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Computational Semantic Detection of Information Overlap in Text 
 

Julia M. Taylor (jtaylor@riverglassinc.com) 
RiverGlass Inc, 2001 South First St 

Champaign, IL 61820 USA 
 

 
Abstract 

This paper is an attempt to investigate whether a computer is 
capable of finding similar information in structurally different 
texts, as people do it, without relying on lexical matching and 
without guessing the meaning of sentences based on word co-
occurrence.  Considered texts describe the same event, but 
each text may focus on different parts of the event.  The 
considered texts are not paraphrases, but rather human- 
produced descriptions of a simple picture. The goal is not to 
find similar words in texts, which can be easily done, but to 
meaningfully connect the overlapping concepts and 
relationships used in the text descriptions.  The meaning-
based approach does not use any statistical/machine-learning 
techniques. The performance of a machine in finding 
similarity is compared to human performance not just in 
numbers but in the found information.  The results show that 
the machine matches four out of the five human findings. 

Keywords: text duplication and similarity, information 
overlap detection, meaning processing, ontological semantics. 

Overview 
This paper examines the use of the Ontological Semantic 

Technology (OST)—a modified version (Raskin et al 2010) 
of Ontological Semantics (Nirenburg & Raskin 2004)—for 
processing similar texts and compares it to human 
processing.  Instead of selecting existing texts and assessing 
their similarity, users were given the same picture to 
describe.  Clearly, the users will emphasize different objects 
or events on the picture, but at the same time, because they 
are all looking at the same picture, some of the provided 
information will overlap. The experiment is done to 
demonstrate the ability of the technology to understand the 
meaning of text, regardless of individual words that are used 
and of the length of the sentences.   

The OST claim to fame is that it “understands” the 
meaning of text.  The meaning of text includes paraphrases 
of sentences or paragraphs.  A large number of paraphrases 
can be produced from a single sentence, an even larger 
number can be produced from a paragraph.  Because of this 
large number of potential paraphrases, and because it is 
unclear which ones are good enough, instead of asking 
people to paraphrase a text, we ask them to describe a 
picture.   

The untested assumption is that looking at the picture 
should activate the same schema(ta) as reading a paragraph.  
Thus, the main information received should be 
approximately the same whether looking at the picture or 
reading text.  Instead of reconstructing original sentences 
after reading or listening to a text, the subjects were asked to 
describe what they see on the picture in their own words.  
The tasks of paraphrase and describing a picture are by no 

means identical, even for short sentences when compared to 
very simple pictures.  Several things should be noticed:  1. 
Length of the sentences in paraphrases has probably some 
correlation to the length of the original sentences.  2. The 
choice of words for the description task is not limited by the 
original sentence, whereas it is possible that, in the 
paraphrase, the subjects would try to come up with 
unnatural synonyms in their desire to paraphrase.  3. The 
order of sentences is free in the picture description, while it 
is possible that the sentences would be ordered according to 
the original text in the paraphrase.  

While paraphrase detections have received some attention 
from the machine-learning community (Fernando & 
Stevenson 2008, Clough et al 2002, Qiu et al 2006, Zhang & 
Patrick 2005), to the best of our knowledge same picture 
descriptions have not been addressed.  This is surprising 
because most real life event descriptions are more similar to 
picture descriptions than to paraphrasing tasks. 

The task of paraphrase limits information that is available 
to the subjects to that in the task, while describing the 
picture provides more freedom of focus.  For example, the 
sentence a black ball is on top of a green cube, can only be 
paraphrased in term of the provided information. Possible 
paraphrases are: a green cube is under a black ball; a black 
sphere-shaped object is above a green cube; a ball is 
positioned on top of a cube, the ball is black and the cube is 
green. Notice that there may be a considerable variation 
among paraphrases in terms on the words used, the order in 
which they are described, and the number of clauses used in 
the description.  What they all have in common, however, is 
the properties and attributes that connect the described 
objects:  all describe shape either explicitly as in sphere-
shaped object, or by accessing the knowledge of a shape of 
a lexical item as in ball or cube; and all describe color.  
However, if picture is shown (Figure 1), other things may 
come into focus for different people, such as relative size of 
the objects.   

