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ABSTRACT OF THE DISSERTATION

Intrinsic plasma flows in straight magnetic fields: generation, frictionless saturation, and
interaction

by

Jiacong Li

Doctor of Philosophy in Physics

University of California San Diego, 2018

Professor Patrick H. Diamond, Chair

We develop a simple model for the generation and amplification of intrinsic axial flow
in a linear device, Controlled Shear Decorrelation Experiment (CSDX). This model develops a
novel dynamical symmetry breaking mechanism in drift wave turbulence, which does not require
complex magnetic field structure, such as shear. Thus, the model is applicable to both tokamaks
and linear devices. This mechanism is, essentially, a form of negative viscosity phenomenon.

Negative compressibility ITG turbulence can also induce a negative viscosity increment.
However, we show that no intrinsic axial flow can be generated by pure ITG turbulence in a

straight magnetic field. When the flow gradient is steepened by any drive mechanism, the flow

XV



profile saturates at a level close to the value above which parallel shear flow instability (PSFI)
becomes dominant over the ITG instability. This saturated flow gradient exceeds the PSFI linear
threshold, and grows with VTjg as [VV||/|kjcs| ~ [VTi0[*/3 / (K Tio)*/3.

The coupling of azimuthal and axial flows in CSDX—in absence of magnetic shear—is in-
vestigated. In particular, we focus on the apportionment of turbulence energy between azimuthal
and axial flows, and how the azimuthal flow shear affects axial flow generation and saturation
by drift wave turbulence.

Detailed measurements of intrinsic axial flow parallel to the magnetic field are performed
on CSDX, with no axial momentum input. The results present a direct demonstration that the
broken spectral symmetry of drift wave turbulence causes the development of axial mean flows
in cylindrical magnetized plasmas. Measurements suggest the axial flow is parasitic to the drift
wave—zonal flow system.

Besides, we show that consideration of wave—flow resonance resolves the long-standing
problem of how zonal flows (ZFs) saturate in the limit of weak or zero frictional drag and also
determines the ZF scale directly from analysis. We show that resonant vorticity mixing, which
conserves potential enstrophy, enables ZF saturation in the absence of drag, and so is effective
at regulating the Dimits up-shift regime. Vorticity mixing is incorporated as a nonlinear, self-

regulation effect in an extended OD predator—prey model of drift—ZF turbulence.
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Chapter 1

General Introduction

This dissertation studies intrinsic flows in fusion plasmas with a particular focus on the
generation of intrinsic parallel flows in the absence of magnetic shear. We also investigate how
the parallel and perpendicular flows interact absent magnetic shear. In addition, the saturation
of zonal flows, absent frictional drag, is studied with special focus on the wave—flow resonance
effect. In Section 1.1, we introduce nuclear fusion and some challenges of magnetic confinement.
Next, we introduce intrinsic parallel and perpendicular (zonal) flows in magnetic confinement
devices (Section 1.2) and in a linear device (Section 1.3) with straight magnetic fields, i.e., zero
magnetic shear. We conclude this chapter by describing the questions we address in this thesis

and the organization of the rest chapters (Section 1.4).

1.1 Nuclear fusion and magnetic confinement

Nuclear fusion results from the process of combining two or more atomic nuclei to form
new atomic nuclei, along with subatomic particles (e.g., neutrons or protons). In the cosmos,
fusion is the primary heat source of most stars, e.g., the Sun. In the laboratory, fusion research
uses the deuterium—tritium (D-T) reaction, because it has the largest cross-section compared to

other viable reaction types. Nevertheless, the D-T reaction still requires extremely high tem-
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Figure 1.1: Schematic of a plasma in tokamak.

perature and high density of the fuel gas to ensure a sufficiently high reaction rate. Under such
conditions, the fuel gas is ionized and thus becomes a plasma.

Confinement time and energy content are the two key factors that determine whether
a fusion reactor can sustain itself. A fusion reactor needs to meet Lawson criterion [Law57]
to reach ignition. Lawson criterion requires that the heating by fusion reactions needs to be
sufficient to maintain plasma temperature without external power input. For the D-T reaction,
ignition requires the triple product of density, temperature, and confinement time to be nTtg >
3x 10?! keV s/m’.

One way to confine the laboratory fusion plasma is to use magnetic fields, such that the
hot plasmas do not touch the reactor walls. Of various device designs, tokamaks have achieved
the best performance, especially in terms of operation duration [WLG™]. For tokamaks, confine-
ment time is defined as the ratio of energy content (W) and energy loss rate (Pp), i.e., T = W /Py.
In steady state, the energy loss rate is balanced by the heating power Py. Therefore, confinement
time in tokamaks is calculated using Tz = W /Py. Fig. 1.1 shows a sketch of the plasma geome-
try in a tokamak. It can be viewed as a torus with magnetic fields in both the toroidal direction

and the poloidal direction.



Both the energy content and confinement time are reduced by the transport of particles,
momentum, and thermal energy of plasmas. Turbulence leads to stronger transport than col-
lisions, and thus is the major candidate for redistribution and loss of energy. Turbulence in
tokamaks can be driven by profile gradients (e.g., Vn and VT'). For example, electron drift wave
turbulence is a common type of turbulence in plasmas [HW83]. It is driven by Vn and requires

non-adiabatic electrons.

1.2 Intrinsic plasma flows

Turbulence-driven flows are ubiquitous in natural and laboratory plasmas. In magnetic
confinement devices, shear flows generated by turbulence are effective in stabilizing the micro-
turbulence and MHD (magnetohydrodynamics) instabilities, and thus are favorable to both mi-
crostability and macrostability [MAC™*11a, RHS*T06, DLCT94], in that intrinsic flows occur
both parallel and perpendicular to the magnetic field [RHD"11b, HLH'18, XTD" 11a]. The
generation of such flows is analogous to the heat engine paradigm [KDG10a]. Initially driven by
profile gradients (such as VT and/or Vn), the turbulence energy is coupled to both parallel and

perpendicular flows.

1.2.1 Intrinsic parallel flow

Toroidal rotation of plasma is beneficial to both macrostability (e.g., the mitigation or
stabilization of resistive wall modes [RHS™06]) and microstability by suppressing turbulence
via toroidal shear flows that contribute to E X B shear flows. Plasma rotation and the underlying
toroidal angular momentum transport were intensively first studied because neutral beam injec-
tion (NBI) was the heating method of choice for tokamaks. Given that unbalanced NBI drives
toroidal rotation and the experimental observation that the ion momentum and thermal diffu-

sivities were comparable ()¢ ~ %;) [SDF™90], toroidal momentum transport was thought to be



diffusive and comparable to the ion heat transport. However, the discovery of the non-diffusive
character of toroidal momentum transport in the JFT-2M tokamak [IMM™*95] disrupted that
simplistic understanding of the toroidal rotation. The paradigm shift was triggered by the ob-
servation of intrinsic core rotation in the Alcator C-Mod tokamak, for both ohmically heated
and ion cyclotron resonance frequency-driven plasma discharges [RLM*04, LRH"05]. Here,
intrinsic rotation means plasma rotation without NBI drives or external wave momentum torque,
i.e., self-accelerated rotation. Given the benefits of plasma rotations, the intrinsic rotation is
particularly favorable for the International Thermonuclear Experimental Reactor (ITER) where
NBI driven rotation is not feasible.

The discovery of intrinsic rotation has elicited interest in the non-diffusive flux (pinch
and residual stress) of toroidal momentum, which can accelerate the central plasma rotation
[DKG'13a]. The momentum pinch, which redistributes the toroidal momentum, contributes
little to rotation generation [PABT11, ACC"12]. Hence, the Reynolds stress has the generic
form

0
o <avr¢> IR, (1.1)

I

<‘7r‘7¢>
The residual stress is driven by the background turbulence, i.e., [IRes — Hlqus (Vng,VT;.), and can

Iz

accelerate the plasma from rest via the intrinsic torque T = —B,H%’S. The process that the profile
gradients drive intrinsic rotations via the residual stress is analogous to a car engine that converts
heat flux into the motion of wheels [KDG10a]. Hlqus is also a counterpart of the poloidal residual
stress that accelerates poloidal flow [YXD™" 10a]. The turbulent diffusion of toroidal momentum

is also driven by the ambient background turbulence, i.e. ¢ = Xo(Vno,V7;.). Thus, as a result

of the balance between I'I%eS and Y, the rotation profile steepens as a secondary effect of the

free energy sources (Vng, VT, ).

Res

Usually, toroidal rotation is driven by the parallel residual stress HrH

that emerges from

(9,9). TIR is determined by the spectral correlator (kgk)) = ¥4 kok| |0x|?, which requires sym-

7l

metry breaking, i.e. spectral imbalance in k space [GDHS07a, GDH"10a, MDGHO09]. Con-



ventional mechanisms for symmetry breaking are summarized in [DKG™ 13a]. Most of them are
tied to correlating k| and kg via magnetic shear, i.e. k| = kgx/Ls where Ly = §/Rq is the magnetic
shear length and x is the distance between the mode center and the rational surface. Ultimately,
the correlator is determined by the spatial distribution of the intensity, i.e. (kek|) = kg (x)/Ly.

Conventional symmetry breaking mechanisms, and thus models of intrinsic rotation, re-
quire finite magnetic shear. However, weak or reversed magnetic shear has long been known to
enhance microstability and confinement. Studies on enhanced reversed shear [SBB"97], nega-
tive central shear [RTB196], weakly negative shear [YHN'15], etc. reveal this trend. For ex-
ample, de-stiffened states, with enhanced confinement, were observed in the weak shear regime
in JET [MAC™11a]. In addition, residual stress reversal is observed in computer simulations
at weak magnetic shear [LWD™15]. Therefore, intrinsic rotation at weak magnetic shear is of
special interest. In particular, there is an open question of what breaks the spectral symmetry
absent magnetic shear.

Intrinsic rotation is generated by turbulence. Thus, in tokamaks, intrinsic rotation usually
tracks the driving gradient of turbulence [RHD " 11a]. This also raises the question of how the
flow gradient (VV,) interacts with and scales with the driving gradient of turbulence (e.g., edge

ion temperature gradient (ITG), in the case of Ref. [RHD ™ 11a]).

1.2.2 Zonal flow

Intrinsic perpendicular flows are often referred to as zonal flows [DIIHOSb, GD15, AD16],
because they are analogous to zonal flows driven by quasi-geostrophic turbulence [Cha48].
Zonal flows (ZFs) are very effective at regulating drift wave (DW) turbulence, as they are the
secondary modes of minimal inertia, transport, and damping [DIIHO5Sb, GD15]. Such a mech-
anism can be thought of as an element in a ‘predator—prey’ type ecology [DLCT94, KGDI15],
in which the secondary ‘predator’ feeds of (i.e., extracts energy from) the primary ‘prey’. In

such a system, the damping of the predator (here, the ZF) ultimately regulates the full system.



Frictional drag, due to collisions, is usually invoked to damp ZF. However, this picture is un-
satisfactory for present day and future regimes of low collisionality. Thus, an understanding of
frictionless ZF saturation and its implications for drift wave turbulence is essential. Of course,
ZF saturation significantly impacts transport and turbulence scalings. Note that understanding
scalings in the frictionless regime is critical for developing reduced models. As zonal flow shear
reduces the turbulent mixing scale, the saturated zonal flow is coupled to the scaling of turbulent
diffusivity with p, = p;/L,. This is related to the degree of gyro-Bohm breaking [MPW101], i.e.
the exponent a in D ~ Dgp%, where Dg = kgT /16¢B is Bohm diffusivity and o0 < 1 indicates
gyro-Bohm breaking.

Zonal flow generation has been well-studied [DIIHO5b, GD15, GHD15, GD16], but the
question of how zonal flows saturate, absent frictional drag, remains open. Though sometimes
mentioned in this context, tertiary instability is not effective for most cases of ZF saturation, as
it is strongly suppressed by magnetic shear. In simulation studies, the onset of tertiary insta-
bility requires an artificial increase in the ZF shearing rate [RDKOO] in order to overcome the
stabilizing effects of magnetic shear. ITGs can provide an extra source of free energy to drive
the tertiary mode, in addition to flow shear. However, such a contribution to the growth rate
of the tertiary mode is of order O(kzpl-z), and thus does not qualitatively alter tertiary stability
[KDO02]. Tertiary instability of ZF may occur in flat-q regimes [MAC™ 11a] with zero magnetic
shear. Even in this case, the key question of how much turbulent mixing and flow damping result

remains to be addressed.

1.3 Turbulence-driven flows in a linear device

Linear devices with zero magnetic shear are testbeds to study the physics of intrinsic
flows. It has long been known that the combination of weak magnetic shear and intrinsic toroidal

rotation in tokamaks are required for the formation of enhanced confinement states [MAC™ 11a,
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Figure 1.2: Schematic of CSDX.

Table 1.1: Correspondence between CSDX and tokamaks.

Tokamaks CSDX
Most have sheared magnetic field | Uniform axial magnetic field (shear-
free)
Zonal flow in poloidal direction Zonal flow in azimuthal direction
Intrinsic toroidal rotation Intrinsic axial flow
Rotation boundary condition set by | Axial flow boundary condition set
SOL (scrap-off layer) by boundary neutral layer

RTB96]. The Controlled Shear Decorrelation Experiment (CSDX) is a cylindrical linear device
at University of California San Diego (UCSD) (Fig. 1.2). CSDX has straight magnetic fields,
and thus is an important limiting case for understanding turbulence-driven flows at zero shear.
Intrinsic axial flows are observed and measured in CSDX [HLH™18]. In addition, CSDX has a
long record of zonal flow studies [XTD*11a, YXD" 10a]. Therefore, CSDX is an ideal venue
to study the generation, saturation, and interaction of intrinsic parallel and perpendicular (zonal)
flows at zero magnetic shear. Table 2.1 compares the characteristics of CSDX and tokamak
devices.

The axial flow in CSDX is intrinsic. Because neutral gas, as the fuel, is injected radially
from the side wall, there is no external source of axial momentum, and so the observed axial flow
is intrinsic. In addition, the mean axial flow profile steepens during a global transition triggered

for a critical axial magnetic field [CAT"16]. Meanwhile, the steepening of V(v,) tracks that
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of Vng [HLT'16]. This is consistent with the intrinsic axial momentum transport being driven
by electron drift wave turbulence. Taken together, this raises the question of what generates
the intrinsic axial flow absent magnetic shear. Intrinsic toroidal flows are driven by the residual
axial stress Hlfzes, which requires spectral symmetry breaking. However, conventional symmetry
breaking mechanisms don’t apply to CSDX due to the uniform magnetic field there, i.e. zero
magnetic shear.

While the turbulence in CSDX is usually a population of electron drift waves, fluctua-
tions propagating in the ion drift direction are observed [CAT"16]. Such ion features appear
in the central region of the cylindrical plasma, where the density profile is flat. ITG turbulence
controls momentum transport in tokamaks operated in enhanced confinement states, e.g. states
with an internal transport barrier (ITB). Therefore, we are interested in the generation and sat-
uration of intrinsic parallel flows in negative compressibility turbulence (e.g., ITG turbulence)
absent magnetic shear. It has long been known that a finite parallel flow shear VV| can enhance
ITG turbulence in sheared magnetic fields [MD88]. However, the detailed question of how the
mean flow gradient, VVH, and its perturbation, & H/ , affect flow generation and saturation in ITG
turbulence in a straight field remains unanswered.

The generation of intrinsic flows is analogous to a heat engine (Fig. 1.3). Initially driven

by the free energy source (e.g., Vn for drift wave turbulence), the turbulence energy is coupled

to both azimuthal (zonal) flow and axial flow. Due to its turbulence-driven origin, the axial flow



must necessarily be coupled to the azimuthal mean flow. A theoretical framework [HDT] has
been proposed to account for the interaction between these two secondary shear flows. However,
how to precisely predict what the branching ratio between axial and azimuthal flows remains
unknown. Therefore, further studies on how energy is apportioned among the turbulence, az-
imuthal and axial mean flows are of interest. The dominant branch will have a larger turbulent
drive and set the turbulence level through a predator—prey type interaction with turbulent inten-
sity field.

Besides the branching ratio question, the axial and azimuthal flows can interact with
each other directly. For a coupled drift-ion acoustic wave system, a zonal flow can arise from
the parallel flow compression due to the effects of acoustic coupling [WDH12a]. Especially,
when the parallel flow shear is strong enough to trigger parallel shear flow instability (PSFI),
the enhanced fluctuating parallel flow compression can act as a source for zonal flow. This
mechanism of zonal flow generation differs from conventional models (which depend on the
potential vorticity (PV) flux) and has not been tested experimentally. The axial flow shear may
also be affected directly by its azimuthal counterpart. In the presence of a finite magnetic shear,
the E, x B flow shear breaks parallel symmetry and generates a parallel residual stress Hl,{zes,
which accelerates the axial flow V,. The effects of azimuthal flows on axial flow generation at

zero magnetic shear also remain unclear.

1.4 Organization of chapters

In this thesis, we focus on the mechanism that breaks the spectral symmetry and gen-
erates intrinsic axial flows in CSDX. We propose a novel symmetry breaking mechanism to
generate intrinsic parallel flows in drift wave turbulence without requiring magnetic shears. This
new theoretical finding motivates detailed measurements of symmetry breaking in the micro-

scopic turbulence and how the spectral asymmetry drives macroscopic axial flows in CSDX.



These measurements confirm the new theory of intrinsic axial flow generation. In addition, we
study the interaction of intrinsic axial and azimuthal flows in CSDX. We also investigate the
saturation of zonal flows in absence of frictional drags.

In Chapter 2, we study the generation of intrinsic axial flows in drift wave turbulence.
The observed intrinsic axial flows in CSDX raises the question of what generates the intrinsic
axial flow. We seek to understand what breaks the k| — —k symmetry absent magnetic shear.

In Chapter 3, we study the generation and saturation of intrinsic parallel flows without
magnetic shear in the context of ITG turbulence. In particular, we focus on how negative com-
pressibility turbulence, e.g. ITG turbulence, affects momentum transport at zero magnetic shear.
The question of how axial flow shear saturates in ITG turbulence is addressed. We also discuss
the stiffness of VV) profile when plotted vs. VTjy.

In Chapter 4, we investigate the interaction of intrinsic azimuthal and axial flows in
CSDX. We compute the production branching ratio, i.e., the fraction of axial Reynolds power
relative to azimuthal Reynolds power. We also show the effects of azimuthal flow shear on the
generation and saturation of intrinsic axial flows.

In Chapter 5, we study the phenomenology of intrinsic axial flow and its interaction with
azimuthal flows in CSDX. Since the azimuthal (zonal) flow and intrinsic axial flow compete for
turbulence energy, the focus is on the interaction of axial and azimuthal flows. Relevant theory
and reduced models are also discussed.

The question of what saturates zonal flows absent frictional drag is discussed in Chap-
ter 6. Special focus is on how wave—flow resonance regulates the zonal flow saturation in the
frictionless regime and in near-marginal turbulence.

We conclude this thesis by summarizing the results and discussing future direction in

Chapter 7.
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Chapter 2

Dynamics of Intrinsic Axial Flows in

Unsheared, Uniform Magnetic Fields

2.1 Introduction

Toroidal rotation of plasma is beneficial to both macrostability, e.g. the mitigation or
stabilization of resistive wall modes [RHS™06], and microstability, by suppressing turbulence
via toroidal shear flows that contribute to £ X B shear flows. Plasma rotation and the underly-
ing toroidal angular momentum transport were intensively first studied because neutral beam
injection (NBI) was the heating method of choice for tokamaks. Given the fact that unbalanced
NBI naturally drives toroidal rotation, and along with the experimental observation that the ion
momentum and thermal diffusivities were comparable (¢ ~ ;) [SDF"90], toroidal momentum
transport was thought to be diffusive and comparable to the ion heat transport. However, the
discovery of the non-diffusive character of toroidal momentum transport in the JFT-2M tokamak
[IMM™95] disrupted that overly simple understanding of the toroidal rotation. The paradigm
shift was finally triggered by the observation of intrinsic core rotation in the Alcator-C-Mod

tokamak, for both Ohmically heated and ion cyclotron resonance frequency driven plasma dis-
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charges [RLM ™04, LRH"05]. Here, intrinsic rotation means plasma rotation without NBI drives
or external wave momentum torque, i.e. self-accelerated rotation. Given the benefits of plasma
rotations, the intrinsic rotation is particularly favorable for the International Thermonuclear Ex-
perimental Reactor (ITER) where NBI driven rotation is not feasible.

The discovery of intrinsic rotation has elicited interest in the nondiffusive flux (pinch
and residual stress) of toroidal momentum which can accelerate the central plasma rotation
[DKG™'13a]. The momentum pinch, which redistributes the toroidal momentum, contributes
little to rotation generation [PAB™11, ACC"12]. Hence, the Reynolds stress has the generic

form

()
or

12

(7r76) = —Xo +IT°. 2.1)

The residual stress is driven by the background turbulence, i.e. le}fs = Hlqus(Vno,VTi,e), and

can accelerate the plasma from rest via the intrinsic torque T = —B,Hlfgs. The process that the

profile gradients drive intrinsic rotations via the residual stress is analogous to a car engine which
converts heat flux into the motion of wheels [KDG10a]. I'IE;S is also a counterpart of the poloidal
residual stress that accelerates poloidal flow [YXD"10a]. The turbulent diffusion of toroidal
momentum is also driven by the ambient background turbulence, i.e. X = Xo(V70, VTi.). Thus,
as a result of the balance between H%’S and Y, the rotation profile steepens as a secondary effect
of the free energy sources (Vng, VT; ). If the rotation profile steepens enough to drive a tertiary
instability, i.e. parallel shear flow instability (PSFI) [MD88, RSK04], then V(v|) will act as
an additional drive for the turbulent viscosity, i.e. Xo = Xo,1(Vno,VTi,) +x$SFl(V<v”>). As a
consequence, the intrinsic rotation profile is relaxed by the additional viscosity driven by V(vH)
PSFI

because (vy)’ ~ I'Ilfq)eS /(Xo,1 + %o~ ). This is somewhat analogous to the zonal flow saturation

by tertiary instability (Fig.2.1) [DIIHOSb].

Res

Usually, the toroidal rotation is driven by the parallel residual stress Hr”

that emerges
from (¥,7)). TIR®S is determined by the spectral correlator (kok|) = Yikok |0k |*> which requires

il

symmetry breaking, i.e. spectral imbalance in k space [GDHS07a, GDH*10a, MDGHO09]. Con-
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Figure 2.1: Primary, secondary, and tertiary effects of free energy sources on (a) intrinsic
rotation and (b) zonal flow.

ventional mechanisms for symmetry breaking are summarized in [DKG™ 13a]. Most of them are
tied to correlating k|| and kg via magnetic shear, i.e. k|| = kex/Lgs where Ly = §/Rq is the magnetic
shear length and x is the distance between the mode center and the rational surface. Ultimately,
the correlator is determined by the spatial distribution of the intensity, i.e. (kek|) = k(x)/Ly.
Conventional symmetry breaking mechanisms, and thus models of intrinsic rotation, re-
quire finite magnetic shear. However, residual stress reversal is observed in computer simula-
tions at weak magnetic shear [LWD™ 15]. Moreover, experimental results suggest that a control
knob for intrinsic rotation is the magnitude of safety factor g¢ rather than the magnetic shear
[RPRT13]. Recently, intrinsic parallel flows were observed in a linear device with uniform
magnetic field (zero magnetic shear), the Controlled Shear Decorrelation Experiment (CSDX)
(Fig.2.2) [TBC'14b]. Some of the correspondence between CSDX and tokamaks is summa-
rized in Table 2.1, more of which can be found in [CAT"16]. Because neutral gas, as the fuel,
is injected radially from the side wall, there is no external source of axial momentum, and so
the observed axial flow is intrinsic. In addition, mean axial flow profile steepens during a global

transition triggered for a critical axial magnetic field [CAT " 16]. Meanwhile, the steepening of
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Table 2.1: Correspondence between the linear device, CSDX and tokamaks.

Tokamaks CSDX
Most have sheared magnetic field | Uniform axial magnetic field (shear-
free)
Intrinsic toroidal rotation Intrinsic axial flow

Rotation boundary condition set by | Axial flow boundary condition set
SOL by boundary neutral layer

V(v;) tracks that of Vng [HLT'16]. This is consistent with that the intrinsic axial momentum
transport is driven by electron drift wave turbulence.

The observed intrinsic axial flows in CSDX raises two questions: 1) what generates the
intrinsic axial flow; 2) what determines the mean axial flow profile? Intrinsic toroidal flows
are driven by the residual axial stress H}fz"s, which requires spectral symmetry breaking. How-
ever, conventional symmetry breaking mechanisms don’t apply to CSDX due to the uniform
magnetic field there, i.e. zero magnetic shear. Motivated by these observations, in this paper,
we propose a new dynamical symmetry breaking mechanism which doesn’t require a specific
magnetic field structure. In this model, we consider a drift wave system with weakly nonadi-
abatic electrons (i, /ng = (1 — i8)¢ with 0 < & < 1) in presence of finite axial flow shear. By
dynamical symmetry breaking, we mean that a small but finite perturbation to the mean axial
flow profile can break the symmetry and the resulting turbulence spectral imbalance sets a finite
residual stress. The residual stress driven intrinsic flow then adds to the initial flow profile pertur-
bation. Therefore, the flow profile perturbation is self-amplified via a closed feedback loop, as
in a modulational instability. The residual stress gives rise to a momentum flux with a negative

diffusivity, [T ~ |x¢

|(v.)’, inducing a negative increment (— ]xges ) to the ambient turbulent
viscosity (X¢). Hence, the dynamical symmetry breaking is essentially a negative viscosity phe-
nomenon. The growth of axial flow shear by the dynamical symmetry breaking is analogous to
the modulational growth of zonal flow shear [DITHOS5b].

The mean axial flow can be driven by an axial ion pressure drop and is enhanced by
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Figure 2.2: (a) Sketch of axial plasma flow in CSDX in analogy to (b) turbulent pipe flow.

the negative viscosity. As shown in Fig.2.2, the helicon source on the left end of the cylinder
makes the nearby plasma hotter than the plasma near the endplate, thus giving rise to an axial

ion pressure drop, AP; = P, . Hence, in analogy to the turbulent hydrodynamic

Source P Endplate
pipe flows, the axial plasma flow in a linear device is driven by AP; and dissipated by the total
viscosity, consisting of both the ambient turbulent viscosity and the negative viscosity increment
induced by the residual stress, i.e. (v;)' ~ AP;/(Xo — ]xﬁesl). Therefore, with external excitation
(e.g. AP)), a total negative viscosity is not needed to generate axial flows, and (v;)" is enhanced
by —|X§es|. In addition, boundary conditions must be considered to determine the mean flow
profile [AGG*13]. In CSDX, the boundary layer is dominated by neutral flows (Fig.2.2). The
outer region of the cylindrical plasma is only partially ionized, and the neutral momentum is
coupled to the plasma momentum via the ionization and recombination processes within the
boundary layer. Thus, the neutral dynamics in the boundary layer plays a role in the boundary

conditions for the plasma flow in the center.

Driven by electron drift wave turbulence with no requirement for magnetic field ge-
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Table 2.2: Compare and contrast the dynamical symmetry breaking with conventional symme-
try breaking mechanisms.

Standard Symmetry Breaking Dynamical Symmetry Breaking
Free energy VT;, Vny, ... Vng
Symmetry E, 1(x), .. Test axial flow shear, 5(v,) ;
breaker All tied to magnetic field configuration | No requirement for shear of B structure.
Effecton flow | Intrinsictorque, —arl‘[f"eS Negative viscosity, —|)(Res| driven by 'n,
Flow profile () = MRes , _ Flow drive (e.g. Hfzes, AP))
" F T R (TN V() — 125

Feedback loop
- VT; + geometr Test flow . Spectral
Heat flux (mlagr?etic she>a/r) shear §(v,)’ — imbalance

Self-amplification
Open loop l t Driven by Vn, '

; Res Intrinsic flow, feedback Residual stress

ometry, the dynamical symmetry breaking is applicable to intrinsic rotation in flat q regions

[MAC™11a, dVRG'06] where conventional models fail, as well as to intrinsic rotation in plas-
mas where the electron channel (and thus CTEM) is dominant. Also, a total negative viscosity,
as well as the underlying modulational growth of test flow shear, is not needed to generate intrin-
sic rotation at normal magnetic shears, because the residual stress determined by conventional
symmetry breaking mechanisms can accelerate the plasma. Therefore, the profile gradient of
intrinsic toroidal rotation is enhanced by the negative viscosity induced by the dynamical sym-
metry breaking, i.e. (v)’ ~ HEHGS (%o — ]qufes\).

To summarize, the new dynamical symmetry breaking mechanism discussed here is out-
side the domain of conventional models of residual stress. The contrast and comparison are
summarized in Table 2.2. The dynamical symmetry breaking is different in two ways: (1) Intrin-
sic flow is generated by the self-amplification of a test or seed flow shear. This process is driven

fundamentally by Vny, i.e. as in a modulational instability of drift waves, similar to the modu-

lational growth of zonal flow shear. (2) Instead of an intrinsic torque that accelerates the flow,
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the dynamical symmetry breaking mechanism yields a residual stress which induces a negative
increment to the ambient turbulent viscosity that enhances the mean flow profile gradient.

The rest of this paper is organized as follows: Sec.5.2 introduces the derivation of the
drift wave system coupled to axial flow fluctuations in the weakly nonadiabatic limit; Sec.2.3
discusses the dynamical symmetry breaking mechanism; Sec.2.4 elaborates the negative viscos-
ity induced by the residual stress; the total axial flow structure is calculated and discussed in
Sec.2.5; Sec.2.6 gives the implications for tokamaks of dynamical symmetry breaking; Sec.6.4

summarizes and discusses the results.

2.2 Physics Model

We consider a system consisting of electron density, electron axial momentum, charge
balance, and plasma axial flow in cylindrical geometry where magnetic field is uniform in the

axial direction:

Dii, o7,

—e .V — = 2.2
Dt +vEg-Vng+nop Py 0, 2.2)

D ad 9p
menOEﬁe enoa—qz) — % — VeiMeNoVe, 2.3)

. dj
V= —ai;, 2.4)

D _ op

YRRRL Vv, =— a;‘ (2.5)

Here, D/Dt = 9; + vg - V is the convective time derivative and vg = Z X V(T) is the £ x B drift

velocity. In the following analysis, it is convenient to normalize the quantities as follows: 71 =

fie/ng, & = ed/T,, length = length/p;, t = t/w.;, ¥, = V,/cs, where ¢; = /T, /m; is the ion
acoustic speed, ®.; = eB/m; is the ion cyclotron frequency, and py = ¢;/®.;. The perpendicular

current is set by the polarization current j | = —ny I%V L(T), while the axial current is j, = ng(V, —
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Ve). Thus, the electron flow is cancelled by subtracting Eq.(2.4) from Eq.(6.1)

D . vz Lla_‘l’ v _
o (A= Vi) + Lrae oz O 26

where L, = —(dInng/dr)~! is the density profile gradient length. Ion pressure fluctuation is
neglected in the flow equation, since p; < p.. In the presence of a finite mean axial flow shear

(v.), the axial flow momentum equation becomes

D _ 106 o

b5 e D

where the thermal fluctuations of electrons are ignored, such that p, = T.7i. To close the system,
the electron density fluctuation needs to be evaluated. The electron response is nearly adiabatic,
ie. i = (1—i8)d with § < 1, given by Eq.(6.1)(2.3). The electron axial momentum is damped
by electron-ion collisions. With the electrons in the thermal equilibrium state v¢; > ®, the
inertia term in Eq.(2.3) can be neglected. As a consequence, the electron current is driven by the

nonadiabatic electrons

. V2 cd -
ve:—VT—;a—Z(n—q)). (2.8)

In the weakly nonadiabatic limit, 1 < k%v%he /(Vei®y) < oo. Plugging the electron current into the

electron density equation, the nonadiabatic electron response is then given by

Vei ((D* mk)

o
2
k vThe

3 (2.9)

where ®, = kgpscs/Ly is the electron drift frequency. In the weakly nonadiabatic limit, 0 < 8 < 1.
For adiabatic electrons, kgv%he /(Vei@g) — oo, then 6 — 0 and 71 — ¢. Finally, we arrive at the

drift wave system with weakly nonadiabatic electrons coupled to the axial flow fluctuations

D . 1199 0
E(l—iS—Vi)dﬁLL ag+%:0, (2.10)
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D _ 100 < 00
EVZ—<VZ> ;%——(I—ZS)a—Z, (211)

with & given by Eq.(2.9). This system gives two instabilities: electron drift wave instability
and parallel shear flow instability (PSFI). The electron drift wave is unstable in the presence of
nonadiabatic electrons and is driven by Vng. Next, we’ll briefly discuss the PSFI in the presence
of nearly adiabatic electrons.

