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Another look at zonal flows: Resonance, shearing, and frictionless
saturation

J. C. Li and P. H. Diamond
CASS, University of California, San Diego, California 92093, USA

(Received 27 February 2018; accepted 5 April 2018; published online 23 April 2018)

We show that shear is not the exclusive parameter that represents all aspects of flow structure

effects on turbulence. Rather, wave-flow resonance enters turbulence regulation, both linearly and

nonlinearly. Resonance suppresses the linear instability by wave absorption. Flow shear can

weaken the resonance, and thus destabilize drift waves, in contrast to the near-universal conven-

tional shear suppression paradigm. Furthermore, consideration of wave-flow resonance resolves the

long-standing problem of how zonal flows (ZFs) saturate in the limit of weak or zero frictional

drag, and also determines the ZF scale. We show that resonant vorticity mixing, which conserves

potential enstrophy, enables ZF saturation in the absence of drag, and so is effective at regulating

the Dimits up-shift regime. Vorticity mixing is incorporated as a nonlinear, self-regulation effect in

an extended 0D predator-prey model of drift-ZF turbulence. This analysis determines the saturated

ZF shear and shows that the mesoscopic ZF width scales as LZF � f 3=16ð1� f Þ1=8q5=8
s l

3=8
0 in the

(relevant) adiabatic limit (i.e., sckk2
kDk � 1). f is the fraction of turbulence energy coupled to ZF

and l0 is the base state mixing length, absent ZF shears. We calculate and compare the stationary

flow and turbulence level in frictionless, weakly frictional, and strongly frictional regimes. In the

frictionless limit, the results differ significantly from conventionally quoted scalings derived for

frictional regimes. To leading order, the flow is independent of turbulence intensity. The turbulence

level scales as E � ðcL=ecÞ2, which indicates the extent of the “near-marginal” regime to be

cL < ec, for the case of avalanche-induced profile variability. Here, ec is the rate of dissipation

of potential enstrophy and cL is the characteristic linear growth rate of fluctuations. The implica-

tions for dynamics near marginality of the strong scaling of saturated E with cL are discussed.

Published by AIP Publishing. https://doi.org/10.1063/1.5027107

I. INTRODUCTION

Zonal flows (ZFs) are very effective at regulating drift

wave (DW) turbulence, as they are the secondary modes of

minimal inertia, transport, and damping.1,2 Such a mechanism

naturally can be thought of as an element in a “predator-

prey” type ecology,3,4 in which the secondary “predator”

feeds off (i.e., extracts energy from) of the primary “prey.” In

such a system, the damping of the predator (here, the ZF) ulti-

mately regulates the full system. Frictional drag, due to colli-

sions, is usually invoked to damp ZF. However, this picture

is unsatisfactory for present day and future regimes of low

collisionality. Thus, it becomes essential to understand fric-
tionless ZF saturation and its implications for drift wave

turbulence. Of course, ZF saturation significantly impacts

transport and turbulence scalings. Note that understanding

scalings in the frictionless regime is essential for developing

reduced models thereof. As zonal flow shear reduces the tur-

bulent mixing scale, the saturated zonal flow is coupled to

the scaling of turbulent diffusivity with q� � qs=Ln. This is

related to the degree of gyro-Bohm breaking,5 i.e., the expo-

nent a in D � DBqa
�, where DB � kBT=16eB is Bohm diffu-

sivity and a < 1 indicates gyro-Bohm breaking.

Related to zonal flow saturation, we note that strong

resonance between drift waves and azimuthal (i.e., zonal) flow

is observed in a linear device CSDX (Controlled Shear

Decorrelation eXperiment), i.e., xk � khhvhi � x�e, with x�e

being the electron drift frequency. CSDX is a well-diagnosed

venue to study the interaction between turbulence and turbu-

lence driven flows in straight magnetic fields.6,7 Though reso-

nance is manifested most clearly in the linear device, it has

more general implications for confinement devices.

Wave-flow resonance enters turbulence regulation by

zonal flows both linearly and nonlinearly. Resonance alters our

understanding of the shear suppression mechanisms. To this

end, the effects of E�B shear flows on turbulence have been

intensively studied. However, simplified shear suppression

models are not universally applicable. In some limits, weak

flow shear can even destabilize turbulence due to the coupling

of radial eigenmodes.8 Moreover, flow shearing alone is not

the only parameter that characterizes all effects of flow struc-

ture on turbulence.9 For example, wave-flow resonance stabil-

izes turbulence through wave absorption.8,10 Yet, resonance is

often overlooked by many existing shear suppression models.

Resonance also suggests saturation mechanisms for

zonal flows. Many works on zonal flow generation1,2,11,12

exist, but the question of how zonal flows saturate, absent

frictional drag, remains open. Though sometimes mentioned

in this context, tertiary instability is not effective for most

cases of ZF saturation as it is strongly suppressed by mag-

netic shear. Indeed, in simulation studies, onset of tertiary

instability requires an artificial increase in the ZF shearing

rate13 so as to overcome the stabilizing effects of magnetic

shear. Ion temperature gradients can provide an extra source
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of free energy to drive the tertiary mode, in addition to flow

shear. However, such a contribution to the growth rate of the

tertiary mode is of order Oðk2q2
i Þ, and thus does not qualita-

tively alter tertiary stability.14 Tertiary instability of ZF may

occur in flat-q regimes15 with zero magnetic shear. Even

there, the key question of just how much turbulent mixing

and flow damping result remains to be addressed.

In this work, we discuss the role of wave-flow resonance

in zonal flow dynamics. Specifically, we investigate whether

the conventional shear suppression rules still hold true when

wave-flow resonance is considered. In addition, we study

how resonance enters zonal flow regulation. In particular, we

seek to answer the following questions:

(1) How do zonal flows saturate in the frictionless regime?

What determines the stationary flow scale? To what degree

is the often-quoted gyro-Bohm scaling broken?

(2) How do we incorporate the resonance effect in a predator-

prey model? How is this new model different from previ-

ous ones?

We find that flow shear can destabilize the drift wave

turbulence through the resonance. This contradicts the con-

ventional wisdom that the flow shear always suppresses tur-

bulence. Resonance between drift wave and plasma flow

suppresses the instability by wave absorption. Increasing the

flow shear, with fixed flow magnitude, can weaken the reso-

nance. Consequentially, the flow shear increment actually

destabilizes the drift wave turbulence. This suggests that the

flow shear can affect the stability via resonance in a way

opposite to what the conventional shear suppression models

predict. Thus, wave-flow resonance is an important factor to

be considered when studying shear flow effects on stability,

and on quasilinear fluxes that transport particles, vorticity,

and momentum.

We study drift-ZF turbulence with special focus on the

frictionless regime where the flow drag ! 0. Note that the

DW drive—which can depend on electron collisionality—is

not affected by the distinction between frictional and fric-

tionless ion regimes, since frictional damping of drift waves
is weak. Many works on ZF generation1,2 exist, but the ques-

tion of how ZF saturates, absent frictional drag, remains

open. We show that turbulent mixing of zonal vorticity by
drift waves in the presence of ZF saturates secondary flows
for near-marginal turbulence (with low to zero frictional

drag), and thus is effective at regulating the Dimits up-shift
regime. The Dimits regime1,16 is that of a frictionless DW-

ZF system close to the linear instability threshold, where

nearly all the energy of the system is coupled to ZF, so that

the residual transport and turbulence are weak, though finite.

