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Abstract: Technological advances in high-throughput techniques have resulted in tremendous growth
of complex biological datasets providing evidence regarding various biomolecular interactions.
To cope with this data flood, computational approaches, web services, and databases have been
implemented to deal with issues such as data integration, visualization, exploration, organization,
scalability, and complexity. Nevertheless, as the number of such sets increases, it is becoming more
and more difficult for an end user to know what the scope and focus of each repository is and how
redundant the information between them is. Several repositories have a more general scope, while
others focus on specialized aspects, such as specific organisms or biological systems. Unfortunately,
many of these databases are self-contained or poorly documented and maintained. For a clearer
view, in this article we provide a comprehensive categorization, comparison and evaluation of such
repositories for different bioentity interaction types. We discuss most of the publicly available services
based on their content, sources of information, data representation methods, user-friendliness, scope
and interconnectivity, and we comment on their strengths and weaknesses. We aim for this review
to reach a broad readership varying from biomedical beginners to experts and serve as a reference
article in the field of Network Biology.

Keywords: biomedical networks; associations; biological interactions; network biology; databases;
data integration

1. Introduction

Technological advances in various high-throughput techniques in the last decade
have led to an explosion of information about how biomolecules operate and function in
living systems. Microarray and RNAseq technologies, for example, provide insights into
gene expression levels and changes. scRNAseq technology organizes cells into groups
based on their gene expression profiles and mass spectrometry is used for the identifi-
cation of proteins based on their molecular weights and mass-to-charge ratio. Nuclear
magnetic resonance (NMR) and X-ray crystallography are used for the determination of
3D protein structures while genome sequencing can provide insights about genetic varia-
tions, polymorphisms, chromatin structure and state, and species identification. Finally,
metabolomics are used to study small molecules and metabolites within cells, biofluids,
tissues or organisms [1].
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Biological systems are composed of a multitude of molecular entities such as genes,
proteins, metabolites and other components and essentially all biological processes are
regulated by the interactions among these entities. The analysis of these interactions plays
an important part in achieving a mechanistic understanding of physiology and pathology
of all forms of life, ranging from single-cell microbes to complex, multicellular organisms.
This applies not only at the microscopic scale of the cell interior but also at a macroscopic
level; studying the relations between different species occupying an ecosystem can help
establish the ecological rules that govern a specific environment. As a result, the study of
biological interactions has become a staple of systems biology [2].

As current research involves increasing levels of complexity by combining multiple
approaches (e.g., genomics, proteomics, transcriptomics, metabolomics, etc.), particularly
in the case of biological interactions [3], the necessity for specialized repositories and
advanced integration and visualization techniques emerges. One such technique involves
the use of biological interaction networks. In network biology, graphs are often used to rep-
resent compartments of whole systems and their biomolecular interactions. A node often
represents a biomolecule (e.g., gene, protein, chemical, compound, disease, etc.) whereas an
edge the relationship between them (e.g., co-expression, co-occurrence, sequence similarity,
coevolution, orthology, homology, fusion, common function, etc.) [4].

Biological interaction networks have been used in a wide range of analyses; some
of which have been performed at previously unprecedented scales. The most charac-
teristic example is the Human Interactome Network [5], a proteome-scale analysis of
protein–protein interactions for the entire human proteome, which has allowed the de-
tection of previously unknown functional relationships. Starting from an initial analysis
for a collection of experimental datasets [6], it is currently a reference map for the human
proteome and its interactions, containing more than 50,000 binary interactions featuring
almost 90% of the protein-coding genome. Similar genome and proteome-wide inter-
action networks have also been constructed for a number of other model organisms,
such as the mouse (Mus musculus) [7,8], yeast (Saccharomyces cerevisiae) [9,10] and fruit
fly (Drosophila melanogaster) [11]. In addition, the combination of gene co-expression and
protein–protein interaction evidence with information on metabolic pathways and disease
associations has led to the creation and analysis of specialized networks dealing with
severe pathological conditions, such as cancer [12], AIDS [13], Alzheimer’s Disease [14,15],
and, most recently, infection with SARS-CoV-2, the virus responsible for the COVID-19
pandemic [16].

The successful generation and analysis of interaction networks, such as those refer-
enced above, requires the presentation of information regarding biological interactions in
an organized and concise manner. Although this evidence is, to some extent, available
in popular biomedical repositories such as PubMed [17], UniProt [18], GenBank [19], or
Ensembl [20], their usefulness for the generation of networks is limited, as these databases
have not been designed with the analysis of interactions in mind. The aforementioned issue,
coupled with the increasing size and complexity of matrices of interactions, as produced by
high throughput methods or generated through computational predictions, has led to the
emergence of dedicated biological interaction databases. Nowadays, multiple such inter-
action databases exist [21], acting as specialized repositories of evidence on gene, protein,
and small molecule interactions, as well as associations of these interactions with metabolic
pathways, host–pathogen relationships, diseases, and even ecological data. However,
while the existence of these repositories has provided more immediate access to interaction
evidence, their utilization is not always straightforward, as most of these databases are
self-contained systems, each containing their own set of interactions and utilizing their
unique organization systems and file formats, which are often incompatible with each
other [22]. This makes the retrieval, combination, and manipulation of interaction evidence
difficult, particularly for new and inexperienced users.

In this review, we outline, organize, and compare biological interaction databases for
a number of interaction types, from protein–protein and protein–small molecule complexes
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to disease-association, host–pathogen and environment-organism interactions. Notably,
we do not only focus on the major databases but also on more specialized repositories
and we thoroughly present, group, and evaluate most of the publicly available services
based on their content, sources of information, data representation methods, and scope.
Given the ever-rising wealth of available information on biomolecular interactions and
biomedical networks, we aim for this review to reach a broad spectrum of readers varying
from experts to beginners, and serve as a reference for the biomedical community.

2. File Formats

Before analyzing the various databases, we briefly describe some of the more usual
file formats that interaction databases offer. Aiming at a more structured way of storing
interaction data, several specific file formats have been introduced. An initial approach
was to borrow concepts from graph theory and store a network as an edge list, adjacency
matrix, linked-list, or sparse matrix. However, these formats do not allow for metadata
storage and, therefore, several other XML-like formats, such as the BioPAX [23], SBML [24],
PSI-MI [25], CML [26], and CellML [27] have been introduced. For example, the Systems
Biology Markup Language (SBML) is mainly used for biochemical networks and biological
processes, the Biological Pathway Exchange format (BioPAX) for biological pathways, the
PSI-MI format for data exchange, and the CellML for mathematical models. Notably, both
the GraphML [28] format for storing node and edge attributes and the JavaScript Object
Notation (JSON) format, which is mainly used for web-based applications, are two of the
most widely-used options when building applications. Various databases provide their
interaction data in simple text format (tab or comma delimited) or directly in a database
schema (e.g., SQLite). To this end, it is worth mentioning that the NDEx [29] is an open-
source framework for network sharing. Finally, as each file format comes with certain
structural rules, many format-specific parsers (e.g., R/Bioconductor, Biopython) have been
implemented and are currently available to facilitate data manipulation.

3. Bioentity Interaction Databases

Interaction databases can be categorized based on three main criteria; (i) their type
of interactions, (ii) source of information and (iii) data curation [30]. These criteria are
also used to organize and describe the bioentity interaction databases presented in the
following subsections of this review. The interaction type essentially defines the identity
of each database. For example, protein interaction databases describe the physical, and
often functional, interactions of proteins with other proteins or small molecules. Similarly,
nucleic acid interaction databases contain the interactions of nucleic acids with various
other cellular components, while gene co-expression databases describe interactions based
on similar gene expression patterns.

As far as the source of information is concerned, interaction databases can be grouped
into three main categories based on their data-acquisition policy. These are (i) primary, (ii)
secondary, and (iii) predictive databases [31]. Primary databases directly collect experi-
mental interaction evidence from primary sources, i.e., from scientific publications or from
deposited interaction datasets, such as those derived from high-throughput experiments.
On the other hand, secondary databases do not collect information from primary sources;
instead, they combine and annotate data curated by several primary databases in a single
repository. Finally, predictive databases contain not only experimental interaction evidence
but also computationally predicted interactions, derived from various methods, such as
sequence or structure analysis, or from automatic methods for parsing the literature (e.g.,
text mining).

The final criterion in classifying interaction databases is their data curation policy;
that is, the way the information was collected along with levels of detail and the descrip-
tion, annotation, and classification of this information. Data acquisition can be manual
(i.e., handled by curators, or by the scientific community), automated (performed using
computational methods), or a combination of the two. As far as the level of curation
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is concerned, most interaction databases fall between two extremes, lightly or deeply
curated. Lightly curated databases aim to publish the maximum amount of interaction
information, without necessarily focusing on details. These interactions are often obtained
computationally, through automated methods, such as text mining. As a result, lightly
curated databases often contain potentially erroneous interactions, as well as redundant
or overlapping information. On the other hand, deeply curated databases offer detailed
information on biomolecular complexes and the interacting partners involved. This in-
formation is periodically manually annotated, validated through multiple sources, and
checked for redundancy; the drawback to this manual, detailed approach is that deeply
curated databases often contain significantly fewer interactions [30].

Apart from the above, another database aspect that needs to be taken into account
is data availability. Two database features pertaining to this aspect are the existence of
programmatic access options and the database’s license. Programmatic access refers to
the ability to parse a database’s contents programmatically, thus allowing the automated
retrieval of multiple entries. Its existence in an interaction database can be very important,
especially since the analysis of biomolecular interactions in Systems Biology often involves
parsing large amounts of data (hundreds of thousands, or even millions of interactions).
Programmatic access can typically be performed through an Application Programming
Interface (API), dedicated modules in programming languages such as Python or R, or
with extensions/plugins written for external applications (e.g., Cytoscape apps) [32]. As far
as the licensing model is concerned, it can depend on various factors, from the data sources
of each repository to the policies of the foundations hosting the databases. Generally
speaking, most of the databases covered in this review offer free access to their data. In
some cases, one of the commonly free access licenses is used (e.g., Creative Commons,
GNU/GPL, Apache license etc.), while other databases simply offer their data without
adopting a license model at all. However, some databases may impose restrictions, by
requiring registration with academic credentials, or by offering only paid access to some of
their data. Both the licensing model and the existence of programmatic access are evaluated
for the databases presented in this review.

3.1. Gene Co-Expression

The key assumption in the construction of co-expression networks is that two genes
which are functionally related tend to have similar expression patterns. Hence, poorly
characterized genes can be functionally annotated through potentially related genes with
similar expression patterns and, as a potential corollary, similar functions [33]. Gene
co-expression networks are usually generated by analyzing data from high-throughput
gene expression profiling technologies, such as microarrays or RNA–Seq. Normally the
co-expression similarity is calculated with the use of metrics such as Pearson or Spearman.
In this section, we investigate databases which host such co-expression networks as well as
information describing gene-gene relationships across various organisms.

COXPRESdb [34] is a repository that retrieves condition-independent co-expression
information from 11 different organisms and focuses on protein-coding RNAs. The major
strength of this database is the comparison of multiple co-expression data derived from
different transcriptomic technologies (RNA–seq and microarrays) for various species (hu-
man, mouse, rat, chicken, zebrafish, fly, nematodes, monkey, dog, budding yeast, and
fission yeast). Specifically, the latest update combines gene expression data from 23 dif-
ferent co-expression platforms, of which 123 experiments concern humans, 154 mouse
and 154 rat, released by Gene Expression Omnibus (GEO) [35]. In total, COXPRESdb
hosts 12 co-expression networks for various species created from ∼157,000 microarray and
10,000 RNA–seq samples. Interspecies comparison reveals the evolutionary relationships,
whereas the verification of co-expression interactions from multiple platforms minimizes er-
rors [36]. Additional functionalities include: (i) querying of multiple genes simultaneously,
(ii) applying topological network analysis and (iii) module detection.
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The Search Tool for the Retrieval of Interacting Genes and proteins (STRING)
database [37] (described in more detail in Section 3.3.1) primarily hosts protein–protein
interactions for more than 14,000 organisms. However, among the several evidence in-
teraction channels (multi-edged networks), one is dedicated to gene co-expression. The
majority of the data for this channel is obtained from transcriptomic technologies as well as
proteomic expression data (e.g., ProteomeHD database) [38]. In the co-expression network,
every pair of genes with similar expression patterns is scored according to how strong the
correlation is. The database offers a number of resources for the analysis of interactions,
including a versatile REST API and an interface for Cytoscape [39,40], including a specially
designed app (stringApp) [41].

GeneMANIA [42] provides gene co-expression networks and comprises functional
gene similarities for nine different organisms (A. thaliana, C. elegans, D. rerio, D. melanogaster,
E. coli, H. sapiens, M. musculus, R. norvegicus and S. cerevisiae). It integrates genomics and
proteomics data from various sources, such as GEO, the Biological General Repository for
Interaction Datasets (BioGRID) [43], IRefIndex [44], and Interologous Interaction Database
(I2D) [45]. In GeneMANIA, users can query for closely co-expressed genes among 2300 net-
works, which consist of approximately 600 million interactions involving ~164,000 genes.

GeneFriends [46], Immuno-Navigator [47] and COEXPEDIA [48] are databases dedi-
cated to gene correlation and transcript expression for H. sapiens and M. musculus. Specifi-
cally, GeneFriends is a tool for inferring gene interactions from co-expression networks,
while it provides updated gene and transcript networks based on RNA–seq data from
46,475 human and 34,322 mouse samples. The Immuno-Navigator database gathers cell-
type specific gene expression and co-expression data derived from the immune system.
Currently, it contains data from 4639 human samples, obtained from 19 cell types from
191 studies, as well as 3434 mouse samples, obtained from 24 cell types from 261 studies.
On the other hand, COEXPEDIA focuses on co-expression patterns derived from data
from individual studies and which are associated with biomedical information related
to anatomy, diseases, and chemicals. At the moment, COEXPEDIA contains 8 million
interactions inferred from 384 and 248 GEO studies on humans and mice.

Regarding human tissue-specific co-expression networks, HumanBase [49], Human-
Net [50], and Brain gene EXPression (BrainEXP) [51] cover the vast majority of known
interactions. HumanBase includes the GIANT web server, which provides human tissue-
specific networks via multi-gene queries. The gene associations are obtained from projects
such as the Encyclopedia of DNA Elements (ENCODE) [52] and The Cancer Genome Atlas
(TCGA) [53]. HumanNet (v2) aims to predict gene co-expression interactions and gene-
disease associations through a complex combination of a four-level inclusive hierarchy of
the human gene networks. The levels consist of protein–protein interactions, co-functional
links from genomics data and two extended functional networks by either co-citations
or interologs from other species. Finally, BrainEXP provides data about individual co-
expressed genes in normal human brains. It currently stores data from 4567 samples from
2863 healthy individuals.

Various databases focus on plants, especially on A. Thaliana; ATTED-II [54], CoP [55],
PlaNet [56] and PLANEX [57] cover several plant species, while the Arabidopsis Co-
expression Tool (ACT) [58] and AraNet [59] are A. Thaliana-specific. The latter two provide
co-expression patterns involving 21,273 A. Thaliana genes from microarrays and genome-
scale functional networks. ATTED-II provides co-regulated gene relationships from mi-
croarrays and RNA–seq to estimate gene functions. CoP is focused on biological processes,
comprising a microarray-based co-expression network for eight different plant species.
PlaNet is a platform which integrates several web-tools dedicated to visualization and
analysis of co-expression networks for photosynthetic organisms, while PLANEX is a
plant co-expression database, based on publicly available GeneChip [60] data obtained
from NCBI GEO. Finally, there are two Algae-dedicated co-expression databases based
on Next-Generation Sequencing (NGS) data, ALCOdb [61] and AlgaePath [62], whereas
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DanioNet [63] is a zebrafish-specific repository. Gene co-expression databases are briefly
described in Table 1. Links are summarized in Supplementary Table S1.

Table 1. Gene co-expression databases.

