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Proteome partitioning constraints in long-
term laboratory evolution

Matteo Mori 1, Vadim Patsalo 2, Christian Euler3, James R. Williamson 2 &
Matthew Scott 4

Adaptive laboratory evolution experiments provide a controlled context in
which the dynamics of selection and adaptation can be followed in real-time at
the single-nucleotide level. And yet this precision introduces hundreds of
degrees-of-freedom as genetic changes accrue in parallel lineages over gen-
erations. On short timescales, physiological constraints have been leveraged
to provide a coarse-grained view of bacterial gene expression characterized by
a small set of phenomenological parameters. Here, we ask whether this same
framework, operating at a level between genotype and fitness, informs phy-
siological changes that occur on evolutionary timescales. Using a strain
adapted to growth in glucose minimal medium, we find that the proteome is
substantially remodeled over 40 000 generations. Themost striking change is
an apparent increase in enzyme efficiency, particularly in the enzymes of
lower-glycolysis. We propose that deletion of metabolic flux-sensing regula-
tion early in the adaptation results in increased enzyme saturation and can
account for the observed proteome remodeling.

Adaptive laboratory evolution provides a controlled environment
within which genetic change can be tracked with single-nucleotide
precision1,2. Despite the depth of data, there is no consensus frame-
work for predicting the trajectory of adaptation, nor de-convolving
how the genomic changes confer increased fitness. Part of the chal-
lenge comes from the large number ofmutations that accumulate over
the course of the experiment, and the possible interdependence of
each of thesemutations on all others in the evolutionary history of the
organism3,4. Yet the recurrence of a commoncollection ofmutations in
parallel lineages hints at a set of simplifying principles5,6.

The longest-running, and most well-studied, adaptation
experiment was begun by Lenski in 19887, using 12 founding
lineages of Escherichia coli grown in minimal medium containing
a mixture of glucose and citrate. Every 24 h, the cells are diluted
1:100 into fresh media. Here, we focus on the early adaptation of
one of these lineages (Ara-1)2, up to 40,000 generations. The
relative fitness (assessed via competition against the ancestral

strain over one growth cycle) and the doubling rate of the
evolved strains in this lineage both increase monotonically with
generation number (Fig. S1). After 20k generations, the genome
carries 29 single-nucleotide polymorphisms (SNPs) and 16
deletion-insertion polymorphisms (DIPs). Subsequently, this
lineage develops a hypermutator phenotype with dramatically
elevated mutation rate so that by 40k generations the genome
carries 627 SNPs and 26 DIPs2. One striking insertion poly-
morphism fixed early in this Ara-1 lineage (by 5000 generations8)
effectively inactivates pyruvate kinase F (pykF). Mutations in the
pykF gene appear in all twelve of the Lenski linages4. What makes
this mutation remarkable is that pyruvate kinase F catalyzes the
final step in glycolysis, converting phosphoenolpyruvate (PEP) to
pyruvate. PykF is thought to mediate flux through upper- and
lower-glycolysis9, and its product, pyruvate, is one of the ketoa-
cids that is used to coordinate the carbon catabolic response in E.
coli10. Why mutations in such an important enzyme should appear
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so ubiquitously and so early in glucose adaptation experiments
remains a puzzle. It has been suggested that the diminished
function of PykF observed in the Lenski adaptation experiments is
beneficial insofar as it redirects PEP to increase the import rate of
glucose via the phosphotransferase system (PTS)11. We propose
that loss of flux-mediation through glycolysis resulting from the
inactivation of the pykF gene provides an additional benefit of
increasing the efficiency of the enzymes in lower glycolysis by
increasing enzyme saturation. The loss of pykF produces a higher
rate of flux through metabolism without increasing the expres-
sion of metabolic proteins, thus avoiding a major physiological
constraint on bacterial gene expression12.

In E. coli, oneprimary physiological constraint is the near-constant
total protein concentration13,14. As a consequence, if one protein
increases in concentration (or, equivalently, in protein mass fraction),
then the mass fraction of other proteins must decrease to accom-
modate the change. In response to translation inhibition, for example,
ribosome and ribosome-affiliated proteins increase in mass fraction,
with a concomitant decrease in the mass fraction of most other
proteins12,15,16. Similarly, metabolic limitations (including catabolic
limitation via permease titration10 and anabolic limitation via titration
of the key amination enzymesGDH10 or GOGAT16) serve to define other
protein groups responding in concert, resulting in a coarse-grained
partitioning of the proteome16,17. The exponential growth rate can be
decomposed as a flux balance among these proteome sectors, effec-
tively treating each sector as a single enzyme with a lumped catalytic
constant that quantifies how strongly changes in the sector protein
abundance affect the growth rate16. Taken together, the constraint on
total protein concentration and the coarse partitioning of the pro-
teomedefine a set of physiological rules that direct the response of the
organism to metabolic challenges10,12,17.

Metabolic enzyme activities are coordinated by adjusting enzyme
abundance and by modulating enzyme saturation via substrate
concentration18,19. For a given enzyme/substrate pair, there is a char-
acteristic concentration of substrate at which half of the enzyme is
actively converting substrate to product20. In E. coli, most enzymes
catalyzing irreversible reactions draw upon substrate pools that are
close to the half-saturation concentration20. There are, however,
groups of enzymes in central carbon metabolism that catalyze rever-
sible reactions strongly biased against product formation—for exam-
ple, the enzymes in lower-glycolysis GapA, Pgk, and GmpA (Keq = 0.6,
3.7 × 10−4, 0.2, respectively21). In order to move flux in the direction of
product formation, these enzymes operate in a regime close to sub-
strate saturation so that changes influx elicit large changes in substrate
concentration. Substrate concentration then serves to amplify chan-
ges in flux, and can therefore act as a high-fidelity flux-sensor22,23

One of the putative flux-sensing metabolites upstream of GapA is
fructose bisphosphate (F1,6BP), which is implicated in the coordina-
tion of glycolytic flux by modulating the activity of PykF. We propose
that the inactivation of the pykF gene, which removes the actuator
from the F1,6BP/PykF flux-sensing mechanism, leads to an increase in
intermediate substrate concentrations and, consequently, higher
enzyme saturation. As a result of this increase in enzyme efficiency, a
smaller concentration of enzyme can be used to carry the flux, thereby
freeing up precious space in the proteome.

