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Abstract

Objective.—Decoding language representations directly from the brain can enable new 

brain–computer interfaces (BCIs) for high bandwidth human–human and human–machine 

communication. Clinically, such technologies can restore communication in people with 

neurological conditions affecting their ability to speak.

Approach.—In this study, we propose a novel deep network architecture Brain2Char, for 

directly decoding text (specifically character sequences) from direct brain recordings (called 

electrocorticography, ECoG). Brain2Char framework combines state-of-the-art deep learning 

modules—3D Inception layers for multiband spatiotemporal feature extraction from neural 

data and bidirectional recurrent layers, dilated convolution layers followed by language model 

weighted beam search to decode character sequences, and optimizing a connectionist temporal 

classification loss. Additionally, given the highly non-linear transformations that underlie the 

conversion of cortical function to character sequences, we perform regularizations on the 

network’s latent representations motivated by insights into cortical encoding of speech production 

and artifactual aspects specific to ECoG data acquisition. To do this, we impose auxiliary losses 

on latent representations for articulatory movements, speech acoustics and session specific non-

linearities.

Main results.—In three (out of four) participants reported here, Brain2Char achieves 10.6%, 

8.5%, and 7.0% word error rates respectively on vocabulary sizes ranging from 1200 to 1900 

words.

Significance.—These results establish a new end-to-end approach on decoding text from brain 
signals and demonstrate the potential of Brain2Char as a high-performance communication BCI.
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1. Introduction

Several demonstrations in recent years have shown that it is possible to decode cognitive, 

linguistic and speech representations directly from the brain through machine learning 

on neurophysiological imaging datasets. Attempts have been successful in decoding word 

classes or semantic representations from fMRI data (Mitchell et al 2008, Wehbe et al 2014, 

Huth et al 2016, Pereira et al 2018). However, since speech communication happens at a 

much faster rate, accurately decoding cortical function at the rate of fluent speech requires 

neurophysiological imaging at higher spatial resolution (in the order of millimeters) and 

temporal resolution (in the order of milliseconds). Among the modalities that offer the best 

resolution for assaying neural function is electrocorticography (ECoG, Sejnowski et al 2014, 

Chang, et al 2015). ECoG is an invasive neuroimaging technique where a flexible array 

of electrodes (3 in × 3 in) is placed directly on the surface of the cortex (or as depth 

electrodes to reach deeper structures) as part of clinical treatment for intractable epilepsy. 

Each electrode records the raw voltage potentials at the cortical surface, an aggregate 

electrical activity of thousands of neurons underneath the contact. The analytic amplitude 

of the High Gamma frequency band (70–150 Hz) of this aggregate activity has been shown 

to be a robust correlate of multi-unit spiking (Edwards et al 2005, Crone et al 2011). This 

setting provides a unique opportunity to create datasets of parallel neural and behavioral 

data as participants perform tasks such as listening or speaking naturally. Indeed, several key 

results have been published in recent literature on inferring speech representations directly 

from associated ECoG activity, broadly referred to here as neural speech recognition (NSR). 

We refer to NSR as decoding any aspect of spoken language from the brain—including 

produced or perceived speech (waveform) or words (lexical items), etc.

Prior works on speech/language decoding from ECoG used data either from the auditory or 

the speech motor cortices. Pasley et al (2012) and Akbari et al (2019) report methods for 

direct reconstruction of external speech stimuli from auditory cortex activations. Martin 

et al (2016) use non-linear SVM to classify auditory stimuli and Moses et al (2016) 

use Hidden Markov Modeling to infer continuous phoneme sequences from neural data 

during listening. Similarly, for neural decoding during speech production, Mugler et al 
(2018) have used linear models to classify phonemes and Herff et al (2015) use Hidden 

Markov Models (HMM)/Gaussian Mixture Models (GMM) based decoding to achieve 

a word error rate (WER) of 60% on a 50-word vocabulary task. Makin et al (2020), 

use a Machine-translation inspired sequence-to-sequence LSTM model to convert ECoG 

activity to complete sentences. Recent attempts have also focused on decoding audible 

speech directly from the sensorimotor cortex, including Angrick et al (2019), using 

deep convolutional architectures (Wavenet), Anumanchipalli et al (2019), using recurrent 

architectures.