This induces an up-shift in the onset of the turbulent fluxes

when plotted vs rT. Turbulent vorticity mixing is funda-

mentally different from viscous flow damping. Turbulent

vorticity mixing conserves total potential enstrophy (PE)

between the mean field—i.e., the zonal component—and

fluctuations. In contrast, the flow viscosity dissipates both

the ZF and (DW flow) fluctuations, and so is an energy sink

for all. Figure 1 illustrates the paradigm shift from the hypo-

thetical saturation induced by tertiary instability to the satu-

ration by vorticity mixing.

The ZF saturation mechanism induced by resonant vor-

ticity mixing is incorporated as a nonlinear self-regulating

effect in an extended predator-prey model.3,4 Stationary tur-

bulence and flow states are calculated and compared in the

frictionless, weakly frictional, and strongly frictional regimes.

In the frictionless regime, the results are different from the

conventionally quoted scalings derived for frictional regimes.

Turbulent vorticity mixing is driven by resonance between

drift wave and zonal flow. It is analogous to Landau damping

absorption of plasmons during collapse of Langmuir turbu-

lence.17,18 In the latter case, plasmon Landau damping arrests

collapse, leaving an “empty cavity,” without its “filling” of

Langmuir wave pressure. Table I compares these two pro-

cesses. Both zonal flow formation and Langmuir collapse (i.e.,

the formation of caviton) result from modulational instability,

and they both saturate in the collisionless regime (Fig. 2).

Moreover, both Landau damping and vorticity mixing conserve

energy (or potential enstrophy, in the case of vorticity mixing).

The key difference between the two is the detail of the reso-

nance. The resonance considered here is between drift wave

phase velocity and flow velocity, while conventional Landau

resonance considers the resonance between phase velocity and

particle velocity. Landau resonance defines a series of resonant

surfaces in (x, v) phase space. When the islands around adja-

cent surfaces overlap, the trajectory of a particle becomes cha-

otic, leading to mixing of phase space density (Fig. 3). As a

result, the particle PDF (probability density function) evolves

stochastically, i.e., as by a Fokker–Planck equation in velocity.

In contrast, resonant diffusion mixes vorticity in real space.

The diffusive scattering of zonal vorticity profile is resonant.

Therefore, irreversibility results from stochastic vorticity trajec-

tories due to overlapping islands in real space, i.e., the (x, y)

space.

FIG. 1. Frictionless zonal flow saturation by (a) tertiary instability and (b)

resonant vorticity diffusion.

TABLE I. Comparison and contrast of Landau damping effects on cavity

collapse during Langmuir turbulence collapse and resonance effects on fric-

tionless zonal flow (ZF) saturation.

Langmuir turbulence

collapse

Frictionless ZF

saturation

Primary player Plasmon-Langmuir wave Drift wave turbulence

Secondary player Ion-acoustic wave

(caviton)

Zonal flow

Free energy

source

Langmuir turbulence

driver

rn; rT drive

Final state Nearly empty cavity Saturated zonal

flow and residual

turbulence

Resonance Landau damping xk � kyhvyi absorption

Other damping

effects

Ion-acoustic radiation Wave packet trapping
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The rest of this paper is organized as follows: Section II

presents the wave-flow resonance effect on stability, specifi-

cally how the flow magnitude and flow shear affect the sta-

bility via resonance. Section III discusses how zonal flow

saturation in the frictionless regime is regulated by the reso-

nance. Section IV summarizes and discusses the main results

of this paper.

II. WAVE-FLOW RESONANCE EFFECT ON STABILITY

Shear is not the only flow property that controls the sta-

bility of turbulence. We reconsider the shear suppression

models by incorporating the effects of resonance. Resonance

between drift wave and flow stabilizes the turbulence via

wave absorption. The flow shear weakens the resonance, and

thus actually enhances the turbulence. Also, we show that

the flow magnitude enhances the resonance, and thus, stabil-

izes the drift wave. The flow magnitude (Vmax) is defined as

the maximum flow velocity in the electron drift direction.

Increasing Vmax reduces the value of xk � kVmax, and thus

enhances the resonance.

We study the Hasegawa–Wakatani drift wave system in

slab geometry with a mean perpendicular flow hvyi varying

in the x̂ direction

d

dt
þ ~vE 	 r

� �
~n þ ~vx

rn0

n0

¼ Dkr2
kð~n � ~/Þ þ Dcr2~n; (1)

d

dt
þ ~vE 	 r

� �
~q þ ~vxhqi0 ¼ Dkr2

kð~n � ~/Þ þ vcr2~q; (2)

where we define Dk � v2
The=�ei and d=dt � @t þ hvyi@y. �ei

is the frequency of electron–ion collision and vThe is the elec-

tron thermal speed. We have normalized electric potential

fluctuation as ~/ � ed/=Te and density fluctuation as ~n
� dn=n0, where n0 is the equilibrium density. The magnetic

field is in the ẑ direction, and both n0 and hvyi vary only in

the x̂ direction. The vorticity fluctuation is ~q � qscsr2
?

~/,

where qs is the ion Larmor radius at electron temperature

and cs is the ion sound speed, and the zonal vorticity is

hqi � hvyi0. ~vE � csẑ �r~/ is the E�B velocity fluctuation.

Dc and vc are the collisional particle diffusivity and vorticity

diffusivity (i.e., viscosity). Drift wave is the dominant insta-

bility population, because the vorticity gradient drive is quan-

titatively weaker than thern0 drive, i.e., kyq2
s hvyi00=x�e � 1,

where x�e � kyqscs=Ln is the electron drift frequency and

Ln � n0=jdn0=dxj is the density gradient scale.

In Secs. II A–II C, we show how conventional shear sup-

pression models fail in the presence of strong wave-flow

resonance.

A. Resonance effects on stability

Wave-flow resonance stabilizes drift waves through

wave absorption. The instability is linked to the mode scale

Lm [defined by Eq. (5)]. The key resonance, here, is between

the phase velocity of drift waves and the fluid velocity of

plasma, i.e., xk � kyhvyi. Due to the resonance effect, the

eigenmode peaks around the position where jxk � kyhvyij is

a minimum. When the resonance becomes stronger, the scale

of the eigenmode decreases. The mode scale is effectively

the wavelength in the x̂ direction, i.e., kxqs � L�1
m qs. Hence,

the resonance regulates the turbulent fluxes by varying the

mode scale.

