.035670	TRS85	Component of transport protein particle (TRAPP) complex		
YIL017C-1.511648VID28GID Complex subunit, serves as adaptor for regulatory subunit Vid24pYLL040C-1.423604VPS13Protein involved in prospore membrane morphogenesisYOR043W-1.012060WHI2Protein required for full activation of the general stress responseYHR134W-5.585626WSS1Metalloprotease involved in DNA repair, removes DNA- protein crosslinks at stalled replication forks during replication of damaged DNA; localizes to a single spot on the nuclear periphery of mother cells but not daughters; interacts genetically with SMT3; activated by DNA bindingYML007W-2.302138YAP1Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stressYDR349C-1.801126YPS7Putative GPI-anchored aspartic proteaseYJL056C-1.455325ZAP1Zinc-regulated transcription factorYOR364W-2.583798-Dubious open reading frameYPR050C-1.985367-Dubious open reading frameYLD22W-1.346337-Dubious open reading frameYCR050C-1.264936-Protein of unknown function	YJR049C	-1.923595	UTR1			
YOR043W-1.012060WHI2Protein required for full activation of the general stress responseYHR134W-5.585626WSS1Metalloprotease involved in DNA repair, removes DNA- protein crosslinks at stalled replication forks during replication of damaged DNA; localizes to a single spot on the nuclear periphery of mother cells but not daughters; interacts genetically with SMT3; activated by DNA bindingYML007W-2.302138YAP1Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stressYDR349C-1.801126YPS7Putative GPI-anchored aspartic proteaseYJL056C-1.455325ZAP1Zinc-regulated transcription factorYOR364W-2.583798-Dubious open reading frameYPR050C-1.985367-Dubious open reading frameYL022W-1.346337-Dubious open reading frameYCR050C-1.264936-Protein of unknown function	YIL017C	-1.511648	VID28	GID Complex subunit, serves as adaptor for regulatory		
YOR043W-1.012060WHI2Protein required for full activation of the general stress responseYHR134W-5.585626WSS1Metalloprotease involved in DNA repair, removes DNA- protein crosslinks at stalled replication forks during replication of damaged DNA; localizes to a single spot on the nuclear periphery of mother cells but not daughters; interacts genetically with SMT3; activated by DNA bindingYML007W-2.302138YAP1Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stressYDR349C-1.801126YPS7Putative GPI-anchored aspartic proteaseYJL056C-1.455325ZAP1Zinc-regulated transcription factorYOR364W-2.583798-Dubious open reading frameYPR050C-1.985367-Dubious open reading frameYL022W-1.346337-Dubious open reading frameYCR050C-1.264936-Protein of unknown function	YLL040C	-1.423604	VPS13			
