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Survival analysis focuses on modeling and predicting the time to an event of interest. Many statistical models have been proposed
for survival analysis. They often impose strong assumptions on hazard functions, which describe how the risk of an event changes
over time depending on covariates associated with each individual. In particular, the prevalent proportional hazardsmodel assumes
that covariates are multiplicatively related to the hazard. Here we propose a nonparametric model for survival analysis that does
not explicitly assume particular forms of hazard functions. Our nonparametric model utilizes an ensemble of regression trees to
determine how the hazard function varies according to the associated covariates. The ensemble model is trained using a gradient
boosting method to optimize a smoothed approximation of the concordance index, which is one of the most widely used metrics
in survival model performance evaluation. We implemented our model in a software package called GBMCI (gradient boosting
machine for concordance index) and benchmarked the performance of our model against other popular survival models with a
large-scale breast cancer prognosis dataset. Our experiment shows that GBMCI consistently outperforms other methods based on
a number of covariate settings. GBMCI is implemented in R and is freely available online.

1. Introduction

Survival analysis focuses on developing diagnostic and prog-
nostic models to analyze the effect of covariates on the
outcome of an event of interest, such as death or disease
recurrence in disease studies. The analysis is often carried
out using regression methods to estimate the relationship
between the covariates and the time to event variable. In
clinical trials, time to events is usually represented by survival
times, which measure how long a patient with a localized
disease is alive or disease-free after treatment, such as surgery
or surgery plus adjuvant therapy. The covariates used in
predicting survival times often include clinical features, such
as age, disease status, and treatment type. More recently,
molecular features, such as expression of genes, and genetic
features, such as mutations in genes, are increasingly being

included in the set of covariates. Survival analysis also has
applications inmany other fields. For instance, it is often used
to model machine failure in mechanical systems. Depending
on specific circumstances, survival timesmay also be referred
to as failure times.

A major complication for survival analysis is that the
survival data are often incomplete due to censoring, because
of which standard statistical and machine learning tools on
regression cannot be readily applied.Themost common type
of censoring occurring in clinical trials is right censoring,
where the survival time is known to be longer than a certain
value but its precise value is unknown. This can be due to
multiple reasons. For instance, a patientmightwithdraw from
a clinical trial or a clinical trialmight end early such that some
patients are not followed up with afterwards.

http://dx.doi.org/10.1155/2013/873595
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Many statistical methods have been developed for sur-
vival analysis. One major category of these methods adopts
a likelihood-based approach. An essential component of
the models in this category is the estimation of the hazard
function 𝜆(𝑡), defined as the event rate at time 𝑡 conditional
on survival up to time 𝑡. Different models often impose
different assumptions on the forms of the hazard function.
In particular, the proportional hazards (PH) model (also
called the Cox model), one of the most prevalent models
in survival analysis, assumes that different covariates con-
tribute multiplicatively to the hazard function [1–4]. To relax
the proportional hazards assumption and allow for more
complicated relationships between covariates, parametric
models based on artificial neural networks (ANN) [5–8] and
ensembles of tree models based on boosting [9–12] have also
been proposed. In order to handle the censored data, all these
models use an approximation of the likelihood function,
called the Cox partial likelihood, to train the predictive
model. The partial likelihood function is computationally
convenient to use; however, it is unclear how well the full
likelihood can be approximated by the partial likelihood.

Many other methods aiming at optimizing a different
class of objective functions rather than the partial likelihood
have also been proposed. Some of these methods adapt exist-
ing regression models to estimate the relationship between
survival times and covariates, by taking the censored data into
account in training the models [13, 14], while others adopt a
classification-based framework and train their models using
only the rank information associated with the observed
survival times [8, 15, 16]. Recently, random survival forests
[17, 18], a new ensemble-of-trees model based upon bagging,
became popular in survival analysis.They resort to predicting
either the cumulative hazard function or the log-transformed
survival time.