We can write the fluctuating quantities in Eqs. (1) and

(2) as Fourier components in the ŷ and parallel (ẑ) directions,

while retaining the amplitude variation in the x̂ direction, i.e.,

~/ðx; y; z; tÞ ¼
X
ky;kk

/ðxÞei kyyþkkz�Xktð Þ;

~nðx; y; z; tÞ ¼
X
ky;kk

nðxÞei kyyþkkz�Xktð Þ:

The complex frequency Xk consists of a real frequency and a

growth rate, i.e., Xk ¼ xk þ ick. Electrons are weakly non-

adiabatic, i.e., ~n ¼ ð1� idÞ~/ with d� 1. The nonadiabatic

electron response d is determined by the frequency shift

d ¼ ðx�e � xk þ kyhvyiÞ=ðk2
kDkÞ � 1, given that the adia-

batic factor is k2
kDk=x�e � 1. The eigenmode equation for

/ðxÞ is then

xk � kyhvyi þ ick

� �
q2

s@
2
x / ¼ 1þ k2

yq
2
s � id

� �h
� xk � kyhvyi þ ick

� �
� x�e

�kyq
2
s hvyi00

i
/; (3)

FIG. 2. Comparison of the generation and frictionless dissipation of (a)

zonal flow and (b) caviton.

FIG. 3. Overlapping islands in phase space. The dashed lines represent reso-

nant surfaces.
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where the collisional viscosity vc has been neglected.

Multiplying both sides of Eq. (3) by /�, and integrating over

the x̂ direction, we obtain

xk � kyhvyi þ ick

� �
L�2

m q2
s

þ 1þ k2
yq

2
s � id

� �
xk � kyhvyi þ ick

� �
� x�e

h i
¼ 0;

(4)

where the mode scale Lm is defined by

L�2
m q2

s �
q2

s

ðLx

0

dxj@x/j2ðLx

0

dxj/j2
: (5)

Here, we have used the boundary condition /ð0Þ ¼ /ðLxÞ
¼ 0. In addition, the vorticity gradient term is ignored in

Eq. (4), because it is quantitatively negligible as compared

to x�e.

The Doppler shifted frequency and the growth rate are

obtained from Eq. (4)

xk ffi
x�e

1þ k2
yq

2
s þ L�2

m q2
s

; (6)

ck ffi
x2
�e

k2
kDk

k2
yq

2
s þ L�2

m q2
s

ð1þ k2
yq

2
s þ L�2

m q2
s Þ

3
: (7)

When resonance becomes stronger, i.e., jxk � kyhvyijmin

decreases, the eigenmode becomes narrower (mode scale Lm=
qs decreases), and thus the growth rate decreases. Therefore,

stronger resonance stabilizes the drift wave.

B. Effect of flow magnitude on stability

Increasing the flow magnitude enhances resonance,

thus stabilizes the drift wave. We consider the regime where

0 < jxk � kyhvyijmin � x�e. Here, the resonance is stronger,

but there is no singularity in the eigenmode equation. As hvyi
increases, resonance is enhanced. Therefore, increasing the

flow magnitude suppresses instability.

In order to illustrate the effect of flow on the resonance,

and thus on stability, we numerically solve the eigenmode

equation (3) for wave frequency xk, growth rate ck, and eigen-

mode profile /ðxÞ. The chosen parameters are a proxy for

realistic CSDX parameters, which are Lx¼ 6 cm, qs ¼ 1:2 cm,

Ln¼ 2 cm, kyqs ¼ p=Lx. Dirichlet boundary conditions are

used, which are /ð0Þ ¼ /ðLxÞ ¼ 0. The adiabatic factor is

k2
kDk=x�e¼ 3, so electrons are nearly adiabatic with dffi 1=3.

We use the hyperbolic tangent function to describe the flow

profile, which is

hvyi ¼ Vmax tanh
x� 0:5Lx

LV
: (8)

Here, the maximum flow shear is given by Vmax=LV . This

allows us to vary either the flow magnitude or the flow shear,

while keeping the other fixed.

As the flow magnitude increases and the flow shear

remains constant, the resonance becomes stronger (Fig. 4, left

panel). Hence, the mode peak moves closer to the position

with the minimum jxk � kyhvyij, which is at x¼ Lx (Fig. 5).

As a result, instability is suppressed (Fig. 4, right panel).

FIG. 4. Resonance (left) and growth rate (right) vs. flow magnitude, with fixed shear. The flow is given by function Vy ¼ Vmaxtanh½ðx� 0:5LxÞ=LV �.

FIG. 5. Mode structure for various flow magnitudes, with fixed flow shear.

The flow is given by function Vy ¼ Vmaxtanh½ðx� 0:5LxÞ=LV �.
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C. Effect of flow shear on stability

Flow shear weakly destabilizes the drift wave by weak-

ening the resonance (Fig. 7, left panel). As a result, the eigen-

mode profile is flattened (Fig. 6). This increases the mode

scale Lm=qs. Hence, the drift wave is destabilized by the flow

shear (Fig. 7, right panel).

Note that the increment in growth rate is not due to

enhanced Kelvin–Helmholtz (KH) instability, because KH

drive is quantitatively negligible as compared to drift wave

drive here.

III. FRICTIONLESS ZF SATURATION BY RESONANT
POTENTIAL VORTICITY (PV) MIXING

In this section, we show that resonant scattering of the

zonal vorticity can saturate secondary flows in the frictionless

regime. This process is distinct from the tertiary mechanism.

This shift in paradigm is illustrated by the diagram in Fig. 1.

The resonant vorticity diffusion can saturate flows in both

marginal and strong turbulence regimes. The stationary flow

results from the balance between the residual vorticity flux

and the resonant scattering effect. Since both of them scale

with the turbulence intensity, the stationary flow is then inde-

pendent of turbulence strength to leading order. Therefore,

this saturation mechanism is effective in the Dimits up-shift

regime, where turbulence is marginally unstable. We calcu-

late the stationary zonal flow shear and scale directly from

analysis, and determine the degree of gyro-Bohm breaking

resulting from strong zonal flow shear.

This saturation mechanism is incorporated into an

extended 0D predator-prey model. The flow state and turbu-

lence level are calculated for frictionless, weakly frictional, and

strongly frictional regimes, and compared to previous results.

Also, we use drift wave turbulence as an example case to cal-

culate the saturated flow state in the frictionless regime. Study

for the 0D model lends considerable insight by enabling calcu-

lation of flow scales, and flow and turbulence states (i.e., fixed

points). However, a 1D model is necessary to study the spatio-

temporal evolution in physical systems, such as staircase for-

mation and avalanches.19,20

A. Drift wave-zonal flow system in the resonant PV
mixing framework

The generation and saturation of zonal flows by drift

waves are described by PV (potential vorticity) mixing. The

fluctuating PV is defined as ~q � ~n � ~q, and the zonal PV is

hqi � hni � hqi. Hence, the evolution equation for fluctuat-

ing PV can be obtained by subtracting Eq. (2) from Eq. (1),

yielding

d

dt
þ ~vE 	 r

� �
~q þ ~vx

@

@x
hqi ¼ Dq;cr2 ~q: (9)

Here, Dq;c � ðDc þ vcÞ=2 is the collisional diffusivity of PV.

