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Ruiz3

1Department of Economics, University of California, Riverside
2Department of Statistics, ITAM (Mexico) and CREATES, Aarhus

University (Denmark)
3Department of Statistics, Universidad Carlos III de Madrid (Spain)

February 23, 2024

Abstract

We propose the construction of conditional growth densities under stressed factor
scenarios to assess the level of exposure of an economy to small probability but
potentially catastrophic economic and/or financial scenarios, which can be either
domestic or international. The choice of severe yet plausible stress scenarios is
based on the joint probability distribution of the underlying factors driving growth,
which are extracted with a multi-level Dynamic Factor Model (DFM) from a wide
set of domestic/worldwide and/or macroeconomic/financial variables. All together,
we provide a risk management tool that allows for a complete visualization of the
dynamics of the growth densities under average scenarios and extreme scenarios.
We calculate Growth-in-Stress (GiS) measures, defined as the 5% quantile of the
stressed growth densities, and show that GiS is a useful and complementary tool
to Growth-at-Risk (GaR) when policymakers wish to carry out a multi-dimensional
scenario analysis. The unprecedented economic shock brought by the COVID19
pandemic provides a natural environment to assess the vulnerability of US growth
with the proposed methodology.
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factors
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1 Introduction

In hindsight, the COVID-19 induced decline in GDP growth across the world economies

had at least three common features. First, the decline was almost synchronous and world-

wide; second, the magnitude of the decline was extraordinary by historical standards; and

third, it was unpredictable. Given this historical experience and its lack of predictabil-

ity, it seems natural to ask econometricians for the development of new tools to recreate

extreme scenarios and provide warning signals of what to expect under the possibility

of unexpected extreme economic and financial shocks. Properly speaking, we cannot

characterize this exercise as forecasting but we can recreate a virtual future by canvass-

ing extreme probabilistic scenarios that will teach us how resilient the present economic

systems are.

This paper contributes to the important literature on measuring growth vulnerability

by proposing a methodology to construct stressful economic scenarios and to analyze the

response of economic growth when the economy is under stress. We construct stressed

growth densities as a complementary tool to the popular average growth densities pro-

posed by Adrian et al. (2019) to measure growth vulnerability. In doing so, policymakers

will be able to evaluate the trade-off between building greater resilience in normal times

and reduce downside risk in highly stressed periods; see Adrian and Liang (2018) for a

discussion of this trade-off.1

The proposed methodology to obtain stressed growth densities builds on the combina-

tion of three different procedures already available in the literature. First, we extract the

latent factors driving growth by fitting a multi-level Dynamic Factor Model (DFM), pro-

posed by Rodŕıguez-Caballero and Caporin (2019), to a vast array of worldwide/domestic

and/or macroeconomic/financial variables, which are potential predictors of the distribu-

tion of growth for a particular country or area. The factor structure of the multi-level

DFM allows for overlapping blocks of factors with factors common to all variables in the

system and specific factors that can be particular to one or more blocks of variables.

Second, similarly to Adrian et al. (2019), we proceed to estimate factor-augmented

quantile regressions using the estimated factors as regressors. Then, we use the estimated

1A brief review of the literature on growth vulnerability and the need of developing new instruments
to measure economic risk in adverse environments can be found in the Online Appendix.
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quantiles together with a smoothing approach to obtain one-step-ahead (and multi-step)

forecasts of the conditional probability density of GDP growth. These forecasts deliver

any quantile of interest under normal circumstances, that is, when the underlying factors

driving growth are around their average values. Lower quantiles, like the 5% or 1% tails,

provide an estimation of a potentially large but expected decline in growth (GaR).

Third, we obtain stressed scenarios (stressed factors) for the economy using the method-

ology behind the Growth in Stress (GiS) index proposed by González-Rivera et al. (2019).

Under unexpected and rare circumstances, the factors underlying the distribution of

growth are also under stress and thus, far from their average values. We quantify stress

in the factors in a probabilistic way by considering the multivariate distribution of the

factors and focusing on the values in the tails of their multivariate distribution. These

values are the probabilistic stress scenarios. We estimate growth densities under these

scenarios. Because stress is confined to the tails of the multivariate distribution of the

factors, the policy maker will choose the tail quantile of this distribution depending on

the desired level of resilience.

The proposed methodology provides the natural environment to perform stress testing

exercises of growth. Therefore, in the empirical section of this paper, we build scenarios

for US growth and analyse whether they could have been useful in the quarters preceding

the COVID 19 pandemic. We first fit the multi-level DFM to extract the factors from a

large set of variables that can be classified into four blocks, namely, domestic macroeco-

nomic (DM), domestic financial (DF), worldwide macroeconomic (WM) and worldwide

financial (WF) variables. We find a first pervasive factor common to all variables in the

system, a second semi-pervasive factor common to the worldwide variables (regardless

of whether they are macroeconomic or financial), and three additional non-pervasive fac-

tors, each of them common to a different subset of variables (worldwide financial, domestic

macroeconomic, and worldwide macroeconomic variables). We compute the multivariate

distribution of these factors and set the level of stress. Together with factor-quantile

regression estimates, we are able to obtain stressed growth densities. We show that,

for 2020Q2, US growth risk estimated by the 5%-quantile GaR was -15.29% (annualized

quarter-over-quarter growth) and by the 5%-quantile GiS with 95% stress in the fac-

tors was -29.13%. The observed growth decline was -31.20% according to the IMF. The
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warning provided by GaR was rather conservative.

The instruments developed in this paper could directly answer to the sentiment ex-

pressed by policymakers such as the former Chairman of the Federal Reserve Alan Greenspan:

“Policymakers often have to act [...] even though [they] may not fully understand the

full range of possible outcomes, [...]. As a result, [...] policymakers have needed to

reach to broader, though less mathematically precise, hypotheses about how the world

works ...” (quoted in Frydman and Goldberg (2007) and Kwiatkowski and Rebonato

(2011)), and Governor Brainard: “Policymakers tend to distinguish the most likely path,

which I will refer to as the “modal” outlook, from risks around that path –events that

are not the most likely to happen, but that have some probability of happening and

that, if they do materialize, would have a one-sided effect” (Speech March 7, 2019,

https://www.federalreserve.gov/newsevents/speech/brainard20190307a.htm).

The rest of the paper is organized as follows. In Section 2, we describe the method-

ology to obtain growth densities in stressed scenarios. In particular, we describe how to

specify and estimate a multi-level DFM to extract the relevant factors, how to obtain

the distribution of the factors, and how to construct conditional densities of growth in

“normal” as well as in “stressed” scenarios. In Section 3, we extract the factors from do-

mestic/worldwide and/or financial/macroeconomic variables in the US and we compute

the probability distribution of US GDP growth in “normal” times and under different

stressed-factor scenarios. In Section 4, we conclude with some final considerations.

2 Stressed scenarios for economic growth: Method-

ology

In this section, we describe the methodology proposed to estimate the probability distri-

bution of growth in stressed scenarios for the factors. We first describe how to obtain the

distribution of the factors that will be used to obtain stressed scenarios in the context of

the multi-level DFMs. Second, we describe the estimation of the distribution of growth

in “normal” as well as in “stressed” scenarios, and the computation of the GiS.
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2.1 Probability distribution of the factors: Scenarios under stress

Consider the following static DFM for the variables in Xt, the N×1 vector of observations

at time t of the domestic/worldwide macroeconomic and financial variables used to extract

the factors that explain the growth density in a given country or area

Xt = PFt + εt, (1)

where P is the N × r matrix of factor loadings, Ft = (F1t, ..., Frt)
′ is the r × 1 vector

of underlying unobserved factors at time t, and εt is the N × 1 vector of idiosyncratic

components, which are allowed to be weakly cross-sectionally correlated but uncorrelated

with the factors, Ft. The factors, Ft, embed the information contained in the large number

of potential predictors of the quantiles of growth, Xt. To uniquely identify the factors and

loadings, we assume, as usual in this literature, that F ′F
T

= Ir, where F = (F1, ..., FT ) is

an r × T matrix and P ′P is diagonal with its elements ordered from largest to smallest.

After determining the number of factors, r, they are extracted by Principal Components

(PC) from Xt.
2 Define X = (X1, ..., XT )′. The PC factors, F̂t, are given by

√
T times

the eigenvectors corresponding to the r largest eigenvalues of XX ′ arranged in decreasing

order while P̂ ′ = 1
T
F̂ ′Y .3

The multivariate probability density of the factors is needed to obtain probabilistic

scenarios for the factors. From that density, it is possible to construct probability contours

of the factors g(Ft, α) = 0 at a desired probability or stress level α, say α = 95%, so that

the contour is an ellipsoid that contains 95% of the values of Ft, with the most extreme

5% of events outside of the ellipsoid.4 Under general conditions, Bai (2003) shows that,

if F ′F
T

= Ir and
√
N
T
→ 0 when N, T → ∞, at each moment of time, t, the asymptotic

2See also Giglio et al. (2016), who propose using Partial PC.
3In the context of PC factor extraction to explain the quantiles of growth, Adrian et al. (2019) consider

r = 1 factor extracted from a set of domestic financial variables. In particular, they consider the Chicago
Fed’s National Conditions Index (NFCI), which provides a weekly update on US financial conditions in
money markets, debt and equity markets and the traditional and “shadow” banking systems. In another
application, González-Rivera et al. (2019) model the distribution of growth after extracting r = 3 factors
from a set of international GDPs.

4This proposal to obtain stressed factors is closely related to that of Haugh and Ruiz Lacedelli (2020),
who carry out scenario analysis for derivative portfolios via DFMs expressed as state space models
(SSMs) by computing and simulating from the distribution of unstressed risk factors conditional on a
given scenario. It is also close to that of Wang and Ziegel (2021) in the context of scenarios for financial
risk.
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distribution of F̂t is given by

√
N
(
F̂t − Ft

)
d→ N

(
0,Σ−1

P ΓtΣ
−1
P

)
, (2)

where ΣP = limN→∞
P ′P
N

and Γt = limN→∞
∑N

i=1

∑N
j=1 pip

′
jE(εitεjt) with p′i being the

1 × r i’th row of P and εit being the idiosyncratic component corresponding to the i’th

variable in Xt. The finite sample approximation of the asymptotic covariance matrix of

F̂t can be estimated as follows

MSEt =

(
P̂ ′P̂

N

)−1
Γ̂t
N

(
P̂ ′P̂

N

)−1

, (3)

where Γ̂t is an estimate of Γt; see Bai and Ng (2006) for estimators of Γt.

In this paper, the factors driving the quantiles of growth are extracted from a rich set

of variables that are organized in blocks: domestic and worldwide variables and macroe-

conomic and financial variables. These blocks imply zeros in the loading matrix P as

not all variables in Xt load on all r factors in the DFM. The factors could be extracted

using PC from the full set of variables as explained above. However, PC does not take

full advantage of the block structure and the estimated PC factors will not be optimal.

