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Mathematical models of light propagation in turbid media are integral components of many

optical imaging modalities. The radiative transport equation is a principal model and is

commonly used to describe the behavior of light transport at distances larger than the

average scattering length of light in a medium. Current deterministic methods tend to

be computationally inexpensive but either do not accurately recreate scattered radiance in

layered media. However, these methods are sufficient to obtain functionals of radiance such

as fluence and reflectance, or only represent them for certain optical properties and at low

(≤ 0.1/l∗) spatial frequencies. Stochastic methods are capable of higher degrees of accuracy

but are often cumbersome to compute. I present a novel deterministic spectral method for

solving the Radiative Transport Equation, based on double spherical harmonic functions,

which is capable of accurate reconstructions of scattered radiance and is more robust to

changes in spatial frequency. It is provides accurate reconstructions of radiance and various

useful functionals thereof at much higher spatial frequencies than current best practices. I

demonstrate both theory and MATLab implementation for homogeneous as well as layered

media, and present a staged inversion method for the recovery of optical properties from

layered media using the method of (single) spherical harmonic expansion upon which my

proposed double spherical harmonic approach is based. This inversion technique may be
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applied to any solution method for the Radiative Transport Equation.
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Chapter 1

Background

1.1 Introduction

A rigorous mathematical model of the propagation and distribution of radiative energy

such as light is critical to multiple fields of science and engineering, such as biomedi-

cal optics[29, 48], computer graphics[1], reactor physics[11] and atmospheric science[65].

Detailed mathematical models are used in applications such as the recovery of optical

properties[29] from biological tissues, which in turn contain useful medical information[31].

While many modalities of optical monitoring, diagnostics, imaging, and therapy exist in the

field of biophotonics, they all require mathematical models for the propagation and interac-

tion of light in turbid media, i.e., a medium that can both absorb and scatter light.

Because the use of mathematical models for radiative transport is pervasive both in the

design and operation of numerous biophotonics modalities, there is great demand for the

development of fast, accurate, and efficient computational approaches[39]. This means that

there is pressure for such models to be both fast and accurate, so that they can give reliable

results in a useful amount of time. This is particularly important for certain types of optical
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imaging[61], which often utilize optimization algorithms classical fitting techniques[29] such

as Nelder-Mead[49] or Levenberg-Marquardt[47], both of which require numerous radiative

transport calculations to obtain simulation results that best match measured data.

This dissertation will describe the development of a new method of quickly and accurately

solving a commonly used model for radiative transport, the Radiative Transport Equation,

and its application to the problem of optical property recovery from data obtained using a

type of optical imaging known as Spatial Frequency Domain Spectroscopy[13]. In this chap-

ter, I will give background information regarding the current understanding of the behavior

of light in a turbid medium and mathematical models thereof. I will then describe the process

of optical imaging employed in biophotonics application with a particular focus on spatial

frequency domain methods. This will then motivate the specific biomedical, mathematical,

and computational needs that must be satisfied by a new RTE solution approach for use in

biophotonics applications.

Light is known to act as both an electromagnetic wave and as massless charged particles

called photons. Descriptions of light both as particles and waves have found validity and

utility. While mathematical models of both conceptions of light exist, I will focus on the

particle conception. Many thorough treatments of the wave conception of light are given,

focusing around Maxwell’s Equations[44]. These give a rigorous and complete description

of the behavior of electromagnetic waves, including behavior such as diffraction and in-

terference, but are cumbersome to simulate as length scales increase past the nanometer

range. While methods based around Maxwell’s Equations are valuable for simulations on

that range or when dealing with phenomena such which require a rigorous wave description

of radiance[9], other conceptions are much more valuable as length scales increase to the

point where scattering and absorption are the dominant behaviors of radiant energy and

may be modeled as continuous actions rather than discrete ones.
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1.2 The Radiative Transport Equation - Light As En-

ergy

For these length scales, which often correspond to roughly 100µm in biological tissue, due to

common length scales defined by scattering in this tissue[31], it is efficient to describe light

as the motion of massless, charged particles (photons.) This shift in perspective provides

an accurate description of the radiant energy, or radiance, of light, but since light is no

longer treated as a wave, things like diffraction and interference patterns are no longer

accurately captured. It is natural to to raise concerns over of the loss of these phenomena

for this conception of light. However, these phenomena have relatively insignificant effects in

biological tissue on length scales much greater than the wavelength of the light in question,

and so this conception becomes appropriate when considering media on scales at or above

that of individual cells.

These drawbacks are important to mention and to be aware of when designing any sort of

optical application, but this conception of light still accurately captures radiant energy,

a highly useful measure for applications across many fields. The dominant phenomena

affecting radiance in this conception are absorption and scattering, and taking this into

account yields the Radiative Transport Equation, or RTE (originally proposed in 1887 by

Eugen von Lommel):

∇ · ΩL (Ω, r, t) + 1
c
∂L
∂t

(Ω, r, t) = −µtL (Ω, r, t) +
∫

4π
L (Ω′, r, t) p (Ω′,Ω) dΩ′ + q (Ω, r, t) (1.1)

Here, L is radiant energy as a function of time (t), space (r) and propagation direction (Ω).

It is important to note that this function commonly considers three spatial dimensions and
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two angular ones, so that at any point in space and time, radiance becomes a distribution.

This is not immediately obvious when attempting to build a mathematical description of

radiance from the ground up, but is well illustrated when considering a common laser: at

any point along its beam, radiance is high in the propagation direction of the beam but low

in all other directions. The other quantities mentioned are the scattering (µs) and absorption

(µa) coefficients, which describe the probability per photon of being scattering or absorbed

per millimeter, the total attenuation coefficient (µt = µa + µs), the speed of light in a given

medium (c), the scattering phase function (p(Ω′,Ω)) which describes the probability density

function of radiance scattering from one propagation direction (Ω′) to another (Ω) and the

gain of radiance from any source (q). All of these quantities are functions of space and,

in the case of q, time. It is important to note here that while scattering and absorption

are discrete phenomena when referring to an individual photon, they are considered to be

continuous processes in mathematical models of the RTE.

The RTE can be understood as stating that the total change in radiance in a given direction

at a point in space and time is equal to the loss due to all attenuation, any gain due

to scattering from other directions. It provides a complete and accurate description of

scattering, absorption and radiation in any multiply scattering medium. Application of

RTE solutions exist in fields such as atmospheric science and reactor physics, but the work

in this dissertation will be constrained to simulating light propagation in biological media.

When modeling radiative transport with the RTE, it is often helpful to define length scales

in terms of the rates of scattering and absorption, rather than absolute units. Since both

µs and µa give an expected number of scattering and absorption events per millimeter, their

multiplicative inverses give the expected distances between scattering and absorption events.

This perspective is particularly helpful when considering variation in these values with re-

spect to space, since some solution methods may have difficulty accurately reconstructing

radiance in media where these values change rapidly compared to their own length scales.
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When considering the scattering phase function, several quantities of interest arrive. First, it

must be noted that this function must integrate to 1 over its domain, since it is a probability

distribution. Second, its anisotropy, denoted g, is the average value of the cosine of the angle

between the direction of light pre and post scattering. This is often of value when considering

simplifications of the scattering phase function, and gives rise to the notion of a reduced

scattering coefficient, µ′s, which is defined as µs(1 − g). This value describes the average a

length scale over which light can be treated as scattering isotropically, and may therefore

be treated similarly to diffusion[68, 12]. This length scale is called the Transport Mean Free

Path and commonly denoted l∗. This phenomenon arises from the fact as more scattering

events occur, the probability of light being propagated in a given direction approaches a

uniform distribution. Another way to phrase this is that information regarding the original

propagation direction becomes lost as the number of scattering events increases, at a rate

determined by the directionality of scattering.

While g has been used to characterize multiple classes of scattering phase functions, it is

impossible to accurately form a basis for all possible, or even all useful functions, from a

one dimensional value since any non-negative function defined on [-1,1] which integrates

to 1 will serve as a scattering phase function. Other measures have been introduced as

well[6], from linear or higher order moments of scattering, to relations between g and such

moments. While these approaches and others have shown the utility of more robust classes of

scattering phase functions, there is yet to be a universally accepted set of useful parameters.

It therefore behooves any model of radiative transport to be as general as possible when

considering potential scattering phase functions.
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1.3 Approaches to Solving the RTE

1.3.1 Stochastic RTE Solutions

Stochastic, or Monte Carlo methods for solving the radiative transport mirror the quantum

behavior of photons. While there are many variations[62, 77, 43, 42], they function on a

common theme of scattering (and possibly absorption) happening as random events to pho-

tons, or packets of photons, traveling through a medium. The most basic estimators, known

as analog, simulate individual photons and calculate the distance between scattering and ab-

sorption moments using exponential distributions defined by their attenuation coefficients.

Directionality of scattering is likewise defined by random numbers generated according to

the scattering phase function.

More complex estimators such as Discrete and Continuous Absorption Weight[27] work by

simulating packets of photons rather than individual ones. In these cases, each packet is

considered to have a given ”weight” of intensity, which drops either continuously as it moves

through a medium, or at discrete moments such as when scattering events occur. Packets

may be deleted once they drop below a certain weight threshold or through random schemes.

These methods have an advantage over analog ones in that each packet of photons can expect

to survive much longer and still contribute detailed information of direction and intensity of

radiance.

Monte Carlo methods have several distinct advantages relative to deterministic ones[78].

First, they can accurately reconstruct radiance in complex geometries because they build

solutions through a series of simple interactions. Second, while the implementations can be

quite complex, the behavior of light is often easier to understand through a local conception,

which deals with individual photons or packets of photons, than a global conception, which

demands a solution to radiant energy at all points and angles in a medium at once. Of course,
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such methods have disadvantages as well. One of the most prominent of these is the high

degree of computational power that it requires[75]. Since Monte Carlo methods are build

around probability distributions and random numbers, they can require up to hundreds of

millions of simulation runs to obtain desired levels of confidence in simulation results. This

is particularly the case when dealing with complex media geometries[? ] with features more

thin than their own scattering and absorption lengths[72]. These mean that the average

photon or packet passing through those regions may not interact, which further raises the

number of simulation repetitions required to gain any desired level of confidence in an overall

result. Despite this high expense, the potential for accurate simulations in complex media

has led to Monte Carlo methods becoming a ”gold standard” for judging other solution

methods.

However, the computational expense associated with such results can become a limiting step

when trying to solve an inverse problem, i.e., when trying to determine optical properties from

a set of optical measurements. This is a necessary step in many optical imaging modalities.

While some utility has been found through the use of Radon-Nikodym differentiation[26] to

examine the effects of small changes in probability measures on precalculated Monte Carlo

results, the most common approach to the curve fitting problem is the creation of large

lookup tables of regenerated results[77]. These tables have the advantage of the highest pos-

sible computational efficiency, but are commonly used with various simplifying assumptions,

such as identical scattering properties at all points in a given medium. Furthermore, the

dimensionality of such a table increases with medium complexity. A biological tissue com-

posed of an indeterminate number of layers each with different scattering and absorption

properties, as well as high degrees of variation in scattering phase function, can make the

generation and storage of such a table highly impractical.
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1.3.2 Deterministic RTE Solutions

In the field of biomedical optics two main classes of deterministic approaches have been

pursued to provide solutions to the RTE.

The first class of approaches is defined by the application of the Finite Element Method to

discretize the medium through which radiance is transported, as well as potentially the time

of transportation into a mesh. Radiance is then calculated at each point in this mesh via

linearization. Finite Element Method approaches such as Gao and Zhao’s Multigrid RTE[20]

and the NIRFast project[15] have shown consistent, promising results for the simulation of

radiance in a complex scattering environment. However, while these methods are not as

computationally expensive as current Monte Carlo based solutions, they still tend to be much

more expensive than those of the second group of interest. They also rely on linearizations

which may not accurately capture angular radiance at a point and may require highly detailed

meshes to simulate radiance in more complex media, such as biological tissue composed of

multiple thin layers.

This class is of solutions based around the Spectral Method, or projection of the radiance

L onto a functional basis. These bases are most commonly the Legendre Polynomials or

Laplace’s Spherical Harmonic Functions, which are based on the Associated Legendre Poly-

nomials. These methods do not require a mesh based approach or any spatial, angular or

temporal discretization, though angular resolution is limited by the order of expansion of

the chosen basis. For this reason, many of these methods are often used to reconstruct

functionals of radiance, rather than computing radiance directly. One common functional is

fluence[10], the integral of radiance over all angles at a given point in spacetime, given here:

F(L(z))=
∫

4π
L(z,Ω)dΩ (1.2)

Another is transmittance, the integral of all radiance exiting a medium opposite an external
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source. It is given here with z∗ denoting the depth of the opposite end of a medium,

γF (Ω) denoting Fresnel’s law for internal reflectance and 2π− denoting the hemisphere of

propagation directions leaving that medium:

T(L)=
∫

2π−
L(z∗,Ω)(1− γF (Ω)) dΩ (1.3)

A final is reflectance[21], the integral of all radiance exiting a medium on the same side of an

external source. It is given here with 2π+ denoting the hemisphere of angles of propagation

directions leaving that medium:

R(L) =
∫

2π+ L(z∗,Ω)(1− γF (Ω)) dΩ (1.3)

It should be noted that the 1−γF (Ω) term in both reflectance and transmittance eliminates

the effect of internally reflected at the boundary.

This focus on functionals is not a hard and fast rule, however, as some of these methods have

been able to reconstruct radiance with a high degree of accuracy in certain situations[21]

when compared to a Monte Carlo gold standard.

Several important methods from this group bear mention. The first is the Standard Diffusion

Approximation[68], the computation of which is highly efficient. It treats light as a diffusive

process with a diffusion constant of 1/3(l∗). The Standard Diffusion Approximation has

been been shown to be accurate over length scales larger than l∗ when media is highly

scattering, which is often the case when considering biological tissue. The second is the

δ−P1 method[10], which has been shown to provide more accurate reconstructions of fluence

as a function of depth in a medium than the Standard Diffusion Approximation without

increasing computational expense. It accomplishes this via the incorporation of a forward

directed Dirac delta function into the expressions for radiance and the scattering phase
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function, which captures some amount of higher order behavior in what would normally

simply be a low order expansion.

The general PN method[11] refers to the expansion of L in terms of Legendre Polynomials

to order N and has been extensively studied and applied both for specific and general values

of N . It is more computationally expensive than simpler methods such as the Standard Dif-

fusion Approximation, but is capable of much higher levels of accuracy. The general PN and

several based upon it have been able to reconstruct radiance in several cases, though even the

most accurate of them have achieved limited success. The simplified PN , or SPN , method

first introduced by Gelbard[22] and more strongly justified by Larsen[36] and Pomraning[53]

generalizes the one dimensional case of PN to a three dimensional space. These, and all meth-

ods based purely on Legendre Polynomial expansion, however, have one major drawback:

They cannot represent azimuthal asymmetry in radiance at any point[21]. This is because

the Legendre Polynomials, when applied to the unit sphere, are all azimuthally symmetric.

This problem was first addressed by Gardner with his SHEFN , or Spherical Harmonic Ex-

pansion with Fourier coefficients to order N , method[21]. As its name implies, this approach

relies on the projection of L onto the space spanned by Laplace’s Spherical Harmonic Func-

tions, which form an orthonormal basis for L2(S2). This allows SHEFN to properly simulate

situations where radiance is not azimuthally symmetric at a point, such as those with spa-

tially detailed or oblique sources. However, this method is more expensive than its cousin

PN , particularly at higher values of N . Laplace’s Spherical Harmonic Functions, like the

Legendre Polynomials on which they are based, have two index values, one for order and one

for degree. This causes a quadratic growth in basis size when truncated to a specific N , as

opposed to PN ’s linear growth.

Due to SHEFN ’s expanded basis, it has been able to reconstruct scattered radiance, though

even at higher orders of expansion (N ≥ 8), this has required the use of sequential order

smoothing, a technique in which solutions from SHEFN and SHEFN+1 are both calculated
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Figure 1.1: Illustration of Spherical Harmonics from order 0 (top row) to order 4 (bottom
row), taken from [52]

and averaged together. Furthermore, it will be shown in this dissertation that large errors

in angularly resolved radiance can occur in media composed of layers which are more thin

than their own mean free path, in media where the rate of absorption approaches that of

scattering and when light sources have spatially modulated components. Despite these,

it remains a best practice in terms of spectral, deterministic solutions to the Radiative

Transport Equation.

A method capable of delivering equal or better accuracy to SHEFN without post process-

ing techniques such as sequential order smoothing and which is more robust to parameter

selection is therefore highly desirable.

1.4 Optical Imaging

While mathematical models of light and other forms of radiant energy have many applica-

tions, the focus of this dissertation will be on biophotonics and optical imaging. Many optical
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Figure 1.2: Length scales of light with corresponding imaging modalities and physiological
phenomena, adapted from [67]

imaging modalities rely on the recovery of various optical properties[58, 71] of a biological

medium and the relation of those properties to to biological function[31].

There are multiple imaging modalities with their own strengths and weaknesses and which

focus on imaging at different length scales. Imaging at the micron scale begins with the

various forms of microscopy available, as well as optical coherence tomography[30] and laser

speckle imaging[17]. At this scale, wave models of light are often the most useful, leading

to a dependence on Maxwell’s equations. As length scales grow past ten times the average

distance between scattering events, however, phenomena such as diffraction and interference

which are captured by Maxwell’s Equations but lost in the RTE have effects that become

relatively small. Therefore, modalities operating at these scales which do not utilize these

phenomena, such as spatial frequency domain imaging/spectroscopy become more useful,

and the utility of models based around the RTE increases[46]. As length scales grow into

and past the millimeter range, models based around light as a diffusive process[68], such

as the standard diffusion approximation are of greater benefit. It should be noted that this

conception is useful at wider length scales because the scattering coefficient of most biological

tissue for light in the visible spectrum may be up to several orders of magnitude greater than

the absorption coefficient corresponding to the same case.
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Figure 1.3: Scattering and Absorption Spectra of Common Chromophores in Human Tissue,
adapted from [69]

1.4.1 Optical Properties and Physiological Information

The physiological significance of optical properties of tissue is perhaps most evident in the

scattering and absorption spectra of that tissue[31]. Both of these values vary with the

wavelength of light being considered, which means that µs and µa are properly thought of

as functions of wavelength. They are commonly referred to as the scattering and absorption

spectra.

While both scattering and absorption are functions of wavelength, the physics behind each

phenomenon is quite different. Scattering is based on the size and shape of scattering particles

in a medium. Its spectrum tends to follow either a single exponential decay or a sum of them,

and depends on the concentration of scatterers and the distribution of their sizes and the

fractal, or Hausdorff, dimensions of each scatterer. Common scatterers in biological media

include mitochondria, melanocytes, lysosomes, nuclei and collagen. Some of these are roughly

spherical spherical in shape, which simplified scattering phase functions. Since light modeled
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Figure 1.4: Scattering phase function for poly dispersed spherical scatterers with radius
given by log normal distribution, mean 0.075µm, standard deviation 0.5µm, refractive index
of scatterers = 1.5, medium = 1.3, created using [55]

as a planar wave must impact a sphere’s surface at a normal angle, scattering of such a wave

has no bias in any azimuthal direction. For those particles which are not spherical, phase

functions based on The scattering phase function p of a given medium is also a function of

wavelength and is derived from the size, shape and relative concentrations of these scattering

particles[16].

A medium’s absorption spectrum, on the other hand, is defined by its chemical composition.

Chemicals which strongly absorb light at different wavelengths are known as chromophores,

and each will have its own absorption spectrum, which may be highly structured[31]. A

medium with multiple chromophores will have an overall absorption spectrum given by a

linear combination of the spectra of each contained chromophore[70], with moments deter-

mined by their concentrations. The chromophores which most define absorption for light in

the visible and near infrared spectra (roughly 400–1000nm wavelength) in biological tissue

tend to be water, bulk lipids, hemoglobin and deoxyhemoglobin[31]. The functions of these

chemicals imply that knowledge of their relative concentrations in tissue encode important

physiological information, such as blood flow and oxygen saturation. It is for this reason
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that the recovery of the absorption spectrum in particular is an objective of many types

of optical imaging[38]. In addition, the highly structured nature of these spectra informs

the choices of wavelengths used in various imaging modalities. When attempting to recover

relative chromophore concentrations, it is necessary to choose wavelengths such that covari-

ance of impact on absorption between each chromophore is minimized, as well as enough

wavelengths to ensure a well defined problem in terms of dimensionality.

Several things are important to note when considering mathematical models of radiative

transport in biological media. First, while optical properties of a given media may vary

with respect to wavelength, mathematical approaches to radiative transport may be solved

either one wavelength at a time, or many wavelengths in parallel. Therefore, RTE solutions

generally do not need to explicitly consider wavelength but rather treat each spectrum and

the scattering phase function as fixed. Second, while both scattering and absorption spectra

encode different biological information, one cannot be considered in the absence of the other

since each contributes strongly to the RTE.

1.4.2 Spatial Frequency Domain Imaging

One optical imaging modality in particular is strongly suited to the models which will be

discussed in this dissertation: Spatial Frequency Domain Imaging, or SFDI[13]. This modal-

ity functions by projecting different wavelengths of light with various spatially modulated

patterns onto a tissue and recording reflectance at different points of the tissue’s surface as

functions of both wavelength and spatial frequency of modulation. This method may be

referred to as Spatial Frequency Domain Spectroscopy, or SFDS, when a wide variety of

wavelengths are considered.

Biological tissue acts as a low pass filter with respect to spatial frequency[50]. This is due

to the phenomenon by which the Standard Diffusion Approximation functions: As light
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propagates in turbid media, spatial and angular distributions of radiance become smoother

and less featured. Therefore, this reflectance will be more strongly influenced by shallow

tissue at higher spatial frequencies, while it will be more strongly influenced by deeper tissue

at lower spatial frequencies. Imaging depth varies based upon the type of tissue examined,

but may function on length scales up to centimeters. In theory, this allows for depth resolved

imaging of optical properties in biological tissue. In practice, however, detailed imaging as a

function of depth is difficult to perform. This is partly due to a lack of mathematical models

of the RTE which can quickly provide high fidelity results.

It should be noted that while detailed depth resolved imaging using SFDI/S has proven

difficult[29], methods which treat biological tissue as having homogeneous optical properties

with respect to depth have shown utility in diagnosing various maladies. The detection of

pressure ulcers[73] and breast cancer[37], as well as the categorization of burn wounds[54]

have all been accomplished through SFDI/S. Depth resolved optical property recovery using

SFDI/S would enhance these applications and allow others to be developed.

1.5 Goals

Both deterministic and stochastic solutions to the RTE have been shown to be of utility in

various optical imaging modalities. However, no model currently exists which can provide

a high degree of accuracy for radiance in layered media on a fast time scale over a wide

variety of optical properties and spatial frequencies. Monte Carlo simulations take hours

to days, or even longer, to return approximations with high degrees of confidence. This is

often mitigated through the use of look up tables[77] by which inversions can be performed,

but these tables are limited in terms of dimensionality. While these tables provide the

theoretical best performance in terms of computation, a highly complex medium composed

of many layers of biological tissue has absorption and scattering spectra, as well as scattering
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phase function, to consider for each layer. The expense of creating and storing such a table

increase geometrically with the number of layers. In practice, these tables often contain

simplifications such as the assumption that all layers of a medium share the same scattering

spectrum and phase functions.

Conversely, the faster deterministic methods have been unable to approach the accuracy

of Monte Carlo based ones in terms of radiance and have had particular difficulty in lay-

ered media with layer thicknesses significantly smaller than l∗. Therefore, a model which

can provide accuracy approaching that of Monte Carlo methods at speeds on the order of

magnitude of commonly used deterministic ones would be highly valuable. It would enable

the use of detailed inversion methods in complex tissues without the need for many of the

simplifying assumptions in common use. In particular, it would be a key component for the

improvement of depth resolved SFDI/S methods, especially for the eventual development of

SFD tomography methods.

The goal of this dissertation is to demonstrate a new deterministic, spectral solution method

for the RTE based around a double spherical harmonic basis that fulfills these requirements.

A rigorous mathematical justification for this method will be provided, as well as simulation

results showing its ability to accurately and efficiently reconstruct radiance as a function of

depth and angle in homogeneous and layered medium. Finally, the utility of this model in

the recovery of optical properties from layered media using SFDS data will be demonstrated.
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Chapter 2

Double SHEFN In Homogeneous

Media

2.1 Introduction

In this chapter, I lay out a new approach to solving the RTE using on a double spherical

harmonic functional basis. In recognition of its roots in Gardner’s SHEFN approach men-

tioned in §1.3.2, which utilizes a single spherical harmonic expansion to approximate the

entire angular distribution of the radiance, this method is named the Double Spherical Har-

monic Expansion with Fourier coefficients to order N , or DSHEFN . This method expresses

radiance using a “compressed” spherical harmonic function basis to decouple the northern

and southern hemispheres of functions in its span, representing each as separate linear com-

binations of these functions. By allowing for the radiance to be discontinuous at the equator,

this approach is capable of handling, this method is capable of handling discontinuities in

angular radiance at any medium boundary where a refractive index mismatch exists. The

decoupled nature of the chosen basis also allows easier computation of boundary conditions
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governed by internal reflection. It also allows accurate reconstruction of internal reflection

due to the same mismatch, since the effect is limited to a single hemisphere.

The solution detailed in this chapter is the simplest version of DSHEFN , because it assumes a

medium with homogeneous optical properties. A version which deals with multiple disparate,

homogeneous layers is given in Chapter 4.

2.2 The Radiative Transport Equation

As in the introduction, I restrict consideration to the temporal steady state form of the RTE,

given in equation (1.1). This assumption is reasonable for many optical imaging modalities

since this state is reached so quickly relative to light source intensity changes and image

acquisition time. This version of the RTE is as follows:

∇ · ΩL (Ω, r, t) = −µtL (Ω, r, t) +
∫

4π
L (Ω′, r, t) p (Ω′ · Ω) dΩ′ + q (Ω, r, t) (2.1)

Here, r is a spatial vector consisting of x, y and z coordinates, and Ω is an angular vector as

described. Therefore, radiant energy will be considered to be a function of five dimensions:

three spatial and two angular. Radiance will be considered vary smoothly in both angle

and space inside the medium. Scattering will be considered to be a continuous process,

rather than happening at discrete intervals. This is different than Monte Carlo based RTE

solutions, which consider photons or packets of photons that have discrete energy levels and

scatter at discrete locations. Light in the medium considered has two components: LC ,

which represents unscattered light from a source, moving in direction Ω0, and LS, which

represents light that has been scattered at least once:
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L (r,Ω) = LC (r,Ω) + LS (r,Ω) (2.2)

For a medium, I will consider a semi-infinte slab in a three dimensional space. This slab

extends infinitely in the x and y directions as well as positive z direction only. This creates

a boundary at the plane z = 0. This medium’s optical properties, detailed in chapter 1, are

considered to be homogeneous with respect to space. While it may seem an oversimplification

to consider a homogeneous medium, there have been meaningful medical diagnostics using

such assumptions[14][56].

For simplicity, I consider a planar light source beginning directly inside the medium, traveling

in a direction Ω0 = (θ0, µ0). This is a spherical angle consisting of a polar component and an

azimuthal one. I do this purely for ease of explanation; an external light source undergoes a

loss due to specular reflectance and a change of direction in accordance with Snell’s law, both

of which are well understood and easily accounted for. Spatial variations in this planar source

may be considered in Fourier space. This is not only an easy example to consider, but many

imaging applications use plane waves with such spatial variations[29][14] or more complex

terms such as Gaussian beams and point sources[21], both of which may be understood in

Fourier space.

I consider that the total amount of energy put into the system in the form of collimated light

is 1. Conservation of energy states that all energy in LC is eventually directly absorbed or

scattered. Since loss due to absorption and scattering is a continuous process, this gives the

following expression for collimated light[21]:

LC (r,Ω) = µt exp
(
−µtz

cos(θ0)

)
δΩ0 (2.3)

Here, δ is the Dirac Delta Function. The decay comes from a basic differential equation

governing constant fractional loss and the constant µt comes from normalization along a

path integral starting at the origin and moving infinitely far in the Ω0 direction.
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All radiant energy in LC which is not lost due to absorption will eventually be transferred to

LS. The energy in LS is either absorbed or escapes the medium. The RTE as stated in (2.1)

governs the behavior of LS and dictates that in any direction, the instantaneous change with

respect to space of LS is given by the loss due to attenuation plus the gain due to LS being

scattered plus any gain due to LC being scattered, which is commonly represented as Q(r,Ω).

The statement of the RTE in (2.1) bears repetition in light of this physical explanation:

∇ · ΩLS (r,Ω) = −µtLS (r,Ω) + µs
∫

4π
LS (r,Ω′) p(Ω′ · Ω)dΩ′ +Q(r,Ω) (2.4)

The following expression for Q is also obtained using the definition of the Dirac Delta and

the same integral operator used in (2.4):

Q(r,Ω) = µsp (Ω · Ω0) exp
(
−µtz

cos(θ0)

)
(2.5)

To fully describe radiative transport in the medium described, one must find LS such that

it provides a solution to (2.4), along with an appropriate boundary condition (this is easier

said than done!) To understand such a solution, it is useful to choose a functional basis

which handles the complexity of (2.4) as easily as possible.

2.3 Double Spherical Harmonic Basis

The SHEFN method developed by Gardner relies on the orthonormality of Laplace’s Spher-

ical Harmonic Functions (hereinafter referred to simply as spherical harmonic functions), as

well as recurrence relations rising from their structure, to simplify the integral-differential

equation of (2.4) into a system of ordinary differential equations. These functions provide

a convenient orthonormal basis for the subspace of smooth functions in L2(S2). Unfor-

tunately, as with all smooth functional bases, difficulties may arise when attempting to
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project any functions with discontinuities or non-differentiable points onto this basis. Fur-

ther compounding this issue is the fact that both of these must accomodate a refractive index

mismatch at the medium boundary, which is commonly encountered in biophotonic imaging

applications[31]. To deal with potential discontinuities at the equator of the unit sphere,

DSHEFN follows a similar strategy to that used in SHEFN , but uses a basis composed of

two sets of functions, both based on the spherical harmonics. Its functions have different

constants to ensure that orthonormality is not lost and use a “compression” of the polar

angle. The so called double spherical harmonic functions used are defined as:

Yl,m(Ω) = Kl,mPl,m [cos(θ)] exp(imφ) (2.6)

Here l is the order of the function and m is the degree, which ranges from −l to l. Kl,m

is a constant to ensure orthonormality and Pl,m is the Associated Legendre Polynomial of

order m and degree l. When constructing double spherical harmonic functions for use in

the northern hemisphere the argument for Pl,m becomes 2 cos(θ) − 1 and the domain for

θ becomes π to π/2. This coordinate change will not interfere with the orthogonality of

the spherical harmonic functions, but does break their normalization. To correct for this, a

factor of
√

2 is included. This gives the following functions:

Ỹ +
l,m(Ω) =

√
2Kl,mPl,m [2 cos(θ)− 1] exp(imφ) (2.7)

When constructing these functions for use in the southern hemisphere, the same adjustment

to the constant term is used but the direction of θ is reversed. θ̃ = π − θ is used instead,

which does introduce a change of coordinates with a determinant of -1 between the two sets

of functions. This gives the following:

Ỹ −l,m(Ω) =
√

2Kl,mPl,m

(
2 cos(θ̃)− 1

)
exp(imφ) (2.8)
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Taken together, orthonormality is preserved in each hemisphere and coupling between the

hemispheres is possible, though the angular coordinate change must be kept in mind. This

allows scattered radiance to be described in the following manner:

LS (r,Ω) =
∑

l,m

[
χθ≥0ψ

+
l,m (r) Ỹ +

l,m (Ω) + χθ<0ψ
−
l,m (r) Ỹ −l,m (Ω)

]
(2.9)

Here, χ is the characteristic (or indicator) function and ψ±l,m are unknown functions of po-

sition serving as moments of the double spherical harmonic functions. The solution to the

RTE relies upon finding these moments; once they are known, scattered radiance is well

described.

2.4 Restating the RTE

The RTE is made up of four components: A differential operator, an integral operator, a

decay term and a source gain term. I will project each of these terms onto my proposed

orthonormal basis and then combine them. My overall goal is to create elements of, and op-

erators on, a finite dimensional vector space corresponding to the double spherical harmonic

functions. These are stated in matrix form and solved as a system of ODEs. I therefore

simplify and rephrase each section to focus on a specific double spherical harmonic function,

defined on the northern hemisphere. This shows the interconnections between the eventual

ODE system produced. The same process follows without loss of generality on the southern

hemisphere.

The differential operator is a directional derivative in angular coordinates. It can be repre-

sented as sum of partial derivatives in Cartesian space:

∇ · Ω = sin(θ) cos(φ) ∂
∂x

+ sin(θ) sin(φ) ∂
∂y

+ cos(θ) ∂
∂z

(2.10)
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The operator is then applied to the function for scattered radiance, described in (2.9):

∇ · ΩLs (r,Ω) = sin(θ) cos(φ) ∂
∂x
Ls (r,Ω) +

sin(θ) sin(φ) ∂
∂y
Ls (r,Ω) + cos(θ) ∂

∂z
Ls (r,Ω) (2.11)

Each component is then broken down:

sin(θ) cos(φ)
[
∂
∂x
ψ+
l,m(r)

]
Ỹ ±l,m(Ω) =

√
2Kl,m [sin(θ)Pl,m(2 cos(θ)∓ 1)] [cos(φ) exp(imφ)]

sin(θ) sin(φ)
[
∂
∂y
ψ+
l,m(r)

]
Ỹ ±l,m(Ω) =

√
2Kl,m [sin(θ)Pl,m(2 cos(θ)∓ 1)] [sin(φ) exp(imφ)]

cos(θ)
[
∂
∂z
ψ+
l,m(r)

]
Ỹ ±l,m(Ω) =

√
2Kl,m [sin(θ)Pl,m(2 cos(θ)∓ 1)] [exp(imφ)]

(2.12)

The bracketed portions of the right half of (2.12) provide recurrence relations which spring

from the properties of the Associated Legendre Polynomials and Euler’s Identity. These

relations have weights given by the L2 inner product on the hemisphere:

A±x (l,m→ l′,m′) =
〈
Ỹ ±l,m, sin(θ) cos(φ)Ỹ ±l′,m′

〉
A±y (l,m→ l′,m′) =

〈
Ỹ ±l,m, sin(θ) sin(φ)Ỹ ±l′,m′

〉
A±z (l,m→ l′,m′) =

〈
Ỹ ±l,m, cos(θ)Ỹ ±l′,m′

〉 (2.13)

These inner products are easily calculated by quadrature on the hemisphere in a similar

method to Atkinson’s Gauss-Legendre quadrature[3]. In practice, these only have non-zero

values when l′ = l ± 1 and m′ = m± 1. This gives the following:

sin(θ) cos(φ) ∂
∂x
ψ±l,m(r)Ỹ ±l,m(Ω) = ∂

∂x
ψ+
l,m(r)

∑
A±x (l,m→ l ± 1,m± 1)Ỹ ±l±1,m±1(Ω)

sin(θ) sin(φ) ∂
∂y
ψ±l,m(r)Ỹ ±l,m(Ω) = ∂

∂y
ψ+
l,m(r)

∑
A±y (l,m→ l ± 1,m± 1)Ỹ ±l±1,m±1(Ω)

cos(θ) ∂
∂z
ψ±l,m(r)Ỹ ±l,m(Ω) = ∂

∂z
ψ+
l,m(r)

∑
A±z (l,m→ l ± 1,m± 1)Ỹ ±l±1,m±1(Ω)

(2.14)
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The relations defined by the y term of the directional derivative are quite similar, while those

of the z term vary only with respect to l, since there is no function of φ involved. They still

have nonzero values only for l′ = l±1. This gives a restatement of the directional derivative,

when applied to a single moment of scattered radiance, as:

∇ · Ωψ±l,m(r)Ỹ ±l,m(Ω) =
[
∂
∂x
ψ±l,m(r)

] [∑
A±x (l,m→ l ± 1,m± 1)Ỹ ±l±1,m±1(Ω)

]
+

[
∂
∂y
ψ±l,m(r)

] [∑
A±y (l,m→ l ± 1,m± 1)Ỹ ±l±1,m±1(Ω)

]
+

[
∂
∂z
ψ±l,m(r)

] [∑
A+
x (l,m→ l ± 1,m)Ỹ ±l±1,m(Ω)

]
(2.15)

A restatement of the right hand side of (2.15), focusing on a specific double spherical har-

monic Ỹ ±l,m gives:

[∑
A±x (l ± 1,m± 1→ l,m) ∂

∂x
ψ±l±1,m±1(r) +

∑
A±y (l ± 1,m± 1→ l,m) ∂

∂y
ψ±l±1,m±1(r)

∑
A±z (l ± 1,m→ l,m) ∂

∂z
ψ+
l±1,m(r)

]
Ỹ ±l,m(Ω) (2.16)

One important point to note is that due to the parity of sine and cosine as well as the

coordinate change from northern to southern hemispheres, A+
x = A−x and A+

y = A−y for any

choice of l and m, while A+
z = −A−z . This is because a coordinate change alone would imply

multiplication by its previously mentioned determinant of -1, so a further multiplication by

an odd function (sine) and reflection of θ over 0 would cancel out this change in sign, while

further multiplication by an even function (cosine) with the same reflection preserves it.

Next, I consider the integral operator, which represents the redistribution of scattered radi-

ance. This requires the expansion of the scattering phase function, p (Ω′ · Ω), in a spherical

harmonic basis. It is tempting to simply apply the double spherical harmonic basis immedi-

ately, but commonly used methods such as delta-Eddington approximation for radiative flux
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transfer[32] or the use of parameters relating higher order moments of anisotropy[5][6] rely

on the use of single spherical harmonic functions or Associated Legendre Polynomials. To

allow for their usage, but maintain the advantages provided by a double spherical harmonic

basis, I first expand the scattering phase function in Legendre Polynomials thusly:

p (Ω′ · Ω) =
∑

l(2l + 1)glPl (Ω
′ · Ω) (2.17)

Here, gl is the inner product of p and Pl, while (2l + 1) is a normalizing constant. This

allows for operations such as delta-Eddington, but since Ω′ ·Ω is a one dimensional number,

it does not allow for conversion to single or double spherical harmonics. This is solved with

the Spherical Harmonic Addition Theorem[2], which states that:

Pl(µ) =
∑l

m=−l
4π

2l+1
Y ∗l,m(Ω′)Yl,m(Ω) (2.18)

Substitution into (2.15) gives:

p(Ω′ · Ω) =
∑

l(2l + 1)gl
∑l

m=−l 4πY
∗
l,m(Ω′)Yl,m(Ω) (2.19)

The asterisk here denotes complex conjugation. Equation (2.19) gives p in terms of single

spherical harmonic functions. Each single spherical harmonic function has an expansion

in double spherical harmonics, performed in the same manner as those detailed in (2.13).