YOR043W-1.012060WH12responseYHR134W-5.585626WSS1Metalloprotease involved in DNA repair, removes DNA- protein crosslinks at stalled replication forks during replication of damaged DNA; localizes to a single spot on the nuclear periphery of mother cells but not daughters; interacts genetically with SMT3; activated by DNA bindingYML007W-2.302138YAP1Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stressYDR349C-1.801126YPS7Putative GPI-anchored aspartic proteaseYJL056C-1.455325ZAP1Zinc-regulated transcription factorYOR364W-2.583798-Dubious open reading frameYPR050C-1.985367-Dubious open reading frameYJL022W-1.346337-Dubious open reading frameYCR050C-1.264936-Protein of unknown function	VODOADUA	1.0120.00	4440			
YHR134W-5.585626WSS1protein crosslinks at stalled replication forks during replication of damaged DNA; localizes to a single spot on the nuclear periphery of mother cells but not daughters; interacts genetically with SMT3; activated by DNA bindingYML007W-2.302138YAP1Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stressYDR349C-1.801126YPS7Putative GPI-anchored aspartic proteaseYJL056C-1.455325ZAP1Zinc-regulated transcription factorYOR364W-2.583798-Dubious open reading frameYPR050C-1.985367-Dubious open reading frameYL022W-1.346337-Dubious open reading frameYCR050C-1.264936-Protein of unknown function	YOR043W	-1.012060	WHIZ			
YML007W-2.302138YAP1for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stressYDR349C-1.801126YPS7Putative GPI-anchored aspartic proteaseYJL056C-1.455325ZAP1Zinc-regulated transcription factorYOR364W-2.583798-Dubious open reading frameYPR050C-1.985367-Dubious open reading frameYJL022W-1.346337-Dubious open reading frameYCR050C-1.264936-Protein of unknown function	YHR134W	-5.585626	WSS1	protein crosslinks at stalled replication forks during replication of damaged DNA; localizes to a single spot on the nuclear periphery of mother cells but not daughters;		
YJL056C-1.455325ZAP1Zinc-regulated transcription factorYOR364W-2.583798-Dubious open reading frameYPR050C-1.985367-Dubious open reading frameYJL022W-1.346337-Dubious open reading frameYCR050C-1.264936-Protein of unknown function	YML007W	-2.302138	YAP1	for oxidative stress tolerance; relative distribution to the		
YOR364W-2.583798-Dubious open reading frameYPR050C-1.985367-Dubious open reading frameYJL022W-1.346337-Dubious open reading frameYCR050C-1.264936-Protein of unknown function	YDR349C	-1.801126	YPS7			
YOR364W-2.583798-Dubious open reading frameYPR050C-1.985367-Dubious open reading frameYJL022W-1.346337-Dubious open reading frameYCR050C-1.264936-Protein of unknown function	YJL056C	-1.455325	ZAP1			
YPR050C-1.985367-Dubious open reading frameYJL022W-1.346337-Dubious open reading frameYCR050C-1.264936-Protein of unknown function	YOR364W	-2.583798	-			
YCR050C -1.264936 - Protein of unknown function	YPR050C	-1.985367	-			