Furthermore, it is important to note that the usual criteria for the determination of the

number of factors are not very conclusive when the eigenvalues of the covariance matrix

have not a clear break, as it is often the case when there are local factors that only load in

subsets of variables. As a consequence, the corresponding estimated DFM could appear

as either having weak common factors or with cross-sectionally correlated idiosyncratic

errors; see, for example, the discussions by Moench et al. (2013) in the context of a hier-

archical structure for the factors. Furthermore, the presence of zeros in the loadings may

bias the estimates of the underlying factors; see Boivin and Ng (2006) and Breitung and

Eickmeier (2016). To overcome these problems, instead of extracting PC factors from

the DFM in (1), it is more appropriate to extract them from a multi-level DFM obtained

after imposing the adequate zero restrictions on the matrix of loadings, P . Furthermore,

the factors extracted from a multi-level DFM are more easily interpretable than those

extracted using PC from the DFM in (1).

Due to the particular structure of the data considered in this paper, with overlapping
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blocks of variables, we follow Rodŕıguez-Caballero and Caporin (2019) and extract the

factors based on a multi-level DFM that decomposes the factor structure into different

levels such that some factors are associated with the full cross-section of variables (perva-

sive factors) while some others either impact a specific subset of variables (non-pervasive

factors) or several subsets of variables (semi-pervasive factors).5 Consider the following

example, with the variables in Xt divided in four blocks, Xt = (X1t, X2t, X3t, X4t)
′ and

the multi-level DFM with r = 8 factors given by

Xt =



X1t

X2t

X3t

X4t


=



p11 0 p13 p14 p15 0 0 0

p21 p22 p23 0 0 p26 0 0

p31 0 0 p34 0 0 p37 0

p41 p42 0 0 0 0 0 p48





F1t

F2t

F3t

F4t

F5t

F6t

F7t

F8t



+ ε∗t , (4)

where F1t is a pervasive factor that loads in all the variables on the system, F2t, F3t and

F4t are semi-pervasive factors with loadings on X2t and X4t, X1t and X2t, and X1t and

X4t, respectively. Finally, F5t, F6t, F7t and F8t are non-pervasive factors that load on X1t,

X2t, X3t, and X4t, respectively.

In order to specify the factor structure of the multilevel DFM, i.e. to determine the

zeros in the loading matrix P , we follow Hallin and Liska (2011), who propose a statistical

criteria based on analysing the pairwise correlations between the factors extracted by PC

from each subset of variables separately. Due to the high variability in the number of

factors detected by alternative statistical procedures, we determine the number of factors

within each block by visual inspection of the scree plot; see Hindrayanto et al. (2016),

who also use the scree plot.

Estimation of the multi-level DFM is challenging as the factor structure does not allow

estimating one level after another. Consequently, estimation is based on the sequential

5This multi-level DFM is closely related to the three-level model proposed by Breitung and Eickmeier
(2016).
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procedure proposed by Breitung and Eickmeier (2016). First, initial estimates of the

factors are obtained using canonical correlations and PC. Second, a sequential Least

Squares procedure is implemented to estimate the loadings and factors; see Rodŕıguez-

Caballero and Caporin (2019) for details about the estimation algorithm and for Monte

Carlo results about its good finite sample performance.6

When the finite sample distribution of the factors, needed for the construction of

scenarios, is estimated using the asymptotic approximation in (2), Poncela and Ruiz

(2016) and Maldonado and Ruiz (2021) show that the associated regions for the factors

will suffer from undercoverage due to the underestimation of the MSE when using (3).

Consequently, González-Rivera et al. (2019) propose using the subsampling correction

of the asymptotic distribution of the underlying factors of Maldonado and Ruiz (2021),

which is designed to incorporate the uncertainty due to the estimation of the loadings.

This correction is based on subsampling subsets of size N∗ of series in the cross-sectional

space, with each series containing all temporal observations. For each subsample, the

loadings and factors are estimated by PC, obtaining F̂
∗(b)
t and P̂ ∗(b), for b = 1, ..., B.

The subsampling analogue of the MSE due to parameter uncertainty associated with the

estimation of the factor loadings, is estimated as follows

1

B

B∑
b=1

((
F̂
∗(b)
t − F̂t

)(
F̂
∗(b)
t − F̂t

)′)
. (5)

Finally, the finite sample MSE of F̂t is estimated as

MSE∗t =
1

N

(
P̂ ′P̂

N

)−1

Γ̂t

(
P̂ ′P̂

N

)−1

+
N∗

NB

B∑
b=1

((
F̂
∗(b)
t − F̂t

)(
F̂
∗(b)
t − F̂t

)′)
; (6)

see Maldonado and Ruiz (2021) for the good properties of this MSE when used to construct

confidence ellipsoids for the underlying factors.7

6See Choi et al. (2018) for a similar estimation procedure and Aastveit et al. (2016) for an alternative
estimation procedure for multi-level DFMs and a bootstrap procedure to construct confidence bounds for
the factors.

7Even though there is not yet a formal result on the asymptotic distribution of the factors extracted
from multi-level models, we construct these regions based on the asymptotic distribution derived by Choi
et al. (2018) for the pervasive factor, which is extracted in the first step and has the same asymptotic
distribution derived by Bai (2003). For the rest of the factors, which are extracted based on the residuals
from the previous step, we also assume asymptotic normality. Since they are based on residuals, their
asymptotic MSE will be affected by parameter estimation uncertainty but this problem should be mit-
igated by extending the subsampling procedure of Maldonado and Ruiz (2021) to the multi-level DFM
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2.2 The conditional distribution of growth in normal times:

GaR

Let GDPt be the Gross Domestic Product observed quarterly at time t, for t = 1, ..., T

and define the annualized quarter-over-quarter growth as yt = 400 ×4 log(GDPt). The

h-step ahead τ ∗-quantile of the conditional distribution of yt is obtained by estimating

the following factor-augmented quantile regression

qτ∗ (yt+h|yt, Ft) = µ(τ ∗, h) + φ(τ ∗, h)yt +
r∑

k=1

βk(τ
∗, h)Fkt, (7)

where µ(τ ∗, h), φ(τ ∗, h) and βk(τ
∗, h), k = 1, ..., r, are parameters and Ft is the r×1 vector

of underlying unobserved factors at time t, extracted as defined above from Xt, the set of

N macroeconomic and/or financial potential predictors of growth.

The factor-augmented quantile regression model in (7) is appropriate for representing

the potentially asymmetric and non-linear relationship between economic growth and the

underlying factors; see, for instance, Plagborg-Möller et al. (2020) for evidence about

asymmetries in economic growth fluctuations. Factor-augmented quantile regressions are

standard in modelling growth quantiles; see, Manzan (2005), Giglio et al. (2016), Adrian

et al. (2019), González-Rivera et al. (2019), and Adrian et al. (2022), among others.8 In

practice, the underlying factors in (7) are replaced by estimated factors, F̂ , obtained from

the multi-level DFM described above.

The parameters in equation (7) are estimated using the algorithm by Koenker and

d’Orey (1987), which implements the estimator proposed by Koenker and Bassett (1978);

see Ando and Tsay (2011) and Giglio et al. (2016) for its asymptotic properties. For a

given quantile τ ∗, and horizon h, the goodness of fit of the estimated factor-augmented

quantile regressions is estimated by R1 = 1 −
∑T

t=2 ν̂t[τ
∗I(ν̂t≥0)+(τ∗−1)I(ν̂t<0)]∑T

t=1 yt[τ
∗(I(yt≥ȳ)+(τ∗−1)I(yt<ȳ)]

, where ν̂t =

yt − µ̂(τ ∗, h)− φ̂(τ ∗, h)yt−h −
∑r

k=1 β̂k(τ
∗, h)Fkt−h, ȳ is the sample mean of yt and I(·) is

an indicator function that takes value 1 if the argument is true and zero otherwise; see

Koenker and Machado (1999). Note that R1 is the natural analogue of the R2 coefficient

framework.
8De Nicoló and Luccetta (2017) also fit factor-augmented quantile regressions to measure the tail

risk of industrial production and employment in the US. See also Carriero et al. (2022b) for alternative
specifications of extreme quantiles of a distribution.
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in a regression model.

After estimating (7) for different quantiles τ ∗, we follow Adrian et al. (2019) and obtain

the conditional distribution of growth by fitting the Skewed-t distribution of Azzalini and

Capitanio (2003) to the estimated quantiles, q̂τ∗ (yt+h|yt, Ft). At each moment of time t,

the four parameters that define the Skewed-t distribution are estimated by minimizing

the squared distance between the estimated quantiles and the corresponding quantiles of

the Skewed-t distribution.9 Denote this density by k̂0(yt+h).

Adrian et al. (2019) propose measuring the h-step ahead growth risk at time t by

GaR, which is defined as the τ quantile, most popular τ = 0.05, of the estimated condi-

tional distribution of growth, k̂0(yt+h). Therefore, GaR is an extreme left quantile of the

distribution of growth estimated as a function of the underlying estimated factors.

2.3 The conditional distribution of growth under stress: GiS

Given that GaR is computed under “non-stressed” conditions, i.e., when the underlying

factors are fixed at their estimated averages, F̂t, it measures the vulnerability of the

economy in the “normal” scenario. However, if an extreme event were to shock the

economy, it would be of interest to analyse the probabilistic distribution of growth under

unusual extreme circumstances. We consider that the extreme conditions will be reflected

in the behaviour of the factors that drive growth, which could be themselves under stress.

In this context, González-Rivera et al. (2019) propose GiS as an additional measure of

vulnerability. Next, we describe GiS, the τ ∗-quantile of economic growth densities under

stressed factors.

Consider the factor-augmented quantile regression in (7) for a fixed quantile τ ∗, and

define the minimum value of qτ∗(yt+h|yt, Ft) when the underlying factors are subject to

9Recently, Mitchell et al. (2023) propose an alternative non-parametric approach for constructing
density forecasts from quantile regressions, according to which, the conditional quantile forecasts from
the quantile regressions are mapped directly to a conditional density only assuming local uniformity
between the quantile forecasts. The improvement of the nonparametric density when compared with
the asymmetric Student density appears when the conditional distribution of growth is characterized
by multimodalities instead of asymmetry. In an application to US GDP growth, they show that this
nonparametric density matches or slightly improves upon the accuracy of the densities used by Adrian
et al. (2019). Given that the improvement is only marginal, in this paper, we keep estimating the density
by the more popular asymmetric Student density.
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α-probability stressed scenarios, as follows,

min
Ft

qτ∗(yt+h|yt, Ft) (8)

s.t. g(Ft, α) = 0,

where g(Ft, α) = 0 is a predetermined α-contour of the factors, i.e. an ellipsoid that

contains the true factor vector, Ft, with probability α. The values of Ft on the boundary

of the ellipsoid g(Ft, α) = 0 are considered the extreme events of the factors.