PSFI is driven by V(v;) and is essentially a negative compressibility phenomenon. The

dispersion relation for the coupled system Eq.(6.2)(2.11) is

®.  kok / ki
1+kipg—i5—a+%?<vz>_(l_i5);_czs =0, (2.12)

where 0 < 8 < 1 in the weakly nonadiabatic limit. As a quadratic equation of ®, Eq.(4.10) gives

unstable solution when the mean flow shear (v,;)’ exceeds a critical value

= k22|, 2.13
crit kekpscs 4[(1+kip§)2+82] TR ( )

such that the discriminant is negative. If the drift wave branch is neglected, the dispersion

relation Eq.(4.10) supports a modified ion acoustic wave
o? ~ ¥l (2.14)

with the effective compressibility of the axial flow as:

1 ko (v )’)
ff 0\Vz
= 1-— . 2.15
'Ye 1+kip% ( kz(’)ci ( )

When the axial flow shear is large enough such that the compressibility becomes negative, the
modified ion acoustic wave is driven unstable. Therefore, the PSFI is driven by negative com-

pressibility.
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With the coupled drift wave system in the weakly nonadiabatic limit, next, we’ll show

how this system breaks the spectral symmetry of the drift wave turbulence.

2.3 Dynamical Symmetry Breaking

Consider the axial flows in a linear cylindrical plasma. The dynamics of the mean axial

flow is governed by

Av) o)  1oR
a o T pooz Vai({vz) = (van))- (2.16)

The mean ion pressure drops in the axial direction due to the axially inhomogeneous ion temper-
ature (Fig.2.2) and thus can drive a mean flow (v;), even though its fluctuation was neglected in
the fluctuation equation of axial flow. While AP; drives the axial flow in the center region, the
boundary layer is controlled by the collisional coupling between plasma flows ((v;)) and neutral
flows ((v;»)). The generic form of the Reynolds stress is given by

d
(Vry) = _X¢_<avrz> + TR, (2.17)

The momentum pinch is ignored because (1) there is no toroidal effect in the linear device,
where the magnetic fields lines are straight and uniform, and (2) the pinch effect is responsible
for redistribution of the axial momentum but not for generation.

To calculate the Reynolds stress (V,7;), linearize Eq.(2.11) to get the linear response
for the axial velocity fluctuation ¥, and 7, is the fluctuation of the radial E x B velocity. The

quasilinear Reynolds stress is then determined by the cross phase between 7, and v,

Z’Yk|keps’¢’ +Z('Yk' )kekzpscslw (2.18)
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where 7, and w; arise from the drift wave system. The residual stress (the second term in
Eq.(2.18)) is determined by the correlator, i.e. TIR® ~ (kok,) = Y kok,|0x|> which requires
spectral imbalance, due to correlated 7, and v, flucturations.

The coupled system described by Eq.(6.2)-(2.11) is controlled by drift wave modes when
(v;)" is below the PSFI threshold. This drift wave dominated system is unstable due to nonadia-
batic electrons (which set the cross phase between electron density perturbation and electrostatic
potential perturbation). Specifically, the linear growth rate is set by the weakly nonadiabatic

electron density perturbation as
Te = 0.8/ (14K p3)?, (2.19)

given by the dispersion relation Eq.(4.10) with the ion-acoustic branch neglected. With d given
by Eq.(2.9), the linear growth rate of the collisional drift wave is then set by the frequency shift

from the electron drift frequency

~ Vej 0)*(0)*—(Dk)
k2viye (14K p3)?

Yk (2.20)

The frequency of the system is controlled by the electron drift frequency with a shift set by the

mean axial flow shear
/
0)* . kekzpsCS <Vz>

oy = 221
Consequently, the full expression for the growth rate is
~ Vel 0‘)5 kipg kekZpSCS <Vz>/ 2 22
= T2 022 \ 1142 02 o2 : (2.22)
7V The ( + J_p S ) + J_p S *

With Vny as the free energy source, a finite mean axial flow shear can break the symmetry
of the background drift wave turbulence. For a flat mean axial flow profile, i.e. (v.)’ =0, the

growth rate given by Eq.(5.12) is symmetric for k, — —k,. The resulting turbulence spectrum is
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Figure 2.3: Spectral imbalance in kgk, space.

consequently expected to be symmetric in k space, giving HI};S ~ (kgk;) = 0. The momentum
diffusion is also zero for the flat mean flow profile. Therefore, the mean axial flow profile is
stationary and stays flat. However, a small but finite perturbation to the mean flow profile, e.g.
d(v;) > 0, breaks the symmetry of the background turbulence. With larger linear growth rates,
modes with kgk, > 0, whose frequencies shift further away from ®,, grow faster than the other
modes. The drift wave turbulence intensity is then unbalanced in kgk, space (Fig.2.3). Hence,
kg and k, are correlated by the spectral imbalance, and so form a finite residual stress, since
TIR®S ~ (kgk.) > 0. This residual stress amplifies the initial test flow shear, closing the feedback
loop for the self-amplification of test flow shear (Table 2.2).

Given the drift wave instability in the background and the spectral imbalance result-
ing from the symmetry breaking, the Reynolds stress can be calculated. The first term in the

Reynolds stress Eq.(2.18) is a diffusive axial momentum flux, with the turbulent viscosity

Xo=Y —o Kps kgp2 |0k (2.23)
2Vip 1 +k3p2 77

This turbulent viscosity is driven by the ambient background turbulence. So for the drift wave tur-
bulence dominated case, X is driven primarily by Vng. Additionally, as will be discussed later,

the PSFI will enter when (v;)’ > (v;)/ .. Then, the turbulent viscosity is driven by both den-

crit”
sity gradient and the mean flow gradient, i.e. xp = qu?w (Vng) +ngFI (V(v))O((vz) — (v,) ),

crit

where ®(x) is a Heaviside step function, acting as a switch for the onset of PSFI driven turbu-

22



lence.

The off-diagonal flux in Eq.(2.18) is the residual stress

2 2 /
kok.pscs (Vv
le{zeswz, 2 2+ J_ps) 1 J_kps 0 Zps28< Z>
kZVThe +iip2 oy
———

@ @

kekpscs| |- (2.24)

Hlfzes is dominated by term (1) when (v,)’ is below the PSFI threshold. Hence, in the presence of

a finite test axial flow shear, the spectral imbalance in Fig.2.3 gives rise to the residual stress

I — sen(3(u)) ¥ 0 (808 0okl (8)). (229
(k) K2V The + k7 p;

where AlL(8(v;)") = |¢k|2’{k+} - ‘¢k|2|{k—} accounts for the spectral imbalance. On account of
the symmetry breaking term in the growth rate Eq.(5.12), the residual stress has the same sign as
3(v;)". Moreover, HI,{Zes depends explicitly on the mean axial flow shear via term (2) in Eq.(4.18)
as well as via the spectral imbalance. Term (2) ~ ¥ k3 /@2|0x|28(v,) = L2 ¥ |0x]?8(v,)’ doesn’t
require symmetry breaking and enters in the form of a negative diffusion. Therefore, a negative
viscosity increment is induced by the residual stress.

It should be noted that the dependence of residual stress upon 8(v;)’ cannot be absorbed
by the diffusive component of the Reynolds stress for 3 reasons: (1) the magnitude of residual
stress is dominated by term (1) of Eq.(4.18) which is independent of 3(v;)’; (2) the spectral
imbalance is induced via both linear growth and nonlinear saturation of modes, so Al(8(v;)’)
and thus TIR® are essentially nonlinear in 8(v;)’; (3) even the term linear in 8(v;)’ results in
a negative diffusive flux rather than a positive, downgradient diffusion. The induced negative
viscosity can give rise to the modulational growth of the test flow shear, as will be shown in the

next section.
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Figure 2.4: Modulational growth of the test flow shear. (a) Perturbation to the axial flow profile

is self-amplified by the modulational instability driven by residual stress induced negative vis-

cosity —\xges(Vno) |. (b) The test flow shear is amplified into a macroscopic profile. (c) When

the axial flow shear hits the PSFI threshold, the additional XESFI(V(VZ>) relaxes the flow profile,

keeping (v;)" at or below (v;). .

2.4 Negative Viscosity

The dynamical symmetry breaking mechanism is essentially the self-amplification of
test flow shear, driven by drift wave turbulence, which is similar to the modulational growth of
zonal flow shear. In this section, the growth and saturation of the test flow shear are considered.
The modulational growth of the test flow shear is illustrated by the cartoon in Fig.2.4. The
dynamics of the test flow shear is a diffusion process with the turbulent viscosity as the effective
diffusivity. We will show that the residual stress induces a negative increment to the ambient
turbulent viscosity. Thus, the total viscosity is XE)Ot = %o — |Xq§es|. When |X§es| is strong enough
such that the total viscosity becomes negative, the test flow shear will grow until the flow shear
hits the PSFI threshold given by Eq.(4.13). Then, the additional turbulent viscosity induced by
PSFI turbulence makes the total viscosity positive and stops the growth of the test flow shear.

(vz)L;, thus sets an effective upper limit for the profile gradient of axial flow.

The dynamics of the test flow shear can be derived from Eq.(2.16)

85<V ‘>/ 82 es
S 5 (1ad(v:) + BITEY) =0, (2.26)
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Without the perturbed residual stress, the dynamics of the test flow shear is a diffusion process
with the flow shear flux [s, y» = —¥¢9,0(v;)’. Next, we’ll show that the residual stress due to
the perturbed axial flow shear induces a momentum flux with a negative diffusivity. The test
flow shear flux is then modified by the negative increment of momentum diffusivity.

To do this, we begin by calculating the perturbed residual stress. Given by Eq.(2.18), the
residual stress explicitly depends on the flow shear through the growth rate and the frequency.
Moreover, the turbulence intensity depends on the flow shear because of the spectral imbalance
induced by (v,)’. Therefore, it is convenient to write the turbulence intensity in terms of the wave
action density, which is, by definition, Ny = € /wy. Here, the wave energy of the electron drift
wave is €, = %(1 + k% p?)?|0x|> [WDH12b]. Consequently, the perturbed residual stress due to
the test flow shear can be written as SITNS = SITR® (&yy, Sax, 8Ny . The perturbed growth rate
and perturbed frequency are calculated directly from Eq.(2.21)-(5.12), while the perturbed wave
action density due to the axial flow profile perturbation is calculated as follows.

The wave action density Ny = €;/wy is essentially the population of waves with wave

number k. Its dynamics is governed by the wave kinetic equation

ON; ON, d ON;
o ey g (@ tkeV)

N?
=Y N, — AW, —. 2.27
%, YiNi (OkNO (2.27)

We separate the perturbation, due to test flow shear, from the slowly varying mean wave action

density, i.e. Ny = ONj. + (Ni). The linearized equation for dNy is then

OON,
ot

IWNE) _ 9§ (k- V) ang

+ Svgr > = 'YkSNk + &Yk <Nk> — 2A®,ONy. (2.28)

or  or
The convection by the wave packet motion vanishes because

Over _ d(dwy /dk,)
3(vy)’ a 3(vy)’

:0’
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where only the linear frequency shift is considered. Ignoring the zonal flow effects, since there
is no coupling between kg and k, by geometry, the refraction term becomes

9 S (k- V)

BNk 88cok 8(Nk>
or

_ = / _— 7
%, P +kz8<vz>) T (2.29)

The shearing of the frequency perturbation is calculated from Eq.(2.21)

98w, L20?
ark = k,8(v,)’ (n—o ar”;’ - 1) . (2.30)

Thus, the perturbation to the refraction term is driven by the density profile curvature

d B ,L2 9%ng 9(Ny)
S{E(mk+k.V) T } = k.3(v,) P T

(2.31)

Here, we consider the drift wave turbulence with finite Vg, so the effect of dng/dr is dominant
over that of 0°no/dr?, and thus the above curvature driven term (Eq.2.31) can be neglected.

Therefore, 0Ny is driven by the linear growth and nonlinear self-interaction of drift waves

dON,
Tk = ’YkSNk + 8’Yk<Nk> — ZA(X)kSNk. (2.32)

The steady state perturbation is then given by

_ oYk
0Ny = ka% (2.33)

where the decorrelation rate Ay = 1y is determined by the steady state equilibrium, (Ny). Finally,
with the perturbed growth rate calculated from Eq.(5.12), the perturbed wave action density due

to the test flow shear is

1 k2 2 k /
kLpS 0)*
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Thus, the perturbed residual stress due to the test flow shear takes the form of a negative

diffusive flux of axial momentum

SIS = —x5 8 (v2)’, (2.35)
with the negative viscosity
L vel?
Xo™ = =3 L1+ KLpS)(4-+K1p7)|ul” (2.36)
The &

related to Hlfzes by dynamical symmetry breaking. Therefore, the test flow shear dynamics is a

diffusion process

8(v,)  9?
Sl s =0, (2.37)
where the total viscosity
X5t =10 — & (2.38)

consists of both the ambient turbulent viscosity and the negative viscosity induced by the residual
stress. Thus, an axial flow shear modulation is either damped or growing without oscillation,

with growth rate given by

Yo = — a1 (2.39)

where ¢, is the radial wave number of the modulation. When the negative viscosity is large
enough that the total viscosity becomes negative, the axial flow shear modulation is unstable,
which means a small perturbation to the mean flow profile can be amplified. This is analogous
to the modulational growth of zonal flow shears [DIIHO5b].

However, the test flow shear cannot grow forever. The mean axial flow profile gradient is

limited by the PSFI threshold Eq.(4.13). When the flow shear hits (v;)’ . , an additional turbulent

crit?

viscosity ¥PSF driven by V(v.) is induced. Moreover, being nonlinear in the flow shear, ¥ is
Y Xo y 2 g Xo
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large enough to make the total viscosity positive, since

Xg)t = ng + XSSFI(’D <<Vz>/ - <VZ>érit> - !Xﬁesh (2.40)

so that the modulational growth of the test flow shear stops. In this way, the PSFI threshold given
by Eq.(4.13) sets an upper limit for the mean flow shear driven by the modulational growth, and
the total viscosity is kept positive.

To summarize, a test, or seed, sheared axial flow is amplified by the negative viscosity
induced by the residual stress. In particular, when the induced negative viscosity is larger than
the ambient turbulent viscosity such that the total viscosity becomes negative, the test shear is
then amplified to form a macroscopic profile by the modulational instability. The axial flow
profile gradient is limited by the PSFI threshold. Also, the total viscosity stays positive due to
the PSFI induced turbulent viscosity. Moreover, the total viscosity given by Eq.(2.40) is driven
by both Vng (which drives ng and — |qu}°5|) and V(v;) (which drives ngFl when PSFI switches

tot tot

on). This makes X6 different from familiar eddy viscosities. In particular, Xy can give rise to

the self-amplification of a test flow shear and also limit this modulational growth.

2.5 Mean Flow Structure

The turbulent plasma flow in a cylindrical chamber is similar to a turbulent pipe flow
(Fig.2.2), with a point-by-point comparison listed on Table 2.3. The turbulent hydrodynamic
pipe flow is driven by axial pressure drop due to pumping power, and dissipated by the turbulent
viscosity driven by the background hydrodynamic turbulence. By balancing the local momentum
input (AP) and momentum diffusion ((¥,7,) ~ —v7(v.)"), the flow gradient is obtained as (v,)" ~
—AP/vr. The flow vanishes at the boundary due to the frictional force by the wall, which sets
the boundary condition as no-slip. In a linear plasma device like CSDX, axial plasma flow

can always be driven by the axial pressure drop AP;. Therefore, the axial flow does not need

28



Table 2.3: Comparison and contrast between hydrodynamic pipe flow and plasma flow in a

cylinder.
Pipe flow Plasma flow
Drive Pressure drop AP | Ion pressure drop AP;
Boundary No slip wall Set by neutral flows within boundary layer, located near the
condition wall
Viscosity vr Y (Vo) + 1Y (1) O( (1) — (v2).ie) — RS (V)|

a negative viscosity for generation. However, by the dynamical symmetry breaking, the axial
flow gradient can be enhanced by the negative viscosity increment induced by the residual stress.
Hence, an intrinsic axial flow is generated, enhancing the axial flow driven by AP;. Also, for
plasma flow, the total viscosity depends on both Vg and V(v.).

The boundary condition of the plasma flow is controlled by the neutral layer at the edge
where the gas is partially ionized, which thus heavily involves the neutral flow dynamics. Mean-
while, the neutral momentum is coupled to the plasma momentum through ionization and recom-
bination processes, so the boundary condition for the plasma flow is ultimately set by the neutral
flows in the boundary layer. In this section, boundary conditions and their effects on the flow
profile are discussed.

The axial flow profile is given by the ion momentum balance for the turbulent plasma
axial flow, as shown in Fig.2.2. The ion pressure drop in the axial direction due to heating at the
source end is balanced by the momentum out flux through the side wall, as determined by the
Reynolds stress

TR2AP, = po(¥,7,)2nRL.

Here, R and L are the radius and the length of the cylindrical plasma tube, respectively, and pg
is the mean plasma density. The Reynolds stress consists of both the diffusive axial momentum

flux driven by the ambient turbulent viscosity and the residual component that induces a negative
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viscosity increment by the dynamical symmetry breaking

(7)== g +ag O((va) — (vadirie) — 1™l | (v2)'.

As a consequence, the mean axial flow profile is

RAP,

() 2 = DW | ., PSFI / / Res||
200L [XB% +X5T1O(v2) — (v l) — 5

(2.41)

The total viscosity that balances the pressure drop sets an upper limit for the flow shear through
its dependence upon the mean flow profile, via the PSFI effect. When the axial flow profile
steepens such that the axial flow shear exceeds (v;)’ .. (given by Eq.4.13) and the PSFI switches
on, the resulting turbulent viscosity ngFI adds to the existing viscosity as a positive increment.
The enhanced dissipation level then relaxes the flow profile, so that the mean axial flow profile
gradient stays below or at the PSFI threshold.

Boundary conditions are important to determine the axial flow profile. By integrating
Eq.(2.16), the net axial flow evolution is

o R R APl .
g/o dr{v;) :/0 drpOL—(ver>

(2.42)

R
The momentum flux at the center r = 0 is neglected because both components of the Reynolds
stress are driven by the profile gradients, which vanish at the center. Momentum transfer between
ions and neutrals cancels and makes no contribution to the net flow. Eq.(2.42) shows the radial
flux of axial momentum at the boundary is a sink of the net axial flow, and the axial pressure drop
in the center region is a source. If there is no momentum source/sink, the flow profile should
be reversed because the net momentum is conserved (Fig.2.5). However, it is not clear if flow
reversal occurs in CSDX [TBC™ 14b], and the net axial flow is always positive [CAT ' 16]. This

is due to the small momentum flux (because of the no-slip wall condition) at the boundary and
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Figure 2.5: Mean flow profile for different boundary conditions. (a) No external source/sink.
(b) No slip at wall, i.e. momentum flux is zero at the boundary; axial flow is driven by ion
pressure drop in the axial direction. (c) With some momentum flux at the wall while axial ion
pressure drop dominated, flow profile is reversed with positive net flow.

the existence of axial ion pressure drop. Axial flow is small at the boundary due to the frictional

force by the wall, so V|, = 0 and thus (v,7;) ‘ z = 0. As a consequence, AP; driven axial flow in

&
the central region (outer region is dominated by neutral flows) raises the net flow magnitude. To

calculate the axial flow profile, integrate Eq.(2.41) to get

R RAP,'
(va(F)) = (o (R)) + / drm. (2.43)

The plasma momentum is coupled to the neutral momentum within the boundary layer. There
is no momentum loss during ionization and recombination processes, since the plasma source

mostly heats electrons. Therefore, within the boundary layer near the wall (r;, < r < R),

(ve) = <Vn,z>- (2.44)

For the neutral flows within the boundary layer, the outer boundary is set by the frictional wall

condition, as in a no-slip boundary condition. Assuming the width of the boundary layer is small
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compare to L,, the plasma flow is approximately no-slip at the boundary, i.e.
(vz(R)) = 0. (2.45)

With the no-slip boundary condition, the axial flow profile is

R RAP,'
<VZ(7")> = /rv di"szxgﬁ? (246)

which gives rise to a positive net flow driven by the ion pressure drop in axial direction. However,
if the boundary condition is not strictly no-slip—i.e. with positive momentum out-flux at the
boundary (e.g. momentum loss due to ion-neutral coupling within the boundary layer)—then the
flow profile can reverse near the wall region. Therefore, to obtain a physical boundary condition
for the plasma flow, the details of the coupled ion and neutral dynamics need to be considered

within the boundary layer. This is left to future work.

2.6 Implication for Tokamaks

The dynamical symmetry breaking mechanism does not require a particular magnetic
field structure, so it may help understand intrinsic rotations with flat g profile or weak magnetic
shear. Recent computational studies discover an intrinsic torque reversal at weak magnetic shear
[LWD™15]. Moreover, experimental results suggest that the control knob for intrinsic rotation
is the magnitude of g, rather than magnetic shear [RPR*13]. Both of them can be addressed
using the dynamical symmetry breaking scheme which is independent from magnetic shear.

We propose a synergy of the conventional residual stress (linked to magnetic shear) and
the residual stress induced negative viscosity by dynamical symmetry breaking. For tokamaks
with normal magnetic shears, the total viscosity doesn’t need to become negative to generate

intrinsic flow, because the intrinsic rotation can be generated by residual stress determined by
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conventional models. However, the flow dissipation consists of both the ambient turbulent vis-
cosity and the negative viscosity induced by the dynamical symmetry breaking. Then, the mean

rotation profile is given by
d <VH > HRGS

al

= . 2.47
dr X'qfurb o ‘Xges ’ ( )

Thus, the negative viscosity increment enhances the rotation profile independent of the magnetic
field structure. Also, the rotation profile gradient is limited by the PSFI threshold. When (vH>’
hits the PSFI threshold, the additional turbulent viscosity driven by PSFI can raise the total

viscosity and thus relaxes the rotation profile, since

R
d{v)) I

=~ -t (2.48)
dr Xg b +XgSFI®(<VH>/ = (v))psr) — |qu>{ d

As a result, the rotation profile gradient can be expected to stay at or below the PSFI threshold.
Therefore, the dynamical symmetry breaking mechanism is applicable to the intrinsic rotation at
weak magnetic shear. In addition, as the dynamical symmetry breaking uses a simple model of
electron drift wave turbulence, this mechanism can be used to understand the intrinsic rotation
in burning plasmas where the turbulence is the CTEM turbulence [GBH"01, GSG'02], and to
address the effect of ECRH on toroidal rotation[SKK ™13, MAD " 11].

2.7 Conclusion and Discussion

In this paper, we propose a new dynamical symmetry breaking mechanism for the gen-
eration of intrinsic axial flows in linear devices with uniform magnetic field. Specifically, in a
simple drift wave system in the presence of finite axial flow shears, a test, or seed, flow shear
can be self-amplifying. The linear growth rate of the drift wave instability is set by the fre-
quency shift from the electron drift frequency. A test axial flow shear breaks the symmetry by

shifting the frequencies of some classes of modes further away from ®, than others. As a con-
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sequence, the unbalanced turbulence spectrum couples kg and k,, giving rise to a finite residual
stress I'IE;S ~ (kgk;). This residual stress amplifies the initial test flow shear by inducing a neg-
ative increment to the ambient turbulent viscosity. Thus, this mechanism is essentially one of
negative viscosity. When the negative viscosity induced by residual stress is large enough such
that the total viscosity becomes negative, the flow shear modulation is unstable and is amplified
by modulational instability. When the axial flow shear exceeds (v;). . and triggers PSFI, the
additional turbulent viscosity by PSFI nonlinearly saturates the (v,)’ growth. The flow profile

will then be relaxed by XqI?SFI. Hence, the axial flow shear will stay at or below <vZ)’ Also,

crit®
the total viscosity given by this model is driven by not only Vrg but also V(v,) due to the PSFI
contribution, distinguishing from the standard models of eddy viscosity.

The growth of the test flow shear is analogous to the modulational growth of zonal flow
shear. Additionally, the nonlinear saturation by PSFI-a tertiary instability—is similar to the zonal
flow saturation by tertiary instability. However, despite these similarities, parallel flow cannot
trivially couple to zonal flow via geometry in the linear device, due to the absence of magnetic
shear. The simple coupled drift wave system studied here can convert parallel compression V| v
into zonal flow [WDH12b], indicating coupling between parallel flow and zonal flow by drift
wave turbulence. Thus, zonal flow may play a role in the intrinsic axial flow and the intrinsic
toroidal rotation via the parallel flow-zonal flow coupling. This is left to future work.

The self-amplification of test flow shear is energy conserving. Though there is a pressure
drop in the axial direction, its direct effect is weak and is amplified by dynamical symmetry
breaking. Thus, the axial flow is mainly driven by the background drift wave turbulence. The
process of energy transferring between fluctuation and mean axial flow can be illustrated by

multiplying the flow fluctuation, mean flow, density fluctuation, mean density, and vorticity

equations by v, (v.), fie, (n), ¢, respectively and integrating them over the space:

o [ ) _p.
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: <V§>2dv=/ <mz>a<vz 250
% / @dv = / (ﬁﬁ»%dv, (2.52)
S [

where the flow drive by ion pressure drop is neglected since it is weak. By adding them up, we

can obtain the energy conservation in the weakly non-adiabatic limit (i.e. 7i, ~ ¢)

a /ﬁ£+<n¢)z+ﬁ§+<vz>2+<n>2

. > =0, (2.54)

where p, = T.ii, has been used. By keeping track of the couplings between fluctuations and
mean profiles in the above system, we can see that energy is coupled in the following progression:
(n) — fi, — V1 ¢ (which is Vgxp) — v, — (v;). Specifically, energy is coupled from v, to (v.)
via the axial Reynolds power PR®S = (7,,)9,(v.). Thus, it is clear that Reynolds work coupling
conserves energy.

In linear device, the axial flow is driven by ion pressure drop in the axial direction and
is damped by the total viscosity x5 = XDW + XPSFIG)((VZ> (Vo)) — |xR65] The flow profile

PSFI The net axial

gradient stays below the PSFI threshold due to the nonlinear saturation by Xo
flow has a source driven by the axial ion pressure drop in the central region and a sink set by
the momentum out flux at the wall. Boundary conditions for the plasma flows are determined
by neutral flow dynamics within the boundary layer via ion-neutral coupling. In this paper,
flow profiles (a) with no drive by ion pressure drop or momentum flux at the wall, (b) with
ion pressure drop and no-slip wall boundary condition, and (c) with both ion pressure drop and

momentum loss at the boundary are calculated and discussed respectively. Flow profiles strongly

depend on the boundary condition. Future work on the neutral dynamics within the boundary
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layer will provide a physical boundary condition for the plasma flow, and will thus lead to a
better understanding on the global momentum budget and axial flow structure in linear devices.

For tokamaks, a synergy of conventional models for residual stress and the negative vis-
cosity by dynamical symmetry breaking is proposed. The dynamical symmetry breaking doesn’t
require complex magnetic field structure, so it is also applicable to intrinsic rotations in tokamaks.
The negative viscosity reduces the total flow damping and thus enhances the intrinsic rotation
profile gradient. In particular, the dynamical symmetry breaking works in flat q regimes, so is
significant for controlling transport through the q profile. Also, using only a simple model of
electron drift waves, this new model for residual stress can be applied to intrinsic rotation in
burning plasmas with CTEM turbulence. Moreover, the dynamical symmetry breaking mecha-
nism is also relevant to intrinsic rotation of ECH heated plasmas [SKK™13]. This mechanism
can enhance the effect of flow drive induced by ECH. For example, the ECH injection can induce
a residual stress, ITR® via conventional symmetry breaking mechanisms and the flow gradient is
thus enhanced by the negative viscosity increment resulting from dynamical symmetry breaking,
e (v ~TIR/ (ot — g™ ))-

The dynamical symmetry breaking mechanism can be relevant to other types of turbu-
lence, like ITG. However, as only drift wave turbulence has been considered so far, the details
of the ITG case are unknown at this stage. Its study is planned for a future publication. We con-
jecture that a qualitatively similar feedback mechanism may still work in ITG turbulence. This
is because in ITG turbulence, the test flow shear enters the growth rate even without a frequency
shift, and <v” ) enters via kek|| asymmetry. Further, for a kinetic theory of ITG instability, the ba-
sic non-adiabatic ion response is 8f ~ {iL(® — . ;)|e|¢/T;} fo, Where L is a propagator. Hence,
the frequency shift effect can enter here, as well. However, whether this will give a negative
viscosity increment is unknown at this moment in time. We plan to address this question in a
future publication, the preparation of which is ongoing.

In a similar vein, the mechanism proposed in this paper can be relevant to flow reversals
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during LOC-SOC transition [RCD™ 11]. Intrinsic flow direction during the LOC-SOC transition
can be set by geometrical symmetry breakers, e.g. (vg)’ and I’(x). However, our mechanism
enhances the flow profile gradient, via (v)’ ~ ITR® /(x4 — |x§es|). In LOC state, (v))" is en-
hanced by —]qufeﬂ as a result of dynamical symmetry breaking. In SOC state, however, it is
unclear about the effects on <v”>’ by other types of turbulence, and this will be left for a future
publication, as commented above.

The dynamical symmetry breaking is fundamentally different from the usual eddy tilting.
In the dynamical symmetry breaking model, flow shear directly affects the linear growth rate by
selecting some modes which grow faster, resulting in a spectral imbalance. Eddy tilting by (vg)’
in (r,0) plane enters the correlator (7,7) ~ (kgk,) ~ —(k3)(ve)'Tc, resulting in an unambiguous
Reynolds work, and does not enter directly via stability. But in (r,z) plane, eddy tilting does not
work, because d;k; = —9d,(®0+k,(v;)) = 0. In our case, the (kgk,) correlator couples differently
to the growth rate, for different (kgk,). Thus, our mechanism is fundamentally different from
eddy tilting.

Chapter 2 is a reprint of the material as it appears in J. C. Li, P. H. Diamond, X. Q. Xu,
and G. R. Tynan, “Dynamics of intrinsic axial flows in unsheared, uniform magnetic fields”,

Physics of Plasmas 23, 052311 (2016), American Institute of Physics. The dissertation author

was the primary investigator and author of this article.
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Chapter 3

Negative Viscosity from Negative
Compressibility and Axial Flow Shear

Stiffness in a Straight Magnetic Field

3.1 Introduction

Strong toroidal rotation and weak magnetic shear are desirable for enhanced confinement
in tokamaks. External drives for rotation, e.g. neutral beams, will be insufficient to assure MHD
stability [?] in future fusion devices, such as ITER. Thus, intrinsic rotation is of interest. Weak
or reversed magnetic shear has long been known to enhance microstability and confinement.
Studies on enhanced reversed shear [SBB97], negative central shear [RTB"96], weakly neg-
ative shear [YHN™15], etc. reveal this trend. For example, de-stiffened states, with enhanced
confinement, were observed in the weak shear regime in JET [MAC™ 11a]. Therefore, intrinsic
rotation at weak magnetic shear is of particular interest. Intrinsic rotation can be generated by
background turbulence. Thus, in tokamaks, intrinsic rotation usually tracks the driving gradient

of turbulence [RHD™ 11a]. This also poses the question of how the flow gradient (VV5) interacts
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with, and scales with, the driving gradient of turbulence (i.e. edge ion temperature gradient in
the case of Ref.[RHD " 11a]).