Here, we use translation limitation and quantitative proteomics to
determine how adaptation to growth in glucose over the course of 40k
generations remodels the proteome of strains in Lenski’s laboratory
evolved Ara-1 lineage. We find that adaptation results in an increase in
enzyme efficiency, possibly mediated by an increase in substrate
saturation. Many of the enzymes exhibiting the largest increase in effi-
ciency lie directly upstream of the pykF deletion. Using a simplified
mathematical model, we propose that the loss of the flux-sensing
mechanism coupling F1,6BP to PykF expression could explain the
observed increase in enzyme efficiency. Proteome partitioning

constraints suggest that abrogation of a flux-sensing mechanism pro-
vides large fitness gains in a constant nutrient environment, and could
provide a general strategy for adaptation.

Results
Adaptation of the ribosome-affiliated protein fraction
In the ancestral strain (REL606), and other wildtype strains of Escher-
ichia coli, there is a positive linear correlation between the ribosome
abundance and the doubling rate when the doubling rate ismodulated
by the nutrient quality of the medium (e.g., changing carbon source,
supplementing with amino acids, etc.)15,24,25. The lineage used in this
study (Ara-1) cannotmetabolize citrate, and so effectively, the cells are
adapted to growth in glucose (and glucose metabolic by-products)
over the course of 40k generations. We wondered whether this
restrictednutrient environmentwouldaffect the couplingbetween the
ribosome abundance and doubling rate that was observed in the
ancestral strain. It did not; the growth rate dependence of the ribo-
somal abundance in the ancestral and 40k-adapted strain (10938) are
indistinguishable under nutrient-modulated growth rate change
(Fig S2A, Supplementary Data 1). Converted to units of ribosome-
affiliatedproteinmass fraction (Fig. S2B), thatgrowth rate dependence
is shown in Fig. 1A as a gray line.

The positive linear correlation between ribosome abundance and
doubling rate under nutrient-modulated growth (Fig. 1A, gray line) is a
consequence of the catalytic role that the ribosome plays in protein
synthesis26; the intercept R0 corresponds to a fraction of inactive
ribosomes awaiting charged tRNA27 (Fig. 1B, pale green) and the
remainder corresponds to an active fraction ΔR that is proportional to
the rate of protein synthesis15,24 (Fig. 1B, dark green). In Fig. 1B, ΔR*
corresponds to the active ribosome fraction in the 40k strain. The
Lenski adaptationprotocol results in amonotone increase in the active
ribosome fraction (Fig. 1B, center panel) that is commensuratewith the
increase in the growth rate of the adapted strain.

There are many ways to modulate the doubling rate of E. coli. A
particularly useful method is translation inhibition using sublethal
concentrations of a ribosome-targeting antibiotic12. When grown in
sublethal concentrations of antibiotic, the protein synthesis flux is
decreased as ribosomes are inactivated24. In response, ppGpp signal-
ing increases the synthesis of new ribosomes to compensate for the
translation inhibition28, resulting in a negative linear correlation
between the ribosome abundance and the doubling rate (Fig. 1A),
irrespective of the chemical details of the antibiotic15,24,25. In contrast to
nutrient-modulated growth, translation limitation reveals a clear dif-
ference between the ancestral strain (Fig. 1A, black circles) and the
40k-adapted strain (Fig. 1A, purple stars): the vertical intercept
increases substantially after adaptation, with no obvious change in
the slope.

The ribosomal proteins occupy a large fraction of the proteome
under most growth conditions16,17. Translation-limitation increases the
ribosome-affiliated proteinmass fraction, and as a consequence of the
proteome partitioning constraints, necessarily decreases the protein
mass fraction of non-ribosomal proteins (including metabolic
enzymes)12. We can then use the ribosome abundance at maximum
inhibition to infer the abundance of non-ribosomal proteins under
nominal (i.e., antibiotic-free) growth conditions (Fig. 1B, orange). This
growth-dependent non-ribosomal protein fraction is composed pri-
marily of metabolic enzymes, and so we denote it by ΔM (and ΔM* in
the 40k-adapted strain). What is remarkable about the translation-
limited response of the adapted strain is that the active metabolic
protein fraction increaseswith an increase in the antibiotic-free growth
rate (ΔM*>ΔM). This is a clear difference between modulation of the
nominal growth rate via nutrient quality as compared to modulation
via adaptation: in a given strain, the maximum ribosome abundance
under translation limitation is largely growthmedium independent15,24

(see also Fig. S1C), and so the active metabolic fraction decreases with
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increasing nutrient-modulated growth rate. Below (cf. Fig. 4) we con-
tend that theorange fraction inFig. 1B corresponds to theproteinmass
fraction of active (flux-carrying) metabolic enzymes ΔM, and that the
remainder of the proteome is occupied by the inactive fraction of
metabolic enzymes M0 (Fig. 1B, pale orange).