 
Figure 1: A black ball on top of green cube 

It would be interesting to see if such unmentioned-in-the 
text characteristics would ever be brought up by the subjects 
in the paraphrase generation as unknown. It is, however, not 
the purpose of this experiment. The only significant 
assumption for this paper is that the greater variation of text 
should be encountered in the picture experiment, which in 
turn tests the machine’s capability of catching the overlap to 
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a much greater extent.  On the other hand, it would be 
interesting to see if a coherent description of a situation 
could be constructed from a union of all descriptions, as it is 
likely that these descriptions, to some extent, complement 
each other. 

It is this overlap information in descriptions reported by 
subjects, as well as the difference or the union, that is 
captured and analyzed by the machine, as compared to the 
overlap and difference in information in responses as 
perceived by human is the subject of the paper. The 
theoretical knowledge obtained in this kind of research is 
applicable to an increasingly urgent task of easing the 
information overload by removing duplicate and 
overlapping information1. 

Ontological Semantics Technology 
OST is an upgraded, much improved and implemented (and, 
on occasion, perverted) version of (Nirenburg & Raskin 
2004) that detects the meaning of text. Ontological 
Semantics is a theory, methodology and technology for 
representing natural language meaning, for automatic 
transposition of text into the formatted text-meaning 
representation (TMR), and for further manipulation of 
TMRs for inferencing and more advanced reasoning, both 
theoretically and in a growing variety of applications. The 
main knowledge resources in OST are the language-
independent ontology and language-specific lexicons. 

The OST is not a toy system that works on a handful of 
examples; instead, it works with unrestricted texts in real- 
life applications, as well as avoiding the scalability 
problems (see Raskin et al 2010).  

Ontology 
The ontology contains information about the world; it is a 

constructed, engineered model of reality, a theory of the 
world (Gruber 1993, 1995; Nirenburg & Raskin 2004:138-
139). It is a structured system of concepts covering the 
processes, objects, and properties in all of their pertinent 
complex relations, to the grain size determined by an 
application or by considerations of computational 
complexity. The ontology contains PROPERTIES, EVENTS, 
and OBJECTS. The concepts are named purely for the 
convenience of a human: the label itself does not contribute 
to the information content. Every OBJECT and EVENT is 
defined with a number of properties, thus allowing the 
concept to differ not only in label, but also in machine-
understandable information. The child concepts inherit 
properties from the parent concepts. 

Formally, the OST ontology is a lattice of conceptual 
nodes (for a construction of ontology and verification see 
Hempelmann et al. 2010 and Taylor et al 2010 respectably), 
each of which is represented as: 

 concept-name 
                                                             
1 The author believes that whether an overlap indicates an 

importance of information in text is a separate (to her, dubious) 
hypothesis, which will not be addressed in this paper. 

(property (facet(property-filler+))+)+ 

 property-filler 
concept-name | literal value 

 property 
  attribute | relation  
 facet 
  SEM | VALUE | DEFAULT | RELAXABLE-TO2 

The current implementation of OST uses the following 
three axioms: 

 subClassOf for concepts: IS-A (example: PHYSICAL-
OBJECT IS-A OBJECT) 

 subPropertyOf for properties: IS-A (example: COLOR IS-
A PHYSICAL-OBJECT-ATTRIBUTE) 

 inverse for properties: INVERSE (example: THEME 
INVERSE THEME-OF) 

Concept interpretation (without facets, for the ease of 
reading) can be looked at using the following: given a set of 
objects D, where D is the disjoint union of Dc (concepts) 
and Dd (literals), and given its interpretation function I, for 
every atomic concept B, I[B]⊆Dc; for every literal V, 
I[V]⊆Dd ; for every relation R, I[R]⊆Dc x Dc; for every 
attribute A; I[A]⊆Dc x Dd. Moreover, the following is true 
for concepts C and D: 

