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Abstract

We propose a new technique for the accurate segmenta-
tion of text strokes from an image. The algorithm takes in a
cropped image containing a word. It first performs a coarse
segmentation using a Fully Convolutional Network (FCN).
While not accurate, this initial segmentation can usually
identify most of the text stroke content even in difficult situ-
ations, with uneven lighting and non-uniform background.
The segmentation is then refined using a fully connected
Conditional Random Field (CRF) with a novel kernel defini-
tion that includes stroke width information. In order to train
the network, we created a new synthetic data set with 100K
text images. Tested against standard benchmarks with pixel-
level annotation (ICDAR 2003, ICDAR 2011, and SVT) our
algorithm outperforms the state of the art by a noticeable
margin.

1. Introduction
Optical character recognition (OCR) has been one of the

earliest success stories in computer vision. A fully elec-
tronic text reading system was demonstrated as early as in
1946 [21], while the first commercial OCR company, Intel-
ligent Machines, was founded by Shepard and Cook in the
early 50’s. By the early 1980s, OCR of scanned documents
was considered a solved problem. More recently, automatic
text reading has received renewed interest in domains that
were considered too challenging for traditional technology.

Scene text (or text in the wild) is a term often used to
indicate text of any kind appearing in pictures or videos, of-
ten taken by hand or by a moving camera. As such, these
images suffer from all sort of imperfections: blur, low res-
olution, poor exposure, reduced contrast. The text content
itself is often very coincise (e.g., the name of a store), and
not necessarily displayed on a straight line. Text may appear
in front of a possibly multi-colored background. Specular-
ities and cast shadows cutting across the text area are not
unusual. Unlike scanned documents, which normally con-
tain a large portion of well-structured text printed against a
solid color background, detecting and localizing text areas

Figure 1. Text stroke segmentation is a challenging task due to
large variance in text font, color, confounding background, poor
contrast as well as different illumination conditions. Here we show
several challenging cases and our results.

in general scenes is challenging, especially when the scene
contains visual clutter and the text itself occupies a small
area. In addition, almost all applications involving scene
text reading demand high frame rate processing. For this
reason, considerable research effort went into algorithms
for fast and robust scene text detection (or spotting). Once
a text bearing region has been identified, its content can be
processed by any standard OCR algorithm. Some text spot-
ting algorithms specialize on separating individual words
within the text area [30], thus further simplifying the job of
subsequent modules.

Early attempts at text spotting considered an initial stage
of text stroke segmentation, that is, segmentation of the re-
gions corresponding to text strokes from the background.
Widely used techniques include Maximally Stable Extremal
Regions (MSER) [22], a fast technique for generic local
segmentation that is robust against domain and photomet-
ric distortions; and the Stroke Width Transform (SWT) [4],
which is specifically designed for the detection of stroke-
like regions. More modern text spotting approaches skip the
text stroke segmentation step altogether, relying instead on
general object detection techniques based on convolutional



neural networks (CNNs).
While text stroke segmentation may not be needed for

text detection, it still has an important role in improving the
performance of OCR [15] and other specific applications
of interest. For example, binarization allows for operations
such as text removal (and possibly substitution), text color
change, and contrast enhancement. This type of operations
are often required for stock photography processing (e.g.,
license plate number removal from Google StreetView im-
ages [7]), augmented reality (e.g., substitution of original
text with its translation in a different language [6]), and as-
sistive technology (e.g., to increase text readability for peo-
ple with low vision [12]). Precise stroke segmentation is
needed in these applications in order to preserve the natu-
ralness of processed images.

Our main contribution is a novel algorithm for text stroke
segmentation that produces accurate results in the face of
adversarial conditions such as cast shadows and cluttered
background. The algorithm operates on image areas that
have been previously identified as containing text (by an ap-
propriate spotting algorithm). It is structured as the cascade
of two modules. The first module uses a fully convolutional
network (FCN) trained to robustly discriminate pixel within
a stroke from those in the background. This results in a seg-
mentation that reliably identifies text stroke areas; however,
due to the multi-scale nature of FCN, this segmentation is
often not accurate (see e.g. Fig.4). The second module is in
charge of refining the earlier segmentation, in order to en-
sure that the contour of the stroke regions is correctly pre-
served. It relies on a fully connected conditional random
field (CRF) model that uses an innovative expression for the
pairwise energy term, one that uses information from the
estimated local stroke width. We show that, by adding the
proposed stroke width term to the more traditional bilateral
kernel, the accuracy of segmentation improves noticeably.