In speech processing applications like automatic speech recognition (ASR) and text-to-

speech synthesis, much progress has been made to achieve near-human performance 

on standard benchmarks. These include the use of recurrent (Hannun et al 2014) and 

convolutional architectures (Collobert et al 2016) towards end-to-end speech recognition 

minimizing connectionist temporal classification (CTC) loss, which remain unexplored for 

decoding text from brain data. Given the demonstration of naturalistic and continuous 
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speech synthesis directly from the brain, one way to approach the Brain-to-text problem is 

a two-stage model where neural data is converted to speech, which can then be converted 

to text using a state-of-the-art ASR system. Indeed, we propose a strong baseline (section 

2.2) for the Brain-to-text problem along these lines, that to our knowledge, already achieves 

the best reported performance on this task. To improve this baseline further, we propose 

Brain2Char (section 2.3), a deep network architecture that borrows ideas from speech 

processing, and develop optimizations appropriate for NSR. Brain2Char implements an end-

to-end network that jointly optimizes various sub-problems, like neural feature extraction, 

optimizing latent representations and session calibration through regularization via auxiliary 

loss functions. Performance of Brain2Char is quantified on four volunteer participants who 

spoke overtly or silently, and various aspects of decoder design are objectively evaluated 

(section 3).

1.1. Main challenges

1.1.1. Neural basis of speech production—Neural mechanisms for linguistic 

planning and execution occur at diverse timescales, and at diverse alignment offsets with 

respect to the speech signal. Also, different cortical regions encode distinct aspects of 

speaking. For example, the inferior frontal gyrus (IFG) is linked to motor sequence planning 

(Flinker et al 2015) and the articulator kinematic trajectories (AKTs) is linked to the 

articulatory aspects in producing speech (Mugler et al 2014, Chartier et al 2018). Each 

electrode location in the AKT codes a unique kinematic plan, spanning multiple vocal tract 

articulators and timescales to orchestrate continuous speech articulation. Electrodes in the 

superior temporal gyrus (STG) encode spectrotemporal aspects of speech signal (Mesgarani 

et al 2014). This diversity of cortical function and tuning properties contributes to most 

of the speech related variability in the ECoG signal. It is therefore important for an NSR 

system to model these representations, as appropriate for a given electrode location and 

participant behavior (e.g. whether it is a speaking task or a listening task).

1.1.2. Neural variability—Since individual brains differ anatomically, neural data from 

multiple participants cannot be pooled across speakers. This limits the amount of data 

available to train traditional machine learning models. Additionally, there are other sources 

of variability in neural recordings (Nuyujukian et al 2014, Zhang et al 2018). ECoG 

measures the local field potentials at the cortical surface. Since each electrode contact 

records from thousands of underlying neurons, the signal at each may not be entirely 

specific to speech production. Some cortical regions responsible for certain articulatory 

phonetic sequences may not even be sampled, given a particular electrode coverage, or 

there may be redundancy across neighboring electrodes. Furthermore, the intrinsic neural 

dynamics (Churchland et al 2010, Sun et al 2019) mask the true signal causal to producing 

speech. All of these aspects contribute to a poor signal-to-noise ratio in the neural data. It is 

important for NSR systems to extract meaningful features from across the diverse spatial and 

temporal scales of the ECoG data.

1.1.3. Cross-session variability—Typical ECoG data is collected in multiple short 

sessions spread over a week or so, where electrode leads from the brain are manually 

connected to a preamplifier before recording neural data for each session (Perge et al 
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2013). An artifactual aspect of neural recordings is the non-stationarity in the signal across 

recording sessions. This may be due to different ‘baseline’ brain states in each session, 

or some electrode channels not recording (e.g. sensor losing contact with the cortical 

surface), or (more rarely) the entire grid slightly shifted on the cortical surface, causing 

differences across sessions that are unrelated to speech production process itself. An ideal 

NSR approach subsumes session specific corrections to improve cross session compatibility 

in neural data.

Since most of these issues cannot be deterministically modeled, it is necessary for NSR 

to be realized within a statistical framework, jointly optimizing neural feature extraction, 

latent representation learning, session calibration and text prediction, all within the same 

model. We now describe Brain2Char, a deep learning architecture that implements such a 

framework.