Database Name Interaction Type Data Category Curation Type Organisms Data License 1 Programmatic Access

COXPRESdb [34] Gene
co-expression Primary Manual 11 species Free

(CC-BY) REST API

STRING [37]
Gene

co-expression,
Protein–protein

interactions
Secondary Automated >14,000

species
Free

(CC-BY)

REST API,
R & Python packages,
Cytoscape import &
app (stringApp) [41]

GeneMANIA [42] Gene
co-expression Predictive Automated 9 species Free Command line tool,

Cytoscape app [64]

GeneFriends [46]
Gene and
transcript

co-expression
Primary Manual 2 (H. sapiens,

M. musculus) Free Cytoscape import

Immuno-
Navigator

[47]

Cell-type specific
co-expression,

related to
immune system

Primary Manual 2 (H. sapiens,
M. musculus) Free N/A

COEXPEDIA [48]
Functional

co-expression
patterns

Primary Manual 2 (H. sapiens,
M. musculus) Free N/A

HumanBase [49] Tissue-specific
co-expression Primary Manual H. sapiens Free REST API

HumanNet [50] Gene
co-expression Predictive Automated H. sapiens Free

(CC-BY-SA) N/A

BrainEXP [51] Brain region
co-expression Primary Manual H. sapiens Free N/A

Human Gene
Correlation

Analysis (HGCA)
[65]

Gene
co-expression Predictive Automated H. sapiens Free N/A

ATTED-II [54] Co-expressed
gene networks Primary Manual 9 Plant

species
Free

(CC-BY)
REST API, RDF API
(SPARQL endpoint),

Cytoscape import

CoP [55] Co-expressed
gene networks Primary Manual 8 Plant

species Free N/A

PlaNet [56] Co-expressed
gene networks Primary Manual 11 Plant

species

Free for academic
users

(Max Planck
institution license)

Python standalone,
Cytoscape import

PLANEX [57] Co-expressed
gene networks Primary Manual 8 Plant

species
Free

(CC-BY) N/A

ACT [58] Co-expressed
gene networks Primary Manual A. thaliana Free N/A

AraNet [59] Co-expressed
gene networks Primary Manual A. thaliana Free N/A

ALCOdb [61] Gene
Co-expression Primary Manual Microalgae Free

(CC0) N/A

AlgaePath [62] Gene
co-expression Primary Manual Algae Free N/A

DanioNet [63] Gene associations Predictive Automated D. rerio Free N/A
1 The license type adopted by each database. In cases where a specific license type is used, it is given in parentheses. License abbreviations:
CC-BY, Creative Commons–Attribution (BY); CC-BY-SA, Creative Commons–Attribution–ShareAlike; CC0, Creative Commons public
domain.

3.2. RNA and ncRNA Interaction Databases

Non-coding RNAs (ncRNAs) are functionally important due to their interaction with
other biomolecules even though they are not translated into proteins. RNA interacting
biomolecules may include DNA, other RNAs/ncRNAs, proteins and other chemical com-
pounds, thus influencing various cellular processes. Therefore, in this section, we mainly
discuss databases focusing on such RNA interactions.
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RNA Bricks2 [66] is a frequently updated database that contains 3D RNA structure
motifs and their contact points. It contains more than 4300 RNA structures and RNA–
protein complexes originating from the Protein Data Bank (PDB) [67]. RNA network
structures are presented as interactive graphs, where nodes depict the basic secondary
structure of motifs and edges represent either shared bases or tertiary interactions. RNA
Bricks2 contains structure-quality score annotations and offers tools that enable the search
of RNA 3D structures and comparisons. It is interconnected with PDB, Rfam [68] and
UniProt [18] as the user can browse entries by using identifiers from these databases. Users
can query using a FASTA file format, while selected structure data from RNA Bricks2 can
be downloaded in PDB format along with a text file that includes a list of interactions.
Contact base pairs are annotated through the ClaRNA [69] software and the respective file
can be downloaded in CSV format.

As far as ncRNA interaction databases are concerned, NPInter [70] contains func-
tional interactions among various types of ncRNAs (except for tRNAs and rRNAs) and
biomolecules such as proteins, RNAs and DNAs. The latest version of NPInter (v4.0)
contains a total of 1100,658 interactions, composed by: (i) manually curated literature
interactions, (ii) processed high-throughput sequencing data and (iii) interaction data from
the RISE [71] database. The interactions concern 35 organisms, while accompanying meta-
data provide information regarding the interaction class (binding, regulatory, correlation
or co-expression) and the tissue/cell line of the experiment, where applicable. NcRNA
entries are annotated with identifiers from NONCODE [72], miRBase [73] and circBase [74],
while proteins from UniProt [18], Ensembl [20], UniGene (discontinued) and RefSeq [75].
Interactions are downloadable in text format.

Another ncRNA interactions database, snoDB [76], contains manually curated snoRNA
interaction data (currently 2089 interactions) from H. Sapiens, derived from established
databases and literature. SnoDB data are presented in an interactive table view on site and
are downloadable in TSV, BED and XLSX file formats. Additional metadata include host
genes, species conservation, orthologs and tissue expression where applicable. As snoDB
content emanates from various external databases, multiple IDs are used to refer to the
same snoRNA with respective links to UCSC [77], RefSeq [75], HUGO Gene Nomenclature
Committee (HGNC) [78], Ensembl [20], RNAcentral [79], NCBI, Rfam [68], snoRNAbase
(also known as snoRNA–LBME-db) [80], snOPY [81], snoRNA Atlas [82] or RISE [71].

Plant Non-coding RNA Database (PNRD) [83], an updated version of PMRD (plant
microRNA database) [84], catalogues plant-related ncRNAs and is currently composed by
25,739 entries, from 11 different ncRNA types across 150 plant species. Nevertheless, its
interaction entries regard only miRNAs and their targets, consisting of 178,138 target pairs
across 46 plant species. These targets include protein-coding genes, literature ncRNAs and
NONCODE lncRNAs and target information has been enriched through psRNATarget [85]
and the literature. MiRNA sequence information is mainly derived from miRBase [73]
and PMRD [84], while other ncRNAs are mined from NONCODE (v4), Rfam [68], tasiR-
NAdb [86], GtRNAdb [87], The Arabidopsis Information Resource (TAIR) [88] and the
Rice Genome Annotation Project (RGAP) [89]. All database ncRNA sequences are down-
loadable in text/FASTA format while miRNA–target information and relative literature, in
tabular text format. We also note that PNRD hosts a Cytoscape service for constructing
miRNA–gene regulatory networks.

Tarbase [90] also focuses on miRNA interactions. It contains manually curated, ex-
perimentally supported, miRNA–gene interactions from the literature as well as from
raw libraries like GEO and the DNA Data Bank of Japan (DDBJ) [91]. It contains more
than 1 million entries that correspond to 670,000 unique, experimentally supported miRNA–
target pairs. The interactions within Tarbase are derived from more than 33 high-throughput
techniques, applied to 516 cell types and 85 tissues, under 451 experimental conditions,
across 18 species. This information is provided as query metadata along with the posi-
tive/negative miRNA–target regulation per species and binding locations. Tarbase also
incorporates data from miRTarBase [92] and miRecords [93], and supports Ensembl and
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miRBase identifier queries. The database is interconnected with the Ensembl genome
browser and other DIANA-tools, including microT-CDS [94] for in silico identification
of miRNA targets, LncBase v2.0 [95] for miRNA–lncRNA interactions identification (see
Section 3.2.2) and DIANA-miRPath v3.0 [96] for miRNA functional characterization. Data
is available in text format, after filling a request form on the site. The core information of
all aforementioned RNA interaction databases is appended on Table 2.

Table 2. RNA interaction databases.

Database Name Interaction Type Data
Category

Curation
Type Organisms Data

License
Programmatic

Access

RNA Bricks2 [66]
RNA–(RNA, proteins, metal ions,
water molecules, small molecule

ligands)
Secondary Manual

All organisms with
available RNA

structures in PDB
Free N/A

NPInter [70]

lncRNA–miRNA–ncRNA–
circRNA–vtRNAs-snoRNA–

snRNA–sRNA–piRNAs-mRNA–
protein-pseudogene-DNA

Primary,
Secondary Manual 35 species Free N/A

snoDB [76] snoRNA–(rRNA, snRNA,
non-canonical)

Primary,
Secondary Manual H. Sapiens Free N/A

PNRD [83] miRNA–(protein-coding genes,
ncRNAs, lncRNAs)

Primary,
Secondary Automated 46 plant species Free Cytoscape

service

Tarbase [90] miRNA–gene Primary,
Secondary Manual 18 species Free N/A

3.2.1. RNA–Protein Interactions

The inherent instability of RNA molecules coupled with the diversity and versatility
of their functions are partly responsible for their constant chaperoning by a plethora of
different protein complexes. Besides the regulatory binding of proteins to RNA molecules,
RNAs also interact with specific proteins to perform specialized functions [97]. Notably,
despite the significant contribution of recently developed transcriptome-wide methods
and integrative analyses, deciphering the intricate principles of RNA–protein networks is
undoubtedly challenging.

In order to facilitate the understanding of these complex, yet vital, interactions, RNA–
protein interaction databases integrate experimentally validated and computationally
predicted data from published literature and high-throughput technologies, visualizing
RNA interactomes [98]. Regarding the contents provided by each resource, RNA–protein
interaction databases may be characterized either as comprehensive, incorporating data
from multiple sources, specialized, focusing on interactions validated by various experi-
mental methods or predictive, utilizing computational methods, apart from experimental
data, to predict possible interactions.

Protein–RNA interaction database (PRD) [99] is a comprehensive database which
integrates literature-based physical RNA–protein interactions at the gene level. The current
version of PRD contains 10,817 interactions between proteins and protein-coding RNAs,
tRNAs, rRNAs, miRNAs, and viral RNAs in 22 organisms, corresponding to 1539 unique
gene pairs. Each interaction is enriched with further information curated from multi-
ple other resources, concerning RNA and protein binding sites/motifs, Gene Ontology
(GO) [100] terms, detection methods, and biological functions.

The RNA Interactome Database (RNAInter) [101], previously named RAID, is another
comprehensive and manually curated database of RNA-associated interactions (RNA–
Protein/RNA–RNA), integrating experimentally validated and computationally predicted
data from the published literature and 35 other resources. Apart from the fuzzy/batch
search, interaction networks, and RNA dynamic expression data that are included in
RNAInter, four RNA interactome tools are also embedded, namely, RIscoper [102], In-
taRNA [103], PRIdictor [104], and DeepBind [105]. Currently, RNAInter contains
41,322,577 RNA-associated interactions of 22 different RNA types in 154 species, includ-
ing 34,106,998 RPIs. Identifiers for external databases, such as miRBase, NCBI, HGNC,
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Ensembl, Online Mendelian Inheritance in Man (OMIM) [106,107], Human Protein Ref-
erence Database (HPRD) [108], and UniProt are also provided. Data can be browsed by
interaction type, detection method or species and are downloadable in text format, as well
as obtainable through an API.

Furthermore, POSTAR3 [109] and doRiNA [110] constitute more specialized reposito-
ries, concerning post-translational regulatory RNA–Protein interactions. Both databases
provide functional association prediction and contain structural information about binding
sites of RNA–binding proteins and RNAs originating from cutting-edge high-throughput
sequencing techniques. In particular, POSTAR2 provides the largest collection of RNA–
binding protein (RBP) binding sites and functional annotations in 6 species, namely human,
mouse, fly, worm, A. thaliana and yeast. Three modules (RBP, RNA, and translatome
modules) and RBP–RNA interaction network in H. sapiens are supported, offering both
functional and structural insights into translational and post-translational regulation. On
the other hand, doRiNA integrates experimentally validated RBPs and miRNA target site
data for H. sapiens, M. musculus, and C. elegans, while computational methods for all species
are also used for miRNA target site prediction.

As far as predictive databases are concerned, Protein–RNA Interface Database
(PRIDB) [111] contains a total of 30,056 RNA–Protein interactions (5694 unique RNA
chains and 1702 unique protein chains) and incorporates structural information facilitating
the analysis of RNA–protein complexes and their interface, by providing a user-friendly
format. The RNA–Binding Protein DataBase (RBPDB) [112] is a manually curated resource
of experimentally observed RNA–binding data for 1171 RBPs in humans, mice, flies, and
worms. Finally, RNA binding site DataBase (RsiteDB) [113] is another predictive database
aiming to describe, classify, and predict interactions between protein binding sites and
single-stranded RNA bases. Table 3 contains information regarding all aforementioned
RNA–protein interaction databases.

Table 3. RNA–Protein interactions databases.

Database
Name Interaction Type Data Category Curation

Type Organisms Data
License

Programmatic
Access

PRD [99] RNA–protein Primary Manual 22 species Free N/A

RNAInter
(RAID) [101]

RNA–protein, RNA–RNA,
RNA–DNA, RNA–compound,

RNA–histone modification

Primary,
Secondary,
Predictive

Manual 154 species Free REST API

POSTAR3
[109] RNA–protein Primary Automated

6 (H. sapiens, M. musculus,
C. elegans,

D. melanogaster,
A. thaliana, S. cerevisiae)

Free N/A

doRinA [110] miRNA–protein Primary Manual
4 (H. sapiens, M. musculus,

C. elegans,
D. melanogaster)

Free REST API,
Python API

PRIDB [111] RNA–protein Secondary,
Predictive Automated

5 (H. sapiens, M. musculus,
C. elegans,

D. melanogaster,
E. coli)

Free N/A

RBPDB [112] RNA–protein Primary,
Predictive Manual

4 (H. sapiens, M. musculus,
C. elegans,

D. melanogaster)
Free N/A

RsiteDB [113] RNA–protein Secondary,
Predictive Manual

All organisms with
available 3D protein-RNA

structures in PDB
Free N/A

3.2.2. LncRNA–Target Interactions

Long non-coding RNAs (lncRNAs) are transcripts defined as greater than 200 nu-
cleotides in size, which lack protein coding capacity. LncRNAs play a crucial role in
biological processes such as cell cycle regulation, immune responses, and embryonic stem
cell pluripotency. Studying lncRNAs is also important in order to understand the under-
lying mechanisms related to the pathogenesis of various diseases, such as cancer. Here,
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we evaluate relevant databases that compile and integrate information about lncRNA–
target interactions.

LncRNA2Target [114] contains a comprehensive repository of lncRNAs and their
target genes regarding H. Sapiens and M. Musculus, hosting 152,137 associations from
1047 manuscripts (manual literature extraction) and 224 datasets. High-throughput mi-
croarray or RNA–seq datasets were used to identify all differentially expressed genes by
checking expression before and after knockdown of lncRNAs. All lncRNAs were annotated
by NCBI Genbank, Ensembl, GENCODE [115], and Entrez ID/symbols and gene targets
by Entrez ID/symbols [116]. Furthermore, each interaction provides a link to the relative
publication through a PubMed identifier (PMID). Users can browse and download all
lncRNA–target interaction data in text and XLSX format.

EVLncRNAs [117] contains lncRNA interactions validated by low-throughput experi-
ments, such as qRT-PCR, knock-down, western blot, northern blot, and luciferase reporter
assays. These interactions are mainly curated from the literature and consist of lncRNA
interactions with biomolecules such as DNA, RNA, proteins, and transcription factors
(TFs), similar to the RNAInter database, which has already been discussed in the sec-
tion “RNA–protein interactions”. EVLncRNAs also incorporates lncRNA interaction entries
from other databases, such as lncRNAdb [118] (discontinued), LncRNADisease [119], and
Lnc2Cancer [120] (both discussed below), along with enhanced, manually curated metadata.
Its current version (v2.0, July 2020) covers a total of 4010 lncRNAs and 6244 biomolecular
interactions across 124 species, and 11,257 lncRNA–disease associations across 1082 dis-
eases. Additional metadata are offered for each entry, such as chromosome position,
assembly version, type of interaction (binding, regulation or co-expression), lncRNA class,
and validation method. Accession numbers to NCBI and Ensembl, as well as PMID links
are provided. EVLncRNAs allows data downloading in XLSX format. In addition, EVL-
ncRNAs provides network visualization of all available interactions on site, as well as links
to tools for lncRNA prediction. However, predicted interactions are not included in the
database itself.

DIANA-LncBase [95] accommodates experimentally verified tissue and cell type
specific miRNA–lncRNA interactions in H. sapiens and M. musculus. MiRNA–lncRNA
interactions are derived from the manual curation of published literature and the analysis
of high-throughput datasets. The current version of DIANA-LncBase (v3.0) catalogues
~240,000 interactions regarding ~500,000 entries. Interactions can be retrieved by querying
with miRNA or gene names/identifiers (for lncRNAs) from Ensembl, RefSeq, miRBase,
and the publication of Cabili et al. [121]. Additional filtering criteria, such as species, cell
types/tissues, and methodologies can be applied. A second module in DIANA-LncBase
contains information about lncRNAs in different cell types, as well as their subcellular
localization, in the nucleus and/or cytoplasm. Queried miRNA–lncRNA interactions and
lncRNA expression profiles are downloadable in CSV and JSON format, even though there
is no option to download all database interactions.

ChIPBase [122] contains interactions of trans-acting factors, such as TFs, transcription
cofactors (TCFs), chromatin-remodeling factors (CRFs), DNA-binding proteins, and histone
modifications with various types of RNAs such as miRNA, lncRNAs, and other ncRNAs,
from ChIP-seq data across 10 species. ChIP-seq peak datasets of these trans-acting factors
are retrieved from GEO, ENCODE, the modENCODE project [123], and the NIH Roadmap
Epigenomics Project [124]. All experiments contain metadata regarding cell line/tissue,
dataset IDs, and Ensembl IDs for the studied genes. Experiments within ChIPBase can be
queried and downloaded in text format (one experiment at a time).