The controlled shear de-correlation experiment (CSDX) is a cylindrical linear device
with uniform axial magnetic fields and turbulence driven intrinsic parallel flows. It offers a well-
diagnosed venue for the study of intrinsic flows in the shear-free regime [TBC*14b]. Since
most mechanisms for intrinsic parallel flow generation rely on magnetic shear [DKG™'13a], a
new dynamical symmetry breaking mechanism was proposed to account for axial flow genera-
tion in CSDX. This mechanism does not require a specific magnetic field configuration, so it
can work in regimes with and without shear. Symmetry breaking is usually required to set a
preferred direction for the flow, i.e. a finite (k). The residual stress is determined by the correla-
tor (kng) = Y kokj| \¢k|2. Hence, asymmetry-specifically, handedness-in the turbulent spectrum
(|0x|?) is required to obtain a nonzero residual stress. In CSDX, where the turbulence is usually
a population of electron drift waves (EDWs), the growth/drive rate is determined by the drift
mode frequency shift relative to the electron drift frequency, i.e. Vi ~ ®. — @ [LDXT16a].
A test flow shear (SVH’ ) changes the frequency shift, setting modes with k”keSVH/ > 0 to grow
faster than those with kaQSVH’ < 0. Therefore, a spectral imbalance in kjkg space develops,
which sets a finite residual stress SHf”” . The resulting residual stress drives an intrinsic flow,
and so reinforces the test flow shear. This self-amplification of SVH’ is a negative viscosity phe-
nomenon. The residual stress induces a negative viscosity increment, i.e. SHf”eS ~ |X§es|8VH’ .
The basic scenario resembles that familiar from the theory of zonal flow generation [DITHOSb].
The flow shear modulation (8VH’ ) becomes unstable when the total viscosity xgm = %o — |xf§es
turns negative. Therefore, SVH/ can be self-reinforced via modulational instability. When the
flow profile gradient steepens enough, so that the parallel shear flow instability (PSFI) is turned
on, the mean flow gradient (VV)) saturates at the PSFI linear threshold and the total viscosity

Tot PSFI

stays positive, due to the contribution induced by PSFI, i.e. Xo” = ng +X |xf§es\. In

, the 1near thresho TOwWS as crit Cg| ~ n) a, , Where
CSDX, the PSFI linear threshold g Vilerit/ k) kjLy)~* [LDXT16a, KII15], wh
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L, = —(9,Inng)~!. Therefore, the flow gradient tracks the turbulence driving gradient (i.e. Vo)
as VV| /|kjcs| ~ |V”’|crit/|kHCS| ~ (k”Ln)’z. This scaling motivates us to wonder if there is a
generalized form of the Rice-type scaling [RICdT07a, RHD " 11a].

CSDX has straight magnetic fields, and thus is an important limiting case for understand-
ing flow generation at zero shear. While existing models of axial flow generation in CSDX
are based on EDW turbulence, fluctuations propagating in the ion drift direction are observed
[CAT'16]. Such ion features appear in the central region of the cylindrical plasma in CSDX,
where the density profile is flat. In addition, turbulence driven by the ion temperature gradient
(ITG) controls momentum transport in tokamaks operated in enhanced confinement states, e.g.
states with an internal transport barrier (ITB). Also, intrinsic rotation tracks the edge temperature

gradient [RHD ™ 11a]. These trends beg the questions:

1. How does negative compressibility turbulence, e.g. ITG turbulence, affect momentum

transport at zero magnetic shear? Particularly, what happens in flat density limit?
2. How does VV| saturate in ITG turbulence?

3. With tokamaks in mind, how does this new mechanism interact with conventional mecha-

nisms which exploit magnetic shear? What is the interplay of VV| and VTjy?

It has long been known that a finite parallel shear flow (PSF) VV| can enhance ITG turbulence in
sheared magnetic fields [MD88]. However, the detailed question of how the mean flow gradient,
VVH, and its perturbation, o H/ , affect flow generation and saturation in ITG turbulence in a
straight field remains unanswered.

In this paper, we study the effects of ITG turbulence on momentum transport in a straight
magnetic field. In the regime well above the ITG stability boundary, a perturbation to the flow
profile, 6VH’ , can reduce the turbulent viscosity. SVH/ breaks the symmetry by allowing modes with

kekHSVH’ > 0 to grow faster than modes with kngSVH/ < 0. This results in a spectral imbalance in

kek|| space. The residual stress set by this spectral imbalance drives an up-gradient momentum
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Table 3.1: Compare SVH’ induced symmetry breaking in ITG turbulence and electron drift wave

turbulence.
ITG Turbulence | Electron Drift Wave
Direction of correlator (kekH)SV”’ >0 <kekH)SVH’ >0
Viscosity increment by SHf”“ xg“ <0 x{;es <0
Total viscosity xq{”’ >0 xq{”’ can be negative
Modulational instability Not exist Can exist

flux which induces a negative viscosity increment, i.e. SHfHes ~ \xf;e“\ﬁw with x5 < 0. Thus,

the fotal viscosity is reduced, since xg‘” = %o — |X§“ |. The mean flow gradient driven by ITG

turbulence is consequently steepened, since VVH ~ Hf”es /qum .
However, unlike the case of dynamical symmetry breaking in EDW turbulence, we show

that symmetry breaking induced by H/ in ITG turbulence alone cannot amplify the seed flow

shear (5V”’ ). Therefore, ITG turbulence cannot drive intrinsic flows in straight magnetic fields.

In ITG turbulence, the total momentum diffusivity xg”’ remains positive, because |Xf§es | = %an-
The growth rate of a flow shear modulation is 'y, = —Xgmqg, where g, is the radial mode number

of the modulation. A positive definite xqf”’ does not induce modulational instability. This differs
from the case of EDW turbulence. Table 3.3 shows the comparison between symmetry breaking
in ITG and EDW turbulence.

The axial flow in CSDX can be driven by various external sources. The axial ion pressure
drop, induced by the location of the heating source on one end of the cylindrical plasma, can
drive an axial flow. Biasing the end plate can also accelerate axial ion flows by axial electric
fields.

The flow gradient produced by external or intrinsic drive ultimately must saturate due to
PSFI-induced relaxation. VV| can be enhanced by external drives, e.g. the axial ion pressure
drop and end plate biasing. When VV/ is stronger than the ion temperature profile gradient (VTj),
PSFI drive controls the turbulence. Here, the relative strength between VTj and VVH 1s measured

by the relative length scale Ly /Ly =0, 1n VH /9, InTy. In turbulence controlled by PSFI, both the
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residual stress and turbulent viscosity depend nonlinearly on VV|. As a result, the flow gradient
saturates above the linear threshold of PSFI and the saturated VV| grows with VTjy. This implies
a "stiff” VV) profile. An aim of this paper is to calculate the scaling VV| /kjcs ~ (kjLr)~* of
this stiffness.

The scaling of the V'V profile stiffness reveals the final state of the nonlinear interaction
between VV” and VT;. It should be noted that PSFI co-exists with ITG turbulence. Their relative
strength depends on L7 /Ly. Because VV| and VTj are coupled nonlinearly, they don’t simply
add up. However, PSFI can be distinguished from ITG instability (at least in simulation) by

comparing their mode phases. The mode phase is defined as

'[I:lIl_1 ('Yk/(!)k), o, > 0;

' n4tan~ (1 /@), @ <O.
Here, v, and oy are the growth rate and real frequency of the mode. PSFI has zero frequency,
which means 67"/ = 1t/2, while the ITG mode phase is usually /"¢ = 21t/3. The theoretical
concept of mode phase is related to the cross phase between flow fluctuations, v and vy, and thus
can be measured in experiments, at least in principle. Also, since mode phase affects Reynolds
stress (¥ 7), intrinsic flow profiles are sensitive to the mode phase.

Comparison between symmetry breaking in EDW and ITG turbulence drives us to won-
der if flow reversal is possible in CSDX by a change in turbulence population from EDW to ITG?
More generally, can the idea that mode change leads to flow reversals [RCD"11] be tested by
basic experiments? The flow profile in CSDX is determined by the ratio between the axial ion
pressure drop AP; and the total turbulent viscosity [LDXT16a], i.e. VH ~ fra drAP;/ xqf"’ where
a is the plasma radius in CSDX. In EDW, though xgm can turn negative at least transiently, it
is finally forced positive by PSFI saturation. In ITG turbulence, xg"’ is positive definite, since

|X§es| = %xq,. Therefore, there would be no argument for flow reversal in the final state, even

though fluctuation or reversal may occur as a transient. Also, one can argue that flow reversal,
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even if it exists in CSDX, does not track the change in turbulence from EDW to ITG.

We neglect the momentum pinch effect in this work. In addition to the diffusive and
residual components, the parallel Reynolds stress can have a momentum pinch term that is pro-
portional to the flow magnitude. Since the momentum pinch is usually due to toroidal effect in
tokamaks [HDGRO7, PAB™11, ACC™12], it is neglected in this work, where we study linear
devices that have straight and uniform magnetic fields. In general, the momentum pinch is of
the turbulent equipartition variety, and so |Vpiuen|/|Xo| ~ 1/Ro, where Ry is the major radius
of the tokamak. This is explained as a toroidal effect. It is possible to also have L, scalings,
i.e. [Vpinenl/|Xo| ~ 1/Ly, in certain parameter regimes. However, since this analysis does not
treat self-consistent evolution of density profiles, we decided to omit a discussion of this rather
sensitive, detailed effect.

The rest of this paper is organized as follows: Sec.5.2 introduces the fluid model of
the PSF-ITG system in a straight magnetic field. Sec.3.3 discusses the three regimes that we
consider in this work. Sec.3.4 summarizes the structure of results. Sec.3.5 presents results on
mode phase, symmetry breaking, and flow profile in each regime. Finally, Sec.6.4 summarizes

and discusses the results.

3.2 Fluid Model for PSF-ITG System

We consider a system where the ion temperature gradient (VTjy) is coupled to the flow
gradient (VV)), i.e. a coupled PSF-ITG system of potential vorticity, § = (1 — V2 )0, paral-

lel flow, v = 17” + V”, and ion pressure, p; = p; + Py, with zero magnetic shear in cylindrical

geometry:
d Vg .
(1= VDo+vE = 2+ V)7 =0, (3.1)
d\7H .
W—FVE‘VVH = —V||¢—V\|Pi7 3.2)
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dp; 1 VP T'_ _
W + EVE . P_() + ;VHVH —i—VHQH =0. (3.3)

Here, lengths are normalized by ps = /m;T,o/(eBy), time is normalized by the ion cyclotron

-1
ci

frequency ® ", velocities are normalized by the ion sound speed c; = \/W, and the elec-
trostatic potential is normalized as ¢ = e®/T,o. The convective derivative is defined as d/dt =
d/0t + vg -V, where vi = By x VO/By is the E x B velocity. The kinetic effect of Landau
damping is retained by including the parallel heat flux, with Hammett-Perkins closure Q| ; =

—X|noik| T,k Here, the (collisionless) parallel heat conductivity is x| = 2V 2vrpi/ (VT |kH

), and
vrpi 18 the ion thermal speed. The ratio of specific heats is I' = 3 in this model. The electron
response is adiabatic, corresponding to Boltzmann electrons, i.e. 7i = ¢. Hence, p; = T; + ¢/,
with the temperature ratio defined as T = T, /Tj. Since the ion features exist in the center of
CSDX where density profile is flat, we take Vng = 0 throughout. Thus, the mean pressure gradi-
ent consists of only temperature gradient, i.e. VPy = VTjy. The linear dispersion relation for the

PSE-ITG system is

" |
AQ3—(c0—v’)Q—D+m <AQZ+V’—¥> =0, (3.4)

Cs

with Q = (1)/|kHCS

V= kek”pscsvn’/kﬁcz,A = 1+k3 pZ, Co=1+(1+k3 p?)I'/T, D= o7 /Tlkjcs].
o7 is defined as w7 = —kgpsc0,InTy. In a linear device, such as CSDX, T > 1, so ]kH |XH/Cs ~
1/4/ < 1. Thus, terms involving i|ky|x /cs will be neglected.

VT and VV| are coupled nonlinearly, because either VTjy or VV| can drive instability,

_(D\* [(Co—-V"\’
A:(ﬂ> —< 0 ) > 0. (3.5)

The growing mode has growth rate and frequency:

3 D D
T = \/_|k|cs| (i/ﬂm/Z—\S/ﬂ—JZ), (3.6)

by forcing

2
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mk:—%|k|cs| (\3/%+\/K+ Y %—xﬂ). (3.7)

In the following sections, we will see that in presence of a shear flow V”’ , modes with kek”VH’ >0
grow faster than others. Therefore, we take V/ = kekHVH’ / kﬁc? > 0.

The underlying instability drive is negative compressibility. Both ITG instability and
PSFI are negative compressibility phenomena. Negative compressibility means an increase in

density (compression in volume) leads to decrease in pressure. For the system studied here, the

relation between the pressure perturbation and density perturbation is

_(rkea  rhkipeV]  op
i~ | = - = — .
bi T T o |0y |

Here, we have used the adiabatic electron response 7i ~ 0. The compressibility becomes neg-
ative when either of ITG instability or PSFI is above threshold. Note, VT;y and VVH can act in
synergy to turn the compressibility negative, driving the system unstable.

Though coupled nonlinearly, PSFI and ITG instability can be distinguished by different
mode phases. PSFI is a purely growing mode, so 6; = /2. This is because (for VT;y — 0), the
dispersion relation becomes

AQ? — (Cy—V') =0, (3.8)

which gives a purely growing branch when V' >V, = Co, with growth rate y; = |k c;| \/m.
In contrast, ITG instability has a negative real frequency whose magnitude is comparable to the
growth rate. If VTjy (the term D) dominates the dispersion relation Eq.4.10, then the result-
ing ITG mode has complex frequency ® ~ exp(i2m/ 3)[]0)T\kﬁc§ (tA)]'/3, with mode phase

0 = 21/3.
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Figure 3.1: Regime defined by instability types and flow profile driven by the PSF-ITG turbu-
lence. The regimes are (1) marginal regime; (2) ITG regime; (3) PSFI regime; and (4) stable
regime. Parameters used for this plot are kgp; = 0.4 and the ratio of specific heats I' = 3.

3.3 Instability Regimes

The nonlinear coupling between VV| and VT significantly increases the level of com-
plexity of calculating the residual stress and the flow profile. Therefore, we classify the PSF—
ITG system into three regimes (Fig.3.1), determined by length scales L, '=_9,In V| and Ly =

—0,InTy:

1) The marginal regime is defined by A = 0, where PSFI and ITG instability co-exist, and
both of them are weakly unstable. Thus, VV| and VTjy are nonlinearly coupled in this

regime.

2) The ITG regime is where the system is well above the marginal state and V T}y contributes

more than VV| to the magnitude of A, i.e. (D/ 2A4)% > (V'/3A)3 which leads to

P o3 Al

— . 3.9
KLy = V) 227 (keop) P73 39
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We show in Sec.3.5 that, in this regime, though a test flow shear SVH’ induces a negative
viscosity contribution, the total viscosity is positive definite. Consequently, there is no
intrinsic flow driven by ITG turbulence in a straight field. This is quite different from the

case of EDW turbulence.

3) The PSFI regime is also well above the marginal state, but where VVH contributes more

than VT to instability drive, i.e.

P e 3 Al

> — . 3.10
ey [13Ly ~ V) 2273 (kopy) /302 (3.10)
This gives the regime boundary above which PSFI controls the turbulence:
2/3
3 |oor | [kyles
Vi|reg = = A3 : 3.11
| H|reg 22/3 ’C‘kncsl keps ( )

External flow drives can enhance the flow profile gradient. Hence, VV| can exceed the
PSFI regime boundary (|V||’ |reg). PSFI is nonlinear in VV,. Consequently, the turbulent
viscosity is nonlinear in VVj, and so VV| saturates at \VH’ |reg Which is above the linear
threshold of PSFI. Thus, there is a clear distinction between the threshold VV) profile and

the saturated-or "stiff’-VV) profile.

3.4 Structure of Results

In this section, we summarize the key aspects of results. We consider a) symmetry
breaking by SVH’ , b) mode phase, and c) flow profile in each of the three regimes. A test flow

shear 8V”’ can break the symmetry and induce a incremental viscosity via the residual stress, i.e.

SITRes — —xReSSV‘f . The sign of x§* is determined by the mode phase. Thus, x5 has different

il

signs in PSFI and ITG turbulence. Finally, we need to calculate the flow profile, in order to
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Figure 3.2: Diagram of the three roles played by VV in the PSF-ITG system.

explore possibilities about flow saturation in the context of negative compressibility turbulence,

i.e. ITG and PSFI turbulence. In the rest of the section, we discuss these three aspects in detail.

3.4.1 Symmetry Breaking by SVH’

A perturbation to the flow profile, 8V”’ , breaks the k| — —k| symmetry. (kekH} is linked to
8V”’ via the acoustic coupling, Vllﬁ\l' In Sec.3.5, we will show that modes with kngSV”’ > 0 grow
faster than those without. This sets a spectral imbalance in kgk|| space. Further, the finite residual
stress set by this imbalance is found to be a Fickian momentum flux, i.e. SHfHes ~ —xgesvw.
The viscosity increment induced by residual stress then adds to the total viscosity, so that XqT)‘” =

Xo + xges. Table 3.2 compares symmetry breaking in the three regimes.

3.4.2 Mode Phase

The sign of residual stress is determined by mode phase. Here, mode phase (0;) is defined
as the phase of the complex mode frequency, i.e. 0 = oy + iy = €%, /60,% + Y,% Linearizing the

response of V|| ;, we can obtain the quasilinear Reynolds stress [GDHS07a, GDH™10a]

(0 7r) = —xoV| + I} (3.12)

il
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with the turbulent viscosity:

Xo 2 RY — kepsltbkl2 (3.13)
k
and residual stress:
I ~ S{Z—Z—kekupscs|¢k| (3.14)
where W7 = —kgpscs9,Tjo/Tjo. Here, ® = oy + iy = |®|e™® is the complex mode frequency

with mode number k, and so i/® ~ ¢/™2=%) and i/@? ~ ¢("/>~2%) Therefore, the sign of the
residual stress is determined by 6y, as HRH“ (kek”)‘){(i/(oz) ~ (kek|) cos(m/2 —26y).

Res

Mode phase also determines the sign of Xo , 1.e. the viscosity contribution induced by

residual stress. In presence of a test flow shear, SVH’ , the residual stress induces a momentum

Res

flux, SHRﬁs = —X(peSSVH The sign of Xo 18 determined by both the mode phase and its change

due to SVH’ The residual stress’ response to the test flow shear is

| 0
SIIfes 2Zcos = 80, — 361 ” !3| ok [0 (3.15)
where 80y, is the phase of perturbed complex frequency due to 3V, Vi i.e. 0w = |dw|exp(id6y).
Since [8w| ~ kgk) 8V, v/ I’ the sign of the residual stress-induced viscosity contribution is determined
by
T
X ~ cos (5 +86, — 30, ). (3.16)

ITG instability and PSFI have different mode phases, leading to different signs of XR“ As a

result, SVH’ has different effects on momentum transport in ITG and PSFI turbulence.

3.4.3 Flow Profile

Though pure ITG turbulence cannot drive intrinsic flows in straight field, VT affects
momentum transport, and thus can regulate the flow gradient. In CSDX, the axial flow can

be driven by the axial ion pressure drop. In order to uncover the ITG effect on the flow, we
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Table 3.2: Characteristics of the three PSF-ITG instability regimes. Mode phase is defined as
the phase of complex mode frequency, i.e. ® = @y + iy = |®|e™®*. 86y is the phase of perturbed

complex frequency, dm, due to SVH’ .

xges

is the incremental viscosity induced by SVH’ . Since

PSFI is driven by VV| nonlinearly, SVH’ effect is nonlinear, so we do not consider its linear

effects, i.e. 80; and quf”.

Marginal Regime | ITG Regime | PSFI Regime
Primary Turbulence Drive VT and VV” VT VVH
SVH’ Induced Spectral Imbalance <k9k|‘>8VH’ >0 (k9k||>5VH’ >0 <k9k‘|)5V”’ >0
Mode Phase 60, <m 21/3 > m/2
Perturbed Mode Phase 86, /2 /3 NA
Sign of Y4 %o >0 %o <0 NA

ignore the external sources in the following analysis. Consequently, the flow gradient within the
center region of CSDX can be obtained from V - I1 = 0, where IT is the total momentum flux.

Considering only the parallel Reynolds stress, the flow profile gradient can be calculated from

0,7 7)) = 3, (TR — WV} ) = 0. (3.17)

The edge is accounted by boundary conditions for the flow. The flow profile depends heavily
on the boundary condition [LDXT16a, AGG"13]. The boundary layer in CSDX is controlled
by coupling between ions and neutral particles. Assuming the radial expansion of the boundary
layer is negligible compared to the plasma radius, we adopt a no-slip boundary condition for V).

As a result, the flow profile is V| (r) = — ['drVV|, where a is the radius of plasma.

3.5 Results

In this section, we present results on mode phase, SVH’ induced symmetry breaking, and

flow profile, for each of the three regimes.
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3.5.1 Marginal Regime

When the PSF-ITG system is weakly unstable, i.e. A = 0, PSFI and ITG turbulence
coexist. In this regime, VVH and VT, are coupled nonlinearly, and a perturbation to the mean
flow profile raises the PSFI level and thus enhances the flow dissipation.

We can obtain the linear thresholds for ITG and PSFI turbulence. The PSF-ITG system
can be viewed as an ITG system in presence of VV|. From the criterion Eq.3.5, VTjy can drive

instability with a threshold depending on VV),

=S

4t%ktci (Co—V')?
27A '

OF it (VV)) = (3.18)

In the marginal state, i.e. W7 e OF crip>

2 2
~ ﬁ |k‘|cs|2/3 \V/ w7 — O)T,crit (3.19)

" a0 B e

the growth rate and real frequency are

E_|kHCs|2/3|03T|1/3
(2A7)1/3

(3.20)

Meanwhile, the PSF-ITG system can also be viewed as a PSFI system modified by VT;y. From

the criterion Eq.3.5, the PSFI threshold can be obtained, and is

2/3
K cs] o]
Ve = —2 [ Cp—3A/3 [ 1L . 3.21
| H|Cr't keps 0 2’c|k||csl ( )

The growth rate, Y ~ WH’ | — \VH’ |erit depends nonlinearly on VV). VT enhances PSFI by
lowering the PSFI threshold. Therefore, in the marginal regime, PSFI and ITG instability coexist,
and one can view this weakly unstable turbulence in two equivalent ways: (1) ITG turbulence

modified by VVH and (2) PSFI turbulence modified by VTj.
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The residual stress and turbulent viscosity are

HRes ~ 2\/§Z (2A)2/3 O)T 0‘)% crit
1

2
B tBkyes 43 for 23 koky|pscs| Qx| (3.22)

=3

2
ZAT) 1/3 T ('OT crlt

V3

~ 210012
= kP31 0x ). (3.23)
Sy ey,
VV| and VT are coupled nonlinearly in HR|‘|?S , via /@7 — 0F ;. Therefore, HRH“ cannot in

general be decomposed into the sum of a VTiy driven piece and a VV| driven piece. Here, it
is the frequency shift | /® 0)% orit Which determines the instability and thus sets the residual
stress and X.

The residual stress requires symmetry breaking. A perturbation to the mean flow gradient,
SVH, breaks the k| — —k symmetry. As shown by Eq.3.18, modes with kgk| 8V/f >0 have lower

% .., than others. Therefore, these modes grow faster because ¥ ~ /0% — @2 .. As aresult,

T crit*
a spectral imbalance in kgk|| space is induced. For example, for VH’ < 0, modes in the kgk| <0
domain have higher intensities. Therefore, the correlator is set to be (kgk|) < 0. Further, the

residual stress is set by the spectral imbalance as

2
Res ~ 2\/§ (2A)2/3 wT (DT crit

T3 <o TRk fer P

Kok |pscsli(8V))), (3.24)

where Ik(S ) |0x|?> — [¢_«|* accounts for the turbulence intensity difference and so the sum-
mation is only over the domain where kgk|| < 0.

This symmetry breaking mechanism induces a positive increment to the turbulent viscos-
ity. SVH’ raises the PSFI level, and so enhances the turbulent viscosity. We consider the response

of HR”” in the presence of a test flow shear 8V ” The perturbed complex mode frequency due to

52



V[ is
2 /
Sty 2 o0 V3 ks 3 OF cri Kok psc,8V

173 PR
2Cy (2A7) o723, /02 — (’O%,crit ks

with perturbed mode phase 86; = /2. 86y is the same as PSFI mode phase, indicating that SVH’

(3.25)

enhances PSFI turbulence. The mode phase in this regime can be obtained from the complex

2 2
o e o el A AOT O i
=€

(2A’C)1/3 \/§‘0~)T’2/3 ’

frequency, which is

(3.26)

with mode phase 0; = 7 — € where € = arctan \/ (0)% - 03%7 erit)/ 30)2T 2 0. As aresult, the residual

stress in response to 8V can be written as a diffusive momentum flux SITR¢S = —yRes§y/ with
p I rl Xy OV

viscosity xf;” ~ cos(m/2 + 86 — 36;) = cos(3€) > 0. This means the residual stress induces

a positive increment to the turbulent viscosity. Following the same calculation procedure as in
Ref.[LDXT16a], we can obtain the residual stress in terms of VV| and SVH’ , which is Hf”es (VVH +

8V/) = nﬁfS(Vw) — xgeszsvlf, with

44/3 Cg /3 kgp?|kHCs|2/3

3 k ‘(DT’ \/ 07 — wT.,crit

Therefore, SVH’ enhances flow dissipation.

[ (3.27)

Xges o~

One can also consider the rise in flow dissipation in terms of parallel Reynolds power
density. The parallel Reynolds power density is defined as Pﬁe = (ﬁr\7||>VH’ . It accounts for the
rate of energy coupled from fluctuations to mean parallel flow. When Pﬁe > 0, mean flow gains
energy from fluctuations, and vice versa. The perturbed Reynolds power due to SVH’ is then
ESPﬁe = <—X¢5V||/ +8Hf””) Vi=- <X¢ +xf§es> V(8V|. Assuming 8V has the same sign as V|,
xf;‘” > 0 increases the rate at which energy is coupled from mean flow to fluctuations. Thus,

flow dissipation is enhanced.

Though the marginal pure ITG turbulence cannot drive intrinsic flows in a straight field,
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it can influence the flow profile driven by external sources. The final flow profile set by ITG

turbulence can be obtained from Eq.5.18, which is VVH = [1Res /%o- Because VV” and VT, are

7l

nonlinearly coupled via the frequency shift 4/ 0)2T — co% orir» their effects on the residual stress
cannot be separated. However, the nonlinear dependence on VV| cancels, via the ratio between
TR and Xo- In order to see the flow profile’s scaling with VT, the factors induced by symmetry

il

breaking effects are ignored. As a result, the estimated residual stress is

2 2
2\/§ (2A)2/3 w7 — O)T,crit
Res| )
|H”|Ts =~ 3 ;Tl/3|k||cs|4/3 |(’)T|2/3 |k9k|||pscs|¢k| ) (3.28)

which is an upper limit for ITR since | ¥ ko |0x|*| < X |koky||0x|*. The fluctuation intensity,

rll
|0k

gradient emerges as

2, enters both HI:H“ and Xy, and so drops out of their ratio. Therefore, the parallel flow

Vil =

HRes AVAV VT, 2/3
IL* (V¥V}, VTio)| ~24/3A1/3< |or | ) [kiles (3.29)

Xo(VV),VTo) Tk sl keps

The above scaling of VV| can be illustrated on a back-of-envelope level. Given by
Eq.3.13 and Eq.3.14, the ITG residual stress and turbulent viscosity scale as Hﬁ‘f“ ~ R(ior /T0?)
and x¢ ~ R(i/T0), where ® = o + iy is the complex mode frequency, and 07 = kgpscs/Lr
is the ion drift frequency. For ITG turbulence, Y ~ || ~ (Jo7|/T)?/3. Therefore, the flow

gradient scales as VV| ~ Hﬁfs/Xq, ~ (|0)T|/’c)2/3|k”cs|1/3.

3.5.2 ITG Regime

Now we consider ITG turbulence well above threshold ((x)% > (02T i) With the VVH effect
as a first order correction. In this regime, a test flow shear 6V”’ induces a negative correction
to the viscosity. However, unlike the case of electron drift wave (EDW) turbulence, the total

viscosity in ITG turbulence is positive definite. Therefore, no intrinsic flow can be driven by
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ITG turbulence without symmetry breaking due to the magnetic configuration. The difference in
flow dissipations between EDW and ITG turbulence raises the quesiton: is flow reversal possible
in CSDX? Even though the answer seems to be negative, it suggests that speculations about flow
reversal can be tested in fundamental plasma experiments.

The residual stress can be obtained using the growth rate and frequency, which are

o VAo Plel P 1 oran) (330)
T2 (a)ls 2|or| ’ .
oz MO PelPP T ora) (3.31)
T ) 2|or| ' '
The leading order complex mode frequency is
1/3 2/3
. ® kjc
mgezzﬂ/ﬂ r| 7lkyed 7 (3.32)

(TA)1/3

with mode phase 6; = 2m/3. Therefore, the residual stress and turbulent viscosity in this regime

are

Res ~ \/§ |(")T|1/3Az/3 2
Res oy Yy o —kok)pscsl i, (3.33)
I ) ;Tl/3|kcs|4/3 [PsCs

V3 (tA)!/3 2 21 12
Xo = — kgps |0x|™ (3.34)
T2 ;'mT|1/3|k||Cs|2/3 ¥

8V”’ induces a negative viscosity increment. Similar to the case of marginal regime, the
residual stress is set by the spectral imbalance, which, given a flow shear SVH’ <0, 1s
Res ~ \/§ |0‘)T|1/3Az/3

= Y o ek psesk(BV)). (3.35)

I1
{klkoky <0} "71/3|kllcs|4/3
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The perturbed complex mode frequency due to a test flow shear 8VH’ is

/

1/3
S — ¢i/3 ( t ) kakpsc;OV] (3.36)
|(J)T| 3A2/3’k|‘cs|2/3 7

with the perturbed mode phase 88; = 7/3. Since ITG instability is well established (i.e. 7 >>

2

O‘)T,cri

o) the test flow shear not only perturbs the growth rate, but also affects the real frequency.

Therefore, the perturbed mode phase carries features of both PSFI and ITG mode phases. Since

xf;‘” ~ c0s(30; — 86, —/2) = cos(5m/6) < 0, the residual stress induces a negative viscosity
increment, which is
Res V3 (t4)!/? 2 204 2
=—— E k . 3.37
Xq) 6 2 ‘(DT’1/3’kHCS|2/3 6Ps M)k’ ( )

This negative viscosity increment reduces the rate of energy coupling from mean flow profile to

fluctuations, since the Reynolds power density due to SVH’ in this case is SPﬁe"’S =— (X(p - ]xf;es|> VH’ SVH’ i

Therefore, SVH’ reduces flow dissipation, and so can enhance the flow gradient, since VV” ~
Res
I /e
However, SVH’ cannot self-amplify, though it induces a negative viscosity increment. The

Tot

dynamics of 8V is determined by 9,6 H/ = xg‘” 838VH’ , with growth rate v, = —q%xq) . Here,

Tot

the roral viscosity, X, Res Res

= Xo — [Xo"*|: s positive definite, because |y,“| = %o, which can be
obtained by comparing Eq.3.34 and Eq.3.37. Since xq{m > 0, the growth rate v, is negative,
so the flow shear modulation is damped. This is also shown by the Reynolds power density.

Since xg”t > 0, the Reynolds power density is negative, and thus energy is coupled from mean

flow profile to fluctuations, though at a reduced rate due to xf;es < 0. Table 3.3 summarizes the
comparison between SVH’ induced symmetry breaking in ITG turbulence and electron drift wave
turbulence.

