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RESEARCH ARTICLE

Comparison of alternative approaches 
to single-trait genomic prediction using 
genotyped and non-genotyped Hanwoo beef 
cattle
Joonho Lee1† , Hao Cheng1,2†, Dorian Garrick1,3,4, Bruce Golden4, Jack Dekkers1, Kyungdo Park5, 
Deukhwan Lee6 and Rohan Fernando1* 

Abstract 

Background: Genomic predictions from BayesA and BayesB use training data that include animals with both phe-
notypes and genotypes. Single-step methodologies allow additional information from non-genotyped relatives to be 
included in the analysis. The single-step genomic best linear unbiased prediction (SSGBLUP) method uses a relation-
ship matrix computed from marker and pedigree information, in which missing genotypes are imputed implicitly. 
Single-step Bayesian regression (SSBR) extends SSGBLUP to BayesB-like models using explicitly imputed genotypes for 
non-genotyped individuals.

Methods: Carcass records included 988 genotyped Hanwoo steers with 35,882 SNPs and 1438 non-genotyped 
steers that were measured for back-fat thickness (BFT), carcass weight (CWT), eye-muscle area, and marbling score 
(MAR). Single-trait pedigree-based BLUP, Bayesian methods using only genotyped individuals, SSGBLUP and SSBR 
methods were compared using cross-validation.

Results: Methods using genomic information always outperformed pedigree-based BLUP when the same pheno-
typic data were modeled from either genotyped individuals only or both genotyped and non-genotyped individuals. 
For BFT and MAR, accuracies were higher with single-step methods than with BayesB, BayesC and BayesCπ. Gains in 
accuracy with the single-step methods ranged from +0.06 to +0.09 for BFT and from +0.05 to +0.07 for MAR. For 
CWT, SSBR always outperformed the corresponding Bayesian methods that used only genotyped individuals. How-
ever, although SSGBLUP incorporated information from non-genotyped individuals, prediction accuracies were lower 
with SSGBLUP than with BayesC (π = 0.9999) and BayesB (π = 0.98) for CWT because, for this particular trait, there was 
a benefit from the mixture priors of the effects of the single nucleotide polymorphisms.

Conclusions: Single-step methods are the preferred approaches for prediction combining genotyped and non-
genotyped animals. Alternative priors allow SSBR to outperform SSGBLUP in some cases.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Since breeding technologies using genome-wide single 
nucleotide polymorphism (SNP) panels became available, 

genomic selection was rapidly adopted for improvement 
of livestock and has replaced the traditionally used ped-
igree-based best linear unbiased prediction (PBLUP). 
The BayesA and BayesB hierarchical Bayesian models 
with locus-specific variances were proposed by Meuwis-
sen et al. [1]. BayesB can accommodate mixture models 
in which SNPs have zero effects with probability π [2, 
3]. When π = 0, BayesB is known as BayesA. BayesC is 
another widely-used Bayesian mixture model, in which a 
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common variance is used for all SNPs instead of locus-
specific variances [4], and a modification of that method 
known as BayesCπ treats π as an unknown parameter 
with a uniform prior distribution [5].

In general, the number of individuals with genomic 
information is a small subset of the individuals repre-
sented in the population with pedigree and phenotypic 
information. “Single-step” methodologies were devel-
oped to take advantage of all pedigree, phenotypic and 
genomic information simultaneously [6, 7]. The single-
step genomic BLUP (SSGBLUP) method uses a relation-
ship matrix that is computed from marker and pedigree 
information. SSGBLUP was shown to yield a similar or 
higher accuracy compared to methods using only geno-
typed individuals [8–10]. Fernando et al. [7] proposed a 
class of single-step Bayesian regression methods (SSBR) 
to extend SSGBLUP to incorporate BayesB-like models 
for SNP effects (SSBR-B). Similar extensions of SSGBLUP 
with BayesC-like models result in SSBR-C and SSBR-Cπ. 
SSBR methods may promise higher prediction accuracies 
and provide computational benefits when many animals 
are genotyped. In SSGBLUP, the distribution of marker 
effects conditional on the variance of marker effects is 
assumed univariate normal, whereas in SSBR, the prior 
for marker effects can follow a t-distribution, a double 
exponential distribution or mixture distributions, which 
may be advantageous in some situations.

In this paper, prediction accuracies from PBLUP, 
BayesB, BayesC, BayesCπ, SSGBLUP and SSBR-B, SSBR-
C, SSBR-Cπ were compared in terms of cross-validation 
accuracies.