In clinical decision making, physicians and researchers
are often more interested in evaluating the relative risk of a
disease between patients with different covariates than the
absolute survival times of these patients. For this purpose,
Harrell et al. introduced the important concept of concor-
dance index (C-index, concordance C, or simply CI) as a
measure of the separation between two survival distributions
[19, 20]. Given two survival distributions, the C-index com-
putes the fraction of pairs of patients with consistent risk
orders over the total number of validly comparable pairs.
Because of its focus on assessing the accuracy of relative risk,
the C-index is widely adopted in survival model performance
evaluation, where the order of predicted survival times is
compared to the order of the observed ones [21–23].

Our goal in this paper is to develop a new survival
model to capture the relationship between survival times and
covariates by directly optimizing the C-index between the
predicted and observed survival times. Although both the
Cox model based on partial likelihood and the ranked-based
methods mentioned above also utilize only the order infor-
mation between survival times, the C-index based method
provides a more principled way of combining all pairwise
order information into a single metric. There have been
prior attempts in directly learning the C-index for survival
analysis, including a neural network based model [21] and

an extension of the Cox model trained using a lower bound
of C-index [22]. However, both methods impose parametric
assumptions on the effect of covariates on survival times. Our
contribution here is to adopt a nonparametric approach to
model the relationship between survival times and covariates
by using an ensemble of trees and to train the ensemblemodel
by learning the C-index.

In the following, we will provide a detailed descrip-
tion of our ensemble survival model based on learning
the C-index. We will derive an algorithm to train the
model using the gradient boosting method originally pro-
posed by Friedman [9]. The algorithm is implemented in
an R software package called GBMCI (gradient boosting
machine for concordance index), which is freely available
at https://github.com/uci-cbcl/GBMCI. We benchmark the
performance of GBMCI using a large-scale breast cancer
prognosis dataset and show that GBMCI outperforms several
popular survival models, including the Cox PH model, the
gradient boosting PHmodel, and the random survival forest,
in a number of covariate settings.

2. Materials and Methods

2.1. Survival Analysis. We review the basic concepts of sur-
vival analysis here. For a systematic treatment, see [24, 25].
In survival analysis, the time to event (death, failure, etc.)
𝑡 is typically modeled as a random variable, which follows
some probability density distribution 𝑝(𝑡). The density can
be characterized by the survival function 𝑆(𝑡) = Pr(𝑇 >

𝑡) = ∫
∞

𝑡

𝑝(𝑇)d𝑇 for 𝑡 > 0. The survival function captures
the probability that the event does not happen until time
𝑡. A closely-related concept is the hazard function 𝜆(𝑡) =

lim
Δ𝑡→0

(Pr(𝑡 < 𝑇 < 𝑡 + Δ𝑡 | 𝑇 > 𝑡))/Δ𝑡 = 𝑝(𝑡)/𝑆(𝑡), which
measures the event rate at time 𝑡 conditioned on survival until
𝑡. One can further show that 𝑆(𝑡) = 𝑒−∫

𝑡

0
𝜆(𝜏)d𝜏.

The likelihood function for right-censored survival data
is expressed as

𝐿 (𝜃; {𝑥
𝑖
, 𝑡
𝑖
, 𝛿
𝑖
}
𝑛

𝑖=1
) = ∏

𝑖∈𝐸

𝑝 (𝑡
𝑖
| 𝑥
𝑖
, 𝜃)∏

𝑗∈𝐶

𝑆 (𝑡
𝑗
| 𝑥
𝑗
, 𝜃)

=

𝑛

∏

𝑖=1

𝜆(𝑡
𝑖
| 𝑥
𝑖
, 𝜃)
𝛿
𝑖

𝑆 (𝑡
𝑖
| 𝑥
𝑖
, 𝜃) .

(1)

Note the augmentation of our notation (we will follow this
convention in the following context unless otherwise stated):
𝜃 is the set of regression parameters of the survival/hazard
model; 𝛿

𝑖
, 𝑖 = 1, . . . , 𝑛, indicates whether the event happens

(𝛿 = 1), or not (𝛿 = 0, i.e., the data is censored); 𝑥
𝑖
, 𝑖 =

1, . . . , 𝑛, are the explanatory covariates that affect the survival
time; 𝐸 is the set of data whose events are observed; and
𝐶 is the set of censored data. The full maximum-likelihood
approach would optimize 𝐿 over the functional space of 𝑆
(or 𝜆) and parameter space of 𝜃. Unfortunately, this is often
intractable.