YCR050C -1.264936 - Protein of unknown function	YJL022W	-1.346337	-	Dubious open reading frame		
	YCR050C	-1.264936	-			
	YNL205C	-1.047102	-	Dubious open reading frame		

2-EF Sensitive across all time points

	2-EF Sensitive Strains Across All Time Points				
Deleted ORF Name	Deleted Gene Name	Deleted Gene Function			
YLR131C	ACE2	Transcription factor required for septum destruction after cytokinesis			
YKR019C	IRS4	EH domain-containing protein; involved in regulating phosphatidylinositol 4,5-bisphosphate levels and autophagy			
YHR206W	SKN7	Nuclear response regulator and transcription factor			
YJL004C	SYS1	Integral membrane protein of the Golgi			
YBR069C	TAT1	Amino acid transporter for valine, leucine, isoleucine, and tyrosine; low-affinity tryptophan and histidine transporter			
YML007W	YAP1	Basic leucine zipper (bZIP) transcription factor; required for oxidative stress tolerance; relative distribution to the nucleus increases upon DNA replication stress			

Appendix 5: Yeast Functional Toxicogenomic Assay Sequencing Design

Lane1					
Plate	Sample Code/ Tube Label	Sample Name and Replicate #	Sample Type	Index	
UP	1A2Up	DMSO 5G - 1	Control 1	AACCGTGT	
UP	1A3Up	DMSO 5G - 2	Control 1	AAGATTGC	
UP	1A4Up	DMSO 5G - 3	Control 1	AAGCGGTC	
UP	1A5Up	DMSO 10G - 1	Control 2	AATCACAC	
UP	1A7Up	DMSO 10G - 2	Control 2	ACAGTGCA	
UP	1A8Up	DMSO 10G - 3	Control 2	ACCGTTAT	
UP	1B3Up	DMSO 15 G - 1	Control 3	AGTAGTGG	
UP	1B4Up	DMSO 15 G - 2	Control 3	AGTTGCTA	
UP	1B5Up	DMSO 15 G - 3	Control 3	ATATAGGA	
UP	1B6Up	2-MF 5G - 1	Treatment 1	ATCCTATT	
UP	1B7Up	2-MF 5G - 2	Treatment 1	ATCGCCAG	
UP	1B9Up	2-MF 5G - 3	Treatment 1	ATGCATCC	
UP	1C2Up	2-MF 10G - 1	Treatment 2	CACGTGTT	
UP	ı 1C3Up	2-MF 10G - 2	Treatment 2	CAGGAGGC	
UP	1C4Up	2-MF 10G - 3	Treatment 2	CATTCCAA	
UP	1C5Up	2-MF 15G - 1	Treatment 3	CCAGCACG	
UP	1C6Up	2-MF 15G - 2	Treatment 3	CCATACAC	
UP	1C7Up	2-MF 15G - 3	Treatment 3	CCGGATAG	
UP	1C8Up	2-EF 5G - 1	Treatment 1	CCGTCTGA	
UP	1C9Up	2-EF 5G - 2	Treatment 1	CCTACAAC	
UP	1D2Up	2-EF 5G - 3	Treatment 1	CGCTTCTG	
UP	1D3Up	2-EF 10G - 1	Treatment 2	CGGACGTG	
UP	1D30p 1D4Up	2-EF 10G - 2	Treatment 2	CGGTTGAT	
UP	1D5Up	2-EF 10G - 3	Treatment 2	CGTCGGCT	
UP	1D50p	2-EF 15G - 1	Treatment 3	CTAGATTC	
UP	1D00p 1D7Up	2-EF 15G - 2	Treatment 3	CTAGTCAT	
UP	1D70p 1D9Up	2-EF 15G - 3	Treatment 3	CTTAAGAT	
UP	1690p 1E1Up	2,3-DMF 5G - 1	Treatment 1	GACGTCAA	
UP	1E10p 1E2Up	2,3-DMF 5G - 2	Treatment 1	GAGAACTC	
UP	•	2,3-DMF 5G - 3	Treatment 1	GAGTTAAC	
UP	1E3Up	,			
	1E4Up	2,3-DMF 10G - 1	Treatment 2	GATCCAGC GATGGAAT	
UP	1E5Up	2,3-DMF 10G - 2	Treatment 2		
UP	1E6Up	2,3-DMF 10G - 3	Treatment 2	GCAAGTAG	
UP	1E8Up	2,3-DMF 15G - 1	Treatment 3	GCGGCGAA	
UP	1E9Up	2,3-DMF 15G - 2	Treatment 3	GCGTTTCG	
UP	1F1Up	2,3-DMF 15G - 3	Treatment 3	GGATATGG	
UP	1F2Up	2,5-DMF 5G - 1	Treatment 1	GGCAGACG	