In the ancestral strain (and other laboratory wildtype strains), the
slope of the linear growth rate dependence in the ribosomal protein
mass fraction under translation limitation correlates with the nutrient
quality of the medium15. The increase in the active metabolic protein
fraction and the negligible change in the slope of the translation-
limited response of the ribosome-affiliated protein fraction in the 40k-
adapted strain both suggest that, at a coarse-grained level, adaptation
does not result in glucose being perceived as a better nutrient source
(in the same way that, for example, glucose is perceived as a better
nutrient source than glycerol in the ancestral strain). To determine the
origin of the observed increase in the active metabolic fraction, we
next looked directly at the translation-limited abundances of the
metabolic proteins.

Increase in the active fraction of the proteome sectors
Previous work established a coarse-grained partitioning of the pro-
teome based upon response to growth limitations16. The partitioning
consists of six sectors that exhibit increased protein fraction under
translation limitation (R), catabolic limitation (C), anabolic limitation
(A), both catabolic and anabolic limitation (S), a growth rate inde-
pendent sector (O), and the growth rate-dependent, but limitation
independent, sector (U). In addition to a shared physiological
response, proteins in each sector share common metabolic
roles (Fig. 2A).

For the ancestral and 40k-adapted strains under translation-
limited growth, all sectors of the proteome exhibit a linear growth rate
dependence (Fig. 1A and Fig. 2B–F), that serves to partition each sector
into active and inactive fractions (for example, denotedbyΔA* andA0*
in Fig. 2B). In the adapted strain we observe a change in themagnitude
of the active and inactive fractions, though we observe no obvious
change in the slope of the linear behavior; a linear-regression con-
strained to have the same slope between the ancestral and 40k data is

Fig. 1 | Quantifying the effect of adaptation on ribosome abundance using
translation limitation. AThe gray line denotes the change in ribosome abundance
under changes in nutrient quality; the ancestral and 40k strains exhibit the same
slope and intercept (Fig. S2A, Supplementary Data 1). Using chloramphenicol to
inhibit translation, the ribosome-affiliated protein mass fraction increases linearly
with decreasing doubling rate in both the ancestral strain (REL606, black) and the
40k-adapted strain (10938, purple). The bacteria are grown in a glucose-minimal
medium (outlined symbols correspond to antibiotic-free growth). There is a

substantial increase in the intercept of the linear fit for the adapted strain and no
appreciable change in slope (Supplementary Note 1). B The ribosome abundance
serves to partition the proteome into four coarse-grained sectors: active (ΔR,
green) and inactive (R0, pale green) ribosomal proteins, and active (ΔM, orange)
and inactive (M0, pale orange) non-ribosomal (e.g.,metabolic) proteins. Adaptation
appears to increase both active sectors (ΔR and ΔM), with a commensurate
decrease in the inactivemetabolic protein fraction (M0). Here, and throughout, the
star (*) denotes the 40k-adapted strain.
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nearly as descriptive as an unconstrained linear-regression model
(constrained average r2 = 0.82 as compared to the unconstrained
average r2 = 0.83; see Supplementary Note 1).

We observed in the 40k strain that changes in the translation-
limited behavior of the non-ribosomal proteome is sector-specific.
There is a decrease in the inactive fraction of both the A- and S-sectors
after adaptation (Fig. 2B, C). There is a decrease in the abundance of
the growth rate-independent O-sector in the adapted strain (Fig. 2D).
The C- and U sectors lie upon the same translation-limitation line, with
no change in the inactive fraction and a slight increase in the active
fraction after adaptation (Fig. 2E, F) (Supplementary Data 1). The
combined behavior of the non-ribosomal protein sectors is consistent
with the two-sector partitioning shown in Fig. 1B insofar as the active
fraction of each sector increases after adaptation (Fig. S3).

Individual proteins recapitulate sector behavior
Wecheckedwhether the observed variation in sector behavior held for
the behavior of individual proteins within each sector. The expressed
proteins vary in abundance over several orders of magnitude, so as a

proxy for the slope of the translation-limited response, Fig. 3A plots
the relative change in the protein abundance at 1.3 dbl/h versus the
relative change in abundance at the zero-growth intercept. For all
sectors, the data is clustered along the diagonal (Fig. 3A, filled circles
denote the average) consistent with sector response (Fig. 3A, crosses),
and indicative of little change in slope for the translation-limited
response of individual proteins between the ancestral and adapted
strains. Those proteins lying in the upper-right quadrant have a linear
response shifted upward after adaptation (similar to the R-protein
sector data shown in Fig. 1A); whereas proteins lying in the lower-left
quadrant have a linear response shifted downward after adaptation
(similar to the A- and S-protein sector data shown in Fig. 2B, C) indi-
cating a reduced inactive protein fraction in the 40k strain.

The decrease in the O-sector is primarily due to a regulated
decrease in the abundance of the porin OmpF29. Figure 3B provides a
list of the absolute changes in the inactive protein fraction between the
ancestral and 40k strains of individual genes in the S- and A-sectors, as
inferred from the intercepts of the linear, fits shown in Fig. 2B, C. The
genes are selected to provide aminimal set accounting for at least 50%