As far as lncRNA–disease association databases are concerned, LncRNADisease [119] is
a collection of experimentally and/or computationally validated lncRNA–disease and circular
RNA–disease associations. The current version (v2.0) contains more than 200,000 lncRNA–
disease and circRNA–disease associations in total, across 4 species. All experimentally
supported data are manually retrieved from the literature and the computationally supported
data were predicted by four algorithms, LRLSLDA [125], LDAP [126], RWRlncD [127], and
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LncDisease [128]. Each ncRNA–disease association entry contains detailed information,
including gene symbol, gene category, disease information, and regulatory relationship, along
with a confidence score. Each disease name is mapped to Disease Ontology (DO) [129]
and Medical Subject Headings (MeSH) [130]. All database interactions are downloadable in
XLSX format.

Lnc2Cancer [120] is another lncRNA–disease interaction database that focuses on
cancer subtypes. The database provides lncRNA–cancer and circRNA–cancer associations,
along with their mode of regulation (up or down), supported by experiments. The cur-
rent version (v3.0) contains 10,303 entries for 2659 human lncRNAs, 743 circRNAs, and
216 cancer subtypes. For every lncRNA or circRNA interaction, flags are provided as
additional metadata, relative to their involvement in regulatory mechanisms (miRNA, TF,
genetic variant, methylation, and enhancer), biological functions (cell growth, apoptosis,
autophagy, EMT, immunity, and coding ability) and clinical applications (metastasis, re-
currence, circulation, drug-resistance, and prognosis). lncRNA names are coherent with
names from HGNC, Ensembl, GENCODE, Genbank or Refseq, whereas circRNA names are
derived from circBase or Circbank [131]. Online data can be browsed by lncRNA/circRNA
or cancer names and all interaction data are downloadable in XLSX format.

NONCODE [72] catalogues a variety of ncRNAs, focusing mainly on lncRNAs. NON-
CODE entries are derived from the literature and the latest versions of several public
databases (Ensembl, RefSeq, lncRNAdb and LNCipedia [132]). The bioentity interaction
data within NONCODE concern lncRNA–disease associations (32,226) obtained from four
lncRNA–disease databases (LncRNADisease, Lnc2Cancer, Mammalian ncRNA–Disease
Repository (MNDR—discussed in Section 3.5) [133] and LncRNAWiki [134]) and lncRNA–
SNP associations obtained from LincSNP [135] (724,579 total SNPs), which is further
discussed below. All entries are accompanied by the respective PMID and each SNP
provides a link to dbSNP [136]. NONCODE contains detailed information regarding the
sequence, structure, expression, function, conservation, and disease relevance of lncRNAs.
All NONCODE sequences are downloadable in FASTA format and all lncRNAs and their
respective genes in BED format. However, there is no dedicated download page for the
bioentity interaction datasets.

Another lncRNA–disease related database, lncRNASNP2 [137] provides information
of SNPs in human and mouse lncRNAs, as well as their impact on lncRNA structure and
function. lncRNASNP2 current version (v2) contains 10,205,295 SNPs on 141,353 H. sapiens
lncRNA transcripts and 5,104,701 SNPs on 117,405 M. musculus lncRNA transcripts. lncR-
NASNP2 transcripts are obtained from 170,002 NONCODE lncRNA genes. lncRNASNP2
also contains predicted lncRNA–miRNA interactions and lncRNA–disease associations.
MiRNA sequences were collected from miRBase and disease-associated miRNAs from the
Human microRNA Disease Database (HMDD) [138]. Moreover, lncRNASNP2 contains
noncoding variants from COSMIC [139,140] cancer data as well as TCGA cancer mutations.
All interaction data are downloadable in text format. Online search and prediction tools
are also available, enabling the analysis of user-uploaded lncRNAs.

Finally, a similar SNP-centric database, LincSNP [135], stores and annotates disease or
phenotype-associated variants, including SNPs, linkage disequilibrium SNPs (LD SNPs),
somatic mutations, and RNA editing in human lncRNAs and circRNAs or their regulatory
elements. The latter consist of transcription factor binding sites (TFBSs), enhancers, DNase
I hypersensitive sites (DHSs), topologically associated domains (TADs), footprints, and
open chromatin regions. LincSNP contains entries of experimentally supported variant–
lncRNA/circRNA–disease/trait associations retrieved from the literature. LincSNp also
incorporates lncRNA information from five databases (Ensembl, LncRBase [135], NON-
CODE, LNCipedia, and GENCODE). Moreover, disease-associated SNPs were obtained
from nine different sources (dbGaP [141], Genetic Association Database (GAD) [142],
Gene-wide association study (GWAS) Central [143], Johnson and O’Donnell [144], the Na-
tional Human Genome Research Institute (NHGRI) GWAS Catalog [145], PharmGKB [146],
GWASdb [147], GRASP [148], and LnCeVar [149]). LD-SNPs were collected after analysis



Biomolecules 2021, 11, 1245 12 of 41

by VCFtools [150] and somatic mutations from the COSMIC database [140]. In addition, as-
sociations between functional variants, lncRNAs, circRNAs, and their regulatory elements
were constructed using BEDTools [151]. Queried interactions are downloadable in spread-
sheet, CSV, and PDF formats, while all bioentity site interactions are also downloadable in
BED format. All aforementioned lncRNA-related database information is summarized in
Table 4.

Table 4. LncRNA–target interaction databases.

Database Name Interaction Type Data
Category

Curation
Type Organisms Data License 1 Programmatic

Access

LncRNA2Target
[114] lncRNA–gene Primary Manual 2 (H. sapiens,

M. musculus) Free N/A

EVLncRNAs
[117]

lncRNA–DNA, lncRNA–RNA,
lncRNA–protein, lncRNA–TF,

DNA-TF, peptide–protein,
lncRNA–disease

Primary,
Secondary Manual 124 species Free N/A

RNAInter (RAID)
[101]

lncRNA–DNA,
lncRNA–RNA,

lncRNA–protein,
lncRNA–histone modification,

lncRNA–compound

Primary,
Secondary,
Predictive

Manual 15 species Free REST API

DIANA-LncBase
[95] lncRNA–miRNA Primary,

Predictive
Manual,

Automated
2 (H. sapiens,
M. musculus) Free N/A

ChIPBase [122]
(TF, TCF, CRF, DNA-binding protein,

histone modification)–(ncRNA,
protein, lncRNA, miRNA)

Primary,
Predictive Automated 10 species Free N/A

LncRNADisease
[119] lncRNA–disease, circRNA–disease Primary,

Predictive Manual
4 (H. sapiens,

G. gallus,
R. norvegicus,
M. musculus)

Free N/A

Lnc2Cancer [120] lncRNA–cancer, circRNA–cancer Primary Manual H. sapiens Free N/A

NONCODE [72] lncRNA–disease,
lncRNA–SNP-disease Secondary Automated

39 (16
animals, 23

plants)
Free

(CC-BY-NC) N/A

lncRNASNP2
[137]

lncRNA–SNP, lncRNA–disease,
lncRNA–miRNA

Secondary,
Predictive Automated 2 (H. sapiens,

M. musculus) Free N/A

LincSNP [135]

SNP-lncRNA,
SNP-circRNA, LD SNP-lncRNA,

LD SNP-circRNA, Somatic
mutation-lncRNA, Somatic

mutation-circRNA, RNA
editing-lncRNA, RNA

editing-circRNA

Primary,
Secondary,
Predictive

Manual 1 (H. sapiens) Free
(Open Source) N/A

1 The license type adopted by each database. In cases where a specific license type is used, it is given in parentheses. License abbreviations:
CC-BY-NC, Creative Commons–Attribution–Non-commercial.

3.3. Protein Interaction Databases

In the following section we discuss databases containing protein interactions. As
proteins are responsible for nearly every cell function, the investigation of their interactions
is critical to the study of every biological process, as well as the study of diseases and
the design of novel pharmaceuticals. As a result, the vast majority of currently available
biomolecular interaction databases currently focus on proteins and their interactions, either
with other proteins (protein–protein interactions), or with chemical compounds, such as
ligands, drugs, and other substances (protein–small molecule interactions).

3.3.1. Protein–Protein Interactions (PPIs)

Proteins rarely act alone inside the cell. Instead, the vast majority of cell functions,
from gene expression and metabolic pathways to structural support, cell growth, and cell
death, are conducted by multiple proteins, frequently coordinating their action through the
formation of protein complexes. Protein–protein interactions are of paramount importance
in biological research. Studying the interactions behind a protein–protein complex that
conducts a biological process is critical for elucidating the mechanisms that govern that
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process, as well as for designing better treatments for the diseases that are caused when
these interactions are disrupted. For this reason, a significant number of protein–protein
interaction databases have emerged in the literature. In this subsection we present a subset
of these databases, focusing mainly on repositories that can be of use in Systems Biology,
and particularly in the creation and analysis of biological networks.

IntAct [152,153] is a large, open-source, manually curated molecular interaction
database hosted by the European Bioinformatics Institute (EBI). All interactions contained
in the database are derived from experimental results, obtained from the literature by the
database’s curators, or from interaction datasets submitted by the scientific community.
IntAct is the largest biomolecular interaction database, as it currently holds more than
11 million binary interactions, the vast majority of which involve protein–protein com-
plexes. In addition to its own data, the database also integrates experimental interaction
evidence deposited in MINT [154,155], another major protein–protein interaction database
(described in more detail below), as well as interactions derived from UniProtKB/Swiss-
Prot and PDB [153]. Each interaction is annotated with details about the experimental
procedures followed, as well as accompanied by relevant publications. This annotation
evidence is also used to evaluate the confidence of each interaction, by applying a numeri-
cal score (Mi-score). Interactions are available for download in the PSI-MI format, both for
the entire database and for manually selected datasets, dedicated to specific proteomes or
diseases. In addition, database offers a number of resources for the analysis of interactions,
including a REST API based on PSICQUIC (Proteomics Standard Initiative Common QUery
InterfaCe), an import interface for Cytoscape [39] and a dedicated Cytoscape app (IntAct
app) [156] and an embedded network viewer based on Cytoscape-web (a preliminary
implementation of Cytoscape.js [157]). IntAct is a major participant in the International
Molecular Exchange (IMEx) Consortium, a combined effort to provide an integrative,
non-redundant dataset of biomolecular interactions [158].

Similar to IntAct, the MINT (Molecular INTeraction) database [154,155] focuses on
experimental evidence derived from peer-reviewed publications. Its data consist of di-
rect (physical) and indirect (functionally inferred) interaction evidence, with each binary
interaction entry also containing information on promoter regions, mRNA transcripts,
and the functional annotation of its protein partners. Starting from 2014, all interactions
deposited in MINT are also integrated into the IntAct database [153]. In addition, MINT
has adopted the database organization scheme and infrastructure of IntAct, including
the use of the IntAct Mi-score to evaluate data confidence. In contrast to MINT, which
exclusively relies on manual curation, the Database of Interacting Proteins (DIP) [159]
catalogs experimentally determined interactions that are curated, both manually by expert
curators and automatically, using computational approaches. DIP combines information
from a variety of sources to create a single, consistent set of protein–protein interactions,
each of which is annotated with cross-references to major biological repositories, such as
UniProt, RefSeq, and GO. The Integrated Interactions Database (IID) [160] is a database of
experimentally detected and predicted protein–protein interactions in 18 species, includ-
ing human, 5 model organisms, and 12 domesticated species. IID collects experimental
evidence from nine PPI databases and combines them with computational predictions
using a number of different approaches. Each interaction is annotated with information
on the experimental or computational procedure followed, as well as with cell type and
tissue expression evidence, where available. In addition, IID offers a number of tools for
the creation and topological analysis of PPI networks. MINT, DIP, and IID are all active
participants in the IMEx Consortium and utilize the same REST API for programmatic
access [158].

BioGRID [43] is a curated biological interaction database, comprising primarily protein–
protein interactions, as well as genetic and chemical interactions and post-translational
modifications. It strives to provide a comprehensive curated resource for all major model
organism species while attempting to remove redundancy to create a single data map.
BioGRID is currently one of the largest repositories of biomolecular interactions, containing
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over 1,740,000 protein–protein interactions curated from both high-throughput datasets and
individual focused studies, derived from over 70,000+ publications. Although BioGRID is not
an active participant in the IMEx Consortium, it complies with the latter’s guidelines and data
format and has been classified as an IMEx Observer. The database provides programmatic
access through a REST API, as well as the PSICQUIC API of IMEx members, in addition to
integration with the Cytoscape network analysis program.

The STRING database is a large collection of experimentally derived and computa-
tionally inferred interactions [37]. STRING is a secondary database (or meta-database),
compiling evidence from various sources, including experimental evidence from several
primary PPI databases and computationally inferred interactions from literature text min-
ing of scientific texts, de novo prediction of genomic features, and inference based on
orthology with model organisms. A major aim of this database is the widest possible
coverage of interactions in as many different organisms as possible. As such, STRING
currently contains interaction evidence, either experimental or computational, for more
than 14,000 species. Each interaction in STRING is annotated as direct/physical or indi-
rect/functional, based on its data sources, and is ranked using a confidence score. STRING
provides users with a versatile network visualization platform for the generation and
analysis of PPI networks [161], including the analysis of topological features, as well as
functional enrichment with terms from GO, KEGG (Kyoto Encyclopedia of Genes and
Genomes) [162], Reactome [163], DO, Pfam, InterPro, and the Simple Modular Architecture
Research Tool (SMART) [164]. In addition, the database offers programmatic access through
a REST API, packages for the R and Python languages, direct integration with Cytoscape
and a specially designed Cytoscape (stringApp), capable of building PPI networks with
the characteristic STRING visualization style [41].

I2D, formerly known as Online Predicted Human Interaction Database (OPHID),
contains protein–protein interactions for a number of mammals and other eukaryotic
species [45]. It contains experimental evidence, obtained from high-throughput experi-
ments as well as other databases, such as IntAct or BioGRID, and predicted interactions,
inferred by mapping experimental results between different species. In addition, the
database implements NAViGaTOR [165], a web-based network analysis platform for the
visualization and analysis of PPI networks derived from its data. Although a significant
portion of its content has migrated to IID [160], I2D remains one of the most comprehensive
sources of known and predicted eukaryotic PPIs for model organisms, such as S. cerevisiae,
C. elegans, D. melonogaster, R. norvegicus, M. musculus, and H. sapiens.

The Protein Interactions Network Analysis (PINA) database [166] is an integrated
platform for the visualization and analysis of protein–protein interactions through the use
of PPI networks. PINA consists of a non-redundant dataset of protein–protein interac-
tions from seven model organisms (H. sapiens, M. musculus, R. norvegicus, D. melanogaster,
C. elegans, S. cerevisiae, and A. thaliana), obtained from integrating data from five manu-
ally curated databases (IntAct, MINT, BioGRID, HPRD, and DIP). The database offers a
large number of tools for the construction, visualization, and analysis of PPI networks. In
addition, PINA has implemented search and visualization schemes for the analysis of in-
teractions associated with various types of cancer, integrating PPI evidence with RNA–seq
transcriptomes and mass spectrometry-based proteomes.

The Compartmentalized Protein–Protein Interactions (ComPPI) database [167] is a large
collection of protein–protein interactions from four model organisms (H. sapiens, D. melanogaster,
S. cerevisiae, and C. elegans). The database currently contains 791,059 interactions, obtained
from several other PPI databases and manually curated for redundancy. These interactions are
combined with evidence on protein subcellular localization, tissue and cell type expression
evidence, and can be utilized to produce tissue-specific, cell-specific, and even subcellular
location-specific interaction networks.

CORUM (Comprehensive Resource of Mammalian protein complexes) [168] is a collec-
tion of manually annotated protein complexes from mammalian organisms. Its annotation
includes protein complex function, localization, subunit composition, literature references,
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functional enrichment with GO terms, and associations with diseases. All information
is obtained from individual experiments published in scientific articles, while data from
high-throughput experiments is excluded. For this reason, the total number of interactions
in CORUM is relatively small compared to other repositories; however, its data curation
for each entry is significantly more detailed. Similar to CORUM, ComplexPortal [169]
is a manually annotated and curated resource on macromolecular complexes, with em-
phasis on protein–protein and, to a lesser extent, protein–nucleic acid, and protein–small
molecule complexes. Its interactions are derived from physical molecular interaction evi-
dence extracted and cross-referenced from the literature and deposited in IntAct, by curator
inference from information on homologs in closely related species. A key characteristic of
ComplexPortal is its strict definition of the term “macromolecular complex” as an assembly
of any two or more bioentities that are stable enough in vitro to be reconstituted and have
been demonstrated to have a specific molecular function. This means that only constant
protein–protein complexes are included in the database, while transient interactions, like
those formed in processes such as signal transduction, are discarded. Another key feature
of the database is its rich annotation, as each macromolecular complex is accompanied by
detailed description of its stoichiometry, function, and relation to biological processes and
diseases.