In general, the constrained optimization problem in (8) requires the estimation of the

iso-quantile surfaces, i.e., the combination of factors that generates the same value of the

τ ∗-quantile, as well as the search of the tangency point between these surfaces and the

α-ellipsoid of the factors. When the number of underlying factors is larger than two, the

constrained minimization is solved by using the simple binary mesh algorithm proposed

by Flood and Korenko (2015).10

The optimization exercise in (8) is repeated for different τ ∗-quantiles of growth (keep-

ing the α-level of stress fixed). After fitting a Skewed-t density to the minimal growths

corresponding to different estimated τ ∗-quantiles, we obtain the conditional “stressed”

density of growth. Denote this stressed density as k̂α(yt+h). Finally, for an α-level of

stress of the factors, the h-step-ahead GiS is given by the τ -quantile of this stressed

density as follows

GiSt+h = inf

{
yt+h |

∫ yt+h

−∞
k̂α(u)du ≥ τ

}
. (9)

We illustrate the construction of scenarios and the computation of the GiS with an

example.11 Consider that the growth quantile of interest is τ ∗ = 0.05, which depends on

two factors, F1t and F2t, as follows

q0.05 (yt+1|Ft) = 1.07F1t − F2t − 3.35. (10)

10Software is available in https://cran.r-project.org/web/packages/SyScSelection/index.html. In a
spaced grid or mesh on the ellipsoid, the fineness parameter determines the number of points iterated
along each dimension until the optimal combination of points is found. We choose a fineness parameter
of 8. We have experimented with several values of the fineness parameter and our results are very robust
to this choice.

11In this example, we are not smoothing the densities but considering the quantiles as directly obtained
from the factor-augmented quantile predictive regression for τ∗.
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The factors are generated by a standardized bivariate normal distribution, with means 5

and 2, respectively, and covariance 0.5.

The top panel of Figure 1 plots four iso-5%-quantile lines, i.e. four linear combinations

of F1t and F2t, each of them implying the same value of the 5% quantile of growth.

In particular, the green straight line represents q0.05 (yt+1|Ft) = −3.35 while the black,

blue and red straight lines represent q0.05 (yt+1|Ft) = −2.35, q0.05 (yt+1|Ft) = −1.35 and

q0.05 (yt+1|Ft) = −0.5, respectively. The top panel of Figure 1 also plots α-probability

contours of the factors, for different probability levels α. Each contour can be thought

as possible extreme realizations from the distribution of the factors. Note that the red

iso-5%-quantile, which corresponds to a 5% quantile of growth of -0.5, crosses through

the point of factor means. If, at time t, the realized factors are set to their mean values

F1t = 5 and F2t = 2, the 5% quantile of growth roughly corresponds to the results that

one would obtain from the GaR analysis, i.e. the GaR is -0.5. However, our framework

allows us to also consider arbitrary stress scenarios for the factors and to assess their

impact on the 5% quantile of growth. In the same figure, we illustrate the implications of

the scenarios by highlighting three specific ones. The ellipse tangent to the green iso-5%

quantile corresponds to the 99% contour. Therefore, in this case, we can think of the

factors stressed at α = 99% level. The GiS associated to this level of stress of the factors

is the value of the 5% quantile of growth corresponding to the green iso-5%-quantile line,

which is -3.35. If the level of stress of the factors is smaller, for example, α = 93%, the

GiS is given by the tangency point of the 93% contour with the black iso-5%-quantile

line and the GiS is -2.35. Finally, if the level of stress of the factors is even smaller,

α = 73%, the GiS is determined by the tangency point of the 73% contour with the

blue line, which implies that the 5%-quantile of growth is -1.35. Note that there are big

differences between the 5%-quantile of growth obtained under stressed factor scenarios

and the GaR, which is obtained under “normal” circumstances, that is, when the factors

are fixed at their averages, which correspond to the central point of the ellipse in Figure

1. Charts of this type can be used by policymakers to calibrate the severity of the stress,

which can be arbitrarily set according to their own preferences.

The GiS measures the risk exposure of the economy to extreme movements in the

underlying factors that drive growth. The policymaker could choose different α-levels
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of stress and generate the corresponding stressed densities of growth and GiS values.12

By choosing different values of α in the constraint g(Ft, α) = 0, i.e. different levels of

stress in the factors, GiS provides an analysis of growth under different scenarios.13 By

working with the probability contours of the underlying factors, the policymaker can

understand those scenarios in which severe but plausible factor values may substantially

affect economic growth. For policymakers, knowledge of the growth density under stressed

factors is a tool to assess whether the economy is too exposed to any of the factors and, if

so, how to act to reduce exposure. In this sense, GiS underscores the arguments in Breuer

et al. (2009), who argue that measures based on historical experience, as GaR, may risk

to ignore plausible but harmful scenarios, as those we currently observe as a result of

the COVID19 pandemic. The probability contours of the underlying factors provide a

benchmark for plausibility and severity of the stressed factors. GiS captures plausibility

by specifying how much stress to exercise into the tails of the factors’ distribution, while

severity is maximized by systematically searching for the worst growth case in the factor

region determined by the chosen level of stress; see also Flood and Korenko (2015) and

Breuer et al. (2009) for discussions on the trade-off between plausibility and severity of

stress scenarios.

A final note on (the lack of) inference on GiS and GaR. Finding the uncertainty of the

quantiles of k̂0(yt+h) and k̂α(yt+h) is a challenging and interesting problem. With respect

to k̂0(yt+h), as far as we know, there are consistency results for the predicted quantiles

in the factor-augmented regression models but not results are available for their asymp-

totic distribution; see Giglio et al. (2016). These results allow the evaluation of quantile

forecasts. For example, Giglio et al. (2016) propose comparing the sequences of quantile

forecast losses based on conditioning information, ν̂t [τ ∗I(ν̂t ≥ 0) + (τ ∗ − 1)I(ν̂t < 0)], to

12In this set up, the α-level of stress is chosen by the decision maker. It might be possible to choose
α in an optimal way if the decision maker were to have a loss function that depends on GiS somehow.
However, this is a different research question that may fit within the problem put forward by Manski
(2021), who proposes the use of confidence sets for decision problems. The discussions by Granger and
Machina (2006), Elliot and Timmermann (2016) and Watson and Holmes (2016) may also be relevant.

13Scenario analysis is rather popular in the context of financial markets; see Glasserman et al. (2015),
who identify sensible combinations of stress to multiple factors to assess financial risk; Hagfors et al.
(2016) for scenario analysis of electricity prices in the context of quantile regressions; European Central
Bank (2006) for the importance of scenario analysis in the context of stress testing in the financial sector,
Rebonato (2019) for financial stress testing based on Bayesian nets, and Haugh and Ruiz Lacedelli (2020)
who carry out scenario analysis for derivative portfolios via DFMs. Finally, it is important to remark that
the Basel Committee on Banking Supervision (2005) recommends choosing scenarios that are plausible
and severe.
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the quantile losses based on historical quantiles while, very recently, Corradi et al. (2023)

also propose tests for the forecast accuracy of quantiles. However, obtaining asymptotic

intervals for estimated quantiles poses some statistical challenges since it involves ele-

ments of nonparametric density estimation with resampling techniques to compute Mean

Square Errors of the estimated quantiles. For example, Gregory et al. (2018) propose

bootstrapping time series quantile regressions and illustrate its implementation in the

context of VaR estimation. However, they do not consider the presence of estimated

factors in the estimated quantile regressions. Alternatively, Gonçalves et al. (2017) pro-

pose using bootstrap to construct prediction intervals in the context of factor-augmented

regressions but not for factor-augmented quantile regressions. Consequently, designing a

proper bootstrap procedure that considers the presence of both estimated quantiles and

estimated factors in quantile regressions is still needed. Furthermore, finding intervals for

the estimated quantiles in factor-augmented quantile regressions does not solve the issue

of finding intervals for GiS and GaR. It is important to note that, after estimating these

regressions, GaR is calculated as the corresponding quantile of the smoothed distribution

of growth, obtained by fitting a Skewed-t distribution. Consequently, even if one were able

to obtain bootstrap replicates of the quantiles with good properties, it would be necessary

to obtain a large number of bootstrap replicates of these smoothed densities (with and

without stressed factors). With these bootstrap replicates of the smoothed densities, it

would be possible to obtain the uncertainty surrounding GiS and GaR; see Chernozhukov

et al. (2013) for the use of bootstrapping in the context of inference for counterfactual

distributions. The computational burden involved in these simulations can be alleviated

by using the fast bootstrap procedures proposed by Chernozhukov et al. (2022) in the con-

text of quantile regressions. More importantly, even with this computational/numerical

approach in place, it would be necessary to study the statistical properties of the newly

proposed bootstrap procedure. This is beyond the scope of this paper.

Finally, note that, in the construction of scenarios for the τ ∗-quantile of growth de-

scribed above, α measures the level of stress to be chosen by the policymaker. Instead of

looking at the conditional distribution of growth under stressed factors, one can use the

methodology proposed in this paper to determine the maximum level of probability of the

factors, γ, subject to a particular value of the τ ∗-quantile of the distribution of growth of
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interest for the policymaker. The dual problem of (8) can be stated as follows

max
Ft

H(Ft) (11)

s.t. qτ∗(yt+h|yt, Ft) = q̄,

whereH(Ft) is the joint cumulative distribution function of the factors and γ = max H(Ft).

Under the dual problem in (11), the policymaker chooses the value of the τ ∗-quantile of

growth that could be dangerous for the economy (say q̄) and obtains the probability level

of the factors leading to q̄. Therefore, this dual problem is useful to find the probability

of the factors such that the τ ∗-quantile of growth does not exceed a predetermined level

q̄. If this probability is very small, then the chances for the economy going below q̄ are

scarce, while, if this probability is large, there is a large danger for the economy going

below q̄ and resilience measures can be implemented to avoid the negative implications.

The bottom panel of Figure 1 illustrates this dual problem for the same example de-

scribed above. In this case, given that there are two factors with a joint normal distribu-

tion, and that the iso-quantile function is given by (10), the joint cumulative distribution

function of the factors for which the τ ∗-quantile of growth does not exceed q̄ is given by

H(F1, F2) =

∫ F2

−∞

∫ q̄+3.35+F2t
1.07

−∞
w(F1t, F2t)dF1tdF2t, (12)

where w(F1t, F2t) = 1
2π
√

0.75
exp

{
− 1

1.5

[
(F1t − 5)2 + (F2t − 2)2 − (F1t − 5) (F2t − 2)

]}
is the

joint density of the factors. The policymaker can calculate the probability of the combi-

nations of F1 and F2 leading to the 5%-quantile of growth being below q̄ by finding the

maximum of H(F1, F2). In particular, the probability of the factors for the 5%-quantile of

growth being below -0.5 is 0.51, while the probabilities of the factors for the 5% quantile

of growth being below -1.35, -2.35 and -3.35 are 0.17, 0.03 and 0.002, respectively.14

14We are very thankful to an anonymous referee for suggesting this alternative dual problem. In what
follows, we focus on the construction of scenarios and the computation of the GiS.
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3 The distribution of growth in the US

In this section, we obtain the conditional probability distribution of US GDP growth

based on factors extracted from a multi-level DFM, which considers a large system of

macroeconomic and financial variables, some of which are domestic in the US and some

are worldwide. The probability distribution is estimated in “normal” times and under

different stressed-factor scenarios.