2.1.1. Proportional Hazard Model. In his seminal work [1, 2],
Cox introduced the proportional hazard (PH) model 𝜆(𝑡 |

𝑥, 𝜃) = 𝜆
0
(𝑡) exp{𝑥𝑇𝜃}. 𝜆

0
(𝑡) is the baseline hazard function;
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exp{𝑥𝑇𝜃} is the relative hazard, which summarizes the effect
of covariates. Cox observed that under the PH assumption,
it suffices to estimate 𝜃 without the necessity of specifying
𝜆
0
(𝑡) and optimizing the likelihood (1). Instead, he proposed

to optimize the so-called Cox partial likelihood

𝐿
𝑝
(𝜃; {𝑥

𝑖
, 𝑡
𝑖
, 𝛿
𝑖
}
𝑛

𝑖=1
) = ∏

𝑖∈𝐸

exp {𝜃𝑇𝑥
𝑖
}

∑
𝑗:𝑡
𝑗
≥𝑡
𝑖

exp {𝜃𝑇𝑥
𝑗
}
. (2)

The Cox model has become very popular in evaluating
the covariates’ effect on survival data and is generalized to
handle time-varying covariates and time-varying coefficients
[3, 4]. However, the proportional hazards assumption and
the maximization of the partial likelihood remain two main
limitations. Nonlinearmodels, for example,multilayer neural
networks [5–7], have been proposed to replace 𝜃𝑇𝑥. However,
they still assume parametric forms of the hazard function and
attempt to optimize the partial likelihood.

2.1.2. Concordance Index. The C-index is a commonly used
performance measure of survival models. Intuitively, it is the
fraction of all pairs of patients whose predictions have correct
orders over the pairs that can be ordered. Formally, the C-
index is

CI = 1

|P|
∑

(𝑖,𝑗)∈P

𝐼 (𝐹 (𝑥
𝑖
) < 𝐹 (𝑥

𝑗
))

=
1

|P|
∑

𝑖∈𝐸

∑

𝑗:𝑡
𝑗
>𝑡
𝑖

𝐼 (𝐹 (𝑥
𝑖
) < 𝐹 (𝑥

𝑗
)) .

(3)

P is the set of validly orderable pairs, where 𝑡
𝑖
< 𝑡
𝑗
; |P| is

the number of pairs in P; 𝐹(𝑥) is the prediction of survival
time; 𝐼 is the indicator function of whether the condition in
parentheses is satisfied or not. In the PH setting, the predicted
survival time can be equivalently represented by the negative
log relative hazard.TheC-index estimates the probability that
the order of the predictions of a pair of comparable patients
is consistent with their observed survival information.

2.2. Gradient Boosting Machine. The gradient boosting
machine (GBM) is an ensemble learning method, which
constructs a predictive model by additive expansion of
sequentially fitted weak learners [9, 10]. The general problem
is to learn a functional mapping 𝑦 = 𝐹(𝑥; 𝛽) from data
{𝑥
𝑖
, 𝑦
𝑖
}
𝑛

𝑖=1
, where 𝛽 is the set of parameters of 𝐹, such

that some cost function ∑
𝑛

𝑖=1
Φ(𝑦
𝑖
, 𝐹(𝑥
𝑖
; 𝛽)) is minimized.

Boosting assumes 𝐹(𝑥) follows an “additive” expansion form
𝐹(𝑥) = ∑

𝑀

𝑚=0
𝜌
𝑚
𝑓(𝑥; 𝜏

𝑚
), where 𝑓 is called the weak or base

learner with a weight 𝜌 and a parameter set 𝜏. Accordingly,
{𝜌
𝑚
, 𝜏
𝑚
}
𝑀

𝑚=1
compose the whole parameter set 𝛽. They are

learnt in a greedy “stage-wise” process: (1) set an initial
estimator 𝑓

0
(𝑥); (2) for each iteration 𝑚 ∈ {1, 2, . . . ,𝑀},

solve (𝜌
𝑚
, 𝜏
𝑚
) = argmin

𝜌,𝜏
∑
𝑛

𝑖=1
Φ(𝑦
𝑖
, 𝐹
𝑚−1

(𝑥
𝑖
) + 𝜌𝑓(𝑥

𝑖
; 𝜏)).