Methods
Data
Young Hanwoo bulls are routinely progeny-tested in 
batches at the Hanwoo Improvement Center (Seo-San, 
Chungnam, South Korea). DNA samples were collected 
from steers that included the progeny-tested offspring 
from the 46th to 51st selection batches. SNP genotypes 
were determined using Illumina Bovine SNP50 v1 (50 k) 
or Bovine HD (778 k) beadchips (Illumina, CA).

Carcass records were recorded at harvest at about 
24 months of age. The carcass traits used in the analyses 
were back-fat thickness (BFT), carcass weight (CWT), 
eye-muscle area (EMA), and marbling score (MAR). 
Park et  al. [11] reported heritabilities of 0.50, 0.30, 0.42 
and 0.63 for BFT, CWT, EMA and MAR, respectively. 
Approval from the ethics committee was not required 
for these data since they were obtained from an existing 
industry database.

Of the 44  k SNPs that are included on both the 50 
and 778 k beadchips, only autosomal SNPs with known 

map location were used. For quality control, SNPs 
that departed from the Hardy–Weinberg equilibrium 
(p  <  10−6) based on a Chi square test, or had a minor 
allele frequency (MAF) lower than 0.01, or a missing rate 
higher than 0.1 were excluded from further analysis. For 
the genotyped animals, SNPs with missing genotypes 
were imputed using Beagle 3.3 [12]. After these quality 
controls, 35,882 SNPs remained for analyses.

The numerator relationship matrix (NRM) based on 
pedigree information and the genomic relationship 
matrix (GRM) based on SNP genotypes were compared. 
Nineteen individuals, which showed unreasonable devi-
ations between the NRM and GRM coefficients that 
were probably due to errors in the DNA sampling, were 
eliminated. Among these 19 individuals, five appeared 
to have been genotyped twice with different ID since 
their GRM relationship coefficients were near 1.0 while 
their NRM relationship coefficients were close to 0. For 
the other 14 individuals, either the GRM relationship 
coefficients were near 0 while those of the NRM were 
near 0.25 as would be the case for mistakenly recorded 
half-sib individuals, or the GRM relationship coeffi-
cients were near 0.25 while those of the NRM were near 
0 as would be the case for half-sibs mistakenly recorded 
as unrelated. After elimination of these suspect indi-
viduals, the correlation coefficient between NRM and 
GRM increased from 0.856 to 0.866. Finally, 988 geno-
typed individuals remained for genomic prediction with 
a mean MAF of 0.243 and mean observed heterozygo-
sity of 0.326.

Additional carcass records for 1438 non-genotyped 
progeny-tested steers were collected from the 39th to 
the 51st selection batches for the single-step and PBLUP 
analyses. Ancestors of the 2426 individuals with carcass 
records contributed to an 11-generation pedigree file that 
included 9637 animals.

Genotyped individuals were assigned to five mutually 
exclusive groups for cross-validation. K-means clustering 
based on pedigree relationship coefficients was used to 
minimize the relatedness between training and validation 
sets [13]. The five groups included 172, 280, 199, 139 and 
198 individuals, respectively. Each group was used as the 
validation set while the remaining genotyped individuals 
were included in the training set. In SSGBLUP, SSBR and 
PBLUP with phenotypes on all animals, non-genotyped 
individuals were included in the training set. Pheno-
types were pre-adjusted for contemporary group and age 
effects using multiple-trait PBLUP because animals from 
some progeny-test batches were assigned to different 
groups and because some analyses included additional 
non-genotyped animals from the same batches as geno-
typed animals.
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Single‑trait statistical models
Pedigree‑based BLUP
In these analyses, the adjusted phenotypes were modeled 
as:

where y is a vector of adjusted phenotypic records from 
ny animals, 1 is a vector of 1s, μ is the overall mean, Z is 
the design matrix allocating records to breeding values, 
u is the vector of breeding values, e is a random vector of 
residuals. It was assumed that u ∼ N (0,Aσ 2

g ), where A is 
the numerator relationship matrix and σg2 is the additive 
genetic variance. Residuals were assumed to be indepen-
dently and identically distributed (iid) with null means 
and variance σe2. Pedigree-based BLUP with phenotypes 
either on all animals or only on genotyped animals were 
referred to as PBLUP (ny =  2426 minus validation ani-
mals) and PBLUP-G (ny = 988 minus validation animals), 
respectively. Adjusted phenotypes were used to account 
for fixed effects in the validation set.