In multiplying both sides of Eq. (9) by ~q, we obtain the

potential enstrophy (PE)—i.e., X � h~q2i=2—equation21,22

@

@t
X ¼ � @

@x

h~vx ~q2i
2
� h~vx ~qi @

@x
hqi � ecX

3=2 þ cLX: (10)

The turbulent PE flux is due to nonlinear spreading, and can be

approximated as a diffusive flux, i.e., h~vx ~q2i=2��DX@xX.21

The nonlinear PE dissipation ecX
3=2 represents the forward

FIG. 6. Mode structure for various flow shears, with fixed flow amplitude.

The flow is given by function Vy ¼ Vmaxtanh½ðx� 0:5LxÞ=LV �.

FIG. 7. Resonance (left) and growth rate (right) vs. flow shear, with fixed magnitude. The flow is given by function Vy ¼ Vmaxtanh½ðx� 0:5LxÞ=LV �.
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cascade (to dissipation) of PE. cL is the characteristic linear

growth rate of drift waves, which drives the turbulence and

thus produces PE. The coupling of PV flux and zonal PV pro-

file gradient conserves PE between the mean field and

fluctuations.

The equations for mean-field density and zonal vorticity

are

@

@t
hni ¼ � @

@x
h~vx~ni þ Dcr2hni; (11)

@

@t
hqi ¼ � @

@x
h~vx~qi � lchqi � lNLhqi þ vcr2hqi: (12)

lc is the frictional drag coefficient. The nonlinear flow damp-

ing rate lNL depends on hqi, and is set by tertiary modes, e.g.,

Kelvin–Helmholtz instability of zonal flows. In reality, the

onset of such tertiary modes requires the ZF shear to exceed a

threshold,13 in order to overcome the damping of magnetic

shear. Onset of tertiary instability can be included in reduced

models, if needed. However, here, we neglect it, because the

relevance of such tertiary modes to ZF saturation in confine-

ment devices is negligible.

To close the system, we need to calculate the turbulence-

driven fluxes. The quasilinear PV flux is diffusive, i.e.,

h~vx ~qi ¼ �Dq;turb
@

@x
hqi; (13)

which is obtained from Eq. (9), neglecting collisional diffu-

sion. Here, the turbulent diffusivity of PV has a resonant part

and a non-resonant part, i.e., Dq;turb ¼ Dres
q þ Dnon�res

q .

The resonant diffusivity of PV is set by the resonance

between phase velocity of drift wave and the local ZF pro-

file, which yields

Dres
q ¼

X
k

j~vx;kj2pdðxk � kyhvyiÞ; (14)

where ~vx;k is the fluctuating velocity in the radial direction

and xk is the drift wave frequency. The resonant scattering

here has a characteristic spectral autocorrelation time scale

sck�jDðxk �kyhvyiÞj�1� jðvg;y�vph;yÞDkyjþjvg;xDkxj
� 	�1

,

where we have used hvyiffixk=ky¼vph;y: The resonance is

between drift waves and the instantaneous ZF profile. Thus,

this autocorrelation time is shorter than the time scale of ZF

evolution, i.e., sck�sZF, consistent with ZF evolution by tur-

bulent PV mixing. The correlation time sck is shorter as com-

pared to the 1D case, where the spectral width is associated

with the mismatch between group velocity and phase veloc-

ity, i.e., sck�jðvg�vphÞDkj�1
, only. As a result, the resonant

diffusivity is Dres
q ¼

P
k k2

yq
2
s c2

s j/kj2sck:

The non-resonant diffusivity can be obtained by the qua-

silinear theory, and is

Dnon�res
q ¼

X
xk 6¼kyhvyi

k2
yq

2
s c2

s j/kj2
jckj

jxk � kyhvyij2
: (15)

ck is the linear growth rate of drift waves. In marginally

stable turbulence, ck should be replaced by the nonlinear

decorrelation rate of turbulence, i.e., DxNk=N0, where Nk

� j/kj2=xk is the wave action density. As a consequence, in

marginally stable turbulence, the non-resonant diffusivity is

Dnon�res
q ¼

X
xk 6¼kyhvyi

k2
yq

2
s c2

s

jDxj
I0

j/kj2j/kj2

jxk � kyhvyij2
; (16)

where I0 �
P

k j/kj2. This is analogous to wave-particle

scattering due to higher order Landau resonance23 in Vlasov

plasmas. The Doppler shifted frequency and the growth rate

of the drift wave are given by Eqs. (6) and (7). Both of them

depend upon the eigenmode scale in the radial direction,

which is Lm � hk2
xi
�1=2

. Thus, the non-resonant diffusivity

depends on the mode scale, which yields

Dnon�res
q �

X
xk 6¼kyhvyi

k2
yq

2
s c2

s

k2
kDk

k2
yq

2
s þ L�2

m q2
s

1þ k2
yq

2
s þ L�2

m q2
s

j/kj2: (17)

The mode scale does not affect the turbulent diffusivity sig-

nificantly. This follows since for drift wave scaling where

kyqs � 1, the factor involving the mode scale does not vary

strongly (with that scale) while it ranges from 0.5 to 1. The

non-resonant diffusivity is negligible in comparison to the

resonant diffusivity, because Dnon�res
q � ðk2

kDkÞ
�1

and k2
kDk

� s�1
ck for near-adiabatic electrons. Therefore, the mixing of

PV is primarily resonant.
The turbulent particle flux driven by drift wave turbu-

lence in the adiabatic regime is diffusive, i.e.,

h~vx~ni ¼ �Dn;turb

@

@x
hni; (18)

where

Dn;turb ¼
X

k

k2
yq

2
s c2

s

k2
kDk

k2
yq

2
s þ L�2

m q2
s

1þ k2
yq

2
s þ L�2

m q2
s

j/kj2: (19)

We can then obtain the vorticity flux by subtracting the

PV flux from the particle flux, i.e., h~vx~qi ¼ h~vx ~ni � h~vx ~qi,
which is

h~vx~qi ¼ �ðDn;turb � Dres
q Þ

@

@x
hni � Dres

q

@

@x
hqi: (20)

Here, the last term is the flux induced by resonant diffusion.

The non-diffusive component forms a residual vorticity flux,

i.e., CRes
q ¼ �ðDn;turb � Dres

q Þ@xhni. CRes
q is driven by drift

wave turbulence, so it is proportional to the density gradient.

As discussed in Ref. 1, CRes
q drives zonal flows against diffu-

sive vorticity mixing. The gradient of CRes
q can accelerate

zonal flows from the rest. Note that this mean field calculation

of the vorticity flux is technically applicable to the stationary

state, while modulational instability analysis is limited to the

stage of ZF growth.

We then arrive at the DW-ZF system including resonant

PV mixing, which is

@

@t
hni ¼ @

@x
Dn;turb

@

@x
hni þ Dcr2hni; (21)

@

@t
hqi ¼ @

@x
ðDn;turb � Dres

q Þ
@

@x
hni þ Dres

q

@

@x
hqi


 �
� lchqi � lNLhqi þ vcr2hqi; (22)
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@

@t
X ¼ DX

@2

@x2
Xþ Dres

q

@

@x
ðhni � hqiÞ


 �2

� ecX
3=2 þ cLX:

(23)

This system consists of the equations for mean-field density

[Eq. (21)], zonal vorticity [Eq. (22)], and fluctuation PE

[Eq. (23)]. Initially produced by linear drift wave instability,

the PE of this system is conserved up to frictional dissipation

and nonlinear turbulent saturation, which transfer PE to

small scales. The evolution of total PE is given by

@

@t

ð
dx Xþ ðhni � hqiÞ

2

2


 �
¼
ð

dx cLX� ecX
3=2

�
� Dq;cjrðhni � hqiÞj2

� lchqi2 � lNLhqi2�: (24)

The collisional diffusion of zonal PV [the term with Dq;c in

Eq. (24)] is a sink. In contrast, the turbulent PV diffusion

conserves PE between mean field and fluctuations.