In order to train the FCN, a large amount of images
labeled at the pixel level are necessary. Unfortunately,
existing data with pixel-level labeling of text content is
scarce. We therefore assembled a new synthetic data set,
with 100,000 images, representing a wide variety of font
and backgrounds, along with pixel-level ground truth labels.
This is the second original contribution of our work. Note
that another synthetic data set was created in prior work
to facilitate training of text spotters in natural images [8].
However, this prior data set did not provide pixel-level la-
bels, and thus could not be used for our purpose.

We also propose the use of our text stroke segmentation
algorithm and image inpainting technique to generate real-
istic synthetic data (see Sec.5.4). This is our third contribu-
tion.

This paper is organized as follows. In Sec. 2 we review
previous work on text stroke segmentation. Sec. 3 describes
our new synthetic text data set with pixel level ground truth

labels. Our algorithm for robust and accurate text stroke
segmentation is described in Sec. 4, with experimental re-
sults presented in Sec. 5. Sec. 6 has the conclusions.

2. Related Work
Document image binarization has a long history. A num-

ber of algorithms, based on image brightness threshold-
ing , have been developed, beginning with Otsu’ seminal
work[28, 27, 32, 35, 9]. These techniques achieve good
performance on scanned documents, but often fail on scene
text segmentation, due in part to the typical large variance
in font, color, illumination that is typical in this type of im-
agery, as well as the to possible presence of complex back-
ground.

Early attempts at scene text segmentation tried to sepa-
rate text strokes from background using local features such
as edge [16] and color [40, 20], which were processed us-
ing simple thresholding or filtering. Later work used more
sophisticated image models such as Markov Random Field
(MRF) [24, 37, 23]. For example, Mishra et al. [24] used
a MRF model where the unary energy term is described by
a Gaussian mixture. The parameters of the color distribu-
tion within the text area were initialized using the stroke
width transform (SWT [4]) Energy minimization was ob-
tained via iterative graph cut [31]. A variant of this algo-
rithm, proposed by Tian et al. [37], used the Stroke Feature
Transform (SFT [10]) for initialization. SFT is more robust
than SWT, resulting in more accurate initial color distribu-
tions, and thus avoiding the need for iterative graph cuts.
Unfortunately, neither algorithm can cope with challenging
situations, when local features become unreliable.

Maximally Stable Extremal Regions (MSERs) [22] have
been used widely for scene text detection[25, 11, 29] and
segmentation[25, 36, 26]. A classifier is trained to separate
text from background based on the shape of each MSER
region, along with other hand–drafted features. In order
to achieve high recall rates, MSERs are often extracted
from multiple color channels and using different thresholds;
this, however, increases the computational load. Zhou et
al. [42] proposed to use analysis-by-synthesis for text seg-
mentation. A physical model was used to synthesize image
given an initial set of rendering parameters and initial fore-
ground/background labels. The parameters of the model
were optimized using Expectation Maximization.

In recent years, convolutional neural networks (CNN)
have been successfully applied to virtually all fields of com-
puter vision, including scene text reading. In particular,
fully convolutional networks (FCN) [17] are well suited for
pixel-level segmentation. One problem with FCNs, how-
ever, is that, due to the large receptive field size of the cells
in the network, the segmentation produced is often poorly
localized (i.e., the contours of the detected regions may
not closely follow the contours of the foreground regions



Figure 2. Our proposed framework.

in the image). Fully-connected conditional random field
(CRF) [14] models are often used to overcome this limi-
tation, and to refine local details of segmentation by mini-
mizing a carefully designed global energy function. Chen
et al. [3] fed the label assignment probabilities produced
by an FCN to a fully-connected CRF, with the two mod-
ules trained separately. Zheng et al. [41] reformulated the
mean-field algorithm for approximate inference for a fully-
connected CRF as a Recurrent Neural Network (RNN), thus
enabling end-to-end training.

3. A New Synthetic Text Data Set with Pixel-
Level Labels

Training CNNs requires a large amount of data. Large
data sets have been assembled for scene text detection
(e.g. [38]). These sets are equipped with bounding box an-
notation identifying individual words. Unfortunately, data
sets with pixel-level annotations are of a much smaller scale.
For example, ICDAR 2003[19], ICDAR 2011[33], ICDAR
2015[1] and SVT[39] only contain a few hundreds word
bounding boxes annotated at the pixel level as text stroke
vs. background. While this size can be adequate for a test
set, it is insufficient for training a network. We thus decided
to generate a new, large scale data set with synthetic data.
In the following, we describe how our new data set has been
generated.