Bayesian methods using only genotyped animals
In these analyses, the adjusted phenotypes were modeled 
as:

where y, 1 and e are ny × 1 vectors for ny = 988 minus 
genotyped validation animals, μ is as defined before, Mg 
is the ny × p matrix of SNP covariates at p loci, and α is 
a p × 1 random vector of allele substitution effects. A flat 
prior was used for μ. The prior for e was e|σ2e ∼ N(0, Iσ2e) 
with (σ2e |νe, S2e) ∼ νeS

2
eχ

2
νe

. Priors for SNP effects were a 
mixture of a point mass at zero and a t-distribution in 
BayesB or a mixture of a point mass at zero and a normal 
distribution conditional on a common variance of SNP 
effects in BayesC and BayesCπ methods [2]. These meth-
ods were referred to as BayesB, BayesC or BayesCπ, and 
ignored adjusted phenotypes on non-genotyped animals, 
as for PBLUP-G.

Single‑step GBLUP
In the single-step GBLUP analyses, the adjusted pheno-
types were modeled as:

where y is the vector of adjusted phenotypes as before 
except that it includes both genotyped and non-geno-
typed individuals i.e. ny = 2426 minus validation animals, 
μ and e are as defined before, with residuals that are iid 
with null means and variance σe2, Z is the design matrix 
allocating records to breeding values, u is the vector of 
breeding values for both genotyped and non-genotyped 
individuals but now u ∼ N (0,Hσ 2

g ), where:

y = 1µ+ Zu + e,

y = 1µ+Mgα+ e,

y = 1µ+ Zu + e,

and Agg is the 988 order partition of the numerator 
relationship matrix A that corresponds to genotyped 
animals, Ann is the 11,075 order partition of A that cor-
responds to non-genotyped animals, Ang or Agn are 
partitions of A corresponding to relationships between 
non-genotyped and genotyped animals or vice versa, and 
G is a GRM of order 988. We applied three methods to 
construct the GRM. The standard G was constructed as 
G = TT′∑

2qi(1−qi)
 (SSGBLUP-I) with T being the centered 

matrix of SNP covariates (T = Mg −
1
n11

′Mg), qi rep-
resenting the allele frequency of the ith SNP. This is the 
same G as previously used to compare relationship coef-
ficients between NRM and GRM and eliminate the 19 
individuals with genotype-pedigree conflicts, except that 
19 rows and corresponding columns were deleted. In the 
standard G, the additive genetic variance attributed to 
each SNP genotype is equally important and GRM are 
identical for all traits. Recently, methodologies for con-
structing G with weighting factors to account for locus-
specific variances were proposed [14–16]. The method 
reported by Wang et al. [14] calculates SNP effects from 
the solution of SSGBLUP-I and then reconstructs a new 
GRM using weights that are obtained from the previously 
calculated SNP effects. This can be repeated iteratively to 
obtain a sequence of GRM. In this approach, GRM will 
differ for each trait.

The prediction model based on the GRM constructed 
from one iteration was referred to as SSGBLUP-II and 
the GRM constructed from five iterations was referred 
to as SSGBLUP-III. To remove singularity, GRM can be 
blended with NRM [17] but this was not done in our 
study, nor were residual polygenic effects separately 
modeled in either SSGBLUP or SSBR. Instead, diagonal 
and off-diagonal elements of G were separately scaled 
so that their means equal the corresponding means 
of Agg, which is expected to remove the singularity of 
GRM in SSGBLUP that is introduced by centering the 
SNPs.

Single‑step Bayesian regression methods
In the single-step Bayesian regression analyses, the 
adjusted phenotypes were modeled as:

where y is the adjusted phenotypic vector for 
both genotyped and non-genotyped individuals, 

X =

[
1 −ZnAngA

−1
gg 1

1 −Zg1

]
, β =

[
µ

µg

]
, μ is the over-

all mean, and μg represents the difference in breeding 

H =

[
AngA

−1
gg GA

−1
gg Agn +

(
Ann − AngA

−1
gg Agn

)
AngA

−1
gg G

GA
−1
gg Agn G

]
,

y = Xβ+ ZMα+ Znǫ+ e,
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values between genotyped and non-genotyped animals, 