Fig. 2 | Quantifying the effect of adaptation on proteome partitioning using
translation limitation. A Partitioning of the proteome based upon physiological
response to growth inhibition results in six sectors, with shared function among
proteins in each sector4. Under translation-limited growth, the protein mass frac-
tion of each sector exhibits a linear growth rate dependence, with an intercept
corresponding to the inactive protein fraction (e.g., A0* in B), and the remainder
corresponding to an active protein fraction (e.g., ΔA* in B). The data across all
sectors is well-fit by assuming no change in slope between the ancestral (black) and
40k strain (purple) (Supplementary Note 1). B, C) In the A- and S-sectors, we

observe a decrease in the inactive protein fraction (i.e., a decrease in the intercept)
after adaptation. D The growth rate independent O-sector exhibits decreased
expression levels in the adapted strain. E, F There is no change in the inactive
protein fraction for the C and U sectors, although both exhibit a slight increase in
the active fraction after adaptation. The black lines are best-fit to the ancestral data;
the purple dashed lines are the best-fit across the 40k strain assuming no change in
slope (such that the intercepts across all six sectors sum to 1). The sum of active
fractions in panels B-F are equal to their respective active fraction (ΔM or ΔM*)
shown in orange in Fig. 1B (see Fig. S3).
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of the observed change in the inactive fraction of each sector. The
changes in the S-sector proteins are confined to a shortlist, including
the glycolytic enzyme PflB. By contrast, the A-sector proteins comprise
small changes distributed among many genes. It is important to note
that after 40k generations, almost noneof these genes carrymutations
in their coding region or their promoters—the single exception is IlvA
which carries a single-nucleotide polymorphism at amino acid 124
(Phe→Cys)2. This suggests that the observed decreases in the inactive
enzyme fractions for these proteins are not of proximal genetic origin,
but rather are the result of distal genetic changes conveyed through
regulation and biochemistry. We sought a potential molecular
mechanism for generating the observed decrease in the inactive
enzyme abundance that does not include direct mutation of the
enzymes themselves.

More than a third of the S- and A-sector proteins responsible for
the principal change in the inactive enzyme abundance are clustered in
the metabolic map near the highly-abundant, high-flux-carrying pro-
teinpyruvate kinase F (pykF; red cross, Fig. 3C)which is deleted early in

the adaptation2,8. Pyruvate kinase F is the target of a flux-sensing
mechanism whereby the concentration of fructose bisphosphate
(F1,6BP) correlateswith the flux through upper glycolysis and activates
PykF in response to an increase in flux9,30 (Fig. 3C, green line). Between
the metabolite F1,6BP and its putative target PykF are reversible
reactions, with GapA, Pgk, and GpmA biased to favor the substrate23

(Fig. 3C, bold). It is this bias that makes the concentration of F1,6BP a
high-fidelity reporter of glycolytic flux23, and we suggest that it is
precisely this same strong bias that produces the observed decrease in
the inactive enzyme abundance of the upstream enzymes upon pykF
deletion.

Mechanism for proteome remodeling after adaptation
The translation-limited behavior of the proteome sectors can be
rationalized by considering the behavior of an irreversible enzyme. For
a simple enzymatic reaction,with the substrate in excess of the enzyme
(that is, the enzyme-limited regime), the rate of product formation is
given by the familiar Michaelis–Menten expression (Fig. 4A). There is a

Fig. 3 | Protein expression changes adjacent to the PykF deletion. A The relative
change in the nominal protein fraction (normalized to growth at 1.3 dbl/h) is
compared to the relative change in abundance extrapolated to zero-growth. Those
points lying on the diagonal exhibit no change in slope upon adaptation. Large
circles correspond to the average over each sector, along with one-standard-
deviation ellipses. The crosses correspond to the sector fits shown in Fig. 2. Low
abundance proteins (<400 ppm)were not included in the figure, and represent less
than 15%of the detected protein fraction.BAminimal set of genes that explain 50%
of the observed change in the inactive protein fraction of the S- and A-sector
proteins. The numbers correspond to the absolute change in translation-limited

interceptproteinmass fractionbetween the ancestral and 40k strains (expressedas
parts-per-million). Plots of the individual proteins appear in Fig. S4. C Enzymes
involved in carbon metabolism that exhibit the largest change in inactive protein
fraction (bold in B) are found immediately up- and down-stream of the pyruvate
kinase F deletion (PykF, red cross). The second downward arrow adjacent to the
PykF deletion corresponds to the reaction catalyzed by PykA, a weak isozyme of
PykF that likewise converts PEP to pyruvate. PykF is the target of a flux-sensing
mechanism conveyed by small-molecule regulation that uses the concentration of
F1,6BP as a proxy for the flux through upper glycolysis14,15 (green line). The meta-
bolic map was redrawn from the KEGG database43.
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dynamic equilibrium between the substrate-bound active complex Ea
and the (inactive) free-enzyme Ef, but the rate of product formation is
strictly proportional to the active complex concentration (Fig. 4B).

Previous work has quantified subtle changes in protein
expression in the adapted strains by using 2D gels31 or ribosome
density32. Our approach differs in that coupling proteomics with
translation limitation allows us to estimate what fraction of the
expressed protein is actively flux-carrying. For many reactions,
the flux is proportional to the doubling rate33: cells growing twice
as quickly must convert metabolic intermediates twice as quickly.
In E. coli, translation limitation provides a method for modulating
the doubling rate (and therefore the reaction fluxes) by mod-
ulating the protein synthesis rate without changing the base
growth medium and without affecting the catalytic constants of
the metabolic enzymes16. Consequently, as the doubling rate is
decreased via translation inhibition, the abundance of individual
enzymes decreases in linear proportion by directly attenuating
the abundance of active (flux-carrying) enzyme Ea (Fig. 4C). The
intercept of the translation-limited response corresponds to the
inactive free-enzyme abundance Ef, and the slope is proportional
to the reciprocal of the catalytic constant kcat.

The translation-limited response of a given proteome sector is a
weighted average of the enzymes thatmake up that sector34. After 40k
generations of adaptation, the doubling rate is increased, necessitating
increased flux through each sector; three scenarios are shown sche-
matically in the lower panels of Fig. 4, illustrating how a flux increase
could be achieved. For the catabolic C- and U-sector proteins, the
translation-limited behavior is consistent with an increase in flux
mediated primarily by increasing the total protein abundance Etot at
the drug-free growth rate (Fig. 4D, compare the black circle to the
purple star). If the inactive free-enzyme abundance (intercept) and the
catalytic constant (slope) remain unchanged, an increase in the

total enzyme abundance directly increases the active flux-carrying
fraction Ea.