We began by sampling 100K words from an English
corpus. These words were rendered using ImageMagick1

onto a background. Each word was randomly assigned
one of 264 different fonts, with height varying between
15 and 90 pixels. The font color could be white (25% of

1imagemagick.org

words), black (25%), grey (25%), or randomly chosen from
a palette. Each word underwent one of a set possible ge-
ometric transformations (rotations, cylindrical projections,
perspective transformations, wave distortion), with param-
eters sampled from a normal distribution. Words were
then rendered against a background that could have a ran-
domly chosen solid color (66% of words), or a portion of a
“natural” image, randomly selected from the IAPR TC-12
Benchmark. The resulting images were corrupted with ad-
ditive noise (Gaussian, impulse, and Laplacian), reflection
and shadow effect. The resulting images have height of 112
pixels and variable width; the binary mask (text stroke vs.
background) is provided for each image. We only use im-
ages from this set to train our algorithms (reserving a 10K
subset for validation); the algorithms are then benchmarked
on all available annotated real images.

Figure 3. Samples from our synthetic dataset.

4. Text Stroke Segmentation
Our proposed framework and FCN structure are shown

in Fig.2. The resized input word patch (height is 112 pixels)
is fed to the FCN to produce a coarse segmentation, more
accurate text stroke mask is obtained with a fully-connected



CRF refinement step.

4.1. Coarse Segmentation: FCN

The first step in our algorithm is a coarse pixel-level seg-
mentation of text strokes from the background using a FCN.
Thanks to their ability to use information at multiple scales,
FCNs can segment text strokes even in challenging situa-
tions.

The network structure of the original FCN [17] was de-
rived from the VGG 16-layer network[34], with the final
classifier layer removed, and the fully connected layers con-
verted to convolutional layers. We modified the original
FCN scheme for our application as follows. First of all,
we remove the last pooling layer (pool5) and all subse-
quent layers. This is justified by the observation that text
stroke segmentation from an already cropped word patch is
a simpler undertaking than generic semantic segmentation,
which was the task addressed by [17]. The last convolu-
tional layer (conv 5 3) is fed to a 1× 1 convolutional layer
with channel dimension of two, producing class prediction
scores for text and background (score s16). As suggested in
[17], two skip layers are added, with the purpose to combine
low resolution, highly semantic information with finer de-
tail. The coarse prediction scores score s16 are upsampled
by two before being combined with the prediction scores
from conv 4 3 to produce a finer scale prediction (score s8).
The same process is repeated for the second skip layer. The
resulting prediction score score s4 is then upsampled by
four to match the input image size. The upsampling lay-
ers are initialized with a bilinear interpolation kernel, whose
weights are then learned during training.

Another difference with respect to the original FCN [17]
is that the skip layers branch out at the end of a “block” of
layers between two pooling layers, rather than at the begin-
ning (layers labelled in red in Fig. 2). Skip layers are used to
maintain information at higher resolution. The end layer of
a block has the same resolution as the beginning layer, but
may contain semantically richer information, and thus may
prove a better candidate for a skip layer branching point.

Note that features at the coarsest scale (score s16) have
receptive field size of 192-by-192 , which is substantially
larger than the height of input word block (112 pixels).

4.2. Refinement: Fully-Connected CRF with Stroke
Width Kernel

The first stage FCN is able to segment out text strokes
under a variety of font, color, illumination and background.
However, as observed in Fig.4, the resulting segments are
often not accurately localized. This is likely due to the large
receptive field size of the nodes in the network, and to the
fact that the result is upsampled from a low resolution map.

In order to refine the segmentation produced by FCN,
we add a fully-connected CRF as a post-processing step.

This produces a very noticeable improvement. A further im-
provement is obtained by modifying the the standard bilat-
eral kernel [3] used to compute joint energy terms. Specifi-
cally, we propose to include in this term the estimated stroke
width as a new text-specific feature. This is born by the
observation that the stroke width is approximately constant
within a text character. The standard bilateral kernel, which
discourages assigning different labels to nearby pixels that
have similar colors, fails to properly characterize the ap-
pearance of characters with large local color variations (e.g.
as due to a cast shadow); background pixels with similar
color as text region might be wrongly predicted as text (see
Fig.5). By adding a measure of stroke width consistency in
the joint energy term, CRF is more likely to correctly seg-
ment out whole characters and filter out background region
with confounding color.