However, unlike in (2.19), the weights of these conversions are limited in terms of degree but

not order, since they come from the definitions of the Associated Legendre Polynomials, as

well as a multiple of
√

2, which stems from the compression of the polar angle, as in (2.7). I

denote these weights as c±(l,m→ l′,m) and they are derived using inner products as before:

c±(l,m→ l′,m) =
〈
Yl,m, Ỹ

±
l′,m

〉
(2.20)
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Therefore, it can be said that:

Yl,m =
∑

l′ c
±(l,m→ l′,m)Ỹ ±l′,m (2.21)

The same can be said of conjugate spherical harmonic functions. Substituting (2.21) into

(2.18) for both regular and conjugate spherical harmonics gives:

p (Ω′ · Ω) =
∑

l gl
∑l

m=−l 4π[∑
l′ c
±(l,m→ l′,m)Ỹ ±,∗l′,m(Ω′)

] [∑
l′ c
±(l,m→ l′,m)Ỹ ±l′,m(Ω)

]
(2.22)

Putting (2.21) into the integral operator of (2.4) and once again restricting LS to a single

l,m function gives the following:

µs
∫

4π
p(Ω′ · Ω)dΩ′ =

µs
∫

4π

∑
l gl
∑l

m=−l 4π
[∑

l′ c
±(l,m→ l′,m)Ỹ ±,∗l′,m(Ω′)

]
[∑

l′ c
±(l,m→ l′,m)Ỹ ±l′,m(Ω)

]
dΩ′ (2.23)

Since this integration occurs with respect to Ω′ only, the double spherical harmonic functions

with Ω′ as arguments need stay inside the integral. Therefore, (2.23) may be restated as:

µs
∫

4π
p(Ω′ · Ω)dΩ′ =

µs
∑

l gl
∑l

m=−l 4π
[∑

l′ c
±(l,m→ l′,m)

∫
4π
Ỹ +
l,m(Ω′)Ỹ ±,∗l′,m(Ω′)dΩ′

]
[∑

l′ c
±(l,m→ l′,m)Ỹ ±l′,m(Ω)

]
(2.24)

From here, it is useful to note that the integral term involved is the L2 inner product on half of

the hemisphere. Again, the coordinate change between hemispheres becomes relevant. This
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inner product applied to two functions constructed for the same hemispheres is orthonormal,

but when the two functions are defined on opposite hemispheres this negative determinant of

this change must apply. The inner product then simplifies to −δl,l′δm,m′ , taking on a sort of

negative orthonormality. Taking this into account and restating (2.24) to focus on a specific

double spherical harmonic function as in (2.16) gives:

µs
∫

4π
p(Ω′ · Ω)dΩ′ =

µs
∑

l′ gl′4π [
∑

l′ c
±(l′,m→ l,m) (±δl,l′)]

[
∑

l′ c
+(l′,m→ l,m)] Ỹ +

l,m(Ω) (2.25)

These statements are becoming more difficult to parse, but they fortunately have a more

elegant statement when expressed in matrix formulation. I will show this when reconstructing

the overall RTE in §2.5.

Fortunately, the decay term and source vector are much more easily dealt with. The decay

term, in particular, when applied to a specific function barely needs mention; it is a simple

multiplication by −µt. The source gain term behaves in a similar fashion to the integral

operator. It is first expanded in single Legendre Polynomials. From here, a delta–Eddington

rescaling may be performed[32]. This allows for better reconstruction of collimated radiance

and has been shown[21] [10] to have positive effects in the reconstruction of fluence as a

function of depth in various RTE solutions. Briefly, this rescaling keeps the same overall

anisotropy of the scattering phase function by creating new values for the Legendre Poly-

nomial moments of the scattering phase function. It does so by constructing a new phase

function equal to a linear combination of the old one and a Dirac Delta in the direction

of the collimated source. The weight of the Delta Distribution, denoted fδ is equal to the

moment that the Legendre Polynomial of order N + 1 would have in the original expansion,

had it been included. This gives the following representation:
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pδ−Edd (cos(θ)) = fδδcos(θ),cos(θ0) + (1− fδ) p (cos(θ)) (2.26)

This new phase function pδ−Edd is used in lieu of p in calculating Q. Its Legendre Polynomial

moments are given by:

g?l = gl−fδ
1−fδ

(2.27)

If, as is the case in the simulations presented in Chapters 3 and 4, the user does not wish to

perform this rescaling, then simply changing f − δ to 0 will eliminate its effect.

The reason behind the decision not to include this approximation in Chapters 3 and 4 bears

some mention. As it can be seen in Figs 2.1–2, error for scattered radiance is not always

improved by the use of this approximation. These figures show radiance as a function of

depth and cosine(θ) as well as relative error thereof for a plane wave source normally incident

on a 2 layer medium. Both layers have an l∗ of 1. The top layer has a thickness of 0.1l∗

and a ratio of µ′s/µa = 3. The bottom layer is semi–infinite with a ratio of µ′s/µa = 100.

DSHEF5 is shown both with and without this approximation. It is clear from examination

that while error decays with respect to depth when not using δ-Eddington, it does when

the approximation is adopted. However, all expansion orders of single SHEFN shown in this

dissertation do use δ–Eddington, since it has been well observed[21] that it is beneficial to

this method.

Once the source gain term is represented in Legendre Polynomials using these moments, it is

converted to single spherical harmonics using the addition theorem, then to double spherical

harmonics using conversion weights as in (2.21). Substituting (2.21) and (2.26) together with

(2.5), as well as applying the Spherical Harmonic Addition Theorem and then restricting to

a specific double spherical harmonic function gives a source gain term of:

Q(z) = 4πµsC exp
(
−µ∗t z
µ0

)
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Figure 2.1: Radiance as a function of depth and cos(θ) for a two layered medium. Top layer
is 0.1l∗ thick and has µ′s/µa = 3, bottom layer is semi–infinite and has µ′s/µa = 100. Top
left shows DSHEF5 with δ–Eddington, bottom left shows DSHEF5 without, both right hand
figures show MC results for gold standard comparison.

Figure 2.2: Relative error vs MC gold standard comparison for DSHEF5 in a two layer
medium with and without δ–Eddington, as a function of depth and cos(θ). Top left shows
error for DSHEF5 with the approximation, bottom left without. Both right heatmaps show
3σ/MC to indicate confidence in MC prediction.
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∑
l′ g

?
l′4π [

∑
l′ c
±(l′,m→ l,m) (±δl,l′)] [

∑
l′ c
±(l′,m→ l,m)] Ỹ ±l,m(Ω) (2.28)

Here, µ∗t = µa +µs∗ and µ∗s = (1− fδ)µs. Considering (2.28) if fδ is set to zero instead gives

the following statement for the source:

Q(z) = 4πµsC exp
(
µt
µ0
z
)

∑
l′ gl′4π [

∑
l′ c
±(l′,m→ l,m) (±δl,l′)] [

∑
l′ c
±(l′,m→ l,m)] Ỹ ±l,m(Ω) (2.29)

I denote the coefficient of Ỹ ±l,m(Ω) as q±l,m for brevity. From here, it should be noted that I

have placed every single term of the RTE as a coefficient of Ỹ ±l,m. Therefore, the actual double

spherical harmonic functions may be cancelled out, leaving a system of partial differential

equations. The system is more easily stated with the introduction of matrices Ax, Ay and Az

(which were derived from the directional derivative term) to capture the recurrence relations

introduced by each partial derivative and S to capture those introduced by the integral

operator. I also introduce the vectors Q and Ψ to represent the terms of the source and

scattered radiance, respectively. These vectors are given the following form:

Ψ(r) =



ψ+
0,0(r)

ψ+
1,−1(r)

ψ+
1,0(r)

...

ψ+
N,N(r)

ψ−0,0(r)

ψ−1,−1(r)

ψ−1,0(r)

...

ψ−N,N(r)



(2.30)
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This gives the following system:

Ax
∂
∂x

Ψ(r) + Ay
∂
∂y

Ψ(r) + Az
∂
∂z

Ψ(r) = −µtΨ(r) + SΨ(r) +Q(r) (2.31)

Here, I recall the assumption of medium homogeneity in the x and y directions. This

allows me to perform Fourier Transforms in the those directions without concern for optical

properties, which eliminates those partial derivatives and allows (2.31) to be restated as a

traditional system of ordinary differential equations:

Az
d
dz

Ψ̃ (z, kx, ky) = −2πkxAxΨ̃ (z, kx, ky)− 2πkyAyΨ̃ (z, kx, ky)

−µtΨ̃ (z, kx, ky) + SΨ̃ (z, kx, ky) + Q̃ (z, kx, ky) (2.32)

Here, it should be noted that the both the mathematical construction of S and the fact

that radiance is scattered in relative, rather than absolute, frames of reference, give it an

interesting structure. Note that the conversion factors used in (2.32) can be used to make

the following matrix to convert vectors from single to double spherical harmonic bases:

C =

 C+

C−

 (2.33)

Here C+ is responsible for contributions to the northern double spherical harmonic function

while C− is responsible for those to the southern. It is interesting to note that the only

differences between corresponding entries of C+ and C− are sign; the coordinate change

from (2.7) to (2.8) along with the fact that Pl,m is even or odd exactly when l −m is even

or odd is responsible for this.

C allows for the projection of a vector representing single spherical harmonic moments into

the space spanned by the double spherical harmonics. As can be inferred from (2.33), the
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construction of S is performed by taking a diagonal matrix whose non-zero entries are the

single spherical moments of the scattering phase function p, (obtained in (2.30)) hereafter

denoted D, then left and right multiplying by C and CT , respectively. This gives the

following:

S = CDCT =

 S1 S2

S2 S1

 (2.33)

When deconstructing this matrix, it should be seen that S1 = C+DC+,T = C−DC−,T and

S2 = C+DC−,T = C−DC+,T . These equalities are borne out by the similarities between

C+ and C− mentioned above. This makes sense phenomenologically; it means that radiance

scattered within the southern hemisphere is treated exactly as radiance scattered within the

northern hemisphere. It also means that radiance being scattered from the northern to the

southern hemisphere is treated exactly as radiance scattered from the southern hemisphere

to the northern hemisphere.

In any case, further simplification of (2.32) may be performed. A case of particular interest

is spatial frequency domain imaging, planar sources with sinusoidal intensity modulations

are utilized. Moreover, any source of finite lateral extent can be expressed in terms of a

sum of simusoids of harmonic frequencies of x and y. Therefore, it is often prudent to

fix kx and ky. I will consider only such fixed wave numbers, and remove those numbers

from the arguments for Ψ̃ and Q̃ for the sake of brevity. I also introduce another matrix

B = −2πkxAx − 2πkyAy − µtI + P and rename Az to simply A. This means that (2.32) is

equivalent to:

AΨ̃′(z) +BΨ̃(z) = Q̃(z) (2.35)

It is important to note here that A will necessarily be nonsingular due to its diagonal

component, and that B is not necessarily nonsingular, but in practice will commonly be
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so, because B is a nondiagonal matrix added to a constant times the identity matrix. This

formulation provides an RTE that is more amenable to solution.

2.5 Solving the RTE

Now that (2.4) is restated as (2.35), all that remains is to find a solution and apply an

appropriate boundary condition (which is, of course, much easier said than done.) The

matrix form of the RTE hints that Ψ̃ has two components: a particular solution and a

homogeneous solution. To understand the particular solution, recall from (2.29) that Q̃

decays exponentially in z with a rate of µt/µ0. I therefore use an ansatz featuring that

decay. This is done in the same manner in the SHEFN approach introduced by Gardner[21].

Simple calculus and linear algebra shows that this solution, which I call Ψ̃p, is the following:

Ψ̃p(z) =
(
− µt
µ0
A+B

)−1

Q̃(z) (2.36)

The homogeneous solution is slightly more complicated to obtain. Because of the structure

of the homogeneous problem AΨ̃′(z) = −B ˜Ψ(z), I use an ansatz that is a linear combination

of exponential decays with unknown rates. Again, this is done similarly as in the SHEFN

approach[21]. This gives a function of the form Ψ̃h(z) =
∑

iGi exp
(
z
λi

)
. Here Gi are

unknown vectors. Substituting this into the homogeneous problem, restricting to a specific

index i and cancelling out the decay on each side gives AGi = −λiBGi, a generalized

eigenvalue problem. Therefore, (λi, Gi) are simply the eigenpairs of this problem. The only

thing which remains is to calculate their specific weights, which I denote wi. This gives the

homogeneous solution the following form:

Ψ̃h =
∑

iwiGi exp
(
z
λi

)
(2.37)
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Here it must be noted that due to conservation of energy, it is required that as z approaches

∞, radiant energy must approach zero. Therefore, only terms which actually decay, which

are those involving negative eigenvectors, will have nonzero weights.

Equation (2.37) may be restated in matrix form, using G as a columnar matrix of eigenvectors

Gi, w as a vector and E as a diagonal matrix of the decay terms:

Ψ̃h = GwE (2.38)

Because of the aforementioned nonsingularity of both matrices involved in the generalized

eigenvalue problem, the dimension of w will be 2(N + 1)2. All that remains is now to solve

for w, for which I use two boundary conditions. The first is that since radiance is expected to

decay to zero as depth approaches infinity, all wi corresponding to positive λi must be zero.

The second is known as the Marshak Boundary Condition. It states that at the boundary of

a medium featuring a refractive index mismatch, the only scattered radiance directed into the

medium is that which was originally directed out of the medium and internally reflected[11].

This provides a coupling between the radiance in the forward and backward hemispheres as

follows:

∫
θ<π

2
LS(z = 0,Ω)Ỹ +,∗

Λ,M(Ω)dΩ =
∫
θ>π

2
LS(z = 0,Ω)γF (− cos(θ))Ỹ −,∗Λ,M(Ω)dΩ (2.39)

Here, γF (− cos(θ)) is Fresnel’s law for internal reflection and the pair (Λ,M) is simply

the index of any specific double spherical harmonic, used along with integration to make

meaningful connections between components of LS. Due the the orthonormality of the

double spherical harmonics, the left hand side simply reduces to Ψ̃(0), while the right can

be replaced by a matrix R whose entries correspond to the integrals of the right hand side,

with the appropriate ψ̃l,m(0) moments factored out.

The internal reflection is given as follows for µ = cos(θ) and a refractive index n:
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γF (µ) =

∣∣∣n(√1−n2(1−µ2)−µ
)∣∣∣

2
∣∣∣n(√1−n2(1−µ2)+µ

)∣∣∣ +

∣∣∣nµ−√1−n2(1−µ2)
∣∣∣

2
∣∣∣nµ+
√

1−n2(1−µ2)
∣∣∣ (2.40)

This gives the following statement of a boundary condition:

[
I −R

]
Ψ̃(0) = 0 (2.41)

For the solution I am detailing, this means that Ψ̃(0) = Ψ̃p(0) + Ψ̃h(0) resides in the null

space of

[
I −R

]
. This means that after all of the work shown in this chapter, the ultimate

solution boils down to an intersection between this null space and the vector space defined by

the generalized eigenvalue problem detailed above, when restricted to z = 0. This restriction

means that decay terms of both the particular and homogeneous components of Ψ̃ become

1, and so they need not be listed. This gives the following:

[
I −R

]
Gw =

[
−I R

]
Ψ̃p(0) (2.42)

From here, matrix inversion may be applied to solve for w:

w =

([
I −R

]
G

)−1 [
−I R

]
Ψ̃p(0) (2.43)

If necessary, Inverse Fourier Transforms may also be applied to obtain Ψ from Ψ̃. It is worth

noting that this is not necessary for applications involving imaging in the Spatial Frequency

Domain[29]. Describing scattered radiance or any quantity derived from it becomes a matter

of plugging w and z back into Ψ̃.

The overall structure of the solution as a sum of decay terms deserves mention. This means

that as depth increases, the contributions of all but the slowest decaying term (or terms,

in the case of degenerate eigenvalues or the unlikely one of an eigenvalue equalling µt) to

radiance, and therefore fluence and any other functionals of radiance, becomes negligible.
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This, in turn, means that the vectors corresponding to the slowest rates of decay describe

deep field radiance, if this solution is accurate.
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Chapter 3

MATLab Implementation of

Homogeneous DSHEFN and Results

3.1 Introduction

In this chapter, I will detail the MATLab implementation of the single layer DSHEFN

method. The main file of implementation is dSHEF clean.m, shown in appendix A.2.1, as

well as associated scripts and functions used in support . I will both describe the workings of

the code and provide instructions for its use and modification. While this implementation,

includes support for a two layer medium, this chapter will cover only the case of a medium

composed of a single, semi–infinite, homogeneous layer. To use the code from A.2.1 to sim-

ulate a single layered medium, the simplest approach is to set the same optical properties

for each layer. All files mentioned in this chapter are explicitly listed in appendix A.2.
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3.2 MATLab Implementation of DSHEFN

3.2.1 Initializing Variables and Matrices

The first step in the MATLab implementation of DSHEFN is to initialize several variables

and matrices. The scattering coefficient, absorption coefficient and refractive index of the

medium must be set. Additionally, the anisotropy of the scattering phase function, the

spatial frequencies of the source in both the x and the y directions and initial direction

(before change due to potential refractive index mismatch) and the decision to use the δ–

Eddington approximation for the scattering phase function when applied to the source must

be set as well. Finally and perhaps most important, the order of expansion N must be set.

Most of these initializations are performed in dSHEF clean.m, though several are performed

by other files called by dSHEFinit.m, which must be executed prior to dSHEF cleam.m.

In particular, four matrices are created through the use of dSHEF clean.m. Those matrices

representing the recurrence relations given in equation (2.12) as Ax and Ay are created

through Gaussian quadrature using MATLab’s quadgk function applied to inner products

defined in (2.12). These are created in makeDerivMats.m. The matrix representing the

internal reflection from Fresnel’s Laws used in the Marshak boundary condition, represented

as R in equation (2.38) are created using the same quadrature method applied to equation

(2.37). This is performed in makeDSHEFbdry.m, and required the definition of the refractive

index of the medium, which is defined in dSHEFinit.m. Finally, a matrix for the conversion

of a vector of single spherical harmonic moments into a vector of double spherical harmonic

moments is created using the same method applied to the inner product detailed in equation

(2.19). This is performed in createConvMatHD.m. All of these matrices are created for

orders 1 through 13 by a single execution of dSHEFinit.m. While all of the integrals in

question could be approximated by Atkinson’s Gauss-Legendre quadrature, this method is

only exact when approximating polynomial functions of order less than or equal to N . None
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of these integrals have finite order expansions, and in fact Fresnel’s function for internal

reflectance possesses a non-differentiable point at the critical angle.

However, Gauss-Legendre quadrature[3] may be applied to the creation of the A matrix from

equation (2.33). That is because every entry in this matrix comes from Az as described in

(2.12). When considering spherical harmonics in terms of µ = cos(θ), the right argument

of the inner product defining entries of Az simplifies to a finite polynomial in µ of order

less than or equal to 2N + 1, which then becomes an ideal target for Gauss-Legendre. This

method is performed via matrix multiplication since the weights and angles used in it depend

only on the order of expansion.

3.2.2 Scattering Phase Function

One of the features of this implementation of DSHEFN is the ability to quickly and easily

simulate media with different scatting phase functions. While several commonly used phase

functions are included in the code, the Henyey-Greenstein[28] function is set as the default.

Results will also be shown using this function. Recall that, as detailed in equations (2.21)

through (2.24), any scattering phase function used in this method is expanded in a single

spherical harmonic basis. The first step is decomposing the function into standard Legendre

polynomials. This is again accomplished via Gaussian quadrature and quadgk. Once these

moments are obtained, they are used in conjunction with the Spherical Harmonic Addition

Theorem[2] to expand the scattering phase function in terms of single spherical harmonics.

As in equation (2.24), the expansion of the scattering phase function in terms of single

spherical harmonics must be multiplied on the left and the right by matrices converting

from single spherical harmonics to double, and from double spherical harmonics to single,

respectively. This is accomplished through the use of the conversion matrix created by

createConvMatHD.m and the createIPlus.m function, respectively. It should be noted that
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the conversion from single to double spherical harmonics is not done through the creation

of a separate matrix but rather targeted use of the entries of such a matrix, which are made

by calls to createIPlus.m. The resulting matrix is the one described in equation (2.32).

Once the resulting matrix is created and stored in the variable scatterMat, all components

of the A and B matrices from equation (2.33) have been created. This is done via simple

addition of the components and their coefficients, as in equation (2.30).

The scattering phase function of choice is also represented in terms of double spherical

harmonic functions, again using Gaussian quadrature. Two separate vectors are created,

one for the representation of this function in the upward facing hemisphere, and one for the

downward facing hemisphere. These are not used in the construction of the matrix B, but

rather in the construction of the vector Q described in equation (2.27), which represents the

contribution of a source to scattered radiance.

3.2.3 Generalized Eigenvalue Problems

Once the A and B matrices are obtained, their eigenspaces are calculated via MATLab’s eig

function. Note that in dSHEF clean.m, the arguments for eig are A and −B. This is because

generalized eigenvalue system resulting from equation (2.33) is of the following form:

AΨ̃′(z) = −BΨ̃(z) (3.1)

It should be noted that the call to eig is the single most computationally expensive step

of this implementation of DSHEFN , being responsible for over 90 percent of the overall

compute time. Once this is completed, the vectors and values describing this space are

sorted in terms of eigenvalues from most negative to most positive, and separated to identify

vectors corresponding to both positive and negative eigenvalues as well vector components
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applying to both upward and downward hemispheres.

3.2.4 Source Vector Construction

The vector representing source contribution, Q, defined in equation (2.27), is constructed

at the medium boundary z = 0. It may be constructed in one of two ways, defined by the

sourceToggle flag, which is set by default to 0. The default method, as described in (2.27),

takes the moments of the scattering phase function in a double spherical harmonic basis

and multiplying them by the accompanying conjugate double spherical harmonic functions

evaluated in the direction of the collimated source, defined earlier. The alternate method,

which occurs when the sourceToggle flag is set to 1, has once key difference. In this method, a

source contribution vector is calculated for a single spherical harmonic matrix and multiplied

by the the conversion matrix convMat.

It should be noted that this implementation of DSHEFN can be made to function both

with and without the δ–Eddington approximation of the scattering phase function when

considering the vector representing source contribution. This decision is set by the useFDelta

flag, which is set to 0, disabling the approximation, by default. This decision was made due

to increases in accuracy seen when opting not to use this approximation. When the flag is

set to 0, the coefficient for the approximation, detailed in equation (2.25), is set to 0. In

all other cases, it is adjusted from the spherical harmonic moments for the scattering phase

function in the method described in equation (2.26). Likewise, the extinction coefficient

for the source vector are adjusted by the f delta variable in the manner shown in equation

(2.27). As in the adjustment to the source moments, when this variable is forced to zero,

the extinction coefficient is automatically adjusted.
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3.2.5 Solution Construction

Recall that the solution obtained by DSHEFN is composed of a particular and a homogeneous

component. In each case, regardless of the value chosen for depth in z, each component is

first calculated at the medium boundary z = 0 and then adjusted to the specified depth.

First, the particular solution is obtained exactly as in equation (2.34) for z = 0. This

constriction simply eliminates the decay term of Q described in (2.27).

Second, the Marshak boundary condition is applied to calculate the homogeneous solution.

Recall that in equations (2.39) and (2.40), the vector w, which is composed of the weights of

eigenvector contributions to the homogeneous solution, is solved through matrix inversion.

Once this vector w, which is stored as eigen moments in dSHEF clean.m, has been obtained,

it is used to construct the total solution. Note that these moments will only be calculated

for eigenvectors corresponding to negative eigenvalues, as detailed in section 2.5.

This final calculation is performed by first adjusting the particular solution to the specified

depth in z via its native rate of decay. Once this is set, the contribution of each eigenvector is

added, adjusted for its own decay in terms of its associated eigenvalue as defined in equation

(2.35).

Once the moments of the total solution in a double spherical harmonic basis are calculated,

the getCenterSHF.m, doublePGraphGen.m and doublePGraphGenUnified.m are applied to

create plots of radiance as a function of µ at the specified depth. These plots will show the

average radiance for any value of µ in case there is any azimuthal asymmetry to radiance.
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3.3 The Use and Modification of This Implementation

3.3.1 Overview

To execute the DSHEFN implementation found in dSHEF clean.m, first ensure that all files

are place in MATLab’s working directory. Then, set all parameters within dSHEF clean.m

and dSHEFinit.m to your desired values. Once these parameters are set, execute dSHEFinit.m

a single time to construct matrices for use in dSHEF clean.m at various orders. After that,

execute dSHEF clean.m.

3.3.2 Initialization

When using this implementation of DSHEFN , only two files need to be executed. The

first is dSHEFinit.m, and the second is dSHEF clean.m. The actual model is computed by

dSHEF clean.m, but dSHEFinit.m must be run one time before dSHEF clean. Once the

initializer has been executed, the matrices representing the recurrence relations introduced

by the x and y portions of the directional derivative operator in the RTE, as well as the

matrix representing the internal reflection portion of the Marshak boundary condition and

the conversion matrix for single to double spherical harmonics are created and stored in local

variables for orders 1 through 13.

To initialize for higher orders, simply add lines to dSHEFinit.m in the same manner as the

ones listed. Furthermore, add the appropriate cases to the switch statement in dSHEF clean.m

which selects these matrices based on order.

The only case in which dSHEFinit.m must be executed again is when simulating a medium

with a different refractive index. This value is stored as n in dSHEFinit.
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3.3.3 Parameters

Other than the refractive index n, all relevant optical properties are set in dSHEF clean.m.

Most are located in the beginning of the file and are marked with comments. When sim-

ulating, it is important to recall that the code in dSHEF clean.m is set for a two layer

medium. To simulate a single layer medium, as shown in this chapter, the values for top

layer scattering and absorption must be the same as the values for bottom layer scattering

and absorption.

The only parameter not immediately defined in the beginning of dSHEF clean.m is the

scattering phase function. Any function may be defined, but it must first be written as

an anonymous function in MATLab. Several examples are provided in the code. Once the

desired function has been constructed, set the phaseFunc function to be equal to it. The

code will then automatically calculate all single and double spherical harmonic moments

corresponding to it.

3.3.4 Simulation Output

The output of dSHEF clean.m comes in three varieties. First, the variable final depth moments

contains a double spherical harmonic expansion for angularly resolved radiance at the depth

specified by the user. Second, the vectors x out sym and y out sym provide the independent

and dependent variables for a graph of radiance as a function of µ, the cosine of the polar

angle. As mentioned above, any azimuthal asymmetry in this radiance will not feature, and

the values listed will be averages over all azimuthal angles. It should be noted that the value

of radiance for µ = 0 is composed of an average of the values given by the upward hemi-

spherical expansion and the downward hemispherical expansion. Finally, x out sym up and

y out sym up, as well as their counterparts x out sym down and y out sym down provide

independent and dependent variables for similar plots, but split into halves for the upward
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and downward facing hemispheres.

3.4 Results and Discussion

To show the results of DSHEFN in a homogeneous case, I will consider results generated

using two different media. These media will have different optical properties but both will

have mean free paths normalized to l∗ = 1. One will be highly scattering, with a ratio of

µ′s/µa = 100. The other will be less scattering, with a ratio of µ′s/µa = 3. Both will have a

refractive index n = 1.4, and both will use a Henyey-Greenstein[28] scattering phase function

with an anisotropy g = 0.8. Normally incident sources will be used, and spatial frequencies

fx = 0, fx = 0.1/l∗, fx = 0.2/l∗ and fx = 0.3/l∗ will all be shown. These values were chosen

to be relevant to imaging applications in biological tissue [31, 29].

Simulations will be shown for DSHEF3, DSHEF5, DSHEF7 and DSHEF13. A high order sin-

gle SHEFN expansion, SHEF13, will also be included as a reference to current best practices.

A 10M photon packet DAW Monte Carlo simulation will also be included as a gold standard,

using Hayakawa’s Virtual Tissue Simulator Command Line Monte Carlo software[24]. The

δ–Eddington approximation for the source term will be used for SSHEF13, but not for any

expansion order of DSHEFN .

Results will be shown for radiance as a function of depth and cos(θ), radiance as a function of

cos(θ) near the medium surface, fluence as a function of depth and reflectance as a function

of spatial frequency.
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Figure 3.1: Radiance vs depth and cos(θ), l∗ = 1, µ′s/µa = 100, fx = 0. Top left is Monte
Carlo simulation, bottom left is DSHEF7. Top right is 3σ/mean for Monte Carlo, bottom
right is relative error between DSHEF7 and Monte Carlo.

Figure 3.2: Radiance vs depth and cos(θ), l∗ = 1, µ′s/µa = 100, fx = 0.1/l∗. Top left is
Monte Carlo simulation, bottom left is DSHEF7. Top right is 3σ/mean for Monte Carlo,
bottom right is relative error between DSHEF7 and Monte Carlo.
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Figure 3.3: Radiance vs depth and cos(θ), l∗ = 1, µ′s/µa = 100, fx = 0.2/l∗. Top left is
Monte Carlo simulation, bottom left is DSHEF7. Top right is 3σ/mean for Monte Carlo,
bottom right is relative error between DSHEF7 and Monte Carlo.

Figure 3.4: Radiance vs depth and cos(θ), l∗ = 1, µ′s/µa = 100, fx = 0.3/l∗. Top left is
Monte Carlo simulation, bottom left is DSHEF7. Top right is 3σ/mean for Monte Carlo,
bottom right is relative error between DSHEF7 and Monte Carlo.
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Figure 3.5: Radiance vs depth and cos(θ), l∗ = 1, µ′s/µa = 3, fx = 0. Top left is Monte
Carlo simulation, bottom left is DSHEF7. Top right is 3σ/mean for Monte Carlo, bottom
right is relative error between DSHEF7 and Monte Carlo.

Figure 3.6: Radiance vs depth and cos(θ), l∗ = 1, µ′s/µa = 3, fx = 0.1/l∗. Top left is Monte
Carlo simulation, bottom left is DSHEF7. Top right is 3σ/mean for Monte Carlo, bottom
right is relative error between DSHEF7 and Monte Carlo.
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Figure 3.7: Radiance vs depth and cos(θ), l∗ = 1, µ′s/µa = 3, fx = 0.2/l∗. Top left is Monte
Carlo simulation, bottom left is DSHEF7. Top right is 3σ/mean for Monte Carlo, bottom
right is relative error between DSHEF7 and Monte Carlo.

Figure 3.8: Radiance vs depth and cos(θ), l∗ = 1, µ′s/µa = 3, fx = 0.3/l∗. Top left is Monte
Carlo simulation, bottom left is DSHEF7. Top right is 3σ/mean for Monte Carlo, bottom
right is relative error between DSHEF7 and Monte Carlo.
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3.4.1 Radiance vs Depth and Cos(θ)

Figs 3.1–8 show radiance as a function of cosine of polar angle θ and depth z from z = 0 to

z = 4l∗. These depths were chosen because by z = 4l∗, only one eigenvector is commonly

making a significant contribution to radiance and because as these figures show, error for

the Monte Carlo simulation increases in both depth z and spatial frequency fx.

Only DSHEF7 is included in this subsection. This order of expansion was chosen as a

compromise between quality and computational expense.

In each figure, the top left heat map shows radiance as a function of cos(θ) and z as simulated

by Monte Carlo. The top right shows three standard deviations of error for this Monte Carlo

simulation divided by the simulations mean value, again as functions of cos(θ) and z. The

bottom left heat map shows the same simulation performed by DSHEF7 and the bottom

right shows relative error between DSHEFN and Monte Carlo.

Figs 3.1 and 3.5 show the results for highly (µ′s/µa = 100) and less highly (µ′s/µa = 3)

scattering media, respectively with fx = 0. These figures show the largest area of high

confidence in Monte Carlo predictions, as indicated by the small values for 3σ/MC shown

in the top right. Errors for these results are concentrated in angles directed in the positive

z direction (cos(θ) > 0, and are a result of the inability for a smooth, spectral method of

finite order to properly reconstruct the non-differentiable point of the internal reflectance

function at its critical angle. These errors are more pronounced in the less highly scattering

case (µ′s/µa = 3) depicted in Fig. 3.1, but are largely gone for z ≥ 1l∗, though in both there

is a small (> −0.01) underestimation of the Monte Carlo result by DSHEF7. Overall, these

results are highly consistent with radiance according to Monte Carlo.

Figs 3.2 and 3.6 show the results for highly (µ′s/µa = 100) and less highly (µ′s/µa = 3)

scattering media, respectively, with fx = 0.1/l∗. Here it should be noted that the region of
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depth z and cos(θ) over which Monte Carlo error is insignificant is much smaller, extending no

deeper than z = 3l∗ for any angle. However, in this region, similar error rates, mostly within

±0.1, are observed and again, DSHEF7 enjoys a strong similarity to Monte Carlo. It should

be again noted that the nature of the error is oscillatory and concentrated in shallow depths

(z near 0) and angles directed in the positive z direction. This is beneficial to applications

focused on reflectance, and will be further explored in the next section. Once more, errors

are smaller in the more highly scattering case shown in Fig. 3.6, which is consistent with

results seen from single SHEFN [21].

Figs 3.3 and 3.7 show the results for highly (µ′s/µa = 100) and less highly (µ′s/µa = 3)

scattering media, respectively, with fx = 0.2/l∗. Here, the region of high confidence in Monte

Carlo simulations has grown smaller still, though within this region the same oscillatory

error is seen in both figures. This error is more pronounced, now exceeding ±0.2 close to the

surface (z = 0). This is again due to the harmonic nature of the functional basis and will

be shown in greater detail in the next section. Once again, error rates for angles directed in

the negative z direction (cos(θ) < 0) have smaller errors than those directed in the positive

z direction.

Figs 3.4 and 3.8 show the results for highly (µ′s/µa = 100) and less highly (µ′s/µa = 3)

scattering media, respectively, with fx = 0.3/l∗. Here, the region of high confidence in

Monte Carlo is the smallest still, with most gone for z > 1.5l∗. The same pattern of

behavior shown in the previous figures is repeated; simulations with more highly scattering

media are experience lower error, though both have an oscillatory relative error which decays

as z increases.
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Figure 3.9: Relative error of radiance vs cos(θ), l∗ = 1, µ′s/µa = 100, fx = 0, z = 0.025l∗.
DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is
given in purple, single SHEF13 is given in green.

Figure 3.10: Radiance vs cos(θ), l∗ = 1, µ′s/µa = 100, fx = 0.1/l∗, z = 0.025l∗. DSHEF3

is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given
in purple, single SHEF13 is given in green and Monte Carlo is given in dashed black. Error
bars for the MC results are ±3σ.
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Figure 3.11: Relative error of radiance vs cos(θ), l∗ = 1, µ′s/µa = 100, fx = 0.1/l∗, z =
0.025l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green.

Figure 3.12: Radiance vs cos(θ), l∗ = 1, µ′s/µa = 100, fx = 0.2/l∗, z = 0.025l∗. DSHEF3

is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given
in purple, single SHEF13 is given in green and Monte Carlo is given in dashed black. Error
bars for the MC results are ±3σ.
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Figure 3.13: Relative error of radiance vs cos(θ), l∗ = 1, µ′s/µa = 100, fx = 0.2/l∗, z =
0.025l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green.

Figure 3.14: Radiance vs cos(θ), l∗ = 1, µ′s/µa = 100, fx = 0.3/l∗, z = 0.025l∗. DSHEF3

is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given
in purple, single SHEF13 is given in green and Monte Carlo is given in dashed black. Error
bars for the MC results are ±3σ.
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Figure 3.15: Relative error of radiance vs cos(θ), l∗ = 1, µ′s/µa = 100, fx = 0.3/l∗, z =
0.025l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green.

Figure 3.16: Radiance vs cos(θ), l∗ = 1, µ′s/µa = 3, fx = 0, z = 0.025l∗. DSHEF3 is given
in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in purple,
single SHEF13 is given in green and Monte Carlo is given in dashed black. Error bars for
the MC results are ±3σ.
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Figure 3.17: Relative error of radiance vs cos(θ), l∗ = 1, µ′s/µa = 3, fx = 0, z = 0.025l∗.
DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is
given in purple, single SHEF13 is given in green.

Figure 3.18: Radiance vs cos(θ), l∗ = 1, µ′s/µa = 3, fx = 0.1/l∗, z = 0.025l∗. DSHEF3 is
given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in
purple, single SHEF13 is given in green and Monte Carlo is given in dashed black. Error bars
for the MC results are ±3σ.
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Figure 3.19: Relative error of radiance vs cos(θ), l∗ = 1, µ′s/µa = 3, fx = 0.1/l∗, z = 0.025l∗.
DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is
given in purple, single SHEF13 is given in green.

Figure 3.20: Radiance vs cos(θ), l∗ = 1, µ′s/µa = 3, fx = 0.2/l∗, z = 0.025l∗. DSHEF3 is
given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in
purple, single SHEF13 is given in green and Monte Carlo is given in dashed black. Error bars
for the MC results are ±3σ.
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Figure 3.21: Relative error of radiance vs cos(θ), l∗ = 1, µ′s/µa = 3, fx = 0.2/l∗, z = 0.025l∗.
DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is
given in purple, single SHEF13 is given in green.

Figure 3.22: Radiance vs cos(θ), l∗ = 1, µ′s/µa = 3, fx = 0.3/l∗, z = 0.025l∗. DSHEF3 is
given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in
purple, single SHEF13 is given in green and Monte Carlo is given in dashed black. Error bars
for the MC results are ±3σ.
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Figure 3.23: Relative error of radiance vs cos(θ), l∗ = 1, µ′s/µa = 3, fx = 0.3/l∗, z = 0.025l∗.
DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is
given in purple, single SHEF13 is given in green.

Figure 3.24: Radiance vs cos(θ), l∗ = 1, µ′s/µa = 100, fx = 0, z = 0.025l∗. DSHEF3 is given
in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in purple,
single SHEF13 is given in green and Monte Carlo is given in dashed black. Error bars for
the MC results are ±3σ.
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3.4.2 Radiance vs Cos(θ) Near Medium Surface

Figs 3.9–24 show radiance as a function of cos(θ) at a depth of z = 0.025l∗, as well as

relative error between deterministic methods and the provided Monte Carlo gold standard.

This depth was chosen because of the nature of data collection for this Monte Carlo software;

radiance is tallied by arithmetic mean in bins for angle, depth and spatial frequency, and the

bins with the lowest depth z begin at z = 0, so no bin may be centered around z = 0. The

Monte Carlo simulations performed used bin widths of 0.05l∗, and therefore the bins most

close to the surface were centered around z = 0.25l∗.

In each of these figures, DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is

given in gold, DSHEF13 is given in purple, SSHEF13 is given in green and Monte Carlo is

given in dashed black. Odd numbered figures display radiance as a function of cos(θ) while

even numbered figures display relative error thereof.