In addition to the major PPI databases described above, a number of web services that
focus on specific systems also exist. These include databases which cover the interactions
of specialized groups of proteins (or often a single protein class or family) with biomedical
or pharmacological interest. Characteristic examples include major drug targets, such as
G-protein coupled receptors (GPCRs), Receptor-Tyrosine Kinases (RTKs), and ion channels.
A number of databases exist that specialize in describing the features of these proteins,
including their interactions. For example, GPCRdb [170] contains both structural and func-
tional evidence on the interactions of GPCRs with ligands and heterotrimeric G-proteins.
In the same vein, hGPCRnet (Human GPCR network) provides a network visualization
and associated database for PPIs in human GPCR signaling pathways, accompanied with
annotation regarding cell and tissue expression [171]. As far as RTKs are concerned, one
detailed resource is PrimesDB (Protein interaction machines in oncogenic EGF receptor
signalling) [172], which focuses exclusively on PPIs related to the signaling mechanisms of
EGFR and ERBB. EGFR and ERBB are two major biomarkers and drug targets in several
diseases, including various forms of cancer. PrimesDB also offers tools for the visualization
of PPI networks and is a participant in the IMEx Consortium. Finally, Channelpedia [173]
is a community-driven database on the features of ion channels, including the interactions
between their subunits. All of the aforementioned protein classes and their interactions are
also collected and presented in the IUPHAR/BPS Guide to Pharmacology [174], a man-
ually curated dataset of biomolecular interactions implicated in the signaling pathways
of human, mouse and rat GPCRs, ion channels, RTKs and other drug targets. Apart from
specialization into protein classes/families, databases also exist that provide information
on PPIs observed in specific subcellular locations, such as organelles, vesicles, the cell mem-
brane or the extracellular matrix. MitoProteome [175] is a database describing proteins
present in mitochondria and their interactions. PerMemDB [176] collects experimental and
computationally predicted information on peripheral membrane proteins, including their
interactions with transmembrane proteins. Finally, the protein–protein interactions of the
extracellular matrix (ECM) are covered by MatrixDB [177], a manually curated database
on the PPIs of ECM proteins and proteoglycans. Table 5 presents a collection of available
PPI databases.
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Table 5. A collection of protein–protein interaction databases.

Database
Name Interaction Type Data

Category
Curation

Type Organisms Data License 1 Programmatic Access

IntAct [152] protein–protein,
protein–chemical

Primary &
Secondary Manual 1452 species Free

(Apache 2.0)

REST API
(PSICQUIC)

Cytoscape import &
app [156]

MINT [155] protein–protein Primary Manual 669 species Free
REST API

(PSICQUIC)
Cytoscape import

DIP [159] protein–protein Primary
Manual

(primarily) &
Automated

834 species Free
(CC-BY-ND)

REST API
(PSICQUIC)

Cytoscape import

IID [160] protein–protein Predictive Manual
18 (H. sapiens, 5 model

organisms, 12
domesticated species)

Free
REST API

(PSICQUIC)
Cytoscape import

BioGRID [43]
protein–protein,

protein–chemical, gene
co-expression, PTMs

Predictive
Automated

(primarily) &
Manual

86 species Free
(GNU/GPL)

REST API,
Cytoscape import

STRING [37] protein–protein, gene
co-expression Secondary Automated >14,000

taxa
Free

(CC-BY)

REST API (dedicated
and PSICQUIC),

R & Python packages,
Cytoscape import &
app (stringApp) [41]

I2D [45] protein–protein Predictive Manual 8 species Free Cytoscape import

PINA [166] protein–protein Secondary Manual 7 species FREE
(NIH GDS)

RESTful API,
Cytoscape app [178]

ComPPI [167] protein–protein Secondary Manual
4 (H. sapiens, D.
melanogaster, S.

cerevisiae, and C. elegans)
Free

(CC-BY-SA) N/A

CORUM [168] protein–protein Primary Manual 3 (H. sapiens M.
musculus, R. norvegicus)

Free
(CC-BY-NC) N/A

ComplexPortal
[169]

protein–protein,
protein–small molecule,

protein–nucleic acid
Secondary Manual 26 species Free N/A

GPCRdb [170]
protein–protein,

specializes in GPCR
structural complexes

Secondary Manual All metazoa with
known GPCRs

Free
(Apache 2.0) REST API

hGPCRnet
[171]

protein–protein,
specializes in GPCR
signaling pathways

Secondary Manual H. sapiens Free N/A

PrimesDB
[172]

protein–protein,
specializes in RTKs Secondary Manual H. sapiens Free (requires

registration)
REST API

(PSICQUIC)

Channelpedia
[173]

protein–protein,
specializes in ion

channels
Primary Manual Mammals Free

(CC-BY-NC) N/A

IUPHAR/BPS
Guide to

Pharmacology
[174]

protein–protein,
protein–chemical Secondary Manual 3 (H. sapiens M.

musculus, R. norvegicus)
Free

(CC-BY-SA) REST API

MitoProteome
[175]

protein–protein,
specializes in
mitochondria

Secondary Manual H. sapiens Free N/A

PerMemDB
[176]

protein–protein,
specializes in peripheral

membrane proteins
Predictive Manual 1009 species Free N/A

MatrixDB
[177]

protein–protein,
specializes in proteins of
the extracellular matrix

Primary Manual
12 model organisms,
primary focus on H.

sapiens

Free
(CC-BY)

REST API
(PSICQUIC)

ConsensusPath
DB [179]

protein–protein,
protein–chemical Secondary Manual H. sapiens

Free for
academic

users
SOAP/WSDL API,

Cytoscape app [180]

1 The license type adopted by each database. In cases where a specific license type is used, it is given in parentheses. License abbreviations:
CC-BY, Creative Commons–Attribution; CC-BY-ND, Creative Commons–Attribution–No derivatives; CC-BY-SA, Creative Commons–
Attribution–Share Alike; CC-BY-NC, Creative Commons–Attribution–Non Commercial; GNU/GPL, GNU General Public License; NIH
GDS, NIH General Data Sharing policy.
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3.3.2. Protein–Small Molecule Interactions

The interactions of proteins with small molecules are vital for a wide range of bio-
logical functions. Inside a cell, small molecules play a twofold role as substrates, cofac-
tors, and products in various biochemical reactions and as ligands or hormones which
regulate protein functions [181]. Additionally, bioactive small molecules are often used
as probes to identify therapeutic protein targets in drug discovery. Information on the
structures, calculated properties, and bioactivities for a large number of chemicals and
drug-like compounds is integrated in specialized databases, including PubChem [182],
ChEMBL [183], and SIDER [184], with the aim of deciphering their properties and facilitat-
ing the drug discovery process. Another essential data resource involves databases focused
on protein-chemical interactions, which gather information on the existence, stoichiometry,
and biological or biomedical relevance of protein–small molecule complexes [185]. In
Table 6, we have collected the relevant information on protein–small molecule interactions
databases.

The primary, and most often used source of information in protein-small molecule
interactions comes from databases focusing on experimentally studied protein-chemical
complexes. DrugBank [186] is currently one of the most popular databases in this category.
It is a manually curated and publicly available resource that provides primarily experimen-
tal information about small molecules (i.e., chemical, pharmacological, and pharmaceutical)
and their protein targets (i.e., sequence, structure, metabolic pathways). In addition to
drug-drug interactions, the database incorporates information for physical drug-target
interactions and interactions with proteins known to metabolize a compound. Despite its
name, however, the database does not focus solely on drugs, but also provides information
on other compound types, such as metabolites. DrugBank is a frequently updated resource
and its latest release (April 2021) integrates 14,524 drug entries, including 2684 approved
small molecule drugs, 1464 approved biologics (proteins, peptides, vaccines, and aller-
genics), 131 nutraceuticals, and over 6654 experimental (discovery-phase) drugs. Finally,
5249 non-redundant protein (i.e., drug target/enzyme/transporter/carrier) sequences are
associated with the aforementioned drug entries.

Another important, experimentally focused protein-small molecule interaction database
is BindingDB [187]. BindingDB is a specialized repository of experimentally validated and
measured binding affinities between drug-like compounds and therapeutically relevant
protein targets. In particular, the latest version of BindingDB incorporates 41,328 Entries,
each with a DOI, containing 2,259,122 binding data for 977,487 small molecules, which are
mapped to 8516 protein targets. The database is continuously curated, deriving data mainly
from scientific articles as well as from US patents. The search interface is well-designed
and enables combined query criteria, including target name, sequence, molecular weight,
source organism, compound name, SMILES string, binding potency, and article or patent
information, while restricted searches by data source (e.g., BindingDB, ChEMBL, PubChem,
and patents) is also allowed.

Apart from the primary databases described above, several secondary repositories
also exist, combining information from multiple sources. STITCH (Search Tool for In-
teractions of Chemicals) [188], the “sister” database of STRING, is a manually curated
resource to explore both known and predicted interactions between 9,600,000 proteins from
2031 eukaryotic and prokaryotic genomes and over 430,000 chemicals. Known interaction
evidence is mainly derived from experimentally validated data as well as from manually
curated datasets, including KEGG and Reactome. Protein–small molecule interactions
are also accompanied by protein–protein interaction evidence, derived from STRING, to
help illustrate the effect of chemicals on supramolecular assemblies. Text mining-based
associations are compiled after parsing articles from PubMed Central (PMC) and PubMed.
Like STRING, STITCH offers a REST API for programmatic access, as well as integration
with Cytoscape.

Similar to STITCH, ConsensusPathDB [179] contains human interaction data refer-
ring to biochemical reactions and protein, genetic, metabolic, signaling, or drug-target
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interactions as well as gene regulatory interactions involving different types of physi-
cal entities. SuperTarget [189] is another secondary database which hosts information
from various databases. It contains 332,828 drug-target interactions along with pathways,
protein–protein interactions, and drug-target-related ontologies, based on information
retrieved from DrugBank, BindingDB, SuperCYP [190], ConsensusPathDB and CORUM.
Metrabase (Metabolism and Transport Database) [191] is another comprehensive chemin-
formatics and bioinformatics database providing manually curated data extracted from
published literature and other resources (TP-Search [192], ChEMBL, Human Protein At-
las [193], DrugBank, and UniProt) related to human metabolism and transport of chemical
compounds across biological membranes and their interactions with proteins. Apart from
transporter/enzyme-ligand associations, Metrabase incorporates experimentally validated
information on non-substrate, non-inhibitor, and non-inducer compounds, aiming to assist
the prediction of models based on the characteristics of both the positive and the negative
class. Another example is Transformer [194], a database that focuses on the metabolism and
transport of chemical compounds in the human body and, more specifically, xenobiotics. It
contains integrated data on transformation, transportation, conjugation, and excretion of
drugs, prodrugs, alimentary and Traditional Chinese Medicine compounds as well as their
effect on enzymes and proteins, also providing the ability of interactive visualization.

A major field of interest in the study of protein–small molecule interactions involves
the structural analysis of protein–ligand complexes. A number of specialized databases
exist for this purpose. Some of these repositories are, essentially, subsets of PDB, containing
analysis on the stoichiometry of protein–heteroatom interactions often found in the PDB
entries of experimental 3D structures. PLI (Protein–Ligand Interaction) [195] and PLIC
(Protein–Ligand Interaction Clusters) [196] are two such databases, which, as their names
indicate, focus on protein-ligand associations. PLI database incorporates all the interactions
between proteins and small molecules identified in the PDB with a Het_id code, while PLIC,
by analyzing similarities in binding sites and employing computational tools, provides
clusters of similar binding sites from PDB. Notably, PLIC, unlike other protein-ligand
specific databases, not only reports similarities in interactions but also hosts data on
attributes, such as binding site shape, protein–ligand contacts, and energetics among
similar protein–ligand interactions.

In addition to the above, a number of structural databases also exist that complement
crystallographic evidence with computational predictions derived from energy calcula-
tions, protein-ligand docking predictions or ab initio simulations. NLDB (Natural Ligand
Database) [197] is a predictive database focusing on 3D protein-ligand interactions specif-
ically in enzymatic reactions of metabolic pathways registered in KEGG. Based on the
latest update, NLDB offers data about known human genome polymorphisms on protein
structures, as well as 87,400 experimentally validated protein–ligand complex structures in
PDB, defined as natural complexes, while 31,672 analog complexes and 70,570 ab initio
complexes were predicted based on known protein structures in a complex with a similar
ligand and by docking simulations accordingly. In cases of unknown complex structures,
3D interactions are predicted by implementing state-of-the-art software programs and
subsequently generating a database of the 3D protein–ligand interactions in various en-
zymatic reactions. NLDB also provides an enrichment analysis function based on a set of
KEGG compound IDs. PoSSuM (Pocket Similarity Search using Multi-Sketches) [198] is
another predictive database that aims to retrieve similar small-molecule binding pockets
on proteins with both different and similar global folds, contributing to structure-based
drug discovery. It employs the SketchSort [199] algorithm for all-pair similarity searches,
resulting in more than 163 million similar pairs of binding sites with annotations. Finally,
PDID (Protein-Drug Interaction Database) [200] is a database of predicted protein–ligand
interactions in the structural human proteome. PDID incorporates 9652 structures from
3746 proteins and provides a comprehensive set of 16,800 putative protein–drug interac-
tions between 51 popular, FDA-approved drugs and over 10,000 protein structures, which
were generated from approximately 1.1 million all-atom structure-based predictions.
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The databases described above offer generalized information on the existence and
properties of protein–small molecule complexes. However, specialized repositories also
exist, focusing on the protein–chemical interactions associated with specific systems, phe-
notypes or diseases. One characteristic example involves cancer-specific databases, such
as CancerDR [201], CAncerREsource 2 [202], and canSAR [203]. As their names indicate,
these databases focus on protein–drug interactions related particularly to cancer. CancerDR
incorporates 148 anticancer drugs which are mapped to 116 drug targets in 1000 cancer
cell lines, also offering information about the function, structure, and gene sequences of
each of these targets. In addition, CancerREsource 2 contains not only comprehensive
data on 90,744 interactions between drugs and cancer-relevant protein targets, but also
mRNA expression and non-synonymous mutation data from large-scale cancer genomics
experiments. Similarly to the previously mentioned databases, canSAR is a comprehensive
database which integrates protein–drug interactions between 564,407 proteins from all
species and 3,312,866 compounds with unique chemical structures, as well as genomic and
structural data.

Finally, one important category of specialized protein–small molecule databases fo-
cuses on the interactions of kinases, a large group of enzymes that participates in a multi-
tude of cell processes and which, as such, has been implicated in a wide range of diseases.
Kinase-specific databases include KIDFamMap (Kinase-inhibitor-disease family map) [204]
and KLIFS (Kinase-Ligand Interaction Fingerprints and Structures database) [205], which
contain protein–chemical information oriented to the kinase superfamily. In particular,
KIDFamMap includes 189,987 kinase-inhibitor interactions derived from BindingDB and
grouped into 1210 kinase-inhibitor families according to their pharma-interfaces, providing
associations between 399 human protein kinases, 35,788 kinase inhibitors, and 339 diseases.
KLIFS is another comprehensive kinase database that focuses on the interactions between
3499 kinase inhibitors and 312 kinases, based on the chemical structure of their catalytic
domains. Finally, kinase-substrate interactions are also included in the IUPHAR/BPS
Guide to Pharmacology [174], a database which, among other drug targets, includes a
special section dedicated to the functionality and pharmacology of kinases.

Table 6. Protein–small molecule interactions databases.

Database Name Interaction Type Data
Category

Curation
Type Organisms Data License 1 Programmatic

Access

DrugBank [186] protein–chemical Primary Manual H. sapiens
Free for academic

users
(CC-BY-NC)

REST & SQL API

BindingDB [187] protein–chemical Primary Manual,
Automated H. sapiens Free

(CC-BY-SA) RESTful API

STITCH [188] protein–chemical Secondary,
Predictive Automated 2031 eukaryotic and

prokaryotic genomes

Free for academic
users

(EMBL License)
REST API,

Cytoscape app [41]

ConsensusPathDB
[179]

protein–protein,
protein–chemical Secondary Manual H. sapiens Free for academic

users
SOAP/WSDL API,
Cytoscape app [180]

SuperTarget [189] protein–protein,
protein–chemical Secondary Manual H. sapiens Free

(CC-BY-NC-SA) N/A

Metrabase [191] protein–chemical Primary Manual H. sapiens Free
(CC-BY-SA) N/A

Transformer [194] protein–chemical Primary Manual H. sapiens Free N/A

PLI [195] protein–chemical Secondary Automated 100 species Free N/A

PLIC [196] protein–chemical Secondary Automated
All organisms with

available protein–ligand
structures in PDB

Free REST API

NLDB [197] protein–chemical Secondary &
Predictive Automated

All organisms with
available protein–ligand

structures in PDB
Free N/A

PoSSuM [198] protein–small
molecule Secondary Manual H. sapiens Free N/A
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Table 6. Cont.