I [ALL] = D 
I [ε] = Ø 
I [C D] = I [C]  I [D] 
I [and C D] = I [C]  I [D] 
I [(Rel(D)))]= {x∈Dc| y  I [D], <x, y>∈I [Rel]}  
I [(Rel(and C D))] = I [Rel(C)]  I [Rel(D)] 
I [Rel(C D)] = I [Rel(C)]  I [Rel(D)] 
I [C(Rel(D))] = I [C]  I [Rel(D)] 
I [(Att(V)))]= {x∈Dc| y  I [V], <x, y>∈I [Att]} 

Clearly, concept C is a descendant of D if I[C]⊆I[D]; and 
I[(C(R(D))]⊆I[C]. Whenever relation Rel is defined with a 
domain D and range R, if I[C]⊆I[D] and I[E]⊆I[R], then 
C(Rel(E)) is equivalent to I [C] I [D(Rel(and E R))]. 

For the examples in this paper, it is sufficient to mention 
that when facets are involved, the highest priority facet 
takes precedence over the lower priority one.  

Lexicon 
The lexicon is the starting point for machine interpretation 

of language in OST. Since Ontological Semantics is 
centered on meaning, we will largely concentrate on the 
semantic structure (sem-struc) part of the lexicon entries.  

In general, the lexicon can be looked at as a collection of 
words (and phrasals), organized such that each word is 

                                                             
2 The list shown has been enriched in the current implementation 

of OST, but since facets do not contribute much to this paper, the 
list is left as it was first introduced.  
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listed with all of its senses. Each sense of the word in a 
lexicon follows the following structure: 

(WS-PosNo 
(cat(Pos)) 
(synonyms “WS-PosNo”)) 
 (anno(def “Str”)(ex “Str”)(comments “Str”)) 
 (syn-struc((M)(root($var0))(cat(Con))(M)) 
 (sem-struc(Sem)) 
) 

where the following grammar defines what is allowed: 

M   (Srole((root(Var))(cat(Cpos))) 
       (Srole((opt(+))(root(Var))(cat(Cpos))) 
       (M(M)) 
Pos  N |   (noun) 
        V |   (verb) 
        Adj |   (adjective) 
        Adv |  (adverb) 
       … 
Con  NP |  (as defined by rules omitted 
         VP |  here to save space) 
         Con Con | 
         Pos  
SRole   subject |   (syntactic roles, 
   directobject |  only some are shown 
   pp-adjunct  to save space) 
    … 
No   [1-9]   (any digit) 
Str   [A-Z|a-z| |,|.]  (any string) 
Var   $varNo 
   Str 
Sem   C |   (any ontology concept) 
   ^Var(R(F(C))) | (R, F, C from ontology) 
   C(R(F(^Var)))  (C, R, F from ontology) 

When the machine processes text with the help of the 
resources, the ontological concepts are accessed through the 
(English) lexicon. For example, a lexical entry for the verb 
run will contain all the possible senses, of which #6 is 
shown below: 

(run-v6 
 (cat(v)) 
 (anno 
  (comments "...") 
  (def "meet unexpectedly") 
  (ex "I ran into my teacher at the movies last 

night.")) 
 (syn-struc 
  ((subject((root($var1))(cat(np)))) 
  (root($var0))(cat(v)) 
  (prep((root(into))(cat(prep)))) 
  (directobject((root($var2))(cat(np))))) 
 ) 
 (sem-struc 
  (meet-with 
   (agent(value(^$var1(should-be-

a(sem(human)))))) 

   (beneficiary(value(^$var2))) 
   (intentionality(value(<0.3))(relaxable-to(<0.5))) 
  ) 
 ) 
) 

The entry shows that this sense of run means ‘unexpected 
meeting event’ (from sem-struc), and it needs a preposition 
into (from syn-struc) to be activated. It also shows that in its 
normalized form the subject is usually the agent of the 
event, and the direct object is the beneficiary.  Optional 
properties such as time, place, etc are usually not shown in 
the lexical items. 