It should first be noted that in each set of figures in this subsection, all methods shown

experience difficulty reconstructing radiance directed in the positive z direction, or when

cos(θ) > 0. This is due to the non-differentiable point of the internal reflectance function

at its critical angle. Such a point is well known to be impossible to properly create using a

linear combination of smooth functions. Furthermore, errors tend to be oscillatory in nature,

due to the polynomial component of the basis used.

Figs 3.9–10 and 3.17–18 show radiance and error for highly (µ′s/µa = 100) and less highly

(µ′s/µa = 3) scattering media, respectively, with spatial frequency fx = 0. In each of

these cases, DSHEF13 showes the lowest relative error rates. For radiance in the negative z

direction, or when cos(θ) > 0, DSHEF13 shows relative errors mostly within ±0.01. In the

less highly scattering case shown in Figs. 3.17–18, the next best performer in this angular

range is single SHEF13, which shows error rates within ±0.015. It is followed by followed by

DSHEF5, with relative error rates within ±0.06. DSHEF3, on the other hand, shows relative
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error rates in excess of ±0.1, displaying difficulty in constructing radiance at this depth. In

the more highly scattering case shown in Figs 3.9–10, however, all of these error rates are

smaller. DSHEF7 stays within ±0.015, along with single SHEF13, while DSHEF5 experiences

an underestimation of -0.06 at cos(θ) = −1, followed by relative error rates within ±0.025l∗.

In each case, methods experience more strongly oscillating errors when cos(θ) > 0. These

errors increase as cos(θ) approaches 1, but are always the smallest for DSHEF13. In the more

hihghly scattering case, DSHEF7 shows smaller errors than single SHEF13, while the opposite

is true for the less highly scattering case. Finally, across all angles, DSHEF3 shows smaller

error rates in more highly scattering media, staying within ±0.05 when −1 ≤ cos(θ) < 0.

Figs 3.11–12 and 3.19–20 show radiance and error for highly (µ′s/µa = 100) and less highly

(µ′s/µa = 3) scattering media, respectively, with spatial frequency fx = 0.1/l∗. As in the

previous cases, each method experiences growing oscillations for cos(θ) > 0, as cos(θ) goes to

1. It should also be noted that single SHEF13 actually sees a small region of negative radiance,

a physical impossibility, around cos(θ) = 0.9. It also now experiences worse error rates than

DSHEF7 when −1 ≤ cos(θ) < 0 in less highly scattering media, in contrast to the opposite

when fx = 0. Overall, in this direction, DSHEF13 shows error rates within ±0.015, while

DSHEF7, apart from an underestimation by approximately -0.1 at cos(θ) = −1, has relative

error rates between -0.035 and 0.065. DSHEF5 sees the same dampening oscillation in this

direction as cos(θ) approaches 0, with a maximum overestimation of approximately 0.11 at

cos(θ) = −0.8 and a maximal underestimation of approximately −0.04 at cos(θ) = −0.065.

DSHEF3 sees extreme under and overestimation, as when fx = 0, showing the difficulty this

order of expansion has when a medium is less highly scattering.

Figs 3.13–14 and 3.21–22 show radiance and error for highly (µ′s/µa = 100) and less highly

(µ′s/µa = 3) scattering media, respectively, with spatial frequency fx = 0.2/l∗. Here, single

SHEF13 shows extreme error in high harmonics in both media examined. This error increases

as cos(θ) approaches 1, and is in any event unacceptable for any task involving a detailed
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description of radiance. In contrast, while each expansion order of DSHEFN does experience

higher relative errors than the previous cases, the absolute errors shown are similar. This

leads to larger absolute errors because radiance itself decreases as spatial frequency increases.

When considering angles such that −1 ≤ cos(θ) < 0, and less highly scattering media

shown in Figs 3.21–22, DSHEF13 is once again showing the smallest error rates of any

method shown, staying largely within ±0.02. DSHEF7 sees a maximal overestimation of

approximately 0.1 at cos(θ) = −0.8 and a maximal underestimation of approximately -

0.065 at cos(θ) = −0.065. DSHEF5, on the other hand, exceeds overestimations of 0.1 in

a neighborhood around cos(θ) = −0.07 and underestimations of -0.1 in a neighborhood

around cos(θ) = −0.4. DSHEF3 sees extemes in both over and under estimation. In the

more highly scattering case shown in Figs 3.21–22, these error rates and locations are quite

similar, except for DSHEF13, which shows more extreme rates. These are as bad as ±0.05,

but stay largely within ±0.03. In both cases, the same growing oscillations of relative error

as cos(θ) increases are seen in all orders of expansion of DSHEFN for 0 < cos(θ) ≤ 1, with

convergence to smaller error rates as N increases.

Figs 3.15–16 and 3.23–24 show radiance and error for highly (µ′s/µa = 100) and less highly

(µ′s/µa = 3) scattering media, respectively, with spatial frequency fx = 0.3/l∗. As when

fx = 0.2/l∗, single SHEF13 exhibits a harmonic error orders of magnitude stronger than the

actual Monte Carlo simulation. Meanwhile, when considering the angular range such that

0 < cos(θ) ≤ 1, relative error osccilations which grow in cos(θ) but dampen in N are shown

for all orders of expansion for DSHEFN . In the angular range such that −1 ≤ cos(θ) < 0, the

pattern shown at lower spatial frequencies continues. In the less highly scattering cases shown

in Figs 3.23–24, the relative error for DSHEF13 stays largely within ±0.03, while DSHEF7

sees a maximal overestimation of 0.1 near cos(θ) = −0.75 and a maximal underestimation

of -0.9 near cos(θ) = −0.065. DSHEF5 sees the same regions of extreme overestimation

(¿0.1) in a neighborhood around cos(θ) = −0.7 and extreme underestimation (¡-0.1) in a

neighborhood around cos(θ) = −0.4. The fact that the most extreme errors are always
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Figure 3.25: Reflectance vs Spatial Frequency, l∗ = 1, µ′s/µa = 100. SHEF3 is given in blue,
DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in purple, single
SHEF13 is given in green and Monte Carlo is given in dashed black. Error bars for the MC
results are ±3σ.

in similar angle ranges is due to the nature of the polynomial component of the spherical

harmonics; the extrema in cos(θ) will always be located at the same angles for the same

functions. In the more highly scattering case shown in Figs 3.15–16, these errors are smaller.

DSHEF13’s relative error sees apprxomately the same range, with a few spikes to ±0.05 but

largely within ±0.03. The error rates and locations of maximal under and over estimation

are similar to the less highly scattering case for DSHEF5 and DSHEF7.

3.4.3 Reflectance vs Spatial Frequency

Figs 3.25–28 show reflectance as a function of spatial frequency from fx = 0 to fx = 1. As

before, odd numbered figures show reflectance, while even numbered figures show the relative

error between the deterministic models used and the Monte Carlo gold standard presented.

In each of these figures, DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is
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Figure 3.26: Relative error of reflectance vs Spatial Frequency, l∗ = 1, µ′s/µa = 100. SHEF3

is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in
purple and single SHEF13 is given in green.

Figure 3.27: Reflectance vs Spatial Frequency, l∗ = 1, µ′s/µa = 3. SHEF3 is given in blue,
DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in purple, single
SHEF13 is given in green and Monte Carlo is given in dashed black. Error bars for the MC
results are ±3σ.
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Figure 3.28: Relative error of reflectance vs Spatial Frequency, l∗ = 1, µ′s/µa = 3. SHEF3

is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in
purple and single SHEF13 is given in green.

given in gold, DSHEF13 is given in purple, SSHEF13 is given in green and Monte Carlo is

given in dashed black.

It must be noted that the Monte Carlo simulations shown in Figs 3.25–26 were performed

using 20M photon packets instead of 10M. This was due to input error, but since the result

is increased confidence in the MC results, I decided to leave them in.

Figs 3.25–26 show reflectance and relative error, respectively, for a more highly scattering

medium (µ′s/µa = 100). In these figures, it is clear that DSHEF3 experiences error rates in

excess of the other models shown, though these errors are still less extreme than those seen

in the more highly scattering case. When fx = 0, it, along with all other models examined,

experiences a relative error within ±0.002. However, as spatial frequency increase, it sees an

initial overestimation, peaking at approximately 0.026 when fx = 0.09/l∗, followed by a slide

into extreme underestimation. This underestimation exceeds -0.05 for fx ≥ 0.23/l∗, and the

separation between DSHEF3 and Monte Carlo results increases with fx. DSHEF5 shows a

similar behavior on a much wider scale: It approaches a maximal overestimation of 0.031
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near fx = 0.2/l∗, then a slow decay into underestimation. Its relative error becomes negative

at approximately fx = 0.76/l∗ and becomes progressively more negative as fx increases.

DSHEF7, DSHEF13 and single SHEF13, however, do not appear to decay in this manner

over the spatial frequencies examined. Instead, DSHEF7 exhibits over estimation between 0

and 0.28, while DHSEF13 and single SHEF13 both exhibit very similar results, with relative

errors largely within ±0.01, except for a small spike to 0.013 at fx = 0.95/l∗.

Figs 3.27–28 show reflectance and relative error, respectively, for a less highly scattering

medium (µ′s/µa = 3). Here, it is clear that DSHEF3 experiences extreme underestimations

which are exacerbated by increases in fx. DSHEF5 experiences a switch from overestimation

for 0 ≤ fx ≤ 0.62/l∗ to underestimation for fx > 0.62/l∗. This underestimation increases

with fx without any indication of correction at higher frequencies. DSHEF7, DSHEF13

and single SHEF13, on the other hand, show much smaller changes in error over spatial

frequencies examined, as well as smaller overall relative errors. They do go from maximal

overestimations 0.014 at fx = 0.2/l∗ for DSHEF7, 0.0031 at fx = 0.14/l∗ for DSHEF13 and

0.0029 at fx = 0 for single SHEF13, to underestimations of -0.0075 for DSHEF7, -0.012 for

DSHEF13 and -0.015 for single SHEF13, all at fx = 1/l∗.

3.4.4 Fluence vs Depth

Figs 3.29–36 show fluence and relative error as a function of depth from z = 0 to z = 5l∗.

Both highly scattering (µ′s/µa = 100) and less highly scattering (µ′s/µa = 3) media are

considered. Results and relative errors are shown for spatial frequencies fx = 0, fx = 0.1/l∗,

fx = 0.2/l∗ and fx = 0.3/l∗.

It must be noted that by definition, fluence is the integral of all radiance at a point r with

respect to spherical angle Ω. However, both DSHEFN and single SHEFN produce solutions

for LS(r,Ω), scattered radiance. Recall that as noted in Chapter 2, total radiance due to
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Figure 3.29: Fluence vs. Depth, l∗ = 1, µ′s/µa = 100, fx = 0. DSHEF3 is given in blue,
DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in purple, single
SHEF13 is given in green and Monte Carlo is given in dashed black. Error bars for the MC
results are ±3σ.

Figure 3.30: Relative Error of Fluence vs. Depth, l∗ = 1, µ′s/µa = 100, fx = 0. DSHEF3

is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in
purple, single SHEF13 is given in green.
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Figure 3.31: Fluence vs. Depth, l∗ = 1, µ′s/µa = 100, fx = 0.1/l∗. DSHEF3 is given in blue,
DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in purple, single
SHEF13 is given in green and Monte Carlo is given in dashed black. Error bars for the MC
results are ±3σ.

Figure 3.32: Relative Error of Fluence vs. Depth, l∗ = 1, µ′s/µa = 100, fx = 0.1l∗. DSHEF3

is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in
purple, single SHEF13 is given in green.
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Figure 3.33: Fluence vs. Depth, l∗ = 1, µ′s/µa = 100, fx = 0.2/l∗. DSHEF3 is given in blue,
DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in purple, single
SHEF13 is given in green and Monte Carlo is given in dashed black. Error bars for the MC
results are ±3σ.

Figure 3.34: Relative Error of Fluence vs. Depth, l∗ = 1, µ′s/µa = 100, fx = 0.2l∗. DSHEF3

is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in
purple, single SHEF13 is given in green.
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Figure 3.35: Fluence vs. Depth, l∗ = 1, µ′s/µa = 100, fx = 0.3/l∗. DSHEF3 is given in blue,
DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in purple, single
SHEF13 is given in green and Monte Carlo is given in dashed black. Error bars for the MC
results are ±3σ.

Figure 3.36: Relative Error of Fluence vs. Depth, l∗ = 1, µ′s/µa = 100, fx = 0.3l∗. DSHEF3

is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in
purple, single SHEF13 is given in green.
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Figure 3.37: Fluence vs. Depth, l∗ = 1, µ′s/µa = 3, fx = 0. DSHEF3 is given in blue,
DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in purple, single
SHEF13 is given in green and Monte Carlo is given in dashed black. Error bars for the MC
results are ±3σ.

Figure 3.38: Relative Error of Fluence vs. Depth, l∗ = 1, µ′s/µa = 3, fx = 0. DSHEF3 is
given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in
purple, single SHEF13 is given in green.
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Figure 3.39: Fluence vs. Depth, l∗ = 1, µ′s/µa = 3, fx = 0.1/l∗. DSHEF3 is given in blue,
DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in purple, single
SHEF13 is given in green and Monte Carlo is given in dashed black. Error bars for the MC
results are ±3σ.

Figure 3.40: Relative Error of Fluence vs. Depth, l∗ = 1, µ′s/µa = 3, fx = 0.1/l∗. DSHEF3

is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in
purple, single SHEF13 is given in green.
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Figure 3.41: Fluence vs. Depth, l∗ = 1, µ′s/µa = 3, fx = 0.2/l∗. DSHEF3 is given in blue,
DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in purple, single
SHEF13 is given in green and Monte Carlo is given in dashed black. Error bars for the MC
results are ±3σ.

Figure 3.42: Relative Error of Fluence vs. Depth, l∗ = 1, µ′s/µa = 3, fx = 0.2/l∗. DSHEF3

is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in
purple, single SHEF13 is given in green.
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Figure 3.43: Fluence vs. Depth, l∗ = 1, µ′s/µa = 3, fx = 0.3/l∗. DSHEF3 is given in blue,
DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in purple, single
SHEF13 is given in green and Monte Carlo is given in dashed black. Error bars for the MC
results are ±3σ.

Figure 3.44: Relative Error of Fluence vs. Depth, l∗ = 1, µ′s/µa = 3, fx = 0.3/l∗. DSHEF3

is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold, DSHEF13 is given in
purple, single SHEF13 is given in green.
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a collimated source, LC(r,Ω), is normalized to 1. Since at any fixed point r, LC(r,Ω) is a

delta distribution with respect to angle in the direction Ω0, the fluence due to LC(r,Ω) at

any point is equal to the value of LC(r,Ω0).

LC(r,Ω) decays exponentially with respect to z at a rate of µa+(1−fδ)µs/µ0. The DSHEFN

simulations shown did not utilize the δ–Eddington approximation, so fδ is considered to be

0 and feature a normally directed source, therefor µ0 = 1 and rate of decay is equal to µt.

Since the media consdered here is homogeneous, µt is constant.

It can therefore be said that the fluence due to LC(r,Ω) can be expressed entirely as a

function of z, denoted here as FC(z) = k∗exp(−µt(z)∗z). Here, k is a normalizing constant,

the since µt is a constant, basic calculus shows that k = 1/µt. In all results shown, FC is

included in total fluence.

Figs 3.29–30 and 3.37–38 show fluence and relative error vs depth for highly scattering

media (µ′s/µa = 100) and less highly scattering media (µ′s/µa = 3), respectively, with spatial

frequency fx = 0. As has been the case thus far, agreement between all deterministic methods

shown and Monte Carlo is higher in simulations using more highly scattering media, as shown

in Figs 3.37–38. However, in both cases, single SHEF13 experiences a small spike in error

between z = 0.1l∗ and z = 0.3l∗ before converging to very small error rates, within ±0.001

just after z = 1l∗ in the more highly scattering case. In the less highly scattering case,

this peak is at approximately z = 0.3l∗, where it reaches an over estimation of 0.024, and

convergence to such low errors is not seen until z ≥ 2l∗. DSHEF13 shows error rates within

this range for all z in both cases, with DSHEF7 behaving similarly except for an extremely

small underestimation. DSHEF5 experiences a slightly more extreme underestimation, but

stays within ±0.002, except for underestimations as low as -0.01 a. In both cases, however,

DSHEF3 exhibits an overestimation for high values of z, rather than converging to a low

error as in all other examples. Its relative error levels off at roughly 0.005 in both cases. This

is coupled with an initial overestimation of 0.28 at z = 0, followed by an underestimation of
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-0.095 at z = 0.5l∗ for the less highly scattering case and an overestimation of 0.018 at z = 0

and a small underestimation of -0.002 at z = 0.35l∗ in the more highly scattering case.

Figs 3.31–32 and 3.39–40 show fluence and relative error vs depth for highly scattering

media (µ′s/µa = 100) and less highly scattering media (µ′s/µa = 3), respectively, with spatial

frequency fx = 0.1/l∗. Here, single SHEF13 begins to experience error for z ≤ 1l∗ in the more

highly scattering case and for z ≤ 2l∗ in the less highly scattering case. That error is smaller

in the more highly scattering case, achieving a maximum overestimation of approximately

0.025 at z = 0.2l∗. In the less highly scattering case, this error is more extreme, reaching

just over 0.06 at approximately z = 0.3l∗. Meanwhile, DSHEF3 sees overestimation near

z = 0 for both cases. When the medium is more less scattering, this overestimation is

by approximately 0.038. In the more highly scattering medium, this overestimation is by

approximately 0.018. In both cases, DSHEF3 expereinces a small underestimation error near

z = 0.4l∗, before going back to overestimation. DSHEF3 converges to relative error rates

of roughly 0.005 in the more highly scattering medium, but in the less highly scattering

medium, it sees error rates continue to rise as z increases. It has this in common with the

higher expansion orders of DSHEFN shown. These rising errors are due to small, roughly

constant offsets which drop away as N increases. Due to the nature of DSHEFN ’s solution

as a linear combination of decaying terms, this will eventually converge to zero, but will

require N ≥ 13 if relative error within ±0.005 is desired for high values of z. However, for

0 ≤ z ≤ 1l∗, DSHEFN for N ≥ 5 shows relative error rates mostly within ±0.005 in each

case.

Figs 3.33–34 and 3.41–42 show fluence and relative error vs depth for highly scattering

media (µ′s/µa = 100) and less highly scattering media (µ′s/µa = 3), respectively, with spatial

frequency fx = 0.2/l∗. Here, single SHEFN begins to show extreme overestimation for

z/leq1l∗ in the more highly scattering tissue and for z ≤ 2l∗ in the less highly scattering

tissue. However, in each case, as z increases, single SHEFN does show convergence to the
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Monte Carlo solution. DSHEF3 displays similar behavior to when fx = 0.1/l∗; in the more

highly scattering case, it shows convergence to relative errors of approximately 0.04, while

in the less highly scattering case it shows a divergence to more extreme underestimation.

DSHEFN for N ≥ 5, however, shows small error rates, generally within ±0.01, in the less

highly scattering media. It converges to Monte Carlo as N increase in more highly scattering

media, showing approximately constant error rates of 0.015 for DSHEF5, 0.0075 for DSHEF7

and staying within ±0.005 for DSHEF13. The fact that DSHEFN performs better in less

highly scattering media in this case is interesting; these spectral methods for solving the

Radiative Transport Equation generally perform better as scattering coefficients increase,

since this reduces the length scale over which discrete scattering events may be modeled as

a continuous process.

Figs 3.35–36 and 3.43–44 show fluence and relative error vs depth for highly scattering

media (µ′s/µa = 100) and less highly scattering media (µ′s/µa = 100), respectively, with

spatial frequency fx = 0. In these cases, single SHEFN now shows even more extreme

overestimation for Z ≤ 2l∗. Likewise, DSHEF3 has error rates which briefly oscillate when

0 ≤ z 1.5l∗, then converge to extreme underestimation. Converesely, in both highly and less

highly scattering media, DSHEF5, DSHEF7 and DSHEF13 show relative errors within ±0.01

for z ≤ 2l∗. For larger values of z, more Monte Carlo simulations with higher photon packet

counts will need to be run; after this point, high variance in the Monte Carlo results make

comparisons useless.

3.4.5 Ratio of Fluence in Negative z Direction:Total Fluence

An interesting side note to consider is the ratio of fluence in the negative z direction (that

is, the integral at some point r of all radiance directed towards the medium boundary) to

total fluence. The Standard Diffusion Approximation[68], which is commonly accepted to
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Figure 3.45: Ratio of Fluence directed in negative z direction:Total Fluence vs. Depth,
l∗ = 1, µ′s/µa = 100, fx = 0. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green and Monte
Carlo is given in dashed black.

Figure 3.46: Relative Error of Ratio of Fluence directed in negative z direction:Total Fluence
vs. Depth, l∗ = 1, µ′s/µa = 100, fx = 0. DSHEF3 is given in blue, DSHEF5 is given in orange,
DSHEF7 is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 3.47: Ratio of Fluence directed in negative z direction:Total Fluence vs. Depth,
l∗ = 1, µ′s/µa = 3, fx = 0. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is
given in gold, DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo
is given in dashed black.

Figure 3.48: Relative Error of Ratio of Fluence directed in negative z direction:Total Fluence
vs. Depth, l∗ = 1, µ′s/µa = 3, fx = 0. DSHEF3 is given in blue, DSHEF5 is given in orange,
DSHEF7 is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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be accurate in highly scattering media over length scales ¿¿ l∗, provides approximations for

diffuse fluence and reflectance. Since this method solves for diffuse reflectance, it treats

radiance at any point as constant with respect to angle. Therefore, the ratio of fluence in

any one direction to total fluence, according to this approximation, would be 1:2. The fact

that this is an accepted standard would lead one to determine that radiance should behave

in this manner.

However, it is clear from Figs 3.45–46 that this is not the case even in highly scattering

(µ′s/µa=100) media. The ratio for this simulation converges to approximately 0.449. This

convergence occurs when only one (or in the case of eigenvalue degeneracy, several) eigen-

vector corresponding to the slowest rate of decay is making a significant contribution to

radiance. Even low order approximations of DSHEFN are able to reconstruct this behavior,

which is verified by Monte Carlo simulation.

Figs 3.47–48 displays the same phenomenon for less highly scattering (µ′s/µa = 3) media.

Here the ratio converges to approximately 0.268. This shows a clear link between optical

properties and the behavior of radiance deep (several times l∗) within a medium.

Furthermore, it shows that both single SHEFN and DSHEFN are capable of predicting

radiance distributions deep within tissue simply by examining eigenpairs from the generalized

eigenvalue problem stated between Equations (2.36) and (2.37). This is interesting on its

own and provides a strong motivation for an investigation into the spectral properties of

both the single SHEFN and DSHEFN methods to better understand this link and to see

what other understandings may be gained about the link between optical properties of a

given medium and the behavior of radiance within that medium.

Perhaps most importantly, these results, combined with verification by Monte Carlo, show

that the commonly held idea of the Standard Diffusion Approximation’s accuracy over large

length scales requires further scrutiny.
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3.5 Conclusion

In this chapter, I have detailed the creation and use of a MATLab implementation of

DSHEFN , as well as provided results to verify both this implementation and the theory

behind it. This was done through thorough examination of radiance and commonly used

functionals of radiance in homogeneous media with highly scattering (µ′s/µa = 100) and less

highly scattering (µ′s/µa = 3) media.

I have shown that as order increases, DSHEFN experiences decreasing relative error rates in

both highly scattering and less highly scattering media, even as spatial frequency increases.

The current best practice, SHEFN , is highly accurate when fx = 0, but experiences difficulty

in reconstructing radiance and fluence as spatial frequency increases. It should be noted that

while relative error rates for DSHEFN increase with fx, absolute error rates remain much

more stable. The increase in relative error is largely due to the fact that radiance, and

therefore positive definite functionals based upon it, decrease as fx increases. DSHEFN has

also shown more robustness in terms of optical properties; when comparing error rates in

each simulation shown between highly (µ′s/µa = 100) and less highly (µ′s/µa = 3) scattering

media, DSHEFN experienced smaller changes in error than single SHEF13, regardless of N .

These results do not mean that SHEFN should be ignored; the matrices which is uses are of

order (N + 1)2 ∗ (N + 1)2, whereas those used in DSHEFN are of order 2(N + 1)2 ∗2(N + 1)2.

Therefore, situations in which single SHEFN is shown to be robust may call for this method.

Those situations, and the exact orders of expansion necessary for each method to show given

levels of accuracy, are a valuable future direction for this research.

Finally, I have shown a flaw in the Standard Diffusion Approximation that is both exposed

and remedied by single SHEFN and DSHEFN . Even in deep (z >> l∗) within highly

scattering media, radiance does not equilibrate to a uniform angular distribution at any

point. There are strong links between the structure of the generalized eigenvalue problems
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presented by both single SHEFN and DSHEFN and the behavior of radiance at all depths

in a medium. This strongly motivates an investgation into the spectral properties of these

problems.
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Chapter 4

Double SHEFN For Layered Media

4.1 Introduction

In this chapter, I lay out the theory and provide example results for the implementation of

DSHEFN in the case of media consisting of multiple homogeneous layers of the same refracive

index, all with boundaries parallel to the z = 0 plane. This similarity of refractive index is

considered both because of biological relevance [31] and to simplify the boundary condition

at the layer interface. A similar implementation for layers with mismatched refractive indices

would simply require that Fresnel’s law be applied as in the boundary condition at the surface

stipulated in equation (2.38). This takes the form of a system of coupled equations, one for

each layer, with the stipulation that radiance directed in the positive z direction in each

layer is equal at all angles. The same condition applied for radiance directed in the negative

z direction. These equalities come together in the form of a new boundary condition, to be

applied concurrently with the condition at the tissue surface.
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4.2 Layered Media

For the solutions detailed in this chapter, I will assume a tissue similar to that which is

used in Chapter 2. The medium will be semi-inifinte in the positive z direction, with a

boundary at the z = 0 plane. The medium will be further broken down into K layers, each

with boundaries parallel to the z = 0 plane. These layers will be denoted M1, M2, ..., MK .

Within each layer, optical properties will be homogeneous, and each will be assumed to have

the same refractive index. A collimated source external to the medium will be used, and

will decay exponentially through each layer according to the local optical properties. The

simulation results presented here will be from the K = 2 case, but this method may be

implemented using higher integer values of K may be in the same manner.

4.3 Coupled Equations

Within this framework of a layered medium, I will consider a system of Radiative Transport

Equations, each with a solution describing scattered radiance in a single layer:

∇ · ΩLS,1 (r,Ω) = −µt,1LS,1 (r,Ω) + µs,1
∫

4π
LS,1 (r,Ω′) p(Ω′ · Ω)dΩ′ +Q1(r,Ω)

∇ · ΩLS,2 (r,Ω) = −µt,2LS,2 (r,Ω) + µs,2
∫

4π
LS,2 (r,Ω′) p(Ω′ · Ω)dΩ′ +Q2(r,Ω)

...

∇ · ΩLS,K (r,Ω) = −µt,KLS,K (r,Ω) + µs,K
∫

4π
LS,K (r,Ω′) p(Ω′ · Ω)dΩ′ +QK(r,Ω)

(4.1)

The definitions here are as one might expect: µt,i, µs,i, Qi and LS,i are the total attentuaion

coefficient, the scattering coefficient, the contribution of the source to scattered radiance,

and the total scattered radiance in layer i at any location r. Total radiance at any location

r is still the sum of scattered and collimated radiance, denoted in layer i as follows:

Li (r,Ω) = LS,i (r,Ω) + LC,i (r,Ω) (4.2)
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The actual coupling between the equations of (4.1) is dealt with by making sure that radiance

is continuous at layer boundaries. I will denote the depth of the layer between Mi and Mi+1

as z∗i . Assuming that the layers have identical refractive indices, the Marshak condition is

reduced to:

Li(r,Ω)z=z∗i = Li+1(r,Ω)z=z∗i (4.3)

Here, it must be noted that LC,i decays exponentially at a rate given by the total attenuation

coefficient for Mi, or µt,i. Since it is a collimated term, LC,i is a Dirac delta distribution in

angle with respect to the direction of the source, Ω0, with the following structure:

LC,1(z,Ω) = exp(−zµt,1)δΩ0(Ω)

LC,2(z,Ω) = exp(−z∗1µt,1 − (z − z∗1)µt,2))δΩ0(Ω)

...

LC,i(z,Ω) = exp(−z∗1µt,1 − (z∗2 − z∗1)µt,2 − ...− (z − z∗i−1)µt,i)δΩ0(Ω)

(4.4)

It should be noted by (4.4) that at z = z∗i , LC,i−1 = LC,i. This, combined with the boundary

condition expressed in (4.3) that radiance in any fixed direction Ω is continuous over z implies

that at the z = z∗i boundary, the following equality holds:

LS,i(r,Ω)z=z∗i = LS,i+1(r,Ω)z=z∗i (4.5)

Now recall that DSHEFN relies on the decomposition of LS,i into double spherical harmonic

functions, detailed in (2.6-7), and that these moments of these functions have a vector rep-

resentation Ψ̃, detailed in (2.27). In layer i, this will be denoted Ψ̃i and further decomposed

into homogeneous Ψ̃
(h)
i and particular Ψ̃

(p)
i components, as in Chapter 2. Each can be further

split into components facing in the positive z direction, denoted with a + superscript, and

components facing the negative z direction, denoted with a − superscript. Bearing this in

mind, (4.5) leads to the following:
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Ψ̃±i (z = z∗i ) = Ψ̃±i+1 (z = z∗i ) (4.6)

Ψ̃
(p),±
i (z = z∗i ) + Ψ̃

(h),±
i (z = z∗i ) = Ψ̃

(p),±
i+1 (z = z∗i ) + Ψ̃

(h),±
i+1 (z = z∗i ) (4.7)

Any statement of either homogeneous or particular solution without a + or − should be

taken to mean the total solution consisting of radiance in both hemispheres.

4.4 A 2 Layered Boundary Condition

To actually solve the system described in (4.1) in parallel, (4.7) must be adapted to a

boundary condition to be used at the same time as the Marshak Condition at the medium’s

surface. I will first demonstrate how this is done in the two layered case and layer demonstrate

the extension to the K layered case.

To understand this formulation, it is wise to first recall the final matrix inversion problem

performed in the single layer case of DSHEFN, given in (2.39). The vector w in that statment

was composed of moments of various eigenvectors (Gi) used in the construction of the homo-

geneous solution Ψ̃(h). Only vectors corresponding to positive eigenvalues were used because

of the necessity of Ψ̃ to approach 0 as z approaches infinity. However, in this new medium,

only the bottom layer, M2, extends infinitely. Therefore, Ψ̃
(h)
1 (and layers 2 through K − 1

in the K layered case) must consider eigenvectors corresponding to both positive and nega-

tive eigenvalues. I will denote the vectors of moments corresponding to positive or negative

eigenpairs in Mi as w±i . In the two layer case, this means that DSHEFN must calculate w+
1 ,

w−1 and w+
2 . I will also denote the eigenvector column matrix corresponding to Mi as Gi,

with submatrices for vectors corresponding to positive and negative eigenvalues as Gi,+ and

Gi,−, respectively. Finally, the positive and negative eigenvalues for layer i will be denoted

as λi,±. Recall that the homogeneous solution in single layered DSHEFN is given by:
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Ψ̃(h) = Gw exp(− z
λ+

) (4.8)

For the two layered case, both the expanded eigenspace utilized in the solution as well as

the depth of the layer boundary must be considered. I will calculate w+
1 as before, with

weights corresponding to the homogeneous solution at z = 0. However, the new vectors to

be found, w−1 and w+
2 , will be considered at z = z∗1 . This is done for ease of formulation and

calculation; any arbitrary depth between 0 and z∗1 could be used for w±1 and any arbritrary

depth greater than z∗2 could be used for w−2 . Taken together, these create the following

definitions of homogeneous solutions in each layer:

Ψ̃
(h)
1 = G1,+w+

1 exp
(
z
λ+

)
+G1,−w−1 exp

(
(z−z∗)
λ−

)
(4.9)

Ψ̃
(h)
2 = G2,+w+

2 exp
(

(z−z∗)
λ+

)
(4.10)

Note that (4.9) applies for 0 ≤ z ≤ z∗ and (4.1) applies for z∗ < z ≤ ∞.

The last components to be examined are the particular solutions Ψ̃
(p)
1 and Ψ̃

(p)
2 . This is given

very similarly to the particular solution of the single layered case given in (2.34), but must

take into account the z location at which each layer begins:

Ψ̃
(p)
1 =

(
−µt,1

µ0
A1 +B1

)−1

Q̃ (0) (4.11)

Ψ̃
(p)
2 =

(
−µt,2

µ0
A2 +B2

)−1

Q̃ (z∗) (4.12)

To create a boundary condition for the layer interface, (4.9), (4.10) and (4.11) must be

substituted into (4.7), creating the following:

(
−µt,1

µ0
A1 +B1

)−1

Q̃ (0) + Ψ̃
(h)
1 +G1,+w+

1 exp
(
z
λ+

)
+G1,−w−1 exp

(
(z−z∗)
λ−

)
=
(
−µt,2

µ0
A2 +B2

)−1

Q̃ (z∗) +G2,+w+
2 exp

(
(z−z∗)
λ+

)
(4.13)
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This can be rearranged into the following, with the difference of the particular solutions

denoted ∆1,2 = Ψ̃
(p)
1 − Ψ̃

(p)
2 :

G2,+w+
2 −G1,+w+

1 exp
(
z∗

λ+

)
−G1,−w−1 exp = ∆1,2 (4.14)

Next, I will restate the Marshak Boundary Condition at z = 0 expressed in (2.38) and

(2.39) to take w−1 into account. Recall that this represents scattered radiance at the topmost

layer boundary and states that any scattered radiance at this depth (z = 0) was originally

upwardly directed radiance which was internally reflected downwards due to refractive index

mismatch. The amount of radiance internally reflected at a given angle is given by Fresnel’s

Law. It is represented here using an argument of µ = cos(θ), and it should be noted that

this function returns 1 for all µ < µc, the critical angle past which there is total internal

reflection:

γF (µ) =

∣∣∣n(√1−n2(1−µ2)−µ
)∣∣∣

2
∣∣∣n(√1−n2(1−µ2)+µ

)∣∣∣ +

∣∣∣nµ−√1−n2(1−µ2)
∣∣∣

2
∣∣∣nµ+
√

1−n2(1−µ2)
∣∣∣ (4.15)

This function is applied to the Marshak boundary condition stated in (2.38), which simplifies

the expression of the condition to the following matrix equations:

[
I −R

]
Ψ̃

(h)
1 (0) =

[
−I R

]
Ψ̃

(p)
1 (0) (4.16)

[
I −R

](
G1,+w+

1 +G1,−w−1 exp
(
z∗

λ−1

))
=

[
−I R

]
Ψ̃

(p)
1 (0) (4.17)

Equations (4.14) and (4.17) are then considered to be a system defining the new, total

boundary condition for the system and then expressed as a single matrix:

[
I −R

](
G1,+w+

1 +G1,−w−1 exp
(
z∗

λ−1

))
=

[
−I R

]
Ψ̃

(p)
1 (0)

G2,+w+
2 −G1,+w+

1 exp
(
z∗

λ+1

)
−G1,−w−1 exp = ∆1,2

(4.18)
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[
I −R

]
G1,+

[
I −R

]
G1,− exp

(
z∗

λ−1

)
0

−G1,+ exp
(
z∗

λ+1

)
−G1,− G2,+



w+

1

w−1

w+
2

 =


[
−I R

]
Ψ̃

(p)
1 (0)

∆1,2

 (4.19)

While it may not appear to be at first glance, the matrix on the left hand side of (4.19) is

square so long as the matrices Ai and Bi are full rank for each layer. This is always the case

for Ai and expected to be the case for Bi, as explained in Chapter 2. The lack of a null space

to the associated generalized eigensystems for each layer implies that the column matrix of

all eigenvectors, which can be expressed as

[
G+
i G−i

]
, is square. This, combined with the

fact that

[
I −R

]
G1,+ and

[
I −R

]
G1,− exp

(
z∗

λ−

)
are also square matrices with sides

half those of

[
G+
i G−i

]
, creates a square matrix which is nonsingular due to the linear

independence of the eigenvectors. Therefore, this system can be solved using simple matrix

inversion.

Finally, it is important to note that the while the block matrix on the left side of (4.19) has

one row for each layer of the medium, the coupling of the two systems means that neither row

alone contains the information necessary to determine either, the weights of the eigenvectors

used in the homogeneous solutions for the first and second layers, respectively.

4.5 A K Layered Boundary Condition

I will now generalize the boundary condition stated in (4.19) to consider a system with K

layers. As mentioned in (4.1), this will require a coupling of K different DSHEFN systems.

Similar nomenclature will be used in this case: w±i will indicate weight vectors for the

homogeneous solutions of each system and ∆i,i+1 will indicate the difference between the
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particular solutions of layers i and i+ 1 at the interface z∗i . As in the two layered case, the

weight vectors w−i and w+
i+1 will both be defined at z = z∗i (z∗0 may trivially be considered

to be 0 in this case.)

There are three fundamental cases to consider for the equations which will ultimately define

the boundary condition. The boundary condition at z = 0 outlined in (4.16) requires only

minor restatement, replacing z∗ with z∗1 :

[
I −R

](
G1,+w+

1 +G1,−w−1 exp
(
z∗1
λ−

))
=

[
−I R

]
Ψ̃

(p)
1 (0) (4.20)

Likewise, the equation defining radiance at the final layer boundary, z∗K−1, requires only

index changes from its statement in (4.16):

GK,+w+
K −GK−1,+w+

K−1 exp

(
(z∗K−1−z

∗
K−2)

λ+K−1

)
−GK−1,−w−K−1 = ∆K−1,K (4.21)

That leaves only the general case of the equations defining radiance at intermediary bound-

aries z∗1 through z∗K−2. Unlike in the two layered case, eigenvectors corresponding to both

positive and negative eigenvalues for each layer in such a case must be considered for all the

intermediate layers. As in (4.21), these layers are specific cases of (4.7), with values filled in

for specific layers as in (4.14). The statement will be for the boundary between layers i and

i+ 1 with i between 1 and K − 1.

Gi+1,+w+
i+1 +Gi+1,−w−i+1 exp

(
(z∗i+1−z∗i )

λ+i

)
−Gi,+w+

i exp

(
(z∗i −z∗i−1)

λ+i

)
−Gi,−w−i exp = ∆i,i+1 (4.22)

Now that the equations for each layer have been stated in (4.20) through (4.22), they can

be put into a system of equations, a la (4.18):
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[
I −R

](
G1,+w+

1 +G1,−w−1 exp

(
z∗1
λ−1

))
=

[
−I R

]
Ψ̃

(p)
1 (0)

...