By contrast, the biosynthetic and glycolytic S- and A-sector pro-
teins exhibit translation-limited behavior that is consistent with a
decrease in the inactive free-enzyme abundance Ef (intercept) without
an apparent change in the total enzyme abundance at the drug-free
growth rate Etot or a change in the catalytic constant (slope) (Fig. 4E).
Strong selectivepressuredirected toward increasing theflux through a
single reaction can result in mutations that improve enzyme
performance35,36, which would appear as a reduced slope (increase in
kcat) when plotting the enzyme levels against the growth rate (Fig. 4F),
yet this behavior was not observed in any of the coarse-grained
sectors.

For the C/U-sector response, a linear increase in the total enzyme
abundance with growth rate can be generated by a regulatory
mechanism that forces a positive correlation between the substrate
concentration and the total enzyme concentration, as is typical of
substrate-driven feed-forward activation12,22,37; either at the level of
individual genes or via a master regulator9.

A regulatory mechanism that maintains the linear growth rate
dependence in both the ancestral and adapted strains, but with a
decrease in the inactive free-enzyme abundance, as exhibited by the A-
and S-sector proteins (Fig. 4E), ismore difficult to imagine. Based upon
the changes in the individual inactive enzyme fractions for enzymes
directly upstream of the PykF deletion, we wondered whether the
abrogation of the flux-sensing mechanism (Fig. 3C, green line) could
explain the observed adaptation in the A- and S-sector proteins.
Deletion of PykF could yield increased substrate saturation of
upstream enzymes (and thereby decrease the inactive free-enzyme
fractions) because these enzymes catalyze thermodynamically unfa-
vorable reactions23,38. PykF generates a forward driving force for these
reactions that is controlled by upper glycolytic flux via the

Fig. 4 | Linearity in the proteome fractions under translation limitation. A For
an irreversible enzymatic reaction, the rate of product formation is proportional to
the concentration of enzyme-engaged inactive complex with the substrate, Ea. If
the substrate concentration [S] far exceeds the total concentration of enzyme
Etot = Ea + Ef, then the active complex concentration Ea takes the familiar
Michaelis–Menten form ref. 34. B Distinguishing between the active complex Ea
and the inactive, free-enzyme Ef provides a rationalization for the proteomic data.
C For many enzymatic reactions, rate of product formation is proportional to the
doubling rate20. InE. coli, inhibiting translationattenuates thedoubling ratewithout

affecting the catalytic constant kcat3,4. Consequently, the translation-limited
response of an individual enzyme provides an estimate of the active flux-carrying
enzyme abundance Ea, the inactive free-enzyme abundance Ef (intercept), and the
catalytic constant kcat (reciprocal slope). D Adaptation in the C and U sectors is
consistent with an increase in the total enzyme abundance Etot. E In contrast,
adaptation in the A- and S-sectors is consistent with a decrease in the inactive free-
enzyme abundance Ef. FAt the coarse-grained level, we did not observe any change
in the slope of the translation-limited response, which would be consistent with an
increased catalytic efficiency kcat.
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concentration of the metabolite F1,6BP9. PykF deletion decouples this
driving force-flux relationship, possibly increasing the saturation of
the intermediate enzymes. We constructed a toy model to assess
whether the deletion of a flux-sensingmechanism could reproduce the
decrease in the inactive enzyme fraction (but with negligible change in
the linearity or the slope) as exhibited by the A- and S-sector proteins
(Fig. 2E, F).

An overview of the model network is shown in Fig. 5A. The target
of the flux-sensing metabolite (with concentration [S]) is the enzyme
Eirrev catalyzing the irreversible consuming reaction with flux νout
(SupplementaryNote 2). The intervening reactions between the source
and target of the flux sensor are represented by a single reversible
reaction catalyzed by the enzyme Erev. The strong correlation between
the in-flux νin and the substrate concentration [S] requires a strong bias
in favor of the substrate in the reversible reaction, Keq << 123, and is a
necessary condition for the substrate to act as a flux-sensor. We posit
that the abundance of the enzyme catalyzing the reversible reaction,
Erev

tot, is mediated by a simple regulatorymotif consisting of activation
by the substrate [S] and feedback inhibition by the product [P].

For sufficiently high in-flux νin, themodel operates in the enzyme-
limited regime, and theMichaelis–Menten forms for the reversible and
irreversible kinetics are appropriate39. In this regime, the total abun-
dance of the enzyme catalyzing the reversible consumption of sub-
strate, Erev

tot , is linearly correlated with the in-flux νin (Fig. 5B, black).
Furthermore, the removal of the flux-sensitivity in the irreversible
consumption reaction decreases the inactive enzyme abundance
(intercept) without affecting the slope of the line (Fig. 5B, purple),
consistent with the observed behavior in the A- and S-sector proteins
after adaptation (Fig. 2B, C). In all, the simple model suggests that
abrogation of flux-sensing mechanisms could be generically beneficial
during adaptation as a means of partly relieving proteome allocation
constraints by increasing enzyme efficiency through substrate
saturation.

Discussion
The concentration of total protein in E. coli is nearly growth rate-
independent13,14, and this imposes strong anti-correlations among
highly-expressed proteins12. In response to translation limitation, for

example, the ribosome-affiliated protein fraction increases linearly
with decreasing growth rate to occupy 35–45% of the proteome
(Fig. 1A), necessarily decreasing the fraction of non-ribosomal pro-
teins. We have taken advantage of this anti-correlation by using
translation limitation as a means of globally decreasing active flux-
carrying metabolic enzyme abundance without perturbing the nutri-
ent environment.