UP	1F3Up	2,5-DMF 5G - 2	Treatment 1	GGCGAGGA	
UP	1F4Up	2,5-DMF 5G - 3	Treatment 1	GGTCCTTG	
UP	1F5Up	2,5-DMF 10G - 1	Treatment 2	GGTCTGAC	
UP	1F6Up	2,5-DMF 10G - 2	Treatment 2	GTACTTGC	
UP	1G1Up	2,5-DMF 10G - 3	Treatment 2	GTTTCACT	
UP	1G2Up	2,5-DMF 15G - 1	Treatment 3	TACGAATC	
UP	1G3Up	2,5-DMF 15G - 2	Treatment 3	TACTGCGC	
UP	1H4Up	2,5-DMF 15G - 3	Treatment 3	TGATCCGA	
	Total Num	ber of Samples in t	his Library: 45		

	Lane2						
Plate	Sample Code/ Tube Label	Sample Name and Replicate #	Sample Type	Index			
DWN	1A2DWN	DMSO 5G - 1	Control 1	AACCGTGT			
DWN	1A3DWN	DMSO 5G - 2	Control 1	AAGATTGC			
DWN	1A4DWN	DMSO 5G - 3	Control 1	AAGCGGTC			
DWN	1A5DWN	DMSO 10G - 1	Control 2	AATCACAC			
DWN	1A7DWN	DMSO 10G - 2	Control 2	ACAGTGCA			
DWN	1A8DWN	DMSO 10G - 3	Control 2	ACCGTTAT			
DWN	1B3DWN	DMSO 15 G - 1	Control 3	AGTAGTGG			
DWN	1B4DWN	DMSO 15 G - 2	Control 3	AGTTGCTA			
DWN	1B5DWN	DMSO 15 G - 3	Control 3	ATATAGGA			
DWN	1B6DWN	2-MF 5G - 1	Treatment 1	ATCCTATT			
DWN	1B7DWN	2-MF 5G - 2	Treatment 1	ATCGCCAG			
DWN	1B9DWN	2-MF 5G - 3	Treatment 1	ATGCATCC			
DWN	1C2DWN	2-MF 10G - 1	Treatment 2	CACGTGTT			
DWN	1C3DWN	2-MF 10G - 2	Treatment 2	CAGGAGGC			
DWN	1C4DWN	2-MF 10G - 3	Treatment 2	CATTCCAA			
DWN	1C5DWN	2-MF 15G - 1	Treatment 3	CCAGCACG			
DWN	1C6DWN	2-MF 15G - 2	Treatment 3	CCATACAC			
DWN	1C7DWN	2-MF 15G - 3	Treatment 3	CCGGATAG			
DWN	1C8DWN	2-EF 5G - 1	Treatment 1	CCGTCTGA			
DWN	1C9DWN	2-EF 5G - 2	Treatment 1	CCTACAAC			
DWN	1D2DWN	2-EF 5G - 3	Treatment 1	CGCTTCTG			
DWN	1D3DWN	2-EF 10G - 1	Treatment 2	CGGACGTG			
DWN	1D4DWN	2-EF 10G - 2	Treatment 2	CGGTTGAT			
DWN	1D5DWN	2-EF 10G - 3	Treatment 2	CGTCGGCT			
DWN	1D6DWN	2-EF 15G - 1	Treatment 3	CTAGATTC			
DWN	1D7DWN	2-EF 15G - 2	Treatment 3	CTAGTCAT			
DWN	1D9DWN	2-EF 15G - 3	Treatment 3	CTTAAGAT			
DWN	1E1DWN	2,3-DMF 5G - 1	Treatment 1	GACGTCAA			
		2,3-DMF 5G - 1 2,3-DMF 5G - 2		GAGGAACTC			
DWN	1E2DWN 1E3DWN		Treatment 1	GAGAACTC			
DWN		2,3-DMF 5G - 3	Treatment 1				
DWN	1E4DWN	2,3-DMF 10G - 1	Treatment 2	GATCCAGC			
DWN	1E5DWN	2,3-DMF 10G - 2	Treatment 2	GATGGAAT			
DWN	1E6DWN	2,3-DMF 10G - 3	Treatment 2	GCAAGTAG			
DWN	1E8DWN	2,3-DMF 15G - 1	Treatment 3	GCGGCGAA			
DWN	1E9DWN	2,3-DMF 15G - 2	Treatment 3	GCGTTTCG			
DWN	1F1DWN	2,3-DMF 15G - 3	Treatment 3	GGATATGG			
DWN	1F2DWN	2,5-DMF 5G - 1	Treatment 1	GGCAGACG			
DWN	1F3DWN	2,5-DMF 5G - 2	Treatment 1	GGCGAGGA			
DWN	1F4DWN	2,5-DMF 5G - 3	Treatment 1	GGTCCTTG			
DWN	1F5DWN	2,5-DMF 10G - 1	Treatment 2	GGTCTGAC			
DWN	1F6DWN	2,5-DMF 10G - 2	Treatment 2	GTACTTGC			
DWN	1G1DWN	2,5-DMF 10G - 3	Treatment 2	GTTTCACT			
DWN	1G2DWN	2,5-DMF 15G - 1	Treatment 3	TACGAATC			
DWN	1G3DWN	2,5-DMF 15G - 2	Treatment 3	TACTGCGC			
DWN	1H4DWN	2,5-DMF 15G - 3	Treatment 3	TGATCCGA			
	Total Numb	per of Samples in this	Library: 45				