2. Methods

2.1. Data

In this study, we use data from four participants P1, P2, P3, and P4. These volunteer 

participants read prompted sentences on a screen while their speech and ECoG data were 

synchronously recorded. For participants P1 and P2, the sentences were derived from 

MOCHA-TIMIT corpus (a 1900-word vocabulary task of 460 independent sentences) and 

several short stories (a combined 1500-word vocabulary). For participants P3 and P4, a 

limited domain dataset of verbal descriptions of three pictures consists of a 400 words 

vocabulary on picture description and 1200 vocabulary on free-style interview tasks. The 

total data collected across participants varied between 120 min and 200 min. To evaluate and 

validate the neural variance of across trials, a subset of the sentences (i.e. MOCHA-TIMIT 

and picture description) was repeated across different task sessions. Other sentences (i.e. the 

interview, and stories) were read only once during the task. The recordings were made in 

several 1 h long sessions over a week or more, while participants were implanted with grids 

for clinical monitoring for seizure localization. Specifically, the neural data of participants 

P1, P2 and P4 are recorded with 16 × 16 electrode grid covering the ventral sensorimotor 

cortex (vSMC), IFG and STG, only participant P3 was recorded with 16 × 8 electrode grid 

covering only the dorsal half of the vSMC. All participants gave their informed consent to 

be a participant for this research prior to surgery. The research protocol was approved by the 

UCSF Committee on Human Research (RB# 10-03842). All neural data was pre-processed 

to reject artifacts and extract the analytic amplitude in the High Gamma frequency band (70–

150 Hz) and low frequency component (0–40 Hz) z-scored appropriately. For the speech 

data collected, acoustic-to-articulatory inversion is performed to estimate the AKT, and in 

the meantime, Mel Frequency Cepstral Coefficients (MFCC) are extracted from acoustic 

speech signals. All data were synchronously sampled at 200 Hz.

2.2. Baseline NSR systems

We employed two baseline ECoG-to-text systems inspired by previous demonstrations of 

speech synthesis from the ECoG data (Angrick et al, 2019, Anumanchipalli et al 2019), 

and off-the-shelf ASR systems. The baselines first convert the ECoG activity into speech 
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acoustic features that are then converted to text using a state-of-the-art speech recognition 

system (DeepSpeech). The first baseline model DS_0 consists of independently pre-trained 

two-BiLSTM layers ϕe that encode ECoG signals as acoustic features (i.e. MFCC), and 

pretrained DeepSpeech that translates these acoustic features to text. In the second baseline 

model DS_1, the two-layer BiLSTM encoder ϕe is jointly trained with a pre-trained 

DeepSpeech network. The training uses the available ECoG, MFCC, and text (i.e. character 

labels), and the joint network is updated to optimize a CTC loss on character sequence, 

and a weighted auxiliary mean-squared error loss on the MFCCs. We found it beneficial 

to ‘freeze’ the pre-trained layers of DeepSpeech, and only allow the two-BiLSTM neural 

encoder layers to be learned, while still optimizing the joint loss. The performance of the 

baseline systems is described in section 3.1, along with the proposed Brain2Char model.

2.3. Brain2Char architecture

To further improve upon the baseline architectures, we propose Brain2Char, an NSR 

framework with a modular architecture comprising three parts: the neural feature encoder, 

the text decoder, and the latent representation regularizer. Compared with previous work, 

the proposed Brain2Char translates neural inputs as character sequences instead of word 

sequences. The modular structure is convenient for network optimization, and each 

submodule can be independently improved based on the general design considerations of 

NSR systems mentioned in the earlier section. The inference model consists of the encoder 

and the decoder, and the regularization networks are only used at training time. Figure 1 

illustrates the architecture of Brain2Char.

In comparison to Makin et al (2020) who use an end-to-end approach based on sequence-to-

sequence decoding to translate neural signals to sentences, our proposed network employs 

CTC to map the abstracted neural features to phoneme level sequences, which on the one 

hand avoid the ambiguity of onset-offset neural speech alignment issue, on the other hand, 

provide the ability to track the neural dynamics with high temporal resolution (i.e. at the 

timescales of precise articulatory movements or phonemes instead of word sequences). 