OST On Black balls and Green Cubes  
OST uses the Semantic Text Analyzer (STAn) to interpret 
the meaning of sentences. The (machine generated) output 
of STAn is a text meaning representation (TMR) that shows 
the conceptual representation of the text, regardless of the 
language of the input. Let us go back to the sentence a black 
ball is on top of a green cube. The resulting TMR is: 

Event: pred1  
   (theme(value (physical-object1 
     (shape(value(sphere)))  
     (color(value(black))) 
     (above(value(physical-object2 
      (shape(value(cube)))   
      (color(value (green))) 
     )))  
))) 

Possible paraphrases from the previous section is: a green 
cube is under a black ball: 

pred1  
   (theme(value (physical-object1 
     (shape(value(cube)))  
     (color(value(green))) 
     (below(value(physical-object2 
      (shape(value(sphere)))   
      (color(value (black))) 
     )))  
))) 

Another interesting paraphrase is: a ball is positioned on top 
of a cube, the ball is black and the cube is green, which will 
result in the following: 

put1 
   (theme(value (physical-object1 
     (shape(value(sphere)))  
     (above(value(physical-object2 
      (shape(value(cube)))   
    )))  
))) 
pred1 
    (theme(value (physical-object1 
 (shape(value(sphere))) 
 (color(value(black))) 
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    ))) 
pred2 
    (theme(value (physical-object2 
 (shape(value(cube))) 
 (color(value(green))) 
    ))) 

Notice that besides the PUT event, corresponding to is 
positioned, and the inverse of the BELOW-ABOVE properties, 
the rest of the information is identical for any purposes, 
including reasoning.  The third example is especially 
interesting, as the colors are assigned to the indexed objects, 
referenced by the previous sentence.   

The intersection of the paraphrases, as indicated by the 
TMRs once the inverse properties are used, are: 

 pred1  
   (theme(value (physical-object1 
     (shape(value(sphere)))  
     (color(value(black))) 
     (above(value(physical-object2 
      (shape(value(cube)))   
      (color(value (green))) 
     )))  
))) 

The union of the TMRs adds information only present in 
the third example, namely that of PUT, thus, producing  

put1 
   (theme(value (physical-object1 
     (shape(value(sphere)))  
     (color(value(black))) 
     (above(value(physical-object2 
      (shape(value(cube)))   
      (color(value (green))) 
     )))  
))) 

If Figure 1 is described instead of paraphrases, and 
sentences like a ball is smaller than a cube happen to be 
added to the description, it is easy to see that the intersection 
of TMRs will remain the same, while the union will add the 
additional size information.   

More Complex Pictures 
As demonstrated in the previous sections, OST is capable 

of understanding the meaning of close paraphrases and 
represent it in such a way that the differences and 
similarities are shown.  The next experiment aimed at 
stretching the similarities as far as possible, but asking the 
user to describe a picture instead of paraphrasing a text. 

The picture shown to the user was selected to depict an 
unambiguous object in the foreground, while the 
background contains objects that can be described either 
very briefly, if at all, or be paid as much attention as 
possible.  The hypotheses are:  

 The description of the central element of the picture 
is affected by individual/personal schemata, and 

therefore will partially differ from person to person. 
However, there should be an overlap in descriptions, 
focused on that central object, just as the paraphrases 
showed.   

 The description of the background will differ from 
person to person to a much greater degree.  A very 
small overlap is expected from pairs of participants 
since the background is not in focus (metaphorically). 

 The activated schemata are not expected to be known 
to a computer, thus the computer will process only 
information explicitly stated by the subjects. 

