Lawrence Berkeley National Laboratory
 Recent Work

Title

POTENTIAL FUNCTION FOR THE V7VIBRATION OF PHOSPHORUS PENTAFLUORIDE

Permalink

https://escholarship.org/uc/item/4q09z2q3

Author

Abramowitz, Stanley
Publication Date
1975-04-01

LBL- 3790
Preprint e.

POTENTIAL FUNCTION FOR THE U VIBRATION OF PHOSPHORUS PENTAFLUORIDE

Stanley Abramowitz, Lawrence S. Bernstein, Janice J. Kim, Kenneth S. Pitzer, and Ira W. Levin

Prepared for the U.S. Energy Research and Development Administration under Contract W - 7405 -ENG-48
\square

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
00

POTENTIAL FUNCTION FOR THE ν_{7}
 VIBRATION OF PHOSPHORUS PENTAFLUORIDE

Stanley Abramowitz
National Bureau of Standards Washington, D. C. 20234
and
Lawrence S. Bernstein, Janice J. Kim and Kenneth S. Pitzer
Chemical and Inorganic Materials Research Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720
and
Ira W. Levin
Laboratory of Chemical Physics National Institute of Arthritis, Metabolism and Digestive Diseases National Institutes of Health Bethesda, Maryland 20014

ABSTRACT

The gas phase Roman spectrum of the $v y$ fundamental of PF_{5} has been observed under spectral resolutions approaching $1 \mathrm{~cm}^{-1}$. With the use of a two dimensional harmonic oscillation basis set and a potential function of the form $V(\rho, \phi)=\frac{1}{2} \underline{a}^{2}-\underline{b} \cos (3 \phi) \rho^{3}+\underline{c} \rho^{4}$, the observed spectrum was interpreted to yield a barrier to axialequatorial fluorine atom interchange of $1371 \mathrm{~cm}^{-1}$ ($3.92 \mathrm{KCal} / \mathrm{mole}$).

The v_{7} vibrational transition of the trigonal bipyramidal molecule PF_{5} has been the subject of numerous investigations. In earlier work, ${ }^{1} v_{7}$ could not be unambigously assigned to either the E' equatorial bend or the E' axial bend, or some appropriate linear combination of these modes. More recent studies, ${ }^{2-6}$ however, clearly establish that v_{7} is predominantly the E' equatorial bending distortion. Both the low frequency of the v_{7} vibration and its role in the axial-equatorial fluorine interchange process, $1^{1}, 7-9$ prompted an investigation ${ }^{10}$ in which gas phase Raman spectra of v_{7} were measured in an effort to observe "hot" bands. In the Raman spectrum, Witt et. al. ${ }^{10}$ observed the fundamental at $174 \mathrm{~cm}^{-1}$ and an additional transition at $177 \mathrm{~cm}^{-1}$. They correctly reasuned tiat a one-dimensional anharmonic potential was not consistent with the observed spectrum because a progression of other transitions would certainly be observed to either the high or the low energy side of the fundamental depending on the order (cubic and/or quartic) and the sign of the anharmonic term(s). They sugge ited other possibilities for the additional transition, but none were pursued in detail.

One important aspect of the v_{7} vibration which has not been properly considered in previous work is that v_{7} is a doutly degenerate vibration; hence, it must be described by a two-dimensional potential. To the usual isotropic harmonic oscillator approximatior, wlith gives a potential of D_{∞} symmetry, one gets evenly spaced vibrational levels
with a degenetacy of (nti). This is an accidental degeneracy because the maximum allowed true derencracy under $D_{\infty h}$ is two. If anharmonic terms are added to the harmonic potential this accidental degeneracy would be lifted; thus all levels with $n \geq 2$ would be split into two or more sublevels. We can go one step further and lower the symmetry of the potential to $\mathrm{D}_{3 h}$, which is the actual symmetry of the force field for a $\mathrm{MF}_{5}\left(\mathrm{D}_{3 \mathrm{~h}}\right)$ molecule. This anisotropy is especially important for PF_{5} because motions along the E^{\prime} bending coordinates leading to axial-equatorial interchange are expected to be energetically favored over other directions in E bending space. Under $D_{3 h}$ symmetry, which also has a maximum allowed true degeneracy of two, some of the doubly degenerate levels under D_{∞} will be further split into two components. In general, it is the lifting of the excess degeneracy of the isotropic harmonic oscillator which gives rise to the extra transition observed by Witt et. al. In order to support this interpretation we have remeasured the Raman spectra of the v_{7} vibration under higher instrumental resolution than previous investigations and have found additional transitions whict are correctly predicted by this approach (i.e., a $D_{3 h}$ potential).