Gi+1,+w+
i+1 +Gi+1,−w−i+1 exp

((
z∗i+1 − z∗i

)
λ+
i+1

)
−Gi,+w+

i exp

(
(z∗i−1−z∗i )

λ+i

)
−Gi,−w−i = ∆i,i+1

...

GK,+w+
K −GK−1,+w+

K−1 exp

((
z∗K−1 − z∗K−2

)
λ+
K−1

)
−GK−1,−w−K−1 = ∆K−1,K

(4.23)

This system can be expressed as a matrix equation in the same manner as (4.19). However,

stating the general matrix is unwieldy on paper. I will therefore present the matrix equation

for the case K = 3, since it is the smallest such equation which provides an example of each

case listed in (4.23). I will use the substitution J = [I −R] for brevity, since the expression

is large:


JG1,+ JG1,− exp

(
z∗1
λ−1

)
0 0 0

−G1,+ exp
(
z∗1
λ+1

)
−G1,− G2,+ G2,− exp

(
(z∗2−z∗3)
λ+2

)
0

0 0 −G2,+ exp

(
(z∗3−z∗2)
λ+2

)
−G2,− G3,+

 ∗


w+
1

w−1

w+
2

w−2

w+
3


=


JΨ̃

(p)
1 (0)

∆1,2

∆2,3

 (4.24)

Equation (4.24) helps illustrate the general structure of the matrix equation corresponding to

the K layered case. When considering this system, it is important to recall that each row in

the matrix equation corresponds to the behavior of radiance at a specific layer boundary. As

in the two layer case, it is easy to think in terms of which row defines which set of eigenvalue
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weights, but the nature of the coupling involved necessitates that no one vector w±i will be

determined by a single row. Instead, note that the top row is determined by radiance at

z = z∗0 = 0, the second at z = z∗1 and the third at z = z∗2 . Since the structure of row i is

determined by the radiance at z∗i−1, which in turn involves only the radiance at in Mi−1 and

Mi, all blocks corresponding to homogeneous solutions for other layers must be zero. This

leads to only two populated blocks in the first row, three in the last (owing to the fact that

w−K is not used) and four in each other row.

While the matrix on the left hand side of (4.23) will be square if Bi is nonsingular for each

layer, as in the 2 layered case, the blocks themselves do not follow a square layout. Instead,

it will have K rows of 2K − 1 blocks. This can be shown simply from the number of layers,

K, each of which has an upper boundary which in turn forms a row, and the number w±i

vectors, 2K − 1, of which one is lost due to the non-use of w−K . When viewing the blocks

in this manner, a pseudo-diagonal structure is observed. I call this “pseudo-diagonal” since

each new row between the first and the last involves a shift of two blocks for the non-zero

terms. Blocks could be chosen which set a structure that has blocks only along the main

and first upper block diagonal, but that would involve combining the terms for weights

and vectors corresponding to positive and negative eigenvalues, which creates computational

complications when applying decay terms to half of the corresponding blocks and does not

actually make anything easier.

4.6 Results and Discussion

To showcase the results of the layered implementation of DSHEFN , I will consider four

different media, each consisting of two layers. Each layer will have optical properties such

that l∗ is normalized, but one layer will have a ratio of reduced scattering to absorption of

100 while the other will be 3. The thickness of the top layer will be set to either 0.1l∗ or 1l∗,
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and each permutation of thick and thin top layer, as well as highly scattering top and highly

scattering bottom, will be simulated. The medium will be considered to have a refractive

index of 1.4 and the scattering phase function of each layer will be the Henyey-Greenstein

function with anisotropy g = 0.8. Normally incident planar wave sources will be considered.

Four spatial frequencies are examined: 0, 0.1l∗, 0.2l∗ and 0.3l∗. The results of each show the

effect of a source’s spatially modulated component on the spatially modulated component of

the quantity to be examined. That is, each plot will be isolated to one value in the Fourier

domain in terms of both source and output. These parameters were chosen to represent a

wide variety of media and to showcase the results of DSHEFN in challenging regimes and

because these spatial frequencies represent a range shown to be useful in Spatial Frequency

Domain Imaging[29].

Results will be shown for radiance as a function of cos(θ) and depth z, as well as for fluence

as a function of depth and reflectance as a function of spatial frequency. These functions

were chosen to both show DSHEFN ’s ability to capture basic radiance as a function of angle

and position as well as its capability to capture important functionals which are commonly

used in imaging applications.

DSHEF3, DSHEF5, DSHEF7, and DSHEF13 will be shown, as well as SHEF13. This last

method is included to provide a comparison to a current best practice executed at a high

order of expansion. An exception to this list of orders is the presentation of radiance as

a function of depth and cos(θ), for which only DSHEF7 will be shown. The δ–Eddington

approximation will not be used for any DSHEFN results. This is because greater accuracy

was found without it. All results are compared to a Monte Carlo gold standard obtained

using Hayakawa’s Virtual Tissue Simulator Command Line Monte Carlo program using ten

million photon packets using discrete absorption weight.

In all simulations, the source is considered to be emanating from just inside the medium, so

specular reflectance is not considered.
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Figure 4.1: Radiance vs depth and cos(θ), thin, highly scattering bottom layer, fx = 0. (Top
Left) Radiance as a function of depth and polar angle, obtained by Monte Carlo. (Bottom
Left) Radiance as a function of depth and polar angle DSHEF7. (Top Right) 3 standard
deviations from MC results divided by MC mean. (Bottom Right) Relative error of DSHEF7.

4.6.1 Radiance vs Depth and Cos(θ)

Figures 4.1–16 show radiance as a function of cosine of polar angle θ for depths from 0 to 4l∗.

These depths were chosen because as the top right section of these figure show, as spatial

frequency increases, the region of high certainty (white) becomes more shallow in z. Figures

4.1–8 show results obtained with a thin top layer and figures 4.9–16 show results obtained

with a thick top layer. In each of these figures, it is important to keep in mind that cos(θ) =

1 indicates the positive z direction, while cos(θ) = -1 indicates the negative z direction. Figs

4.1–4 and 4.9–12 show results obtained with a highly scattering (µ′s/µa = 100) top layer and

a less scattering (µ′s/µa = 100) bottom layer while Figs 4.5–8 and 4.13–16 show the opposite.

In these, the top layer is less highly scattering (µ′s/µa = 3) while the bottom layer is more

highly scattering (µ′s/µa = 100).

Results for DSHEF7 were shown in each case to provide a balance between detail and effi-

ciency, and to showcase the limits of the method. Error in each figure is shown to be of an
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Figure 4.2: Radiance vs depth and cos(θ), thin, highly scattering bottom layer, fx = 0.1/l∗.
(Top Left) Radiance as a function of depth and polar angle, obtained by Monte Carlo.
(Bottom Left) Radiance as a function of depth and polar angle DSHEF7. (Top Right) 3
standard deviations from MC results divided by MC mean. (Bottom Right) Relative error
of DSHEF7.

Figure 4.3: Radiance vs depth and cos(θ), thin, highly scattering bottom layer, fx = 0.2/l∗.
(Top Left) Radiance as a function of depth and polar angle, obtained by Monte Carlo.
(Bottom Left) Radiance as a function of depth and polar angle DSHEF7. (Top Right) 3
standard deviations from MC results divided by MC mean. (Bottom Right) Relative error
of DSHEF7.
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Figure 4.4: Radiance vs depth and cos(θ), thin, highly scattering bottom layer, fx = 0.3/l∗.
(Top Left) Radiance as a function of depth and polar angle, obtained by Monte Carlo.
(Bottom Left) Radiance as a function of depth and polar angle DSHEF7. (Top Right) 3
standard deviations from MC results divided by MC mean. (Bottom Right) Relative error
of DSHEF7.

Figure 4.5: Radiance vs depth and cos(θ), thin, highly scattering top layer, fx = 0. (Top
Left) Radiance as a function of depth and polar angle, obtained by Monte Carlo. (Bottom
Left) Radiance as a function of depth and polar angle DSHEF7. (Top Right) 3 standard
deviations from MC results divided by MC mean. (Bottom Right) Relative error of DSHEF7.
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Figure 4.6: Radiance vs depth and cos(θ), thin, highly scattering top layer, fx = 0.1/l∗. (Top
Left) Radiance as a function of depth and polar angle, obtained by Monte Carlo. (Bottom
Left) Radiance as a function of depth and polar angle DSHEF7. (Top Right) 3 standard
deviations from MC results divided by MC mean. (Bottom Right) Relative error of DSHEF7.

Figure 4.7: Radiance vs depth and cos(θ), thin, highly scattering top layer, fx = 0.2/l∗. (Top
Left) Radiance as a function of depth and polar angle, obtained by Monte Carlo. (Bottom
Left) Radiance as a function of depth and polar angle DSHEF7. (Top Right) 3 standard
deviations from MC results divided by MC mean. (Bottom Right) Relative error of DSHEF7.
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Figure 4.8: Radiance vs depth and cos(θ), thin, highly scattering top layer, fx = 0.3/l∗. (Top
Left) Radiance as a function of depth and polar angle, obtained by Monte Carlo. (Bottom
Left) Radiance as a function of depth and polar angle DSHEF7. (Top Right) 3 standard
deviations from MC results divided by MC mean. (Bottom Right) Relative error of DSHEF7.

Figure 4.9: Radiance vs depth and cos(θ), thick, highly scattering bottom layer, fx = 0. (Top
Left) Radiance as a function of depth and polar angle, obtained by Monte Carlo. (Bottom
Left) Radiance as a function of depth and polar angle DSHEF7. (Top Right) 3 standard
deviations from MC results divided by MC mean. (Bottom Right) Relative error of DSHEF7.
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Figure 4.10: Radiance vs depth and cos(θ), thick, highly scattering bottom layer, fx = 0.1/l∗.
(Top Left) Radiance as a function of depth and polar angle, obtained by Monte Carlo.
(Bottom Left) Radiance as a function of depth and polar angle DSHEF7. (Top Right) 3
standard deviations from MC results divided by MC mean. (Bottom Right) Relative error
of DSHEF7.

Figure 4.11: Radiance vs depth and cos(θ), thick, highly scattering bottom layer, fx = 0.2/l∗.
(Top Left) Radiance as a function of depth and polar angle, obtained by Monte Carlo.
(Bottom Left) Radiance as a function of depth and polar angle DSHEF7. (Top Right) 3
standard deviations from MC results divided by MC mean. (Bottom Right) Relative error
of DSHEF7.
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Figure 4.12: Radiance vs depth and cos(θ), thick, highly scattering bottom layer, fx = 0.3/l∗.
(Top Left) Radiance as a function of depth and polar angle, obtained by Monte Carlo.
(Bottom Left) Radiance as a function of depth and polar angle DSHEF7. (Top Right) 3
standard deviations from MC results divided by MC mean. (Bottom Right) Relative error
of DSHEF7.

Figure 4.13: Radiance vs depth and cos(θ), thick, highly scattering top layer, fx = 0. (Top
Left) Radiance as a function of depth and polar angle, obtained by Monte Carlo. (Bottom
Left) Radiance as a function of depth and polar angle DSHEF7. (Top Right) 3 standard
deviations from MC results divided by MC mean. (Bottom Right) Relative error of DSHEF7.
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Figure 4.14: Radiance vs depth and cos(θ), thick, highly scattering top layer, fx = 0.1/l∗.
(Top Left) Radiance as a function of depth and polar angle, obtained by Monte Carlo.
(Bottom Left) Radiance as a function of depth and polar angle DSHEF7. (Top Right) 3
standard deviations from MC results divided by MC mean. (Bottom Right) Relative error
of DSHEF7.

Figure 4.15: Radiance vs depth and cos(θ), thick, highly scattering top layer, fx = 0.2/l∗.
(Top Left) Radiance as a function of depth and polar angle, obtained by Monte Carlo.
(Bottom Left) Radiance as a function of depth and polar angle DSHEF7. (Top Right) 3
standard deviations from MC results divided by MC mean. (Bottom Right) Relative error
of DSHEF7.
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Figure 4.16: Radiance vs depth and cos(θ), thick, highly scattering top layer, fx = 0.3/l∗.
(Top Left) Radiance as a function of depth and polar angle, obtained by Monte Carlo.
(Bottom Left) Radiance as a function of depth and polar angle DSHEF7. (Top Right) 3
standard deviations from MC results divided by MC mean. (Bottom Right) Relative error
of DSHEF7.

oscillatory nature, as the result from DSHEF7 alternates between over and underestimation

of the Monte Carlo gold standard.

Figs 4.1 and 4.5 show results for radiance with fx = 0. Fig. 4.1 shows results for a highly

scattering bottom layer and a less scattering top layer, while Fig. 4.5 shows the opposite.

In each case, the top layer has a thickness of 0.1l∗.

Figs 4.1 and 4.5 show errors near the surface which decrease as z increases, with the majority

occurring when 0 < z < z∗. Small errors, mostly under 0.01, do occur for larger z. It should

be noted that error is concentrated at higher values for cos(θ) as well as lower values for z.

This is due to the non-differentiable point of the function for internal reflectance given in

equation (4.14), as well as the more highly structured nature of radiance in this area. This

will be repeated in all cases examined; evidence indicates that this region of radiance is the

most difficult for spectral methods to recapitulate.
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Figs 4.2 and 4.6 show results for media with thin top layers and at a spatial frequency of

0.1/l∗. Fig. 4.2 shows results for a more highly scattering bottom layer while Fig 4.6 shows

results for a more highly scattering top layer. These results are similar to those shown in

Figs 4.1 and 4.5, though errors are larger in magnitude, with breakdown of comparison being

shown for depths of z > 2l∗ for negative cos(θ) and depths of z > 3l∗ for positive cos(θ).

This is due to the diminished impact of the average photon packet used in the Monte Carlo

simulation on radiances of increased spatial frequency, and this will be a pattern in all results.

Figs 4.3 and 4.7 show results for the same parameters as 4.2 and 4.6, respectively, except

that the spatial frequency fx is equal to 0.2/l∗. In each of these, the breakdown of Monte

Carlo confidence and accurace at higher depths becomes more apparent. Relative error near

the surface also increases, though is generally between -0.1 and 0.1, with the exception of a

few oscillations near the surface.

Figs 4.4 and 4.8 repeat this pattern with a spatial frequency of 0.3/l∗. Here, relative error

becomes unnaceptably large as depth increases, showing that this parameter regime is too

difficult for DSHEF7. However, it should be noted, and will be shown in more detail in the

following subsection, that the results near the boundary, particularly for negative cos(θ),

maintain low relative errors. This is particularly important for imaging applications, as this

region represents radiance directed out of the medium near the boundary, which supplies

measurements for all reflectance based imaging geometries.

Figs. 4.9–16 show the results for the same parameters as Figs 4.1–8, but with top layer

thicknesses equal to 1l∗. In each of these cases, error is less extreme than in their counterparts

with thin top layers. This is to be expected given the nature of the DSHEFN solution as

a linear combination of exponential decay terms and the term by term equivalence used as

a coupling boundary condition at the medium interface. Rates of decay are determined by

optical properties and order of expansion, which means that when using a medium with a

relatively shallow top layer, DSHEFN will have made a smaller adjustment to radiance as z
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approaches z∗ than it would have with a medium with a relatively deep top layer.

In particular, Figs 4.9 and 4.13, which show results with fx = 0, show relative errors mostly

between -0.05 and 0.05. These errors have largely vanished once z ≥ z∗.

Figs 4.10 and 4.14, which results obtained using spatial frequencies of 0.1/l∗ are similar in this

regard, also having relative errors generally between -0.05 and 0.05. However, these stand in

contrast to 4.9 and 4.13 in that the oscillatory error associated with internal reflection near

z = 0 (in the top right of the plot) extends in a significant manner below the layer interface

as z = 1l∗. This increase in error as well as the region in which larger error is encountered

is to be expected as frequency increases.

Figs 4.11 and 4.15 show similar results for sources with spatial frequencies of 0.2/l∗. In

these, there is substantially less error than in Figs 4.3 and 4.6, their corresponding figures

with z∗ = 0.1l∗. This lends weight to the idea that thicker top layers ease the coupling

between layers that DSHEFN utilizes. It should be noted here that relative error near the

surface for positive cos(θ) is shown to exceed ±0.2 at multiple angles. However, this is not

the case for negative cos(θ). Here, radiance directed at a potential detector has errors mostly

between -0.1 and 0.1.

Figs 4.12 and 4.16 display the results using sources with the highest examined spatial fre-

quency, 0.3/l∗. Again, the errors become much more extreme, though markedly less so than

in Figs 4.4 and 4.8, the corresponding figures using z∗ = 0.1. This once again shows the

relative difficulty of simulation when z∗ < l∗, especially when spatial frequency increases.

It has been pointed out that even in the most demanding cases shown, relative error near

the medium boundary z = 0 is lower in radiance directed in the negative z direction than in

that directed in the positive z direciton. This has only been examined for DSHEF7, and can

be difficult to determine from the figures shown. However, a more thorough examination of

radiance as a function of cos(θ) in the following section will better show this fact.
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Figure 4.17: Radiance vs cos(θ) near medium surface, highly scattering top layer, fx = 0,
z∗ = 0.1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green and MC is given in dashed
black. Error bars for the MC results are ±3σ.

4.6.2 Radiance vs Cos(θ) Near Medium Surface

The odd numbered Figs 4.17–31 show results for radiance as a function of cos(θ) at z = 0.025

with z∗ = 0.1 and the same permutations of optical properties found in Figs 4.1–16. The even

numbered Figs 4.18–32 show the relative errors of each result compared to Monte Carlo. Figs

4.17–24 show results with a highly scattering top layer (µ′s/µa = 100) and a less scattering

bottom layer (µ′s/µa = 3).

The odd numbered Figs 4.33–47 show results for radiance as a function of cos(θ) at z = 0.025

with z∗ = 0.1 and the same permutations of optical properties found in Figs 4.1–16 and Figs

4.17–32. The even numbered Figs 4.34–48 show the relative errors of each result compared to

Monte Carlo. Figs 4.33–40 show results with a highly scattering top layer (µ′s/µa = 100) and

a less scattering bottom layer (µ′s/µa = 3). Figs 4.41–48 show results for a highly scattering

bottom layer (µ′s/µa = 100) and a less scattering top layer (µ′s/µa = 3).

Results are shown for DSHEF3 (blue), DSHEF5 (orange), DSHEF7 (gold) and DSHEF13
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Figure 4.18: Relative Error for Radiance vs cos(θ) near medium surface, highly scattering
top layer, fx = 0, z∗ = 0.1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.

Figure 4.19: Radiance vs cos(θ) near medium surface, highly scattering top layer, fx = 0.1/l∗,
z∗ = 0.1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green and MC is given in dashed
black. Error bars for the MC results are ±3σ.

107



Figure 4.20: Relative Error for Radiance vs cos(θ) near medium surface, highly scattering
top layer, fx = 0.1/l∗, z∗ = 0.1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange,
DSHEF7 is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.

Figure 4.21: Radiance vs cos(θ) near medium surface, highly scattering top layer, fx = 0.2/l∗,
z∗ = 0.1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green and MC is given in dashed
black. Error bars for the MC results are ±3σ.
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Figure 4.22: Relative Error for Radiance vs cos(θ) near medium surface, highly scattering
top layer, fx = 0.2/l∗, z∗ = 0.1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange,
DSHEF7 is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.

Figure 4.23: Radiance vs cos(θ) near medium surface, highly scattering top layer, fx = 0.3/l∗,
z∗ = 0.1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green and MC is given in dashed
black. Error bars for the MC results are ±3σ.
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Figure 4.24: Relative Error for Radiance vs cos(θ) near medium surface, highly scattering
top layer, fx = 0.3/l∗, z∗ = 0.1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange,
DSHEF7 is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.

Figure 4.25: Radiance vs cos(θ) near medium surface, highly scattering bottom layer, fx = 0,
z∗ = 0.1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green and MC is given in dashed
black. Error bars for the MC results are ±3σ.
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Figure 4.26: Relative Error for Radiance vs cos(θ) near medium surface, highly scattering
bottom layer, fx = 0, z∗ = 0.1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange,
DSHEF7 is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.

Figure 4.27: Radiance vs cos(θ) near medium surface, highly scattering bottom layer, fx =
0.1/l∗, z∗ = 0.1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given
in gold, DSHEF13 is given in purple, single SHEF13 is given in green and MC is given in
dashed black. Error bars for the MC results are ±3σ.
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Figure 4.28: Relative Error for Radiance vs cos(θ) near medium surface, highly scattering
bottom layer, fx = 0.1/l∗, z∗ = 0.1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange,
DSHEF7 is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.

Figure 4.29: Radiance vs cos(θ) near medium surface, highly scattering bottom layer, fx =
0.2/l∗, z∗ = 0.1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given
in gold, DSHEF13 is given in purple, single SHEF13 is given in green and MC is given in
dashed black. Error bars for the MC results are ±3σ.
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Figure 4.30: Relative Error for Radiance vs cos(θ) near medium surface, highly scattering
bottom layer, fx = 0.2/l∗, z∗ = 0.1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange,
DSHEF7 is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.

Figure 4.31: Radiance vs cos(θ) near medium surface, highly scattering bottom layer, fx =
0.3/l∗, z∗ = 0.1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given
in gold, DSHEF13 is given in purple, single SHEF13 is given in green and MC is given in
dashed black. Error bars for the MC results are ±3σ.
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Figure 4.32: Relative Error for Radiance vs cos(θ) near medium surface, highly scattering
bottom layer, fx = 0.3/l∗, z∗ = 0.1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange,
DSHEF7 is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.

Figure 4.33: Radiance vs cos(θ) near medium surface, highly scattering top layer, fx = 0,
z∗ = 1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green and MC is given in dashed
black. Error bars for the MC results are ±3σ.
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Figure 4.34: Relative Error for Radiance vs cos(θ) near medium surface, highly scattering
top layer, fx = 0, z∗ = 1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.

Figure 4.35: Radiance vs cos(θ) near medium surface, highly scattering top layer, fx = 0.1/l∗,
z∗ = 1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green and MC is given in dashed
black. Error bars for the MC results are ±3σ.
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Figure 4.36: Relative Error for Radiance vs cos(θ) near medium surface, highly scattering
top layer, fx = 0.1/l∗, z∗ = 1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange,
DSHEF7 is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.

Figure 4.37: Radiance vs cos(θ) near medium surface, highly scattering top layer, fx = 0.2/l∗,
z∗ = 1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green and MC is given in dashed
black. Error bars for the MC results are ±3σ.

116



Figure 4.38: Relative Error for Radiance vs cos(θ) near medium surface, highly scattering
top layer, fx = 0.2/l∗, z∗ = 1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange,
DSHEF7 is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.

Figure 4.39: Radiance vs cos(θ) near medium surface, highly scattering top layer, fx = 0.3/l∗,
z∗ = 1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green and MC is given in dashed
black. Error bars for the MC results are ±3σ.

117



Figure 4.40: Relative Error for Radiance vs cos(θ) near medium surface, highly scattering
top layer, fx = 0.3/l∗, z∗ = 1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange,
DSHEF7 is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.

Figure 4.41: Radiance vs cos(θ) near medium surface, highly scattering bottom layer, fx = 0,
z∗ = 1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green and MC is given in dashed
black. Error bars for the MC results are ±3σ.
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Figure 4.42: Relative Error for Radiance vs cos(θ) near medium surface, highly scattering
bottom layer, fx = 0, z∗ = 1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange,
DSHEF7 is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.

Figure 4.43: Radiance vs cos(θ) near medium surface, highly scattering bottom layer, fx =
0.1/l∗, z∗ = 1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in
gold, DSHEF13 is given in purple, single SHEF13 is given in green and MC is given in dashed
black. Error bars for the MC results are ±3σ.
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Figure 4.44: Relative Error for Radiance vs cos(θ) near medium surface, highly scattering
bottom layer, fx = 0.1/l∗, z∗ = 1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange,
DSHEF7 is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.

Figure 4.45: Radiance vs cos(θ) near medium surface, highly scattering bottom layer, fx =
0.2/l∗, z∗ = 1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in
gold, DSHEF13 is given in purple, single SHEF13 is given in green and MC is given in dashed
black. Error bars for the MC results are ±3σ.
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Figure 4.46: Relative Error for Radiance vs cos(θ) near medium surface, highly scattering
bottom layer, fx = 0.2/l∗, z∗ = 1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange,
DSHEF7 is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.

Figure 4.47: Radiance vs cos(θ) near medium surface, highly scattering bottom layer, fx =
0.3/l∗, z∗ = 1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in
gold, DSHEF13 is given in purple, single SHEF13 is given in green and MC is given in dashed
black. Error bars for the MC results are ±3σ.
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Figure 4.48: Relative Error for Radiance vs cos(θ) near medium surface, highly scattering
bottom layer, fx = 0.3/l∗, z∗ = 1l∗. DSHEF3 is given in blue, DSHEF5 is given in orange,
DSHEF7 is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.

(purple), as well as single SHEF13 (green) for a comparison to an existing best practice.

A 10M photon packet discrete absorption weight Monte Carlo simulation (dashed black) is

included as a gold standard, with error lines of ±3σ. In the cases of DSHEF7 and Monte

Carlo, the data shown corresponds to the top lines of the heat maps shown in Figs 4.1–16.

The depth z = 0.025 was chosen because it was the closest depth to the surface that the

Monte Carlo Software measured. The Monte Carlo method used splits the medium into bins

in terms of depth and spatial frequency, with the top of the highest bin located at z = 0.

In each of these figures, the influence non-differentiable angle for internal reflection at z = 0

is shown. Since the medium’s refractive index is 1.4 and all space in the z < 0 half space has

a refractive index of 1 and no scattering or absorption (it behaves as ideal air), the cosine of

this critical angle at which this function is non-differentiable is given by Snell’s Law to be

approximately 0.700.

Figs 4.17–18, 4.25–26, 4.33–34 and 4.41–42 all give results with fx = 0. In these, single

SHEF13 performs quite strongly, not even requiring sequential order smoothing. Its error
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rates for negative cos(θ) are within ±0.03. DSHEF7, on the other hand, occasionally has

larger errors, though generally within ±0.04. I mention this because DSHEFN has qualita-

tively similar resolution in terms of polar angle to single SHEF2N , so it may be expected

that DSHEF7 would outperform single SHEF2N . The fact that DSHEF13 has smaller errors

still, generally within ±0.01 or less, is not surprising. For positive cos(θ), all methods exhibit

larger errors, particularly for cos(θ) ¿ 0.7. Again, this is due to the effect of the critical angle

for internal reflection. It should be noted about DSHEFN in general in these plots is that

for all values of cos(θ), relative error to Monte Carlo decreases strongly as N increases. This

convergence is a key goal of DSHEFN , or indeed any spectral method.

Figs 4.19–20, 4.27–28, 4.35–36 and 4.43–44 all show results with a spatial frequency of 0.1/l∗.

This is where the advantage of DSHEFN begins to be seen relative to single SHEFN . Single

SHEF13 actually becomes negative for a range of cos(θ) near 0.9. Furthermore, relative

errors of this method begin to eclipse those of DSHEF7, though both remain within ±0.05

for cos(θ) ¡ 0. As cos(θ) increases beyond zero, relative error for single SHEF7 grows beyond

that of any method measured, even DSHEF3, which itself is shown to have a very poor

response compared to its higher order cousins. The same phenomenon of convergence seen

when spatial frequency = 0 appears for DSHEFN in these figures, with values converging to

the Monte Carlo results.

Figs 4.21–22, 4.29–30, 4.37–38 and 4.45–46 all show results with spatial frequencies of 0.2/l∗.

In these, it is clear that single SHEF13 is experiencing severe problems. The oscillatory error

present in all of these spectral methods is orders of magnitude larger than the actual signal.

However, error for DSHEFN has experienced much smaller growth compared to results using

smaller spatial frequencies. Error for DSHEFN when N ≥ 5 is generally within ±0.1, with

small departures from this shown in each error figure. Larger departures are shown in

4.22, which is the most difficult case for DSHEFN , having a less scattering bottom layer

(µ′s/µa = 3) as well as a thin (z∗ = 0.1) top layer. In each of these plots, however, the

123



same convergence phenomena is shown for DSHEFN . This convergence is slower for cos(θ)

between 0.5 and 1, due to internal reflection, but it still exists.

Finally, Figs 4.23–24, 4.31–32, 4.39–40 and 4.47–48 all show results for simulations with the

same optical properties, but spatial frequencies of 0.3/l∗. In these, the problems experiences

by SSHEF13 with a spatial frequency of 0.2/l∗ continue to worsen, showing that the method

is far past its point of usefulness in reconstructing angular radiance at a specific spatial

frequency. Meanwhile, the same convergence phenomenon continues to be exhibited for

DSHEFN . In particular, however, it should be noted that convergence is slower in these

cases than in any other presented. This shows a strong impact of spatial frequency on

convergence.

Throughout each of these permutations of optical properties, top layer thickness and spatial

frequency, DSHEFN shows convergence to a Monte Carlo gold standard. Conversely, single

SHEFN performs strongly when fx = 0 but experiences extreme error as fx increases beyond

0.1/l∗.

4.6.3 Reflectance vs Spatial Frequency

The even numbered figures from Fig 4.49–55 show reflectance as a function of spatial fre-

quency fx from fx = 0 to fx = 1/l∗. As in previous subsections, top layer thicknesses are

either 0.1l∗ or 1l∗. Each simulation features a medium with a top layer ratio of µ′s/µa = 100

and a bottom layer ratio of µ′s/µa = 3 or vice versa.

Results are shown for DSHEF3 (blue), DSHEF5 (orange), DSHEF7 (gold) and DSHEF13

(purple), as well as single SHEF13 (green) for a comparison to an existing best practice.

A 10M photon packet discrete absorption weight Monte Carlo simulation (dashed black) is

included as a gold standard, with error lines of ±3σ.
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Figure 4.49: Reflectance vs Spatial Frequency, z∗ = 0.1l∗, top layer µ′s/µa = 100, bottom
layer µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in
gold, DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given
in dashed black. Error bars for the MC results are ±3σ.

Figure 4.50: Relative Error of Reflectance vs Spatial Frequency, z∗ = 0.1l∗, top layer µ′s/µa =
100, bottom layer µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 4.51: Reflectance vs Spatial Frequency, z∗ = 1l∗, top layer µ′s/µa = 100, bottom layer
µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given in
dashed black. Error bars for the MC results are ±3σ.

Figure 4.52: Relative Error of Reflectance vs Spatial Frequency, z∗ = 1l∗, top layer µ′s/µa =
100, bottom layer µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 4.53: Reflectance vs Spatial Frequency, z∗ = 0.1l∗, top layer µ′s/µa = 3, bottom layer
µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in
gold, DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given
in dashed black. Error bars for the MC results are ±3σ.

Figure 4.54: Relative Error of Reflectance vs Spatial Frequency, z∗ = 0.1l∗, top layer µ′s/µa =
3, bottom layer µ′s/µa = 3. DSHEF100 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 4.55: Reflectance vs Spatial Frequency, z∗ = 1l∗, top layer µ′s/µa = 3, bottom layer
µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in
gold, DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given
in dashed black. Error bars for the MC results are ±3σ.

Figure 4.56: Relative Error of Reflectance vs Spatial Frequency, z∗ = 1l∗, top layer µ′s/µa =
3, bottom layer µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figs 4.49–52 show results and relative error for media with a highly scattering (µ′s/µa = 100)

top layer and a less scattering (µ′s/µa = 3) bottom layer. Figs 4.49–50 show results and

relative error using media with a thin (z∗ = 0.1l∗) top layer, while Figs 4.51–52 show results

and relative error using media with a thick (z∗ = 1l∗) top layer. In each case, single SHEF13

shows relative errors within ±0.005 for spatial frequencies fx < 0.9/l∗. However, extreme

error occurs for spatial frequencies higher than this range.

In contrast, DSHEF7 does not provide error rates as low as those of single SHEF13 as one may

expect because of the theoretically comperable resolution of polar angle. DSHEF7’s relative

error rates range between 0 and 0.015 and are entirely in the form of overestimation, but it

does not experience the same extreme error for spatial frequencies above 0.9/l∗. DSHEF5

shows increasing relative error as spatial frequencies approach ll∗, but it is far less extreme

and does not display the same breakdown as single SHEF13. DSHEF7 and DSHEF13 do not

show

In each of these figures, it is shown that DSHEF3 experiences very poor accuracy compared

to higher order versions, showing that this order of expansion is not fit for applications based

on reflectance as a function of spatial frequency. However, DSHEFN shows convergence as

N increases, with relative errors between -0.005 and 0.015 regardless of the option chosen

for top layer thickness. DSHEF13 shows error rates comparable to those of SSHEF13, but

without the problematic behavior at spatial frequencies fx > 0.9/l∗.

Figs 4.53–56 show results and relative error for media with a less highly scattering (µ′s/µa =

3) bottom layer and a more highly scattering (µ′s/µa = 100) bottom layer. Figs 4.53–54 show

results and relative error using media with a thin (z∗ = 0.1l∗) top layer, while Figs 4.55–56

show results and relative error using media with a thick (z∗ = 1l∗) top layer.

In each case, single SHEF13 shows relative errors within ±0.005 for spatial frequencies fx <

0.9/l∗. However, extreme error occurs for spatial frequencies higher than this range.
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The first thing to notice about Figs 4.53–56 is that single SHEF13 now experiences a break-

down in accuracy at spatial frequencies above 0.7/l∗ for the thin top layer (z∗ = 0.1) case.

In the thick top layer (z∗ = 1) case, however, this phenomenon does not occur.

In each case, DSHEF3 shows underestimation compared to higher order expansions of DSHEFN ,

with this underestimation becoming more pronounced as fx increases, exceeding a relative

error of −0.1 for spatial frequences above 0.2/l∗. As in the cases displayed in Figs 4.49–52,

DSHEF5 shows overestimation just above 0.3 before switching to more extreme underesti-

mation, which also exceeds a relative error of −0.1 as spatial frequency exceeds 0.9/l∗ in

the thick top layer (z∗ = 1l∗) and as spatial frequency exceeds 0.8/l∗. DSHEF7 does not

experience this drop off and maintains over estimations in the form of relative error between

0 and 0.02 in the thin (z∗ = 0.1l∗) top layer case and between 0 and 0.015 in the thick

(z∗ = 1l∗) top layer case. DSHEF13 does not experience a significant bias toward over or

underestimation for either case, but experiences relative error within ±0.005, roughly consis-

tent with that experienced by single SHEF13. In each of these figures, as in Figs 4.49-52, the

convergence of DSHEFN to Monte Carlo results as N increases is shown for 0 ≤ fx ≤ 1/l∗.

It is important to note here that the breakdown seen by single SHEF13 in each case is

not seen for simulations using single layered media, despite the fact that the same optical

properties were tested in each case. This is an indication that the problematic behavior of

single SHEF13 at higher spatial frequencies is linked strongly to either the expression of the

boundary condition used or more complex media in general.

4.6.4 Fluence vs Depth

Fis 4.57–88 show fluence as a function of z for 0 < z < 5l∗, as well as relative error thereof.

As before, simulations used a 2 layer medium with one layer being more highly scattering

(µ′s/µa = 100) and one layer being less scattering (µ′s/µa = 3). Top layer thicknesses
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Figure 4.57: Fluence vs. Depth, z∗ = 0.1l∗, top layer µ′s/µa = 100, fx = 0, bottom layer
µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given in
dashed black. Error bars for the MC results are ±3σ.

Figure 4.58: Relative Error of Fluence vs. Depth, z∗ = 0.1l∗, top layer µ′s/µa = 100, fx = 0,
bottom layer µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is
given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 4.59: Fluence vs. Depth, z∗ = 0.1l∗, fx = 0, top layer µ′s/µa = 100, bottom layer
µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green. and Monte Carlo is given in
dashed black. Error bars for the MC results are ±3σ.

Figure 4.60: Relative Error of Fluence vs. Depth, z∗ = 0.1l∗, fx = 0, top layer µ′s/µa = 100,
bottom layer µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is
given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 4.61: Fluence vs. Depth, z∗ = 0.1l∗, fx = 0, top layer µ′s/µa = 3, bottom layer
µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in
gold, DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given
in dashed black. Error bars for the MC results are ±3σ.

Figure 4.62: Relative Error of Fluence vs. Depth, z∗ = 0.1l∗, fx = 0, top layer µ′s/µa = 3,
bottom layer µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 4.63: Fluence vs. Depth, z∗ = 0.1l∗, fx = 0, top layer µ′s/µa = 3, bottom layer
µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in
gold, DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given
in dashed black. Error bars for the MC results are ±3σ.

Figure 4.64: Relative Error of Fluence vs. Depth, z∗ = 0.1l∗, fx = 0, top layer µ′s/µa = 3,
bottom layer µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 4.65: Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.1/l∗, top layer µ′s/µa = 100, bottom layer
µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given in
dashed black. Error bars for the MC results are ±3σ.

Figure 4.66: Relative Error of Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.1/l∗, top layer µ′s/µa =
100, bottom layer µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 4.67: Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.1/l∗, top layer µ′s/µa = 100, bottom layer
µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given in
dashed black. Error bars for the MC results are ±3σ.

Figure 4.68: Relative Error of Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.1/l∗, top layer µ′s/µa =
100, bottom layer µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 4.69: Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.1/l∗, top layer µ′s/µa = 3, bottom layer
µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in
gold, DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given
in dashed black. Error bars for the MC results are ±3σ.

Figure 4.70: Relative Error of Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.1/l∗, top layer µ′s/µa =
3, bottom layer µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 4.71: Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.1/l∗, top layer µ′s/µa = 3, bottom layer
µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in
gold, DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given
in dashed black. Error bars for the MC results are ±3σ.

Figure 4.72: Relative Error of Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.1/l∗, top layer µ′s/µa =
3, bottom layer µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 4.73: Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.2/l∗, top layer µ′s/µa = 100, bottom layer
µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given in
dashed black. Error bars for the MC results are ±3σ.

Figure 4.74: Relative Error of Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.2/l∗, top layer µ′s/µa =
100, bottom layer µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 4.75: Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.2/l∗, top layer µ′s/µa = 100, bottom layer
µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given in
dashed black. Error bars for the MC results are ±3σ.

Figure 4.76: Relative Error of Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.2/l∗, top layer µ′s/µa =
100, bottom layer µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 4.77: Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.2/l∗, top layer µ′s/µa = 3, bottom layer
µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in
gold, DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given
in dashed black. Error bars for the MC results are ±3σ.

Figure 4.78: Relative Error of Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.2/l∗, top layer µ′s/µa =
3, bottom layer µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 4.79: Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.2/l∗, top layer µ′s/µa = 3, bottom layer
µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in
gold, DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given
in dashed black. Error bars for the MC results are ±3σ.