B. Frictionless ZF saturation via resonant PV diffusion

As demonstrated by Refs. 24 and 25, vorticity flux is

identical to the Reynolds force, and thus drives the zonal

flow. The residual vorticity flux excites the zonal flow, and

thus the resonant diffusion is the only damping for zonal

flows in the frictionless limit—i.e., lc; vc; lNL ! 0. By mul-

tiplying Eq. (22) by hqi, we obtain the net production of

mean flow enstrophy in the frictionless limit, which is

@

@t

ð
dx
hqi2

2
¼
ð

dx �ðDn;turb � Dres
q Þ

@hni
@x

@hqi
@x

"

�Dres
q

@hqi
@x

� �2
#
: (25)

Hence, we see resonant diffusion of zonal vorticity saturates

zonal flows in the frictionless regime—i.e., its contribution

to @t

Ð
dxhqi2 is negative definite.

The zonal vorticity profile is stationary when the net flow

production is zero, i.e., @t

Ð
dxhqi2 ¼ 0. Therefore, in the fric-

tionless regime, the stationary vorticity profile is determined

by the balance between residual vorticity flux and the reso-

nant vorticity diffusion (i.e., so h~vx~qi ¼ 0) which implies

hvyi00 � �
cs

qsLn
1� 1

sckk2
kDk

k2
yq

2
s þ L�2

m q2
s

1þ k2
yq

2
s þ L�2

m q2
s

 !
: (26)

In the relevant limit of near-adiabatic electrons, i.e., sckk2
kDk

� 1, the zonal flow scale is

LZF �
hvyi
cs

� �1=2 ffiffiffiffiffiffiffiffiffi
qsLn

p
: (27)

Only a fraction of turbulence energy is coupled to zonal

flows. Thus, the flow magnitude is obtained using mixing

length estimation for the turbulence energy, and a coupling

fraction f

hvyi2

c2
s

� f
l2
mix

L2
n

: (28)

Here, 0 < f < 1 is the fraction of turbulence energy coupled

to the zonal flow. Note that f and the mixing length are as yet

unspecified. The flow scale follows as LZF � f 1=4
ffiffiffiffiffiffiffiffiffiffiffi
qslmix

p
,

which depends only weakly on f. Clearly, the mixing length

is much larger than the microscale (qs) and can be as large as

an extended cell (�Ln), i.e., qs � lmix � Ln. Indeed, lmix

� Ln is the appropriate “base state” scale, absent zonal flows.

Thus, LZF necessarily lies between the microscale (qs) and

the mixing scale (lmix). The questions are to determine the

relative weighting of lmix and qs, and to account for shear

modification of lmix.

To determine lmix, note that the base state mixing length

is reduced by zonal flow shearing. This yields

l2mix �
l2
0

1þ ðhvyi0scÞ2
; (29)

where l0 is the mixing length for zero flow shear. In the case

of drift wave turbulence, we have l0 � Ln for extended cells

absent flow shear.

For weak or modest zonal flow shear, the decorrelation

time is the eddy turnover time. The eddy size is set by the

mixing length and the eddy turning speed is set by the mean

square root of the velocity fluctuations. Then, we obtain

sc � e�1=2 � lmix=h~v2i1=2
. The mixing length model yields

h~v2i=c2
s � ð1� f Þl2

mix=L2
n. Thus, the mixing length is l2

mix

� ð1� f Þl20=ð
jhvyij

cs

Ln

LZF
Þ2. As a result, the zonal flow scale is

LZF � f 1=6ð1� f Þ1=6q2=3
s l

1=3
0 . The zonal flow shear is then

jhvyi0j � f 1=6ð1� f Þ1=6 cs

Ln
ð l0qs
Þ1=3

.

For strong zonal flow shear, i.e., hvyi0 � eddy turnover

rate, the decorrelation time is set by sc � ðhvyi02k2
r DÞ�1=3

,

i.e., the scale set by the well known interaction of shearing

and radial scattering.26 Due to the strong zonal flow shear,

the turbulent diffusivity is resonant, so D �
P

k j~vrj2dðxk

� khhvyiÞ. The resonance time scale is controlled by the shear-

ing rate, which yields dðxk � khhvyiÞ � jhvyi0j�1
. Hence, the

diffusivity becomes D�ð1� f Þðc2
s=jhvyi0jÞðl2

mix=L2
nÞ. The mix-

ing length is l2
mix � ð1� f Þ2=3l2

0=ð
jhvyij

cs

Ln

LZF
Þ4=3

. The zonal flow

scale is LZF � f 3=16ð1� f Þ1=8q5=8
s l

3=8
0 . The zonal flow shear is

then jhvyi0j � f 3=16ð1� f Þ1=8 cs

Ln
ð l0qs
Þ3=8

. Here, the flow shear is

larger, and the flow scale is larger. This follows because

jhvyi0j � jhvyij=LZF and both jhvyij=cs and LZF increase with

the underlying drive scale (lmix). Nevertheless, the flow shear

calculated here is close to that calculated for the weak shear

case. Hence, in both cases, the flow shear is similar.

In either case, the factors f and 1� f enter with small

exponents. Thus, the zonal flow emerges as mesoscopic, but

weighted somewhat more strongly toward the microscale

(qs) than macroscale (l0). Note that while the mesoscopic

zonal flow scale, i.e., qs < LZF < Ln and LZF �
ffiffiffiffiffiffiffiffiffi
qsLn
p

in

particular, is frequently assumed, here they are determined

by the analysis. The zonal flow shears in both cases are
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similar and robust. Even for the weak shear case, the calcu-

lated zonal flow shear is significant. Hence, the case of

strong zonal flow shear—and thus flow resonance—is likely

to be most relevant to the frictionless DW-ZF system dis-

cussed here. Note that we have calculated the zonal flow

scale and shear self-consistently by considering the shearing

feedback on mixing length. Externally driven flows may

enhance the flow shearing, and thus reduces the mixing

scale.

This mesoscopic zonal flow appears as a limiting case

with near-adiabatic electrons (i.e., sckk2
kDk � 1). In this limit,

zonal flow scale does not depend on wave-numbers (kyqs).

When sckk2
kDk is comparable to unity, LZF is linked to the

mode scale. In that case, the resonance between drift wave

and zonal flow regulates the flow structure by modifying

the local mode scale. Also, the flow structure is sensitive to

wave-numbers due to the second term of Eq. (26). In the

hydrodynamic limit (i.e., sckk2
kDk � 1), the generation and

saturation of zonal flows must be reconsidered. The drift

wave model discussed here is not directly applicable to the

hydrodynamic case where convective cells, not drift waves,

are generated.