EXPERJMENTAL

Raman spectra of gascous PF_{5} were observed at room temperature for sample pressures varying from 500-700 torr. Figure 1 displays a survey spectrum for v_{7} obtained with a multipass gas cell and a Jarrell Ash Model 400 Raman spectrophotometer equipped with an argon ion laser operating at 600 mw at $488.0 \mathrm{~nm} .^{11}$ Survey traces were scanned with spectral slits of $2.0 \mathrm{~cm}^{-1}$. Spectrarequiring larger chart dispersions and narrower slit widths (about $1 \mathrm{~cm}^{-1}$) for determining accurate . frequency measurements were recorded with a Spex Raman spectrophotometer. Exciting radiation of about 1 w in either the 488.0 or 514.5 nm lines of an argon ion laser was used with the Spex spectrophotometer. For the higher resolution studies the sample was contained in a cylindrical glass cell equipped with a Teflon stopcock. Both back and forward scattered Raman radiation from two passes of the laser beam were collected with suitable spherical mirrors and an $f / 1$ lens. Dispersed radiation was detected with a surface cooled ITT FW 130-S20 surface photomultiplier.

Comercial satiples of PF_{5} were purified to remove N_{2} and CO prior to scanning a spectrum. Other impurities, such as SiF_{4} and POF_{3}, were present in small quantities; however, transitions from these species do not occur in the $180 \mathrm{~cm}^{-1}$ region of interest. Multiple spectral scans were recorded inder various instrumental conditions for a number of sample pressures to verify the existence of weak features. Long
integration tines of 10-50 seconids; cuipled with slow scan speeds of $0.5 \mathrm{~cm}^{-1} / \mathrm{min}$, were used to record the spectra from which the reported frequencies were determined. The large chart sizes of these scans precludes direct journal reproduction; consequently, only a survey scan, is presented.

Spectra observed with the Spex monochromator at $1 \mathrm{~cm}^{-1}$ resolution differ, however, from the survey scan in Fig. 1 in several respects. The broad peak at $165 \mathrm{~cm}^{-1}$ is split into two features at 164 and 167 cm^{-1}. The $175 \mathrm{~cm}^{-1}$ feature displays a shoulder at $173 \mathrm{~cm}^{-1}$. A shoulder also appears on the high frequency side of the $178 \mathrm{~cm}^{-1} \mathrm{Q}$ branch about $180 \mathrm{~cm}^{-1}$. Finally, in addition to the $191 \mathrm{~cm}^{-1}$ feature, a weaker transition is discerned at $194 \mathrm{~cm}^{-1}$.

The v_{7} energy levels for PF_{5} were computed with a potential of the form

$$
V(\rho, \phi)=\frac{1}{2} \underline{a} \rho^{2}-\underline{b} \cos (3 \phi) \rho^{3}+c \rho^{4}
$$

 displacement coordinates which are related to the conventional symmetry coordinates $\left(S_{7 x}, S_{7 y}\right)^{12}$ by the usual transformations. The advantage of displaying the potential in polar displacement coordinates is to make it obvious that the potential has $D_{3 h}$ symmetry. The derivation of this potential, to be discussed in a future paper, is analogous to a recent formulation of the one-dimensional potential describiug the inversion of $\mathrm{NX}_{3}\left(\mathrm{C}_{3 \mathrm{v}}\right)$ molecules. ${ }^{13}$ Essentially, a pseudo-Jahn-Teller effect has been used to couple the $D_{3 h}$ ground electronic state to higher states via the axial-equatorial interchange symmetry coordinates $\left(S_{6}, S_{7}\right) .{ }^{12}$

A model ${ }^{14}$ has been developed which shows that the above potential not only represents the potential for small displacements in the equatorial bend coordinates but also approximates the axial-equatorial fluorine interchange potential. Near the equilibrium structure the axial-equatorial interchange path occurs mainly along the equatcrial bend coordinates.