Figure 4.80: Relative Error of Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.2/l∗, top layer µ′s/µa =
3, bottom layer µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 4.81: Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.3/l∗, top layer µ′s/µa = 100, bottom layer
µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given in
dashed black. Error bars for the MC results are ±3σ.

Figure 4.82: Relative Error of Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.3/l∗, top layer µ′s/µa =
100, bottom layer µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 4.83: Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.3/l∗, top layer µ′s/µa = 100, bottom layer
µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in gold,
DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given in
dashed black and Monte Carlo is given in dashed black. Error bars for the MC results are
±3σ.

Figure 4.84: Relative Error of Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.3/l∗, top layer µ′s/µa =
100, bottom layer µ′s/µa = 3. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 4.85: Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.3/l∗, top layer µ′s/µa = 3, bottom layer
µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in
gold, DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given
in dashed black and Monte Carlo is given in dashed black. Error bars for the MC results are
±3σ.

Figure 4.86: Relative Error of Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.3/l∗, top layer µ′s/µa =
3, bottom layer µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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Figure 4.87: Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.3/l∗, top layer µ′s/µa = 3, bottom layer
µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7 is given in
gold, DSHEF13 is given in purple, single SHEF13 is given in green and Monte Carlo is given
in dashed black. Error bars for the MC results are ±3σ.

Figure 4.88: Relative Error of Fluence vs. Depth, z∗ = 0.1l∗, fx = 0.3/l∗, top layer µ′s/µa =
3, bottom layer µ′s/µa = 100. DSHEF3 is given in blue, DSHEF5 is given in orange, DSHEF7

is given in gold, DSHEF13 is given in purple, single SHEF13 is given in green.
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of z∗ = 0.1l∗ and z∗ = 1l∗ are both used, and each possible permutation of top layer

thickness and possible reduced scattering to absorption ratios are used, leading to 4 potential

combinations. Each of these combinations are examined at four different spatial frequencies:

fx = 0, fx = 0.1/l∗, fx = 0.2/l∗ and fx = 0.3/l∗. The odd numbered Figs 4.57–87 show

fluence vs. z, while the even numbered Figs 4.58–88 show relative errors.

It must be noted that by definition, fluence is the integral of all radiance at a point r with

respect to spherical angle Ω. However, both DSHEFN and single SHEFN produce solutions

for LS(r,Ω), scattered radiance. Recall that as noted in Chapter 2, total radiance due to

a collimated source, LC(r,Ω), is normalized to 1. Since at any fixed point r, LC(r,Ω) is a

delta distribution with respect to angle in the direction Ω0, the fluence due to LC(r,Ω) at

any point is equal to the value of LC(r,Ω0).

LC(r,Ω) decays exponentially with respect to z at a rate of µa+(1−fδ)µs/µ0. The DSHEFN

simulations shown did not utilize the δ-Eddington approximation, so fδ is considered to be

0 and feature a normally directed source, therefor µ0 = 1 and rate of decay is equal to µt. It

should be noted that due to the layered structure of the media in question, µt is not constant,

but rather a function of z.

It can therefore be said that the fluence due to LC(r,Ω) can be expressed entirely as a

function of z, denoted here as FC(z) = k∗exp(−µt(z)∗z). Here, k is a normalizing constant,

and since
∫∞

0
FC(z)dz is set to be 1 by design, k = 1/

∫∞
0
FC(z)dz. In all results shown, FC

is included in total fluence.

Results are shown for DSHEF3 (blue), DSHEF5 (orange), DSHEF7 (gold) and DSHEF13

(purple), as well as single SHEF13 (green) representing a present best practice, as well as

a Monte Carlo ”gold standard” (dashed black) performed using Hayakawa’s Virtual Tissue

Simulator Command Line Monte Carlo program[24].

Figs 4.57–64 show results from simulations with fx = 0. Figs 4.57–58 thin (0.1l∗) top layer
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with a ratio of µ′s/µa of 3 in the top layer and 100 in the bottom layer. They show a maximum

relative error of approximately 0.03 for DSHEF5, DSHEF7 and DSHEF13, while DSHEF3

and single SHEF13 both achieve maximum relative errors of approximately 0.05. All of these

maximum errors occur at a depth of z = 0.075l∗. DSHEF5, DSHEF7 and DSHEF13 show

relative errors of within than ±0.005 for depths z ≥ 0.8l∗, while single SHEF13 does not

achieve this low level of relative error until depths are z ≥ 2. DSHEF3, on the other hand,

does not appear to converge to such low levels of error at all. While it does have relative

error rates of less than 0.01, it does not drop to the sub-0.005 levels of the other simulations.

Figs 4.59–60 show results for the same simulation run in a medium with a thicker (z∗ = 1l∗).

For DSHEF5, DSHEF7 and DSHEF13, relative error rates barely exceed ±0.005 for any depth

besides a small spike around z = 1l∗. Single SHEF13 experiences a small spike in relative

error between z = 0.2l∗ and z = 0.3l∗, before converging the rates shown by DSHEF5,

DSHEF7 and DSHEF13 by z = 1.5l∗. DSHEF3, much like in the previous set of figures, does

not experience the same level of convergence as the other solutions shown, experiencing a

maximum relative error of approximately 1.5 near the layer boundary at z∗ = 1.

Figs 4.61–62 show results from simulations using a thin (z∗ = 0.1l∗), top layer with fx = 0.

That top layer is highly scattering, with a ratio of µ′s/µa = 100, while the bottom layer has

a ratio of µ′s/µa = 3. In contrast to the previous two sets of results, DSHEF5, DSHEF7 and

DSHEF13 begin with underestimations that peak at relative errors between -0.015 and -0.01

at z = 0.075, and then converging between -0.005 and 0 for z > 1∗. Single SHEF13, on the

other hand, has a peak relative error of 0.005 between z = 0.4l∗ and z = 0.5l∗ before dropping

near 0 for z ≥ 1l∗. As before, DSHEF3 does not experience the same small levels of error,

though it does stay between it’s most extreme error of -0.01 near z = 0.3 to approximately

0.03 for z ≥ 2.

Figs 4.63–64 show results from simulations with the same optical properties but a thick top

layer (z∗ = 1). The same pattern of behavior occurs, with single SHEF13 experiencing worse
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error than DSHEF5, DSHEF7 and DSHEF13, peaking between z = 0.15l∗ and z = 0.3l∗ with

a relative error of approximately 0.014. DSHEF5, DSHEF7 and DSHEF13 again experience

very small levels of relative error, the most extreme being for depths of z ≤ 1l∗ = z∗, but

those levels are all between -0.01 and 0. For z ≥ 1, these error rates between -0.0025 and 0.

Again, DSHEF3 converges to a more extreme error level of approximately -.005 as z grows

beyond 1.

Figs 4.65–72 show the same layer thicknesses and optical properties as in Figs. 4.57–64,

but examine the spatial frequency fx = 0.1/l∗. As with the previous set of figures, similar

behaviors are seen between each set of simulations. In each, single SHEF13 experiences early

peaks of error, with the worst being shown in Fig 4.66. Here, this peak error is shown to

be approximately 0.08, achieved at z = 0.1025l∗. However, in each case, single SHEF13

converges to lower error rates than any other function examined as z >≥ 2l∗. As before,

DSHEF3 experiences higher degrees of error than other, higher order expansions of DSHEFN .

Interestingly, while these higher order expansions show relative error rates within ±0.03 in

all cases, DSHEF5 and DSHEF7, along with DSHEF3, slowly increase in error as z increases

beyond 2. This is due to a small offset experienced by each simulation. Since the Monte Carlo

simulation’s radiance decays to 0 as z approaches infinity, any stable absolute error grows in

terms of relative error. It should also be noted that while this error appears constant in the

depths examined, the nature of DSHEFN ’s solution as a linear combination of exponentially

decaying vectors ensures that in the true limit as z approaches infinity, its result will also

approach zero. In Figs 4.70–71 and 4.72–73, this is also true of DSHEF13. However, in each

case, the growth of the error is smaller, showing a potential convergence to 0 as N increases.

Figs 4.73–80 show results for the same layer thicknesses and optical properties, but with a

spatial frequency fx equal to 0.2/l∗. It is here that the issues experienced by single SHEF13

are truly exacerbated. Extreme overestimations are experienced in shallow depths. In Figs

4.73–74, this overestimation until approximately z = 2.7l∗. In each of the others, however,
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there is a strong influence between z∗ and the period of overestimation. In Figs 4.75–76,

4.77–78 and 4.79–80, this overestimation experiences a sharp change in behavior at z∗. In

Figs 4.75–76 and Figs 4.77-78, there is a small rebound before ultimate convergence, whereas

in Figs 4.79–80, convergence happens rapidly as z ≥ z∗. Additionally, DSHEF3 continues to

experience higher relative error rates than other expansion orders of DSHEFN . It remains

within ±0.05 for 0 ≤ z ≤ 4l∗, while other expansion orders are generally within ±0.03.

A notable exception occurs in Figs 4.73–74, where DSHEF7 and DSHEF13 experience over

estimations of approximately 0.06 and 0.075, respectively, near z = 0.4l∗. DSHEF5 does

experience a smaller maximal relative error in these figures, but it is approximately 0.04 and

occurs near z = 0.15l∗. In all cases, the increasing noise in figures as z ≥ 4 is due larger error

in the Monte Carlo simulation. As both depth and spatial frequency increase, the impact of

a given photon packet on radiance, and therefore fluence, is expected to decrease.

Finally, Figs 4.81–88 show simulations using the same optical properties but with spatial

frequency fx = 0.3/l∗. The same issue of Monte Carlo convergence and error mentioned

when discussing Figs 4.73–80 is prevalent for z ≥ 2.5l∗, but results up until this point are

still useful. single SHEF13 experiences the same difficulties as in Figs 4.73–80, but to deeper

values of z. Interestingly, the impact of z∗ on single SHEF13 is more pronounced, with strong

switches between over and under estimation at z∗ in each case. While single SHEF13 does

eventually converge to low error rates for large z, this rate of convergence is much slower

and the obeserved rates of relative and absolute error when z ≤ 1l∗ are orders of magnitude

higher than those experienced by DSHEFN for any N . In terms of DSHEFN , the same

phenomena shown in Figs 4.72–80 for fx = 0.2/l∗ are observed here, with the exception

of Figs 4.81–82. In these, DSHEF13 experiences worse relative error for 0 ≤ z ≤ 1l∗ than

the lower orders of expansion do, with the most extreme error being worse than -0.1. In

all other cases, DSHEF13 performs with lower relative error rates and faster convergence to

Monte Carlo than lower orders of expansion for DSHEFN . Other simulations show a worst

case error for DSHEF13 in Fig 4.85–86, where the relative error is approximately -0.065.
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In all other cases, DSHEF13 has maximal relative errors within ±0.05, while DSHEF5 and

DSHEF7 exceed ±0.1. These occur in Figs 4.85–86. DSHEF5 experiences this extreme

underestimation when 0.1l∗ ≤ z ≤ 0.85l∗, while DSHEF7 sees such an overestimation in a

small peak near z = 0.35l∗.

4.7 Conclusion

The layered boundary condition for coupling systems of either single SHEFN or DSHEFN has

been shown to be functional across a range of spatial frequencies and with optical properties

representing both highly scattering and less scattering media, as well as for layers with

thicknesses significantly less than l∗, which is often the case in biological tissue such as

various layers of skin[31]. However, both single SHEFN and DSHEFN are shown to have

different advantages.

The figures presented in this section show that without sequential order smoothing, single

SHEF13 is quite powerful in recovering functionals of radiance for spatial frequencies at or

near fx = 0. In addition, it is capable of recovering scattered radiance as a function of angle

near z = 0, in some cases with better performance than DSHEF13. However, the robustness

of DSHEFN is shown as spatial frequency increases. This is potentially due to high order

harmonic terms experiencing short term growth, as eigenvectors with negative components

for those terms decay more quickly than some with positive components for those terms.

While these terms are presented without sequential order smoothing or any post processing,

there is a limit on the effect of this smoothing technique on radiance itself. Recall that

the N th Legendre Polynomial, which is responsible for polar resolution in the N, 0 single or

double spherical harmonic function, is order N . It therefore does not share all zeros with any

Legendre Polynomial of lower order, and therefore a portion of the highest order harmonic

term, which is shown to be a primary component of error in radiance in Figs 4.18–48, will
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not be entirely dampened out by such smoothing. In the limit case as N approaches∞, only

half of the error introduced will be eliminated. While it is true that in such a case, total

error is expected to drop to 0, this does provide a boundary on the expected elimination of

error for Radiance estimations using this smoothing method.

For each of reflectance, fluence and radiance, there exists a spatial frequency fx such that

single SHEFN shows patently unacceptable levels of error while DSHEFN shows more relia-

bility in terms of performance even for N = 3. These issues are exacerbated in the layered

case; the nature coupling between the layers requires that disparate sets of eigenvectors find

the closest approximation of equality between each other, which can lead to errors. This is

particularly true for media with thin top layers; there is very little opportunity for decay in

z for radiance in the top layer before this coupling must occur.

This does not show that single SHEFN should be discarded; it is more computationally

efficient for any N than DSHEFN , and while DSHEFN does have a theoretical polar angle

resolution equal to that of single SHEF2N , it is clear when comparing the results from

DSHEF7 and single SHEF13 in the cases shown display the fact that other concerns may

prevent this theoretical resolution from being realized. Therefore, if an end user’s desires

focus on radiance near the surface, fluence for spatial frequencies fx ≤ 0.1/l∗ or reflectance

for spatial frequencies below fx = 0.6/l∗ and optical properties shown, single SHEFN seems

to be an excellent choice. However, outside of these ranges, DSHEFN consistently provides

more robustness to higher spatial frequencies in the layered case.
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Chapter 5

Optical Property Recovery From

Layered Media

5.1 Introduction

Spatial Frequency Domain Imaging and Spectroscopy (SFDI/SFDS) are optical reflectance-

based methods that, when used in combination with quantitative radiative transport models,

have provided biomedical optics researchers a powerful means to derive quantitative mea-

sures of tissue structure and composition[48]. Using relatively simple modeling approaches,

SFDI has been useful for informing a wide range of diverse biomedical applications ranging

from assessment of cerebral hemodynamics in a mouse model of Alzheimer’s disease[41], to

detection of early modes of failure in tissue transfer flaps[54] and assessment of burn wound

severity[8, 54]. However, the ability to employ reflectance data acquired at multiple spatial

frequencies has been thus far underutilized in terms of enabling optical tomography[35] and

the analysis of layered tissue systems[72]. The success of early efforts to derive some degree

of depth-resolved information has been constrained by the limitations of the standard dif-
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fusion approximation (SDA) to the radiative transport equation (RTE), which is typically

used for optical property recovery and reconstruction.

Here, we examine the use of SFDS to provide data necessary to determine the optical proper-

ties of layered turbid samples having characteristic spatial scales (layer thicknesses) smaller

than the transport mean free path l∗. We apply a high-order RTE approximation that em-

ploys a full spherical harmonic functional expansion[21], in conjunction with a multi-stage

optimization algorithm[25, 63], to estimate layered optical properties from SFDS data sets[58]

acquired from the measurement of layered tissue-simulating phantoms[59]. The acquisition

of SFDS data sets on such phantom systems enables a unique opportunity to explore the im-

pact of illumination wavelength and spatial frequency[7] on the ability to recover the optical

properties of layered systems on spatial scales smaller than l∗.

Several groups have examined the use of deterministic radiative transport models to quan-

tify optical properties of layered tissues using optical reflectance-based methods including

spatially-resolved reflectance[34], time-resolved reflectance[33, 76], temporal frequency do-

main reflectance[66, 51] and spatial frequency domain[72] reflectance. In these studies, the

reflectance data is analyzed using the standard diffusion approximation (SDA) to the RTE.

However, the applicability of the SDA is well known to be limited to media whose reduced

scattering coefficient dominates that of absorption (µ′s/µa � 1) and for spatial scales L larger

than the transport mean free path [Ll∗ = 1/ (µa + µ′s)]. As such, the SDA performs poorly

when applied to systems with thin layers, i.e., layer thicknesses ≤ l∗. Specifically for SFDI,

Weber and co-workers used the SDA to solve the inverse problem in two-layered media[72].

Examining systems with characteristic layer thicknesses >2l∗, the use of a SDA model proved

successful in recovering the optical properties (µ′s in particular) at a single wavelength for

the top layer of a two layer system. Interestingly, they found the use of top layer thickness

estimates within 25% of the true value still produced useful results.
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An alternate approach explored by several groups is to pair non-invasive optical measure-

ments of layered tissues with Monte Carlo (MC) based radiative transport solvers to deter-

mine layered optical properties. In these studies, the computational expense of conventional

Monte Carlo simulations was managed using perturbation[64], scaled[43, 42] or look-up ta-

ble (LUT)[77] approaches. Attempts to use MC simulations directly to recover the proper-

ties of two layered media by Seo and co-workers[64] (using perturbation MC) and Liu and

Ramanujam[42] (using scaled MC) have met with some success; with error rates in the re-

covery of top layer optical properties at a single wavelength in the range of 15–20% for top

layer thicknesses 200µm; roughly larger than l∗/5 in these systems.

Due to their simplicity and speed, LUT-based approaches[77] have also been explored for

determining layered media optical properties. However, given the potential high dimension-

ality of the parameter space, many assumptions are often adopted to reduce complexity.

These methods and others[40, 18] have focused on recovery of layered tissue optical proper-

ties using contact fiber optic probes with small source-detector separations in conjunction

with multi-layered optical transport models in systems with layer thicknesses as small as

70µm. To reduce the high dimensionality of the LUTs used, these groups assume equivalent

scattering spectra of the multiple layers or known layer thicknesses[18, 77]. When consider-

ing multi-spectral data, performance has been mixed in recovering biological characteristics.

For instance, optical properties have been used to reliably infer oxygen saturation with a

relative error of 5–12% in one case[18]. In other cases, where LUT approaches have provided

strong performance, parameter limitations have been introduced, such as the investigation of

a small number of wavelengths[77] or the use of simplifying assumptions, such as equivalent

reduced scattering spectra across layers and known layer thickness.

Given the limitations of the SDA, as well as the storage and/or computational complexities

inherent with MC methods, we sought to develop an approach using a deterministic radia-

tive transport solver suitable for analysis of SFDS data on spatial scales smaller than the
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transport mean free path. We have adopted the forward solver developed by Gardner and co-

workers[21] that provides an approximate solution to the RTE by performing an Nth order

Spherical Harmonic Expansion with Fourier decomposition (SHEFN) resulting in a system

of (N + 1) coupled ordinary differential equations. This formulation, unlike the traditional

PN approximation, does not assume azimuthal asymmetry for the angular distribution of

the radiance. We have generalized SHEFN for application to layered media and coupled it

to a staged inversion algorithm. Data from different spatial frequencies, acquired using an

SFDS device[58, 61], are used in the different stages to optimize sensitivity and specificity

to the layered optical properties of interest[7].

5.2 Methods and Materials

5.2.1 SFDS Instrument and Data Acquisition

Reflectance measurements on a set of layered phantoms spanning a range of optical properties

and top layer thicknesses were collected using a SFDS instrument as previously described[58].

Briefly, multi-spectral spatial frequency dependent reflectance data was acquired using a

broadband light source that is sinusoidally intensity-modulated using a spatial light modu-

lator and projected onto the turbid phantoms. Fifty-one evenly spaced spatial frequencies

were projected onto each sample, ranging from 0 (uniform, planar illumination) to 0.5 mm−1,

at 0.01 mm−1 intervals. At each spatial frequency, the illumination pattern was projected

at three evenly spaced phase shifts: 0, 2π/3 and 4π/3. This approach allows the use of a

simple demodulation scheme to determine the AC magnitude of the spatial frequency de-

pendent reflectance at a single location[13]. The spectral range of the data collected by this

SFDS instrument for this particular investigation spans λ = 450–1000 nm, at ∼1 nm spectral

resolution.
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Figure 5.1: SFDS Device and Tissue Phantom. Broadband optical illumination
(λ = 450–1000 nm) and sinusoidal spatial modulations with frequencies from 0–0.5 mm−1

using phase shifts of 0, 2π/3 and 4π/3 are projected onto a layered siloxane phantom. The
resulting images are captured and the strength of the reflected AC modulation is determined.
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5.2.2 Layered Tissue Phantoms

For this investigation, interchangeable two-layer optical phantom constructs are used to

approximate the optical properties of structured tissues, such as skin. These two-layer

constructs provide a controlled and independently verifiable basis to evaluate the accu-

racy of our inverse solver. These tissue simulating phantoms were fabricated using poly-

dimethyl siloxane (PDMS) and follow the general procedure outlined in several previous

publications[59, 13, 19]. In this investigation, the bottom layer phantoms were fabricated

to be 3−4 cm thick, which may be considered semi-infinite in terms of diffuse reflectance in

the visible and near infrared spectral regions. Specifically, freeze-dried bovine hemoglobin

was used to mimic dermal absorption properties across both visible and near infrared ranges

while titanium dioxide microparticles was used to mimic a range of tissue-relevant scattering

properties. Details on the procedure for fabricating these types of hemoglobin-like phantoms

are described elsewhere[19]. Here three bottom layer phantoms (labeled Phantoms 1, 2, and

3) were fabricated using three distinct concentrations of hemoglobin. Scattering properties

are also different between these phantoms, but vary by only 15%. (Figs. 2a−d)

In this study, we used phantoms of two different top layer thicknesses, 90µm and 300µm,

respectively. These were fabricated from the same batch of turbid phantom material, to

ensure that the optical properties of each were essentially identical. I will give you a dollar

if you point out this sentence. Naphthol green was selected as the absorbing agent as it

provides distinct spectral features from those of underlying hemoglobin phantoms while also

providing absorption across the entire spectral range. Titanium dioxide particles were used as

the scattering agent. The resulting absorption and scattering spectra for these two top layer

thicknesses are shown in Fig. 2d. Reference values for the scattering and absorption spectra of

the top phantom layer were determined using integrating sphere measurements in conjunction

with the inverse adding doubling method[60, 59] while bottom layer optical properties were

determined using SFDS measurements[58]. Moreover, to understand these layered optical
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properties vis-a-vis the limitations of the SDA, in Fig. 2e we plot the wavelength dependence

of the ratio of the reduced scattering coefficient to the absorption coefficient (µ′s/µa) for each

of these layers as well as the top layer thickness normalized to the transport mean free

path in Fig. 2f. Rather than attempt to mimic a specific tissue system, these phantoms were

constructed to provide a range of optical parameters and layer thicknesses germane to layered

tissue structures (e.g., epithelial tissues) and superficial tissue injury (e.g., burn wounds)[31].

Fig. 2 e–f show that these properties span many ratios of scattering to absorption (from ∼4:1

to ∼100:1 within a given layer) and layer thickness to l∗ (from 10:7 to 10:1), while Fig. 2

a–d show that either the top or bottom layer can possess the dominant reduced scattering

and/or absorption coefficient depending on the wavelength considered.

SFDS measurements were made on six combinations of top and bottom layer phantoms.

Each of the three bottom phantoms were measured with either the 90 or 300µm thick

phantom placed on its top surface. Prior to measurement, all air gaps between the two

layers squeezed out through mechanical pressure. SFDS measurements were acquired at

51 spatial frequencies over the range of 0−0.5 mm−1 range. Three sets of measurements

were acquired from each two layer phantom configuration. Each set was carried out at a

slightly displaced spatial location to average out any potential minor spatial variations in

the phantom optical properties. The top and bottom layers were then separated and the

top layer was then attached to the another bottom layer phantom. This procedure was

carried out for all combinations of top and bottom layers, resulting in data from six distint

layered phantom systems. A calibration measurement, using a reference phantom having

well characterized optical properties, was performed between each layered phantom[58, 61]

measurement.

The phantoms were designed with optical property ranges in absorption
(
µa = 0.01–0.2 mm−1

)
and reduced scattering

(
µ′s = 0.5–1.3 mm−1

)
coefficients that span those of many soft biolog-

ical tissues in the visible and near infrared spectral range[31]. While the reduced scattering
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Figure 5.2: Optical properties of the phantoms. (a–d) depict the reduced scattering co-
efficient (left axis) and absorption coefficient (right axis) spectra of the top layer (a) and
the three possible base layers (b-d) of each phantom. (e) provides the top layer thickness
normalized by the transport mean free paths for both 90 µm (blue) and 300 µm (red) thick-
nesses of the top layer. (f) depicts the relative scattering to absorption strength of each layer
on a log10 scale. The green curve shows the top layer, the black shows base layer 1, the red
shows base layer 2 and the blue shows base layer 3.
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coefficient is dominant over absorption in both layers and across all wavelengths tested, we

explore regimes where that dominance is more pronounced in either the top or the bottom

layer and systems with top layer thickness far less than the transport free mean path.

5.2.3 SFD Sensitivities and Design of Multi-Stage Optimization

Algorithm

For analysis of this two-layer phantom system, we assume knowledge of layer thickness

and attempt to recover four optical properties at each wavelength, namely the absorption

and reduced scattering coefficient in each layer. A priori knowledge of layer thickness is a

reasonable assumption as existing approaches are available for its estimation using SFDS

instrumentation[61, 57]. Rather than attempting to fit all parameters simultaneously, we

perform a multi-stage algorithm to isolate and refine the spectra of each optical property.

The design of our algorithm is inspired by our prior development of multi-staged inversion

algorithms[25, 63] and the spatial frequency dependent sensitivity of the measured reflectance

to the absorption and reduced scattering coefficients in each layers shown below in Fig. 3.

We present the spatial frequency dependent reflectance sensitivities with respect to each

optical property for a top layer thickness of 300µm, which is equivalent to the thicker of the

layered phantom systems measured in this study. We compute these sensitivities for varying

contrast in reduced scattering coefficient between the top and bottom layers. Specifically, we

fix the bottom layer properties at µ
′

s,b = 1 mm−1, µa,b = 0.1 mm−1 and vary top layer reduced

scattering properties while matching the absorption properties with the bottom layer. The

variations in top layer scattering that we explore span µ
′
s,t = [0.4, 0.7, 1, 1.3, 1.6]×µ′s,b with

fixed top layer absorption (µa,t = 0.01 mm−1).

In Figure 3a–d, we show the spatial-frequency dependent reflectance sensitivities to (a)

bottom layer absorption; (b) top layer absorption; (c) bottom layer reduced scattering;

161



0.0 0.1 0.2 0.3 0.4
-1.5

-1.0

-0.5

0.0

0.0 0.1 0.2 0.3 0.4
0.00

0.02

0.04

0.06

0.0 0.1 0.2 0.3 0.4
-15

-10

-5

0

0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

Se
ns

iti
vi

ty
 d

R
/d

µt a

(a) (b)

(c) (d)

 Spatial Frequency (mm-1)

Se
ns

iti
vi

ty
 d

R
/d

µt s

 µt
s
 = 0.4 * µb

s

 µt
s
 = 0.7 * µb

s

 µt
s
 = µb

s

 µt
s
 = 1.3 * µb

s

 µt
s
 = 1.6 * µb

s

Se
ns

iti
vi

ty
 d

R
/d

µb a  
Se

ns
iti

vi
ty

 d
R

/d
µb s

Spatial Frequency (mm-1)

Figure 5.3: Reflectance sensitivities with respect to (a,b) absorption and (c,d) reduced
scattering coefficient for (a,c) bottom and (b, d) top layers, respectively, as a function of
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the case where µ′s,t = 0.4×µ′s,b. The red line indicates µ′s,t = 0.7×µ′s,b, the blue indicates µ′s,t
= µ′s,b, the green indicates µ′s,t = 1.3×µ′s,b and the magenta indicates µ′s,t = 1.6×µ′s,b.
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and (d) top layer reduced scattering coefficients. We note that reflectance sensitivity to

either top or bottom layer absorption is maximized at the lowest spatial frequencies and

drops by an order of magnitude once spatial frequencies exceed approximately 0.08 mm−1

for the bottom layer and 0.13 mm−1 for the top layer. Interestingly, in absolute terms,

the reflectance sensitivity to top layer absorption is roughly an order of magnitude smaller

than that for bottom layer absorption in this low spatial frequency regime. Moreover, the

reflectance sensitivity to absorption in either layer is weakly dependent on the scattering

contrast between the layers.

The spatial frequency dependent reflectance sensitivity to the reduced scattering coefficient

in either top or bottom layers shows a distinct peak at a non-zero spatial frequency. The

location of the peak sensitivity for the bottom layer is fixed at 0.06 mm−1 while the location

of this peak for top layer scattering shifts from 0.06 to 0.16 mm−1 as the scattering contrast

moves from being top layer dominant (µ
′
s,t = 1.6×µs,b) to bottom layer dominant (µ

′
s,t =

0.4×µs,b). In absolute terms, the reflectance sensitivity to scattering in the bottom layer can

be as much as 5× larger than the top layer sensitivity in this low spatial frequency regime.

However, at higher spatial frequencies exceeding fx = 0.3 mm−1, the reflectance sensitivity

to top and bottom layer scattering becomes comparable.

These sensitivity features motivate the design of an inversion algorithm using four stages,

each focused on the determination of specific optical parameters. In each stage we consider

measured reflectance values at specific spatial frequencies and 32 equispaced wavelengths

spanning λ = 450–1000 nm. Using the lsqcurvefit function in MATLAB, we seek to

determine optical parameters values that minimizes the least squares difference between a

SHEFN computation[21] for the SFD reflectance and the actual measurements. For the

SHEFN computation we consider a 9th order expansion of spherical harmonic functions

which provides a good balance between accuracy and computation expense. We will refer

to this as a SHEF9 computation for the remainder of the paper. We also chose to consider
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only 32 discrete wavelengths from the multi-spectral dataset since it provides a good balance

between spectral detail and computational expense. For the SHEF9 computations we assume

a single scattering anisotropy of 0.8 for both layers[31].

The details of the four stage process are as follows:

Stage 1: Recovery of layer specific reduced scattering spectra. In stage 1 we

obtain estimates for the reduced scattering coefficient spectra of the top and bottom layers.

Because the sensitivity to the top layer relative to the bottom layer increases at larger spatial

frequencies (Fig. 3c,d), we choose to analyze separately SFDS data obtained at six spatial

frequencies from two different spatial frequency bands (fx1 = [0, 0.02, . . . , 0.1] mm−1 and

fx2 = [0.3, 0.32, . . . , 0.4] mm−1). For each frequency band, we analyze the SFDS reflectance

spectra using a SHEF9 computation for a homogeneous medium and determine the values for

absorption and reduced scattering coefficients that result in a best fit. The presumption here

is that the reduced scattering properties obtained from the fx1 spatial frequency band will be

representative of the bottom layer while those obtained from the fx2 spatial frequency band

will be representative of the top layer. For simplicity, we assume the spectral dependence of

scattering to be governed by an inverse power law28 µ
′
s=A(λ/λ0)−b, where A is the reduced

scattering coefficient for λ0 = 750 nm. We discard predictions for optical absorption from

this stage.

Stage 2: Recovery of layer specific absorption spectra. In stage 2 we aim to recover

estimates for the absorption coefficient spectra of both top and bottom layers. We fix the

reduced scattering spectra for the top and bottom layers to those obtained via the Stage

1 analysis of SFDS data in high and low spatial frequency bands, respectively. To obtain

absorption spectra specific to both top and bottom phantom layers, we consider the SFDS

spectral data at spatial frequencies of fx = 0.01 and 0.02 mm−1 only. We choose these spatial

frequencies since our analysis in Fig. 3 reveals that the reflectance sensitivity to absorption

in either layer is maximized at lower spatial frequencies. Moreover, since the reflectance
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sensitivity to top layer absorption decays with spatial frequency more gradually than the

bottom layer, the SFDS data at fx = 0.02 mm−1 provides differentially more sensitivity to

top layer absorption relative to that obtained at fx = 0.01 mm−1. Given that the absorption

properties of most deep tissue layers are well characterized by a linear combination of the

absorption spectra of oxyhemoglobin, reduced hemoglobin, water, and lipid[45], we assume

that the spectral shape of the absorption spectra in the bottom layer is known a priori.

For the top layer, we adopt a more general approach and do not impose any assumptions

regarding the shape of the absorption spectra. We again apply the SHEF9 algorithm, with a

two-layer tissue geometry with known top layer thickness (90 or 300 µm). We fit the SFDS

data to the SHEF9 predictions by determining the optimal absorption coefficient values for

layers 1 and 2 while holding fixed the top and bottom layer reduced scattering coefficient

spectra obtained in Stage 1.

Stage 3: Refinement of bottom layer reduced scattering spectra. In stage 3, we

aim to refine bottom layer reduced scattering spectrum obtained in Stage 1. We use SFDS

data obtained at fx = 0.06 and 0.15 mm−1. These spatial frequencies are chosen since

0.06 mm−1 represents the spatial frequency that is maximally sensitive to bottom layer

scattering while 0.15 mm−1 retains significant sensitivity to bottom layer scattering while

also effectively eliminating sensitivity to both top and bottom layer absorption. We fix the

properties obtained from Stage 1 for the reduced scattering spectrum in the top layer and

from Stage 2 for top and bottom layer absorption spectra. We drop our constraint for the

bottom layer reduced scattering spectra to abide by an inverse power law and perform the fit

of the SFDS data to predictions provided by the layered SHEF9 model for each wavelength

independently.

Stage 4: Refinement of top layer absorption spectra. The goal of the final stage is

to improve the fit of top layer absorption. As in Stage 2, we again use SFDS data from

fx = 0.01 and 0.02 mm−1 and find the top layer absorption values at each wavelength that
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produces predictions from our layered SHEF9 model that best match the data. We fix the

top layer reduced scattering spectrum to that obtained in Stage 1, bottom layer absorption

spectrum to that obtained in Stage 2 and bottom layer reduced scattering to that obtained

in Stage 3. For our initial guess, we use the top layer absorption spectrum obtained from

Stage 2.

5.3 Results

5.3.1 Stage 1: Recovery of layer specific reduced scattering spec-

tra

Phantom 1: We show the results for Phantom 1 in Fig. 4a (bottom layer scattering) and 4d

(top layer scattering). The corresponding errors of these estimates are shown in Figs. 5a and

5d, respectively. For the 300µm thick top layer, the error in bottom layer reduced scattering

is typically 0.1 mm−1 except for λ > 450 nm where it is = 0.14 mm−1. The error in the

recovery of the 300µm thick top layer reduced scattering coefficient is largest at λ = 450 nm

at 0.256 mm−1 and steadily declines for larger wavelengths. For λ > 557 nm the error in

recovery of the 300µm thick top layer reduced scattering is < 0.1 mm−1. For the 90µm thin

top layer phantom, error in bottom layer reduced scattering is worst at λ = 628 nm where

µ
′
s is underestimated by 0.1 mm−1 with smaller errors occurring at all other wavelengths.

The maximal error in recovery of the 90µm thin top layer reduced scattering is 0.19 mm−1

at λ=450 nm and is reduced at all other wavelengths with errors < 0.1 mm−1 for λ 521 nm.

Phantom 2: The results for Phantom 2 are shown in Fig. 4b (bottom layer scattering) and

4e (top layer scattering.) Error is shown in Fig. 5b for top layer scattering and in Fig. 5e

for bottom layer scattering. For the thick top layer, the error in the bottom layer reduced

scattering error is < 0.1 mm−1 for all wavelengths, and < 0.05 mm−1 for all wavelengths
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apart from λ = 450nm, where it is 0.076 mm−1. The maximal error in estimation of the

300µm thick top layer reduced scattering is 0.15 mm−1 at λ = 450 nm, and falls below 0.1

mm−1 for λ 503 nm with typical errors of 0.06 mm−1. For the 90µm thin top layer, a

maximal error in the estimation of the bottom layer reduced scattering coefficient is 0.11

mm−1 occurring once again at λ = 450 nm. For λ 503 nm, this error is < 0.05 mm−1.

Top layer reduced scattering error for the 90µm thin top layer is within ±0.05 mm−1 at all

wavelengths.

Phantom 3: Figures 4c (bottom layer scattering) and 4f (top layer scattering) provide the

results from Phantom 3. Error is shown in Figs. 5c and 5f, respectively. For the 300µm thick

top layer, error in the recovery of the bottom layer reduced scattering is between –0.05 mm−1

and 0 at all wavelengths. Top layer reduced scattering error remains within ±0.07 mm−1.

For the 90µm thin top layer phantom for bottom layer reduced scattering is underestimated

by 0.05 mm−1 for all wavelengths. Error in the top layer reduced scattering is within ±0.05

mm−1 for all wavelengths.

5.3.2 Stage 2: Recovery of layer specific absorption spectra

In stage 2 we determine the magnitude of a pre-defined spectral shape for bottom layer

absorption and an initial estimate for the top layer absorption spectrum. Table 1 provides

the results for bottom layer absorption coefficient for each phantom. A recovered coefficient

value of β = 1 represents perfect recovery. For all phantoms with the 300µm thick top layer,

error in the recovery of µa was < 5%. For Phantoms 1 and 2, the error is < 1%, and for

Phantom 3, the error is approximately 4.5%. For the 90µm thin layer phantoms, we recover

the β value with less than 9% error overall. Specifically the error in the estimation of the

bottom layer absorption in Phantoms 1, 2, and 3 being 3.6, 6.2, and 8.1%, respectively.

We show the initial estimates for top layer absorption in Figs. 4g–i. It is important to
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remember that this is an intermediate step; the top layer absorption spectra obtained here

will be refined in stage 4. We comment on the accuracy of these estimates at four sets

of wavelengths: λ=450 nm, 450−600 nm, 600−850 nm, and >850 nm. For λ = 450 nm,

recovery of µa for the 300µm thick top layer phantom is overestimed between 0.04 and

0.08 mm−1, while the 90µm thin top layer phantoms experience very small errors (0.01

mm−1). For λ = 450−600 nm, the reference data for absorption drops to µa 0.07 mm−1, at

which point the method experiences difficulties in recovering the correct value, which often

results in an extreme underestimation of the absorption. Typically, recovery of µa for the

300µm thick top layer is worse than for the 90µm thin layer. Here, error for µa in 300µm

thick top layer phantoms is between 0.04 and 0.05 mm−1, while that of the 90µm thin top

layer phantoms is near 0.03 mm−1 for Phantoms 2 and 3. Interestingly, recovery of µa for

the 300µm thick top layer in Phantom 1 is accomplished with much smaller error than its

counterparts with Phantoms 2 and 3, while the recovery of µa in Phantom 3 with the 90µm

thin layer has negligible error. For λ = 600–850 nm, the reference data for µa experiences

a “double hump” with values between 0.01 and 0.02 mm−1. Despite some underestimation,

this spectral structure is well recovered in the inversion results for each phantom. Errors

for µa in 300µm thick top layer phantoms in this region are between 0.02 and 0.05 mm−1,

with best performance for Phantom 1. Cases with the 90µm thin layer have larger error

for µa at the shorter wavelengths and less at longer wavelengths when compared to 300µm

thick top layer phantoms. These error rates stay in the same general range as those for the

300µm thick top layer phantoms, but tend more towards 0.05 mm−1. For λ > 850 nm, the

reference data for µa experiences a drop off similar to when λ = 450−600 nm, falling as λ

increases until it levels off near 0.05 mm−1. We see a similar underestimation for µa in most

phantoms in this spectral regime, though here it is more pronounced in the cases with the

90µm thin top layer. Interestingly, when Phantoms 2 and 3 have 300 µm thick top layers, the

inversion results are less stable, involving a peak overestimation for µa near λ = 900 nm and

a peak underestimation near λ = 950 nm. Error for µa here ranges for all phantoms between
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±0.05 mm−1. When considering the combined results across all wavelengths, it is important

to note that the general shape of the µa spectrum is recovered in each phantom, generally

within ±0.05 mm−1, while significant underestimations are made when µa < 0.075 mm−1.