GBM approximates (2) with two steps. First, it fits 𝑓(𝑥; 𝜏
𝑚
)

by

𝜏
𝑚
= argmin

𝜏

𝑛

∑

𝑖=1

(𝑔
𝑖𝑚
− 𝑓(𝑥

𝑖
; 𝜏))
2

, (4)

where

𝑔
𝑖𝑚
= −[

𝜕Φ (𝑦
𝑖
, 𝐹 (𝑥
𝑖
))

𝜕𝐹 (𝑥
𝑖
)

]

𝐹(𝑥)=𝐹
𝑚−1
(𝑥)

. (5)

Second, it learns 𝜌 by

𝜌
𝑚
= argmin

𝜌

𝑛

∑

𝑖=1

Φ(𝑦
𝑖
, 𝐹
𝑚−1

(𝑥
𝑖
) + 𝜌𝑓 (𝑥

𝑖
; 𝜏
𝑚
)) . (6)

Then, it updates 𝐹
𝑚
(𝑥) = 𝐹

𝑚−1
(𝑥) + 𝜌

𝑚
𝑓(𝑥; 𝜏

𝑚
). In practice,

however, shrinkage is often introduced to control overfitting,
and the update becomes 𝐹

𝑚
(𝑥) = 𝐹

𝑚−1
(𝑥) + ]𝜌

𝑚
𝑓(𝑥; 𝜏

𝑚
),

where 0 < ] ≤ 1. If the weak learner is the regression
tree, the complexity of𝑓(𝑥) is determined by tree parameters,
for example, the tree size (or depth), and the minimum
number of samples in terminal nodes. Besides using proper
shrinkage and tree parameters, one could improve the GBM
performance by subsampling, that is, fitting each base learner
on a random subset of the training data.Thismethod is called
stochastic gradient boosting [10].

Compared to parametric models such as generalized lin-
ear models (GLM) [26] and neural networks, GBM does not
assume any functional form of 𝐹 but uses additive expansion
to build up the model. This nonparametric approach gives
more freedom to researchers. GBM combines predictions
from the ensemble of weak learners and so tends to yield
more robust results than the single learner. Empirically, it
also works better than the bagging-based random forests
[27], probably due to its functional optimization motivation.
However, it requires the cost function Φ to be differentiable
with respect to 𝐹. GBM has been implemented in the popular
open-source R package “gbm” [12] which supports several
regression models.

2.2.1. Boosting the Proportional Hazard Model. Ridgeway [11]
adapted GBM for the Cox model. The cost function is the
negative log partial likelihood:

Φ(𝑦, 𝐹) = −

𝑛

∑

𝑖=1

𝛿
𝑖

{

{

{

𝐹 (𝑥
𝑖
) − log( ∑

𝑗:𝑡
𝑗
≥𝑡
𝑖

𝑒
𝐹(𝑥
𝑗
)

)
}

}

}

. (7)

One can then apply (4), (5), and (6) to learn each additive
model. In the “gbm” package, this cost function corresponds
to the “coxph” distribution and is further optimized to refit
terminal nodes with Newton’s method. We denote this par-
ticular GBM algorithm as GBMCOX and its implementation
in the “gbm” package as “gbmcox.”

2.3. Concordance Index Learning via Gradient Boosting. We
now propose a gradient boosting algorithm to learn the C-
index. As the C-index is a widely used metric to evaluate
survival models, previous works [21, 22] have investigated the
possibility to optimize it, instead of Cox’s partial likelihood.
However, these works are limited to parametric models, such
as linear models or neural networks. Our key contribution
is to tackle the problem from a nonparametric ensemble
perspective based on gradient boosting.
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Optimizing the C-index directly is difficult because of
its discrete nature, that is, the summation over indicator
functions in (3).We resort to the differentiable approximation
proposed in [21], which adopts the logistic sigmoid function
in each term.We call it the smoothed concordance index (SCI).
Specifically,