Approximate estimates of the constants a, b and c can be obtained by use of this model at large displacements. The results are

$$
\begin{align*}
& \underline{a}=K_{0} \\
& \underline{b}=\frac{K_{0}}{2 S_{0}} \\
& \underline{c}=\frac{K_{0}}{8 S_{0}^{2}}, \tag{2}
\end{align*}
$$

where K_{0} is the curvature of the potential at the $D_{3 h}$ equilibrium geometry and S_{0} is the location of the $C_{4 v}$ maximum along the interchange path of lowest energy (for the $\phi=0^{\circ}, 120^{\circ}, 240^{\circ}$ directions) which connects equivalent $D_{3 h}$ configurations. These relations were derived by requiring the first derivative of the above potential to be zero at the two neighboring $D_{3 h}$ configurations (i.e., at $\rho=0,2 S_{0}$) and at the $C_{4 v}$ transition intermediate $\left(\rho=S_{0}\right)$. In addition the second derivative of the potential was set equal to the curvature K_{0} at the equilibrium geometry.

The curvature z_{0} is estimated as the force constant in the expression $K_{0}=\left(5.9 \times 10^{-7}\right)\left(v_{7}^{2}\right) M_{7}$, where v_{7} is $175 \mathrm{~cm}^{-1}$ and M_{7} is the reduced mass associated with the $S_{7 x}$ coordinate. M_{7} was calculated by the high-low frequency separatio ${ }^{15}$ for the E' symmetry species in which S_{7} is taken as the low frequency vibration. Thus $K_{o} \simeq .089 \mathrm{mdyn} / \AA$. Geometrically, the $C_{4 v}$ configuration is not unique; hence, only a reasonable estimate of $S_{0}=.8 S_{7 x}\left(D_{3 h}\right)=1.57 \AA$ can be made. $S_{7 x}\left(D_{3 h}\right)$ represents the change in the $S_{7 x}$ coordinate in moving between neighboring $D_{3 h}$ con-

00104303254
-7-
figurations. From these values of K_{0} and S_{0} we estimate a $=.089$ $\operatorname{mdyn} / \AA, b=.028 \mathrm{mdyn} / \AA^{2}$ and $c=.0045 \mathrm{mdyn} / \AA^{3}$. If one substitutes the above relations into the potential and evaluates the potential at the $C_{4 V}$ geometry $\left(\rho=S_{0}\right)$, an estimate of the axial-equatorial interchange barrier can be made. We find $E\left(C_{4 v}\right)=\frac{K_{0} S_{0}{ }^{2}}{8}=1371 \mathrm{~cm}^{-1}$ ($392 \mathrm{Kcal} /$ mole). A more detailed discussion of axial-equatorial interchange barriers for the entire MF_{5} series ($\mathrm{PF}_{5}, \mathrm{AsF}_{5}, \mathrm{VF}_{5}, \mathrm{TaF}_{5}, \mathrm{NbF}_{5}$) will follow in a future paper.