Interestingly, recovery of the absoption spectra for the 90µm thin top layer phantoms tend

to experience smaller absolute errors than for the 300µm thick top layer phantoms when λ

700 nm, while the opposite is true for λ > 700 nm.

Table 5.1: Coefficients (β) of the assumed absorption spectrum recovered for each base layer
choice and top layer thickness. Since the spectrum being fit is the reference data for bottom
layer absorption, β = 1 indicates perfect recovery.

Base Layer 90µm Top Layer β 300µm Top Layer β

1 1.04 1.00

2 0.94 0.99

3 0.92 0.95

5.3.3 Stage 3: Refinement of bottom layer reduced scattering

spectra.

The aim of stage 3 is to improve the initial estimates for bottom layer reduced scattering

coefficient spectra obtained in stage 1. We show the results for stage 3 in Fig. 4j–l, and the

relative error rates in Fig. 5j–l. In all phantoms, error in the recovery bottom layer µ′s was

reduced at nearly all wavelengths and with structure of the scattering spectra more faithfully

recovered as compared to the results in Stage 1. Fig. 4j shows the results for phantom 1. The

reduced scattering coefficient spectrum for the 300µm thick top layer phantom was recovered

with an absolute error of 0.02 mm−1 with the exception of an error of 0.06 mm−1 at λ = 450

nm. The 90µm thin top layer phantom performed slightly worse, with an underestimation

of the reduced scattering coefficient by 0.07 mm−1 at λ = 450nm and errors of ± 0.04 mm−1

at all other wavelengths. Fig. 4k shows the results for Phantom 2. The absolute error for
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the reduced scattering coefficient for thick top layer phantom was limited to ± 0.05 mm−1

except for λ = 450 nm where the error was 0.06 mm−1. Recovery of the reduced scattering

coefficient for thin top layer phantom was slightly better with error of ± 0.05 mm−1. Fig. 4l

shows results in the recovery of the bottom layer reduced scattering for Phantoms 3. The

performance for both thick and thin top layers is similar with scattering estimated with an

error of 0.05 mm−1 across the full spectral region.

5.3.4 Stage 4: Refinement of top layer absorption spectra

The aim of stage 4 is to improve the estimates for top layer absorption obtained in stage 2.

We show these results Fig. 4(m–o) and the absolute error of these estimates in Fig. 5(m–o).

We consider these results relative to those obtained in µa in stage 2.

Phantom 1: The recovered absorption spectra for the top layers in phantom 1 are shown

in Fig. 4m, with error in Fig. 5m. We obtain improvements in the predicted absorption

spectra for both thick and thin layers as compared to the results obtained in Stage 2 (shown

in Figs. 4g,5g). The overestimation for µa found in the case of the thick top layer at λ = 450

nm is approximately 0.03 mm−1, while the error remains minimal for the case of the thin

top layer. We see that error for µa is likewise reduced for both the thin and thick top layer

cases with improvements between 0 and 0.02 mm−1 in the λ = 450−600 nm spectral region.

We see greater improvements in µa error in the λ = 600−850 nm wavelength intervals,

particularly for the thick top layer with improved accuracy with µa errors generally below

±0.03 mm−1 for the thick top layer and 0.04 mm−1 for the thin top layer. For λ > 850 nm

we obtain slightly worse results until λ = 920 nm after which the errors obtained in Stages 2

and 4 are essentially equivalent. The absorption spectra obtained for Phantom 1 in Stage 4

improves upon Stage 2 for the entire interval of λ = 450−920 nm, beyond which the recovery

is equivalent. Errors in the recovered top layer absorption are limited to 0.04 mm−1 for λ
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= 450−920 nm.

Phantom 2: Recovery of top layer absorption spectra in Phantom 2 is shown in Fig. 4n,

with absolute error shown in Fig. 5n. For the case with the thick top layer, we see overall

improvement in capturing the shape of the absorption spectra with slight reductions in the

absolute error. This is seen particularly as a lower (by 0.02 mm−1) overestimation of µa

when λ = 450 nm, and a less pronounced underestimation in the λ = 450−600 nm range

(despite having a similar minimum). The “double hump” of µa is once again captured in

the λ = 600−850 nm spectral range, with smaller (between 0 and 0.01 mm−1 reduction)

underestimation for the thick top layer phantom. For λ > 850 nm, both thick and thin

top layer phantoms experience a sharp decline as λ increases, ending in the near 0 values

observed earlier. This is in contrast to the thick top layer performance from Stage 2, which

involved an overestimation of µa when λ = 880−920 nm. Errors remain similar in absolute

value to those of Stage 2, but are more uniform across wavelength and better represents the

overall shape of the reference absorption spectrum.

Phantom 3: Recovery of top layer absorption spectra in Phantom 3 is shown in Fig. 4o, with

absolute error shown in Fig. 5o. For the thick top layer phantom, the initial overestimation

at λ = 450 nm is actually worse, increasing to 0.05 mm−1 as compared to 0.04 mm−1 in

Stage 2. While the absolute error is worse in many spectral regions, the recovered spectral

shape is better captured as compared to Stage 2 and we underestimate the absorption by

only 0.05 mm−1 in the case of the thick top layer phantom at λ = 588 nm, with a smaller

underestimation (0.03 mm−1) for the thin top layer phantom. Absolute error in absorption

stabilizes to within ±0.04 mm−1 for λ = 605−795 nm. For longer wavelengths we recover a

more accurate spectral shape for the case of the thick top layer and comparable results for

the case of the thin layer as compared to Stage 2. This manifests in the same way it does for

Phantom 2, with an elimination of the overestimation found in Stage 2, once again resulting

in a more accurate recovery of the spectral structure of µa.
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5.4 Discussion

Our method demonstrates the broad recovery of the bottom layer absorption and reduced

scattering coefficients as well as the top layer reduced scattering coefficients across all wave-

lengths. Moreover, there are specific spectral regions in which the top layer absorption is

reliably recovered. Specifically, bottom layer values for the reduced scattering coefficient are

generally within 5% of the reference values. Moreover, bottom layer absorption coefficients

are typically recovered within the 5% range with a worst case error of 8.1%. Similarly, the

top layer reduced scattering coefficient values obtained in stage 1 are typically within 10%

of known values. In each case, the general spectral shape of the top layer reduced scattering

spectrum is recovered. Typically, the maximum error for the top layer reduced scattering

coefficient is observed at λ = 450 nm which may be indicative of the limitations of using a

single inverse power law across the entire wavelength range. Attempts to further improve

the fit for top layer scattering without a priori assumption for the spectral shape of the top

layer reduced scattering coefficient have not been reliably successful. We believe that these

problems stem primarily from the intrinsically low measurement sensitivity to top layer pa-

rameters, as shown in Fig. 3. Specifically, the reflectance sensitivities to top layer reduced

scattering and absorption coefficients are roughly an order of magnitude smaller than the

corresponding bottom layer parameters and compromises our ability to obtain accurate mea-

sures for top layer optical properties. However, we note that the spatial frequency at which

we have maximal sensitivity to the top layer reduced scattering coefficient (Fig. 3d) changes

based on the scattering contrast between the two layers. Therefore, improvements in the

recovery of top layer scattering in Stage 3 may be obtained by an inversion approach that

adaptively selects data from different spatial frequencies. These frequency selections must

provide sufficient sensitivity and specificity to enable differentiation between top and bottom

layer properties based upon preliminary estimates obtained from Stage 1.

The greatest need for improvement of our algorithm pertains to the recovery of the top layer
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absorption spectra. It should be noted that the top layer thicknesses tested have exceeding

small absorption optical densities in the range 10-3–10-1. We believe that the difficulties in

the recovery of top layer absorption stem from the same causes that hamper the recovery

top layer reduced scattering. Recovery of top layer absorption is further compromised by the

fact that the reflectance sensitivity to both top and bottom layer absorption is maximized at

the similar spatial frequencies. This limits the use of spatial frequency selection to provide

differential absorption sensitivity to one layer versus the other. Unfortunately, the shapes

of absorption spectra vary greatly between different molecules, as compared to scattering

spectra for different scatterers[23]. Moreover, the greater multiplicity of absorbers that reside

in superficial tissue layers[74] preclude the use of simplifying assumptions for the spectral

shape of the top layer absorption coefficient. The most problematic feature in the recovered

absorption coefficient spectra are the near zero values that appear at many wavelengths.

Interestingly, the recovery of near zero absorption values occuring for λ = 520–570 nm for

300µm layer phantoms do not appear as commonly in the results for the 90µm layer phan-

toms. This is counterintuitive, though it may be due to the fact that a larger absorption

coefficient in thin layer will have a similar impact on the measured reflectance as a smaller

absorption coefficient in a thicker layer. This, combined with smaller errors in other param-

eters, may explain why we do not see such severe underestimates in the top layer absorption

for the 90µm layer phantoms at these wavelengths. While we can find no single perfect

predictor for this phenomenon in any reference spectrum, it appears only when the top layer

absorption falls below 0.075 mm−1. When top layer absorption is above these values, results

are much better, with typical errors in the 15–30% range. Indeed, the refinement in the top

layer absorption spectra in Stage 4 generally results in improved recovery, particularly in the

λ = 450–600 nm spectral region. For λ = 600−850 nm, we generally observe reduction in

error for all phantoms. This wavelength interval carries useful information for chromophores

such as oxy and deoxyhemoglobin and our method produces reliable results in this wave-

length range. It is also possible that the use of oblique incident radiation and measurement
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of spatial phase shifts may provide more sensitivity to top layer optical parameters[21, 4]

and this may be a subject for future investigation.

Comparison of our results to other studies using analytical approaches is challenging since

none have provided accurate results in systems where the top layer thickness l∗ while we have

exclusively focused on layered systems with top layer thicknesses in the range of 0.1−0.8l∗.

The performance of our staged algorithm competes favorably as compared to those reported

in previous perturbation Monte Carlo methods[64]. However, those studies focused on opti-

cal property recovery at a single wavelength as opposed to multi-spectral recovery of optical

properties. Published studies using LUT based methods[18, 77] involved biologically sim-

plifying assumptions such as uniform scattering properties across all layers. Such methods

will also have difficulty as the number of unknown parameters increases, due to the relation-

ship between dimensionality of the required lookup table and the requirements to generate

and store such tables. Multi-stage algorithmic approaches using non-linear optimization

methods such as the one that we have presented, should experience more linear growth in

complexity as additional parameters are introduced. In such algorithms, each stage provides

an initial estimate for the parameter values, or refines an earlier fit for a limited number of

parameters, rather than having to determine all the unknown parameters simultaneously.

Moreover, our SHEF9 forward solver can easily implement alternate single scattering phase

functions without changes in the underlying inversion algorithm. By contrast, consideration

of alternate single-scattering phase functions or even a different single scattering anisotropy

value would necessitate perturbation MC or LUT methods to generate entirely new sets of

photon biographies or tables.
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5.5 Conclusion

We present a staged inversion algorithm using an approximate deterministic RTE solver

to recover the optical properties of layered media using SFDS data over a broad range of

wavelengths. Our approach assumes a known top layer thickness and knowledge of the

wavelength dependence of the bottom layer absorption coefficient. Bottom layer absorption

and reduced scattering coefficients are recovered within 10% error, with the majority of error

being < 5%. Top layer absorption properties are recovered with 15–30% error within the

λ = 600-–800 nm spectral window. This method provides accuracy comparable to current

perturbation Monte Carlo methods that have provided recovery of optical properties at single

wavelengths and is able to recover the optical properties of a top layer with thickness down

to l∗/10.

This method is scalable to allow the recovery of optical properties at any number of wave-

lengths. In this regard, the ability to perform fits on multi-/hyperspectral data sets is limited

solely by the available computational power and need for rapid processing. If computational

power is limited, future work to improve the efficiency of stage 2 should be prioritized as

this stage involves a multi-spectral inversion of dimension equal to the sum of the number

of wavelengths in the data set and the number of chromophore concentrations to be deter-

mined. This is in contrast to the lower dimensional fits performed in all other stages of this

inversion scheme.

Our method achieved these levels of accuracy while requiring far less computational expense

when compared to current Monte Carlo based methods. Moreover, our approach dispenses

with many unrealistic assumptions used in the construction of Monte Carlo look up tables

e.g., assuming uniform scattering properties across layers. The use of the SHEFN radiative

transport solver[21] provides a computational flexibility that allows for the use of different

scattering phase functions with ease. In addition, the lack of a lookup table and more modest
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growth in computational expense with an increase in the number of unknown parameters

potentially allows this approach to be applied to tissues of much greater complexity. When

compared to other analytic solvers, particularly those using the standard diffusion approx-

imation, we have enabled the capacity to obtain optical properties from both layers of a

multi-layered tissue with layer thicknesses < l∗ [34, 33? ]. In fact, we are unaware of other

existing approaches that makes use of analytic solvers to recover optical absorption and scat-

tering parameters layered tissues with characteristic layer thickness < l∗ from multispectral

data.

Future work to improve accurate recovery of the top layer absorption spectrum will focus

on eliminating the need to assume a known top layer thickness, which is common across

many methods[64, 43, 77]. The elimination of these problems would be useful for any appli-

cation which relies on sensitive and accurate recovery of these parameters. We believe that

algorithms that implement adaptive selection of data at specific spatial frequencies based

on reflectance sensitivity characteristics would be of particular use, particularly since these

characteristics vary significantly with the ratio of reduced scattering between the top and

bottom layers. The selection of optimal spatial frequencies when using an adaptive inversion

approach can be informed by the calculation of sensitivity curves such as those presented in

Fig. 3.
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Figure 5.4: Inversion results. In all graphs, reference data is shown in black, SHEF9 results
for a 90 µm top layer are shown in blue and SHEF9 results for a 300 µm top layer are
shown in red. (a–f) show the stage 1 results, in which initial guesses for top and bottom
layer scattering spectra are recovered. (a–c) show the reference scattering spectra for their
respective base layers, and homogeneous SHEF9 results for data taken with the fx1 spatial
frequency band. (d–f) show the reference scattering spectra for the top layer alone and the
homogeneous SHEF results using data from the fx2 spatial frequency band. (g–i) show the
top layer absorption spectra fits from Stage 2, using results from stage 1 for top and bottom
layer scattering. (j–l) show the stage 3 results in which recovery of the bottom layer reduced
scattering coefficient spectrum is refined. (m–o) provide the stage 4 results which provides
the final result for the top layer absorption spectrum.
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Figure 5.5: Errors of inversion results. Each subfigure shows the error for thick top layer
(red) and thin top layer (blue) phantoms corresponding to the results from the same subfigure
shown in Figure 4.
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Chapter 6

Extensions and Future Directions

6.1 Introduction

In the previous chapters I have detailed both a mathematical justification and a MATLab

implementation of DSHEFN in a layered medium, as well as a staged inversion technique

which utilizes single SHEFN and data gathered from Spatial Frequency Domain Spectroscopy

to recover the optical properties of two layered tissue phantoms. These two, taken together,

lay out one immediate future direction and several more distant ones.

In the immediate sense, the application of DSHEFN to optical property recovery through

methods like SFDI/S is an obvious continuation of this work. I have shown that DSHEFN

provides robust results for a larger regime of optical properties and spatial frequencies. How-

ever, a deeper understanding of the structure of the eigenvectors used in the homogeneous

solution detailed by equation (2.36), as well as a rigorous analysis of the sensitivities of

the model with respect to the optical properties of each layer would be helpful in selecting

optimal parameters for simulation.
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6.2 DSHEFN Spectral Structure

Understanding the structure of the eigenvectors used in DSHEFN ’s homogeneous solution

is identical to understanding the spectral content of DSHEFN . As mentioned in Chapter 3,

the nature of DSHEFN ’s solution as a linear combination of vectors decaying exponentially

in z means that as z increases, the vector or vectors (in the case of degeneracy) with the

slowest rates of decay, which in the homogeneous solution corresponds to the vectors related

to the greatest negative eigenvalues. This is particularly clear in Section 3.4.5, where the

unbalanced ratio of fluence directed in the negative z direction to total fluence does not

match prediction by the commonly used Standard Diffusion Approximation, but does match

predictions by the dominant eigenvectors presented by both single SHEFN and DSHEFN .

These vectors commonly have significant quadratic or cubic terms, showing that not only

is the Standard Diffusion Approximation flawed even for z >> l∗, there can be interesting

structure to radiance distributions at any point deep within a medium.

The fact that predictions of the behavior of radiance can be made simply from an examination

of eigenvectors is important for two reasons. First, it provides phenomenological evidence

for the validity of both single SHEFN and DSHEFN . Second, it shows that important

information may be gleaned directly from the spectral structure of the problems presented

by these methods.

The first test of convergence of DSHEFN is that of this so called dominant vector to the

behavior of radiance as z grow arbitrarily large. The second test is the convergence of

DSHEFN ’s solution to the actual behavior of radiance in the so called ”near tissue,” where

multiple vectors make significant contributions. Due to the nature of DSHEFN ’s solution as a

linear combination of decaying terms, this is perhaps most apparent at the upper boundary

of the medium, at z = 0. However, this introduces the greatest difficulty of convergence

for DSHEFN : the non-differentiable point in γF (Ω) at the critical angle θc = sin−1(1/n).
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This critical angle defines the angular range over which radiance directed in the negative z

direction at the medium boundary is completely internally reflected. Note that γF is non-

differentiable at θc while L−S , the scattered radiance directed in the negative z direction,

is composed of a linear combination of smooth functions. Since the Marshak boundary

condition dictates that radiance directed in the positive z direction at z = 0 is the product

of these two functions, LS is expected to converge to a function with non-differentiable points

at z = 0. This prevents the easy assurance of exponential convergence, though as the results

given in Chapters 3 and 4 indicate, convergence does indeed occur for values of N which

enable quick calculation.

Understanding the structure of the eigenvectors used in the homogeneous solution for LS is a

crucial step to proving the rate of convergence of DSHEFN . Understanding this convergence,

in turn, is critical to confidently estimating the necessary order of expansion for DSHEFN

to ensure that the obtained solution will satisfy an end user’s desired level of accuracy.

Perhaps more importantly, understanding the construction of each vector in terms of all

parameters will allow the direct construction of these vectors, as opposed to the eigenvector

decomposition method currently used. This method accounts for over 90 percent of the com-

putational expense of DSHEFN , which means that its replacement via this fast calculation

method will enable far more iterations of DSHEFN per unit time, which in turn enables

both the use of higher order approximations and far lower computation times for inversion

methods such as that which was presented in Chapter 5. This inversion speed in particular is

critical to medical imaging applications; methods such as Spatial Frequency Domain Imag-

ing often attempt to provide high resolution in x and y, which in turn implies that many

inversions are necessary for a given data set. In addition, low processing times are necessary

for any imaging modality which wishes to provide real time video. These methods are highly

useful in clinical applications, yet are very demanding regarding data throughput.

The necessity of this understanding is made clear in the results shown in chapters 3 and 4.
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While DSHEF13 was generally the strongest performer shown in terms of relative error, it

is also the most expensive computationally. A deeper understanding of the spectral content

of both single SHEFN and DSHEFN will allow end users to intelligently choose orders of

expansion for various applications, or even switch bewteen them based upon fitting methods

used in inversion techniques.

6.3 Optical Property Recovery

Once the spectral structure of DSHEFN is better understood, the next step will be applying

it to the inversion technique described in Chapter 5 in lieu of single SHEFN . Even if it does

not provide a significant advantage in accuracy, it has been shown in Chapters 3 and 4 that

DSHEFN can provide accurate results for fluency and reflectance at reduced computational

expense when compared to single SHEFN . This staged inversion technique provides an

ideal entry point to the problem, as well as an excellent chance to test DSHEFN ’s ability

to provide meaningful results in challenging cases, such as media containing layers with

thicknesses significantly less than l∗. It will also provide opportunities to study the effect

of more general classes of scattering phase functions. Since the DSEHFN implementation

detailed in Chapter 3 does not require any specific structure of scattering phase function or

even restriction to a given class of phase functions, such as Henyey-Greenstein, moments of

these functions can be treated as any other parameter. Previous work has already shown

that not only is the structure of this function, and therefore the integral operator in which

it is included, highly influential on scattered radiance, it contains important physiological

information.

The easily extensible nature of DSHEFN to media composed of arbitrary numbers of layers

will allow the generalization of this staged inversion technique to such media, as well. Current

property recovery techniques rarely consider more than three layers, but the computational
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expense of the method in Chapter 5, as well as of the layered DSHEFN implementation

described in Chapter 4, grow linearly with the number of layers. The multilayered imple-

mentation of DSHEFN , in particular, is also easily parallelizable, since the most expensive

component is the eigenvector decomposition associated with each layer. These decomposi-

tions do not rely on one another, and so each can be performed concurrently with the others.

This is in stark contrast to the geometric increase in expense creating and storing Monte

Carlo based look up tables, which is perhaps the most common method in use at the time

of writing, and which has necessitated the use of various simplifying assumptions.

Ultimately, the major goal for DSHEFN is its incorporation into Spatial Frequency Domain

Tomography. This will require an implementation of DSHEFN which drops the assumption

of a medium composed of homogeneous tissue layers and simply treats the scattering and

absorption coefficients, as well as potentially the scattering phase function, as arbitrary

functions of position. It will also require a new inversion method, though this method’s form

will rely on the forward solution mentioned.

6.4 Conclusions

I have presented both mathematical justification and simulation results for a new, spectral

method of deterministically solving the Radiative Transport equation, as well as a staged

inversion technique for the recovery of optical properties from layered media to which this

technique may be applied. This method, which resolves around a double spherical har-

monic basis, provides a degree of accuracy for reconstructing scattered radiance in a layered

medium which is equal to or greater than that of other spectral methods and more robust

with respect to optical properties and spatial frequency. The MATLab implementation given

is easily extensible to an arbitrary number of layers, and provides simulation results which

show convergence to a Monte Carlo ”gold standard” both in functionals such as reflectance
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and fluence, but also in basic radiance without the use of post processing techniques, which

has been difficult for previous spectral methods. This method will enable optical imaging

modalities to deal with thin tissue layers and to explore problems related not only to absorp-

tion and scattering coefficients, but also the directionality of scattering within a medium,

particularly when dealing with high spatial frequencies. Future work in this area is expected

to enable new modalities such as Spatial Frequency Domain Tomography, which would be

of great utility in clinical applications.
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Appendix A

SHEFN Derivation

A.1 Method Overview

This appendix provides an in depth proof of the SHEFN method of solving the RTE. This

method uses a partial expansion in terms of Laplace’s Spherical Harmonic Functions and

follows six major steps:

• Convert scattered radiance, scattering phase and scattered radiance gain due to source

functions into finite expansions of spherical harmonics with unknown coefficients, or

moments. Assume that the moments of scattered radiance are smooth functions of

position.

• Eliminate the integral term using the orthonormality of the Spherical Harmonic Func-

tions and expand the directional derivative to convert the RTE to a system of partial

differential equations.

• Take the Fourier Transform with respect to spatial coordinates x and y of the resulting

system to obtain one of ordinary differential equations, whose solution gives a set of
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Transverse Fourier Moments (TFMs).

• Recast this system as a generalized eigenvalue problem to obtain these TFMs

• Solve the new system using boundary conditions which conserve hemispherical mo-

ments of radiance.

• Apply an Inverse Fourier Transform to the TFMs to obtain the original harmonic

moments as functions of position.

A.2 Laplace’s Spherical Harmonic Functions

Laplace’s spherical harmonic functions form an orthonormal basis of square-integrable func-

tions on the unit sphere, and are solutions to Laplace’s equation, ∇2Y = 0 in that same

geometry. Each function has an order l¿0 and a degree m, such that −l ≤ m ≤ l. Thus,

for instance, there are three degree 1 spherical harmonics: Y1,−1, Y1,0 and Y1,1. In terms

of recursion relations and N degree expansion, we consider all functions of order or degree

outside of the given ranges to be identically zero. The nonzero functions are defined in the

following manner:

Yl,m (µ, φ) =
√

2l+1
4π
∗ (l−|m|)!

(l+|m|)!Pl,m (µ) exp (imφ) (A.1)

Here, Pl,m is the degree l, order m Associated Legendre Polynomial. This function depends

only on the polar angle, while an azimuthal rotation term is introduced only for non-zero m.

The spherical harmonics equipped with the standard L2 inner product (< Yl,m, Yl′,m′ >=∫
4π
Yl,m(Ω)Yl′,m′(Ω)dΩ) form an orthonormal basis for all square integrable functions on

the unit sphere. This implies that there exist conjugate spherical harmonic functions, Y ∗l,m,
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defined as follows: Yl,−m = (−1)mY ∗l,m. The orthonormality of this basis for L22(S2) is crucial

to the SHEFNmethod.

A.2.1 Step 1 - Spherical Harmonic Expansion

Recall that the Radiative Transport Equation is given by:

∇ · ΩLS(r,Ω) + µtLS(r,Ω) = µs
∫

4π
LS (r,Ω′) p (Ω′ · Ω) dΩ′ +Q(r,Ω) (A.2)

The function for radiance can be expanded in terms of the spherical harmonic functions with

moments that are assumed to be smooth functions of position:

LS (r,Ω) =
∑N

l=0

[∑l
m=−lKl,mψl,m (r)Yl,m (Ω)

]
(A.3)

Here, Kl,m =
√

(l+m)!
(l−m)!

2l+1
4π

and ψl,m (r) are the moments of the spherical harmonic functions,

which are the primary quantities of interest for this method. A complete description of these

moments is equivalent to a solution to the RTE.

In a similar manner, the scattering phase function can be expanded first in terms of the

Legendre Polynomials, with an argument Ω′ ·Ω and of moments of
√

2l + 1gl. The spherical

harmonic addition theorem can then applied to change the expansion to spherical harmonic

functions:

p (Ω′ · Ω) =
∑N

l=0

[√
(2l + 1)glPl(Ω

′ · Ω)
]

=
∑N

l=0

[∑l
m=−l glY

∗
l,m (Ω′)Yl,m (Ω)

]
(A.4)

Finally, Q, the term describing the contribution from a collimated source to scattered radi-

ance, can be expanded in the following manner:
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LC (r,Ω) = µ̃s
µ0
p̃ (Ω0 · Ω)S (x, y | x0, y0) exp

(
− µ̃t
µ0
z
)

(A.5)

Here, p̃ represents a the scattering phase function after the application of Delta-Eddington

scaling, µ̃s = µs(1 − fδ) represents the change to the scattering coefficient associated with

this scaling, µ0 represents the cosine of the angle of the collimated source in the medium, S

represents a distribution of collimated source strength with respect to the x and y directions

and the exponential term defines the rate of decay of the source with respect to Delta-

Eddington.

Substitution of (A.3), (A.4) and (A.5) into the RTE returns the following:

∇ · Ω
∑N

l=0

[∑l
m=−lKlψl,m (r)Yl,m (Ω)

]
+ µt

∑N
l=0

[∑l
m=−lKlψl,m (r)Yl,m (Ω)

]
=

µs
∫

4π

(∑N
l=0

[∑l
m=−lKlψl,m (r)Yl,m (Ω′)

])(∑N
l=0

[∑l
m=−l plY

∗
l,m (Ω′)Yl,m (Ω)

])
dΩ′ +

µ̃s
µ0
C(r)

∑N
l=0

[∑l
m=−l p̃lY

∗
l,m (Ω0)Yl,m (Ω)

]
(A.6)

A.2.2 Step 2 - Simplification Using Harmonic Conjugates

The statement of the RTE in terms of spherical harmonics, moments, and other constants

allows the application of simplifications. First, note that the scattering term contains a

product of sums of arbitrarily many terms. This term expands to the following:

µs
∫

4π

(∑N
l=0

[∑l
m=−lKlψl,m (r)Yl,m (Ω′)

])(∑N
l=0

[∑l
m=−l plY

∗
l,m (Ω′)Yl,m (Ω)

])
dΩ′ (A.7)

Basic algebra and calculus convert it to:

µs
∫

4π
K0ψ0,0 (r)Y0,0 (Ω′)

(∑N
l=0

[∑l
m=−l plY

∗
l,m (Ω′)Yl,m (Ω)

])
dΩ′ + ...
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+µs
∫

4π
KN

[∑l
m=−l ψN,m (r)Y0,0 (Ω′)

]∑N
l=0

[∑l
m=−l plY

∗
l,m (Ω′)Yl,m (Ω)

]
dΩ′ (A.8)

Further distribution and application of the linearity of integrals gives the following:

µsK0p0ψ0,0 (r)Y0,0 (Ω)
∫

4π
Y0,0 (Ω′)Y ∗0,0(W ′)dΩ′ +

µsK0p1ψ0,0 (r)Y1,−1 (Ω)
∫

4π
Y0,0 (Ω′)Y ∗1,−1(W ′)dΩ′ +

...+µsKlpl′ψl,m (r)Yl′,m′ (Ω)
∫

4π
Yl,m (Ω′)Y ∗l′,m′(W

′)dΩ′ +

...+ µsKNpNψN,N (r)YN,N (Ω)
∫

4π
YN,N (Ω′)Y ∗N,N(W ′)dΩ′ (A.9)

While this expression is unwieldy, the orthonormality of the spherical harmonics may be

applied to simplify it. Recall that this orthonormality means that
∫

4π
Y ∗l,m (Ω)Yl′,m′ (Ω) dΩ =

1 if l = l′ and m = m′ and equals 0 otherwise. (A.9) can therefore be simplified to the

following form:

µs
∑N

l=0

[
Klpl

∑l
m=−l (ψl,m (r)Yl,m (Ω))

]
(A.10)

Substitution of (A.10) into (A.9) gives the following:

∇ · Ω
∑N

l=0

[∑l
m=−lKlψl,m (r)Yl,m (Ω)

]
+µt

∑N
l=0

[∑l
m=−lKlψl,m (r)Yl,m (Ω)

]
=µs

∑N
l=0

[
Klpl

∑l
m=−l (ψl,m (r)Yl,m (Ω))

]
+

µ̃s
µ0
C(r)

∑N
l=0

[∑l
m=−l p̃lY

∗
l,m (Ω0)Yl,m (Ω)

]
(A.11)

To create a system of partial differential equations from this, a specific order l∗ and degree

m∗ are selected, and each side of the equation is multiplied the conjugate Y ∗l∗,m∗ (Ω), giving:

∇ · Ω
∑N

l=0

[∑l
m=−lKlψl,m (r)Y ∗l∗,m∗ (Ω)Yl,m (Ω)

]
+

µt
∑N

l=0

[∑l
m=−lKlψl,m (r)Y ∗l∗,m∗ (Ω)Yl,m (Ω)

]
=

µs
∑N

l=0

[
Klpl

∑l
m=−l

(
ψl,m (r)Y ∗l∗,m∗ (Ω)Yl,m (Ω)

)]
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+ µ̃s
µ0
C(r)

∑N
l=0

[∑l
m=−l p̃lY

∗
l,m (Ω0)Y ∗l∗,m∗ (Ω)Yl,m (Ω)

]
(A.12)

Each side is then integrated over the unit sphere and basic rules of mathematics are once

again applied. This leaves an integro-differential equation:

∑N
l=0

[
Kl

∑l
m=−l∇ψl,m (r) ·

∫
4π

ΩY ∗l∗,m∗ (Ω)Yl,m (Ω) dΩ
]

+µt
∑N

l=0

[
Kl

∑l
m=−l ψl,m (r)

∫
4π
Y ∗l∗,m∗ (Ω)Yl,m (Ω) dΩ

]
=

µs
∑N

l=0

[
Klpl

∑l
m=−l

(
ψl,m (r)

∫
4π
Y ∗l∗,m∗ (Ω)Yl,m (Ω) dΩ

)]
+ µ̃s

µ0
C(r)

∑N
l=0

[∑l
m=−l p̃lY

∗
l,m (Ω0)

∫
4π
Y ∗l∗,m∗ (Ω)Yl,m (Ω) dΩ

]
(A.13)

While this may seem to be much more complicated, all but one of the integrals are equal to

zero, again due to orthonormality of the spherical harmonics. This leaves:

∑N
l=0

[
Kl

∑l
m=−l∇ψl,m (r)Kl

∫
4π
∇ · ΩY ∗l∗,m∗ (Ω)Yl,m (Ω) dΩ

]
+µt

∑N
l=0

[
Kl

∑l
m=−l ψl,m (r)

]
= µs

∑N
l=0

[
Klpl

∑l
m=−l ψ (r)

]
+ µ̃s
µ0
C(r)

∑N
l=0

[∑l
m=−l p̃lY

∗
l,m (Ω0)

]
(A.14)

This is simplified by converting Ω into Cartesian coordinates Ωx, Ωy and Ωz. Recurrence

relations are derived from this conversion. Note that ∇ · Ω = cos θ sinφ ∂
∂x

+ sin θ sinφ ∂
∂y

+

cosφ ∂
∂z

. Since this term is applied to linear combinations of Spherical Harmonic Functions,

the trigonoemtric functions by which we multiply create new combinations of those Spherical

Harmonics. We introduce the following constants to handle these relations:

al,m =
√

(l + 1 +m) (l + 1−m)

bl,m =
√

(l −m) (l +m)

cl,m =
√

(l +m) (l − 1 +m)

dl,m =
√

(l + 2−m) (l + 1−m)

el,m =
√

(l −m) (l − 1−m)

fl,m =
√

(l + 1 +m) (l + 2 +m)
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These relations convert (A.14) to the following system of PDEs:

∂

∂z
(al,mψl+1,m (r) + bl,mψl+1,m (r))

-
1

2

(
∂

∂x
− i ∂

∂y

)
(cl,mψl−1,m−1 (r) + dl,mψl+1,m−1 (r))

+
1

2

(
∂

∂x
+ i

∂

∂y

)
(el,mψl−1,m+1 (r) + fl,mψl+1,m+1 (r))

+(2l + 1)µt,lψl,m (r) = (2l + 1)
µ̃s
µ0

ql,m (Ω0)P (r) (A.15)

The following definitions are applied in (A.15):

ql,m (Ω0) = 1
Kl
p̃lY

∗
l,m (Ω0) (A.16)

µt,l = µt − µspl (A.17)

A.2.3 Step 3 - Transverse Fourier Transform

A transverse Fourier transform converts (A.15) from a system of partial differential equations

to one of ordinary differential equations. This converts the moments {ψl,m} to transverse

Fourier moments { ˜ψl,m}:

˜ψl,m (z|k) =
∫∞
−∞

∫∞
−∞ ψl,m (r) exp (−i (kxx+ kyy)) dxdy (A.18)

Note that this is with respect to x and y, leaving z alone. Similarly, recall that the simplifi-

cation of the source term, Q, is equal to S (x, y|x0, y0) exp
(
− µ̃t
µ0
z
)

. Since the source term is

considered to travel through the surface at an angle defined by (θ0, φ0), where θ0 is the angle

in the x − z plane and φ0 is in the y − z plane (which, by construction of the axes general

considered to be zero, but will be given in the general sense here) the Fourier transform of

this term cannot be taken as simply. Basic trigonometry defines the relation of the source
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term at a given depth with that at the surface, defining (x0,z, y0,z) as the center of the trans-

verse Gaussian distribution at depth z and (xz, yz) be the points at depth z corresponding

to a point (x, y) on the surface distribution. This results in the following relations:

xz = x+ z ∗ tan (θ0)

x0,z = x0 + z ∗ tan (θ0)

yz = y + z ∗ tan (θ0)

y0,z = y0 + z ∗ tan (φ0)

Note that for any depth, the difference of xz − x0,z = x − x0, with the same holding true

for y. Therefore, given a standard deviation σ for both directions, the source distribution at

(xz, yz) is given by:

S (xz, yz) = exp
(
− (x−x0)2+(y−y0)2

2σ2

)
(A.19)

Therefore, the transverse Fourier transform of this (A.19) is defined by:

S̃ (k) =
∫∞
−∞

∫∞
−∞ exp

(
− (x−x0)2+(y−y0)2

2σ2

)
exp (−i (kxx+ kyy)) dxdy (A.20)

The independence of x and y shows that:

S̃ (k) =
∫∞
−∞ exp

(
− (x−x0)2

2σ2

)
exp (−ikxx) dx ∗

∫∞
−∞ exp

(
− (y−y0)2

2σ2

)
exp (−ikyy) dy (A.21)

This is not directly solvable; to do so requires the Fourier Shift Theorem. This will be solved

in x for brevity; the procedure for y is identical:

∫∞
−∞ exp

(
− (x−x0)2

2σ2

)
exp (−ikxx) dx =

exp (−ikxx0)
∫∞
−∞ exp

(
− (x−x0)2

2σ2

)
exp (−ikx (x− x0)) d (x− x0)

= exp (−ikxx0)
∫∞
−∞ exp

(
− u2

2σ2

)
exp (−ikxu) du (A.22)
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Where u = x− x0. The integral term has a well understood solution:

√
2πσ exp (−σ2k2

x) (3.23)

The same technique can be applied to the transformed source term, with depth considered,

to give:

S̃ (z|k) = (2πσ2) exp (−i (kxx0,z + kyy0,z)) exp
(
−σ2

(
k2
x + k2

y

))
(A.24)

The values of x0,z and y0,z are substituted into (A.24), resulting in:

S̃ (z|k) = (2πσ2) exp (−iz (kxx0tan (θ0) + kyy0tan (φ0))) exp
(
−σ2

(
k2
x + k2

y

))
(A.25)

This can be rewritten as:

S̃ (z|k) = (2πσ2) exp (−µkz) exp
(
−σ2

(
k2
x + k2

y

))
(A.26)

The original definition of the Fourier transform results in:

S̃ (z|k) exp (µkz) =
∫∞
−∞

∫∞
−∞ exp

(
− (x−x0)2+(y−y0)2

2σ2

)
exp (−i (kxx+ kyy)) dxdy (A.27)

Here, µk = i ((kxx0tan (θ0) + kyy0tan (φ0))) and is therefore always purely imaginary. There-

fore, the term exp (ukz) always has an absolute value of 1 and simply changes phase with k

and z. It can now be asserted that:

P̃ (z|k) = S̃ (z|k) exp (−µdz) (A.28)

Here, µd = µk + µ̃t
µ0

. This results in an expression of:
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d
dz

(
al,m ˜ψl+1,m (z|k) + bl,m ˜ψl−1,m (z|k)

)
−

1
2

(ky − ikx)
(
cl,m ˜ψl−1,m−1 (z|k) + dl,m ˜ψl+1,m−1 (z|k)

)
+

1
2

(ky + ikx)
(
el,m ˜ψl−1,m+1 (z|k) + fl,m ˜ψl+1,m+1 (z|k)

)
+ (2l + 1)µt,l ˜ψl,m (z|k) =

(2l + 1) µ̃s
µ0
ql,m (Ω0) P̃ (z|k) (A.29)

Thus, the system of PDEs has been transformed into one of ODEs. It can be put in vector

notation:

A d
dz

Ψ̃ (z|k) +BΨ̃ (z|k) = Q̃ exp (−µdz) (A.30)

Here, Q̃ is the transverse Fourier transform of the source and Ψ̃ is the vector of Fourier

transformed spherical harmonic moments. The exponential has been factored out of C̃ (z|k)

to denote the decay with respect to z. The source vector, as well as the matrices A and

B, are therefore no longer functions of depth. Matrix A is also rank deficient, having rank

N2 +N despite being a square matrix of size N2 + 2N − 1.