SCI = 1

|P|
∑

(𝑖,𝑗)∈P

1

1 + 𝑒
𝛼(𝐹(𝑥

𝑖
)−𝐹(𝑥

𝑗
))

, (8)

where 𝛼 is a hyperparameter that controls the steepness of the
sigmoid function (accordingly, the approximability of SCI to
CI) and 𝐹(𝑥) is the prediction of survival time. LetΦ(𝑦, 𝐹) =
−SCI. Then, at each iteration𝑚 > 0 of gradient boosting,

𝑔
𝑖𝑚
= [

𝜕SCI
𝜕𝐹(𝑥
𝑖
)
]

𝐹(𝑥)=𝐹
𝑚−1
(𝑥)

=
𝛼

|P|
{ ∑

(𝑘,𝑖)∈P

𝑒
𝛼(𝐹
𝑚−1
(𝑥
𝑘
)−𝐹
𝑚−1
(𝑥
𝑖
))

[1 + 𝑒𝛼(𝐹𝑚−1(𝑥𝑘)−𝐹𝑚−1(𝑥𝑖))]
2

− ∑

(𝑖,𝑗)∈P

𝑒
𝛼(𝐹
𝑚−1
(𝑥
𝑖
)−𝐹
𝑚−1
(𝑥
𝑗
))

[1 + 𝑒
𝛼(𝐹
𝑚−1
(𝑥
𝑖
)−𝐹
𝑚−1
(𝑥
𝑗
))
]
2

}

}

}

.

(9)

So the base learner 𝑓(𝑥; 𝜏
𝑚
) can be fitted using {𝑔

𝑖𝑚
}
𝑛

𝑖=1
and

(4). Next,

𝜌
𝑚
=argmax

𝜌

1

|P|
∑

(𝑖,𝑗)∈P

1

1+𝑒
𝛼(𝐹
𝑚−1
(𝑥
𝑖
)+𝜌𝑓(𝑥

𝑖
;𝜏
𝑚
)−𝐹
𝑚−1
(𝑥
𝑗
)−𝜌𝑓(𝑥

𝑗
;𝜏
𝑚
))

.

(10)

Although differentiable, SCI has a complicated error surface
and is neither convex nor concave.This brings two problems.
First, the algorithm’s performance depends on its initializa-
tion which may lead to different local optima; second, it
is difficult to find the global solution of 𝜌

𝑚
in (10). In our

implementation, we set the initial estimation {𝑓
0
(𝑥
𝑖
)}
𝑛

𝑖=1
as

the prediction from a fitted PH model and use line search
to detect 𝜌

𝑚
locally. Empirically, we have found that these

heuristics work well for the algorithm.
Algorithm 1, named as GBMCI, summarizes our whole

algorithm, which also incorporates the stochastic boosting
mechanism [10]. Note that ensemble size𝑀 is an important
parameter that requires tuning, as small𝑀 may not capture
the true model, while large 𝑀 makes the algorithm apt to
overfitting. In practice, it is often selected by cross validation.
We implement GBMCI in the “gbm” package, under a new
distribution called “sci,” which shares the same regression tree
engine and complete software architecture as “gbmcox” does.
We name our implementation of GBMCI as “gbmsci.”

3. Results

3.1. Dataset and Feature Extraction. We illustrate the utility of
GBMCI on a large breast cancer dataset, which was originally
released by Curtis et al. [28]. The dataset was adopted by
the Sage Dream Breast Cancer Challenge (BCC) [29], where
it was named Metabric. It contains gene expressions, copy

number variations, clinical information, and survival data
of 1,981 breast cancer patients. The gene expression data
consist of 49,576 microarray probes; the copy number data
consist of 18,538 SNP probes; the clinical data contain 25
clinical covariates; the survival data contain the survival time
and status (dead or censored). Following the convention of
BCC, we reserve 1001 patients for training and the other 980
for testing. We applied several successful feature selection
schemes from the top competitors in BCC. See Table 1 for
details on how these features were generated.