We now return to the refinement of the constants a, b and c using the Raman data. The constants a, b and c were chosen to reproduce the $0 \rightarrow 1\left(A_{1}^{\prime} \rightarrow E^{\prime}\right)$ vibrational transition at $175 \mathrm{~cm}^{-1}$, the $1 \rightarrow 2\left(E^{\prime} \rightarrow E^{\prime}\right)$ transition at $178 \mathrm{~cm}^{-1}$, and the $1 \rightarrow 2\left(E^{\prime} \rightarrow \Lambda_{1}^{\prime}\right)$ transition at $164 \mathrm{~cm}^{-1}$. The fit to the remaining levels, obtained with these constraints, is sumuarized in Taible 1. The values of the potential constants were determined to be $a=.09080 \mathrm{mdyn} / \AA, b=.03 \mathrm{mdyn} / \AA^{\circ}$, and $c=.007$ $\operatorname{mdyn} / \AA^{3}$. The energy level calculation was done using a two-dimensional harmonic oscillator basis set and the coordinate transformation methods of Gwinn et. al. ${ }^{16}$ A maximum N value of $N=15$ was used where $N=n_{x}$ $+n_{y}$ is the total vibrational quantum number of the basis state. The value of $N=15$ yielded a total of 136 basis functions. The reduced mass was calculated to be $M_{7}=4.901$ amu using Wilson's high-low frequency approximation. ${ }^{15}$

Table 1 demonstrates two essential properties of the above potential. First it shows that one can simultaneously fit the $0 \rightarrow 1$, and the two
$l \rightarrow 2$ transitions. Sccondly, it shows the remarkably good agrement obtained for all six $2 \rightarrow 3$ transitions while only trying to fit the $0 \rightarrow 1$ and $1 \rightarrow 2$ transitions. It should be mentioned that we refined the potential parameters $a, b, c_{\text {b }}$ by hand only to the point where it was quite clear that our $\mathrm{D}_{3 \mathrm{~h}}$ potential is an adequate representation of the actual potential.

The sensitivity of the computed $1 \rightarrow 2$ transitions for various values of a, b and c is displayed in Figure 2. These curves were generated for various values of b and $\underset{c}{ }$ while the harmonic constant a was always adjusted to place the $0 \rightarrow 1$ transition at the observed value of $175 \mathrm{~cm}^{-1}$. There are two interesting features to these curves:
(1) the $E^{\prime} \rightarrow A_{1}^{\prime}$ r.ransition drops off snarply with increasing b, and (2) the $E^{\prime} \rightarrow E^{\prime}$ transition is relatively insensitive to changes in b. In fact, the $3 \mathrm{~cm}^{-1}$ difference between the $0 \rightarrow 1$ and $1 \rightarrow 2\left(E^{\prime} \rightarrow E^{\prime}\right)$ transitions is largely due to the quartic constant. c. These observations can be qualitatively accounted for by examining the second order perturbations of tre cubic term evaluated in the isotropic two dimensional harmonic oscillator basis.

It is well-kncwn that the wave functions of an isotropic two dimensional oscillator can be written ${ }^{17}$ in polar coordinates as

$$
\begin{array}{rl}
\Psi=l_{n k}(\rho) e^{i m \phi} & |m|=0,1,2 \ldots \\
n=|m|+2 k & k=0,1,2 \ldots
\end{array}
$$

The resulting states and their symmetry under the $\mathrm{D}_{3 \mathrm{~h}}$ point group are found in Table 2. The $\cos (3 \phi)$ dependence of the cubic term will

00004303255

mix states with $\Delta m= \pm 3$. Far the A_{1}^{\prime} state of the $n=2$ level we see that it is connected by the cubic term only to states higher in energy, such as the two Λ_{1}^{\prime} states of the $n=3$ level. To second order this can only serve to lower the $1+2\left(E^{\prime}-A_{1}^{\prime}\right)$ transition with increasing b relative to $175 \mathrm{~cm}^{-1}$. On the other hand the E^{\prime} state of the $n=2$ level is connected to the E^{\prime} state directly beneath and the E ' state directly above, which tends to cancel the second order effect of the cubic term and leaves the $1 \rightarrow 2\left(E^{\prime} \rightarrow E^{\prime}\right)$ transition relatively insensitive to b .