In order to calculate the flow profile, we need to eliminate the residual stress’ nonlinear-

ity in VVH. In the ITG regime, VV” effects can decouple from VTjy. This is because VT is

well above the stability boundary, and dominates over VV|| in magnitude. Moreover, the resid-
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Table 3.3: Compare SVH’ induced symmetry breaking in ITG turbulence and electron drift wave

turbulence. The total viscosity, xqf‘” = Yo+ xf;”, determines the modulational growth rate of

SVH’ whichis v, = —xqfo’ g? with ¢, being the radial mode number of the shear modulation SVH’

ITG Turbulence Electron Drift Wave
Direction of correlator (kek )V, 1> (kek)) OV >
Viscosity increment by SHfHes Xf;“ <0 xf;es <0
Total viscosity xTO’ positive can be negative
Modulations stable can be unstable

Res  Therefore, the residual stress can be

ual stress induces an negative viscosity increment x
linearized as

I (V T, 8V)) = IS (VTio) + 26 (VTio) |8V (3.38)

The up-gradient component results from the symmetry breaking by SVH’ .

The negative incremental viscosity xReS

induced by the residual stress regulates the trans-
port of mean flow. Therefore, in response to a mean flow gradient, the residual stress can in-
duce an up-gradient momentum flux, i.e. TTR¢ i (VTZ-O,VH) ~ HRH“(VTO) + |x¢es| H/' This leads
to Eq.3.39, which calculates the mean flow gradient. Such “negative viscosity” phenomena are
well known in geophysical fluid dynamics and magnetized plasmas.

With HR‘TS(VT ) Xo(VT0) and XR“(VTO) given by Eq. 3.33, 3.34, and 3.37, the flow

gradient is

(3.39)

Res 2/3
Vi — [T (Vo) 3 lor] Ik |cs
I k) cs keps

%o (VTio) — %6 (VTo)| 2

Eq.3.39 is an upper bound for the intrinsic V, H ' driven by ITG turbulence. Again, VV, follows the
general trend revealed by scalings of Eq.3.13 and Eq.3.14,i.e. VV|| ~ (|03T|/’c)2/3|k”cs|1/3.

Can there be flow reversal in CSDX, given the different effects of ITG and EDW turbu-

lence on momentum transport? In tokamaks, reversal refers to the phenomenon where the global

toroidal rotation profile spontaneously changes direction. The rotation direction flips when den-

sity increases and exceeds ng,, the critical density that triggers the transition from the linear
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ohmic confinement (LOC) to saturated ohmic confinement (SOC) regime. Also, hysteresis is
observed as density is ramped down and the rotation direction flips back. The LOC to SOC
transition is thought to be triggered by a change in turbulence population from trapped electron

mode (TEM) to ITG. Thus, it is speculated that the Ohmic reversal is due to a change in the sign

*
crit®

of TTR* triggered when the collisionality v* > v

B which corresponds to n > nyy, tending to

drive the turbulence to ITG. Recent simulations show that a flip in the sign of HfHes can occur in
the weak shear regime [LWD™ 15].

One wonders if these speculations about flow reversal can be tested in basic plasma
experiments. The positive definite xgm in ITG turbulence, in both weakly and strongly unstable
regimes, suggests that flow reversal-by a change in the mode type from electron drift wave
(EDW) to ITG-seems unlikely in CSDX. With no-slip boundary condition, the flow profile in
CSDX is calculated in Ref.[LDXT16a], which is

aAP;

V= [ dr——t. 3.40
u / ool (3.40)

Here, AP, is the ion pressure drop in the axial direction induced by the plasma heating on one end
of the cylindrical tube. pg is plasma density and L is axial length of the tube. When the major
mode type flips between EDW and ITG, the direction of pressure drop doesn’t change, so the
direction of flow depends on the sign of total viscosity, i.e. V| ~ 1 / xq{‘” . It should be noted that
in the realistic ITG regime of CSDX, the ITG residual stress may be weak, compared to external

flow drives. Thus, we view the axial AP; as the main flow drive in the ITG regime here. In EDW,

xq{"’ is kept positive by the PSFI contribution, i.e. xq{‘” = ngW + xf;SF I IXf;“ | > 0. Note that

the nonlinear dependence of xg"’ on VV) determines the magnitude of saturated flow gradient. In

marginal ITG turbulence, x{;es > 0 so xq{(” is positive. Also, when ITG turbulence is well above

the linear threshold, even though SVH’ drives xg“ < 0, the total viscosity, XqT)"f = X6 — |X§€S ,

remains positive since \qufes| /%o = 1/3. Therefore, in ITG turbulence, qu‘” is positive definite.
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As a result, when the mode type flips from EDW to ITG, the sign of xg‘” does not change, and

so the flow does not reverse.

3.5.3 PSFI Regime

In CSDX, VV| can be driven and enhanced by various external sources. When the flow
gradient is above the PSFI regime boundary, PSFI controls the turbulence. Note that the PSFI
regime boundary (|V”’ |reg) is above the linear PSFI threshold (|VH’ |crit)- In the PSFI regime, both
PSFI and ITG instability are above their linear instability thresholds. Due to the PSFI relaxation,
the flow profile gradient saturates at |V{|reg, i.€. |V|{leric < [V}/| ~ |V][|reg ~ (VT;p)?/3.

The turbulent viscosity by PSFI turbulence is nonlinear in VV), which leads to the satu-

ration of flow gradient. The growth rate and real frequency in the PSFI regime are

ks
= W\/V’—Co, (3.41)

||
ST S — 3.42
= TV = Gy) (342)

The growth rate is nonlinear in VV), while the real frequency is negative as a result of VT

effects. Hence, the turbulent viscosity is

\/Z 2.2 2
Xo = kgpy |0k
¢ ;|k|cs|\/V’—Co oPs 0]

(3.43)

The nonlinear dependence of )4 on VV) indicates that the flow gradient can saturate. As a result,
|V”’ | saturates at the PSFI regime boundary which is above the linear PSFI threshold (Fig.3.3),

1.e.

2/3
VI| 2 V! |rew = 3 s orl IRl (3.44)
[ [[ireg = ~2/3 T|kHCs| kops :

Therefore, the saturated flow gradient is above the linear PSFI threshold, and grows with VT
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Figure 3.3: The additional flow drive can push the flow across the PSFI threshold, triggering

nonlinear PSFI relaxation. The flow gradient is then kept near the PSFI regime boundary as a
result of balancing between PSFI saturation and total flow drive.

as shown by Eq.3.44, i.e. [Vi|erie/ [k 5] << [V[1/[kyjes| ~ [V Tiol >3 / (ky Too)*3.

3.6 Discussion

In this paper, we have explored the physics of axial flow generation in ITG turbulence,

and of axial flow stiffness. The main results in this paper are as follows:

e We have shown that pure ITG turbulence cannot drive intrinsic flows in a straight mag-

netic field, but can induce a negative viscosity increment, which reduces the turbulent flow

dissipation.

e PSFI saturates the flow gradient, when VV); is driven above the PSFI regime boundary.

e The flow gradient saturates at the PSFI regime boundary, which is above the PSFI linear

threshold and tracks the ITG drive, i.e. VV)/[kjcs| ~ (VE0)2/3/(k||7}0)2/3.

Below we discuss these results.
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Negative compressibility leads to a negative viscosity increment in a straight magnetic
field. When the ITG turbulence is well above its stability boundary, a perturbation to the flow

gradient o H/ results in a negative viscosity increment, xf;es < 0. The total viscosity is then

reduced, i.e. xg” = X — [x4’|- However, 8V][ cannot reinforce itself because %o is always

Res

positive (since |x¢ | = %xq,). This means that in order to drive an intrinsic flow, ITR¢

p requires

other symmetry breaking mechanisms that likely involve magnetic shear. Therefore, there is
no intrinsic flow driven by pure ITG turbulence in straight fields. In CSDX, axial flows can be
driven various external drives, e.g. end plate biasing and axial ion pressure drop.

In straight magnetic fields, the flow gradient can saturate due to PSFI relaxation. The flow
gradient in CSDX can be enhanced by various external sources. When VV) steepens enough, so
that PSFI drive dominates over ITG drive, flow gradient saturates by PSFI relaxation. PSFI is
nonlinear in VV|, and so is the viscosity driven by PSFI turbulence. Consequently, VV) saturates
at the PSFI regime boundary (which is above the linear PSFI threshold) and grows as VV|| ~
(VTiO)z/ 3. This scaling of flow gradient implies a generalized Rice-type scaling, i.e. V) ~
(VT;)*, with a =2/3.

We can also solve for the saturated flow gradient from Eq.3.40. The PSFI saturation
effect can be accommodated in Eq.3.40 by introducing the PSFI induced turbulent viscosity
ngF I (given by Eq.3.43) when the flow shear is above the PSFI stability boundary. As a result,
the total viscosity is
o O A6 if V] < [Vileri

Tot —

Xo (3.45)

WO+ xBSEL — gfes S V]| > V] [eri

Hence, Eq.3.40 becomes a nonlinear equation for VVj, due to the contribution of ngF I Since
ngF "'is nonlinear in VV, it becomes very strong compared to xg)TG — %4 when PSFI is suffi-

ciently excited. Therefore, the flow gradient solved from Eq.3.40 saturates at the PSFI regime
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boundary.

This generalized scaling of VV| with VT indicates that the interaction between flow
profile and the turbulence drive exhibits simple trends. In ITG turbulence, VV| and VTjy are
coupled nonlinearly. But due to the ITG residual stress and PSFI saturation, their final states are
constrained by the scaling VV| ~ (VTj)?/3.

Even though SVH’ has different effects on electron drift wave (EDW) and ITG turbu-
lence, flow reversal by changing the mode from EDW to ITG seems unlikely. As is known,
the axial flow in CSDX is driven by ion pressure drop in the axial direction (AP;), which is
Vi~ [LAP;/ xqu . In EDW, the negative viscosity increment induced by SVH’ can turn the total
viscosity negative in some transient state, i.e. xg"’ =Xo — |x§“ | < 0. Nevertheless, in the final
state, the self-amplification of a test flow shear is saturated by PSFI, so the total viscosity re-
mains positive due to the PSFI contribution, i.e. xq{”’ = ngW + xqf;SF I |xf§” | > 0. When ITG
turbulence is excited, xq{‘” driven by ITG is positive definite. Thus, for the same flow boundary
condition, the sign of xg"’ does not change, despite change in mode. Therefore, flow reversal in
CSDX will not track changes in turbulence.

The following works are proposed for the future. They address remaining issues about
flow generation and saturation in CSDX. First, ion-neutral coupling mostly occurs in the bound-
ary layer in CSDX, where plasmas are partially ionized. However, it sets the boundary condition
for parallel flows, and thus affects the global flow structure. Since flow profile is very sensitive
to the boundary condition, ion-neutral coupling is of great interest. Second, coupling between
perpendicular flow and parallel flow. In tokamaks, poloidal flow and toroidal flow are coupled
by sheared magnetic fields. Even though CSDX has straight field lines, the parallel flow gradient
(VV)) can be coupled to perpendicular flow gradient (VV, ) via the turbulence [WDH12b]. Par-
ticularly, a sheared perpendicular flow can saturate the parallel flow gradient in CSDX. Because

both VV, and VV| are driven by the background turbulence, their magnitudes are limited by

Reynolds power density, which measures the rate at which fluctuations transfer energy to mean
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flows. The coupling between perpendicular and parallel flows can also be viewed as an extended
predator-prey model [ADG16, AD16] in which VV and VV) are two predators (perhaps hierar-
chical) and the turbulence is the prey. Third, reversal dynamics remains an open question. As
is known, flow reversal is unlikely in CSDX by changing the mode from electron drift wave
(EDW) to ITG, because PSFI saturation of VV| in EDW turbulence keeps the total viscosity
positive. However, VV | saturation complicates the problem of flow reversal. The bottom line is
that such predictions for flow reversal can be tested in basic plasma experiments.

Chapter 3 is a reprint of the material as it appears in J. C. Li and P. H. Diamond, “Negative
viscosity from negative compressibility and axial flow shear stiffness in a straight magnetic field”,
Physics of Plasmas 24, 032117 (2017), American Institute of Physics. The dissertation author

was the primary investigator and author of this article.
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Chapter 4

Interaction of Turbulence-Generated

Azimuthal and Axial Flows in CSDX

4.1 Introduction

Intrinsic flows of plasmas are beneficial to magnetic confinement and MHD control[RHS 06,
MAC™ 11a]. Intrinsic flows occur both parallel to the magnetic field (e.g., toroidal rotations in
tokamaks[RHD™11b] and axial flows in linear deviceslHLH" 18]) and perpendicular to the mag-
netic field (e.g., zonal flows[DIIHO5b, GD15, AD16]). The generation of such flows may be
understood using the heat engine paradigm[KDG10a]. Initially driven by profile gradients (such
as VT and/or Vn), the turbulence energy is coupled to both parallel and perpendicular flows.

Thus, the key questions are:

(1) What is the branching ratio, i.e., the fraction of fluctuation energy coupled to parallel flows,

relative to that coupled to perpendicular flows?

(2) What are the feedback and coupling mechanisms linking intrinsic parallel and perpendic-

ular flows?
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As the intrinsic flows are driven by the Reynolds forces, the branching ratio is defined as the ratio
of parallel to perpendicular Reynolds powers. The Reynolds power is the product of Reynolds
force and flow velocity, i.e., Pﬁe = —(v,7)'(v|) and P§ = —(7,7)'(ve). As given by the Taylor
identity[ Tay 15, DK91], the perpendicular Reynolds force is equivalent to vorticity flux, yielding
that PX = (9,V?9)(ve). Then, the branching ratio is Pﬁe /P&,

The goal is to understand the evolution of fluctuation—flow (i.e., (v¢) and (v|)) ecology
incorporating both parallel and perpendicular flows. This has not been addressed by experi-
ments, or even simulation. However, some existing measurements and models can illuminate
the characterization of such an ecology. In a linear device, CSDX (controlled shear decorre-
lation experiment), the coupling of intrinsic axial (parallel) and and azimuthal (perpendicular)
flows is observed to be weak|[HLH'18]. In CSDX, the azimuthal flow regulates drift wave tur-
bulence and the axial flow is parasitic. Indeed, in the regime of intrinsic parallel flows, the effect
of perpendicular flow is expected to be stronger than that of parallel flow, because |k| |/ke < 1.

The question of what couples the parallel and perpendicular flows, absent magnetic shear,
is open. Magnetic shear allows perpendicular flows to break the symmetry in the parallel di-
rection, which results in the generation of intrinsic parallel flows|GDHS07a]. However, this
geometrical coupling is not valid at low or zero magnetic shear, such as the flat-q regime in
tokamaks and linear devices with uniform magnetic fields. It has long been known that the cou-
pling of potential vorticity and parallel compression (i.e., <51VH‘7H>) can convert parallel flows
into zonal flows|[ WDH12b]. But this coupling is weak in the regime of intrinsic parallel flows,
due to small k”L,l in CSDX.

In this work, we address the following questions:

(1) What is the branching ratio of turbulence energy between axial and azimuthal flows in
CSDX? In particular, we study the effect of incremental changes of perpendicular and

parallel flow shears on the branching ratio P‘If / P(f.

(2) How does azimuthal flow shear affect the generation and saturation of intrinsic axial flows,
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absent magnetic shear? The axial flow is generated by the modulational instability of test

flow shear[LDXT16a]. In presence of a test flow shear, the residual axial Reynolds stress

Res

induces a negative viscosity increment );

. When |xR¢| exceeds the turbulent viscosity
driven by drift waves, such that the total viscosity is negative, the test flow shear amplifies
itself via the modulational instability. The axial flow shear saturates when the turbulent
diffusion becomes strong enough to overcome the residual stress. The saturated flow shear
is determined by the balance between residual stress and turbulent viscosity driven by drift

waves, i.e., (v;)) =T8¢ /xPW In this paper, we study how the azimuthal flow shear affects

the modulational instability of test flow shear and the saturated axial flow shear.

This work addresses the regime where drift wave is the dominant instability population
and wave—flow resonance is weak. This means the axial flow shear discussed here is well below
the linear threshold for parallel shear flow instability (PSFI)[LDXT16a, MDS88]. Also, perpen-
dicular Kelvin—Helmholtz (KH) instability is negligible because KH drive is much weaker than
the Vg drive, i.e., |kgp2(vg)”| < @s.. Here, @y = kypscs/Ly is the electron drift frequency and
L, =no/|dng/dx| is the density gradient scale. As a result, we are interested in the regime where
|(ve)|/cs < L‘Z,e /PsLn, and Ly, is the scale length of azimuthal flow shear. Though the wave—flow
resonance can be prominent in linear devices, here we ignore the resonance effect for simplicity.
In CSDX, where |k;|/kg < 1, the main resonance is between drift wave and azimuthal flow, i.e.,
O —ko(vg) —k;(v;) = @ — kg (ve) = 0 — kg(vg)'As. A, is the distance relative to the reference
position. The Doppler shifted drift wave frequency is approximately ®; ~ @,/ (1 +kip§). Thus,
when the value of |kg(vg)'As| is close to ®.., the resonance is strong. In this work, we consider
the regime where |kg(ve)'Ac| > @, i.e., |(ve)|/cs > PsLv,/AcLn, and thus resonance is weak.

Taken together, we focus on the regime where psLy, /AL, < |(ve)|/cs < L‘z,9 /PsLn.
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4.2 Turbulence energy apportionment

We study the apportionment of turbulence energy between azimuthal and axial flows
through a modulational study. We incrementally change the azimuthal or axial flow shear, while
fixing the other, and study how the branching ratio Pﬁe /Pg changes respectively. Note we ig-
nore the feedback of turbulence-driven flows on the flow profiles. Thus, the flow profiles are
determined by fixed external input. In this section, we present the results of this study.

We study the Hasegawa—Wakatani drift wave system coupled with parallel flow fluctua-
tions in slab geometry in the presence of a mean perpendicular (azimuthal) flow (v,) and a mean

parallel (axial) flow (v;), both of which vary in the £ (radial) direction:

d ~ ~ Vl’lo 2/~ ~ 2~

g T = D10z (=) + DV, (4.1)

d_ oz .

5P+ 7(p) =Dz —§) + % V7P, (42)
Y (4.3)
dtvz Vye(Vz) = —d;n. .

where we define D = V2. /Vei and d/dt = 0, + (vy)dy + (v;)9;. V.; is electron—ion collision
frequency and vry, is electron thermal speed. We have normalized electric potential fluctuation
as ¢ = e8¢/ T, and density fluctuation as 7 = dn/ng, where ng is the equilibrium density. The

magnetic field is uniform and lies in Z direction. Both ng and (vy) vary only in % direction.

p=p?

Viﬂ) is the vorticity fluctuation, where py is the ion Larmor radius at electron temperature,
(p) = (vy)'ps/cy is the zonal vorticity where ¢, is the ion sound speed. Vg = cs2 x Vs the E x B
velocity fluctuation. D, and . are the collisional particle diffusivity and vorticity diffusivity (i.e.,
viscosity).

Drift wave is the dominant instability population. The vorticity gradient can drive the per-

pendicular Kelvin—Helmholtz (KH) instability. But the vorticity gradient drive is quantitatively

weaker than the Vng drive, i.e., [kyp? (vy)”|/®. < 1 where ®., = kypscs/Ly is the electron drift
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frequency and L, = no/|dno/dx| is the density gradient scale. Also, |(v;)’| is kept well below
the PSFI threshold, such that PSFI is stable.

The azimuthal and axial flows are both externally imposed and fixed. We denote them as
Vy and V; to distinguish them from the intrinsic flows. As a result, the dispersion relation is an
eigenmode equation for ¢:

Q— e | kykeV] k(0 +i0t)

K2p2Qy — kyps V" + i
L Y W O W Fo Wy

0, (4.4)

d>o
2— p—
P52

d
where o0 = kzzv%h o/ Vei and Q = oy — k,V, — k;V, +iy,. We can obtain the ¢ profile by using
an eigenvalue solver. Here, we set the extent of the radial direction to be 0 < x < L,, where
L, = 5p,. We set the parameters in the range relevant to CSDX, which are p; = 1cm, L,, = 1.5cm,
kyps = 0.7, L, = 300cm, k, = —2n/L,. The adiabatic parameter is ngH/(D*e = 3. The flow
profiles are: Vy, =V, jpax sin [T (x/Ly — 0.5)] and V; =V, jpx cos (1x/Ly). The boundary condition
is 0(0) = ¢(Ly) = 0. Then, we can obtain the drift wave frequency wy, growth rate Y, and ¢
profile.

Using the ¢ profile, we determine the average Reynolds powers, which are:
R L[
and
R e /
PR=—L! [T ax(nnv.

. By Taylor identity[Tay 15, DK91], the azimuthal Reynolds force is identical to the vorticity flux,
i.e., —0x(V\Vy) = (VP). Hence, the azimuthal Reynolds power becomes Pf =L fOL *dx (V).
The vorticity flux contains a diffusive flux and a residual flux, i.e., (V,p) = —xyVy” + Fges . Here,

we ignore the resonance between drift wave and the azimuthal and axial flows. Thus, the non-

68



S

%0.4» ¢
A .

“‘000.

0 0.2 0.4 0.6
VJ_,maa:

Figure 4.1: Change of branching ratio PZR / Pf in response to incremental changes of azimuthal
flow shear. The axial flow profile is given by Vy, =V, yasin [ (x/Ly —0.5)]. Thus, the flow
shear changes with the flow magnitude.

resonant turbulent diffusivity of vorticity is

¥

Xy_ |Qk|2 yps s|¢|2' (45)

The residual vorticity flux is

Vi W + (X(Coaje _29{916) . Ykm*ze n 9{ k k V, E),{l'k%((l)*e + l(X) .
| + i0l | €| Q (Q + i)

T8 = kyc7 0] (4.6)

Similar to the vorticity flux, the axial Reynolds stress contains a diffusive momentum flux and
a residual stress, i.e., (VyV;) = —x. V! + Hfzes. The non-resonant turbulent diffusivity of axial

momentum 1is

Ve
The residual stress is
kyk., (0 104
ke — g hokel@e Hi0) ) 51000 (4.8)

(S tia) P
We study the changes of branching ratio of turbulence energy in response to incremen-

tal changes of azimuthal and axial flow shears. The branching ratio is the ratio of axial and
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Figure 4.2: Change of branching ratio Pf / Pf in response to incremental changes of axial flow

shear. The axial flow profile is given by V, = V_ ;y4cos (mx/Ly). Thus, the flow shear changes

with the flow magnitude.
azimuthal Reynolds powers PZR / PyR . It measures the turbulence energy apportionment between
axial and azimuthal flows. Fig. 4.1 shows that azimuthal flow shear impedes the turbulent pro-
duction of axial flow. When increasing the azimuthal flow magnitude and shear, while fixing the
axial flow, the ratio PX/PJ decreases.

Fig. 4.2 shows that the production of axial flow saturates below the PSFI threshold. When
increasing the axial flow magnitude V_ ,,,4x, while fixing the azimuthal flow, the ratio PZR / PyR first
increases. When V. 4, continues increasing, the ratio saturates and starts to decrease. Note that
the saturation is below the PSFI threshold. Fig. 4.3 shows the growth rate when increasing the
axial flow shear. The onset of PSFI requires V. ,4x/cs > 3. The axial flow production saturates

at V max/cs ~ 0.09 as given by Fig. 4.2, which is far below the PSFI threshold.

4.3 Azimuthal flow effects on intrinsic axial flow

We study the drift wave system described by Egs. (4.3), (6.1) and (6.2). Electrons are
weakly adiabatic, i.e., /i = (1 —i8)0, where the non-adiabatic electron response & < 1. & is

determined by the frequency shift, i.e. & = (W — O — ky(vy) —k;(v;))/ kaH. The eigenmode
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Figure 4.3: Growth rate for various axial flow shears. The axial flow profile is given by V, =
V. max €0s (1x/Ly). Thus, the flow shear changes with the flow magnitude.

equation is

pzaz—q): (1+k2p2 —id) — —(1—i8)=2 ke
S Ox2 s Q2

Wsce +kyp§<vy>,/ 4 kykz(vz)'

o o 0. (4.9)

k

Multiplying both sides of Eq. (4.9) with ¢* and integrating over the radial direction, we obtain

the linear dispersion relation, which is

) Wy + kyp? <Vy>// kykzpsCS<Vz>/ . k?c?
(14K p?—id) — + —(1-i8)== =0. (4.10)
s Q Q2 Q2

Here, we define the effective radial wavenumber k2p? = p2 fo dx|0.|?/ fo dx|0|>. Hence, the
perpendicular wavenumber is ki p2 =k2p? + k%p s

Azimuthal flow stabilizes drift wave by weakening the Vng drive. As observed in the
second term in Eq. (4.10), (v,)” weakens the electron drift frequency, when kyp2(v,)" /@, < 0.
In CSDX, the condition k,p2(vy)” /@, < 0 holds true, and thus azimuthal flow shear stabilizes
drift waves in CSDX. In the following analysis, we define the weakened drift frequency of

electrons as My, = W+ kyp2 (vy)” and consider the case where kyp? (vg)"” /@, < 0. The Doppler-
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shifted frequency and linear growth rate are calculated using the dispersion relation, which are

[ kyk.pscs(v,)
oz ko) an
1+kLps @y,
] O ( e kpiny)” +kykzPsCs<Vz>'> (4.12)
KD (1+K3p2)2 \1+K2p2 @ @’
When axial flow shear hits the PSFI threshold
1 0,02 (1+k2 p2)
, *e 1 Vs 2.2
v e +kc , 4.13
e = el (A0 e T o

the axial flow shear drives the turbulence as a free energy source. Note given kypf (vy)" oy <0,
the azimuthal flow lowers the PSFI threshold. For weak axial flow shear, i.e. |(v;)’| < |{(v;)’|cxits

the system is dominated by drift wave.

4.3.1 Generation of intrinsic axial flow absent magnetic shear

The intrinsic axial flow in CSDX is driven by drift wave turbulence via the dynamical
symmetry breaking mechanism[LDXT16a]. In response to a seed axial flow shear, the residual
Reynolds stress induces a negative viscosity increment. When this negative viscosity increment
beats the turbulent viscosity driven by drift waves, such that the total viscosity is negative, the
seed shear amplifies itself through a modulational instability.

When the axial flow shear steepens, a finite residual stress forms due to the spectral
asymmetry of drift wave turbulence. The stationary profile of axial flow shear is then determined
by the balance of residual stress and turbulent diffusion of axial momentum by drift waves, i.e.

<Vz>/ ~ ers/X?W-

4
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4.3.2 Azimuthal flow effects on axial residual stress

In this subsection, we show that the azimuthal flow shear stabilizes the modulational
growth of the seed axial flow shear. Moreover, azimuthal flow shear reduces the magnitudes
of both residual stress and turbulent viscosity. Thus, it does not affect the stationary axial flow
shear to leading order.

We calculate the axial Reynolds stress with azimuthal flow effects included, following
the same procedures presented in Ref. [LDXT16a]. The axial Reynolds stress can be written as

a diffusive momentum flux plus a residual stress, which is

o (v
<Vsz> = Az ;xz> +H§;S' (4.14)
From Eq. (4.3), we obtain that
Vg~ i 2kZC?(T) ~ |Yk| k. sq)

(0 — ky(vy)'Ay) (V' — 1)

Here, V' = ky(vy)' Ay /0 ~ (vy) AxLy [ cspsLy,. Thus, in the non-resonant regime (i.e., [{vy)|/c; >

ALy /psLy, and so [V'| > 1), we obtain that

N vk
N W| k,c2h. (4.15)
As a result, the turbulent viscosity and residual stress are
L S T LY A

DW ~ 1Ps yPs \Vy 2:2(4 (2
= k 4.16
& Zk:’V'Pk%DII [1+hps T e, ] P50l 19

HRes NZ 1 (2—|—k2 p2) kip% + |kyp§<"y>”| + k kZpSCS<VZ> k k PsC |¢k|
|V/’2k2D‘ 1Fs I‘HQPX ©r0 OJ_*e zMsCs

(4.17)

The residual stress requires symmetry breaking in the k,—k, space. Absent magnetic shear, a seed
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axial flow shear breaks the symmetry and is self-amplified through a modulational instability.
As a result, the broken symmetry in the k,—k, space emerges along with a finite axial flow shear

profile. Hence, with this spectral asymmetry, the residual stress, to leading order, is

1 2+klps kLpS

HRES ]
>0|V/|2 k2D|| 1+k% <p?

skykzpscsl, (4.18)
kyk
where Iy = || (kyk; (v;)’ > 0) — 0] (kyk,(v;)’ < 0) accounts for the spectral imbalance. There-
fore, both the residual stress and turbulent viscosity driven by drift waves are reduced by az-
imuthal flow shear.
Next, we show that the azimuthal flow shear also impedes the self-amplification of seed
flow shear, i.e., (vy)’ slows down the modulational growth of seed flow shear. In response to a
seed axial flow shear 8<vz)/ , the residual stress induces a negative diffusion of momentum flux,
1.e.,

SITEE = [y (8(v2)', (4.19)
where the negative viscosity increment is

Res ~u 1 1 kgpzcz )
N 2 e ;(”’&Ps)(”hps)ml : (4.20)

The growth rate of the flow shear modulation is determined by the difference between |x§es | and

Az» 1.€.,

Yo = a7 ([xX) —x2")
2k2 2 ps k ZV "
~ 22:&:2 kZDH (K 1_:_]( p ) (1+B| ypsiey> |)’ “21)

where g, is the radial modenumber of the shear modulation, K = (1 + k> 1 Ps H(4+K2 1Ps )k2 2 /w2,

232
and B=(2K—1) / (K — 1%{5 ;2) . When the negative viscosity induced by the residual stress
1P5s
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beats the turbulent viscosity by drift wave, the test flow shear is self-reinforced through a modu-
lational instability. This means K > k% p2/(1 + k2 p?) is required for modulational growth (i.e.,
Y, > 0) of the test shear. For drift waves, we obtain kyps ~ 1, and thus K ~ (2+k2p2)(5+k2p2) >
10k2L2 and 0.5 < k2 p2/(1 + k2 p?) < 1. Modulational instability requires K > k% p2/(1 +
ki p2) > 0.5, which is possible for drift waves. As shown by Eq. (4.21), the modulational growth

of the seed flow shear decreases when the azimuthal flow shear increases.

4.3.3 Azimuthal flow effects on stationary flow shear profile

The evolution of mean axial flow is described by

ov;) o, .. OP .
y + $<VXVZ> =3 — Vi ((v;) = V). (4.22)

The pressure drop in the axial direction is due to the heating on one end of the linear device.
In CSDX, this pressure drop is weaker than the Reynolds force (—dy(¥,V,)) by an order of
magnitude[HLH" 18]. Frictions between plasma and neutral flows damp the axial flow in the
edge region, where neutral particles concentrate. Hence, neutral damping sets the boundary
condition for the axial flow profile. Therefore, in the central region of CSDX, the axial flow is
generated and saturated by the axial Reynolds stress. The stationary state flow is determined by

(V) = 0. As a result, the stationary axial flow shear, to leading order, is

Res
(v.) = ngv ~ (2412 p)kyes/kyps. (4.23)

Z

The azimuthal flow shear reduces both I8 and xP% by the same factor [V/|~2. Hence, this re-
duction effect cancels out to leading order in the stationary axial flow shear, which is determined
by the ratio ITR /yPW " Therefore, the azimuthal flow shear does not affect the saturated axial

flow shear to leading order.
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4.4 Discussion

In this work, we have studied the coupling of azimuthal and axial flows in CSDX, absent
magnetic shear. In particular, we have studied how incremental changes of flow shears affect
the production branching ratio PZR / Pf . We have also investigated the effects of azimuthal flow
shear on intrinsic axial flow generation and saturation, absent magnetic shear. The main results

of these studies are:

e Increasing azimuthal flow shear reduces the branching ratio, which is measured by the

ratio of axial and azimuthal Reynolds powers, i.e., PZR / PyR .

e When axial flow shear increases, PZR / PyR first increases and then decreases. This turnover

occurs below PSFI threshold.

e Azimuthal flow shear stabilizes drift waves by weakening the Vng drive, i.e., reducing the

®., by the amount |k,p2(vy)”.

e Azimuthal flow shear slows down the modulational growth of seed axial flow shear, and

thus reduces the production of intrinsic axial flow, absent magnetic shear.

e Azimuthal flow shear reduces both axial residual stress (Hf;s) and turbulent viscosity

W

driven by drift waves (x? ) by the same factor, i.e., both Hfzes and x?W scale with the

azimuthal flow shear as |V/| 72 ~ |{vy)/| 72A 2L, 2p2c2.

e Azimuthal flow shear does not affect the saturated axial flow shear to leading order, be-

cause (v;)" = IR /yPW and the reduction by (v,)’ cancels.