Z is the design matrix, M =

[
M̂n

Mg

]
, where Mg is the 

matrix of SNP covariates for genotyped animals and 

M̂n = AngA
−1
gg Mg, representing imputed SNP covari-

ates for non-genotyped animals that are derived from 
genotyped relatives, ǫ is the imputation residual, Zn and 
Zg are the design matrices allocating records to breed-
ing values of non-genotyped animals and genotyped 
animals. Flat priors were used for μ and μg. The prior for 
ei is ei|σ 2

e ∼iid N (0, σ 2
e ) with (σ 2

e |νe, S
2
e ) ∼ νeS

2
eχ

2
νe

. The 
prior for ǫ is ǫ|σ 2

g ∼ N (0, (Ann − AngA
−1
gg Agn)σ

2
g ) with 

(σ 2
g |νg , S

2
g ) ∼ νgS

2
gχ

2
νg

. The same priors for SNP effects 
as in BayesB, BayesC and BayesCπ were used in single-
step Bayesian regression methods and were referred to as 
SSBR-B, SSBR-C, or SSBR-Cπ.

The π values in the subsequent analyses for BayesB, 
BayesC, SSBR-B and SSBR-C were chosen such that they 
provided the highest accuracies from fivefold cross-vali-
dation. Accuracies in BayesB and BayesC were compared 
using various π values i.e. 0.9999, 0.999, 0.995, 0.99, 0.98 
and, then, in steps from 0.95 to 0.6 decreasing by 0.05.

Analyses were performed with GenSel [5] for BayesB, 
BayesC and BayesCπ methods using only genotyped ani-
mals. Estimated breeding values of PBLUP and SSGBLUP 
were obtained using the software BLUPF90 [18] modified 
for genomic analyses [17]. For SSBR methods, JWAS the 
Julia package for whole-genome analyses [19] was used.

Validation
For each validation set, prediction accuracy was calcu-
lated as the correlation between the vector of adjusted 
phenotypes and the vector of estimated breeding values, 
divided by the square root of trait heritability. Prediction 
accuracies from these fivefold cross-validation sets were 
pooled to obtain a single prediction accuracy that was 
relevant to the method and trait by weighting each of the 
five validation correlations by the number of individuals 
in that set. Regressions of adjusted phenotype on esti-
mated breeding value were calculated for all prediction 
methods.

Genome‑wide association studies
Genome-wide association studies (GWAS) were per-
formed using the BayesB method with the π value that 
had given the highest prediction accuracy, in order to 
describe the genetic architecture for different traits in 
terms of window variance [20].

Results
Predictive accuracies for the four traits obtained with 
BayesB and BayesC for different π values are in Fig.  1. 
For BFT, EMA and MAR, predictive accuracies of BayesB 
and BayesC were similar, but decreased as π increased, 
and fewer SNPs were assumed to have non-zero effects. 
For CWT, we observed a different pattern with accura-
cies increasing as π increased and accuracies of BayesB 
being always higher than those of BayesC. These two 
results suggest that CWT is influenced by a few quanti-
tative trait loci (QTL) that explain a large proportion of 
the genetic variance. The proportions of genetic variance 
explained by 1-Mb non-overlapping genomic windows 
are in Fig.  2, and demonstrate that the QTL for CWT 
were larger than those for the other traits.

The π values that maximized the cross-validation accu-
racies in BayesB were 0.95, 0.98, 0.95, and 0.6 for BFT, 
CWT, EMA and MAR, respectively, and were used in 
SSBR-B. The corresponding π values in BayesC were 0.98, 
0.9999, 0.98, and 0.6 for BFT, CWT, EMA and MAR, 
respectively, and were used in SSBR-C.

Several windows showed distinctly larger effects than 
the rest of the genome for BFT and EMA, but the win-
dow with the largest effect explained only about 1% of the 
genetic variance. For MAR, the windows showed smaller 
effects than those for BFT and EMA with the most sig-
nificant window explaining less than 0.3% of the genetic 
variance. These results show that, for BFT, EMA and 
MAR, many QTL each with a small effect are widely dis-
tributed across the whole genome, which is consistent 
with the infinitesimal model. In contrast, for CWT, one 
window on chromosome 4 and two windows on chromo-
some 14 explained together more than 15% of the genetic 
variance while the other windows showed small effects. 
Using single-SNP association tests, Lee et al. [21] found 
similar results that indicated that SNPs on chromosome 
14 were strongly associated with CWT in Hanwoo beef 
cattle. These differences in genomic architecture between 
the four traits probably explain the difference in the pat-
tern of prediction accuracy between CWT and the three 
other traits as shown in Fig.  1. BayesB, which shrinks 
QTL with small effects to a greater extent than BayesC, 
may capture QTL with large effects better and there-
fore yield higher prediction accuracies [22]. BayesB and 
BayesC methods with a high π value tend to capture the 
same few QTL with large effects, thus their similar pre-
diction accuracies.