In addition to the frequencies assigned in Table 1 , a feature at $173 \mathrm{~cm}^{-1}$ and, possibly, a feature at $152 \mathrm{~cm}^{-1}$ remain unassigned. The observed spectrum is further complicated by the vibration-rotation interaction expectad for the degenerate E^{\prime} vibrational mode. Levin ${ }^{3}$ and Lockett et. al ${ }^{i 8}$ have shown that ζ_{7} should be about -0.15. Through a consideration of the Coriolis ζ sum rule and the Coriolis ζ interaction constants observed for' v_{5} and v_{6}, Witt et al ${ }^{10}$ computed the contours expected for a vibration-rotation contour for $-0.40 \leq \zeta_{7} \leq$ 0.30. The $\Delta v_{O P, R S}$ Jaries from 20.0 to $23.5 \mathrm{~cm}^{-1}$ for this variation in 5 . We assign the features at 167 and $187 \mathrm{~cm}^{-1}$ as the $O P$ and RS maxima associated with the $175 \mathrm{~cm}^{-1}(0 \rightarrow 1)$ transition. This corresponds to a $\Delta \nu_{O P, R S}$ of $20 \mathrm{~cm}^{-1}$ with an estimated uncertainty of about $2 \mathrm{~cm}^{-1}$; that is, the $\Delta v_{O P, R S}$ splitting is consistent with a value for ζ between 0.0 and -0.4 . Using the form of the potential in eq. (1), the calcula-
tion could be used to determine the nine Q branches; for the $3 \rightarrow 4$ hot band transitions. On the basis of populations determined from vibrational partition functions, these transitions are expected to be significantly weaker than the $0 \rightarrow 1,1 .+2$ and $2+3$ transitions. The weakness of the $3 \rightarrow 4$ transitions coupled with their number, prevents assignment of these features from traces recorded under the present instrumental conditions.

As one might expect the other $\mathrm{MF}_{5}\left(\mathrm{D}_{3 \mathrm{~h}}\right)$ molecules such as $\mathrm{AsF}_{5}, \mathrm{TaF}_{5}$ and NbF_{5} should show a ν_{7} spectra very similar to that of PF_{5}. We are currently studying $\Lambda \mathrm{sF}_{5}$ and find this to be the case.

Acknowledarients

We wish to thank both Dr. James Willis for his aid in obtaining survey Raman spectra for PF_{5} and Professor H. L. Strauss for helpful discussions. L.S.B., J.J.K. and K.S.P. express their appreciation to the U. S. Atomic Energy Commission for their support.

1. See, for example, (a) R. R. Holmes, R. M. Dieters, J. A. Golen, Inorg. Chem. 8, 2612 (1969), (b) P. C. Van Der Voorn, K. F. Purcell and R. S. Drago, J. Chem. Phys. 43, 3457 (1965) and references cited therein.
2. I. W. Levin, J. Chem. Phys. 50, 1031 (1969).
3. I. W. Levin, J. Mo1. Spectroscopy, 33, 61 (1970).
4. L. S. Bartell, Inorg. Chem. 9, 1594 (1970).
5. R. R. Holmes, J. A. Golen, Inorg. Chem. 9, 1596 (1970).
6. L. S. Bartell and V. Plato, J. Am. Chem. Soc. 95, 3097 (1973).
7. R. S. Berry, J. Chem. Phys. 32, 933 (1960).
8. L. C. Hoskins, R. C. Lord, J. Chem. Phys. 46, 2402 (1967).
9. R. R. Holmes, Accts. of Chem. Res. 5, 296 (1972).
10. J. D. Witt, I. A. Carreira and J. R. Durig, J. Mol. Structure, 18, 157 (197:).
11. Certain comercial instruments are identified to specify completely the experimental procedure. In no case does such identification imply a recommendation or endorsement by the institutions jnvolved in this research.
12. The relevant symmetry coordinates for the E ' species bending modes are defined as follows:

$$
\begin{aligned}
& S_{6 x}=1 / \sqrt{2} r_{a} \Delta\left(2 \beta_{14}-\beta_{24}-\beta_{34}+2 \beta_{15}-\beta_{25}-\beta_{35}\right) \\
& S_{6 y}=1 / 2 r_{a} \Delta\left(\beta_{24}-\beta_{34}+\beta_{25}-\beta_{35}\right) \\
& S_{7 x}=1 / \sqrt{6} r_{e} \Delta\left(2 \alpha_{23}-\alpha_{12}-\alpha_{13}\right) \\
& S_{7 y}=1 / \sqrt{2} r_{e} \Delta\left(\alpha_{13}-\alpha_{12}\right)
\end{aligned}
$$