Results in this paper offer testable predictions for simulation studies on interaction of
parallel and perpendicular flows. Here, we focus on the regime with straight magnetic fields.
Hence, these results are relevant to linear devices and flat-q regions in tokamaks. In tokamaks,

the combination of weak magnetic shear (i.e., flat q profile) and strong toroidal rotation are
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required for the formation of enhanced confinement statesf MAC'11a]. Thus, the turbulence
energy apportionment between poloidal (i.e., zonal) and toroidal flows absent magnetic shear is
of interest.

In the regime of intrinsic parallel flows, the feedback of parallel flow shear on the
turbulence-flow system is weaker than that of perpendicular flow shear because [k| VH’ [keVy| < 1.
As a result, the turbulence is regulated primarily by Vg, and parallel flow is parasitic. Non-
parasitic parallel flow regime is achievable with external parallel momentum source. Of course,
when the enhanced parallel flow shear hits the PSFI threshold, the resulting PSFI turbulence can
drive zonal flow via strong acoustic coupling[WDH12b]. Even below the PSFI threshold, exter-
nally driven parallel flow shear can enhance the regulating effect of parallel flow on turbulence.

When |kHV" | is comparable to |kgVj

| rot

, the parallel flow shear will have a strong effect on vortic-
ity flux, mode structure, and fluctuation intensity. In both ways, the external parallel momentum
source can enhance the interaction of parallel and perpendicular flows.

Chapter 4 is a reprint of the material as it appears in J. C. Li and P. H. Diamond, “Inter-
action of Turbulence-Generated Azimuthal and Axial Flows in CSDX”, which is being prepared

for publication. The dissertation author was the primary investigator and author of this article.
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Chapter 5

Phenomenology of Parasitic Axial Flows
Generated by Drift Wave Turbulence with

Broken Symmetry

5.1 Introduction

Plasma flows along the magnetic field play a vital role in the stabilization of MHD in-
stabilities and the development of transport barriers.[GSJT02, RICd"07b, dRB"07, DKG™13b,
IR14, Ric16] In most existing magnetic confinement fusion devices, the parallel flow, or toroidal
plasma rotation, is driven directly by external momentum sources, such as neutral beam injection
(NBI). However, in large scale devices like ITER, the NBI driven rotation will not be efficient,
due to limited neutral beam penetration into high density plasmas. In order to optimize and
improve the confinement regimes in ITER and beyond, it is important to uncover alternative
mechanisms that can drive parallel flows.

A phenomenon called intrinsic flow has been identified in magnetically confined plasmas,

[SBA'T07, dRB1T07, RHD*11b, DKG™13b, IR14, Ric16] where the plasma rotates without any
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input of toroidal momentum. This intrinsic flow can be of the same order of magnitude as that
driven by some NBI torques. [RICd*T07b, SBAdT07, IR14, Ric16] Hence, there is strong interest
in knowing whether intrinsic flow in future devices is sufficient to affect confinement and MHD
stability. Empirical results show that intrinsic torque in H-mode plasmas scales with the plasma
stored energy normalized by the plasma current (“Rice scaling”).[RICd"07b] Further measure-
ments from Alcator C-Mod reveal that the intrinsic torque is proportional to the edge temperature
gradient.[RHD ™ 11b] The production of intrinsic flow can be understood as a process similar to
that of a heat engine. [RHD*11b, KDG10b] In this process, temperature gradient, VT, excites
turbulence, which not only relaxes VT but also drives a non-diffusive, residual stress via asym-
metry in turbulence spectra (k;kg). [GDHS07b, DKG™13b] This residual stress then drives the
parallel flow, converting the free energy in VT into kinetic energy of macroscopic flow.

As proposed in this heat engine model, the parallel residual stress Hlfzes

is the key element
that connects radial inhomogeneity to the macroscopic intrinsic flow. It is a component of paral-
lel Reynolds stress, and is not proportional to either flow or flow shear. [GDHS07b, DKG'13b]

The parallel Reynolds stress can then be written as [DKG™13b]
(5,7,) = %0, V; + VoV, + TIS,

The diffusive (—x.0,V;) and pinch (V,V;) terms are strict transport terms which cannot accel-
erate the plasma from rest. The divergence of this residual stress, —V - HI,{Z"S, acts as a local
momentum source that drives the intrinsic flow. The residual stress depends on properties of
underlying turbulence, and may flip sign when there is a change in the driving radial gradients
of the equilibrium profiles.

Evidence for the role of parallel residual stress in driving intrinsic flow has been accu-

mulating. Probe measurements from the plasma boundary region of TJ-II stellarator confirm the

existence of significant turbulent stress which provides a toroidal intrinsic torques.[GHP'06]
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A electrode biasing experiment on J-TEXT achieves a nearly zero toroidal rotation profile, and
its results show that the intrinsic torque can be reasonably explained by the measured resid-
ual stress.[SCZ"16] The residual stress profile has also been measured at edge of TEXTOR
tokamak by canceling the toroidal rotation using counter-current NBI torque.[XHS"13] The
observations demonstrate that there is a minimum value for the E, x B flow to trigger the resid-
ual stress, and that this stress scales with edge pressure gradient when the E, shear threshold
is exceeded. Parallel flow driven by turbulent Reynolds stress has also been observed in a lin-
ear device, PANTA.[IKK ' 16, KIK " 16] Recently, a gyrokinetic simulation predicts that residual
stress profile exhibits a dipolar structure and provides the intrinsic torque which is consistent
with measured rotation profile in DIII-D.[WGE ™" 17]

A number of theoretical models based on symmetry breaking in k-space have been pro-
posed to explain the development of the residual stress.[DKG™13b] In these models, the residual

stress is determined by the correlator, (k;kg) = Yy k-kg M)k|2 / Yk M)k 2, which is effectively set

by the spatial structure of the k-spectra }(T)k (r)|2. Theory suggests that the asymmetry in the
k, space can result from the spatial variation of fluctuation intensity profiles, [GDH'10b] or
from the sheared E, x B flow that shifts modes off the resonant surfaces. [GDHSO07b] These
mechanisms indicate that the residual stress is related to E, x B flow shear and turbulent inten-
sity gradient, 1.e., Hlfzes ~ Vi and Hlfzes ~ I', respectively. These correlations are consistent with
direct measurements from the edge of TEXTOR.[XHS'13]

Despite these advances, our understanding of the microscopic mechanism is still rather
limited. Until now, there is no direct evidence validating the connection between the requisite
symmetry breaking mechanism and the development of residual stress. Moreover, it is also
unclear whether the residual stress can efficiently convert the free energy stored in the radial
inhomogeneity into kinetic energy of the macroscopic parallel flow.

Due to its turbulence-driven origin, the axial flow must necessarily be coupled to the

azimuthal mean flow. The latter is also known as zonal flow and is generated by drift wave
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turbulence via a modulational instability. [DIIHO5a] A theoretical framework[HDT] has been
proposed to account for the interaction between these two secondary shear flows. However, how
to precisely predict what the branching ratio between axial and azimuthal flows remains un-
known. Therefore, further studies on how energy is distributed among the turbulence, azimuthal
and axial mean flows are of interest. The dominant branch will have a larger turbulent drive and
set the turbulence level through a predator-prey type interaction with turbulent intensity field.

Besides the branching ratio question, the axial and azimuthal flows might also interact
with each other directly. For a coupled drift-ion acoustic waves system, a zonal flow can arise
from the parallel flow compression due to the effects of acoustic coupling. [WDH12a] Specially,
when the parallel flow shear is strong enough to trigger parallel shear flow instability (PSFI),
the enhanced fluctuating parallel flow compression can act as a source for zonal flow. This
mechanism of zonal flow generation differs from conventional models which depend on the
potential vorticity (PV) flux, and has not been tested experimentally. On the other hand, the
axial flow shear may also be affected directly by its azimuthal counterpart. In the presence of
a finite magnetic shear, the E, x B flow shear break parallel symmetry and generate a parallel
residual stress HBZCS, which accelerates the axial flow V. The effects of azimuthal flows on axial
flow generation at zero magnetic shear also remains unclear.

In this study, we discuss axial and azimuthal flow dynamics in CSDX, with a special
emphasis on the possible flow interactions discussed above. We begin with a summary of our
expectations based upon current theory-based modeling. We then report an experiments in a lin-
ear device, the Controlled Shear Decorrelation eXperiment (CSDX).[BTAT05, TBC*'14a] We
show that the turbulent drive for the axial flow is less than that for the azimuthal flow by an
order of magnitude. The turbulence fluctuation level is therefore regulated predominantly by
the azimuthal flow shear. The results also show that the axial mean flow is driven by turbu-
lent Reynolds stress. This stress, and particularly the non-diffusive, residual stress, results from

density gradient drive. In agreement with the recently developed dynamical symmetry break-
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ing mechanism,[LDXT16b] the residual stress emerges from drift wave turbulence with broken
spectral symmetry. Note that this dynamical symmetry breaking model is also relevant to zero
or weak magnetic shear case, e.g., in devices with straight magnetic fields and in flat-g regime
tokamaks. The results presented in this paper validate the theoretical expectations for the link be-
tween the residual stress and symmetry breaking in the turbulence k-spectra, as well as the role
of residual stress in converting thermodynamic free energy into kinetic energy of macroscopic
axial flow.

The rest of the present paper is organized as follows. Section 5.2 recapitulates the theoret-
ical background and predictions for turbulence-driven axial and azimuthal shear flows in CSDX.
Section 5.3 introduces the experimental approach to measurements of mean flows and Reynolds
stresses in CSDX. The experimental results and relevant discussions of theory-experiment com-
parisons are presented in Sections 5.4 to 5.6, respectively. Section 5.7 summaries the results and

findings. In ??, suggestions for future investigations are proposed.

5.2 Theoretical Predictions

In this section, we summarize theoretical predictions concerning the distribution of en-
ergy in the ecology of flows and fluctuations in CSDX. In order to investigate the evolution of
turbulence and mean profiles in CSDX, we formulated a reduced model that describes the dy-
namics of the coupled drift-ion acoustic wave plasma. The model is derived from the Hasegawa-
Wakatani system with axial flow evolution. [HDT] It self-consistently describes the variations in

the mean profiles of density n, axial and azimuthal flows V, and Vj, as well as fluctuation energy
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g = (i + (V9)? + 72). The mean field equations are

P 0?

5 = =3, (%) + D55 (5.1)
v, 9%V,

== =00 Ve 55— VinVs (5.2)
oV *V;
a_l'a = —ar<\7r\79> +Vc,LT26 _VinVG~ (53)

The quantities are normalized as follows: 7 = '@, v =1V'/cs, and r = ¥/ /ps, where ®,; is ion
cyclotron frequency, c; is the ion sound speed, and p; is the ion Larmor radius at sound speed.
The first terms on the RHS of Eqgs. (5.1) to (5.3) represent the turbulent fluxes of particles and
momentum, the terms that contain D¢, v, | and v, | represent ion-ion collisional dissipations. In
Egs. (5.2) and (5.3), the terms proportional to the ion-neutral collision frequency Vv;, represent
momentum transfer between ions and neutrals, and are significant only in the boundary region.
In this study, the Reynolds powers, PX¢ = —V.9,(,%;) and P5° = —Vpo,(V,Vp), are used to
represent the rate of work done by the fluctuations to the mean flows.

In addition to the mean field equations, the evolution of fluctuation intensity € = (7% +

(V)2 +72) is obtained as

o€ 83/2
S +3iTe = —(79,)3,n = (7,72)9,V. = (7,770)3, Vo —

+P. (5.4)

lmix

The first three terms on the RHS of the previous equation are mean field—fluctuation coupling
terms. They relate variations in € to the evolution of the mean fields of n, Vg and V,. The
energy exchange between fluctuations and mean profiles occurs via the particle flux (7iv,), and
the Reynolds stresses (7,7g) and (7,.7.). In the energy equation, the €3/2/l,,, term represents
energy dissipation by inverse cascade at a rate \/€/l,,;,. Dissipated energy is ultimately damped
by frictional drag. An energy source term ‘P represents the excitation of drift wave turbulence,

which is linear in € and proportional to Ypw, i.e., P = Ypw€. This is needed to incorporate
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turbulence excitation effects. On the LHS, a diffusive energy flux I'e = —D¢0,€ = —1,ix\/€0,€
represents turbulence spreading. The flux I'¢ can be traced back to the nonlinear convective
terms in the initial Hasegawa-Wakatani system.

Since the density response in CSDX is weakly non-adiabatic, we then calculate turbulent
fluxes using quasilinear theory. In the near adiabatic limit, the expression for the particle flux is

given by[HDAT17]
Vel B0l i dn

I = (i) = =-D—.
\ivr) K2va, 1 +k2p2dr dr

(5.5)

Here D is the particle diffusion coefficient, and is equal to:

_ KPS vali) | Ve
1 +k2p2 k2vE,, kv,

V.; and vy, are the electron-ion collision frequency and the electron thermal velocity, respec-
tively.

In addition to the particle flux, an expression for the azimuthal momentum flux is needed.
In the near adiabatic limit, and using quasi linear theory, the azimuthal momentum flux is equal
to:

(V,7g) = —x00, Vo + TTRSS. (5.6)

The first term is the diffusive flux, while the second term is the residual component that acceler-
ates the zonal flow from rest. The pinch term that arises from toroidal effects is neglected for the
cylindrical geometry of the experiment. The turbulent viscosity and the residual stress are given

as [HDT]

2
Vs ~
Xo = "YK > = TC<V3> = lmix\/ga

Res — _ vl (77) _ (77)Tecs _ _lmix\/gwci
0 [al PsLn L,

(5.7)

In this study, the E, x B flow shearing rate is less than turbulence frequency, i.e., Vé < M, SO
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reduces to 1Y5. The azimuthal residual stress and Yo thus decouple from

the term 3 T

1
O—kVpx+iy
azimuthal flow shear.

The axial Reynolds stress is given as [HDT]

~ ~ 0\ |Y|<‘7%> aVZ 3 |’Y| Vei(w*e_wr)
e =g+ ko o+ g, — oY

Res

e, drives the intrinsic axial flow, and is

The non-diffusive component, i.e, the residual stress IT
proportional to the correlator (kgk;). We thus write the following expressions for the parallel
turbulent diffusivity 7, and Hlfzes:

[vI(7)

Xz = |0)|2 = Tc<‘7%> = lmix\/§7

(5.9)

21,2 21,2
Veipskj_] = <k9kz>psc3 lm_ix—FveipSkL

IR = (koke)psc] [z +
" R kzzv%"he \/E kgv%he

Note that in order to obtain Hlfzes , we used the expressions for both electron drift frequency .,
and eigenfrequency " = ®../(1 +k3 p?) in the adiabatic limit. Here, the axial residual stress
and  also decouple from V[, since E, x B flow shearing rate is much less than drift wave
turbulence frequency in CSDX.

Hlfzes contains an expression for (kgk;), which is not easily determined within the scope
of this simple, reduced model. To calculate the correlator, we need a spectral model considering
the evolution of (kgk,€), which can be obtained from wave momentum equations. This is beyond
the scope of this work. Thus, what we offer here is an empirical approach that relates free energy
source, Vn, to the axial flow shear d,V.. The correlator (kgk) is then expressed in terms of a
coefficient that can be used in numerical studies, which is determined as follows. Proceeding in

analogy with the treatment of turbulence in pipe flow, the evolution of the fluctuation parallel

ion flow is written as
d\jz 2 E(T) p - aVZ
A v . T Ry S
di CS{T+% "ror
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where ¢, denotes the sound speed, ¥, is the eddy radial velocity, P is the pressure fluctuation,
and @ is the potential fluctuation. In a drift wave system with adiabatic electrons like CSDX,
one has e /T ~ 7i/ng and P/Py ~ ii/ng as temperature fluctuations are small in this experiment.
By introducing the radial mixing length 1,,;, by the familiar relation 7i/ng ~ Lyix|Vn|/ng, the

fluctuating parallel flow then can be written as

272
= Cslmix ’Vl’l’ . aVZ
V; = —0Oy Lo _mlxa .
zVr N r

Here L, is the characteristic parallel dimension. The constant 6,7 is introduced as a dimension-
less scaling between 7, and the density gradient Vn. Multiplying by 7, and ensemble averaging,

the parallel Reynolds stress then becomes:

~ ~ aVZ C?<lg1ix> |Vn‘
(Vry) = —ng - GVTL—ZK

While the first term represents a diagonal diffusive turbulent viscosity with 3, ~ (#)T. ~ Lyixv/E,
the remaining part is the residual stress I'Ilfzes, proportional to Va. The coefficient 6,7 is written

as
o7 = <k6kz>
vi — 2 .
(K)12/L
This coefficient captures the cross phase relation between v, and 7, and calibrates the efficiency
of the density gradient in driving the residual stress I'IE;S. o,7 1s also a measure of asymmetry in

the spectral correlator (kgk,) = Y k kg ‘(f)k |2 / Yk M)k 2, and encodes information concerning the

parallel symmetry breaking that creates the residual parallel stress. An empirical value for 6,7,
which can be used in the numerical solution of this model, can be obtained by a least-square fit
to the experimental results.

Most of the conventional symmetry breaking mechanisms [DKG™13b, GDH'10b] are

not applicable to plasmas with weak or zero magnetic shear, since they are usually associated
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with finite magnetic shears. To resolve this issue, a dynamical symmetry breaking mechanism
has been proposed to explain the development of intrinsic axial flow in absence of magnetic
shear. [LDXT16b] This mechanism does not require a specific magnetic field configuration,
and thus it is valid for both finite shear and zero shear regimes. This mechanism is effectively
equivalent to the modulational growth of a seed axial flow shear, as in zonal flow generation. In
both cases, the initial breaking of symmetry is due to the seed flow.

The dynamical symmetry breaking model [LDXT16b] was derived from a drift wave
system with evolution of axial flow. The axial mean flow introduces a frequency shift to the

growth rate of drift wave, i.e.,

~ VeiWse Wye — O

= 5 .
kv, (1+k%p3)?

Yk (5.10)

The adiabaticity of the electron response is measured by the dimensionless factor o0 = kgv% he /Vei®ie,
where 0., = kgpscs/L, is the electron drift frequency. As electrons approach the adiabatic
limit, i.e., o — oo, drift wave is stabilized yielding Y, — 0. In CSDX, electrons are weakly
non-adiabatic with ot ~ 1.

A test axial flow shear SVZ’ , 1.e., a perturbation to the mean axial flow profile, can break
the symmetry of drift wave turbulence through the frequency shift. The frequency of drift wave

is affected by the test flow shear, which is

Ose kek pscsOV,

o0 = — (5.11
¢ 1+ kipg Wye )
The test flow shear modifies the drift wave growth rate, i.e.,
Ve o2, K2p2  kek:pscsdV,
Y= 1752 7 0 ) 3 . (5.12)
kZVThe (1+kj_ps) 1+kj_ps m*e

For a given 8V/, the drift wave modes with kgk.pscs8V, > 0 have a larger frequency shift than

the other modes. Thus, these modes grow faster. As a result, a spectral imbalance in the k, — kg
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spectra is induced by the test flow shear. Such asymmetry in turbulence spectra can be detected
by a joint probability density function of the turbulent velocities in both axial and azimuthal
direction. The measurements of spectral imbalance are reported and linked to finite residual
stress in this work.

The residual stress set by this dynamical symmetry breaking mechanism provides a

negative definite contribution to the total turbulent diffusivity of axial momentum flux, i.e.,

IR = —xRes§V/ where xR < 0. The negative momentum diffusivity induced by residual
stress is
Res  Veils 2 2 2 2\ 4 P2
Ao = (L RLPE) (4 KL P50 (5.13)
The k&

Thus, the total Reynolds stress is

I = — (. — |x>%]) V.. (5.14)

This process of self-amplification of test flow shear suggests that intrinsic axial flow is
generated through a modulational instability. When the magnitude of the negative viscosity
exceeds the turbulent viscosity driven by drift wave, the total Reynolds stress induces a negative
diffusion of axial momentum, thus amplifying the perturbation. In this case, the test shear (i.e.,
the modulation of mean flow shear profile) becomes unstable. The growth rate of test flow shear
18y, = q% (‘xfes‘ — XZ) , where ¢, is the radial mode number of flow shear modulation.

The onset threshold of axial flow generation is determined by the balance between resid-

ual stress and the turbulent diffusion driven by drift waves. Hence, the Vn/ng threshold can be

Res

p | =Y. The turbulent viscosity driven by drift wave turbulence is calculated

obtained from |X
using
(12)

Xz~ T_c7 (5.15)

where /. is the eddy correlation length and T, is the eddy correlation time. The critical density

88



gradient is then
o2 L.

*e

(kok;)pscs c2Te

Vigie ~ noQ (5.16)

Plugging in parameters measured on CSDX, we can obtain Vg ~ 1.5 x 10°°m—*, which agrees
with the experimental measurements presented below. Here, o0 = kzzv%he /@y Vei ~ 1 is the adia-
baticity factor, the perpendicular turbulence scale length is kgps ~ 1.5, and the eddy correlation
time is T, ~ 6 x 107 7s.

The density gradient threshold can also be obtained by using the scaling coefficient 6,7
of residual stress. The residual stress scales with Vn as IR ~ 6,7 ()¢ /(LuLz). Thus, G, is
determined by the correlator (kgk), i.e., 6,7 = (kok;)/(k3). Considering the symmetry breaking

set by a test flow shear, we can calculate the correlator and thus the coefficient, as

(kgkz)pscsOV,

1
— 5.17
o 2, (5.17)

Oy =

Thus, by using the balance between residual stress and turbulent diffusion, i.e., HI,{;’S = XZSVZ’ ,
we can also obtain the critical density gradient for onset of axial flow generation, which is the
same as Eq. (5.16).

Though the theory explains how axial flows are generated in the linear stage, the non-
linear evolution of the axial flow is not captured. Further, how axial flows saturate remains an
open-ended question. The axial flow can saturate due to the balance between residual stress and
turbulent diffusion, as V! = HE?S. The theory presented here focuses on the stage where the
test flow shear is small, such that the leading order of the residual stress is SITRe® ~ |xRes|3V.
Thus, the axial flow saturates when ¥, = |x§es|. Ultimately, the flow energy is dissipated by
viscous heating and drag dissipation.

In summary, for regimes of moderate azimuthal shear (i.e., |Vy| < @y), theory predicts

that:

(1) drift wave fluctuations and azimuthal (i.e., zonal) flows will form a self-regulating system;
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(2) axial flows will evolve parasitically by Reynolds stress, on the existing drift wave—zonal

flow turbulence. Here, the key point is HESS > TIRSS as k| >k

nz °

(3) symmetry breaking in the kg—k, space is required for axial flow generation.

(4) Sheared intrinsic axial flows will be generated when the density gradient exceeds a pre-

dicted critical value.

Now, we turn to tests of these predictions.

5.3 Experimental Setup

In this section, we present the experimental methodology for testing the predictions of
model in Section 5.2. The experiments were conducted on the Controlled Shear Decorrelation
eXperiment (CSDX), a linear plasma device with an overall length of 2.8 m and a diameter
of 0.2 m (Fig. 5.1). The working gas was argon at a gas fill pressure of 2 mTorr. The argon
plasma was produced by a 15 cm diameter 13.56 MHz RF helicon wave source via an m = 1
helical antenna that surrounds a glass bell-jar, and was terminated by insulating end-plates at
both ends. The uniform magnetic field is in the axial direction (denoted as the —Z direction). In
this study 1800W of power was used, and the magnetic field strength was varied from 500 G to
1000 G. A higher magnetic field results in a steepening of the density profile in CSDX.[BTA105,
TBC™ 14a] Typical plasma parameters are as follows: the peak on-axis electron density of n, ~
1 x 10"”m~3, the electron temperature of T, ~ 3 — 5 eV, and the ion temperature of 7; ~ 0.3 —
0.8 eV. More details on this device can be found in previous publications.[BTA105, TBC* 14a,
TGM™16]

A horizontal scanning probe was used to record basic plasma information such as ion
saturation currents and floating potentials at port o that is about 1 m downstream from the helicon

source. The probe array is a combination of Mach and Langmuir probes and is capable of
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Figure 5.1: Schematic of CSDX with probe and fast imaging diagnostics.

measuring the axial and radial plasma velocities simultaneously (Fig. 5.2). The axial velocity,
v,, was measured by a Mach probe which has two tips aligned along the axial direction and
separated by insulators. The axial velocity, according to the fluid model of ion collection by
absorbing objects in combined parallel and perpendicular flows, [Hut08, PHO9] can be given by
v, =Mcy =0.45¢51n (;—:), where ¢, = \/W is the sound speed and J, 4 are the ion saturation
fluxes collected by two Mach probe tips at the up- and down-stream side. We were careful
to use small enough tips to avoid probe shadowing effects that can give spurious axial flow
measurements, and verified that the mean flow profile measured by the Mach probe agreed with
laser-induced flourescence measurements of the same ion flow. The fluctuating E x B velocities
are estimated from the floating potential gradients between two adjacent tips (Vy), i.e., ¥, =
—Veb;/B and vy = V,d;/B. The distance between two adjacent floating potential tips is about
3 mm. The sampling rate of the probe data is f; = 500 kHz which is well above the frequency
of the observed dominant fluctuations (f < 30 kHz) in our experiments. [TBC*14a] With this
probe configuration, the axial Reynolds stress (v.7,) and the azimuthal Reynolds stress (Vgi,)
can be measured simultaneously. Similar probe configurations have also been employed in other

investigations on the structures of parallel ion flows. [IKK 16, KIK™16]
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Figure 5.2: (a) Schematic of the 6-tip probe array. Pink tips are negatively biased to measure
the ion saturation currents; blue tips measure the floating potentials. (b) Photo of the 6-tip
probe array.
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5.4 Results: Evolution of Profiles

5.4.1 Enhanced Shear Flows

In this study, we obtained different equilibrium profiles and fluctuation intensities by
changing the magnetic field strength B. As shown in Fig. 5.3(a), when the B field is raised, the
plasma density and its radial gradient increases. During the B scan, the variation in electron
temperature is negligible. The axial velocity reverses at edge, and its radial shear increases with
increasing B field (Fig. 5.3(b)). The axial Reynolds stress, (7,7,) (Fig. 5.3(c)), is estimated using
velocity fluctuations in the frequency range of 2 < f < 30 kHz; previous studies have identified
these as collisional drift wave fluctuations.[BTA105, TBC' 14a] (v.7,) is negligible for r < 3
cm at lower B field, but becomes substantially negative at higher B field (Fig. 5.3(c)). The
Reynolds force, ,‘FZRe = —d,(V,7,) (Fig. 5.3(d)), increases significantly in the core, and becomes
more negative at the edge (3 < r < 6 cm). This negative turbulent force at the edge appears
to be matched with the reversed axial mean flow. The parallel Reynolds force is about 5 times
larger than the force on the ions arising from the parallel electric field. This weak electric field
arises from the Boltzmann equilibrium associated with the electron pressure drop along the axial
direction (Fig. 5.3(e)). Thus, the axial shear flow in CSDX reported here is primarily driven by
the turbulent Reynolds force.

In addition to the evolution of the axial flow, the changes in azimuthal flow has also been
measured simultaneously during the B scan. As can be seen from Fig. 5.4(a), the mean azimuthal
velocity, Vg, propagates in the electron diamagnetic drift direction (EDD), which is negative in
the figure. The magnitude of Vy increases by a factor of two when B is raised from 500 G to 800
G. The azimuthal Reynolds stress, (7,7g), is also estimated using fluctuations in the frequency
range of 2 < f < 30 kHz. (v,vp) is small and flat at lower B, but its magnitude increases when B
is increased (Fig. 5.4(b)). The change in (¥,7g) gives rise to substantial turbulent Reynolds force,

TeRe = —0,(V, V) (Fig. 5.4(c)) at higher B. This turbulent force acts to reinforce the azimuthal
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Figure 5.3: Equilibrium profiles of (a) the plasma density, (b) the axial mean flow, (c) the
axial Reynolds stress, (d) the axial Reynolds force, and (d) the axial force arises from electron

pressure drop.
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Figure 5.4: Radial profiles of (a) mean azimuthal velocity, (b) azimuthal Reynolds stress (v,7g),

and (c) azimuthal Reynolds force TeRe = —0d,(V, V).
flow shear at the edge (r =~ 4 cm). These observations indicate that the azimuthal mean flow,
similar to the axial mean flow, increases due to its enhanced turbulent drive. The turbulence-
driven azimuthal flow has been reported from previous studies in CSDX.[HYJ 06, YXD"10b,

XTD™11b] These recent observations here are consistent with earlier results.

5.4.2 Axial Force Balance Analysis

To confirm the role of Reynolds force in driving the axial flow, we also examined the
force balance in axial direction. The azimuthal force balance has been performed in previous
studies.[HYJ06] It confirms that the azimuthal mean flow can be reproduced with azimuthal

Reynolds force and collisional damping effects. Here, we carry out similar analysis on the axial
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flow. The axial ion momentum equation is written as

10 1 0P, 10 Vv,

—Z (r(5.7,) = Vet —— (ar5= ) | 5.18

ror (r{727r)) m;(n) 0z G (’u "2 ) (>.18)
where the ion viscosity u; = gplzv,-,- ~ 3 —5m? /s and ion-neutral collision frequency v;, =

NgasV1iOin ~ 3 — 6 X 103s~! are estimated from previous studies. [HYJT06] y;; and v;, are likely
to have weak spatial variations, i.e., y;; o< nTl-fl/ % and Vip o< Tifl/ 2, Here, we assume the neutral
pressure is radially uniform and the neutral temperature is approximated by the ion temperature
profile, which has been measured using LIF techniques in previous studies. [TGM™16] A no-
slip boundary condition is also imposed, justified by strong ion-neutral damping at edge, i.e.,
V. — 0 at r = 6 cm. Taking the measured profiles of the Reynolds stress and the axial pressure
gradient shown in Fig. 5.3, we can then solve Eq. (5.18) for V, using a finite difference method.
The axial pressure force can also be ignored at higher B field, since it is smaller than turbulence
force by a factor of 5. As shown in Fig. 5.5, the calculated results (curves) are in agreement with
the mean axial ion flow profiles measured by the Mach probe (circles). This results confirms that

the turbulent stress is responsible for the increased V, and flow reversal found at higher magnetic

field.

5.5 Results: Density Gradient Scalings

5.5.1 Turbulent Drive Scales with Density Gradient

The magnetic field scan yields a clear rise in Vn, which is much larger than VT, and
has been identified in previous work as the primary free energy source driving the fluctuations.
[BTA105, TBC'14a] This change presents us an opportunity to determine the link between
Vn, the turbulent drive, and the macroscopic intrinsic flow. In this study, we did a shot-by-

shot B field scan, and used the Reynolds power, PR¢ = —(V.)d,(¥.7,), to represent the rate
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Figure 5.5: Radial profiles of mean axial velocity predicted by force balance with TZRe >
—Ejnz—f;e (solid line) and measured Mach probe (circles) at 500 G (a) and 800 G (b). Shaded area
indicates the uncertainties of predicted V. profile.
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Figure 5.6: The magnitude of axial flow shearing rate |d,V;| (a), the volume-averaged axial
Reynolds power P4 (b), azimuthal flow shear |0,Vp| (c), and azimuthal Reynolds power Pg¢
(d) are plotted against the density gradient Va,.

of work performed by the turbulent fluctuations on the mean axial flow. The axial shear flow

and the Reynolds power are plotted as a function of Vn (Fig. 5.6). The magnitude of axial

flow shearing rate, |V/| = |9,V;|, increases sharply when the density gradient exceeds a critical
value, Vn, > 1.6 x 10°°m—* (Fig. 5.6(a)). This critical density gradient is in agreement with
the theoretical prediction shown in Eq. (5.16). Concurrently, the Reynolds power also increases
substantially when this threshold is exceeded (Fig. 5.6(b)). Here, we used volumed-averaged
Reynolds power, P = [ —(V,)9,(V.V,) rdr/ [ rdr where 1 < r <5 cm. These observations
show that the axial shear flow and its Reynolds power increase consistently as Vn increases,
indicating that the turbulence acts as a converter, transferring the free energy to the intrinsic flow.