For strains adapted to growth in glucose over 40k generations2,
we find that the growth rate increases monotonically with generation
number. To produce an increase in the growth rate during adaptation,
weobserve that the activeflux-carrying fractions of ribosome-affiliated
and metabolic proteins increase (Fig. 1B). The constraint that the
protein concentration remains unchanged necessitates that proteome
space is made available to accommodate the increase in these active
flux-carrying fractions by decreasing the inactive enzyme fraction.

By considering the translation-limited response of hundreds of
expressed proteins, we find that part of that decrease in the inactive
enzyme fraction is attributed to enzymes directly upstream of the
pyruvate kinase F (PykF) deletion that occurs early in the adaptation of
this lineage. PykF is activated by the upstream flux-sensing metabolite
F1,6BP9. Strong backwardbias in the intervening reversible reactions is
a thermodynamic prerequisite for the flux-sensing ability of F1,6BP23,
and so deletion of PykF could decrease the inactive enzyme fraction of
the intervening enzymes by increasing substrate saturation.

We created a toy model to assess the plausibility of this scenario
(Fig. 5A), and we find that, indeed, the translation-limited response
observed in the glycolytic enzymes can be reproduced (Fig. 5B) pro-
vided that the transcription of the reversible enzyme is activated by
substrate and repressed by product. For the F1,6BP/PykF system, that
regulation could bemediated by the transcriptional regulators Cra and
cAMP-Crp. The Cra protein represses the expression of GapA, Pgk,
GpmA, and Eno40, and is itself negatively correlated with F1,6BP
concentration9; consequently, F1,6BP effectively acts as an activator
for the expression of the reversible enzymes upstream of PykF and
F1,6BP levels are increased upon PykF deletion41. The global regulator
cAMP-Crp activates the expression of GapA and Pgk40, and although
Crp is not directly responsive to PEP, PykF deletion leads to a high
conversion flux of PEP to oxaloacetate (OAA)41, which is one of several

 
 

Fig. 5 | Removal of a flux sensor can reduce the inactive free-enzyme pool. A A
toy model that contains the essential features of the F1,6BP/PykF flux-sensor14,33.
The intervening reversible reaction (catalyzedby the enzyme Erev) is strongly biased
in favor of the substrate—that is, in the absence of in-flux νin, the equilibrium
concentration of substrate S* far exceeds the equilibrium concentration of product
P*. We assume that the total enzyme abundance catalyzing this reversible reaction
Erev
tot is positively regulated by substrate and negatively regulated by product. The

flux-sensing metabolite activates one of the enzymes responsible for the out-flux
νout (dashed arrow), and this flux-sensing mechanism is removed in the 40k strain
(purple cross). B The total enzyme abundance for the reversible reaction Erev

tot

exhibits a linear increase with the in-flux νin (black). Deletion of the flux-sensor
results in the same linear response, but with decreased intercept (purple), con-
sistent with the observed behavior of the A- and S-sector proteins (Fig. 2B, C).
Details of the model are included in Supplementary Note 2.
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ketoacids that inhibit cAMP synthesis via adenylate cyclase10. Conse-
quently, a potential source of transcriptional regulation by product
feedback inhibition would be OAA inhibiting cAMP-Crp, thereby
reducing the transcription of GapA and Pgk. If antagonistic substrate
activation/product repression motifs are identified in other putative
flux-sensing systems, then abrogation of flux-sensors could provide a
generic adaptation response that creates space in the proteome by
increasing enzyme saturation and flux without increasing enzyme
concentration.

For growth inglucose, the PykFdeletioncanbe rationalizedby the
proteome remodeling that occurs in its absence, although it is less
clear whether this deletion has any direct benefit when the strains are
grown on other substrates42. The diminished function (or occasionally
deletion) of pyruvate kinase F (pykF) is commonly observed in the
adaptation of E. coli to growth in glucoseminimalmedia2,4,6, and in the
directed evolution of isobutyrate43 and L-serine44 producing strains.
Consistent with our observed decrease in the non-flux-carrying inter-
cepts of the A- and S-sector proteins, deletion of pykF does increase
glycolytic substrates (notably glucose-6-phosphate and fructose-6-
phosphate), as well as reducing cellular pyruvate levels41. Because
pyruvate is one of the primary reporters of carbon glycolytic flux in E.
coli10,30, we expect the loss of pykF in the Lenski strains to result in
impaired carbon catabolite repression.

The translation-limited proteomic response is a tool with appli-
cation outside of the coarse-grained physiological characterization we
have done. Applied to individual enzymes, the interpretation outlined
in the upper panels of Fig. 4 provides a framework for estimating in
vivo enzymatic activity. Taking the ratio of the flux to the total enzyme
concentration, the enzyme activity is kcat/(1 + Ef /Ea), where all three
parameters are fully determined by the translation-limited response.
At present, the in vivo activity of individual metabolic enzymes is
estimated using isotope tracing for the flux and quantitative pro-
teomics for protein abundance. If reaction flux and enzyme activity
inferred from the translation-limited behavior of individual proteins is
validated by metabolic measurements, then quantitative proteomics
could be used to provide a convenient, all-in-one complementary
methodology to isotope tracing.

Framing adaptation dynamics in terms of a coarse-grained physio-
logical model can be applied more generally to other microorganisms,
including engineered minimal genome strains45. In the Lenski-adapted
strains, the translation-limited intercepts exhibit a relative change with a
generation number that is about 100x more rapid than corresponding
changes in the doubling rate. As a result, significant remodeling of the
proteomecanbeobservedona timescaleof severalweeksof adaptation,
rather than several decades, allowing for comparatively-convenient
exploration of a variety of laboratory evolution scenarios.