We define the following CRF energy function:

E =
∑
i

− logP (xi) +
∑
ij

θij(xi, xj) (1)

θij(xi, xj) =µ(xi, xj)w exp(−|pi − pj |
2

2θ2α

− |Ii − Ij |
2

2θ2β
− |si − sj |

2

2θ2γ
).

(2)

where xi and xj are labels for pixels i and j, located
at position pi and pj , with colors Ii and Ij , and associated
stroke widths si and sj . (The computation of stroke width
is described later in Sec. 4.2.1.) In the unary energy term,
P (xi) is the probability of pixel i having label xi; this is
computed from the score returned by FCN. More specif-
ically, P (ti) = 1 − P (bi) is the probability that pixel i
belongs to a text stroke. µ(xi, xj) = 1 if xi 6= xj , zero
otherwise. θij(xi, xj) for xi 6= xj is the cost of assign-
ing different labels to pixels i and j, which depends on the
distance between pixels, their difference in color, and their
difference in associated stroke width. The hyper-parameter
w controls the weight of the joint energy term, while θα, θβ
and θγ controls the scale of each feature.

4.2.1 Modified Stroke Feature Transform

The stroke width at each pixel (term si in equation (2)) is
computed before CRF refinement, based on the original im-
age with additional input from the FCN predictions. It is
based on the Stroke Feature Transform (SFT) [10], which
is a modification of the original Stroke Width Transform
(SWT) algorithm [4]. In the SFT algorithm, edges are first
extracted from the image (using Canny); then, a line is
drawn from each edge pixel in the direction of the image
gradient. The line is stopped as soon as it hits another edge
pixel, or when the color of the current pixel differs from



Figure 4. The first row is input images, second row is raw FCN pre-
dictions and last row contains final results with CRF refinement.

the median color of the pixels in the current segment by a
large margin. The segment is then accepted if the image
gradients at its endpoints point in approximately opposite
directions. In addition, after all segments have been drawn,
any segment whose median gradient orientation or colors
is significantly different from that of its neighbors is dis-
carded. Finally, all pixels within a segment are assigned a
stroke width value equal to the segment’s length. Note that
this algorithm may leave some small untouched “islands”
of pixels within a character; these pixels are then assigned a
value equal to the median of the value of their closest neigh-
bors.

SFT was shown to be more robust than SWT, especially
in situations in which edges may be difficult to compute re-
liably, or when the gradient at an edge pixel points away
from the normal to the stroke edge. We further improve
on the SFT algorithm (Modified SFT) by using informa-
tion from the FCN output probability map. Specifically, we
only keep a segment (as computed by SFT) when the aver-
age of P (ti) for pixels i within the segment is larger than a
threshold. This helps ensuring that incorrect segments are
not mistakenly accepted only because the image gradients
at their endpoints happen to have approximately opposite
directions. We run our modified SFT twice on two polari-
ties, in order to find the stroke widths for dark text on light
background as well for light text on dark background.

Note that, unlike SFT and SWT, we don’t compute con-
nected components of pixels with similar stroke width. We
use the stroke width information solely as a feature in the
kernel for the joint pairwise energy.

5. Experiments

5.1. Implementation Details

The coarse FCN segmentation component of our sys-
tem is trained on the 100K synthetic images in our data
set. As mentioned earlier, each image in the data set has
fixed height (112 pixel) and variable width, depending on
the word’s aspect ratio. Due to the variable size of the sam-

Figure 5. The first row is input images, second row is results with-
out stroke width kernel and last row contains results with stroke
width kernel. In left example the text color has large variance due
to shadow and for right image the background contains regions
with similar color as text region. In these cases use bilateral kernel
alone becomes unreliable.

ples, we set the batch size to one, and reshape the network at
each forward pass. Cross-entropy loss is used during train-
ing.

The weights of our FCN are initialized from those of the
network described in [30] (originally trained for scene text
detection), and fine-tuned following the guidelines of [17].
We first fine-tune the model without skip layers for four
epochs, with learning rate set to 10−9, momentum set to
0.99, and weight decay set to 0.0005. We then add one skip
layer at a time with reduced learning rate (10−11 and 10−12

respectively). The hyperparameters of the fully-connected
CRF are determined by cross-validation on the validation
set. We used the publicly available C++ implementation of
the CRF’s provided by the authors of [14].