These results are consistent with the heat engine model. [KDG10b] Here, the free energy due to

Vn is converted into kinetic energy of macroscopic parallel flow.
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The azimuthal flow and its turbulent drive are also driven by the density gradient. Similar
to the analysis of the axial flow case, we use the azimuthal Reynolds power, Pa = — (Vg)0,(7,7g),
to represent the nonlinear kinetic energy transfer into the mean azimuthal flow. We then plot the
axial flow shear and azimuthal Reynolds power as a function of the density gradient. As shown

in Fig. 5.6(c), there is a clear threshold effect in the density gradient, which is the same as the

axial flow case. After the threshold, the azimuthal flow shear, Vé| = |0,Vo — Vi/r|, and the az-
imuthal Reynolds power, PX¢, increase with the density gradient Vn (Fig. 5.6(d)). The similar
trends of Vy and fP(fe suggest that the underlying turbulence also converts the free energy from
the density gradient into kinetic energy of azimuthal mean flow.

The results above show that both the axial and azimuthal mean flows are turbulence-
driven in CSDX. However, the nonlinear kinetic energy transfer to the two secondary shear flows
are not equally distributed. The axial Reynolds power is smaller than the azimuthal one by an or-
der of magnitude, i.e., Q’ZRe < fPé?e, since k, < k| for turbulent fluctuations in CSDX. Therefore,
we conclude that the azimuthal shear flow sets the turbulent fluctuation level through predator-
prey type interaction, while the axial flow evolves in this intensity field. The disparate magni-
tudes of nonlinear energy transfer also suggest that there is no significant direct energy exchange
between axial and azimuthal shear flows. The axial flow is then parasitic to the turbulence-zonal
flow system, and is driven by the turbulent Reynolds stress, especially the non-diffusive, residual

stress. The weak axial to azimuthal flow coupling allows us then to simplify the 4-field model

in Section 5.2 to a 2-field predator-prey model.

5.5.2 Residual Stress Driven by Density Gradient

As discussed in Section 5.2, it is the residual stress that converts the thermodynamic free
energy to the kinetic energy of the axial mean flow.[DKG™13b, LDXT16b] The residual stress
can be synthesized from the measured Reynolds stress (Fig. 5.3(c)) and the diffusive stress in-

ferred from experimental measurements,[YXD'10b] i.e., [TR = (7,7,) +%.0,V; with the diffu-
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Figure 5.7: Radial profiles of the synthesized residual stress at different magnetic fields.

sivity ), = (7)1, expressed in terms of the measured eddy radial velocity 7, and eddy correlation
time. Here, the pinch term (V,,V;) is ignored, since it arises from toroidal effects and thus is not
significant in a linear device. As shown in Fig. 5.7, the magnitude of the synthesized residual
stress increases as the B field, as well as Vn, is increased.

The magnitude of the residual stress, Hlfzes, is then plotted against the normalized density

,1s small,

Res
3

gradient in Fig. 5.8. At smaller density gradient, the magnitude of residual stress,

and is almost independent of the normalized density gradient. At larger Vn,

I1Res ‘ increases in

proportion to the normalized density gradient, with a slope 6,7 ~ 0.10. Here, Hlfzes‘ is volume-
averaged in the range of 1 < r < 5 cm. This finding confirms the hypothesis that the residual
stress is driven by the density gradient. Also, a finite 6,7 ~ 0.1 indicates a symmetry breaking

mechanism at higher Vn.

5.5.3 Effect of Azimuthal Flow Shear on Residual stress

The above observations have demonstrated the coexistence of turbulence-driven shear
flows in both axial and azimuthal directions. It is also shown that the azimuthal Reynolds power

is much larger than its axial counterpart. Therefore, the azimuthal flow primarily determines
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Figure 5.8: Comparison between magnitudes of residual stress and normalized density gradi-

ent. The coefficient, 6,7, is estimated to be about 0.10 by a least-square fit using data with

higher Vn.
the turbulence intensity via a predator-prey type interaction, and axial flows are parasitic on this
system. As shown in Fig. 5.9, the axial flow shear V, and the magnitude of the residual stress
}H}}Zes‘ are plotted against the azimuthal flow shear. As azimuthal flow shear is entangled with Vn
during the B scan, V/ (Fig. 5.9(a)) and |H§Zes} increases (Fig. 5.9(b)) with Vj. Since in present
experiments the azimuthal flow shear is less than the frequency of drift wave turbulence, i.e.,

Vi < , the axial residual stress does not depend explicitly on the azimuthal shear flow.

5.6 Results: Residual Stress Restuls from Symmetry Break-
ing in Turbulence Spectra

The development of residual stress is also proposed to be correlated with symmetry break-
ing in k-space, [DKG'13b] i.e., (k;kg) = ¥y k kg M)k‘z / Yk |(T)k‘2 # 0. The symmetry breaking
can be assessed by investigating the joint probability density function (PDF) of radial and axial
velocity fluctuations, P (), ;). Note that in CSDX we have v, ~ VHP ~ k.® and ¥, ~ k¢®, due

to the adiabatic electron response and negligible temperature fluctuations. By normalizing the
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Figure 5.10: Joint PDF of radial and axial velocity fluctuations, P (¥,,7,), at different magnetic
fields at r ~ 3 cm. Normalization is the standard deviations.

velocity fluctuations using their standard deviations, P (¥, V) can represent the correlator (k_kg).
As shown in Fig. 5.10, the anisotropy of P (¥,,7,) grows with increasing B field strength and
Vn. The critical density gradient occurs at B =~ 650 G, and P (¥,,7V,) starts to tilt (Fig. 5.10(b))
at slightly higher B and Vn. At higher Vn, P (¥,,7,) is strongly elongated along the diagonal,
suggesting large asymmetry in (k;kg).

As proposed by the dynamical symmetry breaking model,[LDXT16b] the mean axial
flow shear modifies the drift wave growth rate, by introducing a frequency shift proportional
to k-kgV,. In our experiments, the seed axial flow shear is negative, V! < 0, because V,(r) is
initially driven by the axial pressure drop and hence decreases from the core to the edge. As a
result, the modes with (k;kg) < O grow faster than modes with (k. kg) > 0, and eventually become
dominant. This in turn induces a spectral imbalance, with predominance of the spectral intensity
in quadrants II and IV of the kg — k; plane, as shown in the right panel of Fig. 5.11. The predicted
spectral imbalance, (kgk;) < 0, is consistent with the tilted contour of P (V,, V), as shown in left
panel of Fig. 5.11. Since larger residual stress occurs at higher Vn, we can therefore infer that

this symmetry breaking is related to a finite residual stress.
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plane by the dynamical symmetry breaking model (right).

5.7 Conclusions

In this work, we study axial and azimuthal flow dynamics in drift wave turbulence in

CSDX. We focus on possible interactions between azimuthal and axial flows. The principal

results of this study are:

e Turbulent azimuthal Reynolds stresses (v,Vg) drive zonal flows which regulate the turbu-

lence.

e Turbulent axial Reynolds stresses (V,7;) drive axial flows—akin to intrinsic rotation. How-
ever, the azimuthal Reynolds power is much larger than the axial Reynolds power, i.e.
?éee > EPZRe, so one may regard the axial flow evolution as parasitic to the drift wave—zonal
flow system. This is consistent with the observation that Ve’ <y, (i.e. moderate azimuthal

flow shear) and thus there is no transport barrier.

e Spectral symmetry breaking was observed and measured—i.e., (kgk;) # 0. The observed
broken symmetry is consistent with that required for axial flow generation. The symmetry

breaking is dynamical, and is not produced by magnetic field geometry.

e Azimuthal and axial flows scale with Vn, consistent with the scenario of the engine model

of the system.

e Experimental results support the predictions of the reduced model discussed in this paper.
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We emphasize that conclusions pertinent to azimuthal—axial flow coupling are limited to
magnetic field in range from 500 G to 1000 G. In this range, Vg < o and Ly, < (L‘I;ZSFI> _1,
which are fundamental to the system dynamics observed and modeled here.

Chapter 5 has been submitted for publication of the material as it may appear in R. Hong,
J. C. Li, R. Hajjar, S. Chakraborty Thakur, P. H. Diamond, and G. R. Tynan, “Generation of
Parasitic Axial Flow by Drift Wave Turbulence with Broken Symmetry: Theory and Experi-
ment”, Physics of Plasmas (2018), American Institute of Physics. The dissertation author was

the primary investigator and author of this article.
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Chapter 6

Another Look at Zonal Flow Physics:
Resonance, Shear Flows and Frictionless

Saturation

6.1 Introduction

Zonal flows (ZF) are very effective at regulating drift wave (DW) turbulence, as they
are the secondary modes of minimal inertia, transport, and damping[DIIHO5b, GD15]. Such a
mechanism naturally can be thought of as an element in a ‘predator—prey’ type ecology[ DLCT94,
KGD15], in which the secondary ‘predator’ feeds off (i.e., extracts energy from) of the primary
‘prey’. In such a system, the damping of the predator (here, the ZF) ultimately regulates the full
system. Frictional drag, due to collisions, is usually invoked to damp ZF. However, this picture
is unsatisfactory for present day and future regimes of low collisionality. Thus, it becomes es-
sential to understand frictionless ZF saturation and its implications for drift wave turbulence. Of
course, ZF saturation significantly impacts transport and turbulence scalings. Note that under-

standing scalings in the frictionless regime is essential for developing reduced models thereof.
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As zonal flow shear reduces the turbulent mixing scale, the saturated zonal flow is coupled to
the scaling of turbulent diffusivity with p, = ps/L,. This is related to the degree of gyro-Bohm
breaking[MPW01], i.e. the exponent o in D ~ Dgp%, where Dg = kgT /16eB is Bohm diffu-
sivity and o < 1 indicates gyro-Bohm breaking.

Related to zonal flow saturation, we note that strong resonance between drift waves and
azimuthal (i.e., zonal) flow is observed in a linear device CSDX (Controlled Shear Decorrelation
eXperiment), i.e. @y — kg(vg) <K My, With ., being the electron drift frequency. CSDX is a
well-diagnosed venue to study the interaction between turbulence and turbulence driven flows in
straight magnetic fields[XTD" 11a, CAT*16]. Though resonance is manifested most clearly in
the linear device, it has more general implications for confinement devices.

Wave-flow resonance enters turbulence regulation by zonal flows both linearly and non-
linearly. Resonance alters our understanding of the shear suppression mechanisms. To this end,
the effects of E x B shear flows on turbulence have been intensively studied. However, simpli-
fied shear suppression models are not universally applicable. In some limits, weak flow shear
can even destabilize turbulence due to the coupling of radial eigenmodes|[ WDR92]. Moreover,
flow shearing alone is not the only parameter that characterizes all effects of flow structure on
turbulence[WJGH92]. For example, wave-flow resonance stabilizes turbulence through wave
absorption[ WDR92, CSD"92]. Yet, resonance is often overlooked by many existing shear sup-
pression models.

Resonance also suggests saturation mechanisms for zonal flows. Many works on zonal
flow generation[DIIHO5b, GD15, GHD15, GD16] exist, but the question of how zonal flows
saturate, absent frictional drag, remains open. Though sometimes mentioned in this context,
tertiary instability is not effective for most cases of ZF saturation as it is strongly suppressed by
magnetic shear. Indeed, in simulation studies, onset of tertiary instability requires an artificial
increase in the ZF shearing rate[RDKOO] so as to overcome the stabilizing effects of magnetic

shear. Ion temperature gradients can provide an extra source of free energy to drive the tertiary
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mode, in addition to flow shear. However, such a contribution to the growth rate of the tertiary
mode is of order O(kzpiz), and thus does not qualitatively alter tertiary stability[KDO02]. Tertiary
instability of ZF may occur in flat-q regimesMAC™ 11a] with zero magnetic shear. Even there,
the key question of just how much turbulent mixing and flow damping result remains to be
addressed.

In this work, we discuss the role of wave—flow resonance in zonal flow dynamics. Specifi-
cally, we investigate whether the conventional shear suppression rules still hold true when wave—
flow resonance is considered. In addition, we study how resonance enters zonal flow regulation.

In particular, we seek to answer the following questions:

(1) How do zonal flows saturate in the frictionless regime? What determines the stationary

flow scale? To what degree is the often-quoted gyro-Bohm scaling broken?

(2) How do we incorporate the resonance effect in a predator—prey model? How is this new

model different from previous ones?

We find that flow shear can destabilize the drift wave turbulence through the resonance.
This contradicts the conventional wisdom that the flow shear always suppresses turbulence. Res-
onance between drift wave and plasma flow suppresses the instability by wave absorption. In-
creasing the flow shear, with fixed flow magnitude, can weaken the resonance. Consequentially,
the flow shear increment actually destabilizes the drift wave turbulence. This suggests that the
flow shear can affect the stability via resonance in a way opposite to what the conventional shear
suppression models predict. Thus, wave-flow resonance is an important factor to be considered
when studying shear flow effects on stability, and on quasilinear fluxes that transport particles,
vorticity, and momentum.

We study drift—ZF turbulence with special focus on the frictionless regime where the flow
drag — 0. Note that the DW drive—which can depend on electron collisionality—is not affected

by the distinction between frictional and frictionless ion regimes, since frictional damping of
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Figure 6.1: Frictionless zonal flow saturation by (a) tertiary instability and (b) resonant vortic-

ity diffusion.
drift waves is weak. Many works on ZF generation[DIIHO5b, GD15] exist, but the question
of how ZF saturates, absent frictional drag, remains open. We show that turbulent mixing of
zonal vorticity by drift waves in the presence of ZF saturates secondary flows for near-marginal
turbulence (with low to zero frictional drag), and thus is effective at regulating the Dimits up-
shift regime. The Dimits regime[DWBC96, DITHO5b] is that of a frictionless DW—ZF system
close to the linear instability threshold, where nearly all the energy of the system is coupled
to ZF, so that the residual transport and turbulence are weak, though finite. This induces an
up-shift in the onset of the turbulent fluxes when plotted vs VT'. Turbulent vorticity mixing is
fundamentally different from viscous flow damping. Turbulent vorticity mixing conserves total
potential enstrophy (PE) between the mean field-i.e., the zonal component—and fluctuations. In
contrast, the flow viscosity dissipates both the ZF and (DW flow) fluctuations, and so is an energy
sink for all. Fig. 6.1 illustrates the paradigm shift from the hypothetical saturation induced by
tertiary instability to the saturation by vorticity mixing.

The ZF saturation mechanism induced by resonant vorticity mixing is incorporated as a
nonlinear self-regulating effect in an extended predator-prey model[KGD15, DLCT94]. Station-
ary turbulence and flow states are calculated and compared in the frictionless, weakly frictional,
and strongly frictional regimes. In the frictionless regime, the results are different from the
conventionally quoted scalings derived for frictional regimes.

Turbulent vorticity mixing is driven by resonance between drift wave and zonal flow. It is

analogous to Landau damping absorption of plasmons during collapse of Langmuir turbulence[ GSSS77,
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Figure 6.2: Comparison of the generation and frictionless dissipation of (a) zonal flow and (b)
caviton.

CGDS17]. In the latter case, plasmon Landau damping arrests collapse, leaving an “empty cav-
ity”, without its “filling” of Langmuir wave pressure. Table 6.1 compares these two processes.
Both zonal flow formation and Langmuir collapse (i.e., the formation of caviton) result from
modulational instability, and they both saturate in the collisionless regime. Moreover, both
Landau damping and vorticity mixing conserve energy (or potential enstrophy, in the case of
vorticity mixing). The key difference between the two is the detail of the resonance. The reso-
nance considered here is between drift wave phase velocity and flow velocity, while conventional
Landau resonance considers the resonance between phase velocity and particle velocity. Landau
resonance defines a series of resonant surfaces in (x,v) phase space. When the islands around ad-
jacent surfaces overlap, the trajectory of a particle becomes chaotic, leading to mixing of phase
space density (Fig. 6.3). As a result, the particle PDF (probability density function) evolves
stochastically, i.e., as by a Fokker—Planck equation in velocity. In contrast, resonant diffusion
mixes vorticity in real space. The diffusive scattering of zonal vorticity profile is resonant. There-
fore, irreversibility results from stochastic vorticity trajectories due to overlapping islands in real
space, i.e., the (x,y) space.

The rest of this paper is organized as follows. Sec. 6.2 presents the wave-flow resonance
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Figure 6.3: Overlapping islands in phase space. The dashed lines represent resonant surfaces.

Table 6.1: Comparison and contrast of Landau damping effects on cavity collapse during Lang-
muir turbulence collapse and resonance effects on frictionless zonal flow (ZF) saturation.

Langmuir turbulence collapse

Frictionless ZF saturation

Primary player Plasmon-Langmuir wave Drift wave turbulence
Secondary player Ion-acoustic wave (caviton) Zonal flow
Free energy source | Langmuir turbulence driver Vn, VT drive

Final state

Nearly empty cavity

Saturated zonal flow and resid-
ual turbulence

Resonance

Landau damping

0 — ky(vy) absorption

Other damping effects

Ton-acoustic radiation

Wave packet trapping
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effect on stability, specifically how the flow magnitude and flow shear affect the stability via
resonance. Sec. 6.3 discusses how zonal flow saturation in the frictionless regime is regulated

by the resonance. Sec. 6.4 summarizes and discusses the main results of this paper.

6.2 Wave-Flow Resonance Effect on Stability

Shear is not the only flow property that controls the stability of turbulence. We reconsider
the shear suppression models by incorporating the the effects of resonance. Resonance between
drift wave and flow stabilizes the turbulence via wave absorption. The flow shear weakens the
resonance, and thus actually enhances the turbulence. Also, we show that the flow magnitude
enhances the resonance, and thus, stabilizes the drift wave. The flow magnitude (V,,,4y) 1s defined
as the maximum flow velocity in the electron drift direction. Increasing V,,,, reduces the value
of Wy, — kV,,,4x, and thus enhances the resonance.

We study the Hasegawa—Wakatani drift wave system in slab geometry with a mean per-

pendicular flow (vy) varying in the £ direction:

d Vi ~
<—+VE-V>I’Z—|—VX —D”V ( ¢)+DCV217Z, (61)
dt no

d ~
(45467 ) b 0oy =Dy Vi) 1.5, 62)

where we define D) = VZT ne/Vei and d/dt = 9; + (vy)0y. V; is the frequency of electron—ion col-
lision and vy, is the electron thermal speed. We have normalized electric potential fluctuation
as ¢ = ed¢/T, and density fluctuation as 71 = dn/ng, where ny is the equilibrium density. The
magnetic field is in the Z direction, and both ng and (v,) vary only in £ direction. The vorticity
fluctuation is p = p scSVi(T) where p; is the ion Larmor radius at electron temperature and c; is
the ion sound speed, and the zonal vorticity is (p) = (v)". Vi = ¢sZ X V¢ is the E x B velocity

fluctuation. D, and 7 are the collisional particle diffusivity and vorticity diffusivity (i.e., vis-
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cosity). Drift wave is the dominant instability population, because the vorticity gradient drive is
quantitatively weaker than the Vng drive, i.e. kyp2(vy)" /0. < 1 where ®., = kypycs/Ly is the
electron drift frequency and L, = no/|dno/dx| is the density gradient scale.

In the following subsections, we show how conventional shear suppression models fail

in the presence of strong wave—flow resonance.

6.2.1 Resonance Effects on Stability

Wave-flow resonance stabilizes drift waves through wave absorption. The instability is
linked to the mode scale L,, (defined by Eq. (6.5)). The key resonance, here, is between the
phase velocity of drift waves and the fluid velocity of plasma, i.e. ®; —k,(vy). Due to the
resonance effect, the eigenmode peaks around the position where |0 — ky(vy)| is a minimum.
When the resonance becomes stronger, the scale of the eigenmode decreases. The mode scale is
effectively the wavelength in the £ direction, i.e. k.py ~ L, 'p,. Hence, the resonance regulates
the turbulent fluxes by varying the mode scale.

We can write the fluctuating quantities in Eq. (6.1)—(6.2) as Fourier components in the y

and parallel (2) directions, while retaining the amplitude variation in the X direction, i.e.

x V.2, t Z (1) kvy—O—k”Z th)
ky k)

x .2, t Z nlx k)y—Q-kHz th)
ky k|
The complex frequency € consists of a real frequency and a growth rate, i.e. Qp = W + i'V.
Electrons are weakly non-adiabatic, i.e. 7 = (1 —i8)$ with 8 < 1. The nonadiabatic electron

response 0 is determined by the frequency shift 6 = (@, — @ +ky(vy))/ (kﬁD”) < 1, given that
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the adiabatic factor is kﬁD” /O > 1. The eigenmode equation for ¢(x) is then

(0 — ky(vy) + i) P05 0 = [(1+kypy —i8) (00 — ky(vy) + i) — s — kyps (1y)"] 0, (6.3)

where the collisional viscosity . has been neglected. Multiplying both sides of Eq.(6.3) by ¢,

and integrating over the X direction, we obtain

(@ — ky(vy) +iv) Ly o3 + [(1+ k5 p3 — i8) (0 —ky(vy) + k) — 0ue] =0 (6.4)

where the mode scale L,, is defined by

2 rLx 2
p dx|0d
ling s f() | | ‘ (65)

Jo dx|o)?

Here, we have used the boundary condition ¢(0) = ¢(L,) = 0. In addition, the vorticity gradient
term is ignored in Eq.(6.4), because it is quantitatively negligible as compared to ®s.

The Doppler shifted frequency and the growth rate are obtained from Eq. (6.4)

Due
Wy = ; (6.6)
L+ k2p2 + L p?
2 —
Q)
ym e kops + Ly, >3 67)

KDy (1 +kzps +L7p2)>
When resonance becomes stronger, i.e. |0k —ky(vy)|min decreases, the eigenmode becomes nar-

rower (mode scale L, /p; decreases), and thus the growth rate decreases. Therefore, stronger

resonance stabilizes the drift wave.
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6.2.2 Effect of Flow Magnitude on Stability

Increasing the flow magnitude enhances resonance, thus stabilizes the drift wave. We
consider the regime where 0 < |@ — ky(vy) |min << 04.. Here, the resonance is stronger, but there
is no singularity in the eigenmode equation. As (v,) increases, resonance is enhanced. Therefore,
increasing the flow magnitude suppresses instability.

In order to illustrate the effect of flow on the resonance, and thus on stability, we nu-
merically solve the eigenmode equation Eq. (6.3) for wave frequency y, growth rate Y, and
eigenmode profile ¢(x). The chosen parameters are a proxy for realistic CSDX parameters,
which are Ly = 6 cm, p; = 1.2 cm, L, = 2 cm, k,p; = Tt/L,. Dirichlet boundary conditions are
used, which are ¢(0) = ¢(L,) = 0. The adiabatic factor is kﬁDH /@y = 3, so electrons are nearly
adiabatic with & = 1/3. We use the hyperbolic tangent function to describe the flow profile,

which is
x—0.5L,

Ly (6.8)

(vy) = Vinaxtanh

Here, the maximum flow shear is given by Vju./Ly. This allows us to vary either the flow
magnitude or the flow shear, while keeping the other fixed.

As the flow magnitude increases and the flow shear remains constant, the resonance
becomes stronger (Fig. 6.6, left panel). Hence, the mode peak moves closer to the position with
the minimum |0y — ky(vy)|, which is at x = L, (Fig. 6.5). As a result, instability is suppressed

(Fig. 6.6, right panel).

6.2.3 Effect of Flow Shear on Stability

Flow shear weakly destabilizes the drift wave by weakening the resonance. As a result,
the eigenmode profile is flattened (Fig. 6.7). This increases the mode scale L,,/p; (Fig. 6.8, left
panel). Hence, the drift wave is destabilized by the flow shear (Fig. 6.8, right panel).

Note that the increment in growth rate is not due to enhanced KH instability, because KH
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drive is quantitatively negligible as compared to drift wave drive here.

6.3 Frictionless ZF Saturation by Resonant PV Mixing

In this section, we show that resonant scattering of the zonal vorticity can saturate sec-
ondary flows in the frictionless regime. This process is distinct from the tertiary mechanism.
This shift in paradigm is illustrated by the diagram in Fig. 6.1. The resonant vorticity diffusion
can saturate flows in both marginal and strong turbulence regimes. The stationary flow results
from the balance between the residual vorticity flux and the resonant scattering effect. Since both
of them scale with the turbulence intensity, the stationary flow is then independent of turbulence
strength to leading order. Therefore, this saturation mechanism is effective in the Dimits up-shift
regime, where turbulence is marginally unstable. We calculate the stationary zonal flow shear
and scale directly from analysis, and determine the degree of gyro-Bohm breaking resulting from
strong zonal flow shear.

This saturation mechanism is incorporated into a extended OD predator—prey model. The
flow state and turbulence level are calculated for frictionless, weakly frictional, and strongly
frictional regimes, and compared to previous results. Also, we use drift wave turbulence as an
example case to calculate the saturated flow state in the frictionless regime. Study for the OD
model lends considerable insight by enabling calculation of flow scales, and flow and turbulence
states (i.e., fixed points). However, a 1D model is necessary to study the spatiotemporal evolution

in physical systems, such as staircase formation and avalanches[ DPDG™ 10, NCDH96].

6.3.1 Drift Wave—Zonal Flow System in the Resonant PV Mixing Frame-

work

The generation and saturation of zonal flows by drift waves are described by PV (po-

tential vorticity) mixing. The fluctuating PV is defined as § = 7ii — p, and the zonal PV is
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(q) = (n) — (p). Hence, the evolution equation for fluctuating PV can be obtained by subtracting
Eq. (6.2) from Eq. (6.1), yielding

d . .0 B 2 -
(E + Ve -V) q—l—vxa(cp =D, V7. (6.9)

Here, Dy ~ (D¢ +%c)/2 is the collisional diffusivity of PV. In multiplying both sides of Eq.
(6.9) by g, we obtain the potential enstrophy (PE)-i.e., Q = (cf) /2—equation[AD16, AD17]:

J 9 (7g’) J 3/2

—Q=——"1_ (54 —(q) — e +1.Q. 6.10

ot ox 2 <VJCQ> dx <Q> c +Y ( )
The turbulent PE flux is due to nonlinear spreading, and can be approximated as a diffusive flux,
ie., (7.g%)/2 ~ —DqdQ[AD16]. The nonlinear PE dissipation £.03/2 represents the forward
cascade (to dissipation) of PE. vy, is the characteristic linear growth rate of drift waves, which
drives the turbulence and thus produces PE. The coupling of PV flux and zonal PV profile gradi-
ent conserves PE between mean field and fluctuations.

The equations for mean-field density and zonal vorticity are

2ty = — 25y + DV ), 6.11)
oy = -2 (. V2 6.12
g(P) = —$<pr> — ue(p) —unL(P) + X V(P)- (6.12)

U is frictional drag coefficient. The nonlinear flow damping rate uy;, depends on (p), and is
set by tertiary modes, e.g. Kelvin—Helmholtz instability of zonal flows. In reality, the onset of
such tertiary modes requires the ZF shear to exceed a threshold[RDKO0O], in order to overcome
the damping of magnetic shear. Onset of tertiary instability can be included in reduced models,
if needed. However, here we neglect it, because the relevance of such tertiary modes to ZF

saturation in confinement devices is negligible.
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To close the system, we need to calculate the turbulence-driven fluxes. The quasilinear

PV flux is diffusive, i.e.,

0
(Vxq) = —Dq,mba@% (6.13)

which is obtained from Eq. (6.9), neglecting collisional diffusion. Here, the turbulent diffusivity
of PV has a resonant part and a non-resonant part, i.e., Dy s, = Dges + Dgon'res.
The resonant diffusivity of PV is set by the resonance between phase velocity of drift

wave and the local ZF profile, which yields

DE=Y" |V kTS (g — Ky (vy)), (6.14)
k

where 7, is the fluctuating velocity in the radial direction and ®y is the drift wave frequency.
The resonant scattering here has a characteristic spectral autocorrelation time scale T ~ |A(oy —
Ky (W)Y~ {[ (Ve — Vpiy ) Aky | + [V DAk}, where we have used (v,) 2 @y /ky = vpny. The
resonance is between drift waves and the instantaneous ZF profile. Thus, this autocorrelation
time is shorter than the time scale of ZF evolution, i.e., T < TzF, consistent with ZF evolution
by turbulent PV mixing. The correlation time T is shorter as compared to the 1D case, where
the spectral width is associated with the mismatch between group velocity and phase velocity,
i.e., Tek ~ |(vg —vpn)Ak| ™1, only. As aresult, the resonant diffusivity is Dy =Y k§p§c§|¢klztck.

The non-resonant diffusivity can be obtained by quasilinear theory, and is

pron-res _ k2p2C2|¢k|2L- (6.15)
4 mk¢%<vy> e |6 — Ky (vy) 2

Y is the linear growth rate of drift waves. In marginally stable turbulence, y; should be replaced
by the nonlinear decorrelation rate of turbulence, i.e., A@Ny /Ny where Ny ~ |0x|? /@y is the wave

action density. As a consequence, in marginally stable turbulence, the non-resonant diffusivity
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is
: Aol [oxl*|0x*
pron-res _ k2p2C2 ’ , (6.16)
! wk#%(Vy) T Ty o — ky(vy)[?

where Iy = Y |¢x|>. This is analogous to wave—particle scattering due to higher order Landau
resonance[MD68] in Vlasov plasmas. The Doppler shifted frequency and the growth rate of the
drift wave are given by Eq. (6.6) and (6.7). Both of them depend upon the eigenmode scale

~1/2

in radial direction, which is L,, = (k2) . Thus, the non-resonant diffusivity depends on the

mode scale, which yields

ey SEG Sl
oty KIPI 1+Hk5pS +Ln™p3
The mode scale does not affect the turbulent diffusivity significantly. This follows since for
drift wave scaling where k,ps ~ 1, the factor involving the mode scale does not vary strongly
(with that scale) while it ranges from 0.5 to 1. The non-resonant diffusivity is negligible in
comparison to the resonant diffusivity, because Dy ~ (kﬁD”)*1 and kﬁDH > ’Cgcl for near—
adiabatic electrons. Therefore, the mixing of PV is primarily resonant.
The turbulent particle flux driven by drift wave turbulence in the adiabatic regime is
diffusive, i.e.,

0
<‘7xﬁ> = _Dn,turbgc<n>7 (6.18)

where

b _y ke kil o 6.1
n,turb — Z k2D PP 2 5 N’k‘ . ( . )
k I I 1 +kyps +Lm ps

We can then obtain the vorticity flux by subtracting the PV flux from the particle flux, i.e.,

(7ep) = (9fi) — (¥:G), which is

-~ resy O res O
(7xp) = _(Dn,turb _Dq )a<n> _Dq gc<p> (6.20)
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Here, the last term is the flux induced by resonant diffusion. The non-diffusive component
forms a residual vorticity flux, i.e., Fg"s = —(Dyturb — D)0 (n). l"ges is driven by drift wave
turbulence, so it is proportional to the density gradient. As discussed in Ref. [DIIHO5b], Fg“
drives zonal flows against diffusive vorticity mixing. The gradient of Fges can accelerate zonal
flows from rest. Note that this mean field calculation of the vorticity flux is technically applicable
to the stationary state, while modulational instability analysis is limited to the stage of ZF growth.

We then arrive at the DW—ZF system including resonant PV mixing, which is

o, . 9 ) )
§<l’l> = gDn,turbaOl) +D.V <n>7 (6.21)
J — J res i res d 2
5, P) = 3 | (Db = Dg”) 5 -(n) + Dy ax<p>} —e(p) —mnL(p) +XVEP),  (6.22)
d0-p azQ+D“’S 3(< ) —(p)) 2—8 Q32 4 y.Q (6.23)
52 =Dags 5 () = (p c 1LQ. .