Database Name Interaction Type Data
Category

Curation
Type Organisms Data License 1 Programmatic

Access

PDID [200] protein–chemical Secondary Manual H. sapiens Free
(Open Source) N/A

CancerDR [201] protein–chemical Primary Manual H. sapiens Free N/A

CAncerREsource
[202] protein–chemical Primary Manual H. sapiens Free N/A

canSAR [203] protein–chemical Primary Manual H. sapiens Free
(Public Domain) N/A

KIDFamMap
[204]

protein–protein,
protein–chemical Primary Manual H. sapiens Free N/A

KLIFS [205] protein–chemical Primary Manual,
Automated

H. sapiens,
M. musculus

Free
(Open Source) REST API

TDR Targets [206] protein–chemical Primary Manual 11 host organisms, 35
pathogens Free N/A

T3DB [207] protein–chemical Primary Manual H. sapiens Free N/A

BioLiP [208] protein–chemical Secondary Semi-
manual ~100 species Free N/A

Binding MOAD
[209] protein–chemical Primary Manual >100 species Free N/A

ASDCD [210] protein–chemical Primary Manual H. sapiens Free N/A

PRRDB 2.0 [211] protein–small
molecule Primary Manual 7 species Free N/A

1 The license type adopted by each database. In cases where a specific license type is used, it is given in parentheses. License abbreviations:
CC-BY-SA, Creative Commons–Attribution–Share Alike; CC-BY-NC, Creative Commons–Attribution–Non Commercial; CC-BY-NC-SA,
Creative Commons–Attribution–Non-Commercial–Share Alike.

3.4. Signaling and Metabolic Pathway Interactions

The interactions between all aforementioned molecules (DNA, RNA, proteins, etc.)
cause cascading effects that may consequently affect biological mechanisms and processes
through signaling and metabolic pathways. Analysis, processing, and interpretation of
the vast and ever-growing amounts of -omics- data has made the implementation of
pathway-oriented approaches necessary in most fields in Biology. The complexity of
biological processes and their innumerable underlying interactions is most effectively
and efficiently conceptualized with the representation and visualization of biological
pathways [199]. Herein, we summarize a variety of databases dedicated to signaling and
metabolic pathway interactions. Table 7 contains information on the discussed signaling
and metabolic pathway interaction databases.

WikiPathways [212] is a manually curated database, launched in 2007 that is con-
tinuously updated on an almost daily basis. It is a collaborative platform based on the
MediaWiki software, which incorporates customized graphical tools for editing and fa-
cilitating the representation of biological pathways and processes. The community has
consistently been involved in the construction and revision of the pathway models com-
prising the database. Wikipathways also incorporates content from a large selection of
databases, providing users the ability to query pathways from a variety of fields, such as
Renal Genomics, the Reactome database, Diseases, Lipids and Micronutrients, through
dedicated thematic sections (portals). The WikiPathways database includes a total of
2958 pathways (April 2021) consisting of proteins, genes, metabolites, and drugs, cover-
ing H. sapiens along with 29 other species and comprises 46,105 interactions between the
represented bioentities. A designated wiki page is ascribed to each pathway, including
features such as a pathway diagrams, short analysis, list of references as well as a list of
all pathway components. The database content is freely accessible through a browser, an
API or a specially designed Cytoscape app [213], and is downloadable in multiple formats,
such as: (i) image formats (PNG, SVG, PDF), (ii) gene lists (GMT, Eu.Gene format), and
(iii) machine-readable formats (GPML, RDF, BioPAX, XGMML, SBGN, SBML) for further
pathway analysis by various tools, such as PathVisio [214] and Cytoscape [39]. Links to
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other databases are provided for pathway components via the BridgeDb web service [215],
such as NCBI, GO, Ensembl, UCSC Genome Browser, UniProt-TrEMBL, WIKIGENES [216],
PDB, and IUPHAR/BPS Guide to Pharmacology.

Reactome [163] contains manually curated information derived from 33,453 litera-
ture references and in principle constitutes an extended metabolic map of H. sapiens. It
includes detailed information of cellular processes on a molecular level, visualizing them
in coherent data models. Such processes range from transport and DNA replication to
signal transduction and intricate metabolic functions. Orthologous molecular reactions
are also included for various other species, where applicable. The database (version 76)
contains 10,867 human genes, 415 drugs, 1856 small molecules which serve as natural
substrates, catalysts or regulators, 11,073 discrete proteins and 13,732 reactions incorpo-
rated into 2516 human pathways grouped in 26 superpathways (i.e., immune system,
metabolism, diseases). The entities are linked to various databases of the relevant type,
such as NCBI, Ensembl, UniProt, KEGG (Gene and Compound), ChEBI [217], PubMed,
and GO. Reactome data is downloadable in various formats (DOC, PDF, SBML, SBGN,
BioPAX 2, BioPAX 3, OWL, PNG, SVG, JPEG, GIF) and can be queried via an API, as well
as through a Cytoscape app (ReactomeFIViz) [218].

KEGG [162], rather than constituting a single database, is an integrated database
framework comprising 15 databases which are manually curated and an additional com-
putationally generated one. Among them, KEGG PATHWAY [219] contains biological
pathways represented graphically by manually drawn pathway maps, similar to Reac-
tome. Listed entities include molecules, genes, proteins, and pathways, as well as disease
genes and drug targets. Within the pathway maps, sequenced genes are linked to higher
order functions in the context of individual cells or entire organisms. Such functions are
depicted by a web of interactions and chemical reactions, drawn in the format of KEGG
pathway maps, BRITE hierarchies, and KEGG modules. KEGG contains 34,042,792 genes,
781,759 pathways and 11,505 reactions pertaining to 545 eukaryotes, 6234 bacteria, and
343 Archaea (April 2021). Links are provided to other databases for bioentities included in
the various pathways, such as GO, UniProt, other KEGG Databases, Rhea [220], NCBI, Pub-
Chem, CheMBL, KNApSAcK [221], PDB (Chemical Components) while PubMed references
are also incorporated. The database provides an API, while the content can be downloaded
in multiple formats, such as PNG, RDF and KGML. In addition, multiple Cytoscape apps
have been developed, both from the database’s curators and from third-party users, that
integrate KEGG data visualization and analysis with Cytoscape [222–224].

Similar to the aforementioned databases, CBN (Causal Biological Network) [225]
provides over 120 manually curated network models using Biological Expression Language
(BEL) [226] integrating over 80,000 literature-based information pieces in order to describe
signaling pathways and their biomolecular interactions. More specifically, it showcases the
relationships in pathways across a wide spectrum of biological fields in 3 species (H. sapiens,
M. musculus, R. norvegicus) using interactive network visualizations. These fields include
cell fate, cell stress, cell proliferation, inflammation, tissue repair, and angiogenesis in the
framework of the pulmonary and cardiovascular systems. Furthermore, the visualizations
incorporate interacting entities, including proteins, DNA variants, coding and non-coding
RNAs, chemicals, lipids, and processes (e.g., phosphorylation). Pathway compartments are
annotated with metadata regarding species, tissue, and cell type and are also accompanied
by their original references in PubMed. The networks can be downloaded in several
formats, such as JSON GRAPH, SIF and SVG for further analysis.

Finally, the INDRA (Integrated Network and Dynamical Reasoning Assembler)
database [227] is an automated system for the retrieval of interaction information on
bioentities. Based on the INDRA model assembly system, the database aggregates knowl-
edge extracted by multiple machine-reading systems from all available abstracts and
open-access full text articles, and combines this with mechanisms from pathway databases.
Queries allow searching for genes, chemicals, biological processes and other concepts of
interest, and returns a ranked list of relevant interactions and molecular pathways. INDRA
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sources include the PubMed and PubMed Central literature repositories, as well as a large
number of other biological information databases, including DrugBank, BioGRID, CBN
and many others. The database can be queried through the IDNRA REST API, as well as
through a standalone application implemented in Python.

Table 7. Signaling and metabolic pathway interaction databases.

Database
Name Interaction Type Data

Category
Curation

Type Organisms Data License 1 Programmatic Access

WikiPathways
[212]

pathway-pathway, intra-pathway
biomolecular interactions

(proteins, genes, drugs,
metabolites)

Primary,
Secondary Manual 30 species Free

(CC0)

REST API, RDF API
(SPARQL endpoint),

PathwayWidget
(embedded iframe), API
libraries (R, Java, Perl,

PHP, Python),
Cytoscape app [213]

Reactome [163]
pathway-pathway, intra-pathway

biomolecular interactions
(proteins, genes, drugs)

Primary Manual 16 species Free
(CC0)

REST API,
ReactomeFIViz app

(Cytoscape app) [218],
reactome2py(Python),

ReactomePA (R),
DiagramJs (JavaScript)

KEGG Pathway
[219]

pathway-pathway, intra-pathway
biomolecular interactions
(proteins, genes, drugs)

Primary Manual

545
eukaryotes,

6234 bacteria,
343 Archaea

Free for
standard & API

access, paid
license for FTP

data access

REST API, KEGGscape
(Cytoscape app) [222]

CBN [225] protein-DNA-variant-RNA–
ncRNA–chemical-lipid-process Primary Manual

3 species
(H. sapiens,

M. musculus,
R. norvegicus)

Free N/A

INDRA [227]
pathway-pathway, intra-pathway

biomolecular interactions
(proteins, genes, drugs)

Predictive Automated Any Free
(BSD license)

REST API & Python
package

1 The license type adopted by each database. In cases where a specific license type is used, it is given in parentheses. License abbreviations:
CC0; Creative Commons–Public Domain.

3.5. Disease-Related Interactions

Perturbations in signaling and metabolic pathway interactions are often the cause
of disease. Various databases contain such biomolecular interactions that are implicated
in diseases. In this section, we discuss some of these disease-related databases covering
biomolecule-biomolecule, biomolecule-disease and bioentity-disease interactions.

Regarding biomolecule-biomolecule interactions, the CIDeR database [228] contains
interactions between disease-related biomolecules (and other bioentities, such as environ-
ment and phenotype) mainly for metabolic and neurological disorders. There are currently
109,779 interactions between 12,406 biological entries, derived from 11,341 parsed articles.
The information is manually curated and each interaction entry is accompanied by its
source PubMed ID and the related disease. CIDeR contains a variety of interaction types,
such as expression increase/decrease, co-occurrence, co-localization, processing, phospho-
rylation, transport, and folding. It also holds information about interacting biomolecules
such as genes, proteins, complexes, SNPs, mutations, variants, chemical compounds, ncR-
NAs, and miRNAs. Finally, CIDeR contains interacting bioentities, such as biological
processes, pathways, and phenotypes. Each entry is also accompanied by additional
metadata (where applicable) regarding the affected organism, tissue/cell line, and gender.
CIDeR provides interconnectivity with the Entrez Gene, KEGG, OMIM, miRBase, GO,
CORUM, Mammalian Phenotype Ontology (MPO) [229], and BRENDA Tissue Ontology
(BTO) [230]. Interactions can be visualized as an interactive 2D network and downloaded
in a CSV or SBML format.

MiRNA SNP Disease Database (MSDD) [231] is another database which comprises
human disease-related biomolecular interactions. Similar to CIDeR, its data are derived
from the literature and are manually curated. MSDD focuses on disease miRNA–SNP inter-
actions, with accompanying metadata, such as the relevant gene and tissue, SNP position
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relative to the associated miRNA, its allele, and the dysfunction pattern (increase/decrease).
Specifically, MSDD provides 525 associations between 182 human miRNAs and 197 SNPs,
regarding 153 genes and 164 human diseases. Information was mined in 2387 articles
(last update: June 2017). The site allows the user to download MSDD data in text format,
while also offering the choice to limit entries to a selected organ. Annotation information
regarding miRNAs is derived from miRBase and SNPs from dbSNP.

Other databases provide direct links of biomolecules to diseases, without specifying
direct inter-biomolecular interactions. DisGeNET [232] contains both curated and non-
curated automatically mined information regarding disease-gene, disease-variant, and
disease-disease associations. DisGeNET receives regular updates and its current version
(v7.0) covers 1,134,942 gene-disease and 369,554 variant-disease associations, regarding
30,170 disease entries (UMLS [215]), 21,671 genes (NCBI), and 194,515 variants (dbSNP).
Curated gene-disease associations are derived from UniProt, ClinGen [233], Genomics
England PanelApp [234], PsyGeNET [235], Orphanet [236], the Human Phenotype Ontol-
ogy (HPO) [237], and Comparative Toxicogenomics Database (CTD) [238], while curated
variant-disease associations from UniProt, ClinVar [239], GWASdb, and the GWAS Cata-
log. DisGeNET data is downloadable in tab-delimited and SQLite database formats. All
interaction data are also accessible programmatically through a REST API, an RDF API,
the disgenet2r R package and the Cytoscape application. These programmatic endpoints
enable downloading data in JSON, XML and TSV formats, as well as allowing disease ID
mapping in UMLS, MeSH, OMIM, HPO, DO, Monarch Disease Ontology (MONDO) [240],
NCI [241], and ICD-9 [242] databases.

EnDisease [243] is a manually curated database of enhancer-disease associations. The
EnDisease database contains 535 total associations between 133 diseases and 454 enhancers,
extracted from 199 published articles in 11 species. The data are downloadable in text
format and represent the chromosomal position of the enhancer, the targeted gene and its
UCSC identifier, and the related disease, with a respective entry link to the OMIM database.
Additional metadata describe the cell type or mutation (where applicable), as well as the
PubMed ID of the extracted association.

MNDR [133] is a frequently updated database that provides curated associations
between ncRNAs and diseases along with a confidence score. MNDR data are derived
from the literature, established databases as well as from predictive algorithms. Specifi-
cally, the current version (v3.1) includes 393,651 miRNA–disease, 295,834 lncRNA–disease,
300,630 circRNA–disease, 13,624 piRNA–disease, and 1573 snoRNA–disease associations,
for a total of 1,005,312 associations regarding 1614 disease and 11 mammal species. The
database entries are downloadable in text format. MNDR also provides an API to pro-
grammatically query associations, searching by ncRNA symbol or ID, disease name or
DO/MeSH ID. As far as interconnectivity is concerned, MNDR entries contain an official
gene symbol or miRBase ID, as well as DO and MeSH identifiers.

The Nervous System Disease NcRNAome Atlas (NSDNA) [244] is another ncRNA–
disease association database that specializes in nervous system diseases. Its current version
documents 26,128 associations between 144 nervous system diseases and 8736 ncRNAs,
regarding 11 species, where information has been manually curated from 1410 articles.
The data can be downloaded in text or spreadsheet format. Accompanying metadata
describe the organism, tissue, expression pattern, detection method, target, and potential
treatment of the association. Regarding database interoperability, NSDNA miRNA sym-
bols were taken from miRBase, lncRNA from NONCODE and lncRNAdb, siRNA from
siRecords [228], snoRNA from snoRNA–LBME-db, and piRNA from piRNABank [229].
The relative PubMed ID is also assigned to each ncRNA–disease association.

Several peptides and proteins have been found to possess an inherent tendency to
misfold from their native functional state into intractable aggregates. These aggregates,
known as “amyloid fibrils”, have been associated with a diverse group of diseases known
as “amyloidoses”; examples include the Alzheimer’s and Parkinson’s diseases, Type
2 diabetes, Creutzfeldt-Jakob Syndrome and many others. AmyCo (the Amyloidoses
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Collection) [245] is a freely available collection of amyloidoses and other clinical disorders
related to amyloid deposition. AmyCo classifies 75 diseases into 2 distinct categories,
amyloidoses and other clinical conditions associated with amyloidoses. Each disease
is associated with its precursor proteins (causative proteins), co-deposited proteins of
amyloid deposits and affected tissues or organs. Database entries are also supplemented
with detailed annotation and are linked to MeSH, OMIM, PubMed and UniProt databases.

Finally, there are databases linking bioentities, such as phenotypes, to diseases. The
Human Phenotype Ontology (HPO) [237] provides human phenotype-disease associations,
along with the implicated genes (where applicable) of each phenotype. HPO data are
manually curated entries from the OMIM database. OMIM is a regularly updated, ma-
jor gene-phenotype association database. The HPO is downloadable in OBO and OWL
ontology formats. HPO also allows downloading text files with gene-phenotype and
phenotype-gene associations, as found in the OMIM, Orphanet, and DECIPHER [246]
databases. Gene entries are accompanied by Entrez Gene IDs. Since 2019, HPO provides
a REST API to programmatically query HPO entries based on phenotype terms, diseases
or genes.