Additionally, the regularization networks directly modulate the latent feature layer, which 

allows effectively introducing other features (e.g. AKT, time label, and MFCC) to reduce the 

search space drastically especially with limited and large variance training datasets.

2.3.1. Notation—Brain2Char optimizes a transformation ϕ to map the recorded neural 

signals X ={x1, x2, …, xn|xi ∈ Rt×w×h} to character sequences Z = {z1, z2, …, zn|zi ∈ 
Rv}. Here the index t, w, h refer to time dimension, the anterior-posterior (width) and 

dorsal-ventral (height) axes of the ECoG grid, and v refers to the embedding dimension of 

the text vector. In the encoding phase, encoder ϕe projects neural inputs X to latent feature 

space F which in turn will be translated as the outputs Z by decoderϕd in the decoding phase. 

Here F with the upper index (e.g. Fh) represents the basis of the latent feature space, whereas 

with the foot index (e.g. Fh) is a vector in the feature space.

2.3.2. Neural feature encoder network—The goal of the encoder is to extract the 

speech-specific part of the neural signal, robustly accounting for the spatial, temporal and 

spectral variations within the neural signals. In Brain2Char, the 3D ECoG signals X are 
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fed into the encoder stacked by network modules similar to inception nets (Szegedy et al 
2017). A single inception layer parallelly employs several sub-networks to extract features 

at different resolutions by choosing a set of hyperparameters specifying the number of 

channels, kernel size, and stacked layers. This design is capable of extracting features 

at various temporal-spatial scales within a single inception module and aggregate these 

multi-resolution features. Therefore, the next stage can access robust features at different 

resolutions simultaneously.

The neural feature encoder ϕe consists of several layers of grouped convolutional neural 

networks (CNN). For each single layer, a set of convolutional filters {W1, W2 …} are used 

in multiple sub-networks, where W i ∈ Rcin × kt × kw × kℎ × cout . For the weight tensor Wi, the 

spatial support of each kernel filter κi is kt × kw × kh. There are cin input channels and cout 

output feature maps. Additionally, each sub-networks p in jth layer use stacked layers that 

employ a series of kernels κ with different sizes, that is F{κ} = Wj,p,1 (Wj,p,2 (…(Λ))), where 

F{κ} refers to the features obtained at the pth sub-networks in jth layer of encoder by using 

kernel set {κ}. After a multi-scale feature extractor, two Bi-LSTM layers are stacked. In 

the proposed framework, the output of the Bi-LSTM layers are referred as the latent feature 

representation Fh.

2.3.3. Latent feature regularization network—To implicitly enforce a meaningful 

latent representation in the neural encoder, the regularization branch performs simple feed-

forward transformations of the latent features of the encoder to account for known aspects of 

neural signal variance discussed earlier.

2.3.3.1. Session calibration.: To reduce the variability of neural signals X due to session 

specific artifacts, calibration across sessions is done to pool sessions in terms of their 

relative similarity to the earlier sessions. Since changes across sessions cannot be modeled 

systematically, in this study we introduce an implicit calibration on the encoded feature F 
to reduce intrinsic session-dependent variation. In other words, each latent feature Ft, t ∈ Ti
within the time duration Ti can be assigned session labels, which are indexed by continuous 

values. Instead of using one-hot vectors, we learned the time embedding vector QTi in a 

skip-gram fashion (Mikolov et al 2013). Similar to the word embedding, QTi describes the 

temporal correlation. A regression layer M(·) would map the dynamic latent sequence Fh to 

logits, and L = − ∑Q * log M Fℎ  is used as the cost function of time regularization.

2.3.3.2. Speech-specific latent representation.: The basis space Fx representing neural 

signals X exists in a higher dimensional space compared to basis space Fz with vocabulary 

Z. In Brain2Char architecture, the encoder projects the neural data X into the latent space Fh 

and the decoder expands the latent feature Fh to span the basis of targets Z. If trained without 

regularization on the output of ϕe, the encoder ϕe explores quite a large space searching for a 

manifold where Fh ⊃ Fz. To reduce the search space Fh, the speech/language basis Fz can be 

directly used as the regression target of encoder ϕe. However, limited by the data, complete 

speech/language basis Fz is not obtainable. As the baseline we proposed, other accessible 

feature representation Fz′ (e.g. MFCC), can be alternatively used as the regression targets 
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of ϕe. In general, the regularization features Fz′ can be any type of features correlated with 

or generated from speech or text Z associated with productions. For instance, by applying 

autoencoder on speech acoustics, Akbari et al (2019) derive a low dimensional basis utilized 

as the regularization component in auditory speech reconstruction.