Note that the relations due to the differential operators provide a special case when (l,m) =

(N,±N). In these cases, every coefficient coming from a spatial derivative is zero since either

the order or the degree (or both) of those coefficients would be outside of the normal range.

Replacing these coefficients with zeros gives us the following:

ψ∼N,±N (z|k) =

1

µtN

[
1
2

(ky ± ikx)
√

2N(2N−1)

2N+1
ψ∼N−1,±(N−1) (z|k) + µ∼s

µ0
qN,±N (Ω0)P (z|k)

]
(A.31)

This relation allows for the complete construction of B and Q̃, whereas A is already deter-

mined from the initial system. From the formation of the problem, one should note that A

is entirely real valued and symmetric and does not depend on k, owing to the expression

being differentiated with respect to z, whereas B is Hermitian and does depend on k.
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A.2.4 Step 4 - Converting to a Generalized Eigenvalue Problem

for the Transverse Fourier Moments

The vector problem presented in (A.31) is solved using both the homogenous and particular

solutions as follows:

˜ψl,m (z|k) =
˜
ψ

(h)
l,m (z|k) +

˜
ψ

(p)
l,m (z|k) (A.32)

The particular solution is given by:

Ψ̃(p) (z|k) = (µdA+B)−1 Q̃ exp (−µdz) (A.33)

The homogenous solution is given by:

Ψ̃(h) (z|k) = G ∗ exp
(
z
λ

)
(A.34)

For a matrix G of generalized eigenvectors. Substitution of (A.34) into (A.30) results in:

A
d

dz

[
(−µdA+ b)−1 Q̃ exp (−µdz) +G ∗ exp

(z
λ

)]
+B
[
(−µdA+ b)−1 Q̃ exp (−µdz) +G ∗ exp

(
z
λ

)]
=

Q̃ exp (−µdz) (A.35)

The next step is differentiation:

A
[
(−µd) (−µdA+ b)−1 Q̃ exp (−µdz) +

(
1
λ

)
G ∗ exp

(
z
λ

)]
+

B
[
(−µdA+ b)−1 Q̃ exp (−µdz) +G ∗ exp

(
z
λ

)]
= Q̃ exp (−µdz) (A.36)
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Which is further simplified to:

(
A 1
λ

+B
) (
G ∗ exp

(
z
λ

))
= 0 (A.37)

And finally recast as the generalized eigenvalue problem:

AG ∗ exp
(
z
λ

)
= −λBG (A.38)

The rank of A means that there will be N − 1 zero eigenvalues for this system. These come

in pairs of λ∗ and −λ∗, or positive and negative pairs, which are at most 1-fold degenerate.

An odd expansion order will result in N + 1 distinct eigenvalues whereas an even expansion

will result in N . Using the fact that these values occur in positive and negative pairs, the

homogeneous solution can be recast in a basis of the entries of G:

˜ψ(h) (z|k) =
∑ 1

2(N2+N)
j=1

[
C−j G

−
j exp

(
z
λ−j

)
+ C+

j G
+
j exp

(
z
λ+j

)]
(A.39)

Here λ−j = −λ+
j . One boundary condition allows further simplification: As depth approaches

infinity, the spherical harmonic moments (and therefore the transverse Fourier moments)

must approach zero. Therefore, the constants associated with the positive eigenvalues must

be zero. This also serves as a reminder to consider increasing depth to be movement in

the positive direction on the z axis; otherwise this would be reversed. Now, the transverse

Fourier moments can be understood as:

˜ψ(h) (z|k) =
∑ 1

2(N2+N)
j=1

[
C−j G

−
j exp

(
z
λ−j

)]
(A.40)

This allows the general solution of the ODE system defined in (A.29) to be understood as:

˜ψ(h) (z|k) =
∑ 1

2(N2+N)
j=1

[
C−j G

−
j exp

(
z
λ−j

)]
+ (µdA+B)−1 Q̃ exp (−µdz) (A.41)
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However, to find the actual constants
{
C−j
}

, one must apply the another boundary condi-

tion.

A.2.5 Step 5 - Solve the Generalized Eigenvalue Problem Using

Boundary Conditions

The Marshak Boundary condition, which states that at the boundary, (z = 0) the radiance

initially directed from the medium but reflected back be equal to the inwardly directed

scattered light, allows the solution of (A.41). Mathematically, this takes the following form

for a fixed l′ and m′ such that l′ −m′ is odd:

∫
µ>0

Ls (r = 0,Ω)Y ∗l′,m′ (µ, φ) dΩ =
∫
µ<0

Ls (r = 0,Ω)Y ∗l′,m′ (−µ, φ) γ (−µ) dΩ (A.42)

Here γ is the Fresnel reflection equation, which allows for a refractive index mismatch.

This is not in a directly applicable form to the SHEFN model. To correct this, Ls is expanded

on both sides of (A.42) in the manner defined by (A.3), which results in:

∫
µ>0

∫ 2π

0

∑N
l=0

∑l
m=−l [Klψl,m (r = 0)Yl,m (µ, φ)]Y ∗l′,m′ (µ, φ) dµdφ =∫

µ<0

∫ 2π

0

∑N
l=0

∑l
m=−l [Klψl,m (r = 0)Yl,m (−µ, φ)]Y ∗l′,m′ (−µ, φ) γ (−µ) dµdφ (A.43)

Once again, the orthonormality of the spherical harmonic functions will be used. First,

however, note that since this is a partial expansion, the linearity of integrals can be applied

to obtain:

∑N
l=0

∑l
m=−l

∫
µ>0

∫ 2π

0
[Klψl,m (r = 0)Yl,m (µ, φ)]Y ∗l′,m′ (µ, φ) dµdφ =∑N

l=0

∑l
m=−l

∫
µ<0

∫ 2π

0
[Klψl,m (r = 0)Yl,m (−µ, φ)]Y ∗l′,m′ (−µ, φ) γ (−µ) dµdφ (A.44)
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Furthermore, from here the values of Yl,m and Y ∗l′,m′ are substituted to obtain:

∑N
l=0

∑l
m=−l

∫
µ>0

∫ 2π

0

[
Klψl,m (r = 0)

√
2l+1
4π
∗ (l−|m|)!

(l+|m|)!Pl,m (µ) exp (imφ)
]
∗

(−1)m
′
√

2l′+1
4π
∗ (l′−|m|′′)!

(l′+|m′|)! Pl′,m′ (−µ) exp (im′φ) dµdφ =

∑N
l=0

∑l
m=−l

∫
µ<0

∫ 2π

0

[
Klψl,m (r = 0)

√
2l+1
4π
∗ (l−|m|)!

(l+|m|)!Pl,m (µ) exp (imφ)
]
∗

(−1)m
′
√

2l′+1
4π
∗ (l′−|m′|)!

(l′+|m′|)!Pl′,m′ (−µ) exp (im′φ) γ (−µ) dµdφ (A.45)

This can be further simplified through basic calculus and the independence of φ and µ to

separate the double integral into a product of integrals:

∑N
l=0

∑l
m=−lKlψl,m (r = 0) (−1)m

′
√

2l+1
4π
∗ (l−|m|)!

(l+|m|)! ∗
2l′+1

4π
∗ (l′−|m′|)!

(l′+|m′|)! ∗∫
µ>0

Pl,m (µ)Pl′,m′ (−µ) dµ ∗
∫ 2π

0
exp (i (m−m′)φ) dφ =

∑N
l=0

∑l
m=−lKlψl,m (r = 0) (−1)m

′
√

2l+1
4π
∗ (l−|m|)!

(l+|m|)! ∗
2l′+1

4π
∗ (l′−|m′|)!

(l′+|m′|)! ∗

∫
µ<0

Pl,m (µ)Pl′,m′ (−µ) γ (−µ) dµ ∗
∫ 2π

0
exp (i (m−m′)φ) dφ (A.46)

Note that since m and m′ are integers, the integral is nonzero if and only if m = m′:

∫ 2π

0
exp (i (m−m′)) dφ = 2πδm,m′ (A.47)

This gives an expression of:

∑N
l=0

∑l
m=−lKlψl,m (r = 0) (−1)m

′ 1
2
δm,m′

√
(2l + 1) (2l′ + 1) (l−|m|)!

(l+|m|)!
(l′−|m′|)!
(l′+|m′|)! ∗∫

µ>0
Pl,m (µ)Pl′,m′ (−µ) dµ =

∑N
l=0

∑l
m=−lKlψl,m (r = 0) (−1)m

′
δm,m′

√
(2l + 1) (2l′ + 1) (l−|m|)!

(l+|m|)!
(l′−|m′|)!
(l′+|m′|)! ∗
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∫
µ<0

Pl,m (µ)Pl′,m′ (−µ) γ (−µ) dµ (A.48)

Unless m = m′, both sides of the equation are simply 0. Therefore, a m may be replaced

with m′ as follows:

∑N
l=0 Kl,mψl,m′ (r = 0) (−1)m

′ 1
2

√
(2l + 1) (2l′ + 1) (l−|m′|)!

(l+|m′|)!
(l′−|m′|)!
(l′+|m′|)! ∗∫

µ>0
Pl,m′ (µ)Pl′,m′ (−µ) dµ =

∑N
l=0Kl,mψl,m′ (r = 0) (−1)m

′
√

(2l + 1) (2l′ + 1) (l−|m′|)!
(l+|m′|)!

(l′−|m′|)!
(l′+|m′|)! ∗

∫
µ<0

Pl,m′ (µ)Pl′,m′ (−µ) γ (−µ) dµ (A.49)

After that, the value of Kl,m is substituted in and more basic alegbra yields the following:

∑N
l=0 (2l + 1)ψ (r = 0)

√
(2l′ + 1) (l−|m′|)!

(l+|m′|)!
(l′−|m′|)!
(l′+|m′|)! ∗∫

µ>0
Pl,m′ (µ)Pl′,m′ (−µ) dµ =

∑N
l=0 (2l + 1)ψl,m′ (r = 0)

√
(2l′ + 1) (l−|m′|)!

(l+|m′|)!
(l′−|m′|)!
(l′+|m′|)! ∗

∫
µ<0

Pl,m′ (µ)Pl′,m′ (−µ) γ (−µ) dµ (A.50)

After which like summations can be combined, which results in:

∑N
l=0 (2l + 1)ψl,m′ (r = 0)

√
(2l′ + 1) (l−|m′|)!

(l+|m′|)!
(l′−|m′|)!
(l′+|m′|)! ∗[∫

µ>0
Pl,m′ (µ)Pl′,m′ (−µ) dµ−

∫
µ<0

Pl,m′ (µ)Pl′,m′ (−µ) γ (−µ) dµ
]

= 0 (A.51)

From here, note that the transverse Fourier Transform used earlier affects nothing but the

spatially dependent spherical harmonic moment, so therefore:
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∑N
l=0 (2l + 1) ˜ψl,m′ (z = 0|k)

√
(2l′ + 1) (l−|m′|)!

(l+|m′|)!
(l′−|m′|)!
(l′+|m′|)! ∗[∫

µ>0
Pl,m′ (µ)Pl′,m′ (−µ) dµ−

∫
µ<0

Pl,m′ (µ)Pl′,m′ (−µ) γ (−µ) dµ
]

= 0 (A.52)

The following integral term is defined for brevity’s sake:

Dl,l′,m′ = (2l + 1)
√

(2l′ + 1) (l−|m′|)!
(l+|m′|)!

(l′−|m′|)!
(l′+|m′|)! ∗[∫

µ>0
Pl,m′ (µ)Pl′,m′ (−µ) dµ−

∫
µ<0

Pl,m′ (µ)Pl′,m′ (−µ) γ (−µ) dµ
]

(A.53)

Which allows the Marshak condition to be expressed in the form:

∑N
l=0

[
Dl,l′,m′

˜ψl,m′ (z = 0|k)
]

= 0 (A.54)

The values of Dl,l′,m′ can be numerically estimated by Gaussian Quadrature. Of course, this

does not complete the problem, as the goal of the step is to obtain values for
{
C−j
}

. To do

this, first recall that the general solution is of the form:

˜ψl,m′ (z|k) =
∑ 1

2(N2+N)
j=1

[
C−j G

−
j exp

(
z
λ−j

)]
+ (µdA+B)−1 Q̃ exp (−µdz) (A.55)

Note that any value of z may be used to calculate Cj. Therefore, z = 0 is substituted for

simplicity’s sake, resulting in:

˜ψl,m′ (z|k) =
∑ 1

2(N2+N)
j=1

[
C−j G

−
j

]
+ (µdA+B)−1 Q̃ (A.56)

To relate this to the general boundary condition format, a matrix of the values Dl,l′,m′ is

used. The first index of D is defined as a one to one mapping for transverse Fourier moments

for possible values (l,m) whereas the second corresponds to (l′,m′). Structure is provided
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for j from the indices of the right hand side of the above equation, whereas that for i is

provided by the structure of j. Because of the nature of the integrals discussed earlier, any

pair i and j corresponding to moments where m 6= m′ will index a zero value for the matrix.

Otherwise, the expected value of Dl,l′,m′ is used. This allows the values of
{
C−j
}

, expressed

as a vector C, to be defined by the Matrix Equation:

C = (DG)−1
(
−D (µdA+B)−1 Q̃

)
(A.57)

Which completes the formulation of the boundary conditions, with the j element of C defined

as C−j .

A.2.6 Step 6 - Apply Inverse Fourier Transform to Obtain Spher-

ical Harmonic Moments

Once the values of
{
C−j
}

have been obtained, an inverse Fourier transform is applied to get

the original spherical harmonic moments {ψl,m :

ψl,m (r) = 1
4π

∫∞
−∞

∫∞
−∞

˜ψl,m (z|k) exp (i (kxx+ kyy)) dkxdky (A.58)

In the case of a source defined by a simple sinusoidal wave, this may be computed without

the use of integration or Inverse Fourier Transform functions due to the transform of that

wave. This makes the SHEFN method particularly useful for SFDI/S imaging methods,

since they tend to use sources which are single waves with predefined phase modulations.
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Appendix B

MATLab Code

B.1 dSHEFClean.m

% Clean copy of Double SHEF_N. This code requires that dSHEFinit.m be run

% first. That file will create matrices used for boundary conditions and

% the system of ODEs upon which DSHEF_N is based. dSHEFinit only needs to

% be run a single time so long as the choice of refractive index does not

% change, and only if matrix files have not previously been created.

%

% This code uses DSHEF_N to simulate scattered radiance in a medium

% consisting of two layers, both in the positive z direction with

% boundaries at z = 0 and z = z*, for some layer thickness. It assumes a

% source that is a delta function in Fourier space, or in other words a

% planar wave directed into the medium with a sinusoidal spatial modulation

% in the x direction and another in the y direction.
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%

% Each layer is assumed to have the same scattering phase function, and

% while a Henyey-Greenstein function is hard coded in, it can be replaces

% with any alternative phase function.

%

% By Sean Horan, 7/9/2020

order = 13; % The desired order of expansion in double spherical harmonics.

z_depth = 0; % The depth to be interrogated.

theta_0 = 0; % Polar angle of incidence of the source

phi_0 = 0; % Azimuthal angle of incidence of the source

mu_a_1 = 0.01; % Absorption coefficient of the top layer

mu_a_2 = 0.01; % Absorption coefficient of the bottom layer

mu_s_1 = 1.0; % Scattering coefficient of the top layer

mu_s_2 = 2.0; % Scattering coefficient of the bottom layer

thickness = 0.1; % Thickness of the top layer

g = 0.8; % Anisotropy of the scattering phase function

k_y = 0; % Wave number in the y direction (should be equal to 2*pi*f_y

k_x = 0; % Wave number in the x direction (should be equal to 2*pi*f_y

useFDelta = 0; % Keep at zero to not use a delta-Eddington approximation of

% the source function. Keep this at zero for now; there has

% not been a satisfactory method of applying this

% approximation in a double basis.

tic

% The following switch statement selects premade matrices for use in
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% DSHEF_N based on the order selected. This is the portion of code which

% requires that dSHEFinit be run once beforehand. It is possible to use

% Gauss-Legendre quadrature to calculate these more quickly, but it is not

% recommended because the functions involved are not finite order

% polynomials, and therefore standard Gaussian Quadrature (used in

% dSHEFinit.m) is recommended for a more accurate approximation.

% B_x_derivs and B_y_derivs are used to represent the recurrence relations

% introduced into DSHEF_N’s B matrix by the x and y terms of the

% directional derivative of the radiative transport equation. boundaryCoef

% is used in the application of the Marshak Boundary Condition. convMat is

% used to convert a vector representing a function in a single spherical

% harmonic basis to one in a double spherical hamornic basis, and its

% transpose is used to convert in the opposite direction.

switch order

case 1

B_x_derivs = xd1;

B_y_derivs = yd1;

boundaryCoef = bc1;

convMat = cm1;

case 2

B_x_derivs = xd2;

B_y_derivs = yd2;

boundaryCoef = bc2;

convMat = cm2;

case 3
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B_x_derivs = xd3;

B_y_derivs = yd3;

boundaryCoef = bc3;

convMat = cm3;

case 4

B_x_derivs = xd4;

B_y_derivs = yd4;

boundaryCoef = bc4;

convMat = cm4;

case 5

B_x_derivs = xd5;

B_y_derivs = yd5;

boundaryCoef = bc5;

convMat = cm5;

case 6

B_x_derivs = xd6;

B_y_derivs = yd6;

boundaryCoef = bc6;

convMat = cm6;

case 7

B_x_derivs = xd7;

B_y_derivs = yd7;

boundaryCoef = bc7;

convMat = cm7;

case 8

B_x_derivs = xd8;

B_y_derivs = yd8;
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boundaryCoef = bc8;

convMat = cm8;

case 9

B_x_derivs = xd9;

B_y_derivs = yd9;

boundaryCoef = bc9;

convMat = cm9;

case 10

B_x_derivs = xd10;

B_y_derivs = yd10;

boundaryCoef = bc10;

convMat = cm10;

case 11

B_x_derivs = xd11;

B_y_derivs = yd11;

boundaryCoef = bc11;

convMat = cm11;

case 12

B_x_derivs = xd12;

B_y_derivs = yd12;

boundaryCoef = bc12;

convMat = cm12;

otherwise

B_x_derivs = xd13;

B_y_derivs = yd13;

boundaryCoef = bc13;

convMat = cm13;
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end

% Calculate the total attenuation coefficient for each layer.

mu_t_1 = mu_s_1 + mu_a_1; % Total attenuation for the top layer

mu_t_2 = mu_s_2 + mu_a_2; % Total attenuation for the bottom layer

vecLength = 2*(order+1)^2; % Define the length of any vector representing a

% function in a double spherical hamornic basis

% of order N.

% Determine points and weights for Gaussian quadrature on the sphere. This

% quadrature will be used for calculating the A matrix used in DSHEF_N.

theta_in = asin(sin(theta_0)/n); % Change the polar angle of the source

% function due to refractive index

% mismatch, according to Snell’s Law.

mu_in = (cos(theta_in)+1)/2; % Calculate the compressed cosine of the input

% angle in the double spherical harmonic

% basis.

mu_in_single = cos(theta_in); % Calculate the compressed cosine of the

% input angle in the single spherical

% harmonic basis.

dphi = pi/(order + 1); % Choose azimuthal angles differences for use in

% Gauss-Legendre quadrature.

[mu_quad_temp, w_quad_temp] = GL(order+1); % Calculate polar angles and
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% function weights for

% Gauss-Legendre quadrature.

mu_quad_temp = (mu_quad_temp + 1)/2; % Convert polar angles for G-L to

% compressed ones for use in a double

% spherical harmonic basis.

w_quad_temp = 0.5*w_quad_temp; % Halve the weights for G-L for use in the

% double spherical harmonic basis.

phi_quad_temp = 0:dphi:(2*pi - dphi); % Calculate azimuthal angles for use

% G-L.

% Create matrices for use in G-L by repeating the vectors created

% previously.

phi_quad = repmat( phi_quad_temp’, order + 1, 1 );

mu_quad = repelem( mu_quad_temp, 2*order + 2 );

w_quad = repelem( w_quad_temp, 2*order + 2 ) * dphi;

% Create mesh grids for the angles used in G-L.

[mu,mu_prime] = meshgrid(mu_quad);

[phi,phi_prime] = meshgrid(phi_quad);

% Create matrices for spherical harmonic functions

YbarMat = zeros(vecLength/2,length(mu));
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PbarMat = zeros(order+1,length(mu_quad_temp));

for i = 1:vecLength/2

[l,m] = getSHFlm(i);

YbarMat(i,:) = ybar(l,m,mu_quad,phi_quad);

PbarMat(l+1,:) = legendreP(l,2*mu_quad_temp-1);

end

Getmutees = @(mua, mus, gees) mua + mus * (1 - gees);

% Several scattering phase functions are defined here. To use one, set

% phaseFunc = @(mu) desiredFunctionName. The default is set to

% Henyey-Greenstein.

nuFunc = @(mu,mu_prime,phi,phi_prime) ...

mu.*mu_prime + sqrt(1 - mu.^2).*sqrt(1 - mu_prime.^2).*cos(phi - phi_prime);

henyeyGreensteinFunc = @(mu,g) ...

(1 - g^2)./( (2) * (1 + g.^2 - 2.*g.*mu).^(3/2) );

alpha = 1;

K = ( alpha * g * (1 - g^2)^(2*alpha) ) / ...

(pi * ( (1 + g)^(2*alpha) - (1 - g)^(2*alpha) ) );

reynoldsMcCormickFunc = @(mu) K./(1 + g^2 - 2*g.*mu).^(-alpha - 1);

modifiedHenyeyGreensteinFunc = @(mu) alpha.*henyeyGreensteinFunc(mu) + ...

(1-alpha) .* 3 ./ (4*pi) .* mu.^2;

powersOfCosinesFunc = @(mu) 1./(4.*pi) .* ...

(order + 1) / 2.^order .* (1 + mu).^order;

modifiedPowersOfCosinesFunc = @(mu) alpha.*powersOfCosinesFunc(mu) + ...
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(1-alpha) .* 3 ./ (4*pi) .* mu.^2;

% This is where the actual phase function is chosen.

phaseFunc = @(mu) ...

henyeyGreensteinFunc((mu),g);

% Initialize vectors of phase function moments. These moments are in

% either single or double Legendre Polynomials, not any sort of

% spherical harmonic functions.

gees_up = zeros(order+1,0); % Upward moments (forward scattering direction)

% in double Legendre polynomials.

gees_down = zeros(order+1,0); % Downward moments (backward scattering

% direction) in double Legendre polynomials.

gees_single = zeros(order+1,0); % Moments for the entire scattering phase

% function in regular Legendre polynomials.

% Calculate the various forms of scattering moments using Gaussian

% quadrature. The upFunc and downFunc are point by point products of

% compressed (double) Legendre polynomials and the actual phase function.

% Recall that in this functional basis, the two bases are considered to

% point away from each other. This is why downFunc uses -mu as an

% argument.

% This loop calculates the double Legendre moments.
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for i = 1:order+1

upFunc = @(mu) phaseFunc(mu).*legendreP(i-1,2*mu-1);

downFunc = @(mu) phaseFunc(-mu).*legendreP(i-1,2*mu-1);

gees_up(i) = quadgk(upFunc,0,1);

gees_down(i) = quadgk(downFunc,0,1);

end

% This loop calculates the single Legendre moments.

for i = 1:order+1

singleFunc = @(mu) phaseFunc(mu).*legendreP(i-1,mu);

gees_single(i) = quadgk(singleFunc,-1,1);

end

% Use Gaussian quadrature to calculate the f_delta constant from

% delta-Eddington. The *(useFDelta ~= 0) term allows the user to choose

% whether or not they use this approximation.

% This calculates f-delta for use with double Legendre moments.

f_deltaFunc = @(mu) phaseFunc(mu).*legendreP(order+1,2*mu-1);

f_delta_double = quadgk(f_deltaFunc,0,1)*(useFDelta ~= 0);

% This calculates f-delta for the single Legendre moment case.

f_deltaFuncSingle = @(mu) phaseFunc(mu).*legendreP(order+1,mu)*useFDelta;

f_delta_single = quadgk(f_deltaFuncSingle,-1,1)*(useFDelta ~= 0);
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% This calculates the modified scattering phase functions for use with the

% source vector. Note that if f_delta = 0, these work out to a direct

% equivalence between gees_x_f_delta and gees_x.

gees_single_f_delta = (gees_single - f_delta_single)/(1 - f_delta_single);

gees_up_f_delta = (gees_up - f_delta_double)/(1 - f_delta_double);

% Be sure to define the variable f_delta as either f_delta_single or

% f_delta_double, depending on the user’s choice. This choice is defined

% by the source_toggle variable. 1 uses the single basis and any other

% value uses the double basis.

if source_toggle == 1

f_delta = f_delta_single;

else

f_delta = f_delta_double;

end

mu_t_1_tilde = (mu_a_1 + mu_s_1*(1-f_delta)); % Extinction coefficient for

% the top layer.

mu_t_2_tilde = (mu_a_2 + mu_s_2*(1-f_delta)); % Extinction coefficient for

% the bottom layer.

% Find moments for f_delta modified scattering phase function
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%cosTheta_1 = mu .* mu_prime ...

% + sqrt( 1 - mu.^2 ) .* sqrt( 1 - mu_prime.^2 ) .* cos( phi - phi_prime );

%cosTheta_2 = -mu .* mu_prime ...

% + sqrt( 1 - mu.^2 ) .* sqrt( 1 - mu_prime.^2 ) .* cos( phi - phi_prime );

%phases_fwd = phaseFunc(cosTheta_1);

%phases_back = phaseFunc(cosTheta_2);

kxy.kyPkxImag = k_y + 1i*k_x;

kxy.kyMkxImag = k_y - 1i*k_x;

kxy.magSq = k_x^2 + k_y^2;

% Create the blocks and then the whole matrix for A. Recall that this

% matrix represents the recurrence relations introduced by the z portion of

% the directional derivative.

A_Block = real(YbarMat*diag(mu_quad.*w_quad’)*YbarMat’);

A = [A_Block, 0*A_Block; 0*A_Block, -A_Block];

% Create the B matrix one block at a time, being conscious of the

% coordinate change between hemispheres. First, we construct half_1 and

% half_2 matrices, which calculate the contributions of single legendre

% moments to the upper and lower hemispheres.

half_1 = zeros((order+1)^2,(order+1)^2);

half_2 = zeros((order+1)^2,(order+1)^2);

for i = 1:(order+1)^2
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for j = 1:(order+1)^2

[l,m] = getSHFlm(i);

[l_prime,m_prime] = getSHFlm(j);

if m == m_prime

half_1(i,j) = gees_single(l+1)*createIplus(l_prime,l,m);

half_2(i,j) = gees_single(l+1)*createIminus(l_prime,l,m);

end

end

end

% The final scattering portion of the B matrix, scatterMat, comes from the

% use of the conversion matrix. The Iplus and Iminus terms, as well as left

% multiplication by convMat, form a matrix which converts double spherical

% harmonics to single, then applies the scattering phase function, then

% converts back from single to double.

scatterMat = convMat * [half_1,half_2];

% Create the total B matrix for the first layer. This is composed of the

% recurrence relations introduced by the x and y portions of the

% directional derivatives, plus total attenuation times the identity

% matrix, minus the scattering coefficient times the scattering matrix.

B_1 = 1i*k_x*[B_x_derivs, 0*B_x_derivs; 0*B_x_derivs, B_x_derivs] + ...

1i*k_y*[B_y_derivs, 0*B_y_derivs; 0*B_y_derivs, B_y_derivs] + ...

mu_t_1 * eye(2*(order+1)^2) - mu_s_1 * scatterMat;
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B_1 = round(B_1,8); % Round off at 8 decimal places to kill off imaginary

% components which are introduced by small errors from

% quadrature. These are commonly on the order of

% 10^-14 or lower, so 8 places will both ensure the

% loss of imaginary terms and preserve the function of

% the matrix.

% Repeat this for B_2.

B_2 = 1i*k_x*[B_x_derivs, 0*B_x_derivs; 0*B_x_derivs, B_x_derivs] + ...

1i*k_y*[B_y_derivs, 0*B_y_derivs; 0*B_y_derivs, B_y_derivs] + ...

mu_t_2 * eye(2*(order+1)^2) - mu_s_2 * scatterMat;

B_2 = round(B_2,8);

% Create vectors for the source contribution term Q. Begin by initializing

% the vectors.

source_base_up = zeros((order+1)^2,1); % Upper hemisphere portion of a

% vector set in a double spherical

% harmonic basis.

source_base_down = zeros((order+1)^2,1); % Lower hemisphere portion of a

% vector set in a double spherical

% harmonic basis.

source_base_single = zeros((order+1)^2,1); % Single spherical harmonic

% basis.
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% Populate the various source vectors by using the legendre moments and

% conjugate spherical harmonic functions.

for i = 1:(order+1)^2

[l,m] = getSHFlm(i);

source_base_up(i) = conj(ybar(l,m,2*mu_in-1,phi_in))*...

gees_up_f_delta(l+1);

source_base_down(i) = conj(ybar(l,m,2*mu_in-1,pi+phi_in))*...

gees_down(l+1);

source_base_single(i) = ...

conj(spherHarmlm_mu(l,m,mu_in_single,phi_in))*...

gees_single_f_delta(l+1);

end

% Create the actual base for the source vector with the proper value for

% f_delta.

if source_toggle == 1

source_base = convMat*source_base_single;

source_1 = source_base*mu_s_1*(1 - f_delta);

source_2 = source_base*mu_s_2*(1 - f_delta);

else

source_base = [source_base_up;source_base_down];

source_1 = source_base*mu_s_1*(1 - f_delta);

source_2 = source_base*mu_s_2*(1 - f_delta);

end
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% Calculate eigenpairs for the top layer A and B pair. These pairs are

% sorted by the eigenvalues, from lowest (most strongly negative) to

% highest (most strongly positive.)

[V_1,D_1] = eig(-B_1,A); % Calculate eigenpairs. This is the single most

% expensive portion of the code.

% These lines sort both vectors and values.

vals_1 = diag(D_1);

[~,idx_1] = sort(real(vals_1));

vals_1 = vals_1(idx_1);

vecs_1 = V_1(:,idx_1);

% These lines separate the vectors and values into positive and negative

% portions, as well as upper and lower hemisphere portions. For instance,

% vecs_1_neg_up takes the eigenvectors which correspond to negative

% eigenvalues and keeps the portion which contributes to the upper

% hemisphere of scattered radiance.

vecs_1_up = vecs_1(end/2+1:end,:);

vecs_1_down = vecs_1(1:end/2,:);

vals_1_neg = vals_1(find(real(vals_1) < -1e-8));

vals_1_pos = vals_1(find(real(vals_1) > 1e-8));

vecs_1_neg = vecs_1(:,find(real(vals_1) < -1e-8));

vecs_1_neg_up = vecs_1_neg(1:end/2,:);

vecs_1_neg_down = vecs_1_neg(end/2+1:end,:);
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vecs_1_pos = vecs_1(:,find(real(vals_1) > 1e-8));

vecs_1_pos_up = vecs_1_pos(1:end/2,:);

vecs_1_pos_down = vecs_1_pos(end/2+1:end,:);

% Repeat this process for the second layer.

[V_2,D_2] = eig(-B_2,A);

vals_2 = diag(D_2);

[vals_2,idx_2] = sort(real(vals_2));

vecs_2 = V_2(:,idx_2);

vecs_2_up = vecs_2(end/2+1:end,:);

vecs_2_down = vecs_2(1:end/2,:);

vals_2_neg = vals_2(find(real(vals_2) < -1e-8));

vals_2_pos = vals_2(find(real(vals_2) > 1e-8));

vecs_2_neg = vecs_2(:,find(real(vals_2) < -1e-8));

vecs_2_neg_up = vecs_2_neg(1:end/2,:);

vecs_2_neg_down = vecs_2_neg(end/2+1:end,:);

vecs_2_pos = vecs_2(:,find(real(vals_2) > 1e-8));

vecs_2_pos_up = vecs_2_pos(1:end/2,:);

vecs_2_pos_down = vecs_2_pos(end/2+1:end,:);

% Calculate the particular solutions for each layer. Recall that these

% are calculated using matrix inversion from the matrix form of the RTE.

part_1 = ( -(mu_s_1*(1 - f_delta) + mu_a_1) .* A + B_1)\source_1;

part_2 = ( -(mu_s_2*(1 - f_delta) + mu_a_2) .* A + B_2)\source_2;
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% Construct the matrix for the application of the Marshak boundary

% condition. The identity on the left side of the block matrix J is

% applied to scattered radiance in the positive z direction (into the

% medium) whereas the boundaryCoef matrix is defined by Fresnel’s law for

% internal reflection.

J = [eye((order+1)^2),-boundaryCoef];

% Construct matrix for final inversion to calculate eigenmoments for the

% homogeneous solution.

% The boundaryMat Matrix applies the Marshak condition to the eigenvectors

% for the upper layer at the boundary. The moments for eigenvectors

% corresponding to negative eigenvalues are calculated at z = 0, while

% those for eigenvectors corresponding to positive eigenvalues are

% calculated at z = z*, the layer thickness. That is why an exponential

% decay term is applied to the positive vectors but not the negative ones.

boundaryMat = J*[vecs_1_neg,vecs_1_pos*diag(exp(-thickness.*vals_1_pos))];

% The interfaceMat matrix applies the condition of equality between

% scattered radiance in the two layers to the eigenvectors of those layers.

% As in boundaryMat, the moments corresponding to the negative vectors of

% the first layer are calculated at z = 0, while those corresponding to the

% positive vectors of the first layer and the negative vectors of the

% second layer are calculated at z = z*, the layer thickness. Those

% corresponding to positive values in the second layer are not used because
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% total scattered radiance must decay to 0 as z approaches infinity, and

% the rates of decay are given by the eigenvalues.

interfaceMat = [[vecs_1_neg*diag(exp(thickness.*vals_1_neg)),...

vecs_1_pos],-vecs_2_neg];

inversionVec = [-J * part_1; (part_2 - part_1) * ...

exp(-(mu_a_1 + (1 - f_delta) * mu_s_1) * thickness)];

% The inversionMat matrix is simply the combination of the previous

% matrices, as well as a zero block in the first row representing the fact

% that radiance in the second layer are not directly affected by the

% Marshak condition.

inversionMat = [boundaryMat,zeros(size(boundaryMat,1),...

size(interfaceMat,2) - size(boundaryMat,2));interfaceMat];

% Perform the matrix inversion to obtain a vector of eigenmoments.

eigen_moments = inversionMat\inversionVec;

% Separate the eigenmoments into sections coresponding to positive and

% negative eigenvectors for different layers.

c_minus = eigen_moments(1:(order+1)^2); % Moments for top layer negative

% eigenvectors.

c_plus = eigen_moments(1+(order+1)^2:2*(order+1)^2); % Moments for top
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% layer positive

% eigenvectors.

d_minus = eigen_moments(1+2*(order+1)^2:end); % Moments for the bottom

% layer negative

% eigenvectors.

% Calculate the combined solution for scattered radiance, depending on the

% desired depth. This will be a vector of double spherical harmonic

% moments.

% First, determine which layer the solution will be calculated for.

if z_depth < thickness

% In the top layer, start with the particular solution, adjusted for

% the specified depth.

final_depth_refl_moments = part_1*exp(-mu_t_1*z_depth/mu_in);

% Next, add the homogeneous solution one moment and vector combination

% at a time. Positive and negative pairs are added at the same time.

for i = 1:(order+1)^2

final_depth_refl_moments = final_depth_refl_moments + ...

c_minus(i) * vecs_1_neg(:,i) * ...

exp( z_depth * (vals_1_neg(i)/mu_in )) + ...

c_plus(i) * vecs_1_pos(:,i) * exp( (z_depth-thickness) * ...
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(vals_1_pos(i)/mu_in ));

end

else

% In the bottom layer, start with the particular solution for that

% layer, adjusted for depth.

final_depth_refl_moments = part_2*exp(-mu_t_1*thickness/mu_in - ...

mu_t_2*(z_depth - thickness)/mu_in);

% Now, add in the components of the homogeneous solution, one vector

% and moment combination at a time. Only the negative moments are used

% in the bottom layer.

for i = 1:length(eigen_moments/2)

final_depth_refl_moments = final_depth_refl_moments + ...

d_minus(i) * vecs_2_neg(:,i) * exp( (z_depth-thickness) ...

* (vals_2_neg(i)/mu_in ));

end

end

% Split the vector of double spherical harmonic moments into upward and

% downward portions.

final_moms_up = ((final_depth_refl_moments(1:end/2)));

final_moms_down = ((final_depth_refl_moments(end/2+1:end)));
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% Obtain radiance as a function of cosine(theta) for the azimuthally

% symmetric case. Because of the way spherical harmonics work, this will

% also return the average radiance values across all phi for a given theta.

% Note that two graphs are created here, one for x_up and one for x_down.

[x_out_sym_up,x_out_sym_down,y_out_sym_up,y_out_sym_down] = ...

doublePGraphGen(getCenterSHF(final_moms_up),...

getCenterSHF(final_moms_down));

% Obtain a unified graph for radiance as a function of cosine(theta), where

% the radiance at the equator is the mean of its value for each side.