Our focus has been on the physiological consequences of adap-
tation manifest in exponential growth. The Lenski strains spend about
seven hours a day in that state, the remaining time is spent transi-
tioning in and out of stationary phase. A complete picture of physio-
logical adaptation to this growth regimen would necessarily include
these other growth states. Nevertheless, the observed changes in
proteome partitioning can be largely understood in terms of adjusting
metabolic flux through changes in protein expression following dele-
tion events. Further, these proteomic changes could not be deduced
from the available genome sequences during adaptation, highlighting
the importance of the expressed proteome as an energetically costly
carrier of metabolic flux.

Methods
Growth of bacterial culture
Bacterial strains. All strains used in this study come from the Ara-1
lineage of the Lenski long-term evolution experiment2. The ancestral
strain is REL606; the adapted strains are pure-strains isolated after
several thousand generations of growth: 2k (REL1164A), 10k

(REL4536A), and 40k (REL10938). These strains have been fully
sequenced2.

Growth medium. All growth media used in this study were MOPS-
buffered based upon Neidhardt46, and obtained commercially
(Teknova, M2101). Carbon sources used were glycerol (0.2% v/v) and
glucose (0.2% w/v). For 15N-labeledmedia, 15NH4Cl was used in place of
14NH4Cl (Teknova, M2120 with 20mM 15NH4Cl (Sigma)). For nutrient-
modulated growth (Fig. S2A), theminimalmediumwas enriched using
0.2% (w/v) casamino acids (Fisher), or nucleotides and amino acids
(Teknova, M2103, and M2104) as indicated in Supplemental Data 1
(denoted by CAA [casamino acids] and RDM [rich defined medium],
respectively). Translation-limited growth was achieved by adding
chloramphenicol to the growth medium at sublethal concentrations
(0–12μM) as indicated in Supplemental Data 1. Susceptibility to
chloramphenicol is inversely related to the antibiotic-free growth
rate47, making the 40k strain more susceptible than the ancestral. The
maximum concentration of chloramphenicol was chosen so that the
growth rate was between 0.1–0.2 doublings/hour.

Growth measurements. All batch culture growth was performed in a
37 °Cwater bath shaker shaking at 250 rpm. The culture volumewas at
most 5ml in 25mm× 150mm test tubes. Each growth experiment was
carried out in three steps: a seed culture in LB broth, pre-culture, and
experimental culture in an identicalminimalmedium. For seed culture,
one colony froma fresh LB agar plate was inoculated into liquid LB and
cultured at 37 °C with shaking. After 4–5 hrs, cells were centrifuged
(17,000 × g) and washed once with an appropriate minimal medium.
Cells were then diluted into theminimal medium and cultured in 37 °C
water bath shaker overnight (pre-culture). The overnight pre-culture
was allowed to grow for at least three doublings. Cells from the over-
night pre-culture were then diluted to OD600 = 0.005–0.025 in iden-
tical pre-warmed minimal medium and cultured at 37 °C in a water
bath shaker (experimental culture). 150μl cell culture was collected in
a Hellma microvolume 10mm quartz cuvette (Hellma, Mullheim) for
OD600 measurement using a Thermo BioMate3S Spectrophotometer
around every half doubling of growth. 5–7 OD600 data points within
the range of ∼0.05 and ∼0.5 were used for calculating the growth rate.

Protein and RNA quantification
Total protein quantitation. The Biuret method was used for total
protein quantitation48. Briefly, 1.8ml of exponentially growing cell
culture at around OD600 = 0.5 was collected by centrifugation
(17,000 × g). The cell pellet was washed with phosphate-buffered sal-
ine, re-suspended in 0.2ml phosphate-buffered saline, then stored at
4 °C overnight. The cell pellet was brought up to room temperature.
0.1ml of 3M NaOH was added to the cell pellet and samples were
incubated at 100 °C heat block for 5min to hydrolyze proteins. Sam-
ples were then cooled to room temperature. The Biuret reactions are
carried out by adding 0.1ml 1.6% CuSO4 to samples with thorough
mixing, and the color is allowed to develop over 5mins. Samples were
centrifuged for 3min at 17,000× g to clear the solution, and the
absorbance at 555 nmwasmeasured by spectrophotometer. The same
Biuret reaction was applied to a series of BSA (bovine serum albumin)
standards to generate a standard curve.

Total RNAquantitation. The RNAquantitationmethod is based on the
method used by Benthin et al.49, with modifications. Briefly, 1.5ml of
cell culture at around OD600 = 0.5 during the exponential phase was
collected by centrifugation (17,000× g). The cell pellet was immedi-
ately washed twice with 0.6ml cold 0.1M HClO4, and stored at 4 °C
overnight. The next day, the pellets were brought to room tempera-
ture, then digested with 0.3ml 0.3M KOH for 60min at 37 °C with
constant shaking. The cell extracts were neutralized with 0.1ml 3M
HClO4 and centrifuged at 17,000 × g for 5min. The supernatant was
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collected, and the precipitate was washed twice with 0.55ml 0.5M
HClO4. A final volumeof 1.5ml of supernatant was then centrifuged for
10mins at 17,000× g to clear the solution, and the supernatant
absorbance at 260nmwas measured by spectrophotometer. The RNA
concentration (μg/ml/OD600) was calculated by OD260 × 31/OD600,
wherewehave used the conversion factor of 31 between theOD260 and
RNA concentration, based upon the molar extinction coefficient of
10.5mmole−1 cm−1 and the average molecular weight of an E. coli RNA
nucleotide residue of 324.

15N-labeled proteomic mass spectrometry
Sample preparation. 1.8ml of cell culture at OD600 = 0.4∼0.5 during
the exponential phase of the experimental culture was collected cen-
trifugation (17,000 × g). The cell pellet was re-suspended in 0.2ml
water and fast-frozen on dry ice. Samples were assigned random IDs to
preclude any unintended bias in the analysis.