Assuming a set of feature basis Fz1, Fz2, … , a joint feature basis is learned through the 

regularization networks as described in figure 1. Here the index zi refers to the ith category 

features (e.g. MFCCs). Based on the obtained feature vectors Fzi , the regularizations are 

illustrated as:

L Fℎ, Fz1, Fz2,  … = ∑
i

αi Ω Fℎ − Fzi 2 (1)

(where Ω represents projection operation (i.e. regularization layer), and L is cost function 

and αi is the weight coefficient of the ith regularizer. By using Ω, a new ensemble 

feature basis is incorporated to modulate the latent representation. Physiologically generative 

representations or close features derived from speech acoustics make better targets for 

regularization.

2.3.4. Text decoder network—At the core, translating the latent feature Fh to character 

sequences is a sequence decoding task. In other words, any state-of-the-art sequence 

translation system can be adapted to the text decoder network. Brain2Char model employs 

three layers of dilated CNNs to process the long-short term correlations, which could be 

resistant to noise components. In each dilated layer, five sub-layers as shown in figure 1 

are applied to learn the sequence correlations at various scales. The layer-wise residual 

connections ensure the features at different scales are processed simultaneously. Since the 

exact alignment of latent representations is hard to obtain (i.e. onset and offset of neural data 

corresponding to characters), on top of the dilated CNN, CTC is incorporated with a 4 gram 

language model as the text decoder network. Together with feature regularization and the 

explicit language model used for beam search, the cost function for the overall Brain2Char 

decoder can be illustrated as L = αL1 + ∑iαiLi, where the first component LI refers to the 

loss of the inference networks (i.e. CTC loss), and the second component is the summation 

of the loss of regularization networks as described in equation (1).

2.4. Implementation

We implemented our method using Tensorflow. In terms of model training, we use a cyclic 

learning rate with maximal value 0.005 and minimal value 0.0001. Linear decay coefficients 

are applied to the weight coefficients of regularization components. The batch size is 50 

at the sentence level for training (the time durations for each sentence range from 2 s 

to 5 s, and tail padded with 0), the feature dimension of MFCC and AKT are 26 and 

33, respectively. For 3D inception module, the kernel sizes kt, kw, kh along each axle are 

selected with different combinations of 3, 5, 7, 9. Bottleneck layer with kernel size 1 is also 

used. The dimension reduction is achieved by using two step strides in inception modules. 

For dilated CNN, the kernel size is fixed as 11, and the dilated ratios for five sub-layers 

are [1, 2, 4, 8, 16]. The convolutional layer after the dilated CNN uses kernel size 1, and 
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the output channel is the dimension of character vocabulary. Two BiLSTM layers use 0.5 

dropout rate, and the output of dilated CNN is set to 0.15 dropout rate. To ensure robust 

sequence learning, the onset and offset of neural features are randomly jittered about a time 

window aligned to acoustic speech boundaries. A 4 gram language model incorporated with 

beam search is applied to the outputs of CTC. KenLM (Heafield et al 2013) is used to train 

the word language models of the speech corpus that is used for speaking tasks. Additionally, 

the pre-trained LibriSpeech language model used in DeepSpeech (Hannun et al 2014) is 

employed as a baseline language model. The weighting coefficient of the language model is 

set to 1.5.

Brain2Char was designed as a proof-of-principle demonstration on previously collected 

ECoG data, without explicit considerations for real-time latency. The choice of using 

Bidirectional RNNs and dilated CNNs require analysis windows that look-ahead (window 

centered around current frame) which introduce latency. In the Brain2Char model, the RNN 

expects 20 context frames by 5 ms per frame. For the dilated CNN, we use dilation ratio 

of 16 with kernel size 11, where the context size is 150 frames. In all, the context latency 

of Brain2Char model is 850 ms. The runtime complexity of the inference is 600 MMAC 

s−1 with 10 M parameters. On a NVIDIA T4 GPU server, for the off-line inference model 

implemented on an 8-core E5-2650 V2 server, the computational latency is less than 150 ms 

(averaged across ten trials).