Lastly, NeuroDNet [247] provides manually curated associations of diseases with
genetic risk factors and with network models. These models are graphs containing parsed
literature information regarding interactions of genes, proteins, and signaling pathways
for a neurodegenerative disease. The database contains genetic risk factors regarding
12 neurodegenerative diseases and 16 total disease models for 8 diseases. Disease model
networks are visualized through the Celldesigner [232] software and can be downloaded in
SBML format. Disease entries are linked to the OMIM database, genes to NCBI, and proteins
to the UniProt database, while association links are provided for each PubMed article
reference. Information regarding the discussed disease-related databases is appended in
Table 8.

Table 8. Disease-related databases.

Database Name Interaction Type Data
Category

Curation
Type Organism Data License 1 Programmatic

Access

CIDeR [228]

cellular component–protein
complex–disease–drug–

environment–gene–protein–
mutant–mRNA–variant–

ncRNA–miRNA–organism–
phenotype-process–protein

modification-SNP-tissue-cell
line-CpG site

Primary Manual 22 species Free N/A

MSDD [231] miRNA–SNP Primary Manual 1 (H. sapiens) Free N/A

DisGeNET [232] disease–gene, disease–variant,
disease–disease Primary Manual,

Automated 1 (H. sapiens) Free
(CC-BY-NC-SA)

REST API, RDF API
(SPARQL endpoint),

R (disgenet2r),
Cytoscape

EnDisease [243] enhancer–disease Primary Manual 11 species Free N/A

MNDR [133] ncRNA–disease
Primary,

Secondary,
Predictive

Manual,
Automated 11 species Free REST API

NSDNA [244] ncRNA–disease Primary Manual 11 species Free N/A

AmyCo [245] Protein–disease Secondary Manual 1 (H. sapiens) Free N/A

HPO [237] phenotype–disease Secondary Manual 1 (H. sapiens) Free REST API

NeuroDNet [247] genetic risk factor–disease,
network model–disease Primary Manual 1 (H. sapiens) Free

(Open Source) N/A

1 The license type adopted by each database. In cases where a specific license type is used, it is given in parentheses. License abbreviations:
CC-BY-NC-SA Creative Commons–Attribution–Non-Commercial–Share Alike.
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Host–Pathogen Interactions

A discrete category of interactions that may lead to a disease concerns host–pathogen
interactions. Here, we present bioenity interaction databases focusing on such host–
pathogen interactions.

Viruses.STRING [248], an extension of STRING, is a database that contains intra-virus
and virus–host PPIs. These annotated PPIs are either physical or functional. Interaction
data are derived through text-mining, experimental data from BioGrid, Mint/IntAct [153],
DIP, HPIDB [249], and VirusMentha [250], and orthologous relationships from eggNOG
4.5 [251]. As of 2021, Viruses.STRING covers 1,380,838,440 interactions between 2031
organisms and more than 9.5 million viral proteins. The site generates interactive networks
of the queried interactions and all node entries are linked to Uniprot. Furthermore, the
protein entries are also linked to Ensembl, KEGG, GeneCards [252], and neXtProt [253]
databases. The data can be fully accessed and analyzed through a REST API and the
Cytoscape STRING app. The generated interaction networks can be downloaded in SVG,
TSV, XML, and MFA (multi-fasta) formats. All interaction data files are downloadable in
text format and the whole database schema in SQL format.

ViRBase [254] is another viral-host interactions database that, apart from just proteins,
mainly focuses on ncRNA interactions. More specifically, it includes manually curated
associations between viral ncRNAs (especially lncRNAs and miRNAs) and host ncRNAs
or proteins. The database (v2.1) currently consists of 781,476 ncRNA interactions between
93 viruses and 27 hosts, derived from 491 articles. microRNA entries were collected from
miRBase, lncRNAs from lncRNAdb and the functional lncRNA database [118], snoRNAs
from sno/scaRNAbase [255] and snoRNA–LBME-db [80], whereas ICTVdb (International
Committee on Taxonomy of Viruses) [256] records provided virus names and abbreviations.
Detailed views of the interaction entries consist of confidence scores, detection methods,
tissue/cell line of origin and expression changes, where applicable. Furthermore, data can
be queried through an API and are also downloadable in XLSX and text formats.

Another host–pathogen interactions database is TDR Targets [206], a repository on
protein–chemical interactions involved in neglected disease pathogens, such as those impli-
cated in tropical diseases like African trypanosomiasis (sleeping sickness) or dengue fever.
In its latest version, TDR Targets incorporates experimentally determined and computa-
tionally predicted annotations on the chemical compounds and metabolites of pathogens
associated with diseases and the drugs utilized in the treatment of these conditions, as well
as on the sequence and structure features of the proteins targeted.

MVP (Microbe Versus Phage) [257] database focuses on interactions between phages
and prokaryotes (bacteria/archaea). The database incorporates known viral sequences
from NCBI, putative prophage regions in bacterial sequences from NCBI and EMBL, as well
as viral and prophage sequences from ICTV published datasets, and metagenomic datasets
from EBI. For the detection of putative prophage sequences in bacterial/archaeal genomes,
the Phage_Finder tool was used [258]. All the viral sequences (50,782) were clustered based
on their sequence similarity, resulting in 33,097 viral groups. Interactions and associations
between the prophage sequences and microbes are based on 30,321 published sources,
including projects such as Uncovering Earth’s virome [259] and ICTV. All phage clusters
and prokaryotes in MVP are provided with NCBI taxonomic IDs and all associations are
downloadable in text format, whereas visualized networks can be downloaded in SVG and
PNG formats.

Finally, HoPaCI-DB [260] further zooms in on two bacteria, P. aeruginosa and C. burnetii,
and their host interactions. All listed interacting entries are manually curated and consist
of either biomolecules such as proteins, nucleic acids or chemical compounds, or bioentities
such as cellular processes, phenotypes or environmental factors. Its current version contains
4443 interactions, regarding 371 entries, mined from 290 articles. Database interactions
are presented on site either in tabular format or as graph structures. Entries in HoPaCI-
DB are mapped to Entrez Gene, KEGG, OMIM, miRBase, GO or CORUM identifiers,
depending on their type, and all interactions are accompanied by a relative PubMed ID.
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Additional metadata describe the type of interaction (e.g., localization, expression change,
phosphorylation, etc.) as well as cell type, cell line, and tissue, where applicable. Database
interactions are downloadable in CSV and SBML formats. Table 9 incorporates information
regarding the aforementioned host–pathogen interaction databases.

Table 9. Host–pathogen interactions databases.

Database
Name Interaction Type Data

Category
Curation

Type Organisms Data License Programmatic
Access

Viruses.STRING
[248]

viral protein–viral protein, viral
protein–host protein

Primary,
Secondary,
Predictive

Automated

2031 (1678
bacteria, 238

eukaryotes, 115
archaea)

Free for
academic users
(EMBL License)

REST API,
Cytoscape app

(stringApp) [41]

ViRBase [254]

host/viral ncRNA/protein–host/viral
ncRNA/protein

(ncRNA = mRNA, miRNA,
pseudo-snoRNA, snRNA, lncRNA,

rRNA, circRNA, shRNA)

Primary,
Predictive Manual 93 viruses, 27 host

organisms Free REST API

TDR Targets
[206] protein–chemical Primary Manual

11 host
organisms,

35 pathogens
Free N/A

MVP [257] bacteria–viral clusters, archaea-viral
clusters

Secondary,
Predictive Automated

9122 bacteria, 123
archaea, 33,097
viral clusters

(phages)
Free N/A

HoPaCI-DB
[260]

gene/protein-process-disease-
organism-tissue/cell line-cellular

component-phenotype-complex/PPI-
drug-ncRNA/miRNA-organism-

gene/protein
mutant-environment-mRNA/protein

variant

Primary Manual 15 species Free N/A

3.6. Ecological Interactions

Finally, in a more macroscopic view, interactions can be captured between the dif-
ferent species and their relations (prey, pollinate, parasite, etc.). Data banks that include
information about such ecosystem interactions aim to capture biodiversity, as well as key
biotic and abiotic factors in environmental processes. The following databases include
species interactions and trophic webs.

Global Biotic Interactions (GloBI) [261] is an open source database that contains inter-
actions between living organisms and environmental factors. GloBI interaction data are
retrieved both from web resources (data journals and APIs) and from directly contacting
authors/data managers and are manually curated. The most recent data (May 2021) include
7,824,407 interaction records between approximately 240,000 species. These interactions
comprise species’ relationships, such as predator–prey, pollinator–plant, pathogen–host,
parasite–host, and describe 33 different interaction types, such as “eats”, “kills”, “interacts
with”, “parasite of ”. The web interface represents interactions in the form of search widgets,
interactive maps, hairballs, and bundle diagrams. The records that contain known taxa are
cross-referenced with entries in NCBI, World Register of Marine Species (WoRMS) [262],
Integrated Taxonomic Information System (ITIS) and Global Biodiversity Information Fa-
cility (GBIF), and the site entries are accompanied by links to Wikidata. Dataset collections
with interactions are available in TSV, CSV, RDF formats as well as in sqlite, Darwin Core
Archive [263], and Neo4j database formats. Data can also be accessed programmatically
through a REST API, as well as through R (rglobi) and JavaScript (eol-globi-data-js) li-
braries or SPARQL and Cypher queries. GloBI is also integrated in the Encyclopedia of
Life (EOL) [264] and Gulf of Mexico Species Interactions (GoMexSI) [265] projects.

The Web of Life [266] is a database similar to GloBI, which contains interactions
between animals–plants, plants–plants, and host–plants, and visualizes ecological networks
on the web in a coordinate-based system. A key difference with GloBI is that Web of Life
only provides an “interacts with” type of association. At this moment, Web of Life contains
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186 interaction networks, regarding 13,244 animal and plant species, which have been
assembled by data from both published and unpublished projects. Other than the name of
the species and the respective publications, there are no identifiers linking terms to other
databases. All networks are provided as adjacency lists and are downloadable in CSV, XLS,
JSON, and Pajek formats.

Another database that contains trophic interactions between ~7000 animals and plants
in adjacency matrices, similarly to the Web of Life, is the Food Web (GlobalWeb) [267]. By
representing the trophic interactions in a network, it is easier to detect the endangered
and invasive species that might result from anthropogenic activities, such as fisheries.
Currently, Food Web contains 358 food web graphs (adjacency matrix CSV format) that
contain information manually mined from 123 reference papers. Again, no identifiers from
other databases are provided.

Finally, a more specialized ecological database, focusing on interactions between
bats and plants or other organisms, is Bat Eco-Interactions [268]. It currently (May 2021)
contains 13,383 interactions that occur between 479 bat species and 2135 other organisms,
mined from 622 peer-reviewed articles. Interaction data are available in CSV format after
registration. The database receives regular updates with bat–parasite and ba–mammal
interactions, which include taxonomic and location metadata. Table 10 summarizes the
interaction data of the four aforementioned databases.

Table 10. Ecological interactions databases.

Database
Name Interaction Type Data

Category
Curation

Type Organisms Data License Programmatic Access

GloBI [261] predator–prey, pollinator–plant,
pathogen–host, parasite–host Secondary Manual,

Automated

644,512
known taxa,

77,245
unknown taxa

Free
(Open Source)

REST API, R (rglobi),
JavaScript

(eol-globi-data-js),
SPARQL and Cypher

endpoints

The Web of Life
[266]

host–parasite, plant–herbivore,
food webs, anemone–fish,

plant–ant, pollination, seed
dispersal

Primary Manual 13,244
animals/plants Free N/A

Food web [267] fish–animal
type–detritus–plankton Primary Manual ~7000

animals/plants Free N/A

Bat Eco-
Interactions

[268]

cohabitation–consumption–
host–pollination–prey–
predation–roost–seed

dispersal–transport–visitation
bat/living organisms

Primary Manual
484 bat species,

2146 other
species

Free N/A

4. Data Visualization

Network visualization plays a key role in understanding, communicating, explor-
ing and identifying patterns (e.g., important edges, highly connected nodes or commu-
nities) in an interactome. For this purpose, several interactive applications have been
implemented and a plethora of review papers have been written [269–273]. Briefly, Cy-
toscape [39,40], Cytoscape.js [157], Gephi [274], Pajek [275], Ondex [276], Proviz [277],
VisANT [278], Osprey [279], Arena3D [280,281], Arena3Dweb [282], Graphia (Kajeka) [283],
NORMA [284], and BioLayout Express 3D [285] are state-of-the-art tools worth mentioning.
Similarly, pathway-specific applications include the Pathview [286], BioTapestry [287],
PathVisio [214], Interactive Pathways Explorer (iPath) [288], MapMan [289], KEGG [162],
Reactome [163], WikiPathways [212] and Pathway Commons [290].

In addition to the aforementioned visualizers, several complementary tools have
been implemented for network topological analysis and cluster set comparisons. Typical
examples are the Network Analyzer [291], ZoomOut [292], Network Analysis Toolkit
(NEAT) [293], NAP [294,295], VICTOR [296] and the Stanford Network Analysis Project
(SNAP) [297]. Back-end libraries for network storage and analysis which are worth mention-
ing are igraph [298], NetworkX [299], GraphViz and Graph-tool [300]. Finally, widely used
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force-directed layout algorithms [301] for efficient graph drawing include the Fruchterman-
Reingold [302], Yifan-Hu [303], Large Graph Layout (LGL) [304] and Kamada-Kawai [305]
algorithms.

5. Functional Enrichment

In order to annotate clusters within a network and gain insights into the biology of
the bioentities which tend to form distinct communities, a functional enrichment analysis
is necessary. Briefly, functional enrichment analysis is an approach to identify classes of
bioentities (e.g., Gene Ontologies, pathways etc.) in which genes or proteins were found
to be over-represented. Among several applications which have been proposed [306,307],
tools which are worthy mentioning include: g:Profiler [308], Panther [309], DAVID [310],
WebGestalt [311], EnrichR [312], AmiGO [313], GeneSCF [314], AllEnricher [315], aGO-
tool [316], ClueGo [317], GSEA [318], GOrilla [319], Flame [320], clusterProfiler [321] and
NASQAR [322].

6. Conclusions

While great efforts have been made in the fields of network biology and biomedical
data integration, and despite the numerous databases and repositories for organizing data
in a more structured way, a number of challenges remain to be addressed. Scalability
is one of the major future challenges. The overgrowth trend to biomedical data has
been clear at least since 2015 [323], when it was reported that Twitter was producing
1–17 petabytes of information per year, Astronomy with 1000 petabytes per year, YouTube
with 1000–2000 petabytes per year, and Genomics with 2000–40,000 petabytes per year.
Due to these orders of magnitude in data accumulation, biomedical repositories need to
adjust to the new big-data era and adopt new technologies which can cope with today’s
complexity and exponential information growth.

Efficient indexing, compression algorithms for massive volumes of information, and
usage of cloud computing and distributed systems would constitute significant enhance-
ments. In addition, despite the plethora of biomedical databases, users (especially less
experienced ones) still prefer non-biomedical search engines, such as Google, Bing or
Yandex to query biomedical terms. This can mainly be attributed to the poor integration
between databases and their inefficient search engines, which often do not allow for any
user-friendly flexibility. Some progress has been made in this area with the development
of systems that integrate multiple resources in a common framework. Perhaps the most
characteristic example is the IMEx Consortium [158], which integrates information from
multiple interaction databases (IntAct, MINT, DIP etc.) with additional annotation from
other sources (e.g., Mechanobiology [324]), and provides a common API (IMEx PSICQUIC)
to retrieve and combine information from all its participants. Another example is the
Network Data Exchange (NDEx) [29], which also integrates multiple sources in a uni-
fied format and access point. However, these systems support only a limited number of
the currently available biomolecule and bioentity interaction databases; instead, the vast
majority of the databases presented in this review are isolated systems, with poor APIs,
documentation, and data accessibility.