Prediction accuracies of models SSGBLUP-I and SSBR-
C (π = 0) without estimated variances were identical and 
equal to 0.351 for BFT, 0.415 for CWT, 0.413 for EMA 
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and 0.377 for MAR as expected since these models with 
assumed variance parameters are equivalent in terms of 
prediction of breeding values [7]. In practice, variance 
components are often treated as unknown and are esti-
mated in a separate analysis, e.g. restricted maximum 
likelihood (REML) followed by GBLUP, or jointly with 
an informative prior, e.g. BayesB, SSBR-B, etc. The vari-
ances of additive genetic effects, SNP effects and resid-
ual effects were estimated in the subsequent analyses 
described below.

To compare methods that use all individuals with those 
that use only genotyped individuals, prediction accura-
cies (Fig.  3) were calculated using PBLUP (all animals) 
and PBLUP-G (PBLUP using only phenotypes on geno-
typed animals), BayesB, BayesC, BayesC (π  =  0), and 
BayesCπ, SSGBLUP-I and SSGBLUP-II and SSBR-B, 
SSBR-C, SSBR-C (π = 0), and SSBR-Cπ.

Genomic methods versus pedigree‑based BLUP
Methods using genomic information always outper-
formed PBLUP with the same phenotypic data. Using 
data from only genotyped animals, accuracies were 
higher with BayesB, BayesC and BayesCπ than with 
PBLUP-G for all traits. When data from both genotyped 
and non-genotyped individuals were used, prediction 
accuracies of the single-step methods were higher than 
those of PBLUP for all traits.

Single‑step methods versus BayesB, BayesC and BayesCπ
For BFT and MAR, prediction accuracies of the single-
step methods were higher than those of BayesB, BayesC 
and BayesCπ. Gains in accuracy with the single-step 
methods ranged from +0.06 to +0.09 for BFT and from 
+0.05 to +0.07 for MAR, whereas for EMA, there was no 
advantage and only a slight gain in accuracy was observed 
in PBLUP versus PBLUP-G. For CWT, SSBR always out-
performed the corresponding Bayesian methods using 
only genotyped individuals and the gains in accuracy 
were +0.05 (SSBR-C (π = 0) vs. BayesC (π = 0)), +0.01 
(SSBR-C (π =  0.9999) vs. BayesC (π =  0.9999)), +0.10 
(SSBR-Cπ vs. BayesCπ) and +0.04 (SSBR-B (π = 0.98) vs. 
BayesB (π = 0.98)). However, although information from 
non-genotyped individuals was incorporated, for CWT 
prediction accuracy of SSGBLUP was lower than that of 
BayesC (π =  0.9999) and BayesB (π =  0.98) due to the 
benefits of mixture priors of the SNP effects for this par-
ticular trait.

Comparisons between single‑step methods
The differences in accuracies between single-step meth-
ods (yellow and blue bars in Fig. 3) were small for BFT, 
EMA and MAR, and a similar pattern was found between 
Bayesian methods (red bars in Fig.  3) using only geno-
typed individuals. For the CWT trait for which the 
GWAS detected a small number of regions with large 

Fig. 1 Fivefold cross-validation accuracies obtained with BayesB or BayesC using various assumed values for π
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effects, prediction accuracies differed with the method 
used. With the benefits of mixture priors and informa-
tion from non-genotyped individuals, prediction accura-
cies of the SSBR methods, especially SSBR-B, were higher 
(+0.09) than those of the SSGBLUP methods. As for the 
SSBR methods with mixture priors, the SSGBLUP meth-
ods, which use weighted GRM (SSGBLUP-II and SSGB-
LUP-III), showed higher accuracies than SSGBLUP-I for 
CWT. Prediction accuracy of SSGBLUP-II was similar to 
that of SSGBLUP-I for EMA and MAR but lower for BFT. 
Prediction accuracy of SSGBLUP-III was lower than that 
of SSGBLUP-I for EMA, MAR and BFT. Regressions of 
adjusted phenotype on estimated breeding value did not 
show large differences among methods, but SSGBLUP-II 
and SSGBLUP-III had the lowest coefficients for all traits, 
much lower than 1, which indicates that their genomic 
predictions are biased upwards (Table 1).