3.1 Underlying macroeconomic and financial factors

In order to estimate the factor-augmented quantile regression in (7), we consider annu-

alized quarter-over-quarter real US GDP growth observed from 2005Q3 to 2021Q1. The

in-sample period spans from 2005Q3 to 2020Q1 while the observations from 2020Q2 to

2021Q1 are reserved for out-of-sample exercises.

A strand of the literature analyses the conditional distribution of growth by focusing

on factors extracted only from domestic financial variables. Adrian et al. (2019) estimate

US growth densities as functions of a DF factor, in particular, the NFCI. Further works

considering the DF factor are De Nicoló and Luccetta (2017), Adams et al. (2021), Cata-

nia et al. (2021), Ferrara et al. (2022) and Adrian et al. (2022), among many others.15

The popularity of DF factors may be a consequence of the strong influence of domestic

financial conditions in US during the 2008 Great Recession; see, for example, Dovern

and van Roye (2014). The main argument for the link between financial factors and

growth is based on the premise that financial prices incorporate market expectations of

future price and output developments and, consequently, bear timely information on fu-

ture economic conditions. However, other authors considering macroeconomic in addition

to financial variables argue that the latter do not contribute much to distributional fore-

casts of growth; see, for example, Plagborg-Möller et al. (2020), Carriero et al. (2022a),

Reichlin et al. (2020) and Çakmakli et al. (2021). Beyond the debate about whether

15The ability of financial factors to predict future real economic activity has been discussed by Hatzius
et al. (2010), Matheson (2012), Giglio et al. (2016), De Nicoló and Luccetta (2017), Menden and Proaño
(2017), Arrigoni et al. (2022) and Boyarchenko et al. (2020), among others. The link between economic
and financial conditions has experienced a revival after the 2008 Great Recession; see, for example,
Dovern and van Roye (2014). As pointed out by Ng and Wright (2013), using US data from 1960 to
2012, all the post-1982 recessions have originated in financial markets, and these recessions are different
from recessions where financial markets play a passive role.
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financial and/or macroeconomic factors should be considered when modelling the condi-

tional distribution of growth, other authors debate whether only domestic factors should

be considered when assessing growth risk; see, for example, Mishkin (2011) and Breitung

and Eickmeier (2016) for a discussion on the global character of some crisis, and Cerutti

et al. (2019) on global financial factors. In general, they argue that forecasting growth

risk based on only “domestic” factors could be misleading in the current globalized world.

In this direction, Djogbenou (2020) propose a two-level DFM with two specific developed

and emerging economy activity factors in addition to a world economic factor.16

In this paper, the factors underlying the conditional distribution of growth, which are

used to estimate the factor-augmented quantile regression in (7), are extracted from a large

set of financial and macroeconomic variables observed quarterly from 2005Q3 to 2020Q1

(T = 59 observations). These variables are classified into four different blocks. First, we

consider the same domestic financial variables underlying the construction of the Chicago

Fed’s National Conditions Index (NFCI); see, Brave and Butters (2012) for a description

of the NFCI. The cross-sectional dimension of this subset of variables, denoted as X1t,

is N1 = 105 variables.17 After standardization, we detect outliers using the procedure in

Kristensen (2014) and correct them by substituting the corresponding observations by the

median of the last 6 previous observations. We find one outlier in the variable ”T-note

futures Euro/Dollar market depth” in 2008Q4.

Second, given the increasing globalization of the economy, we also consider the poten-

tial effect of worldwide financial factors on US growth; see, for example, Arregui et al.

(2018), who show that, if deemed necessary, the rapid speed at which foreign shocks affect

domestic financial conditions may make it difficult to react in a timely and effective man-

ner. Daily observations of the variables within the worldwide financial block have been

obtained from the ECB data base and aggregated by taking the quarterly average. They

are denoted as X2t and have cross-sectional dimension of N2 = 208. Table 1 reports the

variables within X2 and the countries in which they have been observed, which represent

16There are other proposals with world and domestic financial factors. However, as far as we know,
these factors have not been linked with economic growth; see Amiti et al. (2019) for a recent contribution.

17The NFCI is constructed on a weekly basis. We average weekly observations within each quarter to
obtain observations with a quarterly frequency. For the attribution of weeks to overlapping quarters, we
follow the same criteria as Adrian et al. (2019). Weeks that start in one quarter and end in the next one
are fully assigned to the latter quarter.
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70% of the world’s GDP at purchasing power parity; see Arrigoni et al. (2022), who also

use these variables in their analysis. It is important to note that several variables corre-

sponding to the US are among the variables included in X2, namely, the term structure,

the price earning ratio on national stock exchange (PER) and the historical volatility

30 days. As before, the worldwide financial variables are standardized and corrected for

outliers. Two outliers are found in price earning ratio, one in Hungary in 2015Q2, which

may be due to the brokerage scandals in this year, and another in Venezuela in 2018Q4,

which may be attributed to large inflation and its repercussions in the stock market.

Third, an important strand of the literature claims that macroeconomic variables are

better suited than financial variables to explain the growth distribution. Consequently, we

also consider the effect of domestic macroeconomic factors on the conditional distribution

of US growth. With this goal, we consider the popular database of McCracken and Ng

(2016) with N3 = 248 variables; De Nicoló and Luccetta (2017) and Plagborg-Möller

et al. (2020) also use this dataset to extract factors to estimate factor-augmented quantile

regressions. This subset of variables is denoted as X3t.

Finally, in order to incorporate the effect of the worldwide macroeconomy on economic

growth, we also consider a set of annualized quarterly GDP growths of N4 = 63 countries.

Table 2 reports the countries used to extract the worldwide macroeconomic factors. The

GDPs have been obtained from the IMF with the sample of countries chosen to maximize

the amount of common data among them. The GDPs of these countries represent 91.62%

of total GDP. Table 2 also reports the GDP and percentage over world GDP (in parenthe-

sis) of each country, both according to World Bank. Note that the factors considered by

González-Rivera et al. (2019) are extracted from a panel of annual growths corresponding

to 83 countries obtained from the World Bank database. We also look for outliers using

the procedure described by Kristensen (2014) and find two outliers in Thailand growth

in 2011Q4 and 2012Q1. These outliers may be due to the severe flooding occurred during

the 2011 monsoon season, which caused the fourth costliest economic disaster according

to the World Bank; see Tanonue et al. (2020). China 2020Q1 and Ireland 2015Q1 are also

outliers. We think that the main reason for the outlier in China is that the COVID19

affected China one quarter earlier than the rest of the world. With respect to the large

Irish GDP growth, it could be due to the relocation of intellectual property of a number
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of large multinational corporations, which was triggered by the Irish low corporate tax

rates. Given the size of these companies, the boost to GDP growth was correspondingly

large. The subset of worldwide growths is denoted as X4t.

We denote X∗t = (X1t, X2t, X3t, X4t)
′ the entire set of domestic/worldwide and/or

financial/macroeconomic variables with cross-sectional dimension N = 624 variables. It

is important to note that to construct quarterly predictive distributions of real GDP

growth, we use the conditioning information available at the moment the prediction is

made. The US real GDP as well as all the variables in X∗t used to extract the factors are

final records at the time of writing. However, in most countries, national accounts are

recorded quarterly and published late (often more than one month after the close of the

quarter), and are subsequently revised. On the other hand, the variables published at a

higher frequency than growth (monthly or even weekly), are known in advance.18

Our proposal is to consider the factors extracted from X∗t and analyse their joint effect

on the quantiles of the conditional distribution of US economic growth.19 Given the block

structure of the variables in X∗t , we extract the factors by considering the multi-level

DFM proposed by Rodŕıguez-Caballero and Caporin (2019). We start by extracting the

PC factors separately from each of the four blocks of variables, X1, X2, X3, and X4. As

proposed by Hallin and Liska (2011), we determine the factor structure by analysing the

pairwise correlations among the factors separately extracted from each block of variables;

see the Online Appendix A for details on the factors extracted from each block of variables

and their correlations. After this analysis, we obtain the following specification of the

18The accuracy and timeliness of the estimated growth densities can be improved by augmenting the
quarterly information with the available high frequency information. This is the proposal of Ferrara,
Mogliani and Sahuc (2021). An interesting issue to investigate is the possibility of implementing the GiS
methodology to construct a “nowcasting” measure of growth vulnerability in different scenarios.

19Busetti et al. (2021) also consider domestic and worldwide financial and real variables when modelling
the distribution of Italian GDP. However, they do not pursue factor extraction as they focus on some
individual variables.
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multi-level DFM

X∗t =



X1t

X2t

X3t

X4t


=



p11 0 p13 p14 0 0 0

p21 p22 p23 0 p25 0 0

p31 0 0 p34 0 p36 0

p41 p42 0 0 0 0 p47





F ∗1t

F ∗2t

F ∗3t

F ∗4t

F ∗5t

F ∗6t

F ∗7t



+ ε∗t , (13)

where F ∗1t is a pervasive factor that loads in all the variables in X∗t , F ∗2t, F
∗
3t and F ∗4t

are semi-pervasive factors with loadings in the worldwide (financial and macroeconomic),

financial (domestic and worldwide), and domestic (financial and macroeconomic) vari-

ables, respectively. Finally, F ∗5t, F
∗
6t and F ∗7t are non-pervasive factors that load on the

worldwide financial, domestic macroeconomic, and worldwide macroeconomic variables,

respectively. This factor structure explains the relation between the financial cycle and

the business cycle, though both cycles have different characteristics; see Claessens et al.

(2012), who, in a different context, has already pointed out that macroeconomic and fi-

nancial dynamics could be driven by the same global and regional factors, and Breitung

and Eickmeier (2016), who, in an application to a large macro-financial quarterly data

set for 24 countries, conclude that financial variables strongly comove internationally, to

a similar extent as macroeconomic variables.

Examining the structure of the multi-level DFM in (13), we note that the domestic

financial variables, X1t, load on the factor F ∗3t, which corresponds to the financial variables,

and on the factor F ∗4t, which corresponds to the domestic variables. However, there

is not a separate non-pervasive factor for the domestic financial variables alone. Once

worldwide financial and domestic macroeconomic factors are taken into account, domestic

financial factors do not appear explicitly in model (13). According to model (13), the

information contained in the underlying domestic financial factors is already contained

in the worldwide financial and domestic macroeconomic variables. This result is closely

related to the question regarding the influence and extent of domestic financial conditions

in a given country in the context of a globally integrated financial system, which has been
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attracting increased interest recently and continues to be hotly debated in policy and

academic circles alike; see Breitung and Eickmeier (2016), who conclude that domestic

factors are loosing weight as compared to international factors in an analysis of a large

set of variables related to the US economy. Looking at the drivers of economic growth,

Arregui et al. (2018) also conclude that common global components underlying financial

conditions only account for about 20% to 40% of the variations in countries domestic

financial conditions indexes. In the same vein, Brownlees and Souza (2019) conclude that

it is unclear whether financial conditions are a relevant downside growth risk predictor

during the COVID19 pandemic of 2020 and Chavleishvili and Manganelli (2019) find

that severe financial shocks are transmitted to the real economy when the economy is

simultaneously hit by a real negative shock. This result is in agreement with Reichlin

et al. (2020), who conclude that the NFCI contains little advanced information on growth

beyond what is already contained in the real economic indicators. Plagborg-Möller et al.