Our system is implemented using Caffe [13] and runs
on a workstation (3.3Ghz 6-core CPU, 32G RAM, Nvidia
GTX Titan X GPU and Ubuntu 14.04 64-bit OS). At run
tine, a 180 by 60 pixel input image is processed in about 0.2
seconds.

5.2. Quantitative Results

Data sets: We evaluated our algorithm against sev-
eral popular document binarization methods [9, 27, 28], as
well as against other state-of-the-art scene text segmenta-
tion techniques [18, 24, 5, 37, 36, 42]. We computed pixel-
level precision, recall, and f-score for three popular scene
text data sets: ICDAR 2003 [19] (1110 words); ICDAR
2011 [33] (716 words); and SVT [39] (647 words). For
each data set, cropped rectangular regions containing indi-
vidual word are available. Pixel level ground-truth label-
ing was generated by Kumar[15] using a publicly available
semi-automated tool.

Polarity: For document binarization algorithms such as
Niblack and Howe, correct polarity is not guaranteed. For
fair comparison, we simply computed f-scores for each po-



larity, and reported the largest one. This is an optimistic
measure: in practice, an automatic polarity check would be
needed when using these algorithms, which may generate
errors not considered by this measure.

Ablation study: We present results (1) using the full
system (FCN+CRF/SFT), (2) removing the stroke width
term form the CRF joint energy term (FCN+CRF ), and
(3) without using the fully connected CRF refinement step
(FCN).

5.2.1 ICDAR datasets

Comparative results for the ICDAR 2003 and ICDAR 2011
data sets are shown in Table 1 and 2. Note that these sets
are relative easy as compared with SVT. Many images have
clean background and clear text with bimodal color dis-
tribution, which allows simple binarization algorithm such
as Niblack[27] and Howe[9] to reach appreciable perfor-
mance (assuming correct polarity). More modern scene text
segmentation algorithms consistently outperform these sim-
pler binarization algorithms, thanks to their enhanced abil-
ity to remove background. FCN produces lower score than
most competitors, due to poor localization. However, using
the fully-connected CRF refinement step (FCN+CRF/SFT),
significant improvement is observed, with an increase in f-
score by 6.75% on ICDAR 2003 and by 7.05% on ICDAR
2011, achieving the the highest precision and f-score. Note
that Lu[18] reaches a higher recall, but much lower preci-
sion due to oversegmentation. The stroke width term in the
CRF kernel contributes to the improvement in f-score by
0.87% and 1.71% respectively. Detailed analysis shows that
even though the modified Stroke Feature Transform some-
times fails with extremely low contrast images, the algo-
rithm can still produce good results thanks to the robust
FCN output and the bilateral CRF kernel component.

Table 1. Pixel level segmentation evaluation on ICDAR 2003
dataset.

Method P R F
Niblack[27] 71.10 81.72 76.04

Lu[18] 72.61 95.48 82.49
Howe[9] 81.08 87.92 84.36

Mishra[24] 85.20 88.60 86.86
Feild[5] 86.58 87.84 87.21
Tian[37] 87.45 90.63 89.01
Zhou[42] 88.06 90.35 89.19
Tian[36] 88.27 90.18 89.21

Ours (FCN) 83.11 85.11 83.75
Ours (FCN+CRF) 88.80 90.47 89.63

Ours (FCN+CRF/SFT) 89.96 91.04 90.50

Table 2. Pixel level segmentation evaluation on ICDAR 2011
dataset.

Method P R F
Niblack[27] 77.39 90.33 83.36

Lu[18] 77.26 95.37 85.36
Howe[9] 82.50 89.28 85.76
Feild[5] 90.84 89.61 90.22
Tian[37] 87.24 93.85 90.42

Ours (FCN) 84.87 86.91 85.88
Ours (FCN+CRF) 90.03 92.45 91.22

Ours (FCN+CRF/SFT) 92.04 93.84 92.93

5.2.2 SVT dataset

Compared with the ICDAR 2003 and 2011, the SVT dataset
is arguably more challenging. Its images, which are ex-
tracted from Google Street View images, tend to be affected
by noticeable blur, low contrast, complex background, and
large variation in illumination. As shown in Table 3, prior
methods produce results with substantially lower quality on
this data set. Our system (FCN+CRF/SFT) achieves an f-
score of 86.36%, compared with 81.20% for its closest com-
petitor.