This is not at all an attempt to deal with the well-researched 
figure-ground phenomenon (see Talmy 2000, vol, 1: 311-
344).  Instead, we are only interested in the foreground 
display, but the background may provide individual 
distinctions. 

Methodology 
Once a picture was chosen, 3 subjects, unfamiliar with an 
experiment’s goals and from unrelated occupations, were 
asked to describe the picture.  The picture was visible to the 
subject all the time, thus the description is not effected by 
the accuracy of their recollection of the picture. The 
instructions requested to describe only what is seen on the 
picture, without alluding to any inferences or encyclopedic 
knowledge that the picture may activate.  The subjects were 
not given any specific time frame to complete the task. 

The described text was then entered into a machine for 
processing, and the union and intersection of information in 
individual texts were computed.  Whenever the descriptions 
contradicted each other, the contradictions were also added 
to the union as alternative interpretation.  

To check the validity of the found union and intersection, 
a person not participating in the description task and not 
involved in the OST part of the experimentation was asked 
to highlight the similarities in text. These similarities were 
then compared to the intersection of interpretations provided 
by a computer.  

The foreground of a picture showed a moving elephant.  
The background of the picture contained trees, shrubs and 
other greenery, as well as a place where several cars were 
parked, as seen in Figure 2. 

 

 
Figure 2: An elephant crossing the road 

Results of Human Description 
The descriptions of the submitted texts varied length ( the 

first text used 54 words, the second text used 124 words, 
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and the third text used 151 words) and structure of 
sentences. 

The following similarities were noticed by a human in all 
of the descriptions: 

 Elephant’s existence. 
 Road on which the elephant is located. 
 Trees in front of the cars, in some spatial relation to 

the elephant  
 Cars parked in the background 

The following information was included in at least one of 
the texts (author’s summary below): 

 A large African male elephant is shown on the 
picture and is moving either on the road or bare 
ground or crossing the road.  The elephant has large 
tusks, 4 legs, one visible ear, one visible eye, a tail 
and a trunk.  The front right leg of the elephant is 
bent at the knee. 

 There is dust on road and some dirt or hard soil on 
the edges of the road. The road is wide and paved.  

 A row of trees are between the elephant and the cars, 
past the cars and on the berm. The trees are large 
with extensive but not overwhelming foliage. The 
grass is mostly yellowish and dusty. 

 Cars, red and light blue or white, are parked on the 
parking lot. The red car is a hatchback. The cars, 
either 4 or 2, are all compact models.  All cars are 
parked behind the trees on what may be a parking lot. 

 A building that has yellow corner is behind the cars. 
 It is a bright sunny day; the sky is blue with light 

clouds.  

From this description, it can be noticed that the hypothesis 
of the central element of the picture being similarly 
described between all participants could not be accepted.  
Interestingly, the descriptions varied in movement 
information—it could be argued that it is not salient to the 
central object itself—but not in the elephant’s location on 
the road.  The description of the elephant and its body parts 
did not vary as much between any 2 subjects as between all 
of them. It should also be noticed that there was no 
contradictory description of the elephant itself. Thus, 
perhaps a better metric would be to find overlap used by the 
majority of the participants, as opposed to all, for real-world 
applications. 

The second hypothesis, namely the difference in the 
background descriptions due to focus on different elements 
could not be rejected based on this small set.  Between the 
objects that were noticed by all participants, the description 
varied more than that of the central object, and often the 
information was contradictory.  For example, there was no 
agreement on the number of cars in the picture or their 
colors and very different description of greenery. 

Computational Description 
Computational overlap, as expected, was clustered around 

objects.  Thus, the following concepts were identified: 

ELEPHANT, ROAD, CAR, TREE.  Additionally, the following 
descriptions of the concepts were found:  

undetermined_event 
 (agent(value(elephant1))) 
 (location(value(road1))) 
car1 
 (behind(value(tree1(number(greater-than(1)))))) 
put2 
 (instrument(value(car1))) 
 (location(sem(parking-lot))) 

In plain English, it says that there is an elephant that is 
doing something on the road, there is a car behind trees, and 
somebody left a car in the parking-lot.  Clearly, what is 
missing here from the overlap found by a human is that 
there are trees in some special relation to the elephant. 