(2020), estimating US growth risk, also conclude that the performance of a model with

both a macroeconomic factor and a financial factor is indistinguishable from a model

with only a macroeconomic factor.20 They show that financial variables contribute little

to distributional forecasts of growth, beyond the information contained in real indicators.

In the same vein, Carriero et al. (2022a) find limited improvements in accuracy when

using financial indicators in addition to macroeconomic indicators.

Given the arguments above about the lack of additional information in X1t once X2t

and X3t are taken into account, we simplify the model by considering only the variables

in Xt = (X2t, X3t, X4t)
′.21 Following the same methodological steps described above, we

20Indeed, Plagborg-Möller et al. (2020) conclude that no predictors provide robust and precise advanced
warnings about any features of GDP growth distribution other than the mean.

21The computational burden involved in the estimation of the distribution of the factors and in finding
the tangency point between the corresponding contours and the iso-quantiles increases with the number
of factors and can be very heavy if it is large. This computational complexity makes the problem
unstable when the number of factors is very large, increasing the noise involved in the computations.
Consequently, by removing X1, we have a more parsimonious model with all the information in it but
avoiding superfluous variables that not add additional information.
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select the following final multi-level DFM22

Xt =


X2t

X3t

X4t

 =


p11 p12 p13 0 0

p21 0 0 p24 0

p31 p32 0 0 p35





F1t

F2t

F3t

F4t

F5t


+ εt, (14)

where F1t and F2t are the pervasive and semi-pervasive factors that load in all variables and

in the worldwide (financial and macroeconomic) variables of the system, respectively. The

other three factors in model (14) correspond to non-pervasive factors that only load in the

worldwide financial (F3t), domestic macroeconomic (F4t), and worldwide macroeconomic

(F5t) variables.

As mentioned above, estimation of model (14) is based on the sequential procedure

described by Rodŕıguez-Caballero and Caporin (2019). Figure 2 plots the five factors

extracted from the multi-level DFM in (14) together with their 95% confidence intervals

obtained by the subsampling procedure explained above. Note that each factor is esti-

mated conditional on the factors extracted in the previous level. We can observe that the

worldwide financial factor, F3t, increases during the crisis periods. Positive values of this

factor indicate tighter financial conditions than average, while negative values indicate

looser financial conditions than average. Neither the pervasive F1t factor nor the non-

pervasive F3t factor warn about the plausibility of a forthcoming big decline in growth

due to the COVID19 pandemic. However, the warnings coming from the semi-pervasive

world factor, F2t, and from the non-pervasive F4t factor were strong, and that coming

from the non-pervasive world macroeconomic F5t factor was indeed very strong. It is this

last factor that truly captures a sharp decline in the world macroeconomy.

3.2 The US conditional distribution of growth in normal times

After extracting the underlying factors from the multi-level DFM in (14), we estimate the

corresponding factor-augmented quantile regression models in (7) for horizons h = 1, 2, 3

22Note that, in this case, we select 3 factors instead of two within the WM block.
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and 4 and for quantiles of growth τ ∗ from 0.05 to 0.95 at intervals of 0.01. The estimated

parameters are plotted in Figure 3 together with their corresponding 95% confidence

intervals for h = 1 and 4.23 Table 3 reports the estimated parameters for h = 1, 2, 3 and 4

and τ ∗ = 0.05, 0.5 and 0.95 together with their corresponding p-values and the analogue

coefficient of determination R1. Several interesting insights on the conditional density of

growth are obtained from Table 3 and Figure 3.24

In Table 3, we observe that the fit of the factor-augmented quantile regressions is

rather large in the extreme quantiles with R1 ranging, depending on h, from 39 to 49%

for the 5% quantile and from 32 to 36% for the 95% quantile. For the median quantile,

the fit is much lower, between 11 and 16%. The larger fit is the result of the significant

effect of the five factors in the extreme 5% and 95% quantiles, which are more vulnerable

than quantiles in the center of the distribution to economic and financial conditions. For

the median quantile, the factors do not seem to be significant variables, with only a very

small effect of F3 in the short run (h = 1). Figure 3 confirms that the overall five factors

are the most significant variables either in the extreme left tails or in the extreme right

tails of the distribution of growth but their significance fades to zero in the median and

neighbouring quantiles. The most remarkable feature of Figure 3 is the strong effect of

F2, F3, and F5 on the extreme 5% and neighbouring quantiles indicating that growth in

recessions is mainly driven by worldwide macro and financial variables but in expansions

(95% and neighbouring quantiles), it is mainly the worldwide financial factor F3 that

drives growth; see also the results in the Online appendix on the MRS of the factors.25

The joint effects of different factors with their different magnitude in the extreme left and

right tails of the growth distribution generate the asymmetry of this distribution, which

is in agreement with the findings in several current works; see, for instance, Adams et al.

23The covariance matrix of the estimators has been obtained as proposed by Koenker and Bassett
(1978) assuming i.i.d. errors.

24As a robustness check, the Online Appendix B reports the results of the estimated factor-augmented
quantile predictive regressions when the factors are extracted either separately from each of the four
blocks of variables (9 factors) or from the multi-level DFM in (13) with the domestic financial variables,
X1t, included (7 factors). We can observe that, in the first case, severe problems of multicollinearity may
appear, while, in the second case, the increase in the R1 coefficients is relatively small when considering
the number of additional parameters that should be estimated.

25Recall that the subset of variables used to extract the worldwide financial factor also includes US
financial variables. Therefore, this result does not contradicts the former literature about the impact of
financial variables on macroeconomic activity; see, for example, Estrella and Trubin (2006) about the
yield curve as a leading indicator of recessions and Stock and Watson (2003) about the role of asset prices
as predictors of output and inflation.
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(2021), Baker et al. (2023), Bloom (2014), Jurado et al. (2015), Ludvigson et al. (2021),

and Plagborg-Möller et al. (2020).26

At each moment of time t, smooth estimates of the growth distribution under average

factor scenarios are obtained by fitting the Skewed-t distribution to the estimated quan-

tiles of growth for τ ∗ = 0.05, 0.25, 0.5, 0.75 and 0.95 from the factor-augmented predictive

quantile regressions. The estimated densities from 2005Q4 to 2020Q1 are plotted in the

top panel of Figure 4. The GaRt measure is the 5%-quantile of the growth smoothed den-

sity at time t. Figure 5 plots three selected growth densities corresponding to 2008Q4 (just

after the 2008 Great Recession), 2017Q1 (in a quarter of low uncertainty) and 2020Q2

(during the beginning of the COVID-19 crisis). Note that the location, scale and shape

of the conditional growth densities change over time. In each of these densities, we mark

its 5% quantile corresponding GaRs, namely, -7%, -0,5% and -16%, respectively. It is

obvious that, according to the GaR, the vulnerability of the US economy was smaller in

2017 and much larger in 2020 than in 2008. However, these measures of vulnerability are

obtained with the factors estimated at their average values.

3.3 The US conditional growth densities: a scenario analysis

In this subsection, we construct conditional one-step-ahead densities for US growth under

stressed scenarios for the factors and calculate the associated GiS risk measures.

To obtain plausible stress scenarios for the factors, first we need to construct the joint

α%-confidence regions for the five factors extracted from the multi-level DFM. Next, we

minimize the τ ∗-quantile growth subject to a fixed ellipsoid with α-coverage as in (8).

The minimization exercise takes place for different τ ∗ = 0.05, 0.25, 0.75 and 0.95. The

α-stressed conditional distributions of growth are obtained by fitting the Skewed-t distri-

bution to the optimal estimated τ ∗-quantiles. The bottom panel of Figure 4 plots the US

one-step-ahead growth densities when the factors are stressed at the 95% level. As ex-

pected, we can observe that the stressed densities are located to the left of the non-stressed

densities. It is interesting to see that by stressing the factors, the stressed densities tend

to show increased uncertainty and asymmetry. In Figure 5, we offer a close-up of these

26The marginal effects of the factors have been analysed in the Online Appendix C.
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densities in three specific quarters, 2008Q4, 2017Q1 and 2020Q2. In 2017Q1, the stressed

and non-stressed densities are closer to each other and are approximately symmetric with

low dispersion. However, in crisis periods like 2008Q1 and 2020Q2, both densities tend to

move to the left showing increased uncertainty and pronounced asymmetry with a long

left tail. The distance between the stressed and non-stressed densities is larger, mainly in

the left tail. Both features are more acute in the COVID period than in the 2008 Great

Recession.

The GiSt measure is the 5%-quantile of the smoothed stressed density of growth at

time t. Figure 5 also plots the GiSt corresponding to the three selected quarters mentioned

above. The distance between the GaRt and the GiSt depends on the quarter. In the most

tranquil quarter, with higher average growth and less uncertainty, 2007Q1, the GiS is -6%

while the GaR is -0.5%. However, in 2008Q1, when the average growth was smaller and

the uncertainty larger, the GiS is -20% while the GaR is -8%. Finally, during the COVID

pandemic in 2020Q2, the distance between the GiS (-29.13%) and the GaR (-15.19%) is

14%. The large GiS under the stressed factor scenario reveals the presence of a fat left tail

in the distribution of US growth, which would go unnoticed by simply estimating the GaR,

which assumes that the factors evolve according to an average scenario. Furthermore, it

could be worth investigating whether the distance between the GaR and the GiS, could

be signalling a crisis.

In Figure 6, we provide a different way to visualize the different implications of non-

stressed and stressed growth densities. We plot the US actual quarterly growth over the

sample period 2005Q4 to 2021Q1. The dashed lines are the estimated one-step ahead

5% (GaR) and 95% quantiles, which for the most part of the sample envelop the actual

growth. We also plot the 5% and 95% quantiles of growth (light red) and the 25% and

75% quantiles (grey), when the factors are stressed at the 95% level. As before, the

stressed density falls below the non-stress density and provides a complete assessment of

the vulnerability of the economy in very different scenarios.

The densities plotted in Figures 4, 5, and 6 summarize our proposed tool for risk assess-

ment. The policymaker has a complete visualization of growth dynamics under average

and α-stressed scenarios of her choice, with warning signals coming from the quantiles

in the left tail of the stressed densities of growth. An additional piece of information
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that the GiS methodology provides are the values of the factors in the α-stressed scenario

that gives rise to the GiS warning. As an example, in 2020Q1, the values of the stressed

factors in the 95% scenario were -1.26 (F1), -5.74 (F2), 1.94 (F3), -0.19 (F4) and -7.52

(F5). We observe that the main factors contributing to the vulnerability of US growth at

the time of the COVID pandemic were coming from the worldwide factor, F2, and from

the worldwide macroeconomic factor, F5. Note that, even if we take into account that

the MRS between F3 and F5 is -3 (result reported in the Online appendix), the effect

associated with the worldwide macroeconomic factor during the COVID19 pandemic is

much stronger than that of the worldwide financial factor. Neither domestic information

nor financial information per se were so influential during the pandemic.