The mixing length derived here allows us to calculate the

scaling of turbulent diffusivity with q� � qs=Ln. Following

the mixing length model, the turbulent diffusivity scales as

D � lmixv�, where v� � qscs=Ln is the electron drift velocity.

Thus, we obtain D � DBlmix=Ln, where DB � qscs is the

Bohm diffusivity. When there is no zonal flow, the mixing

length is the size of an extended cell, i.e., lmix � Ln. This

recovers the Bohm scaling, i.e., D � DB. In the presence of

zonal flow shear, the mixing length is larger than qs, and thus

gyro-Bohm scaling is a lower bound for turbulent diffusivity,

i.e., D > DBq�. Hence, D lies between the gyro-Bohm and

Bohm limits, i.e., D � DBqa
� where 0 < a < 1. The question

is to determine a, i.e., the degree of gyro-Bohm breaking.

The mixing length in the case of strong zonal flow shear is

lmix � q1=4
s l

3=4
0 � q1=4

s L3=4
n . This indicates that the scaling

of turbulent diffusivity is closer to the Bohm regime, i.e.,

D � DBlmix=Ln � DBq1=4
� ðl0=LnÞ3=4 � DBq1=4

� . Therefore, the

zonal flow shear leads to a gyro-Bohm correction to the diffu-

sivity which is initially Bohm, absent flow shear. As a result,

the diffusivity lies somewhere between Bohm and gyro-

Bohm, but weighted more toward Bohm. Note the zonal

flow shear here is determined self-consistently by considering

shearing feedback on mixing length. Externally driven flow

shears are not restricted by this self-consistent feedback mech-

anism. Thus, the external flow shear could make the diffusiv-

ity weighted more toward gyro-Bohm, i.e., D � DBq1=4þb
�

where b > 0 is induced by external shear. External shear

reduces the mixing scale through the shearing feedback. Also,

increasing external power input may lead to the formation of

transport barriers.15 The barriers can then reduce the mixing

scale and thus can make the diffusivity more gyro-Bohm.

C. Extended predator-prey model

The frictionless saturation induced by resonant PV mix-

ing can be incorporated in the predator-prey model of the

DW-ZF system. In this subsection, we show the derivation of

this new, 0D model and compare the results with previous

models. Note that even though the 0D model studied here is

sufficient to demonstrate the flow and turbulence states as

well as the flow scale, a model with at least one spatial dimen-

sion is necessary to study the spatiotemporal dynamics of the

system, such as the formation of transport barriers.

Equation (25) shows that in the frictionless regime, the

net production of zonal field enstrophy is driven by the vor-

ticity flux. Ignoring the evolution of hni, the total mean-field

PE is related to the zonal vorticity through V002 �
Ð

dxhvyi02=
L2

ZF �
Ð

dxhqi2=L2
ZF. The total fluctuation PE is E �

Ð
dxX.

Zonal flow is driven by the residual vorticity flux, but dissi-

pated by the resonant scattering of zonal vorticity. Thus,

the net mean-field PE is produced by h~vx~qiV00 ¼ CRes
q V00

�Dres
q V002 � a1EjV00j � a2V002E. Therefore, with frictional

damping and nonlinear damping by tertiary instability included,

the predator (flow) equation is

L2
ZF

2

dV002

dt
¼ a1jV00jE� a2V002E� cNLV002 � lcV002: (30)

The vorticity flux conserves enstrophy between zonal

field and fluctuations. Thus, the residual vorticity flux forms

a sink of the fluctuation PE and the resonant vorticity diffu-

sion forms a source. As a consequence, the prey (turbulence)

equation can be written as

dE

dt
¼ �a1jV00jEþ a2V002E� ecE3=2 þ cLE: (31)

Here, baseline (i.e., without flow) nonlinear saturation of tur-

bulence is through the forward cascade of PE. Ultimately,

PE is dissipated by collisional diffusion at small scales. The

linear growth of energy is due to the (linear) instability of

fluctuations.

Equations (30) and (31) form a new predator-prey

model for the DW-ZF system. This model conserves PE and

includes resonant PV mixing. The model is zero dimensional,

because the quantities here have been integrated over space.

Though the accuracy of this simplified 0D model is limited,

we can use it to obtain useful insights. In this new model, the

net flow production by turbulence consists of two terms,

which are the turbulent production driven by residual stress

and the dissipation induced by resonant diffusion.

Equation (30) shows that in the frictionless regime,

where the frictional drag lc ! 0, the resonant vorticity dif-

fusion saturates the zonal flow production, even without the

nonlinear damping induced by tertiary instability. It should

be stated that drift wave instability requires finite electron
collisionality, while the frictional drag and collisional diffu-

sion of particles and vorticity are both determined by ion col-

lisionality and/or ion-neutral drag. Hence, flipping between

frictional and frictionless regimes does not require a change

in the drift wave drive.

The flow and energy states are set by the fixed points of

the system, i.e., dV002=dt ¼ dE=dt ¼ 0. We ignore the non-

linear flow damping by tertiary instability, because it is irrel-

evant (usually). Therefore, the flow state can be obtained

from Eq. (30), and is
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jV00j ¼ a1E

a2Eþ lc

: (32)

We next discuss three regimes—the frictionless regime, the

weakly frictional regime, and the strongly frictional regime—

and compare results to those of previous models. In particular,

we emphasize what determines the turbulence level and what
affects the flow in near-marginal turbulence. The states of zonal

vorticity and turbulence energy are summarized in Table II. In

the frictionless regime, the turbulence energy level is set only

by the linear instability growth rate and the nonlinear dissipa-

tion of PE. This differs from the strongly frictional regime,

where the turbulence level is set by the frictional drag.3

1. Frictionless regime

In the frictionless regime, the drag is negligible com-

pared to the resonant diffusive scattering of vorticity, i.e.,

lc � a2E. The flow and turbulence states are given by

jV00j ¼ a1=a2; (33)

E ¼ ðcL=ecÞ2: (34)

The flow is determined, to leading order, by the balance

between residual vorticity flux (a1) and diffusive mixing of

vorticity (a2). The turbulence energy is basically determined

by the balance between the linear growth rate and dissipation

rate of PE (ec).

In the frictionless regime, turbulence energy is (approxi-

mately) independent of the flow state. The turbulence energy is

determined only by the linear instability drive and the nonlin-

ear dissipation of PE. The dissipation rate tied to the forward

cascade of potential enstrophy is�ecX
1=2 � ecE1=2. The turbu-

lence state is then set by the balance between the linear growth

rate and the nonlinear dissipation rate, i.e., cL � ecE1=2, yield-

ing E � ðcL=ecÞ2. When the linear drive is weak, i.e., cL=ec

< 1, the turbulence becomes marginal, with E� 1. This is

different from previous results, where turbulence energy is set

by the frictional flow damping. In previous models, below the

onset threshold for tertiary instability, the flow is dissipated

only by frictional drag. The energy is coupled from turbulence

to flow, which is a one-way coupling. Therefore, the fixed

point is set by the balance between the frictional flow damping

and energy coupling, i.e., aVE � lcV, where a is the coupling

coefficient between flow and turbulence energy. As a result,

the saturated turbulence energy E � lc=a.