Table 3. Pixel level segmentation evaluation on SVT dataset.
Method P R F

Niblack[27] 57.59 78.56 66.46
Howe[9] 69.16 81.32 74.74
Zhou[42] 71.93 87.18 78.82
Tian[36] 76.74 86.22 81.20

Ours (FCN) 77.67 82.43 79.98
Ours (FCN+CRF) 83.01 85.36 84.17

Ours (FCN+CRF/SFT) 85.34 87.40 86.36

5.3. Qualitative Results

In Fig. 6 we show some results of our method
(FCN+CRF/SFT) for some challenging cases. The raw
FCN probability map output is also shown, along with the
output from the classic Otsu binarization algorithm[28] and
from the scene text segmentation method proposed by Zhou
[42]. Our method produce cleaner segmentation with high
recall. It can deal with uncommon font, complex back-
ground, reflections, different illumination conditions and
poor contrast. With large receptive field and trained multi-
scale features, the coarse FCN segmentation produces ro-
bust results. The CRF refinement steps allows local de-
tails to be captured more faithfully. Key to our approach is
the fact that “local” features (color, stroke width) are used
only to refine the FCN output, and not to segment text from
background, as in traditional algorithms based on MSER or



Figure 6. In this figure we compare the result of Otsu binarization algorithm [28], Zhou’s text segmentation algorithm [42] and our method
with several challenging images. From top to bottom: input image, Otsu result, Zhou’s result, our result and our raw FCN output probability
map.

edges. Even when local features become unreliable, FCN,
thanks to its large receptive field, gets the job done.

Failure cases includes images with extremely low con-
trast (Fig. 7, left), as well as images with background sim-
ilar to the text color and containing pattern consistent with
text strokes (Fig. 7, right).

Figure 7. Failure cases.

5.4. Application: Text Substitution

Text substitution [6] is the art of replacing visible text
in an image with other text (using different content, font,
color, size, or language), in such a way that the rendered
image looks “natural”. Accurate text stroke segmentation
is an important component of text substitution. A typical
computational pipeline for text substitution would follow
these steps: (1) segment original text strokes; (2) remove
text stroke content, substituting with background color or
texture; (3) superimpose new text, possibly warped accord-
ing to the surface orientation [8]. In Fig.8 we show exam-

ples of text substitution based on our text stroke segmenta-
tion algorithm. The segmentation was first morphologically
dilated, then the resulting area was inpainted from nearby
background using PatchMatch [2] (with 5× 5 patch size).

One intriguing application of text substitution could be in
the creation of natural-looking synthetic data sets for train-
ing convolutional neural network to perform text detection,
segmentation and recognition. In [8], the author proposed a
method to find “plain” surface on natural images to render
text. However, the data set generated by [8] are not fully
realistic, in that the distribution of background textures and
context information on which text is superimposed may not
match the distribution of real world scenario (see Fig.8 last
column). By substituting text in regular scenes, we are able
to generate new synthetic images (thus increasing the size
of training data) while preserving the “natural” background.
With our proposed method, large scale high quality syn-
thetic dataset for multiple languages with character, word
and pixel level ground truth labels can be generated.

6. Conclusion
We have presented a new algorithm for text stroke seg-

mentation that produces state of the art results. The al-
gorithms relies on FCN, a robust technique for pixel-level
segmentation. FCN, however, cannot precisely localize the
stroke edges, due to the large receptive fields of its cells and
to its multi-resolution nature. The output of FCN is then
refined by a fully connected CRF that uses the assignment
probabilities from FCN as unary potentials. Results are fur-
ther improved by adding to the standard joint energy term of
the CRF information about the stroke width, which is com-
puted using a modified Strike Feature Transform. The FCN
is trained on a new data set with 100K synthetically gener-



Figure 8. The left column is original images, middle column is
our result with text substituted and last column contains samples
from dataset generated in [8]. Clearly our synthetic data is more
realistic.

ated test images. When tested on standard benchmarks with
pixel-level annotations (ICAR 2003, ICDAR 2011, SVT),
our algorithm is shown to work very well, with quality (as
measured by the f-score) exceeding the state of the art by a
sizable margin. We also show promising applications of our
algorithm in text substitution.
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