Discussion
Prediction accuracies of all methods using genomic infor-
mation were higher than those of pedigree-based BLUP. 
However, the degree of superiority of genomic selection 
differed between methods and traits.

We hypothesize that the advantage of including pheno-
typic observations from non-genotyped animals into an 
analysis using phenotypic observations from genotyped 
animals would be similar for pedigree methods (PBLUP 
compared to PBLUP-G) and for genomic methods 
(SSBR-C compared to BayesC). Simultaneous use of all 
pedigree, phenotypic and genomic information in single-
step methods improved prediction accuracy relative to 
methods that only use data from genotyped animals for 
all traits, except EMA. For EMA, there was similarly little 
benefit from including the extra data in the PBLUP analy-
ses (compared to PBLUP-G).

Fig. 2 Results of the GWAS for each of the four traits. Different colors represent different autosomes (ordered from 1 to 29)
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Both SSBR and SSGBLUP methods showed simi-
lar prediction accuracies when the genetic architecture 
appeared to approach the infinitesimal model as was the 
case for BFT, EMA, and MAR. However, for CWT, pre-
diction accuracies of the SSBR methods were higher than 
those of SSGBLUP when there were only a few QTL with 
large effects. For that trait, the SSBR methods benefited 
from the use of the mixture priors.

The largest benefit of the SSBR methods was reached 
when an appropriate π was applied. However, it is com-
putationally intensive to find this value of π through 
cross-validation. Methods for estimating π are beneficial, 
but they require large datasets. An appropriate π was 
more critical for the Bayesian methods that only used 
genotyped individuals than for the SSBR methods. For 
example, differences in prediction accuracies between 

Fig. 3 Prediction accuracies by cross-validation for a variety of methods applied to backfat (BFT), carcass weight (CWT), eye-muscle area (EMA) 
and marbling (MAR). Conventional PBLUP based on only genotyped individuals (PBLUP-G) or using all animals (PBLUP), BayesB with chosen π 
(BAYESC(π = chosen value)), BayesC with chosen π (BAYESC (π = chosen value)) BayesC with π = 0 (BAYESC (π = 0)) or BayesC estimating π (BAYESC 
(π ESTIMATION)), single-step genomic BLUP constructing two different genomic relationship matrix (SSGBLUP-I and SSGBLUP-II) and single-step 
Bayesian regression corresponding to Bayesian methods (SSBR-B (π = chosen value), SSBR-C (π = chosen value), SSBR-C (π = 0), and SSBR-C (π 
ESTIMATION))
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BayesC (π = 0.9999) and BayesCπ reached values of 0.10 
but only of 0.01 between SSBR-C (π = 0.9999) and SSBR-
Cπ. Presumably, priors become less important in the sin-
gle-step analyses where more data are used.

Three factors can result in increased accuracy. First, the 
inclusion of genomic information, which was revealed 
when genomic methods were compared to pedigree-
based BLUP. Second, the use of additional phenotypic 
information from including non-genotyped individuals, 
which was shown by comparing Bayesian methods using 
only genotyped animals with their corresponding single-
step methods. Third, the use of methods that exploit 
genomic regions with large effects, as was found for one 
of the four traits using either mixture priors or iterative 
weighted methods for computing GRM.

SSGBLUP with iterative calculation of weighted 
genomic matrices had the disadvantage that it reduced 
prediction accuracy and increased bias for traits that 
were not associated with genomic regions with large 
effects, whereas the Bayesian models with mixture priors 
performed comparably regardless of the genomic archi-
tecture. SSGBLUP with iterative calculation of weighted 
genomic matrices shrinks small effects to zero, and more 
so with each additional iteration. There is no statisti-
cal basis to determine the optimal number of iterations 
except by trial and error, and neither one nor five itera-
tions resulted in improvements in this dataset.

In this study, which is based on a small population of 
Hanwoo cattle, prediction accuracy was higher for all 
genomic evaluations compared to pedigree-based BLUP. 
In such a situation, where the genomic reference popu-
lation is relatively small, single-step methods, which can 
routinely account for genomic regions with large effects 
when they are present, are recommended for additional 
gains in accuracy.

Conclusions
The “single-step” methodologies, which take advantage of 
all pedigree, phenotypic and genomic information simul-
taneously, give similar or higher prediction accuracies 
compared to methods using only genotyped individuals. 
Compared to SSGBLUP, the SSBR methods showed addi-
tional benefit for the CWT trait, which is associated with 
QTL with large effects. There is no disadvantage in using 
SSBR methods for all traits.
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