where α repres \in nts the equilibrium PF_{3} equatorial angles and B represents the equilibrium axial angles, r_{a} and r_{e} are defined as the equilibrium axial and equatorial bond distances, respectively.
13. L. S. Bernstioin, (submitted to J. Chem. Phys.)
14. L. S. Bernstein, "Large Amplitude Notion in Molecules," Ph.D. Thesis, 1974, Department of Chemistry, University of Cabifornia, Berkeley, California. (LBL report: 2701).
15. E. B. Wilson, J. C. Decius and P. C. Cross, "Molecular Vibrations," McGraw-Hill Book Co., Inc., New York (1955).
16. D. O. Harris, G. G. Engerholm and W. D. Gwinn, J. Chem. Phys. 43, 1515 (1965).
17. G. Herzberg, "Molecular Spectra and Molecular Structure, II. Infrared and Raman Spectra of Polyatomic Molecules," p. 81, D. Van Nostrand Co., Inc., Princeton, N. J. (1945).
18. P. Lockett, W. Fowler and P. M. Wilt, J. Chem. Phys. 53, 452 (1970).

Table 1

Observed, computed frequencies (cm^{-1}) and assignments for Q branches in v_{7} region

Transition ${ }^{\text {a }}$	Species	v calc	$\nu_{\text {obs }}$
$0 \rightarrow 1$	$A_{1}{ }^{\prime} \rightarrow E^{\prime}$	175.0	175
$1 \rightarrow 2$	$E^{\prime} \rightarrow E^{\prime}$	177.9	178
	$E^{\prime} \rightarrow A_{1}{ }^{\prime}$	164.6	164
$2 \rightarrow 3$	$E^{\prime} \rightarrow E^{\prime}$	154.7	159 (w)
	$A_{1}^{\prime}{ }^{\prime} \rightarrow E^{\prime}$	$168.0{ }^{\text {b }}$	\cdots
	$E^{\prime} \rightarrow A_{1}{ }^{\prime}$	$178.4{ }^{\text {b }}$	
	$E^{\prime} \rightarrow A_{1}{ }^{\prime}$	182.0	180 Sh
	$A_{1}{ }^{\prime} \rightarrow A_{1}{ }^{\prime}$	191.7	191 Sh
	$\Lambda_{1}^{\prime}{ }^{\prime} \rightarrow A_{1}{ }^{\prime}$	195.3	194

${ }^{\mathrm{b}}$ The oositions of the 168.0 and $178.4 \mathrm{~cm}^{-1}$ features are perhaps obscured by the " $O P$ " maximum and the $178 \mathrm{~cm}^{-1} . Q$ branch, respectively.
${ }^{\text {ander: }} \mathrm{D}_{3 \mathrm{~h}}$ symmetry for an E ' vibration, such as v_{7}, all rotation-vibration transitions are allowed in the Raman spectrum, while in the infrared spectrum, only $\Delta m= \pm 1$ are allowed.

Table 2
States and symmetries under $\mathrm{D}_{3 \mathrm{~h}}$ for an isotropic two dimensional harmonic oscillator

-16-

ficure captions

Fig. 1. Survey gas-phase Raman spectrum for the v_{7} vibration of PF_{5}.
Fig. 2. Calculated $/ \rightarrow 2\left(v_{7}\right)$ transitions for $\mathrm{PF}_{5}{ }^{\circ}$
0 represents the $E^{\prime} \rightarrow A_{I}{ }^{\prime}$ transition.
Δ represents the $E^{\prime} \rightarrow E^{\prime}$ transition.
For curves A, B and $C, C=0.0,0.005$ and $0.010 \mathrm{mdyn} / \mathrm{A}^{3}$ respectively.
-17-

Fig. 1.

CAECULATED $8-2\left(y_{7}\right)$ TRAMSITONS FOR PF

Fig. 2.

LEGAL NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