The union of information was not as successful due to 
coreference resolution mistakes (with STAn’s coreference 
module not yet fully activated), however, the trivial unions 
of information were found.  The number of unconnected 
clusters of information was small enough, that based on the 
concepts connected through the overlap above, it is possible 
to conclude that the three stories described similar 
information.   

Perhaps it is worthwhile to demonstrate the computational 
process in the discovery of the overlap.  Consider the 
following sentences: 

 (1) A large grey elephant is moving on a road or bare 
ground. 

 (2) This is a photograph of an elephant crossing a 
road. It is a large male African elephant.  

 (3) Elephant is on asphalted road. 

The sentences result in the following TMRs: 

(1) land-animal-motion1 
 (phase(value(continue)))   
 (agent(value (elephant1))) 
  (color(value(grey))) 
 ))) 
 (location(value(road1 ground1))) 
(2) pred1 
 (theme(value(photograph 
  (representation-of(value(change-location1 
   (agent(value(elephant1))) 
   (path(value(road1))) 
  ))) 
 ))) 
pred2 
 (theme(value(elephant1 
  (size(value(large))) 
  (gender(value(male))) 
  (location(pnd(Africa))) 
 ))) 
(3) exist1 
 (agent(value(elephant1))) 
 (location(value(road1 
  (made-of(value(asphalt))) 
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 ))) 

From the above descriptions, we know the following 
about the elephant:  

From (1): <land-animal-motion1, elephant1> I [agent] 
From (2): <change-location1, elephant1> I [agent] 
From (3): <exist1, elephant1> I [agent] 

Taking the intersection of the events for which the 
elephant is an agent results in x I [event].  Thus, 
producing undetermined_event(agent(value(elephant1))). 

Continuing with each TMR, we find the following: 

From (1): <land-animal-motion1, road1> I [location] 
From (1): <land-animal-motion1, ground1> I 

[location] 
From (2): <change-location1, road1> I [path] 
From (3): <exist1, road1> I [location] 

It can be easily noticed that ground1 occurs only in (1), 
thus the intersection with (2) and (3) results in an empty set. 
For road1, the calculation is similar to that of an elephant 
with the only addition of parent-child relationship of 
location and path. 

It should also be noted that if we were to find an overlap 
of (1) and (2) and discarded (3), the event in question would 
have a considerably finer grain.  According to the ontology, 
the most specific ancestor of both LAND-ANIMAL-MOTION 
and CHANGE-LOCATION is CHANGE-LOCATION.  This means 
that while the sentences used different verbs to describe the 
movement of the elephant (crossing and moving), the OST 
understands what both mean and finds the general concept 
for both, as opposed to ignoring the similarity in meaning. 

Similar processing is done for all sentences, resulting in 
the above relationship for car1 and put2 in addition to 
elephant.   

The calculation of overlap is done in a similar manner, 
with the exception of the selection rules: each pair of 
concepts does not have to overlap in the found properties, 
instead uniquely found relationships are added to the 
existing set. 

Conclusion 
This paper was an attempt to investigate whether a computer 
is capable of finding similar information in structurally 
different texts that describe the same event, each focusing 
on potentially different parts of the event.  The goal was not 
to find similar words in texts, which can be easily done, but 
to meaningfully connect the overlapping concepts and 
relationships used in the text descriptions.  The approach is 
radically different from the machine-learning one. The 
performance of a machine in finding similarity was 
compared to human performance.  The machine matched 
four out of five human findings.  

It is too early to reach a conclusion that it is possible for 
computers to find overlap and difference between texts 
similarly to those that humans find, and, of course, more 

extensive experiments should be conducted.  However, it is 
promising that the first result is not negative.   
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