Finally, in Table 4, we report numerical information regarding GaR and GiS for four

quarters ahead (h = 1, 2, 3, 4), for three quantiles (τ = 5, 50, 95%), and for three different

levels of stress (α = 70, 95, 99%). With information up to 2020Q1, the GaR warning for

the following quarter 2020Q2 (beginning of the pandemic) was -15.29% decline in growth,

the GiS (95%) warning was -29.13%, and the observed decline was -31.20%. GaR was

rather conservative compared to GiS. Note that the 95% level of stress for the factors

reflects that the COVID19 has been a truly exceptional event. Finally, note that, in the

following quarters, the economy substantially improved due to all the fiscal and monetary

stimuli pumped up into it. Since GiS and GaR are warnings with fixed information up to

2020Q1, they could not realistically capture the positive growth in the following quarters.

From a policymaker point of view, the reading of GaR and GiS warnings several quarters

into the future should inform about where the economy would have gone if no remedial

measures were imposed at the outset. They show the path of no action in the sense that

they represent scenarios for the quantiles of growth that could happen if there were not

special actions taken to remedy the adverse effects of the COVID19 pandemic. The GaR

warning pointed out to a potential recovery in four quarters ahead (τ = 5%, h = 4, GaR

= 2.55%) and GiS (70%) pointed out to a mild improvement but still negative growth if

the factors were kept at the chosen 70% stress level (τ = 5%, h = 4, GiS = -5.24%).
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4 Final considerations

We propose a set of statistical tools to dynamically monitor the vulnerability of the

economy. Using the methodology described in this paper, it is possible to measure the

effect of different factor scenarios on the density of growth. These comments refer to

the rare or extreme event that even with a small probability of occurrence could bring

catastrophic losses to the economy. We show how to select rare events in a probabilistic

sense with the construction of plausible but stressful scenarios and we summarize their

potential effect on the economy with GiS, the 5% quantile of the stressed conditional

growth density, as a measure of risk or vulnerability index. To achieve this end, first, we

have assumed that any quantile of the growth distribution is a function of a set of factors,

extracted with a multi-level DFM from a wide set of macroeconomic and financial variables

collected at the domestic and worldwide levels. Secondly, we have chosen severe and yet

plausible stress scenarios based on the joint probability distribution of the underlying

factors. This methodology allows the policymaker to choose the desired severity of the

stress on the factors and to construct the density of growth under different scenarios. The

macro-financial scenarios considered by the policymaker should be severe if she wants to be

prepared for a large decline in growth as that observed during the COVID19 pandemic.

In summary, we provide a risk management tool for the policymaker that allows for a

complete visualization of growth dynamics under average and α-stressed scenarios of her

choice with warning signals coming from the quantiles in the left tail of the stressed growth

densities. We see GiS as a complementary measure to GaR. Applied systematically, GiS is

an useful tool for policymakers wishing to carry out a multi-dimensional scenario analysis.
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Table 1: Variables included in the worldwide financial block: Term spread; Price earning ratio
on national stock exchange (PER); Nominal effective exchange rate (NEER); Bilateral national
exchange rate against USD (ER); Historical volatility 30 days (VOL); and Sovereign spread.
Countries in which each of these variables is observed.

Term spread PER NEER ER VOL Sovereign spread
Argentina x x x
Australia x x x x x
Austria x x x
Bahrain x
Belgium x x x
Brazil x x x x x
Bulgaria x x x
Canada x x x x x
Chile x x x x x
China x x x x x x
Colombia x x x x x
Cyprus x
Czech Republic x x x x
Denmark x x x
Egypt x
Finland x x x
France x x x
Germany x x x
Greece x x
Hong Kong x
Hungary x x x x x x
India x x x x x
Indonesia x x x x x
Ireland x x
Israel x x x x x
Italy x x x
Japan x x x x x
Korea x x x x x
Kuwait x
Luxembourg x
Malaysia x x x x x x
Malta x
Mexico x x x x x
Morocco x
Netherlands x x
New Zealand x x x x x
Norway x x x x x
Pakistan x
Peru x x x x x
Philippines x x x x x x
Poland x x x x x
Portugal x
Qatar x
Romania x x x
Russia x x x x x x
Singapore x x x
Slovenia x
South Africa x x x x x x
Spain x x
Sri Lanka x
Sweden x x x x x
Switzerland x x x x x
Taiwan x x x
Thailand x x x x x
Turkey x x x x x
United Arab Emirates x
United Kingdom x x x x x
United States x x x
Venezuela x
Vietnam x
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Table 2: Countries included in the worldwide macroeconomic block: GDP in millions of US
Dollars and, in parenthesis, percentage over total world GDP.

Country GDP (Percentage) Country GDP (Percentage)
1 South Africa 351,431.65 (0.40%) 33 Denmark 348,078.02 (0.40%)
2 Argentina 449,663.45 (0.51%) 34 Estonia 31,386.95 (0.04%)
3 Brazil 1,839,759.04 (2.10%) 35 Finland 268,761.20 (0.31%)
4 Canada 1,736,425.63 (1.98%) 36 France 2,715,518.27 (3.10%)
5 Chile 282,318.16 (0.31%) 37 Germany 3,845,630.03 (4.40%)
6 Colombia 323,802.81 (0.37%) 38 Greece 209,852.76 (0.24%)
7 Mexico 1,258,286.72 (1.43%) 39 Hungary 160,967.16 (0.18%)
8 Peru 226,848.05 (0.26%) 40 Iceland 24,188.04 (0.03%)
9 United States 21,374,418.88 (24.37%) 41 Ireland 388,698.71 (0.44%)
10 Venezuela 482,359.32 (0.55%) 42 Italy 2,001,244.39 (2.28%)
11 China 14,342,902.84 (16.35%) 43 Latvia 34,117.20 (0.04%)
12 Hong Kong 366,029.56 (0.42%) 44 Lithuania 54,219.32 (0.06%)
13 India 2,875,142.31 (3,28%) 45 Luxembourg 71,104.92 (0.08%)
14 Indonesia 1,119,190.78 (1.28%) 46 Malta 14,786.16 (0.02%)
15 Israel 395,098.67 (0.45%) 47 Moldova 11,955.44 (0.01%)
16 Japan 5,081,769.54 (5.79%) 48 Netherlands 909,070.40 (1.04%)
17 Jordan 43,743.66 (0.05%) 49 Norway 403,336.36 (0.46%)
18 Kazakhstan 180,161.74 (0.21%) 50 Poland 592,164.40 (0.68%)
19 Korea, Rep. 1,642,383.22 (1.87%) 51 Portugal 237,686.08 (0.27%)
20 Malaysia 364,701.52 (0.42%) 52 Romania 250,077.44 (0.29%)
21 Philippines 376,795.51 (0.43%) 53 Russia 1,699,876.58 (1.94%)
22 Singapore 372,062.53 (0.42%) 54 Serbia 51,409.17 (0.06%)
23 Thailand 543,649.98 (0.62%) 55 Slovenia 53,742.16 (0.06%)
24 Taiwan 586,000 (0.67%) 56 Slovak Republic 105,422.30 (0.12%)
25 Vietnam 261,921.24 (0.30%) 57 Spain 1,394,116.31 (1.59%)
26 Turkey 754,411.71 (0.86%) 58 Sweden 530,832.91 (0.61%)
27 Austria 446.314,74 (0.51%) 59 Switzerland 703,082.44 (0.80%)
28 Belarus 63,080.46 (0.07%) 60 Ukraine 153,781.07 (0.18%)
29 Belgium 529,606.71 (0.60%) 61 United Kingdom 2,827,113.18 (3.22%)
30 Czech Republic 246,489.25 (0.28%) 62 Australia 1,392,680 (1.59%)
31 Croatia 60,415.55 (0.07%) 63 New Zealand 206,928.77 (0.24%)
32 Cyprus 24,564.65 (0.03%)
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Table 3: Estimates of the parameters of h-step-ahead factor-augmented quantile regression
models for the τ = 5%, 50% and 95% quantiles of the US growth distribution. Estimation
sample from 2005Q3 up to 2020Q1. p-values in parenthesis and in bold parameters significant
at the 10% significance level.

µ φ Global Worldwide WF DM WM R1

τ = 0.05
h = 1 -2.62 0.15 0.68 2.19 -1.20 -1.21 3.44 0.49

(0.00) (0.54) (0.26) (0.00) (0.01) (0.03) (0.00)

h = 2 -2.03 -0.39 2.27 1.83 -1.65 -0.59 3.61 0.46
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

h = 3 -4.55 0.91 2.61 1.35 -1.24 -2.00 -1.09 0.40
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02)

h = 4 -0.73 -1.08 0.15 -1.03 -3.12 -0.83 -0.73 0.39
(0.39) (0.01) (0.87) (0.22) (0.00) (0.31) (0.36)

τ = 0.5
h = 1 2.04 -0.19 0.45 -0.01 -0.87 0.48 0.58 0.16

(0.00) (0.37) (0.38) (0.99) (0.02) (0.28) (0.19)

h = 2 2.39 -0.15 0.09 -0.30 -0.58 0.34 0.03 0.11
(0.00) (0.40) (0.83) (0.40) (0.07) (0.36) (0.94)

h = 3 1.95 0.13 -0.14 -0.21 -0.56 -0.22 -0.34 0.11
(0.00) (0.50) (0.76) (0.60) (0.11) (0.59) (0.39)

h = 4 2.57 -0.31 0.19 -0.18 -0.31 0.26 0.28 0.16
(0.00) (0.02) (0.54) (0.52) (0.19) (0.34) (0.30)

τ = 0.95
h = 1 4.33 -0.24 1.30 0.62 -1.06 0.23 -0.59 0.36

(0.00) (0.01) (0.00) (0.00) (0.00) (0.21) (0.00)

h = 2 4.52 -0.34 0.77 0.23 -0.28 0.86 -0.32 0.22
(0.00) (0.00) (0.01) (0.33) (0.17) (0.00) (0.18)

h = 3 3.45 0.18 -0.26 0.14 -0.82 -0.31 -0.67 0.35
(0.00) (0.05) (0.25) (0.49) (0.00) (0.12) (0.00)

h = 4 4.73 -0.56 0.31 0.53 -1.08 -0.15 -0.14 0.32
(0.00) (0.00) (0.23) (0.02) (0.00) (0.51) (0.51)
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Table 4: US growth risk (in annualized percentage over previous quarter). The table reports h-
step-ahead forecasts of the 5% quantile of growth with information up to 2020Q1 and computed
by GaR (without stressing the underlying factors) and by GiS (with factors stressed at 70%,
95% and 99%).

h = 1 h = 2 h = 3 h = 4
2020Q2 2020Q3 2020Q4 2021Q1

Observed -31.20 33.89 4.50 6.30
τ = 0.05
GaR -15.29 -18.07 -1.04 2.55
GiS(70%) -25.49 -29.01 -9.70 -5.24
GiS(95%) -29.13 -32.84 -12.53 -7.99
GiS(99%) -31.48 -35.39 -14.58 -9.74
τ = 0.50
GaR -4.94 -3.94 2.36 3.10
GiS(70%) -12.29 -10.63 -3.06 -1.78
GiS(95%) -14.83 -12.96 -4.96 -3.51
GiS(99%) -16.49 -14.51 -6.18 -4.62
τ = 0.95
GaR 0.98 3.00 4.34 3.40
GiS(70%) -6.04 -3.22 0.24 0.02
GiS(95%) -8.42 -5.25 -1.23 -1.20
GiS(99%) -9.96 -6.56 -2.17 -2.00
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Figure 1: Illustration of factor scenario construction and GiS and GaR. Upper panel:
The straight lines represent the iso-5% quantile growth for q0.05 (yt+1|Ft) = −3.35 (green),
q0.05 (yt+1|Ft) = −2.35 (black), q0.05 (yt+1|Ft) = −1.35 (blue), and q0.05 (yt+1|Ft) = −0.5 (red).
The ellipses represent the contours of the bivariate standard Normal probability density of the
factors with means 5 and 2, respectively. The outer ellipse contains the factors with a 99%
probability, while each of the inner ellipses contains the factors with the same probability of
the previous one minus 1%. Lower panel: Bivariate standard Normal probability density of
factors with means 5 and 2, together with the cuts of the density obtained for the same values
of the iso-5% quantiles of growth as those in the top panel.
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Figure 2: Estimated factors from multi-level DFM with their pointwise 95% confidence bounds.
Total factor F1, worldwide factor F2, worldwide financial factor F3, domestic macroeconomic
factor F4, and worldwide macroeconomic factor F5. Estimation sample from 2005Q3 up to
2020Q1.