In terms of designs, many of the currently available databases often come with un-
friendly or complicated GUIs, thus being unattractive, overwhelming and difficult-to-use.
Another important issue is the limited cross-talk between the various repositories (web
services) along with the lack of ID conversion tools, which rarely cover a broad enough spec-
trum of common database identifiers. Among the issues that still remain to be addressed
are symbol disambiguation, redundant information across repositories, better literature
mining tools (e.g., OnTheFly [325] or INDRA [227]), richer metadata, more accurate name
entity recognition techniques to link free text with database records [326,327], utilization
of semantics, interoperability, and more frequent/automated updating and maintenance.
These tasks will undoubtedly keep bioinformaticians busy in the next few years and their
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successful tackling promises to offer scientists from all ranks and expertise the necessary
tools to successfully navigate the ever-increasing complexity of biological data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11081245/s1, Table S1: List of web addresses for the databases presented in this review.
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69. Waleń, T.; Chojnowski, G.; Gierski, P.; Bujnicki, J.M. ClaRNA: A classifier of contacts in RNA 3D structures based on a comparative
analysis of various classification schemes. Nucleic Acids Res. 2014, 42, e151. [CrossRef]

70. Teng, X.; Chen, X.; Xue, H.; Tang, Y.; Zhang, P.; Kang, Q.; Hao, Y.; Chen, R.; Zhao, Y.; He, S. NPInter v4.0: An integrated database
of ncRNA interactions. Nucleic Acids Res. 2019, 48, D160–D165. [CrossRef] [PubMed]

71. Gong, J.; Shao, D.; Xu, K.; Lu, Z.; Lu, Z.J.; Yang, Y.T.; Zhang, Q.C. RISE: A database of RNA interactome from sequencing
experiments. Nucleic Acids Res. 2018, 46, D194–D201. [CrossRef] [PubMed]

72. Fang, S.; Zhang, L.; Guo, J.; Niu, Y.; Wu, Y.; Li, H.; Zhao, L.; Li, X.; Teng, X.; Sun, X.; et al. NONCODEV5: A comprehensive
annotation database for long non-coding RNAs. Nucleic Acids Res. 2018, 46, D308–D314. [CrossRef] [PubMed]

73. Kozomara, A.; Griffiths-Jones, S. miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids
Res. 2014, 42, D68–D73. [CrossRef]

74. Glažar, P.; Papavasileiou, P.; Rajewsky, N. circBase: A database for circular RNAs. RNA 2014, 20, 1666–1670. [CrossRef] [PubMed]
75. O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei,

D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic
Acids Res. 2016, 44, D733–D745. [CrossRef]

76. Bouchard-Bourelle, P.; Desjardins-Henri, C.; Mathurin-St-Pierre, D.; Deschamps-Francoeur, G.; Fafard-Couture, É.; Garant, J.-M.;
Elela, S.A.; Scott, M.S. snoDB: An interactive database of human snoRNA sequences, abundance and interactions. Nucleic Acids
Res. 2020, 48, D220–D225. [CrossRef]

77. Haeussler, M.; Zweig, A.S.; Tyner, C.; Speir, M.L.; Rosenbloom, K.R.; Raney, B.J.; Lee, C.M.; Lee, B.T.; Hinrichs, A.S.;
Gonzalez, J.N.; et al. The UCSC Genome Browser database: 2019 update. Nucleic Acids Res. 2019, 47, D853–D858. [CrossRef]

78. Braschi, B.; Denny, P.; Gray, K.; Jones, T.; Seal, R.; Tweedie, S.; Yates, B.; Bruford, E. Genenames.org: The HGNC and VGNC
resources in 2019. Nucleic Acids Res. 2019, 47, D786–D792. [CrossRef] [PubMed]

79. The RNAcentral Consortium; Sweeney, B.A.; Petrov, A.I.; Burkov, B.; Finn, R.D.; Bateman, A.; Szymanski, M.; Karlowski, W.M.;
Gorodkin, J.; Seemann, S.E.; et al. RNAcentral: A hub of information for non-coding RNA sequences. Nucleic Acids Res. 2019,
47, D221–D229. [CrossRef]

80. Lestrade, L. snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs. Nucleic Acids Res. 2006,
34, D158–D162. [CrossRef] [PubMed]

81. Yoshihama, M.; Nakao, A.; Kenmochi, N. snOPY: A small nucleolar RNA orthological gene database. BMC Res. Notes 2013, 6, 426.
[CrossRef] [PubMed]

82. Jorjani, H.; Kehr, S.; Jedlinski, D.J.; Gumienny, R.; Hertel, J.; Stadler, P.F.; Zavolan, M.; Gruber, A.R. An updated human
snoRNAome. Nucleic Acids Res. 2016, 44, 5068–5082. [CrossRef]

83. Yi, X.; Zhang, Z.; Ling, Y.; Xu, W.; Su, Z. PNRD: A plant non-coding RNA database. Nucleic Acids Res. 2015, 43, D982–D989.
[CrossRef]

84. Zhang, Z.; Yu, J.; Li, D.; Zhang, Z.; Liu, F.; Zhou, X.; Wang, T.; Ling, Y.; Su, Z. PMRD: Plant microRNA database. Nucleic Acids Res.
2010, 38, D806–D813. [CrossRef]

85. Dai, X.; Zhuang, Z.; Zhao, P.X. psRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Res. 2018,
46, W49–W54. [CrossRef]

86. Zhang, C.; Li, G.; Zhu, S.; Zhang, S.; Fang, J. tasiRNAdb: A database of ta-siRNA regulatory pathways. Bioinformatics 2014,
30, 1045–1046. [CrossRef]

87. Chan, P.P.; Lowe, T.M. GtRNAdb: A database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res. 2009,
37, D93–D97. [CrossRef] [PubMed]

88. Lamesch, P.; Berardini, T.Z.; Li, D.; Swarbreck, D.; Wilks, C.; Sasidharan, R.; Muller, R.; Dreher, K.; Alexander, D.L.; Garcia-
Hernandez, M.; et al. The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Res.
2012, 40, D1202–D1210. [CrossRef]

89. Kawahara, Y.; de la Bastide, M.; Hamilton, J.P.; Kanamori, H.; McCombie, W.R.; Ouyang, S.; Schwartz, D.C.; Tanaka, T.; Wu, J.;
Zhou, S.; et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map
data. Rice 2013, 6, 4. [CrossRef] [PubMed]

90. Karagkouni, D.; Paraskevopoulou, M.D.; Chatzopoulos, S.; Vlachos, I.S.; Tastsoglou, S.; Kanellos, I.; Papadimitriou, D.; Kavakiotis,
I.; Maniou, S.; Skoufos, G.; et al. DIANA-TarBase v8: A decade-long collection of experimentally supported miRNA–gene
interactions. Nucleic Acids Res. 2018, 46, D239–D245. [CrossRef]

91. Kodama, Y.; Mashima, J.; Kosuge, T.; Kaminuma, E.; Ogasawara, O.; Okubo, K.; Nakamura, Y.; Takagi, T. DNA Data Bank of
Japan: 30th anniversary. Nucleic Acids Res. 2018, 46, D30–D35. [CrossRef] [PubMed]

92. Chou, C.-H.; Chang, N.-W.; Shrestha, S.; Hsu, S.-D.; Lin, Y.-L.; Lee, W.-H.; Yang, C.-D.; Hong, H.-C.; Wei, T.-Y.; Tu, S.-J.;
et al. miRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2016,
44, D239–D247. [CrossRef]

93. Xiao, F.; Zuo, Z.; Cai, G.; Kang, S.; Gao, X.; Li, T. miRecords: An integrated resource for microRNA-target interactions. Nucleic
Acids Res. 2009, 37, D105–D110. [CrossRef]

http://doi.org/10.1093/nar/gks1005
http://doi.org/10.1093/nar/gku765
http://doi.org/10.1093/nar/gkz969
http://www.ncbi.nlm.nih.gov/pubmed/31670377
http://doi.org/10.1093/nar/gkx864
http://www.ncbi.nlm.nih.gov/pubmed/29040625
http://doi.org/10.1093/nar/gkx1107
http://www.ncbi.nlm.nih.gov/pubmed/29140524
http://doi.org/10.1093/nar/gkt1181
http://doi.org/10.1261/rna.043687.113
http://www.ncbi.nlm.nih.gov/pubmed/25234927
http://doi.org/10.1093/nar/gkv1189
http://doi.org/10.1093/nar/gkz884
http://doi.org/10.1093/nar/gky1095
http://doi.org/10.1093/nar/gky930
http://www.ncbi.nlm.nih.gov/pubmed/30304474
http://doi.org/10.1093/nar/gky1034
http://doi.org/10.1093/nar/gkj002
http://www.ncbi.nlm.nih.gov/pubmed/16381836
http://doi.org/10.1186/1756-0500-6-426
http://www.ncbi.nlm.nih.gov/pubmed/24148649
http://doi.org/10.1093/nar/gkw386
http://doi.org/10.1093/nar/gku1162
http://doi.org/10.1093/nar/gkp818
http://doi.org/10.1093/nar/gky316
http://doi.org/10.1093/bioinformatics/btt746
http://doi.org/10.1093/nar/gkn787
http://www.ncbi.nlm.nih.gov/pubmed/18984615
http://doi.org/10.1093/nar/gkr1090
http://doi.org/10.1186/1939-8433-6-4
http://www.ncbi.nlm.nih.gov/pubmed/24280374
http://doi.org/10.1093/nar/gkx1141
http://doi.org/10.1093/nar/gkx926
http://www.ncbi.nlm.nih.gov/pubmed/29040613
http://doi.org/10.1093/nar/gkv1258
http://doi.org/10.1093/nar/gkn851


Biomolecules 2021, 11, 1245 33 of 41

94. Paraskevopoulou, M.D.; Georgakilas, G.; Kostoulas, N.; Vlachos, I.S.; Vergoulis, T.; Reczko, M.; Filippidis, C.; Dalamagas, T.;
Hatzigeorgiou, A.G. DIANA-microT web server v5.0: Service integration into miRNA functional analysis workflows. Nucleic
Acids Res. 2013, 41, W169–W173. [CrossRef]

95. Karagkouni, D.; Paraskevopoulou, M.D.; Tastsoglou, S.; Skoufos, G.; Karavangeli, A.; Pierros, V.; Zacharopoulou, E.; Hatzigeor-
giou, A.G. DIANA-LncBase v3: Indexing experimentally supported miRNA targets on non-coding transcripts. Nucleic Acids Res.
2019, 38, D101–D110. [CrossRef]

96. Vlachos, I.S.; Zagganas, K.; Paraskevopoulou, M.D.; Georgakilas, G.; Karagkouni, D.; Vergoulis, T.; Dalamagas, T.; Hatzigeorgiou,
A.G. DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res. 2015, 43, W460–W466.
[CrossRef]

97. Ramanathan, M.; Porter, D.F.; Khavari, P.A. Methods to study RNA–protein interactions. Nat. Methods 2019, 16, 225–234.
[CrossRef] [PubMed]

98. Yi, Y.; Zhao, Y.; Huang, Y.; Wang, D. A Brief Review of RNA-Protein Interaction Database Resources. Non-Coding RNA 2017, 3, 6.
[CrossRef] [PubMed]

99. Fujimori, S.; Hino, K.; Saito, A.; Miyano, S.; Miyamoto-Sato, E. PRD: A protein–RNA interaction database. Bioinformation 2012,
8, 729–730. [CrossRef] [PubMed]

100. Gene Ontology Consortium. The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Res. 2021, 49, D325–D334.
[CrossRef]

101. Lin, Y.; Liu, T.; Cui, T.; Wang, Z.; Zhang, Y.; Tan, P.; Huang, Y.; Yu, J.; Wang, D. RNAInter in 2020: RNA interactome repository
with increased coverage and annotation. Nucleic Acids Res. 2020, 48, D189–D197. [CrossRef]

102. Zhang, Y.; Liu, T.; Chen, L.; Yang, J.; Yin, J.; Zhang, Y.; Yun, Z.; Xu, H.; Ning, L.; Guo, F.; et al. RIscoper: A tool for RNA–RNA
interaction extraction from the literature. Bioinformatics 2019, 35, 3199–3202. [CrossRef]

103. Mann, M.; Wright, P.R.; Backofen, R. IntaRNA 2.0: Enhanced and customizable prediction of RNA–RNA interactions. Nucleic
Acids Res. 2017, 45, W435–W439. [CrossRef]

104. Tuvshinjargal, N.; Lee, W.; Park, B.; Han, K. PRIdictor: Protein–RNA Interaction predictor. Biosystems 2016, 139, 17–22. [CrossRef]
105. Alipanahi, B.; Delong, A.; Weirauch, M.T.; Frey, B.J. Predicting the sequence specificities of DNA- and RNA-binding proteins by

deep learning. Nat. Biotechnol. 2015, 33, 831–838. [CrossRef]
106. Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.; Scott, A.F.; Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man

(OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015, 43, D789–D798. [CrossRef]
107. Amberger, J.S.; Hamosh, A. Searching Online Mendelian Inheritance in Man (OMIM): A Knowledgebase of Human Genes and

Genetic Phenotypes. Curr. Protoc. Bioinforma. 2017, 58. [CrossRef]
108. Keshava Prasad, T.S.; Goel, R.; Kandasamy, K.; Keerthikumar, S.; Kumar, S.; Mathivanan, S.; Telikicherla, D.; Raju, R.; Shafreen, B.;

Venugopal, A.; et al. Human Protein Reference Database—2009 update. Nucleic Acids Res. 2009, 37, D767–D772. [CrossRef]
109. Zhu, Y.; Xu, G.; Yang, Y.T.; Xu, Z.; Chen, X.; Shi, B.; Xie, D.; Lu, Z.J.; Wang, P. POSTAR2: Deciphering the post-transcriptional

regulatory logics. Nucleic Acids Res. 2019, 47, D203–D211. [CrossRef] [PubMed]
110. Blin, K.; Dieterich, C.; Wurmus, R.; Rajewsky, N.; Landthaler, M.; Akalin, A. DoRiNA 2.0—Upgrading the doRiNA database of

RNA interactions in post-transcriptional regulation. Nucleic Acids Res. 2015, 43, D160–D167. [CrossRef]
111. Lewis, B.A.; Walia, R.R.; Terribilini, M.; Ferguson, J.; Zheng, C.; Honavar, V.; Dobbs, D. PRIDB: A protein-RNA interface database.

Nucleic Acids Res. 2011, 39, D277–D282. [CrossRef] [PubMed]
112. Cook, K.B.; Kazan, H.; Zuberi, K.; Morris, Q.; Hughes, T.R. RBPDB: A database of RNA-binding specificities. Nucleic Acids Res.

2011, 39, D301–D308. [CrossRef]
113. Shulman-Peleg, A.; Nussinov, R.; Wolfson, H.J. RsiteDB: A database of protein binding pockets that interact with RNA nucleotide

bases. Nucleic Acids Res. 2009, 37, D369–D373. [CrossRef]
114. Cheng, L.; Wang, P.; Tian, R.; Wang, S.; Guo, Q.; Luo, M.; Zhou, W.; Liu, G.; Jiang, H.; Jiang, Q. LncRNA2Target v2.0: A

comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res. 2019, 47, D140–D144. [CrossRef]
[PubMed]

115. Harrow, J.; Frankish, A.; Gonzalez, J.M.; Tapanari, E.; Diekhans, M.; Kokocinski, F.; Aken, B.L.; Barrell, D.; Zadissa, A.; Searle, S.;
et al. GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 2012, 22, 1760–1774. [CrossRef]
[PubMed]

116. Maglott, D.; Ostell, J.; Pruitt, K.D.; Tatusova, T. Entrez Gene: Gene-centered information at NCBI. Nucleic Acids Res. 2011,
39, D52–D57. [CrossRef] [PubMed]

117. Zhou, B.; Zhao, H.; Yu, J.; Guo, C.; Dou, X.; Song, F.; Hu, G.; Cao, Z.; Qu, Y.; Yang, Y.; et al. EVLncRNAs: A manually curated
database for long non-coding RNAs validated by low-throughput experiments. Nucleic Acids Res. 2018, 46, D100–D105. [CrossRef]

118. Quek, X.C.; Thomson, D.W.; Maag, J.L.V.; Bartonicek, N.; Signal, B.; Clark, M.B.; Gloss, B.S.; Dinger, M.E. lncRNAdb v2.0:
Expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res. 2015, 43, D168–D173. [CrossRef]

119. Bao, Z.; Yang, Z.; Huang, Z.; Zhou, Y.; Cui, Q.; Dong, D. LncRNADisease 2.0: An updated database of long non-coding
RNA–associated diseases. Nucleic Acids Res. 2019, 47, D1034–D1037. [CrossRef]