This system consists of the equations for mean-field density (Eq. (6.21)), zonal vorticity (Eq.
(6.22)), and fluctuation PE (Eq. (6.23)). Initially produced by linear drift wave instability, the
PE of this system is conserved up to frictional dissipation and nonlinear turbulent saturation,

which transfer PE to small scales. The evolution of total PE is given by

P))
3 [axfor LB - f a0 -0 Dyl Vitn) (o) (o) v 67
(6.24)
The collisional diffusion of zonal PV (the term with D, . in Eq. (6.24)) is a sink. In contrast, the

turbulent PV diffusion conserves PE between mean field and fluctuations.

6.3.2 Frictionless ZF Saturation via Resonant PV Diffusion

As demonstrated by Ref. [Tayl5, DK91], vorticity flux is identical to the Reynolds

force, and thus drives the zonal flow. The residual vorticity flux excites the zonal flow, and
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thus the resonant diffusion is the only damping for zonal flows in the frictionless limit—i.e.,
Ue,Xe,unz — 0. By multiplying Eq. (6.22) by (p), we obtain the net production of mean flow

enstrophy in the frictionless limit, which is

az/d /d

Hence, we see resonant diffusion of zonal vorticity saturates zonal flows in the frictionless

d(n) 9 o(p)\ >
nturb Dreg)%%_Difs (%) ] . (6.25)

regime—i.e., its contribution to d; [ dx(p)? is negative definite.

The zonal vorticity profile is stationary when the net flow production is zero, i.e., 9; [ dx(p)? =
0. Therefore, in the frictionless regime, the stationary vorticity profile is determined by the bal-
ance between residual vorticity flux and the resonant vorticity diffusion (i.e., so (¥,p) = 0) which

implies

2~2 —2+2
(o) o =S5 (o S0 LRy ) (6.26)
Y PsLn TckkﬁDH 14 k2p? + L p2

In the relevant limit of near-adiabatic electrons, i.e., ’cckkﬁD” > 1, the zonal flow scale is

1/2
Lzp ~ (<Z_y>) psLn- (6-27)

Only a fraction of turbulence energy is coupled to zonal flows. Thus, the flow magnitude is

obtained using mixing length estimation for the turbulence energy, and a coupling fraction f:

<v)’>2 li%ux
2~ (6.28)

Here, 0 < f < 1 is the fraction of turbulence energy coupled to the zonal flow. Note that f
and the mixing length are as yet unspecified. The flow scale follows as Lzr ~ f 1/4 Pslmixs

which depends only weakly on f. Clearly, the mixing length is much larger than the microscale
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(ps) and can be as large as an extended cell (~ L,), i.e., ps < lnix < L,. Indeed, [y ~ L, is
the appropriate “base state” scale, absent zonal flows. Thus, Lzr necessarily lies between the
microscale (py) and the mixing scale (/,;;). The questions are to determine the relative weighting
of [ix and py, and to account for shear modification of ;.

To determine /,;,, note that the base state mixing length is reduced by zonal flow shearing.

This yields

2
i ~ W (6.29)
where [j is the mixing length for zero flow shear. In the case of drift wave turbulence, we have
lo ~ L, for extended cells absent flow shear.
For weak or modest zonal flow shear, the decorrelation time is the eddy turnover time.
The eddy size is set by the mixing length and the eddy turning speed is set by the mean square

1/2

root of the velocity fluctuations. Then, we obtain T, ~ e 1/2 Imix/ (\72> . The mixing length

model yields (#?) /c? ~ (1 — f)I2,./L2. Thus, the mixing length s /2. ~ (1 —f)lg/(%%)z.
As a result, the zonal flow scale is Lzp ~ f]/6(1 — f)'/6p§/3lé/3. The zonal flow shear is then
o]~ 61— pyvioge ()

For strong zonal flow shear, i.e., (vy>’ > eddy turnover rate, the decorrelation time is
set by T, ~ ((v,)2k?D)~'/3, i.e., the scale set by the well known interaction of shearing and
radial scattering[BDT90]. Due to the strong zonal flow shear, the turbulent diffusivity is res-
onant, so D ~ ¥ [9,|*8(w; — kg(vy)). The resonance time scale is controlled by the shear-
ing rate, which yields 8(w; — kg(vy)) ~ |(vy)'|~!. Hence, the diffusivity becomes D ~ (1 —
(/| )(12;./L2). The mixing length is 12, ~ (1 —f)2/3l%/(@%>4/3. The zonal
flow scale is Lyr ~ f3/19(1 —f)l/gpf/glg/g. The zonal flow shear is then |(v,)’| ~ f3/10(1 —
f)l/ 81‘;’_; <£> 3/8. Here, the flow shear is larger, and the flow scale is larger. This follows because

|(vy)'| ~ [(vy)|/Lzr and both |(vy)|/cs and Lzr increase with the underlying drive scale (/).

Nevertheless, the flow shear calculated here is close to that calculated for the weak shear case.
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Hence, in both cases, the flow shear are similar.

In either case, the factors f and 1 — f enter with small exponents. Thus, the zonal flow
emerges as mesoscopic, but weighted somewhat more strongly toward microscale (ps) than
macroscale (lp). Note that while the mesoscopic zonal flow scale, i.e., py < Lzr < L, and
Lzr ~ \/psLy in particular, is frequently assumed, here they are determined by the analysis.
The zonal flow shears in both cases are similar and robust. Even for the weak shear case, the
calculated zonal flow shear is significant. Hence, the case of strong zonal flow shear—and thus
flow resonance—is likely to be most relevant to the frictionless DW-ZF system discussed here.
Note that we have calculated the zonal flow scale and shear self-consistently by considering the
shearing feedback on mixing length. Externally driven flows may enhance the flow shearing,
and thus reduces the mixing scale.

This mesoscopic zonal flow appears as a limiting case with near-adiabatic electrons (i.e.,
TckkﬁDH > 1). When ’cckkﬁDH is comparable to unity, Lz is linked to the mode scale. In that case,
the resonance between drift wave and zonal flow regulates the flow structure by modifying the
local mode scale. In the hydrodynamic limit (i.e., TckkﬁDH < 1), the generation and saturation of
zonal flows must be reconsidered. The drift wave model discussed here is not directly applicable
to the hydrodynamic case where convective cells, not drift waves, are generated.

The mixing length derived here allows us to calculate the scaling of turbulent diffusivity
with p, = ps/L,. Following the mixing length model, the turbulent diffusivity scales as D ~
Imixvs«, Where v, = pgcs /Ly is the electron drift velocity. Thus, we obtain D ~ Dplyx/L,, where
Dp ~ pycs 1s the Bohm diffusivity. When there is no zonal flow, the mixing length is the size of
an extended cell, i.e., [,;ix ~ L,. This recovers the Bohm scaling, i.e., D ~ Dp. In the presence
of zonal flow shear, the mixing length is larger than p;, and thus gyro-Bohm scaling is a lower
bound for turbulent diffusivity, i.e., D > Dpp... Hence, D lies between the gyro-Bohm and Bohm
limits, i.e., D ~ Dgp% where 0 < o0 < 1. The question is to determine a, i.e., the degree of gyro-

Bohm breaking. The mixing length in the case of strong zonal flow shear is [, ~ pi/ 41(3)/ * o
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p;/ ! ,3/ *. This indicates that the scaling of turbulent diffusivity is closer to the Bohm regime,

i.e., D ~ Dglyx/Ly, ~ DBpi/4(lo/Ln)3/4 ~ DBpi/4. Therefore, the zonal flow shear leads to a
gyro-Bohm correction to the diffusivity which is initially Bohm, absent flow shear. As a result,
the diffusivity lies somewhere between Bohm and gyro-Bohm, but weighted more toward Bohm.
Note the zonal flow shear here is determined self-consistently by considering shearing feedback
on mixing length. Externally driven flow shears are not restricted by this self-consistent feedback
mechanism. Thus, the external flow shear could make the diffusivity weighted more toward gyro-
Bohm, i.e., D ~ DBp}k/ P where B > 0 is induced by external shear. External shear reduces the
mixing scale through the shearing feedback. Also, increasing external power input may lead to
the formation of transport barriersg]MAC*11a]. The barriers can then reduce the mixing scale

and thus can make the diffusivity more gyro-Bohm.

6.3.3 Extended Predator—Prey Model

The frictionless saturation induced by resonant PV mixing can be incorporated in the
predator—prey model of the DW-ZF system. In this subsection, we show the derivation of this
new, OD model and compare the results with previous models. Note that even though the OD
model studied here is sufficient to demonstrate the flow and turbulence states as well as the
flow scale, a model with at least one spatial dimension is necessary to study the spatiotemporal
dynamics of the system, such as the formation of transport barriers.

Eq. (6.25) shows that in the frictionless regime, the net production of zonal field en-
strophy is driven by the vorticity flux. Ignoring the evolution of (n), the total mean-field
PE is related to the zonal vorticity through V2 ~ [dx(vy)? /L2, = [dx(p)?/L%p. The total
fluctuation PE is E = [dxQ. Zonal flow is driven by the residual vorticity flux, but dissi-
pated by the resonant scattering of zonal vorticity. Thus, the net mean-field PE is produced

by (7 p)V" = TReV" — DSV ~ oy E|V"| — apV"?E. Therefore, with frictional damping and
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nonlinear damping by tertiary instability included, the predator (flow) equation is

Lzﬂ dvllz

=0 \V'|E — 0aV"?E —yn V"™ — V", (6.30)

The vorticity flux conserves enstrophy between zonal field and fluctuations. Thus, the
residual vorticity flux forms a sink of the fluctuation PE and the resonant vorticity diffusion

forms a source. As a consequence, the prey (turbulence) equation can be written as

dE
= oVIE+ 0, V"PE — e E? 4y E. (6.31)

Here, baseline (i.e., without flow) nonlinear saturation of turbulence is through the forward cas-
cade of PE. Ultimately, PE is dissipated by collisional diffusion at small scales. The linear
growth of energy is due to the (linear) instability of fluctuations.

Eq. (6.30) and (6.31) form a new predator-prey model for the DW-ZF system. This
model conserves PE and includes resonant PV mixing. The model is zero dimensional, because
the quantities here have been integrated over space. Though the accuracy of this simplified
0D model is limited, we can use it to obtain useful insights. In this new model, the net flow
production by turbulence consists of two terms, which are the turbulent production driven by
residual stress and the dissipation induced by resonant diffusion.

Eq. (6.30) shows that in the frictionless regime, where the frictional drag u. — 0, the res-
onant vorticity diffusion saturates the zonal flow production, even without the nonlinear damping
induced by tertiary instability. It should be stated that drift wave instability requires finite elec-
tron collisionality, while the frictional drag and collisional diffusion of particles and vorticity are
both determined by ion collisionality and/or ion-neutral drag. Hence, flipping between frictional
and frictionless regimes does not require a change in the drift wave drive.

The flow and energy states are set by the fixed points of the system, i.e. dV"?/dt =

dE /dt = 0. We ignore the nonlinear flow damping by tertiary instability, because it is irrelevant
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Table 6.2: Flow states and turbulence states compared among regimes with different frictional
damping rates. u. is the frictional drag coefficient, E is the turbulence energy (measured by
fluctuation enstrophy), 'y, is the linear growth rate of turbulence, and o and o, are coefficients
in the predator—prey model resulting from residual vorticity flux and vorticity diffusion.

Regime Frictionless Weakly Frictional Strongly Frictional
Frictional Damping Strength | y, < E | WE < y, K 4'YLOL% /€2 pe> 4'YLOL% /€2

" o Y] T

Flow [V"] o HL_S%L L
Turbulence Energy E fg Y_é lte
8c 85 (Xl

(usually). Therefore, the flow state can be obtained from Eq. (6.30), and is

| //| _ o E

= — 6.32
O E + u, ( )

We next discuss three regimes—the frictionless regime, the weakly frictional regime, and the
strongly frictional regime—and compare results to those of previous models. In particular, we
emphasize what determines the turbulence level and what affects the flow in near-marginal tur-
bulence. The states of zonal vorticity and turbulence energy are summarized in Table 6.2. In the
frictionless regime, the turbulence energy level is set only by the linear instability growth rate
and the nonlinear dissipation of PE. This differs from the strongly frictional regime, where the

turbulence level is set by the frictional drag[DLCT94].

Frictionless regime

In the frictionless regime, the drag is negligible compared to the resonant diffusive scat-

tering of vorticity, i.e. y. < 0 E. The flow and turbulence states are given by
V"] = /0, (6.33)

E=(y/e.)". (6.34)
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The flow is determined, to leading order, by the balance between residual vorticity flux (o;) and
diffusive mixing of vorticity (0tz). The turbulence energy is basically determined by the balance
between linear growth rate and dissipation rate of PE (g.).

In the frictionless regime, turbulence energy is (approximately) independent of the flow
state. The turbulence energy is determined only by the linear instability drive and the non-
linear dissipation of PE. The dissipation rate tied to forward cascade of potential enstrophy is
~ ECQI/ 2 ~e.E 1/2_ The turbulence state is then set by the balance between the linear growth
rate and the nonlinear dissipation rate, i.e. Yy, ~ €.EF 172, yielding E ~ (y./€.)?. When the linear
drive is weak, i.e. v /€. < 1, the turbulence becomes marginal, with E < 1. This is different
from previous results, where turbulence energy is set by the frictional flow damping. In previous
models, below the onset threshold for tertiary instability, the flow is dissipated only by frictional
drag. The energy is coupled from turbulence to flow, which is a one-way coupling. Therefore,
the fixed point is set by the balance between the frictional flow damping and energy coupling,
ie., aVE ~ u.V, where o is the coupling coefficient between flow and turbulence energy. As a
result, the saturated turbulence energy E ~ u./o.

In addition, the saturated flow does not depend on the turbulence level, to leading or-
der. The balance between residual vorticity flux and the resonant vorticity diffusion sets the
flow. In this balance, the turbulence intensity cancels out. This means there can be significant
zonal flow, even when the turbulence is weak. Therefore, this new frictionless saturation mech-
anism, induced by resonant PV mixing, is effective for turbulence near marginality. In previous
models, the flow is set by the difference between linear growth of turbulence and frictional flow

damping[DIIHO5b]. Those models are not relevant to near-marginal turbulence, where v, — 0.
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Weakly frictional regime

When the drag exceeds the rate of turbulent diffusion, i.e. u. > o E, the flow is linked

to the turbulence strength, which is given by
V" = o E /uc. (6.35)

This follows because the flow is driven by turbulence, and collisions are the major source of flow
damping. Thus, in the near marginal regime, both the turbulence and the flow becomes very
weak, as the turbulence drive approaches zero.

The turbulence energy can be obtained from

’E  eE
O‘;Jri_l:o. (6.36)
HeYL YL

2.2 2

€ dy o
p=S i gjﬂl—l . 637)

1 cHe

Hence, in the weakly frictional regime, i.e. y, < 4YLOL% /€2, the turbulence energy is the same as

The exact solution is

in the frictionless case, while the flow is given by

(Xl’Y%

V| ==L
V=

(6.38)

We thus see that the weakly frictional regime is a hybrid of the frictionless and strongly
frictional regimes. On one hand, the turbulence level is independent of flow damping, as for
the frictionless regime. On the other hand, the flow depends on the turbulence level, meaning
that when the turbulence is near marginal, the flow becomes very weak. This is because the
turbulence driven flow production must be strong enough to overcome frictional damping, in

order to drive a significant flow.
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Strongly frictional regime

When the frictional flow damping is strong, i.e. in the strong frictional regime where

Ue > 4YLOC% /€2, the turbulence energy is set by the flow damping, which is given by

E =Y1pc/0f. (6.39)
This recovers the scaling trends of previous predator-prey models. The flow is given by

V'l =yL/ou. (6.40)

Note that in this strongly frictional regime, the flow does not explicitly depend on frictional flow
damping, which is the same as for previous results. The turbulence energy here is controlled by
both the linear drive and the flow damping. As a consequence, the near-marginal state can be
achieved by decreasing the linear forcing of the turbulence. As a result, with strong collisions,
the flow is weak for near marginal turbulence.

The new predator—prey model presented here does not depend sensitively on the specific
turbulence type. For comparison with the results calculated from the zonal vorticity equation,

we now use drift wave instability as an example. The coefficients are

o = Tk — il (6.41)

0 = k2p3Tek- (6.42)

As aresult, in the frictionless regime, the stationary zonal vorticity emerges as

2,2 —2,52
|V”|:ﬂ: Cs 1 — 1 kyps +L,p; (6.43)
o pPsly TckkﬁDH 1 —I—k§ %—l—L;Zp% ’
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Figure 6.4: For zonal flows, vorticity is equal to flow shear.

which is consistent with Eq. (6.26). Vorticity gradient measures the jump across the flow shear
field. Thus, the ZF profile can be deduced from the zonal vorticity by specifying boundary
conditions. As shown by Fig. 6.4, for zonal flows, vorticity is equal to shear, which is of greater

interest than the flow velocity.

6.4 Discussion

In this paper, we study how wave—flow resonance affects the linear stability of drift wave
turbulence, and how it regulates zonal flow saturation in the frictionless regime by resonant

vorticity mixing. The main results of this paper are:

e Resonance stabilizes drift waves due to wave absorption. Counter-intuitively, flow shear
can destabilize drift wave by weakening the resonance. This contradicts the conventional

wisdom of shearing effects.

e Resonance opens a new channel of zonal flow saturation, absent frictional drag, through
the irreversible turbulent mixing of vorticity. The scale of the stationary flow that forms
is mesoscopic, but weighted somewhat more strongly toward microscale than macroscale.
We show directly from analysis that the zonal flow scale is Lzp ~ f3/10(1 — £)V/ 8p§/ 813/ 8

in the relevant adiabatic regime (i.e., TckkﬁDH > 1). The flow shear scales as |(vy)’| ~
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e We calculate the degree of gyro-Bohm breaking and show that the resulting turbulent
diffusivity is closer to the Bohm limit, i.e., D ~ DgpL/*(lo/Ls)** ~ Dpp/*. The base

state mixing length, absent flow shear, is [y ~ L,.

e We incorporate the saturation by mixing of vorticity into the predator—prey model. In
contrast to previous results, the saturated flow is independent of the turbulence level, to
leading order, in the frictionless regime. Thus, it can be significant for the relevant case
of near-marginal turbulence. The turbulence energy is determined by the balance of linear

drive and nonlinear dissipation without involving flow damping, and gives E ~ y% /€2.

In the presence of strong resonance, flow shear can linearly destabilize the drift wave
turbulence, which is opposite to what the conventional shear suppression models predict. Reso-
nance suppresses the instability as a result of wave absorption, and the flow shear can weaken the
resonance. Therefore, wave-flow resonance is an important factor to be considered when study-
ing the shear flow effect on stability, and on quasilinear fluxes that transport particle, vorticity,
and momentum.

The Dimits up-shift regime spans low to zero collisionality and consists of weak turbu-
lence near marginality. ZF saturation induced by resonant PV mixing is effective in both the
frictionless regime and for near-marginal turbulence, and thus is compatible with the physics of
the Dimits up-shift regime. Resonance regulates ZF saturation in the frictionless regime without
the need to invoke tertiary instability. The saturated flow does not depend on the turbulence inten-
sity. Hence, there can be significant zonal flows for near-marginal turbulence, absent frictional
damping.

The stationary flow profile is determined by the balance between residual vorticity flux
and the resonant diffusivity of vorticity. While ZF scale is often assumed, the new model dis-

cussed here calculates the saturated flow scale in the frictionless limit. In the limiting case with
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near-adiabatic electrons (i.e., ‘cckkﬁDH > 1), the ZF scale is mesoscopic, i.e., Lzr ~ f3/'6(1 —
f )1/ 8p§/ 813/ 8, in accordance with conventional assumptions. The mixing length regulated by
the zonal flow shear is then [,;, ~ psl/ 41(3)/ 4o psl/ 4L,31/ 4. This implies a Bohm-like scaling of
turbulent diffusivity, i.e. D ~ Dglyix/Ly ~ DBpi/4(lo/Ln)3/4 ~ D3p1/4, where Dg is the Bohm
diffusivity and p, = ps/L,. Note that absent zonal flow shear, the scaling is purely Bohm, i.e.,
Lyix ~ lo ~ L, and D ~ Dg. As a result of zonal flow shear, the diffusivity scaling exhibits a
gyro-Bohm correction, but weighted more toward Bohm. The scaling takes into account zonal
flow shears that are self-consistently determined by shearing feedback on mixing length. Thus,
externally driven flow shear may be needed to achieve scalings that are more gyro-Bohm. The
flow shear driven by external power sources can reduce the mixing scale through shearing feed-
back. In addition, increasing the external power input can lead to the formation of transport
barriersyMAC ™ 11a]. The transport barrier so formed could also reduce the mixing scale and
thus could make the diffusivity weighted more toward gyro-Bohm.

We have derived an extended predator—prey model, incorporating the resonant PV mix-
ing process. This new model is effective in the near-marginal turbulence. Thus, it can describe
zonal flow saturation in the Dimits up-shift regime. In the frictionless regime, the resonant diffu-
sion of vorticity leads to nonlinear saturation of zonal flow. The turbulence energy is saturated
by nonlinear enstrophy dissipation tied to forward cascade of potential enstrophy. As a result,
the turbulence energy scales with the linear forcing rate as £ ~ y% The saturated flow does not
depend on the turbulence intensity. Hence, there can be significant flows in near-marginal turbu-
lence. Therefore, frictionless ZF saturation by resonant PV mixing is expected to be effective in
weak turbulence regimes. In the frictional regime with significant frictional flow damping, the
dependence of turbulence energy level on flow damping is recovered. The flow is driven by turbu-
lence, while saturated by collisions. Hence, in this limit, the flow is very weak in near-marginal
turbulence.

The model discussed here addresses the long-standing question of “how close is ‘close’”
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in near-marginal systems. It is effective in both near-marginal turbulence and in the friction-
less regime. Thus, when expanded to /D, it can be used to study avalanches and staircase
formation[DPDG™ 10, NCDH96]. In 1D, avalanching induces variability of profiles, and thus
of local growth rates. The scaling E ~ y% suggests a variability-dominated state can result
when Y, — 0. This follows because y; has an exponent > 1, which holds true as long as the
self-saturation of fluctuation PE exhibits the dependence €. QP where 0 < p < 1. Thus, the
scaling of E with 1y, is stronger than the conventional weak turbulence result. The local linear
growth rate is then set by both equilibrium (mean) and variable (i.e., avalanche-induced) profile
gradients, 1.e., Y, = ¥; + Y. As a result of resonant PV mixing in the frictionless regime, the
turbulence state is determined by E ~ YI% ~ ?f + ?% ¥ 1s determined by the difference between
mean profile gradient and critical gradient. In near-marginal turbulence, the mean gradient ap-
proaches the critical gradient, so ¥; — 0. Thus, there the turbulence state is primarily controlled
by noise from avalanche variability, i.e., E ~ ?% > 7% Such noise is produced by avalanching,
which stochastically modulates the driving gradient. In this case, the predator—prey model must
be treated as a set of coupled stochastic differential equations. In 1D, the relevant system is a
nonlinear reaction—diffusion model like that of Eq. (6.22) and (6.23), including multiplicative
noise. The results in this work thus define the boundary for “marginality”. The turbulence energy
scales with the dimensionless ratio (y;/€.)?, where € is the dissipation rate of PE. Therefore,
the turbulence can be “marginal” when the equilibrium growth rate y; < €.. This gives a basis
upon which to define the extent of the “near-marginal regime”.

Chapter 6 has been submitted for publication of the material as it may appear in J. C. Li
and P. H. Diamond, “Another look at zonal flow physics: resonance, shear flows and frictionless
saturation”, Physics of Plasmas (2018), American Institute of Physics. The dissertation author

was the primary investigator and author of this article.
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Figure 6.5: Mode structure for various flow magnitudes, with fixed flow shear. The flow is

given by function Vj, = V,yy tanh [(x —0.5L,) /Ly |.
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Figure 6.6: Resonance (left) and growth rate (right) vs. flow magnitude, with fixed shear. The

flow is given by function V;, = V4, tanh [(x —0.5L,) /Ly].
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Chapter 7

Summary and Future Directions

In this dissertation, we have studied the fundamental issues of intrinsic axial and az-
imuthal flows and their interaction with each other in a linear device absent magnetic shear. We

sought to answer the following questions:

1. What breaks the k| spectral symmetry of turbulence and thus generates intrinsic parallel

flows, absent magnetic shear? (Chapter 2)

2. What saturates the axial flows and determines the profile stiffness of flow shear? (Chap-

ter 3)

3. How to demonstrate, in experiments, the causal link from the density gradient to spectral

asymmetry of drift wave turbulence, and the development of mean axial flow? (Chapter 5)

4. How does wave—flow resonance regulate the stability of drift wave turbulence and the

saturation of zonal flow in the frictionless regime? (Chapter 6)

In Chapter 2, we develop a new dynamical symmetry breaking mechanism for the gen-
eration of intrinsic axial flows in uniform magnetic fields. In a simple drift wave system, a seed

axial flow shear can be self-amplifying. The seed flow shear breaks the spectral symmetry by
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setting the growth rate of some modes higher than that of the others. The resulting spectral im-
balance gives rise to a finite residual stress I'II,{Zes ~ (kgk;). This residual stress induces a negative
increment to the turbulent viscosity. When the negative viscosity increment induced by residual
stress overcomes the turbulence viscosity set by drift waves, such that the total viscosity be-

comes negative, the flow shear is amplified by the modulational instability. When the axial flow

/
crit

shear exceeds (v;)’ . and triggers PSFI, the additional turbulent viscosity by PSFI nonlinearly

saturates the (v,)’ growth. The flow profile will then be relaxed by xESFI. Hence, the axial flow
shear will stay at or below the PSFI threshold (v.)’ ...

In Chapter 3, we investigate the physics of negative viscosity in ITG turbulence and
discuss the axial flow shear stiffness when plotted vs. VT;. The negative viscosity increment
induced by residual stress is not limited in the drift wave turbulence. We have shown that pure
ITG turbulence cannot drive intrinsic flows in a straight magnetic field, but can induce a negative
viscosity increment, which reduces the turbulent flow dissipation.

We also study the stiffness of VV| profile plotted vs. VTj. PSFI saturates the flow
gradient, when VV) is driven above the PSFI regime boundary. The flow gradient saturates at
the PSFI regime boundary, which is above the PSFI linear threshold and tracks the ITG drive,
ie. VV|/lkjcs| ~ (VTio)2/3/(kH7}0)2/3 The flow gradient in CSDX can be enhanced by various
external sources. When VV) steepens enough, so that PSFI drive dominates over ITG drive, flow
gradient saturates by PSFI relaxation. PSFI is nonlinear in VV|, and so is the viscosity driven
by PSFI turbulence. Consequently, VV| saturates at the boundary between PSFI regime and ITG
regime (which is above the linear PSFI threshold) and grows as VVH ~ (VT,-O)z/ 3. This scaling
of flow gradient implies a generalized Rice-type scaling, i.e. VV| ~ (VTj)®%, with o =2/3.

In Chapter 4, we study the interaction of intrinsic azimuthal and axial flows in CSDX.
In particular, we have studied how incremental changes of flow shears affect the production

branching ratio Pf / PyR . We have also investigated the effects of azimuthal flow shear on intrinsic

axial flow generation and saturation, absent magnetic shear. We have found increasing azimuthal
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flow shear reduces the branching ratio, which is measured by the ratio of axial and azimuthal
Reynolds powers, i.e., PX/PX. When axial flow shear increases, PX /Py first increases and then
decreases. This turnover occurs below PSFI threshold. Azimuthal flow shear stabilizes drift
waves by weakening the Vny drive, i.e., reducing the ®,, by the amount |k,p2(v,)"|. Azimuthal
flow shear slows down the modulational growth of seed axial flow shear, and thus reduces the
production of intrinsic axial flow, absent magnetic shear. Azimuthal flow shear reduces both
axial residual stress (IT8¢) and turbulent viscosity driven by drift waves (x?") by the same factor,
i.e., both TTR and ¥PW scale with the azimuthal flow shear as [V/|72 ~ |(v,)/| 2A; 2L, 2p3c2.
However, azimuthal flow shear does not affect the saturated axial flow shear to leading order,
because (v,)" = I8 /xPW and the reduction by ()’ cancels.

Chapter 5 discusses the phenomenology of axial and azimuthal flow dynamics in drift
wave turbulence in CSDX. We haven shown, by measurement, the pathway of free energy source
— turbulence — symmetry breaking — residual Reynolds stress — intrinsic axial flow shear.
The interaction between axial and azimuthal flows is weak. A plausible physical picture of the
system of flows and turbulence discussed in this thesis is summarized in Fig. 7.1. In this study,
the axial Reynolds power is smaller than the azimuthal one by an order of magnitude. Thus,
the azimuthal flow-turbulence interaction is the primary branch in the turbulence-flow system.
The axial mean flow is then parasitic to such system, and is driven by the residual stress. The
azimuthal flow shearing rate is much less than the drift wave frequency, so the residual stress
decouples from the effect of azimuthal flow (dashed line in Fig. 7.1). This axial residual stress
results from a dynamical symmetry breaking mechanism, i.e., driven by drift wave turbulence
with broken symmetry in k-space. This spectral imbalance in (k;kg) is induced by the seed
axial flow shear, which is in turn amplified by the axial residual stress. These observations are
consistent with the causal link proposed by the heat engine model, i.e., a pathway from symmetry
breaking to the development of residual stress and the onset of axial mean flow.

Although the axial-azimuthal flow coupling appears to be weak in this study, it needs not
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Figure 7.1: The present—a pathway from drift wave turbulence with broken symmetry to the
development of residual stress and the onset of axial mean flow in CSDX.
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Figure 7.2: The future—a diagram of hypothesized turbulence—flow interaction in CSDX with
both axial momentum and particle sources. Here, PSFI is the abbreviation for parallel shear
flow instability.
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always be so. There are at least two ways to enhance the interaction between axial and azimuthal
flows in CSDX. The proposed mechanisms are illustrated in Fig. 7.2. One way is to increase the
power of the plasma source, such that Vn drives stronger drift wave turbulence and thus leads to
enhanced zonal flows via the Reynolds force. When the zonal flow shear is comparable to drift
wave frequency, it will regulate the axial flow production and dissipation by entering explicitly—
and reducing—the axial residual stress and turbulent diffusivity. The enhanced zonal flow shear
will then increase the axial flow shear by reducing the cross-field momentum transport, i.e., thus
forming a transport barrier.

The other way to enhance the coupling between axial and azimuthal flows is to increase
the parallel momentum source. The enhanced axial flow can increase the zonal flow production
via the acoustic coupling. [WDH12a] The parallel flow compression can be converted to zonal
flow by coupling with potential vorticity (PV) fluctuations. This coupling, i.e., ((jVHﬁH), breaks
PV conservation, and thus forms a source for zonal flow. This conversion occurs when parallel
flow compression is significant, especially near the PSFI threshold. With increased axial and
azimuthal flow shears, a transport barrier can be formed by increasing the axial momentum
source. CSDX will be equipped with an axial gas-puff system that provides an axial momentum
source. The axial flow then can also be driven by a strong axial momentum source, and thus V,
would be adjustable within a wide range. In our current experiments, the peak value of the axial
Mach number is about 0.2, which is well below the PSFI threshold. The upgraded system will
present us an opportunity to investigate the role of PSFI in parallel flow saturation as well as
axial-azimuthal flow coupling.

To summarize, we remark that CSDX offers an excellent venue to study the detailed
physics of transport barrier formation with turbulent-driven transverse and parallel shear flows
at zero magnetic shear. In tokamaks, it has been observed that coexistence of large toroidal
rotation and low magnetic shear, i.e., flat-g regime, leads to enhanced confinement states, and

profile “de-stiffening”.[MAC™11b] This regime is under intensive study in the magnetic fusion
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energy community, and it is worthwhile to note that basic experiments can produce substantial
insights into the relevant physics.

In Chapter 6, we study how wave—flow resonance affects the linear stability of drift wave
turbulence, and how it regulates zonal flow saturation in the frictionless regime by resonant
vorticity mixing. Resonance stabilizes drift waves due to wave absorption. Flow shear can
destabilize drift wave by weakening the resonance. This contradicts the conventional wisdom of
shearing effects. The resonance opens a new channel of zonal flow saturation, absent frictional
drag, through the turbulent mixing of vorticity. The scale of the stationary flow that forms is
mesoscopic, but weighed somewhat more strongly toward the microscale than the macroscale.