3.2. Experimental Settings. As a boosting model, GBMCI’s
main competitor is the boosted proportional hazard model
GBMCOX. As they share identical software environment
with a common regression tree engine, the comparison
should be reliable and reasonable. For baseline evaluation, we
investigate the performance of the PH model with a stepwise
Akaike information criterion (AIC) model selection scheme
(denoted as “cox”). In addition, we also consider the popular
random survival forest (RSF) approach by Ishwaran et al. [18],
which is implemented in the R package randomSurvivalForest
[30] (denoted as “rsf ”). We use the concordance index as the
evaluation criteria. All experiments are performed in R 2.15.1
software environment.

For “gbmsci,” the hyperparameter 𝛼 controls how well
SCI approximates CI. Large 𝛼 valuesmake the approximation
good, but the gradient can be very large or even ill defined
and vice versa. In practice, we find 𝛼 = 1 strikes a good
balance between approximability and numerical stability.
The line-search range is [0, 100] along the gradient direc-
tion. The shrinkage ] in “gbm” is 0.001 by default. In our
experiments, we find ] = 0.002 works well for “gbmcox”
and ] = 1 does for “gbmsci.” We do not essentially apply
shrinkage for “gbmsci,” because the small line-search range
[0, 100] does not necessarily detect the global optimal 𝜌,
thus it implicitly contributes to shrinkage. This is mainly for
computational efficiency purpose. “gbmsci” and “gbmcox”
share other important parameter configurations: maximum
number of trees is 1500 (actual number is automatically
tuned by 5-fold cross validation); tree depth is 6; 𝑛

𝑠
/𝑛 (see

Algorithm 1) is 1 or 0.5. For “rsf,” the number of trees is 1500;
other parameters use default configurations.

3.3. Empirical Comparison. Each method is tested using
the five feature representations in Table 1. For “gbmsci” and
“gbmcox”, as cross validation introduces randomness by par-
titioning the training data, we repeat the experiment 50 times.
Their predictive concordance indices are shown in Figures 1
and S1 (see Figure S1 in Supplementary Material available
online at http://dx.doi.org/10.1155/2013/873595). For “cox”, the
predictive concordance indices are shown in Table 2, which
also summarizes the performances of “gbmsci” and “gbmcox.”
For “rsf,” we also do 50 random tests because of bootstrapping
when growing trees. The predictive concordance indices are
shown in Figure S2.

Figures 1 and S1 show that “gbmsci” fairly consistently
outperforms “gbmcox.” The advantage is notable when using
the features of cl, clge, ge, and mt (without subsampling)

http://dx.doi.org/10.1155/2013/873595
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Initialize {𝑓
0
(𝑥
𝑖
)}
𝑛

𝑖=1
with the prediction of Cox’s PH model

Set shrinkage ], and subsampling size 𝑛
𝑠
≤ 𝑛

For 𝑚 = 1 : 𝑀 do
Compute {𝑔

𝑖𝑚
}
𝑛

𝑖=1
by (9)

Randomly select a subset {𝑥
𝑖
, 𝑡
𝑖
, 𝛿
𝑖
}
𝑛𝑠

𝑖=1
from the whole dataset

Fit the weak learner 𝑓(𝑥; 𝜏
𝑚
), for example, a regression tree, upon {𝑥

𝑖
, 𝑔
𝑖𝑚
}
𝑛𝑠

𝑖=1

Compute 𝜌
𝑚
by (10) using line-search

Update {𝐹
𝑚
(𝑥
𝑖
)}
𝑛

𝑖=1
by 𝐹
𝑚
(𝑥) = 𝐹

𝑚−1
(𝑥) + ]𝜌

𝑚
𝑓(𝑥; 𝜏

𝑚
)

end for

Algorithm 1: (Stochastic) gradient boosting machine for concordance index learning (GBMCI).

Table 1: The five sets of features extracted from the Metabric breast cancer dataset.

Category Abbreviation Explanation

Clinical feature cl
A subset of clinical covariates is selected by fitting the Cox model with AIC in a stepwise
algorithm. The frequently selected features include age at diagnosis, lymph node status,
treatment type, tumor size, tumor group, and tumor grade.