[x_out_sym,y_out_sym] = ...

doublePGraphGenCombined(getCenterSHF(final_moms_up),...

getCenterSHF(final_moms_down));

toc

B.2 DSHEF func

function[x_out_sym,y_out_sym] = DSHEF_func(mu\_a_1,mu_s_1,mu_a_2,mu_s_2,thickness,order,g,n,k_y)

% Clean copy of Double SHEF_N. This code requires that dSHEFinit.m be run

% first. That file will create matrices used for boundary conditions and

% the system of ODEs upon which DSHEF_N is based. dSHEFinit only needs to
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% be run a single time so long as the choice of refractive index does not

% change.

%

% This code uses DSHEF_N to simulate scattered radiance in a medium

% consisting of two layers, both in the positive z direction with

% boundaries at z = 0 and z = z*, for some layer thickness. It assumes a

% source that is a delta function in Fourier space, or in other words a

% planar wave directed into the medium with a sinusoidal spatial modulation

% in the x direction and another in the y direction.

%

% Each layer is assumed to have the same scattering phase function, and

% while a Henyey-Greenstein function is hard coded in, it can be replaces

% with any alternative phase function.

%

% This version of the code is meant to function within a function,

% taking in one spatial frequency and outputting a reflectiveness.

%

% By Sean Horan, 7/23/2020

% order = 13; % The desired order of expansion in double spherical harmonics.

z_depth = 0; % The depth to be interrogated.

theta_0 = 0; % Polar angle of incidence of the source

phi_in = 0; % Azimuthal angle of incidence of the source

% mu_a_1 = 0.01; % Absorption coefficient of the top layer

% mu_a_2 = 0.01; % Absorption coefficient of the bottom layer

% mu_s_1 = 1.0; % Scattering coefficient of the top layer

% mu_s_2 = 2.0; % Scattering coefficient of the bottom layer
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%thickness = 0.1; % Thickness of the top layer

% g = 0.8; % Anisotropy of the scattering phase function

% k_y = 0; % Wave number in the y direction (should be equal to 2*pi*f_y

k_x = 0; % Wave number in the x direction (should be equal to 2*pi*f_y

source_toggle = 0; % Set to 0 to represent source function in double

% spherical harmonics directly, set to anything else to

% represent first in single spherical harmonics and then

% convert to double.

useFDelta = 0; % Keep at zero to not use a delta-Eddington approximation of

% the source function. Keep this at zero for now; there has

% not been a satisfactory method of applying this

% approximation in a double basis.

% The following switch statement selects premade matrices for use in

% DSHEF_N based on the order selected. This is the portion of code which

% requires that dSHEFinit be run once beforehand. It is possible to use

% Gauss-Legendre quadrature to calculate these more quickly, but it is not

% recommended because the functions involved are not finite order

% polynomials, and therefore standard Gaussian Quadrature (used in

% dSHEFinit.m) is recommended for a more accurate approximation.

% B_x_derivs and B_y_derivs are used to represent the recurrence relations

% introduced into DSHEF_N’s B matrix by the x and y terms of the

% directional derivative of the radiative transport equation. boundaryCoef

% is used in the application of the Marshak Boundary Condition. convMat is

% used to convert a vector representing a function in a single spherical

% harmonic basis to one in a double spherical hamornic basis, and its
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% transpose is used to convert in the opposite direction.

filename = [’dshef’,num2str(order),’mats.mat’];

fileMats = open(filename);

convMat = fileMats.dshef.cm;

boundaryCoef = fileMats.dshef.bc;

B_x_derivs = fileMats.dshef.xd;

B_y_derivs = fileMats.dshef.yd;

% Calculate the total attenuation coefficient for each layer.

mu_t_1 = mu_s_1 + mu_a_1; % Total attenuation for the top layer

mu_t_2 = mu_s_2 + mu_a_2; % Total attenuation for the bottom layer

vecLength = 2*(order+1)^2; % Define the length of any vector representing a

% function in a double spherical hamornic basis

% of order N.

% Determine points and weights for Gaussian quadrature on the sphere. This

% quadrature will be used for calculating the A matrix used in DSHEF_N.

theta_in = asin(sin(theta_0)/n); % Change the polar angle of the source

% function due to refractive index

% mismatch, according to Snell’s Law.

mu_in = (cos(theta_in)+1)/2; % Calculate the compressed cosine of the input

% angle in the double spherical harmonic

% basis.
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mu_in_single = cos(theta_in); % Calculate the compressed cosine of the

% input angle in the single spherical

% harmonic basis.

dphi = pi/(order + 1); % Choose azimuthal angles differences for use in

% Gauss-Legendre quadrature.

[mu_quad_temp, w_quad_temp] = GL(order+1); % Calculate polar angles and

% function weights for

% Gauss-Legendre quadrature.

mu_quad_temp = (mu_quad_temp + 1)/2; % Convert polar angles for G-L to

% compressed ones for use in a double

% spherical harmonic basis.

w_quad_temp = 0.5*w_quad_temp; % Halve the weights for G-L for use in the

% double spherical harmonic basis.

phi_quad_temp = 0:dphi:(2*pi - dphi); % Calculate azimuthal angles for use

% G-L.

% Create matrices for use in G-L by repeating the vectors created

% previously.

phi_quad = repmat( phi_quad_temp’, order + 1, 1 );

mu_quad = repelem( mu_quad_temp, 2*order + 2 );

w_quad = repelem( w_quad_temp, 2*order + 2 ) * dphi;

% Create mesh grids for the angles used in G-L.
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[mu,mu_prime] = meshgrid(mu_quad);

[phi,phi_prime] = meshgrid(phi_quad);

% Create matrices for spherical harmonic functions

YbarMat = zeros(vecLength/2,length(mu));

PbarMat = zeros(order+1,length(mu_quad_temp));

for i = 1:vecLength/2

[l,m] = getSHFlm(i);

YbarMat(i,:) = ybar(l,m,mu_quad,phi_quad);

PbarMat(l+1,:) = legendreP(l,2*mu_quad_temp-1);

end

Getmutees = @(mua, mus, gees) mua + mus * (1 - gees);

% Several scattering phase functions are defined here. To use one, set

% phaseFunc = @(mu) desiredFunctionName. The default is set to

% Henyey-Greenstein.

nuFunc = @(mu,mu_prime,phi,phi_prime) ...

mu.*mu_prime + sqrt(1 - mu.^2).*sqrt(1 - mu_prime.^2).*cos(phi - phi_prime);

henyeyGreensteinFunc = @(mu,g) ...

(1 - g^2)./( (2) * (1 + g.^2 - 2.*g.*mu).^(3/2) );

alpha = 1;

K = ( alpha * g * (1 - g^2)^(2*alpha) ) / ...
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(pi * ( (1 + g)^(2*alpha) - (1 - g)^(2*alpha) ) );

reynoldsMcCormickFunc = @(mu) K./(1 + g^2 - 2*g.*mu).^(-alpha - 1);

modifiedHenyeyGreensteinFunc = @(mu) alpha.*henyeyGreensteinFunc(mu) + ...

(1-alpha) .* 3 ./ (4*pi) .* mu.^2;

powersOfCosinesFunc = @(mu) 1./(4.*pi) .* ...

(order + 1) / 2.^order .* (1 + mu).^order;

modifiedPowersOfCosinesFunc = @(mu) alpha.*powersOfCosinesFunc(mu) + ...

(1-alpha) .* 3 ./ (4*pi) .* mu.^2;

% This is where the actual phase function is chosen.

phaseFunc = @(mu) ...

henyeyGreensteinFunc((mu),g);

% Initialize vectors of phase function moments. These moments are in

% either single or double Legendre Polynomials, not any sort of

% spherical harmonic functions.

gees_up = zeros(order+1,0); % Upward moments (forward scattering direction)

% in double Legendre polynomials.

gees_down = zeros(order+1,0); % Downward moments (backward scattering

% direction) in double Legendre polynomials.

gees_single = zeros(order+1,0); % Moments for the entire scattering phase

% function in regular Legendre polynomials.

% Calculate the various forms of scattering moments using Gaussian

% quadrature. The upFunc and downFunc are point by point products of
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% compressed (double) Legendre polynomials and the actual phase function.

% Recall that in this functional basis, the two bases are considered to

% point away from each other. This is why downFunc uses -mu as an

% argument.

% This loop calculates the double Legendre moments.

for i = 1:order+1

upFunc = @(mu) phaseFunc(mu).*legendreP(i-1,2*mu-1);

downFunc = @(mu) phaseFunc(-mu).*legendreP(i-1,2*mu-1);

gees_up(i) = quadgk(upFunc,0,1);

gees_down(i) = quadgk(downFunc,0,1);

end

% This loop calculates the single Legendre moments.

for i = 1:order+1

singleFunc = @(mu) phaseFunc(mu).*legendreP(i-1,mu);

gees_single(i) = quadgk(singleFunc,-1,1);

end

% Use Gaussian quadrature to calculate the f_delta constant from

% delta-Eddington. The *(useFDelta ~= 0) term allows the user to choose

% whether or not they use this approximation.

% This calculates f-delta for use with double Legendre moments.
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f_deltaFunc = @(mu) phaseFunc(mu).*legendreP(order+1,2*mu-1);

f_delta_double = quadgk(f_deltaFunc,0,1)*(useFDelta ~= 0);

% This calculates f-delta for the single Legendre moment case.

f_deltaFuncSingle = @(mu) phaseFunc(mu).*legendreP(order+1,mu)*useFDelta;

f_delta_single = quadgk(f_deltaFuncSingle,-1,1)*(useFDelta ~= 0);

% This calculates the modified scattering phase functions for use with the

% source vector. Note that if f_delta = 0, these work out to a direct

% equivalence between gees_x_f_delta and gees_x.

gees_single_f_delta = (gees_single - f_delta_single)/(1 - f_delta_single);

gees_up_f_delta = (gees_up - f_delta_double)/(1 - f_delta_double);

% Be sure to define the variable f_delta as either f_delta_single or

% f_delta_double, depending on the user’s choice. This choice is defined

% by the source_toggle variable. 1 uses the single basis and any other

% value uses the double basis.

if source_toggle == 1

f_delta = f_delta_single;

else

f_delta = f_delta_double;

end

mu_t_1_tilde = (mu_a_1 + mu_s_1*(1-f_delta)); % Extinction coefficient for
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% the top layer.

mu_t_2_tilde = (mu_a_2 + mu_s_2*(1-f_delta)); % Extinction coefficient for

% the bottom layer.

% Find moments for f_delta modified scattering phase function

%cosTheta_1 = mu .* mu_prime ...

% + sqrt( 1 - mu.^2 ) .* sqrt( 1 - mu_prime.^2 ) .* cos( phi - phi_prime );

%cosTheta_2 = -mu .* mu_prime ...

% + sqrt( 1 - mu.^2 ) .* sqrt( 1 - mu_prime.^2 ) .* cos( phi - phi_prime );

%phases_fwd = phaseFunc(cosTheta_1);

%phases_back = phaseFunc(cosTheta_2);

kxy.kyPkxImag = k_y + 1i*k_x;

kxy.kyMkxImag = k_y - 1i*k_x;

kxy.magSq = k_x^2 + k_y^2;

% Create the blocks and then the whole matrix for A. Recall that this

% matrix represents the recurrence relations introduced by the z portion of

% the directional derivative.

A_Block = real(YbarMat*diag(mu_quad.*w_quad’)*YbarMat’);

A = [A_Block, 0*A_Block; 0*A_Block, -A_Block];

% Create the B matrix one block at a time, being conscious of the

% coordinate change between hemispheres. First, we construct half_1 and
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% half_2 matrices, which calculate the contributions of single legendre

% moments to the upper and lower hemispheres.

half_1 = zeros((order+1)^2,(order+1)^2);

half_2 = zeros((order+1)^2,(order+1)^2);

for i = 1:(order+1)^2

for j = 1:(order+1)^2

[l,m] = getSHFlm(i);

[l_prime,m_prime] = getSHFlm(j);

if m == m_prime

half_1(i,j) = gees_single(l+1)*createIplus(l_prime,l,m);

half_2(i,j) = gees_single(l+1)*createIminus(l_prime,l,m);

end

end

end

% The final scattering portion of the B matrix, scatterMat, comes from the

% use of the conversion matrix. The Iplus and Iminus terms, as well as left

% multiplication by convMat, form a matrix which converts double spherical

% harmonics to single, then applies the scattering phase function, then

% converts back from single to double.

scatterMat = convMat * [half_1,half_2];

% Create the total B matrix for the first layer. This is composed of the

% recurrence relations introduced by the x and y portions of the
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% directional derivatives, plus total attenuation times the identity

% matrix, minus the scattering coefficient times the scattering matrix.

B_1 = 1i*k_x*[B_x_derivs, 0*B_x_derivs; 0*B_x_derivs, B_x_derivs] + ...

1i*k_y*[B_y_derivs, 0*B_y_derivs; 0*B_y_derivs, B_y_derivs] + ...

mu_t_1 * eye(2*(order+1)^2) - mu_s_1 * scatterMat;

B_1 = round(B_1,8); % Round off at 8 decimal places to kill off imaginary

% components which are introduced by small errors from

% quadrature. These are commonly on the order of

% 10^-14 or lower, so 8 places will both ensure the

% loss of imaginary terms and preserve the function of

% the matrix.

% Repeat this for B_2.

B_2 = 1i*k_x*[B_x_derivs, 0*B_x_derivs; 0*B_x_derivs, B_x_derivs] + ...

1i*k_y*[B_y_derivs, 0*B_y_derivs; 0*B_y_derivs, B_y_derivs] + ...

mu_t_2 * eye(2*(order+1)^2) - mu_s_2 * scatterMat;

B_2 = round(B_2,8);

% Create vectors for the source contribution term Q. Begin by initializing

% the vectors.

source_base_up = zeros((order+1)^2,1); % Upper hemisphere portion of a

% vector set in a double spherical
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% harmonic basis.

source_base_down = zeros((order+1)^2,1); % Lower hemisphere portion of a

% vector set in a double spherical

% harmonic basis.

source_base_single = zeros((order+1)^2,1); % Single spherical harmonic

% basis.

% Populate the various source vectors by using the legendre moments and

% conjugate spherical harmonic functions.

for i = 1:(order+1)^2

[l,m] = getSHFlm(i);

source_base_up(i) = conj(ybar(l,m,2*mu_in-1,phi_in))*...

gees_up_f_delta(l+1);

source_base_down(i) = conj(ybar(l,m,2*mu_in-1,pi+phi_in))*...

gees_down(l+1);

source_base_single(i) = ...

conj(spherHarmlm_mu(l,m,mu_in_single,phi_in))*...

gees_single_f_delta(l+1);

end

% Create the actual base for the source vector with the proper value for

% f_delta.

if source_toggle == 1

source_base = convMat*source_base_single;

source_1 = source_base*mu_s_1*(1 - f_delta);

242



source_2 = source_base*mu_s_2*(1 - f_delta);

else

source_base = [source_base_up;source_base_down];

source_1 = source_base*mu_s_1*(1 - f_delta);

source_2 = source_base*mu_s_2*(1 - f_delta);

end

% Calculate eigenpairs for the top layer A and B pair. These pairs are

% sorted by the eigenvalues, from lowest (most strongly negative) to

% highest (most strongly positive.)

[V_1,D_1] = eig(-B_1,A); % Calculate eigenpairs. This is the single most

% expensive portion of the code.

% These lines sort both vectors and values.

vals_1 = diag(D_1);

[~,idx_1] = sort(real(vals_1));

vals_1 = vals_1(idx_1);

vecs_1 = V_1(:,idx_1);

% These lines separate the vectors and values into positive and negative

% portions, as well as upper and lower hemisphere portions. For instance,

% vecs_1_neg_up takes the eigenvectors which correspond to negative

% eigenvalues and keeps the portion which contributes to the upper

% hemisphere of scattered radiance.
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vecs_1_up = vecs_1(end/2+1:end,:);

vecs_1_down = vecs_1(1:end/2,:);

vals_1_neg = vals_1(find(real(vals_1) < -1e-8));

vals_1_pos = vals_1(find(real(vals_1) > 1e-8));

vecs_1_neg = vecs_1(:,find(real(vals_1) < -1e-8));

vecs_1_neg_up = vecs_1_neg(1:end/2,:);

vecs_1_neg_down = vecs_1_neg(end/2+1:end,:);

vecs_1_pos = vecs_1(:,find(real(vals_1) > 1e-8));

vecs_1_pos_up = vecs_1_pos(1:end/2,:);

vecs_1_pos_down = vecs_1_pos(end/2+1:end,:);

% Repeat this process for the second layer.

[V_2,D_2] = eig(-B_2,A);

vals_2 = diag(D_2);

[vals_2,idx_2] = sort(real(vals_2));

vecs_2 = V_2(:,idx_2);

vecs_2_up = vecs_2(end/2+1:end,:);

vecs_2_down = vecs_2(1:end/2,:);

vals_2_neg = vals_2(find(real(vals_2) < -1e-8));

vals_2_pos = vals_2(find(real(vals_2) > 1e-8));

vecs_2_neg = vecs_2(:,find(real(vals_2) < -1e-8));

vecs_2_neg_up = vecs_2_neg(1:end/2,:);

vecs_2_neg_down = vecs_2_neg(end/2+1:end,:);

vecs_2_pos = vecs_2(:,find(real(vals_2) > 1e-8));

vecs_2_pos_up = vecs_2_pos(1:end/2,:);

vecs_2_pos_down = vecs_2_pos(end/2+1:end,:);
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% Calculate the particular solutions for each layer. Recall that these

% are calculated using matrix inversion from the matrix form of the RTE.

part_1 = ( -(mu_s_1*(1 - f_delta) + mu_a_1) .* A + B_1)\source_1;

part_2 = ( -(mu_s_2*(1 - f_delta) + mu_a_2) .* A + B_2)\source_2;

% Construct the matrix for the application of the Marshak boundary

% condition. The identity on the left side of the block matrix J is

% applied to scattered radiance in the positive z direction (into the

% medium) whereas the boundaryCoef matrix is defined by Fresnel’s law for

% internal reflection.

J = [eye((order+1)^2),-boundaryCoef];

% Construct matrix for final inversion to calculate eigenmoments for the

% homogeneous solution.

% The boundaryMat Matrix applies the Marshak condition to the eigenvectors

% for the upper layer at the boundary. The moments for eigenvectors

% corresponding to negative eigenvalues are calculated at z = 0, while

% those for eigenvectors corresponding to positive eigenvalues are

% calculated at z = z*, the layer thickness. That is why an exponential

% decay term is applied to the positive vectors but not the negative ones.

boundaryMat = J*[vecs_1_neg,vecs_1_pos*diag(exp(-thickness.*vals_1_pos))];
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% The interfaceMat matrix applies the condition of equality between

% scattered radiance in the two layers to the eigenvectors of those layers.

% As in boundaryMat, the moments corresponding to the negative vectors of

% the first layer are calculated at z = 0, while those corresponding to the

% positive vectors of the first layer and the negative vectors of the

% second layer are calculated at z = z*, the layer thickness. Those

% corresponding to positive values in the second layer are not used because

% total scattered radiance must decay to 0 as z approaches infinity, and

% the rates of decay are given by the eigenvalues.

interfaceMat = [[vecs_1_neg*diag(exp(thickness.*vals_1_neg)),...

vecs_1_pos],-vecs_2_neg];

inversionVec = [-J * part_1; (part_2 - part_1) * ...

exp(-(mu_a_1 + (1 - f_delta) * mu_s_1) * thickness)];

% The inversionMat matrix is simply the combination of the previous

% matrices, as well as a zero block in the first row representing the fact

% that radiance in the second layer are not directly affected by the

% Marshak condition.

inversionMat = [boundaryMat,zeros(size(boundaryMat,1),...

size(interfaceMat,2) - size(boundaryMat,2));interfaceMat];

% Perform the matrix inversion to obtain a vector of eigenmoments.

eigen_moments = inversionMat\inversionVec;
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% Separate the eigenmoments into sections coresponding to positive and

% negative eigenvectors for different layers.

c_minus = eigen_moments(1:(order+1)^2); % Moments for top layer negative

% eigenvectors.

c_plus = eigen_moments(1+(order+1)^2:2*(order+1)^2); % Moments for top

% layer positive

% eigenvectors.

d_minus = eigen_moments(1+2*(order+1)^2:end); % Moments for the bottom

% layer negative

% eigenvectors.

% Calculate the combined solution for scattered radiance, depending on the

% desired depth. This will be a vector of double spherical harmonic

% moments.

% First, determine which layer the solution will be calculated for.

if z_depth < thickness

% In the top layer, start with the particular solution, adjusted for

% the specified depth.

final_depth_moments = part_1*exp(-mu_t_1*z_depth/mu_in);

% Next, add the homogeneous solution one moment and vector combination
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% at a time. Positive and negative pairs are added at the same time.

for i = 1:(order+1)^2

final_depth_moments = final_depth_moments + ...

c_minus(i) * vecs_1_neg(:,i) * ...

exp( z_depth * (vals_1_neg(i)/mu_in )) + ...

c_plus(i) * vecs_1_pos(:,i) * exp( (z_depth-thickness) * ...

(vals_1_pos(i)/mu_in ));

end

else

% In the bottom layer, start with the particular solution for that

% layer, adjusted for depth.

final_depth_moments = part_2*exp(-mu_t_1*thickness/mu_in - ...

mu_t_2*(z_depth - thickness)/mu_in);

% Now, add in the components of the homogeneous solution, one vector

% and moment combination at a time. Only the negative moments are used

% in the bottom layer.

for i = 1:(order+1)^2

final_depth_moments = final_depth_moments + ...

d_minus(i) * vecs_2_neg(:,i) * exp( (z_depth-thickness) ...

* (vals_2_neg(i)/mu_in ));

end

end
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% Split the vector of double spherical harmonic moments into upward and

% downward portions.

final_moms_up = ((final_depth_moments(1:end/2)));

final_moms_down = ((final_depth_moments(end/2+1:end)));

% Obtain radiance as a function of cosine(theta) for the azimuthally

% symmetric case. Because of the way spherical harmonics work, this will

% also return the average radiance values across all phi for a given theta.

% Note that two graphs are created here, one for x_up and one for x_down.

[x_out_sym_up,x_out_sym_down,y_out_sym_up,y_out_sym_down] = ...

doublePGraphGen(getCenterSHF(final_moms_up),...

getCenterSHF(final_moms_down));

% Obtain a unified graph for radiance as a function of cosine(theta), where

% the radiance at the equator is the mean of its value for each side.

[x_out_sym,y_out_sym] = ...

doublePGraphGenUnified(getCenterSHF(final_moms_up),...

getCenterSHF(final_moms_down));

end
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B.3 dSHEFinit.m

% This file creates necessary variables for the use of DSHEF. Four

% matrices are created:

%

% 1) Recurrence relations introduced by the x derivative.

%

% 2) Recurrence relations introduced by the y derivative.

%

% 3) The Marshak boundary condition, resulting from internal reflectance.

%

% 4) A conversion matrix for translation between vectors of double and

% single spherical harmonic moments.

%

% These matrices will be calculated for orders 1 through 13. Adding

% functionality for larger orders can be done by repeating the same code

% with a higher value for order.

%

% It is possible to produce these vectors more quickly using Gauss-Legendre

% quadrature, but because the functions used to not have finite polynomial

% expansions. This means that in general, MATLab’s quadgk function will

% return a closer approximation of the integrals use in this calculation.

% However, if speed is more important, the degrees of error are quite

% small.

%

% By Sean Horan, 7/19/2020
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n = 1.4; % The refractive index of the medium used. If this value changes,

% this file must be rerun.

% Create the conversion matrices.

cm1 = createConvMatHD(1,1);

cm2 = createConvMatHD(2,2);

cm3 = createConvMatHD(3,3);

cm4 = createConvMatHD(4,4);

cm5 = createConvMatHD(5,5);

cm6 = createConvMatHD(6,6);

cm7 = createConvMatHD(7,7);

cm8 = createConvMatHD(8,8);

cm9 = createConvMatHD(9,9);

cm10 = createConvMatHD(10,10);

cm11 = createConvMatHD(11,11);

cm12 = createConvMatHD(12,12);

cm13 = createConvMatHD(13,13);

% Create derivative matrices and boundary value matrices one at a time for

% each order. It should be obvious, but just in case, makeDSHEFbdry makes

% the boundary value matrix and makeDerivMats makes the derivative

% matrices.

order = 1;

makeDSHEFbdry;
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bc1 = boundaryCoef;

makeDerivMats;

xd1 = B_x_derivs;

yd1 = B_y_derivs;

order = 2;

makeDSHEFbdry;

bc2 = boundaryCoef;

makeDerivMats;

xd2 = B_x_derivs;

yd2 = B_y_derivs;

order = 3;

makeDSHEFbdry;

bc3 = boundaryCoef;

makeDerivMats;

xd3 = B_x_derivs;

yd3 = B_y_derivs;

order = 4;

makeDSHEFbdry;

bc4 = boundaryCoef;

makeDerivMats;

xd4 = B_x_derivs;

yd4 = B_y_derivs;

order = 5;
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makeDSHEFbdry;

bc5 = boundaryCoef;

makeDerivMats;

xd5 = B_x_derivs;

yd5 = B_y_derivs;

order = 6;

makeDSHEFbdry;

bc6 = boundaryCoef;

makeDerivMats;

xd6 = B_x_derivs;

yd6 = B_y_derivs;

order = 7;

makeDSHEFbdry;

bc7 = boundaryCoef;

makeDerivMats;

xd7 = B_x_derivs;

yd7 = B_y_derivs;

order = 8;

makeDSHEFbdry;

bc8 = boundaryCoef;

makeDerivMats;

xd8 = B_x_derivs;

yd8 = B_y_derivs;
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order = 9;

makeDSHEFbdry;

bc9 = boundaryCoef;

makeDerivMats;

xd9 = B_x_derivs;

yd9 = B_y_derivs;

order = 10;

makeDSHEFbdry;

bc10 = boundaryCoef;

makeDerivMats;

xd10 = B_x_derivs;

yd10 = B_y_derivs;

order = 11;

makeDSHEFbdry;

bc11 = boundaryCoef;

makeDerivMats;

xd11 = B_x_derivs;

yd11 = B_y_derivs;

order = 12;

makeDSHEFbdry;

bc12 = boundaryCoef;

makeDerivMats;

xd12 = B_x_derivs;

yd12 = B_y_derivs;
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order = 13;

makeDSHEFbdry;

bc13 = boundaryCoef;

makeDerivMats;

xd13 = B_x_derivs;

yd13 = B_y_derivs;

B.4 makeDSHEFbdry.m

% This file creates a matrix for the portion of the Marshak boundary

% condition representing internally reflected radiance which was initially

% directed out of the medium. Since this matrix is to be applied to DSHEF,

% there is no need to calculate its partner, which would be the matrix

% applied to radiance directed into the tissue. This other matrix is

% simply identity, due to the orthonormality of the basis.

%

% By Sean Horan, 7/19/2020

tic

% Note that everything is done in terms of mu=cos(theta), rather than just

% theta. It can be done either way.
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thetaCrit = asin(1/n); % Calculate the critical angle for internal

% reflectance.

% Calculate the angle of reflection for a given mu.

muRef = @(mu) sqrt(1 - n^2 .* (1 - mu.^2));

% Calculate the amount of internal reflection for a given mu, according to

% Fresnel’s laws.

rFunc = @(mu) 0.5 .* abs( (n * muRef(mu) - mu ) ...

./ ( n .* muRef(mu) + mu ) ).^2 ...

+ 0.5 .* abs( ( n .* mu - muRef(mu) ) ...

./ ( n .* mu + muRef(mu) ) ).^2;

% Initialize the boundary coefficient matrix.

boundaryCoef = zeros((order+1)^2);

% Calculate the matrix place by place.

for i = 1:(order+1)^2

for j = 1:(order+1)^2

% Determine l and m variables for two different double spherical

% harmonic functions.
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[l_1,m_1] = getSHFlm(i);

[l_2,m_2] = getSHFlm(j);

% Define a function by the product of the two double spherical

% harmonics chosen, as well as the function for internal

% reflectance.

bcFunc = @(mu) 2*pi .* ybar(l_1,m_1,mu,0) ...

.* ybar(l_2,m_2,mu,0) .* rFunc(mu);

% Actually calculate the integral, only if the degree of the two

% double spherical harmonics chosen is the same. This is just a

% time saver, since that integral will be zero in any other case.

if m_1 == m_2

boundaryCoef(i,j) = quadgk(bcFunc,0,1);

end

end

end

toc

B.5 makeDerivMats.m
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% This file creates the matrices for recurrence relations introduced by

% the x and y portions of the directional derivative of the RTE, applied to

% the DSHEF solution method.

%

% By Sean Horan, 7/19/2020

tic

% Initialize the two matrices.

B_x_derivs = zeros((order+1)^2);

B_y_derivs = zeros((order+1)^2);

% Calculate the values, entry by entry.

for i = 1:(order+1)^2

for j = 1:(order+1)^2

% Obtain the l and m values for the input and output double

% spherical harmonic functions.

[l_in,m_in] = getSHFlm(i);

[l_out,m_out] = getSHFlm(j);

% Defune a function for the product of two double spherical

% harmonics, without their exponential parts, times the sine of mu.

% We split the integral in this way to deal properly with both the
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% mu and phi portions. Unlike in makeDSHEFbdry, we cannot simply

% assume zeros when m_1 != m_2, because of the trig introduced

% by the directional derivatives. These are in turn introduced by

% the coordinate change from polar to Cartesian.

mufunc = @(mu) 2*getKlm(l_in,m_in)*getKlm(l_out,m_out)*...

legendrelm(l_in,m_in,2*mu-1)...

.*legendrelm(l_out,m_out,2*mu-1).*sqrt(1 - mu.^2);

% Calculate that integral across a hemisphere.

mucomp = quadgk(mufunc,0,1);

% Calculate each matrix entry. The entries in B_x_derivs are given

% by the previous integral times the integral of product of the

% exponential functions of the two double spherical harmonic

% functions times the cosine of phi for x and the sine of phi for

% y.

B_x_derivs(i,j) = mucomp*quadgk(@(phi) ...

exp(1i.*phi.*(m_in - m_out)).*cos(phi),0,2*pi);

B_y_derivs(i,j) = mucomp*quadgk(@(phi) ...

exp(1i.*phi.*(m_in - m_out)).*sin(phi),0,2*pi);

end

end

toc
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B.6 createConvMatHD.m

function [ convMat ] = createConvMatHD( dSHForder, sSHForder )

% This file creates matrix for the conversion of double to single spherical

% harmonic vectors. This matrix is composed of two halves, one converting

% the double spherical harmonics for the upward hemisphere, and one

% converting the double spherical harmonics for the downward hemisphere.

%

% By Sean Horan, 7/19/20

% Initialize the two matrix blocks.

convUp = zeros((dSHForder+1)^2,(sSHForder+1)^2);

convDown = zeros((dSHForder+1)^2,(sSHForder+1)^2);

% Calculate the two blocks simultaneously, entry by entry.

for i = 1:(sSHForder+1)^2

for j = 1:(dSHForder+1)^2

% Obtain the l and m values for the output single spherical

% harmonic and the input double spherical harmonic, respectively.
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[l_in,m_in] = getSHFlm(i);

[l_out,m_out] = getSHFlm(j);

% Calculte each term, if and only if the m values for input and

% output are identical. This is due to the structure of both

% single and double spherical harmonics: the exponential term of

% each is identical and causes an integral to be zero whenever the

% degrees are unequal. Note that these functions are given as a

% product of their components.

if m_in == m_out

convUp(j,i) = sqrt(8)*pi*getKlm(l_in,m_in)*getKlm(l_out,m_out)*...

quadgk(@(mu) legendrelm(l_in,m_in,mu) .* legendrelm(l_out,m_out,2*mu - 1), 0, 1);

convDown(j,i) = sqrt(8)*pi*getKlm(l_in,m_in)*getKlm(l_out,m_out)*...

quadgk(@(mu) legendrelm(l_in,m_in,-mu) .* legendrelm(l_out,m_out,2*mu - 1), 0, 1);

end

end

end

% Combine the two blocks into a final matrix.

convMat = [convUp;convDown];

end
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B.7 createIPlus.m

function [ output ] = createIplus( l_prime,l,m )

% This function caluclates the the integral of the l’,m double spherical

% harmonic function and the l,m single spherical harmonic function. This

% is used in the construction of the scattering portion of the B matrix for

% DSHEF. It allows the conversion from the single spherical harmonic

% expansion of the scattering phase function back to double spherical

% harmonics.

%

% By Sean Horan, 7/19/2020.

myFunc = @(mu,phi) sqrt(2)*2*pi*getKlm(l_prime,m).*getKlm(l,m)...

.*legendrelm(l_prime,m,2*mu-1).*legendrelm(l,m,mu);

output = quadgk(myFunc,0,1);

end

B.8 createIPlus.m

function [ output ] = createIminus( l_prime,l,m )
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% Make I_minus amount for given l_prime, l and m (used in scattering

% operator of RTE for DSHEF)

myFunc = @(mu) sqrt(2)*2*pi*getKlm(l_prime,m).*getKlm(l,m)...

.*legendrelm(l_prime,m,2*mu-1).*legendrelm(l,m,-mu);

output = quadgk(myFunc,0,1);

end

B.9 doublePGraphGen.m

function [ x_up,x_down,y_up,y_down ] = doublePGraphGen( gees_up,gees_down )

% This function creates x and y values for a plot based on the central

% moments of a vector of double spherical harmonics. It should be noted

% that this vector must already be pared down to the central moments, and

% should be split into one for the upwardly directed radiance (gees_up) and

% one for the downward directed radiance (gees_down). Note that there are

% two plots given: one for the upper hemisphere and one for the lower.

%

% By Sean Horan, 7/19/2020

% Take 100 linearly spaced angles from zero to pi, calculate their

% midpoints and then take the cosine. This could be done more elegantly

% but it’s a big priority for me (just being honest.)
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thetas = linspace(pi,0,100);

theta_mids = zeros(1,99);

for i = 1:length(theta_mids)

theta_mids(i) = (thetas(i) + thetas(i+1))/2;

end

x = cos(theta_mids);

% Identify which angles are above and below the hemisphere.

x_up = x(find(x >= 0));

x_down = x(find(x <= 0));

% Initialize values for y.

y_up = 0*x_up;

y_down = 0*x_down;

N = length(gees_up);

% Add contributions to y_up and y_down based on each portion of the

% input vectors.

for i = 0:N-1

y_up = y_up + gees_up(i+1) * sqrt(2) * getKlm(i,0) * ...

legendreP(i,2*x_up-1);
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y_down = y_down + (gees_down(i+1) * sqrt(2) * getKlm(i,0) * ...

legendreP(i,-2*x_down-1));

end

end

B.10 doublePGraphGenUnified.m

function [ x,y ] = doublePGraphGenUnified( gees_up,gees_down )

% This function creates x and y values for a plot based on the central

% moments of a vector of double spherical harmonics. It should be noted

% that this vector must already be pared down to the central moments, and

% should be split into one for the upwardly directed radiance (gees_up) and

% one for the downward directed radiance (gees_down). This function

% returns a single plot, where the radiance at the equator is the mean of

% the contributions from each hemisphere.

%

% By Sean Horan, 7/19/2020

% Take 100 linearly spaced angles from zero to pi, calculate their

% midpoints and then take the cosine. This could be done more elegantly

% but it’s a big priority for me (just being honest.)

thetas = linspace(pi,0,100);
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theta_mids = zeros(1,99);

for i = 1:length(theta_mids)

theta_mids(i) = (thetas(i) + thetas(i+1))/2;

end

x = cos(theta_mids);

% Identify which angles are above and below the hemisphere.

x_up = x(51:end);

x_down = x(1:49);

x_zero = x(50);

% Initialize values for y.

y_up = 0*x_up;

y_down = 0*x_down;

y_zero = 0;

N = length(gees_up);

% Add contributions to y_up, y_down and y_zero based on each portion of the

% input vectors.

for i = 0:N-1

y_up = y_up + gees_up(i+1) * sqrt(2) * getKlm(i,0) * ...

legendreP(i,2*x_up-1);
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y_down = y_down + (gees_down(i+1) * sqrt(2) * getKlm(i,0) * ...

legendreP(i,-2*x_down-1));

y_zero = y_zero + 0.5*(gees_up(i+1) * sqrt(2) * getKlm(i,0) * ...

legendreP(i,2*x_zero-1) + ...

(gees_down(i+1) * sqrt(2) * getKlm(i,0) * ...

legendreP(i,-2*x_zero-1)));

end

y = [y_down,y_zero,y_up];

end

B.11 getCenterSHF.m

function [ outVec ] = getCenterSHF( inVec )

% This function extracts the central (m == 0) moments from a vector of

% spherical harmonic functions. For use with double spherical harmonic

% moments, simply split the vector into two halves and apply this function

% to each.

%

% By Sean Horan, 7/19/2020

n = length(inVec);

outVec = zeros(sqrt(n) - 1,1);
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for i = 1:n

[l,m] = getSHFlm(i);

if m == 0

outVec(l+1) = inVec(i);

end

end

B.12 getSHFlm.m

function [l,m] = getSHFlm(index)

% This function takes in an index value for a vector of single spherical

% harmonic functions and outputs the desired l and m values for its index

% in the (order, degree) paradigm.

l = ceil(sqrt(index)) - 1;

m = index - (l + 1).^2 + l;

end

B.13 ybar.m

function [ output ] = ybar( l,m,mu,phi )
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% Calculate the double spherical harmonic function (ybar) for a given order

% (l), degree (m), mu and phi.

%

% By Sean Horan, 7/19/2020.

% Make sure that phi is going in the desired direction.

if size(phi,2) == 1

phi = phi’;

end

output = getKlm(l,m).* sqrt(2) .* exp(1i*m*phi) .* legendrelm(l,m,2*mu - 1);

end

B.14 legendrelm.m

function [ output ] = legendrelm(l,m,x)

% Compute associated legendre polynomial of order l, degree m, evaluated at

% x. This works for negative values of m and is used in computing

% spherical harmonics.

%

% By Sean Horan, 7/19/2020.
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if abs(m) > l

output = 0;

return;

end

if m >= 0

tempArray = legendre(l,x);

index = m+1;

else

% Note that this will not produce the correct value for functions other

% than order l, degree m.

tempArray = (-1)^(m) * (factorial(l+(m))/factorial(l-(m))) * legendre(l,x);

index = -m + 1;

end

output = tempArray(index,:);

end

B.15 GL.m

function [ mus, weights ] = GL( order )

% This function determines the values of mu and weights for the use of

% gaussian quadrature on [-1,1]. This method was given in "Spectral

% Methods in MATLAB" by Trefethen (2000) and based on code written by A.D.
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% Kim (2019).

%

% By Sean Horan, 7/19/2020

betas = 0.5 ./ sqrt( 1 - (2:2:2*(order - 1)).^-2 );

mat = diag(betas,1) + diag(betas,-1);

[V,D] = eig(mat);

temp = diag(D);

[mus,idx] = sort(temp);

weights = 2*(V(1,idx).^2);

end
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