3. Results

3.1. Quantitative results

We conducted a quantitative evaluation of the baselines and the proposed Brain2Char 

architecture. Figure 2(a) compares the performance of various systems with increasing 

amounts of training data. Systems indexed DS_0 and DS_1 are independently pretrained 

and jointly optimized baseline models described in section 2.2. Across three patients, 

the joint optimized DS_1 systems show consistent gains of around 30% in WER over 

DS_0. This suggests that current neural speech synthesis methods do not give a sufficient 

quality of speech that can be reliably decoded by off-the-shelf speech recognition systems. 

Hence, customizing the intermediate representations in ϕe is critical, as is done in DS_1 by 

optimizing the neural feature encoder with a CTC loss within the joint network. Figure 2(a) 

also shows the performance of the proposed Brain2Char networks (indexed B2C) against 

these baselines. In all cases, we see significant gains of an additional 30% in WER. This 

suggests that Brain2Char’s modular architecture of neural feature encoder, feature space 

regularizer and text decoder is well suited for high performance NSR. The performance 

trends with increasing training data size also suggest that the architecture makes optimal 

utilization of the available data compared to the baseline (larger slope in WER gain with 

more data, whereas the baselines seem to plateau).

Figure 2(b) quantifies the contribution of language models towards Brain2Char 

Performance. For different amounts of training data and for three participants, three different 

language modeling conditions at inference-decoding with no language model (indexed 

_NL), the default language model in Deep-Speech (trained on librispeech corpus, a general 

purpose character-level language model of English, _L1), and a domain specific language 
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model (_L2) created using all training data specific to the task. It can be seen that language 

models generally improve decoding performance, and task dependent language models help 

further. In all, Brain2Char achieves roughly 10% to 25% WER improvement across three 

participants, and the performance improvements against librispeech based language model 

range from 3% up to 15%. It is to be noted that the performance is still respectable in 

the _NL conditions, possibly due to implicit language model in the text decoder. This 

may sometimes lead to overfitting if the decoder is simply memorizing the task language 

independently of the neural data. To explicitly test this, we ran inference on trials that 

were randomly cut-off, either at the start or the end. Figure 2(c) shows the error rates as a 

function of amount of signal cut-off (in seconds, either at the start, or at the end of a trial, 

indexed _onset and _offset in the legend). The results confirm that Brain2Char is not merely 

performing a classification task by memorizing sentences, but is sensitive to the length of the 

trial in time. It also seems that onset cut-off is worse than offset cut-off.

Additionally, the offset cut-off condition in figure 2(c) also shows that Brain2Char is capable 

of synchronous, incremental decoding (instead of waiting for whole sentence length neural 

data inputs that cause latency), which is a critical desirable of a real time communication 

brain–computer interface (BCI). Table 1 shows an example performance of Brain2Char on 

two sentences as data are provided in increments of 0.2 s at inference time. Note that the 

decoded sentences are shorter in length, as would be expected for shorter time windows of 

neural inputs, and the errors are typically in the last word(s) that maybe cut off mid-word.

3.2. Importance of regularization

One of the salient features of Brain2Char framework is the regularization branch that 

implicitly enforces a meaningful and robust latent representation in the neural encoder. 

To quantify the effect of various regularization factors used, we trained several systems 

each with different regularization strategies. Firstly, to study the effect of the session 

embedding regularization (calibration), we trained comparable systems where only in the 

calibrated condition, the latent representation Fh regresses to the attached time embedding. 

The imposed time constraints on Fh reduce cross-session neural variability, and the results 

in figure 3(a) confirm this trend, across increasing amounts of training data. In general, 

the session calibration enhanced the performance by about 4% against the non-calibrated 

approach.

The second regularization we evaluated was that of the latent speech representation in Fh. 