Gene feature ge
A subset of gene expression microarray probes using Illumina HT 12v3 platform is selected
whose concordance indices to the survival data are ranked highest (positive concordant) or
lowest (negative concordant). A few examples are, “ILMN 1683450,” “ILMN 2392472,”
“ILMN 1700337.”

Clinical and gene
feature clge A combination of previously selected clinical features and gene expression features is used to fit

the Cox model with AIC in a stepwise algorithm, yielding a refined subset of features.

Metagene feature mt
The high-dimensional gene expression data is fed into an iterative attractor finding algorithm,
yielding a few Attractor Metagenes which are found commonly present in multiple cancer
types [31]. Some multicancer attractors are strongly associated with the tumor stage, grade, or
the lymphocyte status.

Clinical and
Metagene feature mi

A minimum subset of metagenes which has strong prognosis power for breast cancer [31],
combined with several important clinical covariates, such as age at diagnosis and treatment
type.

and substantial when using mi. “gbmsci” performs slightly
worse only when using mt (with subsampling) but is still
comparable. Further more, all differences except mt (with
subsampling) are statistically significant (Student’s 𝑡-test, all
𝑃 values < 10

−13). We also note that subsampling gener-
ally improves the predictive power of both “gbmsci” and
“gbmcox,” except when using cl. This is consistent with the
theoretical argument of [10, 11].

From Table 2, one can see that “gbmsci” performs better
than “cox” overall. The advantage is notable when using cl
(without subsampling) and substantial when using clge, mt,
and mi. For other cases, “gbmsci” and “cox” are comparable.
On the other hand, “gbmcox” performs better than or
comparable to “cox” for cl, clge, and mt but does slightly
worse for ge and mi. Comparing Figures 1, S1 with S2, one
can see that “gbmsci” outperforms “rsf ” in most cases, while
“gbmcox” also performs better than “rsf ” overall.

To summarize the comparative study, GBMSCI outper-
forms GBMCOX, Cox PH, and RSF in most of the feature-
subsampling settings. The results also shed light on the
importance of feature representation. First, gene expression
datamay have potential prognosis power givenwell-designed
feature extraction schemes, for example, the Attractor Meta-
gene (mt). Second, combining clinical and gene features
together seems to provide enhanced prognosis power over

using them separately. This is the case in both the original
gene space (clge) and the transformed space (mi).

4. Discussion

Many machine learning techniques have been adapted and
developed for survival analysis [23, 32, 33]. In particular,
several important parametric models, such as neural net-
works and support vector regression, have been generalized
to handle censored data. They provide survival studies with
more comprehensive and flexible methodologies. However,
ensemble methods are mostly limited to either direct adap-
tation of boosting to the classical PH model [11, 12] or
bagging approaches such as random survival forests [17, 18].
Our proposed algorithm generalizes the gradient boosting
machine to learn the C-index directly, which provides a new
ensemble learning methodology for survival analysis. As the
C-index is a ranking function in essence [22], our model
also serves as an ensemble treatment to the ranking problem
for survival data. This is novel and has not been addressed
previously [14, 34, 35].

By studying the large-scaleMetabric breast cancer dataset,
we found that “gbmsci” overall performs better than “gbm-
cox,” “cox,” and “rsf ” in terms of predictive C-indices. The
improvement is notable and consistent when various feature
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Table 2: Numerical statistics of predictive concordance indices of GBM models and the Cox model on the breast cancer dataset. The five
feature representations are explained in Table 1. “gbmsci”-I and “gbmcox”-I run without subsampling (𝑛

𝑠
/𝑛 = 1), while “gbmsci”-II and

“gbmcox”-II run with subsampling (𝑛
𝑠
/𝑛 = 0.5). The numerics in each entry show the average C-index and the standard deviation (in

parentheses) over 50 random runs. The best performance in each column is highlighted by the bold font.