In addition, the saturated flow does not depend on the

turbulence level, to leading order. The balance between resid-

ual vorticity flux and the resonant vorticity diffusion sets the

flow. In this balance, the turbulence intensity cancels out. This

means there can be significant zonal flow, even when the tur-

bulence is weak. Therefore, this new frictionless saturation

mechanism, induced by resonant PV mixing, is effective for

turbulence near marginality. In previous models, the flow is set

by the difference between linear growth of turbulence and fric-

tional flow damping.1 Those models are not relevant to near-

marginal turbulence, where cL ! 0.

2. Weakly frictional regime

When the drag exceeds the rate of turbulent diffusion,

i.e., lc � a2E, the flow is linked to the turbulence strength,

which is given by

jV00j ¼ a1E=lc: (35)

This follows because the flow is driven by turbulence, and col-

lisions are the major source of flow damping. Thus, in the near

marginal regime, both the turbulence and the flow become

very weak, as the turbulence drive approaches zero.

The turbulence energy can be obtained from

a2
1E

lccL

þ ec

ffiffiffi
E
p

cL

� 1 ¼ 0: (36)

The exact solution is

E ¼ e2
cl

2
c

2a4
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4cLa

2
1

e2
clc

s
� 1

2
4

3
5: (37)

Hence, in the weakly frictional regime, i.e., lc � 4cLa
2
1=e

2
c ,

the turbulence energy is the same as in the frictionless case,

while the flow is given by

jV00j ¼ a1c2
L

lce2
c

: (38)

We thus see that the weakly frictional regime is a hybrid

of the frictionless and strongly frictional regimes. On one

hand, the turbulence level is independent of flow damping, as

for the frictionless regime. On the other hand, the flow depends

on the turbulence level, meaning that when the turbulence is

near marginal, the flow becomes very weak. This is because

the turbulence driven flow production must be strong enough

to overcome frictional damping, in order to drive a significant

flow.

3. Strongly frictional regime

When the frictional flow damping is strong, i.e., in the

strong frictional regime where lc � 4cLa
2
1=e

2
c , the turbu-

lence energy is set by the flow damping, which is given by

E ¼ cLlc=a
2
1: (39)

TABLE II. Flow states and turbulence states compared among regimes with

different frictional damping rates. lc is the frictional drag coefficient, E is

the turbulence energy (measured by fluctuation enstrophy), cL is the linear

growth rate of turbulence, and a1 and a2 are coefficients in the predator-prey

model resulting from residual vorticity flux and vorticity diffusion.

Regime Frictionless

Weakly

frictional

Strongly

frictional

Frictional damping

strength

lc � a2E a2E� lc � 4cLa
2
1=e

2
c lc � 4cLa

2
1=e

2
c

Flow jV00j a1

a2

a1c2
L

lce2
c

cL

a1

Turbulence energy E c2
L

e2
c

c2
L

e2
c

cLlc

a2
1
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This recovers the scaling trends of previous predator-prey

models. The flow is given by

jV00j ¼ cL=a1: (40)

Note that in this strongly frictional regime, the flow does not

explicitly depend on frictional flow damping, which is the

same as for previous results. In this regime, zonal flows are

driven by the turbulence, and thus the flow curvature scales

as jV00j � cL. The turbulence energy here is controlled by

both the linear drive and the flow damping. As a conse-

quence, the near-marginal state can be achieved by decreas-

ing the linear forcing of the turbulence. Therefore, zonal

flow is weak, and thus the flow scale is large, in near-

marginal (i.e., cL approaches zero) turbulence with strong

frictional drag.

The new predator-prey model presented here does not

depend sensitively on the specific turbulence type. For com-

parison with the results calculated from the zonal vorticity

equation, we now use drift wave instability as an example.

The coefficients are

a1 ¼
k2

yqscs

Ln
sck �

1

k2
kDk

k2
yq

2
s þ L�2

m q2
s

1þ k2
yq

2
s þ L�2

m q2
s

 !
; (41)

a2 ¼ k2
yq

2
s sck: (42)

In the frictionless regime, the stationary zonal vorticity

emerges as

jV00j ¼ a1

a2

¼ cs

qsLn
1� 1

sckk2
kDk

k2
yq

2
s þ L�2

m q2
s

1þ k2
yq

2
s þ L�2

m q2
s

 !
; (43)

which is consistent with Eq. (26). Vorticity gradient mea-

sures the jump across the flow shear field. Thus, the ZF pro-

file can be deduced from the zonal vorticity by specifying

boundary conditions. As shown by Fig. 8, for zonal flows,

vorticity is equal to shear, which is of greater interest than

the flow velocity.

In the strongly frictional regime, the zonal flow curva-

ture is determined by jV00j ¼ cL=a1. Next, we show that zonal

flows are weak for drift wave turbulence. In the relevant

limit of near-adiabatic electrons, i.e., sckk2
kDk � 1, we obtain

a1 ffi sckk2
yqscs=Ln to leading order. As a result, the zonal

flow curvature is

jV00j � cs

qsLn

1

sckk2
kDk

k2
yq

2
s þ L�2

m q2
s

ð1þ k2
yq

2
s þ L�2

m q2
s Þ

3
: (44)

Using the mixing length model, we determine the zonal

flow scale in the strongly frictional regime, which is LZF

� ðsckk2
kDkKÞ

2=3f 1=6ð1� f Þ1=6q2=3
s l

1=3
0 , where K � ð1þ k2

yq
2
s

þL�2
m q2

s Þ
3=ðk2

yq
2
s þ L�2

m q2
s Þ. The zonal flow shear is then

jhvyi0j � ðsckk2
kDkKÞ

�1=3f 1=6ð1� f Þ1=6 cs

Ln
ð l0qs
Þ1=3

. Therefore,

the zonal flow shear in the strongly frictional regime

is weaker, and the scale is larger, than that in the friction-

less regime, in the limit of near-adiabatic electrons, i.e.,

sckk2
kDk � 1.

In the strongly frictional regime, the zonal flow scale is

sensitive to wave-numbers, in both limits of sckk2
kDk � 1

and sckk2
kDk � 1. Again, the case of hydrodynamic limit

requires further studies, which are beyond the scope of this

paper. Note that collisional friction competes with drift wave

frequency (which is roughly equal to the decorrelation rate)

in determining the plasma regimes, i.e., lc vs. xk � x�e
¼ kyqscs=Ln. Therefore, shorter wavelength, and thus larger

wave-number kyqs, favors the frictionless regime.

IV. DISCUSSION

In this paper, we study how wave-flow resonance

affects the linear stability of drift wave turbulence, and how

it regulates zonal flow saturation in the frictionless regime

by resonant vorticity mixing. The main results of this paper

are:

• Resonance stabilizes drift waves due to wave absorption.