5/8;3/8
s o

We show directly from analysis that the zonal flow scale is Lzr ~ f 3/ 161 —¢ )1/ 8o in the

relevant adiabatic regime (i.e., TckkﬁDH > 1). We calculate the degree of gyro-Bohm breaking
and show that the resulting turbulent diffusivity is closer to the Bohm limit, i.e., D ~ DBpi/ :,
This new saturation mechanism has been incorporated in the predator—prey model. In contrast
to previous results, the saturated flow is independent of the turbulence level in the frictionless
regime. Thus, it can be significant for the relevant case of near-marginal turbulence. The tur-

bulence energy is determined by the balance of linear drive and nonlinear dissipation without

involving flow damping, and with E ~ v? /2.

141



Bibliography

[ACCT12]

[AD16]

[AD17]

[ADGI16]

[AGGT13]

[BDTI0]

[BTAT05]

[CAT16]

[CGDS17]

[Cha48]

C Angioni, Y Camenen, F J Casson, E Fable, R M McDermott, A G Peeters, and
J E Rice. Nuclear Fusion, 52(11):114003, 2012.

Arash Ashourvan and P. H. Diamond. How mesoscopic staircases condense to

macroscopic barriers in confined plasma turbulence. Phys. Rev. E, 94:051202,
Nov 2016.

Arash Ashourvan and P. H. Diamond. On the emergence of macroscopic transport
barriers from staircase structures. Physics of Plasmas, 24(1):012305, 2017.

Arash Ashourvan, P H Diamond, and OD Giircan. Transport matrix for parti-
cles and momentum in collisional drift waves turbulence in linear plasma devices.
Physics of Plasmas, 23(2):022309, 2016.

J Abiteboul, Ph Ghendrih, V Grandgirard, T Cartier-Michaud, G Dif-Pradalier,
X Garbet, G Latu, C Passeron, Y Sarazin, A Strugarek, O Thomine, and D Zarzoso.
Turbulent momentum transport in core tokamak plasmas and penetration of scrape-
off layer flows. Plasma Physics and Controlled Fusion, 55(7):074001, 2013.

H. Biglari, P. H. Diamond, and P. W. Terry. Influence of sheared poloidal rotation
on edge turbulence. Physics of Fluids B: Plasma Physics, 2(1):1-4, 1990.

M. J. Burin, G. R. Tynan, G. Y. Antar, N. A. Crocker, and C. Holland. On the
transition to drift turbulence in a magnetized plasma column. Physics of Plasmas,
12(5):052320, 2005.

L. Cui, A. Ashourvan, S. C. Thakur, R. Hong, P. H. Diamond, and G. R. Tynan.
Physics of Plasmas, 23:055704, 2016.

Haihong Che, Melvyn L. Goldstein, Patrick H. Diamond, and Roald Z. Sagdeev.
How electron two-stream instability drives cyclic langmuir collapse and con-

tinuous coherent emission. Proceedings of the National Academy of Sciences,
114(7):1502-1507, 2017.

Jule G Charney. On the scale of atmospheric motions. Geofysiske Publikasjoner,
17(2), 1948.

142



[CSDT92]

[DITHOS5a]

[DITHOSb]

[DK91]

[DKG™13a]

[DKG™13b]

[DLCT94]

[DPDG'10]

[dRB*07]

[dVRG106]

B. A. Carreras, K. Sidikman, P. H. Diamond, P. W. Terry, and L. Garcia. Theory
of shear flow effects on longwavelength drift wave turbulence. Physics of Fluids
B: Plasma Physics, 4(10):3115-3131, 1992.

P H Diamond, S-I Itoh, K Itoh, and T S Hahm. Zonal flows in plasma—a review.
Plasma Physics and Controlled Fusion, 47(5):R35, 2005.

P H Diamond, S I Itoh, K Itoh, and T S Hahm. Zonal flows in plasmaa review.
Plasma Physics and Controlled Fusion, 47(5):R35, 2005.

P. H. Diamond and Y.B. Kim. Theory of mean poloidal flow generation by turbu-
lence. Physics of Fluids B: Plasma Physics, 3(7):1626—1633, 1991.

P. H. Diamond, Y. Kosuga, O. D. Giircan, C. J. McDevitt, T. S. Hahm, N. Fe-
dorczak, J. E. Rice, W. X. Wang, S. Ku, J. M. Kwon, G. Dif-Pradalier, J. Abite-
boul, L. Wang, W. H. Ko, Y. J. Shi, K. Ida, W. Solomon, H. Jhang, S. S. Kim,
S. Yi, S. H. Ko, Y. Sarazin, R. Singh, and C. S. Chang. An overview of intrinsic
torque and momentum transport bifurcations in toroidal plasmas. Nuclear Fusion,
53(10):104019, 2013.

P.H. Diamond, Y. Kosuga, O.D. Giircan, C.J. McDevitt, T.S. Hahm, N. Fedorczak,
J.E. Rice, W.X. Wang, S. Ku, J.M. Kwon, G. Dif-Pradalier, J. Abiteboul, L. Wang,
W.H. Ko, Y.J. Shi, K. Ida, W. Solomon, H. Jhang, S.S. Kim, S. Yi, S.H. Ko,
Y. Sarazin, R. Singh, and C.S. Chang. An overview of intrinsic torque and momen-

tum transport bifurcations in toroidal plasmas. Nuclear Fusion, 53(10):104019,
2013.

P. H. Diamond, Y.-M. Liang, B. A. Carreras, and P. W. Terry. Self-regulating shear
flow turbulence: A paradigm for the 1 to h transition. Phys. Rev. Lett., 72:2565—
2568, Apr 1994.

G. Dif-Pradalier, P. H. Diamond, V. Grandgirard, Y. Sarazin, J. Abiteboul, X. Gar-
bet, Ph. Ghendrih, A. Strugarek, S. Ku, and C. S. Chang. On the validity of the
local diffusive paradigm in turbulent plasma transport. Phys. Rev. E, 82:025401,
Aug 2010.

J. S. deGrassie, J. E. Rice, K. H. Burrell, R. J. Groebner, and W. M. Solomon.
Intrinsic rotation in diii-d. Physics of Plasmas, 14(5):056115, 2007.

P C de Vries, K M Rantamki, C Giroud, E Asp, G Corrigan, A Eriksson,
M de Greef, I Jenkins, H C M Knoops, P Mantica, H Nordman, P Strand,
T Tala, J Weiland, K-D Zastrow, and JET EFDA Contributors. Plasma rotation
and momentum transport studies at jet. Plasma Physics and Controlled Fusion,
48(12):1693, 2006.

143



[DWBC96]

[GBH'01]

[GD15]

[GD16]

[GDH*10a]

[GDH"10b]

[GDHSO07a]

[GDHSO07b]

[GHDI15]

[GHP+06]

[GSG102]

[GSIT02]

[GSSS77]

A. M. Dimits, T. J. Williams, J. A. Byers, and B. I. Cohen. Scalings of ion-
temperature-gradient-driven anomalous transport in tokamaks. Phys. Rev. Lett.,
77:71-74, Jul 1996.

X. Garbet, C. Bourdelle, G. T. Hoang, P. Maget, S. Benkadda, P. Beyer, C. Fi-
garella, I. Voitsekovitch, O. Agullo, and N. Bian. Global simulations of ion turbu-
lence with magnetic shear reversal. Physics of Plasmas, 8:2793, 2001.

O D Giircan and P H Diamond. Zonal flows and pattern formation. Journal of
Physics A: Mathematical and Theoretical, 48(29):293001, 2015.

Z. B. Guo and P. H. Diamond. Zonal flow patterns: How toroidal coupling induces
phase jumps and shear layers. Phys. Rev. Lett., 117:125002, Sep 2016.

O. D. Giircan, P. H. Diamond, P. Hennequin, C. J. McDevitt, X. Garbet, and
C. Bourdelle. Residual parallel reynolds stress due to turbulence intensity gradient
in tokamak plasmas. Physics of Plasmas, 17(11), 2010.

O. D. Giircan, P. H. Diamond, P. Hennequin, C. J. McDevitt, X. Garbet, and
C. Bourdelle. Residual parallel reynolds stress due to turbulence intensity gradient
in tokamak plasmas. Physics of Plasmas, 17(11):112309, 2010.

O. D. Giircan, P H Diamond, T S Hahm, and R Singh. Intrinsic rotation and
electric field shear. Physics of Plasmas (1994-present), 14(4):042306, 2007.

O. D. Giircan, P. H. Diamond, T. S. Hahm, and R. Singh. Intrinsic rotation and
electric field shear. Physics of Plasmas, 14(4):042306, 2007.

Z.B. Guo, T. S. Hahm, and P. H. Diamond. Small scale coherent vortex generation
in drift wave-zonal flow turbulence. Physics of Plasmas, 22(12):122304, 2015.

B. Gonalves, C. Hidalgo, M. A. Pedrosa, R. O. Orozco, E. Sdnchez, and C. Silva.
Role of turbulence on edge momentum redistribution in the tj-ii stellarator. Phys.
Rev. Lett., 96:145001, Apr 2006.

X. Garbet, Y. Sarazin, P. Ghendrih, S. Benkadda, P. Beyer, C. Figarella, and 1. Voit-
sekhovitch. Turbulence simulations of transport barriers with toroidal velocity.
Physics of Plasmas, 9:3893, 2002.

A. M. Garofalo, E. J. Strait, L. C. Johnson, R. J. La Haye, E. A. Lazarus, G. A.
Navratil, M. Okabayashi, J. T. Scoville, T. S. Taylor, and A. D. Turnbull. Sustained
stabilization of the resistive-wall mode by plasma rotation in the diii-d tokamak.
Phys. Rev. Lett., 89:235001, Nov 2002.

AA Galeev, RZ Sagdeev, VD Shapiro, and VI Shevchenko. Langmuir turbulence
and dissipation of high frequency energy. Zhurnal Eksperimental’noi i Teoretich-
eskoi Fiziki, 73:1352-1369, 1977.

144



[HDAT17]

[HDGRO7]

[HDT]

[HLH* 18]

[HLT+16]

[HutO8]

[HW83]

[HYJ106]

[IKK*16]

[IMM95]

[IR14]

[KDO02]

[KDG10a]

[KDG10b]

R.J. Hajjar, P. H. Diamond, A. Ashourvan, and G. R. Tynan. Modelling enhanced
confinement in drift-wave turbulence. Physics of Plasmas, 24(6):062106, 2017.

T. S. Hahm, P. H. Diamond, O. D. Giircan, and G. Rewoldt. Nonlinear gyrokinetic
theory of toroidal momentum pinch. Physics of Plasmas, 14(7):072302, 2007.

R. Hajjar, P. H. Diamond, and G. R. Tynan. The ecology of flows and drift wave
turbulence in csdx: a model. submitted to Physics of Plasmas.

R. Hong, J. C. Li, R. Hajjar, S. Chakraborty Thakur, P. H. Diamond, and G. R.
Tynan. Generation of parasitic axial flow by drift wave turbulence with broken
symmetry: Theory and experiment. submitted to Physics of Plasmas, 2018.

R. Hong, J. C. Li, S. C. Thakur, P. H. Diamond, and G. R. Tynan. 2016 US
Transport Task Force Workshop, Denver, CO, 2016.

I. H. Hutchinson. Ion collection by oblique surfaces of an object in a transversely
flowing strongly magnetized plasma. Phys. Rev. Lett., 101:035004, Jul 2008.

Akira Hasegawa and Masahiro Wakatani. Plasma edge turbulence. Physical Re-
view Letters, 50(9):682, 1983.

C. Holland, J. H. Yu, A. James, D. Nishijima, M. Shimada, N. Taheri, and G. R. Ty-
nan. Observation of turbulent-driven shear flow in a cylindrical laboratory plasma
device. Phys. Rev. Lett., 96:195002, May 2006.

S. Inagaki, T. Kobayashi, Y. Kosuga, S.-I. Itoh, T. Mitsuzono, Y. Nagashima,
H. Arakawa, T. Yamada, Y. Miwa, N. Kasuya, M. Sasaki, M. Lesur, A. Fujisawa,
and K. Itoh. A concept of cross-ferroic plasma turbulence. Scientific Reports,
6:22189, 2016.

K. Ida, Y. Miura, T. Matsuda, K. Itoh, S. Hidekuma, and S. I. Itoh. Evidence for
a toroidal-momentum-transport nondiffusive term from the jft-2m tokamak. Phys.
Rev. Lett., 74:1990-1993, Mar 1995.

K. Ida and J.E. Rice. Rotation and momentum transport in tokamaks and helical
systems. Nuclear Fusion, 54(4):045001, 2014.

Eun-Jin Kim and P. H. Diamond. Dynamics of zonal flow saturation in strong
collisionless drift wave turbulence. Physics of Plasmas, 9(11):4530-4539, 2002.

Y. Kosuga, P. H. Diamond, and O.D. Giircan. On the efficiency of intrinsic rotation
generation in tokamaks. Physics of Plasmas, 17(10), 2010.

Y. Kosuga, P. H. Diamond, and O. D. Giircan. On the efficiency of intrinsic rotation
generation in tokamaks. Physics of Plasmas, 17(10):102313, 2010.

145



[KGD15]

[KII15]

[KIK*16]

[Law57]

[LDXT16a]

[LDXT16b]

[LRH'05]

[LWD"15]

[MAC™11a]

[MACT11b]

Sumire Kobayashi, O. D. Giircan, and Patrick H. Diamond. Direct identifica-
tion of predator-prey dynamics in gyrokinetic simulations. Physics of Plasmas,
22(9):090702, 2015.

Y. Kosuga, S. I. Itoh, and K. Itoh. Density peaking by parallel flow shear driven
instability in panta. Plasma Fusion Research, 10:3401024, 2015.

T. Kobayashi, S. Inagaki, Y. Kosuga, M. Sasaki, Y. Nagashima, T. Yamada,
H. Arakawa, N. Kasuya, A. Fujisawa, S.-1. Itoh, and K. Itoh. Structure forma-
tion in parallel ion flow and density profiles by cross-ferroic turbulent transport in
linear magnetized plasma. Physics of Plasmas, 23(10):102311, 2016.

John D Lawson. Some criteria for a power producing thermonuclear reactor. Pro-
ceedings of the Physical Society. Section B, 70(1):6, 1957.

J. C. Li, P. H. Diamond, X. Q. Xu, and G. R. Tynan. Dynamics of intrinsic axial
flows in unsheared, uniform magnetic fields. Physics of Plasmas, 23(5):052311,
2016.

J. C. Li, P. H. Diamond, X. Q. Xu, and G. R. Tynan. Dynamics of intrinsic axial
flows in unsheared, uniform magnetic fields. Physics of Plasmas, 23(5):052311,
2016.

B. LaBombard, J. E. Rice, A. E. Hubbard, J. W. Hughes, M. Greenwald, R. S.
Granetz, J. H. Irby, Y. Lin, B. Lipschultz, E. S. Marmar, K. Marr, D. Mossessian,
R. Parker, W. Rowan, N. Smick, J. A. Snipes, J. L. Terry, S. M. Wolfe, S. J. Wuk-
itch, and the Alcator C-Mod Team. Transport-driven scrape-off layer flows and the
x-point dependence of the lh power threshold in alcator c-mod. Physics of plasmas,

12(5), 2005.

Z. X. Lu, W. X. Wang, P. H. Diamond, G. Tynan, S. Ethier, C. Gao, and J. Rice.
Intrinsic torque reversals induced by magnetic shear effects on the turbulence spec-
trum in tokamak plasmasa). Physics of Plasmas, 22(5), 2015.

P. Mantica, C. Angioni, C. Challis, G. Colyer, L. Frassinetti, N. Hawkes, T. John-
son, M. Tsalas, P. C. deVries, J. Weiland, B. Baiocchi, M. N. A. Beurskens,
A. C. A. Figueiredo, C. Giroud, J. Hobirk, E. Joffrin, E. Lerche, V. Naulin, A. G.
Peeters, A. Salmi, C. Sozzi, D. Strintzi, G. Staebler, T. Tala, D. Van Eester, and
T. Versloot. Phys. Rev. Lett., 107:135004, 2011.

P. Mantica, C. Angioni, C. Challis, G. Colyer, L. Frassinetti, N. Hawkes, T. John-
son, M. Tsalas, P. C. deVries, J. Weiland, B. Baiocchi, M. N. A. Beurskens,
A. C. A. Figueiredo, C. Giroud, J. Hobirk, E. Joffrin, E. Lerche, V. Naulin, A. G.
Peeters, A. Salmi, C. Sozzi, D. Strintzi, G. Staebler, T. Tala, D. Van Eester, and
T. Versloot. A key to improved ion core confinement in the jet tokamak: Ion stiff-
ness mitigation due to combined plasma rotation and low magnetic shear. Phys.

Rev. Lett., 107:135004, Sep 2011.

146



[MAD*11]

[MD68]

[MD88]

[MDGHO09]

[MPW01]

[NCDH96]

[PAB*11]

[PHO9]

[RCD*11]

[RDKO0O0]

[RHD*11a]

R M McDermott, C Angioni, R Dux, A Gude, T Ptterich, F Ryter, G Tardini, and
the ASDEX Upgrade Team. Effect of electron cyclotron resonance heating (ecrh)

on toroidal rotation in asdex upgrade h-mode discharges. Plasma Physics and
Controlled Fusion, 53(3):035007, 2011.

Wallace M. Manheimer and Thomas H. Dupree. Weak turbulence theory of ve-
locity space diffusion and the nonlinear landau damping of waves. The Physics of
Fluids, 11(12):2709-2723, 1968.

N. Mattor and P. H. Diamond. Momentum and thermal transport in neutral-
beamheated tokamaks. Physics of Fluids, 31(5):1180, 1988.

C. J. McDevitt, P. H. Diamond, O. D. Giircan, and T. S. Hahm. Toroidal rotation
driven by the polarization drift. Phys. Rev. Lett., 103:205003, Nov 2009.

G.R. McKee, C.C. Petty, R.E. Waltz, C. Fenzi, R.J. Fonck, J.E. Kinsey, T.C. Luce,
K.H. Burrell, D.R. Baker, E.J. Doyle, X. Garbet, R.A. Moyer, C.L. Rettig, T.L.
Rhodes, D.W. Ross, G.M. Staebler, R. Sydora, and M.R. Wade. Non-dimensional
scaling of turbulence characteristics and turbulent diffusivity. Nuclear Fusion,
41(9):1235, 2001.

D. E. Newman, B. A. Carreras, P. H. Diamond, and T. S. Hahm. The dynamics
of marginality and selforganized criticality as a paradigm for turbulent transport.
Physics of Plasmas, 3(5):1858—-1866, 1996.

A. G. Peeters, C. Angioni, A. Bortolon, Y. Camenen, F. J. Casson, B. Duval,
L. Fiederspiel, W. A. Hornsby, Y. Idomura, T. Hein, N. Kluy, P. Mantica, F. 1.
Parra, A. P. Snodin, G. Szepesi, D. Strintzi, T. Tala, G. Tardini, P. de Vries, and
J. Weiland. Nuclear Fusion, 51(9):094027, 2011.

Leonardo Patacchini and Ian H. Hutchinson. Kinetic solution to the mach probe
problem in transversely flowing strongly magnetized plasmas. Phys. Rev. E,
80:036403, Sep 2009.

J. E. Rice, I. Cziegler, P. H. Diamond, B. P. Duval, Y. A. Podpaly, M. L. Reinke,
P. C. Ennever, M. J. Greenwald, J. W. Hughes, Y. Ma, E. S. Marmar, M. Porkolab,
N. Tsujii, and S. M. Wolfe. Rotation reversal bifurcation and energy confinement

saturation in tokamak ohmic /-mode plasmas. Phys. Rev. Lett., 107:265001, Dec
2011.

B. N. Rogers, W. Dorland, and M. Kotschenreuther. Generation and stability
of zonal flows in ion-temperature-gradient mode turbulence. Phys. Rev. Lett.,
85:5336-5339, Dec 2000.

J. E. Rice, J. W. Hughes, P. H. Diamond, Y. Kosuga, Y. A. Podpaly, M. L. Reinke,
M. J. Greenwald, O. D. Giircan, T. S. Hahm, A. E. Hubbard, E. S. Marmar, C. J.
McDevitt, and D. G. Whyte. Phys. Rev. Lett., 106:215001, 2011.

147



[RHD*11b]

[RHST06]

[Ric16]

[RICd*07a]

[RICdT07b]

[RLM*04]

[RPR*13]

[RSK04]

[RTB196]

J. E. Rice, J. W. Hughes, P. H. Diamond, Y. Kosuga, Y. A. Podpaly, M. L. Reinke,
M. J. Greenwald, O. D. Giircan, T. S. Hahm, A. E. Hubbard, E. S. Marmar, C. J.

McDevitt, and D. G. Whyte. Edge temperature gradient as intrinsic rotation drive
in alcator c-mod tokamak plasmas. Phys. Rev. Lett., 106:215001, May 2011.

H. Reimerdes, T. C. Hender, S. A. Sabbagh, J. M. Bialek, M. S. Chu, A. M. Garo-
falo, M. P. Gryaznevich, D. F. Howell, G. L. Jackson, R. J. La Haye, Y. Q. Liu,
J. E. Menard, G. A. Navratil, M. Okabayashi, S. D. Pinches, A. C. Sontag, E. J.
Strait, W. Zhu, M. Bigi, M. de Baar, P. de Vries, D. A. Gates, P. Gohil, R. J.
Groebner, D. Mueller, R. Raman, J. T. Scoville, W. M. Solomon, the DIII-D Team,
JET-EFDA Contributors, and the NSTX Team. Cross-machine comparison of res-
onant field amplification and resistive wall mode stabilization by plasma rotation.
Physics of Plasmas, 13(5), 2006.

J E Rice. Experimental observations of driven and intrinsic rotation in tokamak
plasmas. Plasma Physics and Controlled Fusion, 58(8):083001, 2016.

J. E. Rice, A. Ince-Cushman, J. S. deGrassie, L. G. Eriksson, Y. Sakamoto,
A. Scarabosio, A. Bortolon, K. H. Burrell, B. P. Duval, C. Fenzi-Bonizec, M. J.
Greenwald, R. J. Groebner, G. T. Hoang, Y. Koide, E. S. Marmar, A. Pochelon,
and Y. Podpaly. Inter-machine comparison of intrinsic toroidal rotation in toka-
maks. Nuclear Fusion, 47(11):1618, 2007.

J.E. Rice, A. Ince-Cushman, J.S. deGrassie, L.-G. Eriksson, Y. Sakamoto,
A. Scarabosio, A. Bortolon, K.H. Burrell, B.P. Duval, C. Fenzi-Bonizec, M.J.
Greenwald, R.J. Groebner, G.T. Hoang, Y. Koide, E.S. Marmar, A. Pochelon, and
Y. Podpaly. Inter-machine comparison of intrinsic toroidal rotation in tokamaks.
Nuclear Fusion, 47(11):1618, 2007.

J. E. Rice, W. D. Lee, E. S. Marmar, P. T. Bonoli, R. S. Granetz, M. J. Greenwald,
A. E. Hubbard, I. H. Hutchinson, J. H. Irby, Y. Lin, D. Mossessian, J. A. Snipes,
S. M. Wolfe, and S. J. Wukitch. Nuclear Fusion, 44(3):379, 2004.

J. E. Rice, Y. A. Podpaly, M. L. Reinke, R. Mumgaard, S. D. Scott, S. Shiraiwa,
G. M. Wallace, B. Chouli, C. Fenzi-Bonizec, M. F. F. Nave, P. H. Diamond, C. Gao,
R. S. Granetz, J. W. Hughes, R. R. Parker, P. T. Bonoli, L. Delgado-Aparicio, L.-
G. Eriksson, C. Giroud, M. J. Greenwald, A. E. Hubbard, I. H. Hutchinson, J. H.
Irby, K. Kirov, J. Mailloux, E. S. Marmar, and S. M. Wolfe. Phys. Rev. Lett.,
111:125003, 2013.

Andre L Rogister, Raghvendra Singh, and Predhiman K Kaw. On ion temperature
gradient and parallel velocity shear instabilities. Physics of Plasmas, 11(5):2106,
2004.

B W Rice, T S Taylor, K H Burrell, T A Casper, C B Forest, H Ikezi, L L Lao, E A
Lazarus, M E Mauel, B W Stallard, and E J Strait. The formation and evolution

148



[SBB197]

[SBdT07]

[SCZ"16]

[SDF190]

[SKK*13]

[Tayl5]

[TBC* 14a]

[TBC'14b]

of negative central magnetic shear current profiles on diii-d. Plasma Physics and
Controlled Fusion, 38(6):869, 1996.

E J Synakowski, S H Batha, M A Beer, M G Bell, R E Bell, R V Budny, C E Bush,
P C Efthimion, T S Hahm, G W Hammett, B. LeBlanc, F. Levinton, E. Mazzu-
cato, H. Park, A. T. Ramsey, G. Schmidt, G. Rewoldt, S. D. Scott, G. Taylor, and
M. C. Zarnstorff. Local transport barrier formation and relaxation in reverse-shear
plasmas on the tokamak fusion test reactor. Physics of Plasmas, 4(5):1736-1744,
1997.

W M Solomon, K H Burrell, J S deGrassie, R Budny, R J Groebner, J E Kinsey,
G J Kramer, T C Luce, M A Makowski, D Mikkelsen, R Nazikian, C C Petty,
P A Politzer, S D Scott, M A Van Zeeland, and M C Zarnstorff. Momentum
confinement at low torque. Plasma Physics and Controlled Fusion, 49(12B):B313,
2007.

Yue Sun, Z.P. Chen, G. Zhuang, L. Wang, H. Liu, and Z.J. Wang. Investigations of
turbulent transport and intrinsic torque of toroidal momentum at the edge of j-text
tokamak with electrode biasing. Nuclear Fusion, 56(4):046006, 2016.

S. D. Scott, P. H. Diamond, R. J. Fonck, R. J. Goldston, R. B. Howell, K. P. Jachnig,
G. Schilling, E. J. Synakowski, M. C. Zarnstorff, C. E. Bush, E. Fredrickson, K. W.
Hill, A. C. Janos, D. K. Mansfield, D. K. Owens, H. Park, G. Pautasso, A. T.
Ramsey, J. Schivell, G. D. Tait, W. M. Tang, and G. Taylor. Local measurements
of correlated momentum and heat transport in the tftr tokamak. Phys. Rev. Lett.,
64:531-534, Jan 1990.

Y. J. Shi, W. H. Ko, J. M. Kwon, P. H. Diamond, S. G. Lee, S. H. Ko, L. Wang,
S. Y1, K. Ida, L. Terzolo, S. W. Yoon, K. D. Lee, J. H. Lee, U. N. Nam, Y. S. Bae,
Y. K. Oh, J. G. Kwak, M. Bitter, K. Hill, O. D. Gurcan, and T.S. Hahm. Ech effects
on toroidal rotation: Kstar experiments, intrinsic torque modelling and gyrokinetic
stability analyses. Nuclear Fusion, 53(11):113031, 2013.

G. I. Taylor. Eddy motion in the atmosphere. Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers of a Mathematical or Phys-
ical Character, 215:1-26, 1915.

S C Thakur, C Brandt, L Cui, J J Gosselin, A D Light, and G R Tynan. Multi-
instability plasma dynamics during the route to fully developed turbulence in a
helicon plasma. Plasma Sources Science and Technology, 23(4):044006, 2014.

SC Thakur, C Brandt, L Cui, JJ Gosselin, AD Light, and GR Tynan. Multi-
instability plasma dynamics during the route to fully developed turbulence in a
helicon plasma. Plasma Sources Science and Technology, 23(4):044006, 2014.

149



[TGM™16]

[WDH12a]

[WDHI12b]

[WDR92]

[WGE*17]

[WIGH92]

[WLG™]

[XHS*13]

[XTD*11a]

[XTD*11b]

S. C. Thakur, J. J. Gosselin, J. McKee, E. E. Scime, S. H. Sears, and G. R. Tynan.
Development of core ion temperature gradients and edge sheared flows in a helicon

plasma device investigated by laser induced fluorescence measurements. Physics
of Plasmas, 23(8):082112, 2016.

Lu Wang, P H Diamond, and T S Hahm. How does drift wave turbulence convert
parallel compression into perpendicular flows? Plasma Physics and Controlled
Fusion, 54(9):095015, 2012.

Lu Wang, P H Diamond, and T S Hahm. How does drift wave turbulence convert
parallel compression into perpendicular flows? Plasma Physics and Controlled
Fusion, 54(9):095015, 2012.

X.H. Wang, P. H. Diamond, and M. N. Rosenbluth. Stability of iontemperature-
gradientdriven modes in the presence of sheared poloidal flows. Physics of Fluids
B: Plasma Physics, 4(8):2402-2413, 1992.

W. X. Wang, B. A. Grierson, S. Ethier, J. Chen, E. Startsev, and P. H. Diamond.
Understanding and predicting profile structure and parametric scaling of intrinsic
rotation. Physics of Plasmas, 24(9):092501, 2017.

F. L. Waelbroeck, T. M. Antonsen Jr., P. N. Guzdar, and A. B. Hassam. Theory
of driftacoustic instabilities in the presence of sheared flows. Physics of Fluids B:
Plasma Physics, 4(8):2441-2447, 1992.

B.N. Wan, Y.F. Liang, X.Z. Gong, J.G. Li, N. Xiang, G.S. Xu, Y.W. Sun, L. Wang,
J.P. Qian, H.Q. Liu, X.D. Zhang, L.Q. Hu, J.S. Hu, EK. Liu, C.D. Hu, Y.P. Zhao,
L. Zeng, M. Wang, H.D. Xu, G.N. Luo, A.M. Garofalo, A. Ekedahl, L. Zhang, X.J.
Zhang, J. Huang, B.J. Ding, Q. Zang, M.H. Li, F. Ding, S.Y. Ding, B. Lyu, Y.W.
Yu, T. Zhang, Y. Zhang, G.Q. Li, T.Y. Xia, the EAST team, and Collaborators.
Overview of east experiments on the development of high-performance steady-
state scenario. Nuclear Fusion, 57(10):102019.

Y. Xu, C. Hidalgo, I. Shesterikov, M. Berte, P. Dumortier, M. Van Schoor,
M. Vergote, A. Krmer-Flecken, R. Koslowski, and the TEXTOR Team. Role of
symmetry-breaking induced by e r b shear flows on developing residual stresses
and intrinsic rotation in the textor tokamak. Nuclear Fusion, 53(7):072001, 2013.

M. Xu, G. R. Tynan, P. H. Diamond, C. Holland, J. H. Yu, and Z. Yan. Generation
of a sheared plasma rotation by emission, propagation, and absorption of drift wave
packets. Phys. Rev. Lett., 107:055003, Jul 2011.

M. Xu, G. R. Tynan, P. H. Diamond, C. Holland, J. H. Yu, and Z. Yan. Generation
of a sheared plasma rotation by emission, propagation, and absorption of drift wave
packets. Phys. Rev. Lett., 107:055003, Jul 2011.

150



[YHN*15]

[YXD"10a]

[YXD*10b]

M. Yoshida, M. Honda, E. Narita, N. Hayashi, H. Urano, M. Nakata, N. Miyato,
H. Takenaga, S. Ide, and Y. Kamada. Effects of toroidal rotation shear and mag-
netic shear on thermal and particle transport in plasmas with electron cyclotron
heating on jt-60u. Nuclear Fusion, 55(7):073014, 2015.

Z.Yan, M. Xu, P. H. Diamond, C. Holland, S. H. Miiller, G. R. Tynan, and J. H. Yu.
Intrinsic rotation from a residual stress at the boundary of a cylindrical laboratory
plasma. Phys. Rev. Lett., 104:065002, Feb 2010.

Z.Yan, M. Xu, P. H. Diamond, C. Holland, S. H. Miiller, G. R. Tynan, and J. H. Yu.
Intrinsic rotation from a residual stress at the boundary of a cylindrical laboratory
plasma. Phys. Rev. Lett., 104:065002, Feb 2010.

151