(a) F1 (b) F2

(c) F3 (d) F4

(e) F5
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Figure 3: Estimated parameters of the factor-augmented predictive quantile regressions for each
quantile of the growth distribution ranging from τ∗ = 0.5 to τ∗ = 0.95 and for horizons h = 1
(black) and 4 (red) lines. The shade areas represent the 95% confidence pointwise intervals for
the parameters (blue for h = 1 and light red for h = 4).

42



Figure 4: One-step-ahead US growth densities estimated from the factor-augmented quantile
regression model with multi-level factors. The densities are calculated when factors are centered
at their means (upper panel), and when they are stressed at the 95% level (lower panel).
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Figure 5: One-step-ahead US conditional growth densities in 2008Q4 (after the 2008 Great
Recession), 2017Q1 (low uncertainty), and 2020Q2 (COVID-crisis). Densities calculated when
factors are centered at their means (black) and when they are stressed at the 95% level (blue).
The vertical dashed lines in black (GaR) and blue (GiS) correspond to the values of the 5%
quantile of their respective densities.

Figure 6: US quarterly growth (annualized rates, black line). 5% (GaR) and 95% quantiles
(dashed lines) of the conditional one-step-ahead distribution of growth. In shades of light red
(grey) the 5% (GiS) and 95% (25% and 75%) quantiles of the conditional α-stressed density
with α = 95%.
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Online Appendix

Expecting the unexpected: Stressed scenarios for economic

growth

A A brief review of the literature on growth vulnerability

In this section, we review the increasingly growing literature on macroeconomic risk mea-

surement, which is now even more relevant precisely because of the havoc generated by

the historically unprecedent decline in growth for most countries around the world ob-

served during the COVID pandemic. It is desirable for policymakers to be prepared for

extreme and unexpected shocks that could generate severe recessions as well as for the

implementation of corrective measures to minimize their risks; see Kilian and Manganelli

(2008) and Alessi et al. (2014) for the importance of having appropriate measures of risk

for policymakers and central banks, respectively. The high costs of recessions underscore

the need to strengthen the resilience of the economies, notably by assessing early on po-

tential vulnerabilities that can lead to such costly events; see the discussion in Rohn et

al. (2015), who describe more than 70 vulnerability indicators that could be monitored

to assess country risks in OECD economies, and Ludvigson et al. (2021), who discuss the

economic costs of the COVID19 pandemic in the US.

Recent popular macroeconomic risk indexes are based on estimates of the full prob-

ability distribution of growth; see, for example, Ravazzolo and Rothman (2016) for an

early contribution proposing a recession index indicator for US GDP based on the growth

density modelled as a function of oil prices; De Nicoló and Lucetta (2017), who propose

using factor-augmented quantile regressions for industrial production growth and employ-

ment growth; and Chavleishvili and Manganelli (2019), who forecast euro area industrial

production using quantile VAR models. More recently, Adrian et al. (2019) propose the

Growth at Risk (GaR) index, which is a lower quantile of the growth density modelled

as a function of “domestic” underlying financial factors. GaR has become part of the

toolbox of academics and policymakers to measure growth vulnerability. For example, it

has been adopted by the International Monetary Fund (IMF) as the main quantitative

criterion to gauge global financial stability risk; see Prasad et al. (2019) and Adrian et

al. (2020) for descriptions of the use of GaR at the IMF.

Conceptually, GaR mimics the spirit of the popular Value-at-Risk (VaR) measure of

financial risk and, consequently, it also shares its caveats. The VaR is an extreme quantile

(often 1% or 5%) of the distribution of financial returns in normal times. However,

a regulator should also be concerned about quantiles of the distribution of returns in

adverse environments as, for example, catastrophic financial events; see, for example, the

discussion by Acharya et al. (2012). Given that VaR is not designed to measure financial

risk under these adverse environments or stressed conditions, there is a large number of

works on financial stress testing and stress scenarios; see, for example, Borio et al. (2014),

Flood and Korenko (2015) and Wang and Ziegel (2021).
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Similarly, when dealing with economic growth, stress refers to the analysis of the con-

ditional distribution of GDP growth when exposed to extreme shocks, which are rare and

large in magnitude relative to the shocks expected during tranquil times. It is important

to note that the growth densities from which the GaR is obtained are estimated under

normal economic environments and not when the economy is stressed by an extremely

large and unexpected shock. Using econometric tools designed to analyse the average

effect of macroeconomic and financial variables on the quantiles of growth is bound to

miss important effects, which arguably only arise when the system is affected by extreme

shocks. Standard econometric tools may not be adequate to distinguish a potentially

large growth decline in a normal economic environment from a potentially huge loss in

a stressed economy working under adverse conditions. GaR is not designed to measure

growth densities in stressed conditions and, consequently, it could not be adequate to

measure the exposure of growth to potential extreme risks; see, for example, Plagborg-

Möller et al. (2020), who show that GaR did not yield useful advanced warnings of tail

risk during the COVID19 pandemic. Therefore, the need of developing new instruments

to measure economic risk in adverse environments seems evident.

B Factors obtained in each subset of variables

Consider X∗t = (X1t, X2t, X3t, X4t)
′, the entire set of domestic/worldwide and/or finan-

cial/macroeconomic variables, where X1t is the block of N1 = 105 domestic financial (DF)

variables, X2t contains the N2 = 208 worldwide financial (WF) variables, X3t is the block

of N3 = 248 domestic macroeconomic (DM) variables, and X4t contains the N4 = 63

worldwide macroeconomic (WM) variables. In order to determine the number of factors

within each individual block, Xit, i = 1, ..., 4, we analyse visualy the scree plot in Figure

B.1, which also reports the percentage of total variability explained by each factor. The

number of factors chosen within X1 and X3 is 2, while X2 has 3 factors and X4 one. Each

of the factors chosen within each block explain at least 10% of the total variability. Note

that the procedure implemented to specify the factor structure of the multi-level DFM

requires that there are at least two factors within each block of variables. Consequently,

we also consider two factors in X4. Therefore, there are 9 common factors altogether.27

The specification of the factor structure of the multi-level DFM proposed by Hallin and

Liska (2011) rely on the analysis of the pairwise correlations of the factors estimated sep-

arately from each block of variables. Consequently, we compute the pairwise correlations

among the 9 factors. To avoid the effect of influential points on the estimated correla-

tions, we delete from their computation, the factors corresponding to 2008Q4, 2009Q1 and

2020Q1. The estimated pair-wise cross-correlations are reported in Figure B.2 together

with scatter plots of the estimated factors. We can observe that there are two important

correlations to be considered when building the multi-level factor model structure. First,

27Using the criteria proposed by Alessi et al. (2010), the number of common factors in the block of
DF variables is 2, while the number of factors in the block of WF variables is 6. On the other hand, the
number of common factors in the blocks of DM and WM variables is 3.
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there is a strong positive correlation between the second WM factor and the first WF

factor while the first WM factor and the second WF factors are negatively correlated. On

the other hand, worldwide and domestic factors are only correlated when we look at the

financial factors with the second DF factor having a mild positive correlation with the first

WF factor and a stronger negative correlation with the third WF factor. The pairwise

correlations plotted in Figure B.2 suggest the following block structure in the factors,

with some of them being common to all variables (pervasive), other being common to one

(non-pervasive) or several (semipervasive) blocks of variables,

X∗t =


X1t

X2t

X3t

X4t

 =


p11 0 p13 p14 0 0 0

p21 p22 p23 0 p25 0 0

p31 0 0 p34 0 p36 0

p41 p42 0 0 0 0 p47





F ∗1t

F ∗2t

F ∗3t

F ∗4t

F ∗5t

F ∗6t

F ∗7t


+ ε∗t , (B.1)

Figure B.1: Scree plots of each block of variables: Domestic Financial (first row, first column),
Domestic Macroeconomic (first row, second column), Worldwide Financial (second row, first
column), and Worldwide Macroeconomic (second row, second column). For each factor, we
report the percentage of explained total variability.
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C Factor-augmented quantile predictive regressions based on

alternative number of factors: A robustness check

After extracting the common factors separately from each block of variables,28 we com-

pute the factor-augmented quantile regressions by considering as regressors each subset

of factors separately and by introducing all 9 factors together. The estimated parameters

are reported in Table C.1 together with the corresponding R1 coefficients. Three main

conclusions emerge from Table C.1. Let us look first to the estimates reported when

each set of factors is introduced separately. We can observe that different quantiles of

the distribution of growth may depend on different factors. Note that, when τ ∗ = 0.05,

the largest R1 is obtained when the DM factors are used as regressors, while the largest

R1 is obtained for DF when τ ∗ = 0.5. Finally, when τ = 0.95 the maximum R1 is 0.25

regardless of whether DM or WF factors are used as regressors. In any case, the differ-

ences between the fit of the four factor-augmented quantile regressions are not large. The

second conclusion from the results of the four separate regressions reported in Table C.1 is

that the signs of the estimated parameters are as expected. The effect of financial factors

on the τ ∗ = 0.05 quantile is negative while macroeconomic factors have a positive effect.

When looking at the results of the factor-augmented quantile regression estimated

with the 9 factors, we can observe that the fit coefficient, R1, clearly increases up to

0.63. However, note that the signs of the factors are not as expected, a clear signal of the

presence of strong multicolineality among the regressors (factors).