Counter-intuitively, flow shear can destabilize drift waves

by weakening the resonance. This contradicts the conven-

tional wisdom of shearing effects.
• Resonance opens a new channel of zonal flow saturation,

absent frictional drag, through the irreversible turbulent

mixing of vorticity. The scale of the stationary flow that

forms is mesoscopic, but weighted somewhat more

strongly toward the microscale than macroscale. We show

directly from analysis that the zonal flow scale is LZF

� f 3=16ð1� f Þ1=8q5=8
s l

3=8
0 in the relevant adiabatic regime

(i.e., sckk2
kDk � 1). The flow shear scales as jhvyi0j

� f 3=16ð1� f Þ1=8 cs

Ln
ð l0qs
Þ3=8

.

• We calculate the degree of gyro-Bohm breaking and

show that the resulting turbulent diffusivity is closer to

the Bohm limit, i.e., D � DBq1=4
� ðl0=LnÞ3=4 � DBq1=4

� . The

base state mixing length, absent flow shear, is l0 � Ln.
• We incorporate the saturation by mixing of vorticity into

the predator-prey model. In contrast to previous results,

the saturated flow is independent of the turbulence level,

to the leading order, in the frictionless regime. Thus, it

can be significant for the relevant case of near-marginal

turbulence. The turbulence energy is determined by the

balance of linear drive and nonlinear dissipation without

involving flow damping, and gives E � c2
L=e

2
c .

FIG. 8. For zonal flows, vorticity is equal to flow shear.
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In the presence of strong resonance, flow shear can line-

arly destabilize the drift wave turbulence, which is opposite

to what the conventional shear suppression models predict.

Resonance suppresses the instability as a result of wave

absorption, and the flow shear can weaken the resonance.

Therefore, wave-flow resonance is an important factor to be

considered when studying the shear flow effect on stability,

and on quasilinear fluxes that transport particles, vorticity,

and momentum.

The Dimits up-shift regime spans low to zero collisional-

ity and consists of weak turbulence near marginality.

ZF saturation induced by resonant PV mixing is effective in

both the frictionless regime and for near-marginal turbulence,

and thus is compatible with the physics of the Dimits up-shift

regime. Resonance regulates ZF saturation in the frictionless

regime without the need to invoke tertiary instability. The sat-

urated flow does not depend on the turbulence intensity.

Hence, there can be significant zonal flows for near-marginal

turbulence, with the absence of frictional damping.

The stationary flow profile is determined by the balance

between residual vorticity flux and the resonant diffusivity of

vorticity. While the ZF scale is often assumed, the new model

discussed here calculates the saturated flow scale in the fric-

tionless limit. In the limiting case with near-adiabatic elec-

trons (i.e., sckk2
kDk � 1), the ZF scale is mesoscopic, i.e.,

LZF � f 3=16ð1� f Þ1=8q5=8
s l

3=8
0 , in accordance with conven-

tional assumptions. The mixing length regulated by the zonal

flow shear is then lmix � q1=4
s l

3=4
0 � q1=4

s L3=4
n . This implies a

Bohm-like scaling of turbulent diffusivity, i.e., D � DBlmix=

Ln � DBq1=4
� ðl0=LnÞ3=4 � DBq1=4

� , where DB is the Bohm dif-

fusivity and q� � qs=Ln. Note that absent zonal flow shear,

the scaling is purely Bohm, i.e., lmix � l0 � Ln and D � DB.

As a result of zonal flow shear, the diffusivity scaling exhibits

a gyro-Bohm correction, but weighted more toward Bohm.

The scaling takes into account zonal flow shears that are

self-consistently determined by shearing feedback on mixing

length. Thus, externally driven flow shear may be needed to

achieve scalings that are more gyro-Bohm. The flow shear

driven by external power sources can reduce the mixing scale

through shearing feedback. In addition, increasing the exter-

nal power input can lead to the formation of transport bar-

riers.15 The transport barrier so formed could also reduce the

mixing scale and thus could make the diffusivity weighted

more toward gyro-Bohm.

We have derived an extended predator-prey model,

incorporating the resonant PV mixing process. This new

model is effective in the near-marginal turbulence. Thus, it

can describe zonal flow saturation in the Dimits up-shift

regime. In the frictionless regime, the resonant diffusion of

vorticity leads to nonlinear saturation of zonal flow. The tur-

bulence energy is saturated by nonlinear enstrophy dissipa-

tion tied to the forward cascade of potential enstrophy. As a

result, the turbulence energy scales with the linear forcing

rate as E � c2
L. The saturated flow does not depend on the

turbulence intensity. Hence, there can be significant flows in

near-marginal turbulence. Therefore, frictionless ZF satura-

tion by resonant PV mixing is expected to be effective in

weak turbulence regimes. In the frictional regime with sig-

nificant frictional flow damping, the dependence of the tur-

bulence energy level on flow damping is recovered. The flow

is driven by turbulence, while saturated by collisions. Hence,

in this limit, the flow is very weak in near-marginal turbu-

lence. Note that in the frictionless regime, the zonal flow

structure does not depend on turbulence properties, such as

wave-numbers, in the relevant near-adiabatic limit. In the

strongly frictional regime, the zonal flow scale is sensitive to

wave-numbers. Shorter wavelength, and thus larger wave-

number kyqs, favors the frictionless regime.

The model discussed here addresses the long-standing

question of “how close is ‘close’” in near-marginal systems. It

is effective in both near-marginal turbulence and in the fric-

tionless regime. Thus, when expanded to 1D, it can be used to

study avalanches and staircase formation.19,20 In 1D, avalanch-

ing induces variability of profiles, and thus of local growth

rates. The scaling E � c2
L suggests a variability-dominated

state can result when cL ! 0. This follows because cL has

an exponent> 1, which holds true as long as the self-saturation

of fluctuation PE exhibits the dependence ecX
1þp, where

0 < p < 1. Thus, the scaling of E with cL is stronger than the

conventional weak turbulence result. The local linear growth

rate is then set by both equilibrium (mean) and variable (i.e.,

avalanche-induced) profile gradients, i.e., cL ¼ �cL þ ~cL. As a

result of resonant PV mixing in the frictionless regime, the tur-

bulence state is determined by E � c2
L � �c2

L þ ~c2
L. �cL is deter-

mined by the difference between mean profile gradient and

critical gradient. In near-marginal turbulence, the mean gradi-

ent approaches the critical gradient, so �cL ! 0. Thus, there the

turbulence state is primarily controlled by noise from ava-

lanche variability, i.e., E � ~c2
L � �c2

L. Such noise is produced

by avalanching, which stochastically modulates the driving

gradient. In this case, the predator-prey model must be treated

as a set of coupled stochastic differential equations. In 1D, the

relevant system is a nonlinear reaction-diffusion model like

that of Eqs. (22) and (23), including multiplicative noise. The

results in this work thus define the boundary for “marginality.”

The turbulence energy scales with the dimensionless ratio

ðcL=ecÞ2, where ec is the dissipation rate of PE. Therefore, the

turbulence can be “marginal” when the equilibrium growth

rate �cL < ec. This gives a basis upon which to define the extent

of the “near-marginal regime.”
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