We built variants of Brain2Char systems, where Fh was unconstrained (no regularization), 

and added regularization branches from Fh to either (i) acoustic features (MFCC), 

(ii) articulatory kinematic trajectories (AKT) and (ii) MFCC + AKT. We observed 

improvements in all these cases compared to the case where no regularization was 

performed. Figure 3(b) summarizes these effects in terms of WER improvement from an 

unregularized Brain2Char system. While all speech representations result in positive gains, 

articulatory representations are significantly better regularization factors than the spectral 

MFCC representations. The best improvements were obtained using both representations 

(MFCC + AKT achieving a 15% absolute improvement in P2), as neural signals may explain 

some acoustic variations, complementary to the articulatory features. These results indicate 
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that implicitly enforcing physiological aspects in latent representations heavily contribute to 

explaining the neural speech variance, that cannot otherwise be learnt in an unsupervised 

fashion, given these smaller scale datasets. The benefits of the articulatory representations 

are also consistent with earlier studies about neural encoding in the vSMC (Chartier et al 
2018).

In figure 3(b), different feature sets are used for regularization validation. The results 

show that all three feature sets MFCC, AKT, MFCC + AKT demonstrate significant 

improvements in NSR tasks. Specifically, the combination of MFCC and AKT achieves 

the best performance that enhances up to 15% WER in absolute on participant P2. The 

next best improvement was achieved on both participant P1 and P2 by only using AKT. 

Based on MFCC, 8% WER improvement was obtained across two participants. The results 

indicate that all physiological features contribute to explaining the neural speech variance, 

and especially AKT is considerably good at representing the neural speech variances.

3.3. Unseen sentences and importance of multiple repetitions

We conducted experiments where no sentences overlapped between training and testing sets 

(for instance, training on MOCHA-TIMIT and testing on fair story, and vice versa). By 

employing non-overlapped training/testing decoding tasks, we can explore the generalization 

of the proposed decoder on phoneme or word level recognition. Table 2 shows the number 

of words in training/test data for unique sentences. The training dataset for P1 includes 

both MOCHA-TIMIT and storytelling. For participant P2, it includes an interview. Both 

participant P3 and P4 include free-style picture descriptions as the training dataset. The 

vocabulary of test sets is averaged across ten-fold cross validation. The total words take into 

account all the tokens (i.e. words) in the training/testing dataset.

Due to considerably low overall word repeat ratio (defined as Unique words/Total words, 

less than four across four participants and large neural variance, the WERs are expectedly 

high. As shown in figure 4(a) (blue bar), the WERs range from 25% to 120% with an 

average of 80% across four participants. However, WER metric is not sufficient to evaluate 

extremely low resource word recognition tasks. Scrutiny of the decoder output reveals that 

the phonetic features are quite well presented (for instance, among our worst examples 

for P1 with a 100% WER is the sentence ‘Tina Turner is a pop singer’ decoded as 

‘teashureasapopcargr’). Table 2 demonstrated some decoding results varied with different 

WER levels. The phonetic features are well translated compared to the ground truth. While 

the model has done a reasonable job of approximating the character string, the high WER 

is largely because the final text decoding module was not trained on sizable English text 

datasets to learn general pronunciation rules and legitimate word boundaries. Note that in 

this example, none of the test words were seen by Bran2Char in training.

To investigate this systematically, we computed the phonetic error rates (PERs) (Wagner and 

Fischer 1974) between the original and decoded sentences. figure 4(a) shows for all four 

participants, the WER (blue bar) and PER (orange bar) on unseen sentences in test (each 

trial is also plotted as a dot). We noticed that, across participants, the PERs (i.e. 66% on P1, 

74% on P2, 65% on P3, 72% on P4) were much lower, and qualitatively many sentences 

were decoded quite phonetically, barring typos and mistaken word boundaries (see table 3 
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for representative examples). In other words, the decoder successfully learned the feature 

distribution of neural signals. However, the neural variability makes the phonetic n-gram 

statistics (i.e. P(pi|pi−k … pi+k), where P(.) is the probability distribution with phoneme 

component pi) ambiguous especially with limited training data, and the proposed decoder 

maps the neural signals of the characters to phonetic units with similar distributions. Note 

that the model was never trained on any phonetic transcriptions. We observe that unseen 

content words are a major contributor to high WERs, that would require Brain2Char to 

do zero-shot learning. To understand why sentence repetitions help, we trained models on 

P4 with increasing repetitions of test sentences. figure 4(b) shows that WER improvement 

(from 84% to 10%) was proportional to the PER improvement (from 72% to 9%), gradually 

improving word pronunciations. A classifier grossly mistakes one sentence to another in 

entirety, not in piecewise compositional units like we observe here.