Aliquots of the 15N reference cell sample (or labeled cell sample)
were mixed with each of the 14N cell samples (or non-labeled cell sam-
ples). Each aliquot of the 15N and 14N samples contained 100μg of pro-
tein. For each growth condition and strain, the 15N reference cell sample
was made from a 1:1 mixture of protein extracted from the ancestral
strain (REL606) grown in glucose minimal medium and from the 40k
strain (REL10938) grown inglucoseminimalmediumwith themaximum
concentration of chloramphenicol (12μM). Themixed reference is used
to avoid bias in the composition of proteins in the reference cell sample
by a particular growth condition and background mutation.

The sample preparation prior to mass spectrometry was as
described in detail in Hui et al.16: Proteins were precipitated by adding
100% (w/v) trichloroacetic acid (TCA) to 25% final concentration.
Samples were placed on ice for a minimum of 1 h. The protein pre-
cipitates were pelleted by centrifugation (16,000× g) for 10min at
4 °C. The supernatant was removed, and the pellets were washed with
cold acetone. The pellets were dried in a Speed-Vac concentrator.

The dry pellets were dissolved in 80μl of 100mM NH4HCO3 with
5% acetonitrile (ACN). 8μl of 50mMdithiothreitol (DTT) was added to
reduce the disulfide bonds before the samples were incubated at 65 °C
for 10min. Cysteine residues were modified by the addition of 8μl of
100mM iodoacetamide (IAA) followed by incubation at 30 °C for
30min in the dark. The proteolytic digestion was carried out by the
addition of 8μl of 0.1μg/μl trypsin (Sigma-Aldrich, St. Louis, MO) with
incubation overnight at 37 °C.

The peptide solutions were cleaned by using the PepClean
C18 spin columns (Pierce, Rockford, IL). After drying in a Speed-Vac
concentrator, the peptides were dissolved into 10μl sample buffer (5%
ACN and 0.1% formic acid).

Mass spectrometry. The peptide samples were analyzed on an AB
SCIEX TripleTOF 5600 system (AB SCIEX, Framingham, MA) coupled
to an Eksigent NanoLC Ultra system (Eksigent, Dublin, CA). The sam-
ples (2μl) were injected using an autosampler. Samples were loaded
onto a Nano cHiPLC Trap column 200 lm×0.5mm ChromXP C18-CL
3 lm 120Å (Eksigent) at a flow rate of 2μl/min for 10min. The peptides
were separated on a Nano cHiPLC column 75 μm× 15 cm ChromXP
C18-CL 3 lm 120Å (Eksigent) using a 120-min linear gradient of 5–35%
ACN in 0.1% formic acid at a flow rate of 300 nl/min.MS1 settings:mass
range of m/z 400–1250 and accumulation time 0.5 s. MS2 settings:
mass range of m/z 100–1800, accumulation time 0.05 s, high sensi-
tivity mode, charge state 2–5, selecting anything over 100 cps, max-
imal number of candidate/cycle 50, and excluding former targets for
12 s after each occurrence.

Protein identification. The raw mass spectrometry data files gener-
ated by the AB SCIEX TripleTOF 5600 system were converted to
Mascot generic format (mgf) files, whichwere submitted to theMascot
database searching engine (Matrix Sciences, London, UK) against the

E. coli SwissProt database to identify proteins. The following para-
meters were used in the Mascot searches: maximum of two missed
trypsin cleavage, fixed carbamidomethyl modification, variable oxi-
dation modification, peptide tolerance ±0.1 Da, MS/MS tolerance
±0.1Da, and 1+, 2+, and 3+ peptide charge. All peptides with scores less
than the identity threshold (p =0.05) were discarded.

Relative protein quantitation. The raw mass spectrometry data files
were converted to the.mzML and.mgf formats using conversion tools
provided by AB Sciex. The.mgf files were used to identify sequencing
events against the Mascot database. Spectra for peptides from the
Mascot search were quantified using least-squares Fourier transform
convolution implemented in-house50. Data were extracted for each
peak using a retention time and m/z window enclosing the envelope
for both the light and heavy peaks. The data are summed over the
retention time, and the light and heavy peaks amplitudes are obtained
from a fit to the entire isotope distribution, yielding the relative
intensity of the light and heavy species. The ratio of the non-labeled to
labeled peaks was obtained for each peptide in each sample.

The relative protein quantitation data for each protein in each
sample mixture was then obtained as a ratio by taking the median of
the ratios of its peptides. No ratio (i.e., no data) was obtained if there
was only one peptide for the protein. The uncertainty for each ratio
was defined as the two quartiles associated with the median. To filter
out data with poor quality, the ratio was removed for the protein in
that sample if at least oneof its quartiles layoutsideof the 50% rangeof
its median. Ratios were removed for a protein in all the sample mix-
tures if at least one of the ratios has one of its quartiles lying outside of
the 100% range of the median. Because the ratios are all defined rela-
tive to the same reference sample, they represent the relative change
of the expression of the protein across all the non-labeled cell samples
and are referred to as relative expression data.

Absolute protein quantitation. The spectral counting data used for
absolute protein quantitation were extracted from Mascot search
results. For our 15N and 14N mixture samples, only the 14N spectra were
counted. The absolute abundance of a protein was calculated by
dividing the total number of spectra of all peptides for that protein by
the total number of 14N spectra in the sample. These peptide counts are
recorded in Supplemental Data 1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw mass spectral data is deposited to massIVE, with the accession
code MSV000087313 or available through the Proteomexchange
(http://www.proteomexchange.org/) via the accession code
PXD025666. All other data are available in the Supplementary
Information.
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