Model Feature Representation
cl clge ge mt mi

“gbmsci”-I 0.7107 (0.0015) 0.7287 (0.0005) 0.6599 (0.0004) 0.7145 (0.0004) 0.7416 (0.0010)
“gbmcox”-I 0.7039 (0.0008) 0.7268 (0.0013) 0.6523 (0.0007) 0.7110 (0.0014) 0.7222 (0.0003)
“gbmsci”-II 0.7063 (0.0011) 0.7341 (0.0014) 0.6617 (0.0020) 0.7169 (0.0017) 0.7405 (0.0015)
“gbmcox”-II 0.6983 (0.0009) 0.7298 (0.0008) 0.6549 (0.0014) 0.7173 (0.0010) 0.7306 (0.0008)
“cox” 0.7042 0.7140 0.6590 0.6659 0.7299
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Figure 1: Predictive performance I of GBM methods on the breast
cancer dataset. The box plots show the predictive concordance
indices of “gbmsci” and “gbmcox” in 50 random experiments with-
out subsampling, using the five feature representations explained in
Table 1. In each box plot, the central red line indicates themedian C-
index; the blue box is the [25%, 75%] area; the black whiskers reach
the upper and lower extremes not including outliers; the red “+”
symbols represent the outliers.

representations were applied. This study also demonstrates
the enhanced prognosis power when gene expression profiles
and clinical variables are combined and when the gene space
is remapped in the predictive model. Interestingly, “gbmsci”
typically outperforms “gbmcox” and “cox” when using these
informative features.Thismayprovide useful clues for clinical
decision making. Moreover, we also confirm the utility of the
subsampling scheme of gradient boosting.

Although GBMCI has free parameters that require tun-
ing, for example,𝛼 and the line-search range, they empirically
work well among different experiments once they have been
well tuned. In addition, the algorithm still renders similar
performance, when 𝛼 is within a reasonable neighborhood of
1 (e.g., 𝛼 = 2). One possible reason for the robustness is that
both the objective function (8) and the gradient (9) are upper-

and lower-bounded (as can be shown through basic algebraic
manipulations). Such bounds are not typically available when
optimizing other objective functions for different regression
problems, such as the partial likelihood for the Cox model,
the mean absolute error for the Lasso regression, and the
polynomial alternative of SCI as proposed by [21].

The proposed algorithm has room for improvement.
First, current initialization and line-search steps, although
working well in practice, are not necessarily the globally
optimal strategy. For initialization, one potential alternative
is to fit PH models by subsampling or bootstrapping of
the training data. To better address the problems, one may
have to design other initialization heuristics or adopt a
global optimization technique such asMonte Carlo methods.
Second, GBMCI is computationally more intensive than
other methods, because of the pairwise sigmoid computation
in (9) and (10). Fortunately, GBMCI is easily parallelizable,
which should help in dealing with large datasets. Third,
biomedical research often deals with high-throughput data,
for example, microarray gene expression profiling and next
generation sequencing data, which require feature selection
and dimension reduction. GBMCI does not tackle this task
yet. However, as node-splittings of regression trees implicitly
perform feature extraction, one could either run GBMCI
several iterations and preselect informative variables as a
“warm-up” step before the main learning routine or start
GBMCI with all variables, iteratively rank their node-split
frequencies, and refine the variable pool. These would allow
GBMCI perform feature selection and concordance index
learning in a unified framework.

Last but not least, we note that ensemble methods are
in general more expensive than the Cox model, because
of the necessity of tuning parameters, training ensemble
weak learners, and cross validation. The tradeoff between
predictive power and computational cost remains a question
that depends on the specific case requirement. For example,
given a particular prognosis analysis task, the Coxmodelmay
provide a quick baseline evaluation; ensemblemethods could
be applied, if higher predictive accuracy and more thorough
investigation of covariates’ effect are required.

5. Conclusion

To summarize, we have developed a new algorithm (GBMCI)
for survival analysis. It performs concordance index learning
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nonparametrically within the gradient boosting framework.
It does not impose parametric assumptions on hazard func-
tions, and it expands the ensemble learning methodologies
of survival analysis. We implemented GBMCI in an open-
source R package, and tested it using a comprehensive cancer
prognosis study. GBMCI consistently performs better than
three state-of-the-art survival models (the Cox PH model,
its boosting expansion, and the random survival forest) over
several feature representations. This study also illustrates
the importance of feature engineering of clinical and gene
expression data in cancer prognosis studies.
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