Based on the decoding results on unseen sentences, we can conclude that articulatory 

context is strongly encoded in neural data, and NSR systems should be trained with datasets 

that densely cover all articulatory contexts of the language. In the absence of sizable 

datasets, training on several repetitions of valid sentences in the target domain can achieve 

reasonable gains by the trading off some generalizability.

4. Discussion

BCIs for communication have recently gained attention due to the novel invasive 

neurophysiology techniques and availability of datasets from intracranially implanted 

participants. The performance of best communication BCI is at eight words min−1 

(Pandarinath et al 2017). This work uses multi-electrode arrays implanted in the hand-motor 

region of a paralyzed participant, decoding the movement of a cursor on the screen to 

navigate an alphabet keyboard. While still state-of-the-art, this performance is far below 

natural human speaking rates. There is a need for developing BCIs decoding directly from 

the speech motor cortex, which has the potential for much faster communication rates 

(Chang and Anumanchipalli 2020).

Since several nonlinear transformations underlie the conversion of vocal intent in the 

brain to vocal speech production, deep learning offers a natural solution to design a 

decoder for BCI. However, current deep learning methods are agnostic to the underlying 

generative processes and are not suited to be directly employed for BCI. In this work, 

we objectively show the advantages of inducing physiologically appropriate biases into 

the latent representations of deep neural networks. Yet, several limitations exist before 

reliable translation of this technology into prostheses for paralyzed populations. Our 

best results indicate that the performance of Brain2Char relies on multiple repetitions of 

expected sentences, which is not scalable to open vocabularies of the real world. Further 

development is needed to improve generalization of BCI techniques, including transfer 

learning across subjects, integrated language models, and pretrained robust neural feature 

extractors. Another critical milestone is to optimize Brain2Char for real time decoding with 

minimal latency. Some directions toward this include reducing the model complexity and 

network prediction latency.
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Another limitation of current study is that all participants in this study are fluent American 

English speakers, with no neurological conditions affecting their ability to speak. To 

translate the decoding framework to paralyzed patients would require silent speech data 

acquisition, human-in-the-loop training protocols and optimal integration of low-latency 

feedback that can engage brain plasticity to enhance user embodiment and seamless 

adoption of the communication prostheses.

5. Conclusion

We propose Brain2Char, a neural network architecture that converts Brain recordings 

to text. Brain2Char utilizes multi-scale grouped CNN filters to extract neural signals 

from ECoG data, employs physiological and artifactual regularization schemes on latent 

representations, and decodes character sequences optimizing a CTC loss. The jointly 

optimized Brain2Char model makes optimal utilization of available data and sets a new 

state-of-the-art performance on decoding text from ECoG recordings. This holds both in 

terms of vocabulary sizes and performance metrics compared to earlier studies. Furthermore, 

Brain2Char is amenable to incremental, real-time decoding. These results demonstrate that 

Brain2Char is a promising candidate for a communication BCI.
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Figure 1. 
Architecture of Brain2Char: neural data is recorded as participants produce speech. 

Different filters spanning across space, time, and frequency dimensions convert recorded 

potentials into appropriate feature representations. The intermediate features are fed into the 

regularization network and the decoder network. The regularization networks impose Mean 

Square Error (MSE) losses on regressed speech representations and session embedding. 

The decoder implements a sequence learning model that dilated CNNs convert the latent 

representations to character sequences, using language model weighted beam search.
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Figure 2. 
Performance evaluation of Brain2Char compared to baseline systems. (a) Word error rate 

as a function of increasing amount of training data for baselines and Brain2Char. (b) 

Comparison of performance of various language models. (c) Performance on partial neural 

data with cut-off at either onset or offset.
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Figure 3. 
Importance of regularization factors in Brain2Char: (a) Effect of session calibration on two 

participants. (b) Word error rate gains by imposing physiological and/or acoustic feature 

targets (e.g. MFCC and AKT).
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Figure 4. 
(a) WER and PER across four participants (P1, P2, P3, P4). (b) WER and PER for P4 with 

incremental repeats.
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Table 2.

Number of words across participants.

P1 P2 P3 P4

Unique words 2683 1806 2101 2201

Total words 14 978 6015 8520 5811

Test words 312 316 525 373
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