120. Gao, Y.; Shang, S.; Guo, S.; Li, X.; Zhou, H.; Liu, H.; Sun, Y.; Wang, J.; Wang, P.; Zhi, H.; et al. Lnc2Cancer 3.0: An updated resource
for experimentally supported lncRNA/circRNA cancer associations and web tools based on RNA-seq and scRNA–seq data.
Nucleic Acids Res. 2021, 49, D1251–D1258. [CrossRef]

http://doi.org/10.1093/nar/gkt393
http://doi.org/10.1093/nar/gkz1036
http://doi.org/10.1093/nar/gkv403
http://doi.org/10.1038/s41592-019-0330-1
http://www.ncbi.nlm.nih.gov/pubmed/30804549
http://doi.org/10.3390/ncrna3010006
http://www.ncbi.nlm.nih.gov/pubmed/29657278
http://doi.org/10.6026/97320630008729
http://www.ncbi.nlm.nih.gov/pubmed/23055619
http://doi.org/10.1093/nar/gkaa1113
http://doi.org/10.1093/nar/gkz804
http://doi.org/10.1093/bioinformatics/btz044
http://doi.org/10.1093/nar/gkx279
http://doi.org/10.1016/j.biosystems.2015.10.004
http://doi.org/10.1038/nbt.3300
http://doi.org/10.1093/nar/gku1205
http://doi.org/10.1002/cpbi.27
http://doi.org/10.1093/nar/gkn892
http://doi.org/10.1093/nar/gky830
http://www.ncbi.nlm.nih.gov/pubmed/30239819
http://doi.org/10.1093/nar/gku1180
http://doi.org/10.1093/nar/gkq1108
http://www.ncbi.nlm.nih.gov/pubmed/21071426
http://doi.org/10.1093/nar/gkq1069
http://doi.org/10.1093/nar/gkn759
http://doi.org/10.1093/nar/gky1051
http://www.ncbi.nlm.nih.gov/pubmed/30380072
http://doi.org/10.1101/gr.135350.111
http://www.ncbi.nlm.nih.gov/pubmed/22955987
http://doi.org/10.1093/nar/gkq1237
http://www.ncbi.nlm.nih.gov/pubmed/21115458
http://doi.org/10.1093/nar/gkx677
http://doi.org/10.1093/nar/gku988
http://doi.org/10.1093/nar/gky905
http://doi.org/10.1093/nar/gkaa1006


Biomolecules 2021, 11, 1245 34 of 41

121. Cabili, M.N.; Trapnell, C.; Goff, L.; Koziol, M.; Tazon-Vega, B.; Regev, A.; Rinn, J.L. Integrative annotation of human large
intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011, 25, 1915–1927. [CrossRef]

122. Zhou, K.-R.; Liu, S.; Sun, W.-J.; Zheng, L.-L.; Zhou, H.; Yang, J.-H.; Qu, L.-H. ChIPBase v2.0: Decoding transcriptional regulatory
networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucleic Acids Res. 2017, 45, D43–D50. [CrossRef]

123. Gerstein, M.B.; Lu, Z.J.; Van Nostrand, E.L.; Cheng, C.; Arshinoff, B.I.; Liu, T.; Yip, K.Y.; Robilotto, R.; Rechtsteiner, A.;
Ikegami, K.; et al. Integrative Analysis of the Caenorhabditis elegans Genome by the modENCODE Project. Science 2010,
330, 1775–1787. [CrossRef]

124. Bernstein, B.E.; Stamatoyannopoulos, J.A.; Costello, J.F.; Ren, B.; Milosavljevic, A.; Meissner, A.; Kellis, M.; Marra, M.A.;
Beaudet, A.L.; Ecker, J.R.; et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 2010, 28, 1045–1048.
[CrossRef]

125. Chen, X.; Yan, G.-Y. Novel human lncRNA–disease association inference based on lncRNA expression profiles. Bioinformatics
2013, 29, 2617–2624. [CrossRef]

126. Lan, W.; Li, M.; Zhao, K.; Liu, J.; Wu, F.-X.; Pan, Y.; Wang, J. LDAP: A web server for lncRNA-disease association prediction.
Bioinformatics 2017, 33, 458–460. [CrossRef] [PubMed]

127. Sun, J.; Shi, H.; Wang, Z.; Zhang, C.; Liu, L.; Wang, L.; He, W.; Hao, D.; Liu, S.; Zhou, M. Inferring novel lncRNA–disease
associations based on a random walk model of a lncRNA functional similarity network. Mol. BioSyst. 2014, 10, 2074–2081.
[CrossRef]

128. Wang, J.; Ma, R.; Ma, W.; Chen, J.; Yang, J.; Xi, Y.; Cui, Q. LncDisease: A sequence based bioinformatics tool for predicting
lncRNA–disease associations. Nucleic Acids Res. 2016, 44, e90. [CrossRef]

129. Schriml, L.M.; Mitraka, E.; Munro, J.; Tauber, B.; Schor, M.; Nickle, L.; Felix, V.; Jeng, L.; Bearer, C.; Lichenstein, R.; et al.
Human Disease Ontology 2018 update: Classification, content and workflow expansion. Nucleic Acids Res. 2019, 47, D955–D962.
[CrossRef] [PubMed]

130. Lipscomb, C.E. Medical Subject Headings (MeSH). Bull. Med. Libr. Assoc. 2000, 88, 265–266. [PubMed]
131. Liu, M.; Wang, Q.; Shen, J.; Yang, B.B.; Ding, X. Circbank: A comprehensive database for circRNA with standard nomenclature.

RNA Biol. 2019, 16, 899–905. [CrossRef]
132. Volders, P.-J.; Anckaert, J.; Verheggen, K.; Nuytens, J.; Martens, L.; Mestdagh, P.; Vandesompele, J. LNCipedia 5: Towards a

reference set of human long non-coding RNAs. Nucleic Acids Res. 2019, 47, D135–D139. [CrossRef] [PubMed]
133. Ning, L.; Cui, T.; Zheng, B.; Wang, N.; Luo, J.; Yang, B.; Du, M.; Cheng, J.; Dou, Y.; Wang, D. MNDR v3.0: Mammal ncRNA–disease

repository with increased coverage and annotation. Nucleic Acids Res. 2021, 49, D160–D164. [CrossRef]
134. Ma, L.; Li, A.; Zou, D.; Xu, X.; Xia, L.; Yu, J.; Bajic, V.B.; Zhang, Z. LncRNAWiki: Harnessing community knowledge in

collaborative curation of human long non-coding RNAs. Nucleic Acids Res. 2015, 43, D187–D192. [CrossRef] [PubMed]
135. Gao, Y.; Li, X.; Shang, S.; Guo, S.; Wang, P.; Sun, D.; Gan, J.; Sun, J.; Zhang, Y.; Wang, J.; et al. LincSNP 3.0: An updated database

for linking functional variants to human long non-coding RNAs, circular RNAs and their regulatory elements. Nucleic Acids Res.
2021, 49, D1244–D1250. [CrossRef] [PubMed]

136. Day, I.N.M. dbSNP in the detail and copy number complexities. Hum. Mutat. 2010, 31, 2–4. [CrossRef]
137. Miao, Y.-R.; Liu, W.; Zhang, Q.; Guo, A.-Y. lncRNASNP2: An updated database of functional SNPs and mutations in human and

mouse lncRNAs. Nucleic Acids Res. 2018, 46, D276–D280. [CrossRef] [PubMed]
138. Huang, Z.; Shi, J.; Gao, Y.; Cui, C.; Zhang, S.; Li, J.; Zhou, Y.; Cui, Q. HMDD v3.0: A database for experimentally supported

human microRNA–disease associations. Nucleic Acids Res. 2019, 47, D1013–D1017. [CrossRef] [PubMed]
139. Forbes, S.A.; Bindal, N.; Bamford, S.; Cole, C.; Kok, C.Y.; Beare, D.; Jia, M.; Shepherd, R.; Leung, K.; Menzies, A.; et al. COSMIC:

Mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2011, 39, D945–D950.
[CrossRef]

140. Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al.
COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019, 47, D941–D947. [CrossRef]

141. Mailman, M.D.; Feolo, M.; Jin, Y.; Kimura, M.; Tryka, K.; Bagoutdinov, R.; Hao, L.; Kiang, A.; Paschall, J.; Phan, L.; et al. The NCBI
dbGaP database of genotypes and phenotypes. Nat. Genet. 2007, 39, 1181–1186. [CrossRef] [PubMed]

142. Becker, K.G.; Barnes, K.C.; Bright, T.J.; Wang, S.A. The Genetic Association Database. Nat. Genet. 2004, 36, 431–432. [CrossRef]
143. Beck, T.; Hastings, R.K.; Gollapudi, S.; Free, R.C.; Brookes, A.J. GWAS Central: A comprehensive resource for the comparison and

interrogation of genome-wide association studies. Eur. J. Hum. Genet. 2014, 22, 949–952. [CrossRef] [PubMed]
144. Johnson, A.D.; O’Donnell, C.J. An Open Access Database of Genome-wide Association Results. BMC Med. Genet. 2009, 10, 6.

[CrossRef]
145. Welter, D.; MacArthur, J.; Morales, J.; Burdett, T.; Hall, P.; Junkins, H.; Klemm, A.; Flicek, P.; Manolio, T.; Hindorff, L.; et al. The

NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014, 42, D1001–D1006. [CrossRef]
146. Altman, R.B. PharmGKB: A logical home for knowledge relating genotype to drug response phenotype. Nat. Genet. 2007, 39, 426.

[CrossRef]
147. Li, M.J.; Liu, Z.; Wang, P.; Wong, M.P.; Nelson, M.R.; Kocher, J.-P.A.; Yeager, M.; Sham, P.C.; Chanock, S.J.; Xia, Z.; et al. GWASdb

v2: An update database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res. 2016,
mboxemph44, D869–D876. [CrossRef]

http://doi.org/10.1101/gad.17446611
http://doi.org/10.1093/nar/gkw965
http://doi.org/10.1126/science.1196914
http://doi.org/10.1038/nbt1010-1045
http://doi.org/10.1093/bioinformatics/btt426
http://doi.org/10.1093/bioinformatics/btw639
http://www.ncbi.nlm.nih.gov/pubmed/28172495
http://doi.org/10.1039/C3MB70608G
http://doi.org/10.1093/nar/gkw093
http://doi.org/10.1093/nar/gky1032
http://www.ncbi.nlm.nih.gov/pubmed/30407550
http://www.ncbi.nlm.nih.gov/pubmed/10928714
http://doi.org/10.1080/15476286.2019.1600395
http://doi.org/10.1093/nar/gky1031
http://www.ncbi.nlm.nih.gov/pubmed/30371849
http://doi.org/10.1093/nar/gkaa707
http://doi.org/10.1093/nar/gku1167
http://www.ncbi.nlm.nih.gov/pubmed/25399417
http://doi.org/10.1093/nar/gkaa1037
http://www.ncbi.nlm.nih.gov/pubmed/33219661
http://doi.org/10.1002/humu.21149
http://doi.org/10.1093/nar/gkx1004
http://www.ncbi.nlm.nih.gov/pubmed/29077939
http://doi.org/10.1093/nar/gky1010
http://www.ncbi.nlm.nih.gov/pubmed/30364956
http://doi.org/10.1093/nar/gkq929
http://doi.org/10.1093/nar/gky1015
http://doi.org/10.1038/ng1007-1181
http://www.ncbi.nlm.nih.gov/pubmed/17898773
http://doi.org/10.1038/ng0504-431
http://doi.org/10.1038/ejhg.2013.274
http://www.ncbi.nlm.nih.gov/pubmed/24301061
http://doi.org/10.1186/1471-2350-10-6
http://doi.org/10.1093/nar/gkt1229
http://doi.org/10.1038/ng0407-426
http://doi.org/10.1093/nar/gkv1317


Biomolecules 2021, 11, 1245 35 of 41

148. Eicher, J.D.; Landowski, C.; Stackhouse, B.; Sloan, A.; Chen, W.; Jensen, N.; Lien, J.-P.; Leslie, R.; Johnson, A.D. GRASP v2.0: An
update on the Genome-Wide Repository of Associations between SNPs and phenotypes. Nucleic Acids Res. 2015, 43, D799–D804.
[CrossRef]

149. Wang, P.; Li, X.; Gao, Y.; Guo, Q.; Ning, S.; Zhang, Y.; Shang, S.; Wang, J.; Wang, Y.; Zhi, H.; et al. LnCeVar: A comprehensive
database of genomic variations that disturb ceRNA network regulation. Nucleic Acids Res. 2020, 48, D111–D117. [CrossRef]

150. Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.;
Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [CrossRef] [PubMed]

151. Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842.
[CrossRef] [PubMed]

152. Hermjakob, H.; Montecchi-Palazzi, L.; Lewington, C.; Mudali, S.; Kerrien, S.; Orchard, S.; Vingron, M.; Roechert, B.; Roepstorff, P.;
Valencia, A.; et al. IntAct: An open source molecular interaction database. Nucleic Acids Res. 2004, 32, D452–D455. [CrossRef]
[PubMed]

153. Orchard, S.; Ammari, M.; Aranda, B.; Breuza, L.; Briganti, L.; Broackes-Carter, F.; Campbell, N.H.; Chavali, G.; Chen, C.;
del-Toro, N.; et al. The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases. Nucleic
Acids Res. 2014, 42, D358–D363. [CrossRef] [PubMed]

154. Chatr-aryamontri, A.; Ceol, A.; Palazzi, L.M.; Nardelli, G.; Schneider, M.V.; Castagnoli, L.; Cesareni, G. MINT: The Molecular
INTeraction database. Nucleic Acids Res. 2007, 35, D572–D574. [CrossRef]

155. Licata, L.; Briganti, L.; Peluso, D.; Perfetto, L.; Iannuccelli, M.; Galeota, E.; Sacco, F.; Palma, A.; Nardozza, A.P.; Santonico, E.; et al.
MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 2012, 40, D857–D861. [CrossRef] [PubMed]

156. Ragueneau, E.; Shrivastava, A.; Morris, J.H.; Del-Toro, N.; Hermjakob, H.; Porras, P. IntAct App: A Cytoscape application for
molecular interaction network visualisation and analysis. Bioinformatics 2021, btab319. [CrossRef] [PubMed]

157. Franz, M.; Lopes, C.T.; Huck, G.; Dong, Y.; Sumer, O.; Bader, G.D. Cytoscape.js: A graph theory library for visualisation and
analysis. Bioinformatics 2016, 32, 309–311. [CrossRef]

158. Orchard, S.; Kerrien, S.; Abbani, S.; Aranda, B.; Bhate, J.; Bidwell, S.; Bridge, A.; Briganti, L.; Brinkman, F.S.L.; Brinkman, F.; et al.
Protein interaction data curation: The International Molecular Exchange (IMEx) consortium. Nat. Methods 2012, 9, 345–350.
[CrossRef]

159. Xenarios, I.; Rice, D.W.; Salwinski, L.; Baron, M.K.; Marcotte, E.M.; Eisenberg, D. DIP: The database of interacting proteins. Nucleic
Acids Res. 2000, 28, 289–291. [CrossRef]

160. Kotlyar, M.; Pastrello, C.; Malik, Z.; Jurisica, I. IID 2018 update: Context-specific physical protein-protein interactions in human,
model organisms and domesticated species. Nucleic Acids Res. 2019, 47, D581–D589. [CrossRef] [PubMed]

161. Koutrouli, M.; Hatzis, P.; Pavlopoulos, G.A. Exploring Networks in the STRING and Reactome Database. In Systems Medicine;
Wolkenhauer, O., Ed.; Academic Press: Oxford, UK, 2021; pp. 507–520, ISBN 978-0-12-816078-7.

162. Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [CrossRef]
163. Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The

reactome pathway knowledgebase. Nucleic Acids Res. 2020, 48, D498–D503. [CrossRef] [PubMed]
164. Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2021,

49, D458–D460. [CrossRef] [PubMed]
165. Brown, K.R.; Otasek, D.; Ali, M.; McGuffin, M.J.; Xie, W.; Devani, B.; van Toch, I.L.; Jurisica, I. NAViGaTOR: Network Analysis,

Visualization and Graphing Toronto. Bioinformatics 2009, 25, 3327–3329. [CrossRef]
166. Du, Y.; Cai, M.; Xing, X.; Ji, J.; Yang, E.; Wu, J. PINA 3.0: Mining cancer interactome. Nucleic Acids Res. 2021, 49, D1351–D1357.

[CrossRef] [PubMed]
167. Veres, D.V.; Gyurkó, D.M.; Thaler, B.; Szalay, K.Z.; Fazekas, D.; Korcsmáros, T.; Csermely, P. ComPPI: A cellular compartment-

specific database for protein-protein interaction network analysis. Nucleic Acids Res. 2015, 43, D485–D493. [CrossRef]
168. Giurgiu, M.; Reinhard, J.; Brauner, B.; Dunger-Kaltenbach, I.; Fobo, G.; Frishman, G.; Montrone, C.; Ruepp, A. CORUM: The

comprehensive resource of mammalian protein complexes-2019. Nucleic Acids Res. 2019, 47, D559–D563. [CrossRef] [PubMed]
169. Meldal, B.H.M.; Bye-A-Jee, H.; Gajdoš, L.; Hammerová, Z.; Horácková, A.; Melicher, F.; Perfetto, L.; Pokorný, D.; Lopez, M.R.;

Türková, A.; et al. Complex Portal 2018: Extended content and enhanced visualization tools for macromolecular complexes.
Nucleic Acids Res. 2019, 47, D550–D558. [CrossRef]

170. Kooistra, A.J.; Mordalski, S.; Pándy-Szekeres, G.; Esguerra, M.; Mamyrbekov, A.; Munk, C.; Keserű, G.M.; Gloriam, D.E. GPCRdb
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