Comparing Tables C.1 and 3, we can observe that the fit of the factor-augmented

quantile regressions based on the multi-level factors is much higher at the extreme quan-

tiles than the fit of the quantile regressions with factors extracted from separate DFM

based on subsets of variables and slightly smaller than when the factor-augmented quan-

tile regressions are estimated with all 9 original factors extracted separately from each

block. However, it is important to point out that the R1 coefficient is not corrected by

the number of parameters to be estimated. Furthermore, a large number of factors may

be computationally problematic when estimating the joint densities of the factors and the

tangency points between the iso-quantile lines and the contours of the factors.

Finally, the robustness check on the factors used to estimate the quantiles of the dis-

tribution of growth is carried out by estimating the factor-augmented predictive quantile

regressions when the factors are extracted from the multi-level DFM in equation (13) with

7 factors and X∗t including the DF variables. The results are reported in Table C.2. When

looking at the results for τ = 0.05, we can observe the problems pointed out above about

the signs of the financial factors being positive while they are expected to be negative.

Once more, this effect could be due to the presence of multicolinearity when the factors

are extracted from the multi-level DFM in (13). In any case, the coefficients R1 obtained

hen using the 7 factors from this latter model are only slightly larger than those reported

in Table 3 for the multi-level DFM with only 5 factors obtained without including the DF

28Note that the correlation between the first DF factor and the NFCI is 97%.

49



T
ab

le
C

.1
:

E
st

im
at

es
o
f

th
e

p
ar

am
et

er
s

of
1
-s

te
p

-a
h

ea
d

fa
ct

or
-a

u
gm

en
te

d
re

gr
es

si
on

m
o
d

el
s

fo
r

th
e

5%
,

50
%

an
d

95
%

q
u

an
ti

le
s

of
th

e
U

S
gr

ow
th

d
is

tr
i-

b
u

ti
o
n

.
T

h
e

fa
ct

or
s

ar
e

ex
tr

ac
te

d
se

p
ar

at
el

y
fr

om
th

e
d

om
es

ti
c

fi
n

an
ci

al
(D

F
),

w
or

ld
w

id
e

fi
n

an
ci

al
(W

F
),

d
om

es
ti

c
m

ac
ro

ec
on

om
ic

(D
M

)
an

d
w

or
ld

w
id

e
m

a
cr

o
ec

on
o
m

ic
(W

M
)

b
lo

ck
s

o
f

va
ri

ab
le

s.
E

st
im

at
io

n
sa

m
p

le
fr

om
20

05
Q

3
u

p
to

20
20

Q
1.
p
-v

al
u

es
in

p
ar

en
th

es
is

.

A
ll

fa
ct

or
s

D
F

fa
ct

or
s

W
F

fa
ct

o
rs

D
M

fa
ct

o
rs

W
M

fa
ct

o
rs

τ
=

0.
05

τ
=

0.
5

τ
=

0.
95

τ
=

0.
05

τ
=

0.
5

τ
=

0.
9
5

τ
=

0.
0
5

τ
=

0.
5

τ
=

0.
9
5

τ
=

0.
0
5

τ
=

0.
5

τ
=

0.
9
5

τ
=

0.
0
5

τ
=

0.
5

τ
=

0.
9
5

µ
-1
.7
8

1
.9
3

4
.1
5

-1
.6
9

1
.9
5

4
.5
9

-4
.9
4

2
.0
7

4
.5
3

-0
.3

4
2
.1
5

4
.6
9

-4
.3
6

1
.9
1

4
.7
7

(0
.0

0
)

(0
.0

0
)

(0
.0

0
)

(0
.0

0
)

(0
.0

0
)

(0
.0

0
)

(0
.0

0
)

(0
.0

0
)

(0
.0

0
)

(0
.0

0
)

(0
.0

0
)

(0
.0

0
)

(0
.0

0
)

(0
.0

0
)

(0
.0

0
)

φ
0
.3
3

-0
.1

2
-0
.2
2

0.
04

-0
.1

3
-0

.1
3

1
.1
7

-0
.1

0
-0
.1
4

-0
.6
1

-0
.1

1
-0

.2
4

0
.9
4

0
.0

4
-0

.0
2

(0
.0

7
)

(0
.6

1
)

(0
.0

1
)

(0
.7

9
)

(0
.3

7
)

(0
.7

7
)

(0
.0

0
)

(0
.5

9
)

(0
.0

0
)

(0
.0

0
)

(0
.3

9
)

(0
.4

9
)

(0
.0

0
)

(0
.6

4
)

(0
.9

4
)

β
1

-2
.1
7

-0
.3

0
-1
.0
5

-3
.1
8

-1
.6
4

-1
.1

7
(0

.0
3
)

(0
.8

1
)

(0
.0

3
)

(0
.0

0
)

(0
.0

0
)

(0
.2

6
)

β
2

-1
.5
0

-0
.3

4
-0

.2
0

-0
.4
4

0
.5
1

0
.4

4
(0

.0
2
)

(0
.6

7
)

(0
.5

2
)

(0
.1

0
)

(0
.0

2
)

(0
.5

4
)

β
3

0.
74

-0
.7

0
0
.5
8

-0
.4

3
-0
.8
7

-0
.2
0

(0
.1

7
)

(0
.3

2
)

(0
.0

4
)

(0
.5

3
)

(0
.0

2
)

(0
.0

0
)

β
4

3
.0
7

0.
97

-0
.1

7
-0

.2
0

-0
.4

0
-0
.8
8

(0
.0

0
)

(0
.2

1
)

(0
.5

7
)

(0
.7

3
)

(0
.2

0
)

(0
.0

0
)

β
5

1
.1
1

0.
10

-0
.5
0

-0
.9

4
-0
.5
1

-1
.0
0

(0
.0

3
)

(0
.8

8
)

(0
.0

4
)

(0
.1

1
)

(0
.1

0
)

(0
.0

0
)

β
6

0.
98

0.
48

1
.2
5

4
.4
7

1
.2
2

1
.7
0

(0
.4

0
)

(0
.7

5
)

(0
.0

4
)

(0
.0

0
)

(0
.0

0
)

(0
.0

4
)

β
7

0.
54

-0
.0

2
0
.3
5

-0
.3
6

-0
.0

3
0
.1

1
(0

.1
1
)

(0
.9

6
)

(0
.0

4
)

(0
.0

6
)

(0
.8

6
)

(0
.8

1
)

β
8

2
.1
2

1.
00

-0
.3

0
0
.2

5
0
.6
7

0
.9

4
(0

.0
0
)

(0
.2

2
)

(0
.3

3
)

(0
.7

1
)

(0
.0

0
)

(0
.2

8
)

β
9

2
.9
6

0
.9
8

0.
11

1
.5
4

0
.0

0
-0

.3
8

(0
.0

0
)

(0
.0

5
)

(0
.5

8
)

(0
.0

0
)

(0
.9

8
)

(0
.5

2
)

R
1

0.
63

0.
23

0.
41

0.
36

0.
14

0
.1

7
0
.3

4
0
.1

0
0
.2

5
0
.3

9
0
.1

2
0
.2

5
0
.3

1
0
.0

9
0
.0

7

50



variables.

Table C.2: Estimates of the parameters of 1-step-ahead factor-augmented predictive quantile
regression models for the 5%, 50% and 95% quantiles of the US growth distribution. The
factors are extracted from the multi-level DFM with X∗ = (X1, X2, X3, X4). Estimation sample
from 2005Q3 up to 2020Q1. p-values in parenthesis and in bold parameters significant at 10%
significance level.

τ = 0.05 τ = 0.5 τ = 0.95
µ -0.88 2.03 4.33

(0.06) (0.00) (0.00)

φ -0.64 -0.35 -0.27
(0.00) (0.05) (0.00)

Global factor 0.26 0.14 0.13
(0.00) (0.00) (0.00)

Worldwide factor 0.09 -0.02 0.05
(0.19) (0.78) (0.01)

Domestic factor 2.57 0.90 1.30
(0.00) (0.03) (0.00)

Financial factor 0.36 -0.75 -0.29
(0.40) (0.05) (0.03)

WF factor 11.63 4.48 -1.95
(0.00) (0.01) (0.00)

DM factor 5.29 1.81 0.99
(0.00) (0.00) (0.00)

WM factor 1.35 1.61 0.65
(0.01) (0.00) (0.00)

R1 0.54 0.19 0.39
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D Marginal effects

The ratios between the estimated parameters of the one-step-ahead factor-augmented

predictive quantile regressions represent the pairwise marginal rate of substitution between

factor i and factor j, denoted as MRS(i, j) = βi/βj i.e. the variation in factor j needed to

maintain constant the quantile of growth when factor i varies in one unit, given all other

factors in the model being constant. Note that MRS(i, j) gives a notion about the relative

price of the risk of the factors.29 These MRS are plotted in Figure D.1 together with their

95% confidence bounds, obtained only when both estimated regression parameters are

significant.30 Among the most important conclusions from the MRS plotted in Figure

D.1, we can observe that, for the lower quantiles of the distribution of growth, the MRS

between the worldwide financial factor and the global factor is larger than 1. In fact,

when the worldwide financial factor increases in a unit, the global factor needs to increase

in approximately 1.5 units to maintain in the same level the 5%-25% quantiles of growth.

Furthermore, for these same quantiles, the MRS between the worldwide macroeconomic

factor and the global factor is approximately equal to -1, implying that the global factor

has to decrease in a unit when the worldwide macroeconomic factor increases in a unit to

maintain them in the same levels. The same risk of the factors is observed for the 80%-

90% quantiles of the distribution of growth. Finally, for the 5% quantile of growth, the

MRS between the worldwide financial factor and the worldwide macroeconomic factor

is approximately -3. Therefore, the worldwide macroeconomic factor has to decrease

in 3 units when the worldwide financial factor increases in one unit to maintain this

quantile of growth at the same level. However, for the 10%-40% quantiles, the MRS

between these two latter factors is -1.5. Therefore, for low quantiles of the distribution

of growth in the US, the risks associated with the global and worldwide macroeconomic

factors is similar. However, the risk associated with the worldwide financial factor is

larger than those associated with the global and worldwide macroeconomic factors and,

consequently, growth suffers more loss from movements in the former as compared to

movements in the two latter factors. It is important to note that the MRS described

above refer to the global and worldwide factors. When looking at the results for the

domestic macroeconomic factor, we observe some significant MRS mainly for the 5%

quantile of growth. In particular, the worldwide macroeconomic factor has to increase

in one unit when the domestic factor increases in one unit. On the other hand, the

domestic macroeconomic factor needs to decrease in 3 and 1.5 units when the worldwide

financial factor and the worldwide factor increase in one unit, respectively. Once more,

it seems that the risk associated with the worldwide financial factor is stronger than that

associated with domestic macroeconomic factors.

29We are very grateful to a referee for her/his suggestion of estimating the MRSs.
30The 95% confidence bounds are constructed using the delta method; see Lye and Hirschberg (2018)

for a discussion on the construction of confidence bounds for ratios.
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Figure D.1: Ratios of estimated parameters of the factor-augmented predictive quantile regres-
sions for each quantile of the growth distribution ranging from τ∗ = 0.5 to τ∗ = 0.95 and for
horizon h = 1. The shade areas represent the 95% confidence pointwise intervals for the ratios.
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